JAPAN INTERNATIONAL COOPERATION AGENCY (JICA) NATIONAL RIVER CONSERVATION DIRECTORATE (NRCD) MINISTRY OF ENVIRONMENT AND FORESTS

THE STUDY ON WATER QUALITY MANAGEMENT PLAN FOR GANGA RIVER IN THE REPUBLIC OF INDIA

FINAL REPORT

VOLUME III MASTER PLAN FOR PROJECT CITIES

VOLUME III-2 SEWERAGE MASTER PLAN FOR KANPUR CITY

JULY 2005

TOKYO ENGINEERING CONSULTANTS CO., LTD. CTI ENGINEERING INTERNATIONAL CO., LTD.

No.

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA) NATIONAL RIVER CONSERVATION DIRECTORATE (NRCD) MINISTRY OF ENVIRONMENT AND FORESTS

THE STUDY ON WATER QUALITY MANAGEMENT PLAN FOR GANGA RIVER IN THE REPUBLIC OF INDIA

FINAL REPORT

VOLUME III MASTER PLAN FOR PROJECT CITIES

VOLUME III-2 SEWERAGE MASTER PLAN FOR KANPUR CITY

JULY 2005

TOKYO ENGINEERING CONSULTANTS CO., LTD. CTI ENGINEERING INTERNATIONAL CO., LTD.

Foreign Exchange Rate:

Master Plan US\$ 1 = JPY 109.09 US\$ 1 = Rs 45.33 (As of March 2004)

Feasibility Study US\$ 1 = JPY 103.66 US\$ 1 = Rs 43.70 (As of February 2005)

FINAL REPORT ON WATER QUALITY MANAGEMENT PLAN FOR GANGA RIVER JULY 2005

GENERAL TABLE OF CONTENTS

VOLUME II RIVER POLLUTION MANAGEMENT PLAN

VOLUME III MASTER PLAN FOR PROJECT CITIES

VOLUME III-1 SEWERAGE MASTER PLAN FOR LUCKNOW CITY

VOLUME III-2 SEWERAGE MASTER PLAN FOR KANPUR CITY

- VOLUME III-4 SEWERAGE MASTER PLAN FOR VARANASI CITY
- VOLUME III-5 NON-SEWERAGE SCHEME
- VOLUME III-6 SOCIAL CONSIDERATION AND HYGIENE EDUCATION PLAN
- VOLUME III-7 RECOMMENDATIONS ON SOLID WASTE MANAGEMENT
- VOLUME III-8 GIS DATA MANAGEMENT
- VOLUME III-9 INSTITUTIONAL DEVELOPMENT PROGRAMME
- VOLUME III-10 FINANCIAL AND ECONOMIC EVALUATION

VOLUME III-11 (SUPPORTING REPORT) CASE STUDY OF SEWAGE TREATMENT PLANTS

VOLUME IV FEASIBILITY STUDY FOR PROJECT CITIES

VOLUME IV-1 FEASIBILITY STUDY FOR LUCKNOW CITY

- PART 1 SEWERAGE SCHEME
 - PART II NON-SEWERAGE SCHEME
 - PART III PUBLIC PARTICIPATION AND AWARENESS PROGRAMME
 - PART IV INSTITUTIONAL DEVELOPMENT PROGRAMME
 - PART V ECONOMIC AND FINANCIAL EVALUATION
 - PART VI STAKEHOLDER MEETING
- PART VII DRAWINGS

VOLUME IV-2 FEASIBILITY STUDY FOR KANPUR CITY

- PART 1 SEWERAGE SCHEME
- PART II NON-SEWERAGE SCHEME
- PART III PUBLIC PARTICIPATION AND AWARENESS PROGRAMME
- PART IV INSTITUTIONAL DEVELOPMENT PROGRAMME
- PART V ECONOMIC AND FINANCIAL EVALUATION
- PART VI STAKEHOLDER MEETING
- PART VII DRAWINGS

VOLUME IV-3 FEASIBILITY STUDY FOR ALLAHABAD CITY

- PART 1 SEWERAGE SCHEME
- PART II NON-SEWERAGE SCHEME
- PART III PUBLIC PARTICIPATION AND AWARENESS PROGRAMME
- PART IV INSTITUTIONAL DEVELOPMENT PROGRAMME
- PART V ECONOMIC AND FINANCIAL EVALUATION
- PART VI STAKEHOLDER MEETING
- PART VII DRAWINGS

VOLUME IV-4 FEASIBILITY STUDY FOR VARANASI CITY

- PART 1 SEWERAGE SCHEME
- PART II NON-SEWERAGE SCHEME
- PART III PUBLIC PARTICIPATION AND AWARENESS PROGRAMME
- PART IV INSTITUTIONAL DEVELOPMENT PROGRAMME
- PART V ECONOMIC AND FINANCIAL EVALUATION
- PART VI STAKEHOLDER MEETING
- PART VII DRAWINGS
- VOLUME V PILOT PROJECT FOR SANITARY IMPROVEMENT OF MANIKARNIKA GHAT

VOLUME III-2 SEWERAGE MASTER PLAN FOR KANPUR CITY

Table of Contents List of Tables List of Figures Abbreviations Glossary of Terms

TABLE OF CONTENTS

CHA	PTER	1 EXECUTIVE SUMMARY	
1	l.1 G	ENERAL	1-1
	1.1.1	Need for a Sewerage Master Plan	
	1.1.2	Key Issues for the Implementation of Sewerage Master Plan	
1	1.2 O	VERVIEW OF THE MASTER PLAN	
1	1.3 R	ECOMMENDATIONS	
1	1.4 SI	ELECTION OF PRIORITY PROJECTS FOR FEASIBILITY STUDY	
CHAI	PTER	2 INTRODUCTION	
2	2.1 PI	RESENT WASTEWATER SYSTEMS	
2	2.2 R	EVIEW OF EXISTING INFORMATION	
	2.2.1	Infrastructure Management Issues	
2	2.3 SI	JMMARY OF GANGA ACTION PLAN	
CHAI	PTER	3 CITY PLANNING AND POPULATION PROJECTIONS	
3	3.1 U		
	J.1 U	NDERSTANDING PAST AND EXISTING POPULATION	
3		NDERSTANDING PAST AND EXISTING POPULATION NDERSTANDING DISTRIBUTION OF EXISTING POPULATION	
-	3.2 U		
3	3.2 U 3.3 P	NDERSTANDING DISTRIBUTION OF EXISTING POPULATION	
3	3.2 U 3.3 P	NDERSTANDING DISTRIBUTION OF EXISTING POPULATION OPULATION GROWTH PROJECTIONS	
3	3.2 U 3.3 P 3.4 P	NDERSTANDING DISTRIBUTION OF EXISTING POPULATION DPULATION GROWTH PROJECTIONS DPULATION DISTRIBUTION PROJECTIONS	
3	3.2 U 3.3 P0 3.4 P0 3.4.1	NDERSTANDING DISTRIBUTION OF EXISTING POPULATION DPULATION GROWTH PROJECTIONS DPULATION DISTRIBUTION PROJECTIONS Defining Growth Characteristics	
3	3.2 U 3.3 P 3.4 P 3.4.1 3.4.2	NDERSTANDING DISTRIBUTION OF EXISTING POPULATION DPULATION GROWTH PROJECTIONS DPULATION DISTRIBUTION PROJECTIONS Defining Growth Characteristics Influence on Development Characteristics	
3	 3.2 U 3.3 P0 3.4 P0 3.4.1 3.4.2 3.4.3 3.4.4 	NDERSTANDING DISTRIBUTION OF EXISTING POPULATION DPULATION GROWTH PROJECTIONS DPULATION DISTRIBUTION PROJECTIONS Defining Growth Characteristics Influence on Development Characteristics Data Constraints and Limitations	
3 3 CHAI	 3.2 U 3.3 P0 3.4 P0 3.4.1 3.4.2 3.4.3 3.4.4 PTER 	NDERSTANDING DISTRIBUTION OF EXISTING POPULATION DPULATION GROWTH PROJECTIONS DPULATION DISTRIBUTION PROJECTIONS Defining Growth Characteristics Influence on Development Characteristics Data Constraints and Limitations Population Projections by Ward	

	4.3	WA	ATER	SUPPLY	PROBLEMS	THAT	AFFECT	THE	DEVELOPMENT	OF
		SE	WERA	AGE						4-2
	4.	3.1	Sever	e Power Sup	oply Situation					4-2
	4.	3.2	Unacc	counted for	Water		•••••	•••••		4-2
	4.4	MA	ASTER	PLAN FOR	R IMPROVED	WATER S	SUPPLY			4-2
СН	APTI	E R 5	SEWI	ERAGE PL	ANNING FRA	MEWOI	RK	•••••		5-1
	5.1	PL	ANNIN	NG HORIZO	ON					5-1
	5.2	PL	ANNIN	NG CAPAC	ITY					5-1
	5.3	LE	VEL C	F SERVICI	Ξ					5-2
	5.4	SE	WERA	GE DEVEL	OPMENT STR	ATEGY				5-3
	5.5	SE	WER S	SERVICE A	REAS AND PC	PULATI	ONS			5-4
	5.	5.1	Existi	ng Sewerag	e Districts					5-4
	5.	5.2	Propo	sed Sewerag	ge Districts					5-5
	5.	5.3	Popul	ations Serve	ed					5-5
	5.6	WA	ATER (CONSUMP	TION PER CAI	PITA				5-5
	5.7	WA	ASTEV	VATER RET	FURN FACTO	R AND PI	ER CAPITA	CONT	RIBUTION	5-6
	5.8	PR	EDICT	TED WAST	EWATER QUA	NTITY				5-7
	5.	8.1	Total	Wastewater	Quantity					5-7
	5.	8.2	Sewer	Connection	n Ratios					5-7
	5.9	WA	ASTEV	VATER TRI	EATMENT PLA	ANT DES	IGN			5-8
	5.	9.1	Waste	water Chara	acteristics	•••••				5-8
	5.10	TR	EATM	ENT EFFL	UENT QUALII	TY STAN	DARDS			5-9
	5.11	EF	FLUEN	NT DISCHA	ARGE ALTERN	ATIVES				5-9
	5.	11.1	Unres	tricted Irrig	ation					5-10
	5.	11.2	Restri	cted Irrigati	on	•••••				5-10
	5.12	CH	IOICE	OF TREAT	MENT TECHN	OLOGY				5-10
	5.	12.1	Gener	al						5-10
	5.	12.2	Post 7	Treatment O	ptions for UASI	B Technol	logy			5-10
	5.	12.3	Unit F	Rates Applie	ed in the Calcula	tion of Tr	eatment Co	sts		5-12
	5.13	SE	WER I	DESIGN CR	ITERIA					5-13
СН	APTI	E R 6	EVAI	LUATION	OF ALTERNA	TIVES	••••••••••	•••••		6-1
	6.1	SU	MMAI	RY						6-1
	6.2	DE	SCRIP	TION OF A	LTERNATIVE	E LAYOU	TS FOR EA	ST DIS	STRICT	6-1
	6.3	SE	LECTI	ON OF TRI	EATMENT PRO	DCESS				6-2
	6.	3.1	Jajma	u STP						6-3
	6.	3.2	Binga	wan STP						6-3
	6.	3.3	Karan	khera STP .						6-3

	6.3.4	Kathonagar STP	6-4
6	5.4 CC	DLLECTION SYSTEM FOR COST COMPARISONS	6-5
6	6.5 CC	OST COMPARISON OF ALTERNATIVES	6-5
6	5.6 QU	JALITATIVE COMPARISON AND SELECTION OF PREFERED ALTERNA	TIVE6-6
	6.6.1	Evaluation Criteria	6-6
	6.6.2	Evaluation of Alternatives II and IV for East District	6-6
СНА	PTER 7	PROPOSED MASTER PLAN	7-1
-	7.1 SU	JMMARY	
-	7.2 ST	ORM WATER DRAINS	7-1
-	7.3 GE	ENERAL ASSESSMENT: PHYSICAL CONDITION OF TRUNK SEWERS	
	7.3.1	Current Deficiencies	
	7.3.2	Current Capital Needs	
-	7.4 SE	WERAGE DISTRICT I (CITY DRAINAGE): JAJMAU STP	
	7.4.1	General Description	
	7.4.2	Jajmau Tannery Wastewater Treatment Facility	
	7.4.3	Jajmau Domestic Wastewater Treatment Facility	
	7.4.4	Tannery District Wastewater Collection System	
	7.4.5	Domestic Wastewater Collection System	
	7.4.6	Muir Mill Pumping Station	
	7.4.7	Guptar Ghat Pumping Station	
	7.4.8	Bhagwatdas Ghat Nala Pumping Station	7-10
	7.4.9	Parmat Pumping Station	7-10
	7.4.10	Nawab Ganj Pumping Station	7-10
-	7.5 SE	WERAGE DISTRICT II: BINGAWAN STP	7-11
	7.5.1	General Description	7-11
	7.5.2	Sewers	7-11
	7.5.3	Rakhi Mandi Pumping Station	7-12
	7.5.4	Munshi Purwa Pumping Station	7-12
	7.5.5	Ganda Nala Pumping Station	7-13
	7.5.6	Bingawan STP	7-13
-	7.6 SE	WERAGE DISTRICT III: PANKA STP	7-13
	7.6.1	General Description	7-13
	7.6.2	Sewers	7-13
	7.6.3	Panki Pumping Station	7-14
	7.6.4	Lakhanpur Pumping Station	7-14
	7.6.5	Panka STP	7-15
-	7.7 SE	WERAGE DISTRICT IV: KARANKHERA STP	7-15

7.7.1	General Description	
7.7.2	Sewers	7-16
7.7.3	Ruman Pumping Station	
7.7.4	Karankhera STP	7-16
7.8 SU	MMARY	7-16
CHAPTER 8	SIMPLEMENTATION STRATEGY AND PHASING	
8.1 OV	/ERALL STRATEGY	
8.1.1	Stage I	
8.1.2	Stage II	
8.2 TI	MING FOR IMPLEMENTATION OF SEWERAGE COMPONENTS.	
8.2.1	Treatment Plants	
8.2.2	Collection System Components	
8.2.3	Discussion	
8.3 PR	IORITY PROJECTS	
CHAPTER 9	OCOST ESTIMATES	
9.1 CA	PITAL COST ESTIMATE	
9.1.1	General	
9.1.2	Capital Costs for Trunk Sewers and Manholes	
9.1.3	Capital Costs for Branch Sewers	
9.1.4	Capital Costs for House Connections	
9.1.5	Capital Costs for Sewage Pumping Stations	
9.1.6	Capital Costs for Rising Mains	
9.1.7	Capital Costs for Treatment Plants	
9.2 AN	NUAL O&M COSTS	
9.2.1	Staff	
9.3 CC	OST SCHEDULE	
CHAPTER	10 INITIAL ENVIRONMENTAL EXAMINATION (IEE)	STUDY FOR
	KANPUR	
10.1 OE	BJECTIVE OF THE IEE STUDY	
10.2 MI	ETHODOLOGY OF THE IEE STUDY	
10.2.1	Procedure	
	Evaluation of Environmental Elements	
	IRVEY AREA	
	OJECTS/PROGRAMS FOR THE IEE STUDY	
	ISTING ENVIRONMENTAL CONDITION	
10.6 EV	ALUATION AND CONCLUSION OF THE IEE STUDY	

LIST OF TABLES

Table 1.1	Project Data Sheet, Kanpur	1-7
Table 1.2	Stage I Project – Implementation Cost	1-8
Table 3.1	Decadal Population and Growth Rate of Kanpur Urban Area	3-2
Table 3.2	Population Projections	3-4
Table 3.3	Growth Characteristics Defined	3-6
Table 3.4	Ward Wise Population Projection (Page 1 of 2)	3-8
Table 4.1	Total Municipal Water Production	4-1
Table 4.2	Estimated Per Capita Water Consumption	4-2
Table 4.3	Water Demand Estimates	4-3
Table 4.4	Proposed Treatment Plant Capacity	4-3
Table 5.1	Step-wise Progression to Sewerage Development in Kanpur	5-3
Table 5.2	Populations and Sewer Service Areas	5-5
Table 5.3	Guideline Values for Future Per Capita Water Supply	5-6
Table 5.4	Per Capita Wastewater Generation Rates	5-6
Table 5.5	Projected Total Wastewater Production (mld)	5-7
Table 5.6	District Wise Population and Wastewater Generatioon	5-15
Table 5.7	Existing and Proposed Sewer Connection Targets	5-8
Table 5.8	Summary of Measured Wastewater Characteristics	5-8
Table 5.9	Theoretical Wastewater Strength	5-9
Table 5.10	Calculated Future Wastewater Strength	5-22
Table 5.1	1 Treated Effluent Quality Standards	5-9
Table 5.12	2 Qualitative Comparison of Treatment Process	5-23
Table 5.13	3 Land Requirements and Cost Per mld for Various Treatment Processes	5-13
Table 6.1	Summary of Treatment Capacities for Comparison of Alternatives (in mld)	6-2
Table 6.2	Karankhera STP: Preliminary Cost Comparison of Process Alternatives	6-4
Table 6.3	Kathonagar STP: Preliminary Cost Comparison of Process Alternatives	6-4
Table 6.4	Summary of Pumping Requirements for Alternatives	6-5
Table 6.5	Preliminary Cost Comparison of Alternatives East District	6-6
Table 6.6	Qualitative Ranking of Sewerage Alternatives	6-7
Table 7.1	Existing trunk sewer: Hydraulic capacity analysis (District I)	7-18
Table 7.2	Trunk sewer Replacement Schedule	7-22
Table 7.3	Proposed trunk sewers: Hydraulic capacity analysis(District I East)	7-23
Table 7.4	Kanpur Pump Stations: Existing and Sanctioned	7-30
Table 7.5	Pump Station Design	7-31

Table 7.6 Nalas: Mesured Flows	
Table 7.7 Jajmau STP: Average Monthly Inflow and Effluent Characteristics	
Table 7.8 Design Parameters versus Actual	
Table 7.9 Major Liquid Process Components	
Table 7.10 Major Solids Handling Components	
Table 7.11 Influent and Effluent Design Parameters versus Actual	
Table 7.12 Panki Pumping Station	
Table 7.13 Panka STP: Preliminary Cost Comparison of Process Alternatives	
Table 7.14 Ruman Pumping Station	
Table 7.15 Summary of Master Plan	7-17
Table 8.1 Phase wise Implementation of Treatment Plant Capacity	
Table 8.2 Phase wise Implementation of Collection System Improvements	
Table 9.1 Preliminary Capital Cost Estimate: Summary	
Table 9.2 Preliminary Capital Cost Estimate: Trunk Sewers and Laterals (Page 1 of 3)	
Table 9.3 Preliminary Capital Cost Estimate: Branch Sewers	
Table 9.4 Preliminary Capital Cost Estimate: House Connections (Page 1 of 2)	
Table 9.5 Preliminary Capital Cost Estimate: Pumping Stations	
Table 9.6 Preliminary Capital Cost Estimate: Rising Mains	
Table 9.7 Preliminary Capital Cost Estimate: Treatment Plants	
Table 9.8 Preliminary Capital Cost Estimate: Land Aquisition	
Table 9.9 Replacement Cost of Existing Assets	
Table 9.10 Annual Operation and Maintenance Cost: Summary	9-19
Table 9.11 Unit Operation and Maintenance Costs	
Table 9.12 Annual Operation and Maintenance: Pumping Station	
Table 9.13 Annual Operation and Maintenance: Treatment Plants	
Table 9.14 Staff Requirement per Sewer Cleaning Crew	
Table 9.15 Operation and Maintenance Staff: Requirement at Pumping Stations	
Table 9.16 Operation and Maintenance Staff: Requirement for Jajmau STP(ASP)	
Table 9.17 Operation and Maintenance Staff: Requirement for Jajmau STP	
Table 9.18 Operation and Maintenance Staff: Requirement for Bingawan STP	
Table 9.19 Operation and Maintenance Staff: Requirement for Panka STP	
Table 9.20 Operation and Maintenance Staff: Requirement for Karankhera STP	
Table 9.21 Implementation/ Investment Schedule, District I(City Central)(Page 1 of 2)	9-29
Table 9.22 Stage I Project – Implementation Cost	
Table 10.1 Possible Environmental Impact Matrix for IEE	10-6

LIST OF FIGURES

Figure 1.1	Kanpur Sewerage Master Plan : treatment capacity	1-9
Figure 1.2	Estimated Cost of Sewerage, Breakdown of Direct Construction Cost	1-10
Figure 2.1	Flows Intercepted under GAP-I	2-3
Figure 3.1	Satellite Imagery Interpretation for Development Density	
Figure 3.2	Municipal Extents of Kanpur	
Figure 3.3	Growth Rates of Kanpur	
Figure 4.1	Service Districts & Water Supply Zones	
Figure 4.2	Proposed Water Supply Scheme West Service District	
Figure 5.1	Goal and Level of Service Matrix	
Figure 6.1	Sewer Layout Alternative – I	6-8
Figure 6.2	Sewer Layout Alternative – II	6-9
Figure 6.3	Sewer Layout Alternative – III	6-10
Figure 6.4	Sewer Layout Alternative – IV	6-11
Figure 6.5	Sewer Layout Alternative – V	6-12
Figure 7.1	Proposed Collection & Treatment capacity (2015)	
Figure 7.2	Proposed Collection & Treatment capacity (2030)	
Figure 7.3	Location Map for Nala	
Figure 9.1	Estimated Cost of Sewerage, Breakdown of Direction Construction Cost	

APPENDIX

A Cost Comparison of Alternatives

B Drawings

- B1 Jajmau STP Site Plan
- B2 Tannery Cluster : Conceptual Plan for Domestic Wastewater Collection
- B3 Indo Dutch Proposed UASB STP Site Plan
- B4 to B9 Trunk Sewers (6 drawings)
 - B4 District I City Center Existing
 - B5 District II South City Zone
 - B6 District II South City Zone (details of sanctioned diversion schemes)
 - B7 District II South zone
 - B8 District III West
 - B9 District IV East
- B10 to B18 Long Sections (9 drawings)
 - B10 District I (1/1)
 - B11 District II (1/2)
 - B12 District II (2/2)
 - B13 District III (1/3)
 - B14 District III (2/3)
 - B15 District III (3/3)
 - B16 District IV (1/2)
 - B17 District IV (2/2)

ABBREVIATIONS

AD/MM	Average Day / Max Month	ML	Million Litres
AD/MIM	Average Daily Flow	mld	Million Litres per Day
ADWF	Average Dry Weather Flow	MLSS	Mixed Liquor Suspended Solids
AIWSP	Advanced Integrated Wastewater Stabilization Ponds	MP	Maturation Pond / Master Plan
AL	Aerated Lagoon	MPN	Most Probable Number per 100ml
AS	Activated Sludge	MPS	Main Sewage Pumping Station
ASR	Aquifer Storage and Recovery System	MPS	Meter per Second
		MUD	Ministry of Urban Development
Avg	Average	MoEF	Ministry of Environment and Forests
AWT	Advanced Wastewater Treatment	N/A	Not Available
BOD	Biochemical Oxygen Demand	NBC	National Building Code
CI	Cast Iron	NH ₃ -N	Ammonia-Nitrogen
CMS	Cubic Meter per Second	NRCD	National River Conservation Directorate
CO ₂	Carbon Dioxide	NSA	Non Sewerage Area
СРСВ	Central Pollution Control Board	O&M	Operations and Maintenance
CWR	Clear Water Reservoir	PDWF	Peak Dry Weather Flow
DLW	Diesel Locomotive Work	PFR	Project Feasibility Report
DO	Dissolved Oxygen	PS	Pumping Station
DPR	Detailed Project Report	PSC	Pre-Stressed Concrete
ES	Equalization/Storage	RAS	Return Activated Sludge
FAB	Fluidised Aerated Bioreactor	SMF	Sankat Mochan Foundation
FS	Feasibility Study	SPS	Sewage Pumping Station
FSA	Future Service Area	SS	Suspended Solids
GAP GoAP	Ganga/Gomti Action Plan Gomti Action Plan	SSO	Sanitary Sewer Overflow
GIS	Geographical Information System	STP	Sewage Treatment Plant
gpd	Grams per day	TDS	Total Dissolved Solids
GOI	Government of India	TKN	Total Kjeldahl Nitrogen
GOJ	Government of Japan	TMDL	Total Maximum Daily Load
GWI	Ground Water Infiltration	TN	Total Nitrogen
HDR	High-Density Residential	ТР	Total Phosphorus
HP	Horse Power	TSS	Total Suspended Solids
I/I	Infiltration/Inflow	UASB	Up flow Anaerobic Sludge Blanket
ISC	Indian Standard Code	UFW	Unaccounted for Water
JICA	Japan International Cooperation Agency	UPJN	Uttar Pradesh Jal Nigam
JS	Jal Sansthan	UPPCB	Uttar Pradesh Pollution Control Board
KVA	Kilo Volt Ampere	USAID	United States Agency for International Development
LDR	Low-Density Residential	UV	Ultra Violet
lpcd	Litres per capita per day	VCP	Vitrified Clay Pipe
lpm	Litres per minute	WAS	Waste Activated Sludge
lps	Litres per second	WRF	Water Reclamation Facility
MC	Municipal Corporation	WSP	Waste Stabilization Pond
MDR	Medium-Density Residential	WTP	Water Treatment Plant
mg/l	Milligrams per Litre	YAP	Yamuna Action Plan

GLOSSARY OF TERMS

Aerated Lagoons: Like WSPs but with mechanical aeration. Oxygen requirement mostly from aeration and hence more complicated and higher O&M costs requires less land than WSP.

Activated-Sludge Process: A biological wastewater treatment process in which a mixture of wastewater and biologically enriched sludge is aerated to facilitate aerobic decomposition by microbes.

Advance Wastewater Treatment: Treatment process designed to remove pollutants that are not adequately removed by conventional secondary treatment processes.

Aeration: The addition of air or oxygen to water or wastewater, usually by mechanical means, to increase dissolved oxygen levels and maintain aerobic conditions.

Anaerobic Digestion: Sludge stabilization process in which the organic material in biological sludge is converted to methane and carbon dioxide in an airtight reactor.

Assimilative Capacity: The ability of a water body to received wastewater and toxic materials without deleterious effects on aquatic life or the humans who consume the water.

Average Daily Flow: The total flow past a physical point over a period of time divided by the number of days in that period.

Biochemical Oxygen Demand (BOD): A standard measure of wastewater strength that quantifies the oxygen consumed in a stated period of time, usually 5 days and at 20°C.

Biological Process: The process by which the metabolic activities of bacteria and other micro organisms break down complex organic materials to simple, more stable substances.

Bio solids: Solid organic matter recovered from municipal wastewater treatment that can be beneficially used, especially as a fertilizer. *Bio solids* are solids that have been stabilized within the treatment process, whereas sludge has not.

Chlorination: The addition of chlorine to water or wastewater, usually for the purpose of disinfection.

Coliform Bacteria: Rod shaped bacteria from intestinal track of man used as an indication that pathogenic organisms may also be present.

Collection System: In wastewater, a system of conduits, generally underground pipes, that receives and conveys sanitary wastewater and/or storm water. In water supply, a system of conduits or canals used to capture a water supply and convey it to a common point.

Composting: Stabilization process relying on the aerobic decomposition of organic matter in sludge by bacteria and fungi.

Dechlorination: The partial or complete reduction of residual chlorine by any chemical or physical process.

Design Storm: The magnitude of a storm on which the design of a system and/or facility is based; usually expressed in terms of the probability of an occurrence over a period of years.

Diffused-Air Aeration: The introduction of compressed air to water by means of submerged diffusers or nozzles.

Digester: A tank or vessel used for sludge digestion.

Disinfection: The selective destruction of disease-causing microbes through the application of chemicals or energy.

Diurnal: A daily fluctuation in flow or composition that is of similar pattern from one 24-hour period to another.

Effluent: Partially or completely treated water or wastewater flowing out of a basin or treatment plant.

Fine-Bubble Aeration: Method of diffused aeration using fine bubbles to take advantage of their high surface areas to increase oxygen-transfer rate.

Fixed Film Process: Biological wastewater treatment process whereby the microbes responsible for conversion of the organic matter in wastewater are attached to an inert medium such as rock or plastic material. Also called *attached-growth process*.

Force Main: The pipeline through which flow is transported from a point of higher pressure to a point of lower pressure.

Friction Factor: A measure of the resistance to liquid flow that results from the wall roughness of a pipe or channel.

Gravity Thickening: A process that uses a sedimentation basin designed to operate at high solid loading rate, usually with vertical pickets mounted to revolving sludge scrapers to assist in releasing entrained water.

Grit Chamber: A settling chamber used to remove grit from organic solids through sedimentation or an air-induced spiral agitation.

Head Loss: The difference in water level between the upstream and downstream sides of a conduit or a treatment process attributed to friction losses.

Headworks: The initial structure and devices located at the receiving end of a water or wastewater treatment plant.

Infiltration: Water entering a sewer system through broken or defective sewer pipes, service connections, or manhole walls.

Influent: Water or wastewater flowing to a basin or treatment plant.

Invert: The lowest point of the internal surface of a drain, sewer, or channel at any cross section.

Land Application: The disposal of wastewater or municipal solids onto land under controlled conditions.

Lift Station: A chamber that contains pumps, valves, and electrical equipment necessary to pump water or wastewater.

Methane: A colourless, odourless combustible gas that is the principal by-product of anaerobic decomposition or organic matter in wastewater. Chemical formula is CH_4 .

Mixed Liquor Suspended Solids (MLSS): Suspended solids in the mixture of wastewater and activated sludge undergoing aeration in the aeration basin.

Nitrification: Biological process in which ammonia is converted first to nitrite and then to nitrate.

Nutrient: Any substance that is assimilated by organisms to promote or facilitate their growth.

Pathogen: Highly infectious, disease-producing microbes commonly found in sanitary wastewater.

Peak Flow: Excessive flows experienced during hours of high demand; usually determined to be the highest 2-hour flow expected under any operational conditions.

Preliminary Treatment: Treatment steps including screening, grit removal, preparation, and/or flow equalization that prepare wastewater influent for further treatment.

Pump Station: (see lift station)

Primary Clarifier: Sedimentation basin that precedes secondary wastewater treatment.

Primary Treatment: Treatment steps including sedimentation and/or fine screening to produce an effluent suitable for biological treatment.

Rising Main : (see force main)

Reclaimed Wastewater: Wastewater treated to a level that allows its reuse for a beneficial purpose.

Return Activated Sludge (RAS): Settled activated sludge that is returned to mix with raw or primary settled wastewater.

Sanitary Sewer Overflow (SSO): Overloaded operating condition of a sanitary sewer that results from inflow/infiltration.

Screening: (1) A treatment process using a device with uniform openings to retain coarse solids. (2) A preliminary test method used to separate according to common characteristics.

Scum: Floatable materials found on the surface of primary and secondary clarifiers consisting of food wastes, grease, fats, paper, foam, and similar matter.

Secondary Clarifier: A clarifier following a secondary treatment process and designed for gravity removal of suspended matter.

Secondary Treatment: The treatment of wastewater through biological oxidation after primary treatment.

Sludge: Accumulated and concentrated solids generated within the wastewater treatment process that have not undergone a stabilization process.

Sludge Dewatering: The removal of a portion of the water contained in sludge by means of a filter press, centrifuge, or other mechanism.

Sludge Stabilization: A treatment process used to convert sludge to a stable product for ultimate disposal or use and to reduce pathogens to produce a less odorous product.

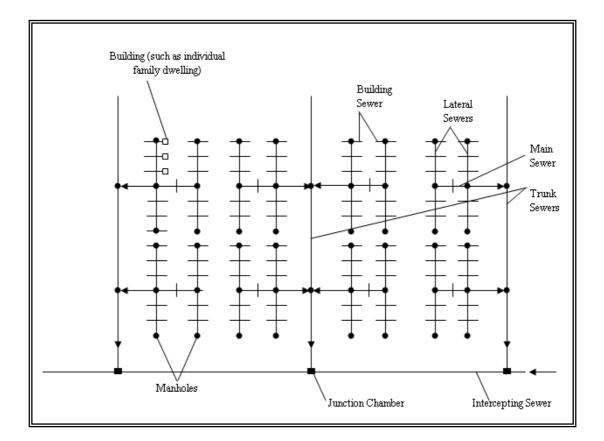
Suspended-Growth Process: Biological wastewater treatment process in which the microbes and substrate are maintained in suspension within the liquid.

Thickening: A procedure used to increase the solids content of sludge by removing a portion of the liquid.

Trickling Filters: Sewage passes down through a loose bed of stones, and the bacteria on the surface of the stones treats the sewage. An aerobic process in which bacteria take oxygen from the atmosphere (no external mechanical aeration). Has moving parts, which often break down.

Total Suspended Solids (TSS): The measure of particulate matter suspended in a sample of water or wastewater. After filtering a sample of a known volume, the filter is dried and weighed to determine the residue retained.

Waste Activated Sludge (WAS): Excess activated sludge that is discharged from an activated-sludge treatment process.


Wetlands Treatment: A wastewater treatment system using the aquatic root system of cattails, reeds, and similar plants to treat wastewater applied either above or below the soil surface.

Waste Stabilization Pond: Large surface area ponds that provide treatment essentially by action of sunlight, encouraging algal growth which provides the oxygen requirement for bacteria to oxidize the organic waste. Requires significant land area, but one of the few processes which is effective at treating pathogenic material. Natural process with no power/oxygen requirement. Often used to provide water of sufficient quality for irrigation, and very suited to hot, sunny climates.

UASB: Anaerobic process using blanket of bacteria to absorb polluting load. Suited to hot climates. Produces little sludge, no oxygen requirement or power requirement, but produces a poorer quality effluent than processes such as ASP. (NOTE: other anaerobic processes exist, but UASB is the most common at present).

Collection System Terminology

- 1. <u>Interceptor Sewer:</u> A sewer that receives flow from a number of other sewers or outlets for disposal or conveyance to a treatment plant.
- 2. <u>Manhole</u>: An opening in a vessel or sewer to permit human entry. Also called manway.
- 3. <u>*Trunk Sewer:*</u> Trunk sewers are large sewers that are used to convey wastewater from main sewers to treatment or other disposal facilities or to large intercepting sewers.
- 4. <u>Main Sewer</u>: Main sewers are used to convey wastewater from one or more lateral sewers to trunk sewers or to intercepting sewers.
- 5. <u>Lateral Sewer</u>: Lateral sewers form the first element of a wastewater collection system and are usually in streets or special easements. They are used to collect wastewater from one or more building sewers and convey it to a main sewers.

CHAPTER 1

EXECUTIVE SUMMARY

CHAPTER 1 EXECUTIVE SUMMARY

1.1 GENERAL

This is the Master Plan report for pollution control and sewerage development in Kanpur city. The initial stage of this study has examined prospective urban development to the year 2030, evaluated alternative sewerage projects, and selected the priority components for the Feasibility Study (FS) which has been carried out in subsequent stage.

The methodology of this study has been to determine the least cost approach to meet Kanpur city's sewerage and pollution control needs. This has involved the consideration of existing infrastructure and proposals by UPJN for GAP-II, alternative service coverages, alternative technologies, and alternative wastewater treatment and disposal methods. A summary of relevant population, water supply and wastewater data is presented in Table 1.1.

Kanpur city's population is projected to double from 2.8 million in 2003 to 5.6 million by 2030. At present the total domestic wastewater load is about 395 mld vs. an installed treatment capacity of 171 mld. The amount of wastewater collected and diverted to treatment is on average 79 mld, and represents less than 20% of the total amount generated. Remaining wastewater is discharged to Ganga and Pandu rivers through open drains. The Pandu river is a tributary to the Ganga with its confluence at approximately 25 km downstream of Kanpur.

Water supply and sanitation services are inadequate for Kanpur's present population. The installed raw water treatment capacity is 380 mld, while the total production from all sources is 502 mld, corresponding to an estimated 182 lpcd. Water supply is intermittent, and adverse sanitation conditions (including defecation in the open) cause increasing hazards to public health.

The sewer infrastructure is old, and poorly maintained. Many of the existing trunk sewers do not have sufficient hydraulic capacity for projected wastewater loads.

The West District has experienced rapid population growth and development of new colonies. At present population is about 335,800 but there is no formal water supply or sewerage in the area. UPJN is implementing improvements to the water supply system. A barrage on the Ganga is being constructed to secure up to 1,600 mld of raw water for the city. A new water treatment plant and distribution system is at present being implemented to augment supply to the area by 200 mld.

Similarly, water supply improvements have been implemented in the South under the Indo-Dutch Project to increase capacity by 42 mld. The amount of wastewater generated in these areas can therefore be expected to increase significantly in the coming years.

1.1.1 Need for a Sewerage Master Plan

The GAP projects and proposals have focused on reducing pollution loads by diverting sewage at the tail end of drains during dry weather only. GAP does not address the need for removing sewage from the drains to prevent pollution during wet weather. Nor does it address issues of public health and sanitation within the city.

In the absence of a sewerage master plan urban development continues without adequate infrastructure for public health and sanitation. New sources of pollution crop up as the population grows and as new areas develop:

• Existing sewer facilities are overtaxed, effluent at treatment plants becomes a significant pollutant load

- The amount of wastewater in open drains increases thereby overflowing at existing diversion facilities
- New sources of pollution appear as natural drains serve as outlets for wastewater from new developments

Diversion facilities constructed under GAP are not designed to operate during wet weather, therefore the use of open drains for wastewater disposal will remain a significant source of pollution during wet weather.

Diversion of drains, as proposed under GAP is an important first step for improving water quality. However, the Government of India and NRCD have recognized that the benefits of GAP will be short lived unless these activities are framed within a more holistic approach to the development of sewerage infrastructure in large urban centers. In the absence of a comprehensive plan, efforts at pollution control will always remain reactive, never quite catching up with the source of the problem.

1.1.2 Key Issues for the Implementation of Sewerage Master Plan

1) Adopting a decentralized approach

The Sewerage Master Plan divides the urban centre into sewerage districts. A decentralized approach has been favoured to minimize conveyance costs and reduce the size of sewerage facilities. Smaller treatment works will simplify site selection and land acquisition. Furthermore, it is generally easier to manage the operation and maintenance of smaller facilities.

2) Coordinating development of branch sewers with trunk sewers

The trunk facilities identified in the Master Plan are the backbone of the sewerage system. It will open the way for extending the branch sewer network into parts of the city that are not presently served. It is essential that existing and future development areas be connected to this backbone in order achieve water quality, health and sanitation objectives. Jal Sansthans, and Nagar Nigams must implement programs for improving and extending the branch sewer system. A concentrated effort will be required to connect existing and future growth areas, else the trunk sewer system will fail because there will be insufficient wastewater to achieve self-cleansing velocities.

3) Adopting and adhering to the Sewerage Master Plans

The Master Plans for sewerage must be formally adopted by the authorities responsible for the development of cities. A formal mechanism is required to make it mandatory for Development Authorities and Housing Boards to adhere to the Master Plan. Continuing in the present mode whereby new colonies are developed without proper outlet to trunk sewer facilities will only add to the drainage and pollution problems of the city.

- 4) Cost sharing for trunk facilities: user pay principle Implementation of new developments must proceed in a planned manner. Major trunk facilities should be extended to service planned communities. In keeping with the user pay principle, it should be made mandatory by law for developers, whether private or Government to share in the cost of trunk sewers and treatment plants.
- 5) Land acquisition for future facilities Land identified for sewage treatment works and pumping stations must be acquired as soon as possible and reserved for the future development of the sewerage system. Similarly, right of way and maintenance easements are required along trunk sewer alignments to prevent encroachment.
- 6) Improving power supply

Pumping stations and treatment plants must be provided with a reliable and continuous

power supply. These facilities must be designated as essential services and should be given top priority for service by the electrical utility. Emergency power generators must be provided at all facilities and funding for fuel must be guaranteed to prevent overflows of untreated sewage during lengthy power cuts.

1.2 OVERVIEW OF THE MASTER PLAN

A number of alternative district layouts have been evaluated and a recommended plan is presented in Chapter 7. The proposed sewer service areas and sewerage districts for 2030 are presented in Figure 7.2.

The Sewerage Master Plan is developed for areas within the greater limits of the Municipal Corporation (as defined by the Development Authority) that have or will have population densities greater than 120 persons per hectare. Approximate population densities based on a visual interpretation of land use are derived from satellite images.

The city of Kanpur has been divided into 4 sewerage districts. Each sewerage district having it's own sewage treatment works.

					(mld)
STP	District	Status	2003	2015	2030
Jajmau tannery	Ι	E/A	36	52	52
Jajmau domestic	Ι	E/A	130+5	173+5	183+5
Bingawan STP	II	PS /A	-	200	365
Panka STP	III	Р	-	120	200
Karankhera STP	IV	Р	-	0	85
Total			171	550	890

STP	District	Process	Effluent discharge	Disinfection
Jajmau tannery	Ι	UASB	Irrigation and Ganga River	
Jajmau Domestic	Ι	AS, UASB(Pilot)	Irrigation and Ganga River	Add chlorination or maturation ponds
Bingawan STP	Π	UASB++	Irrigation or Pandu River	Chlorination
Panka STP	III	UASB++	Irrigation or Pandu River	Chlorination
Karankhera STP	IV	UASB++	Irrigation or Ganga River	Chlorination or maturation ponds

PS: in Process of Sanction, E: Existing, A: Augment, S: Sanctioned, ++ post-treatment

1.3 RECOMMENDATIONS

Major interventions are necessary to reduce river pollution and improve sanitation to all the population and to cope with its future growth. The following recommendations are identified in this report:

- 1) **Rehabilitate main trunk sewers:** This intervention is required to reduce the amounts of wastewater that overflow to surface drains and to reduce the risk of a catastrophic failure. In addition to cleaning and repair of the system it will be necessary to survey the whole system and to store record drawings and data in a readily accessible form (preferably GIS based) to facilitate maintenance and future planning.
- 2) **Rehabilitate existing pumping stations:** Pumping equipment is getting old and is poorly maintained. Pumps and diesel generators should be updated, and operation

should be automated. The installed capacity at Jajmau pumping station should be increased to improve standby capacity and prevent overflows during peak flow periods. Significant institutional capacity building and reorganization will be required to ensure sustainable operation and maintenance of the pumping stations with emphasis on continuous and reliable operation of diesel generators during power interruptions.

- 3) *Increase the amount of wastewater conveyed to Jajmau treatment plant:* The existing treatment plant at Jajmau is at present not fully utilized. This intervention is required to reduce pollutant loads to Ganga river and maximize the existing investment in treatment capacity. This intervention includes: rehabilitation of pumping stations, rehabilitation of trunk sewers and lateral sewers in the City District, removing connection of branch sewers to nalas, and increasing the number of household connections to branch sewers.
- 4) Implement a separate domestic wastewater collection system in the Jajmau tannery cluster: At present tannery wastewater is finding its way into the domestic wastewater stream and upsetting the activated sludge treatment process. The domestic wastewater collection system from the tannery cluster must be physically separated from other domestic wastewater systems. This can be achieved by installing a separate service collector connected directly to the UASB. Other minor modifications at the treatment plant site may also be required to fully isolate the tannery wastewater stream. The result will be improved performance of Jajmau activated sludge plant and therefore reduction in pollutant loads.
- 5) *Install forced aeration in final polishing pond at Jajmau UASB*: This intervention will reduce the levels of BOD and sulphides which at present greatly exceed discharge criteria in NRCD standards.
- 6) *Provide trunk sewer facilities and treatment plant in West District:* This intervention is required to improve sanitary conditions and reduce pollutant load. The district is experiencing rapid development and population growth. New water supply projects are being implemented and the amount of wastewater will increase significantly.
- 7) *Implement regulations, collection and treatment systems for on-site sanitation:* Peripheral areas where population densities are less than 120 persons per hectare should be provided with proper on-site sanitation systems. This intervention is also required to improve sanitary conditions and reduce the amount of pathogens in the environment.

Reducing the pollutant loads to water resources and improving the living environment for residents of Kanpur are important issues that can only be addressed by appropriate sanitation and sewerage interventions. These long-term goals can be met by 2030 if sufficient resources are allocated to the construction of sewage treatment plants and wastewater collection systems.

As shown in Figure 1.1, there is at present a large gap between existing treatment capacity and wastewater load. Therefore there is an urgent need to augment treatment plants and trunk sewers. These urgent projects should be carried out as Stage I, within 5 to 10 years of adopting the Sewerage Master Plan i.e. 2010 to 2015.

After 2015 the emphasis will be on providing branch sewers and connecting households to the collection system in order to increase the amount of wastewater diverted to treatment plants. As shown in Figure 1.2, the largest component of the cost during Stage I is for trunk sewers. At Stage II, the largest cost component becomes branch sewers. Treatment plants are a relatively small part of the overall cost. The total estimated direct costs including contingency and land acquisition are as follows:

			(Crores)	
Item	Stage I	Stage II	Total	
Direct Cost	317.9	1,259.6	1,577.5	
Physical Contingency (20%)	63.6	251.9	315.5	
Land Acquisition	28.8	41.9	70.7	
Total	410.3	1,553.4	1,963.7	

Direct cost does not include house connection cost

1.4 SELECTION OF PRIORITY PROJECTS FOR FEASIBILITY STUDY

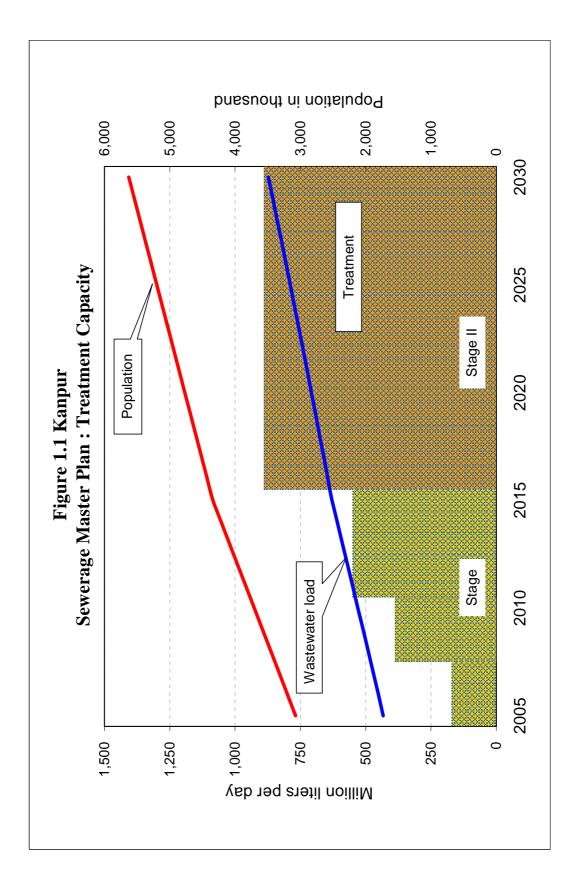
Priority projects are defined as projects that should be implemented as soon as possible (before 2015) to achieve pollution reduction targets. These projects include diversion of all drains that have been identified as a source of pollution by UPJN. Priority projects are included in the scope of the Feasibility Study.

Projects that have already been sanctioned by UPJN are not identified as priority projects because it is assumed they will be fully implemented in the near future.

Priority projects (listed in order of priority):

- 1) Develop a plan and identify the cost for inspection of existing trunk sewers and the 90" outfall sewer to Jajmau.
- 2) Feasibility study to isolate the domestic wastewater collection system in the Jajmau tannery area and treat it at the UASB along with industrial wastewater (to protect the activated sludge process).
- 3) Feasibility of augmenting the treatment capacity at Jajmau activated sludge treatment plant.
- 4) Field surveys to confirm alignment, and invert levels of trunk sewers that need to be replaced. Determine the feasibility of installing a parallel pipe or develop a plan for replacement in the same alignment.
- 5) Field surveys for the following existing pumping stations:
 - Nawab ganj
 - Muir mill
 - Parmat
 - Guptar ghat
 - Jajmau
 - Lakhanpur
- 6) Determine physical condition of existing mechanical, electrical equipments, rising mains and sumps. Identify repair or replacement needs. Confirm catchment areas (existing and future). Determine future flows, required size of replacement pumps and rising mains if required.
- 7) Field surveys for new pumping station to intercept and divert Bhagwatdas ghat Nala in Central District, confirm catchment areas (existing and future). Determine future flows, required size of civil structures, pumping plants and rising mains.
- 8) Feasibility of Panka treatment plant for West District. Confirm and survey site, method of

treatment, method of disposal for effluent and sludge. Develop preliminary design for STP including influent pumping station.


9) Feasibility of Panka outfall sewer, Panki pumping station and main North-South trunk sewers. Confirm and survey proposed alignments, confirm size of pipes, develop profile drawings. Determine feasibility of crossing under Pandu river with gravity sewer; identify river cross section, flood levels and scouring depth. If necessary adjust conceptual trunk sewer layout based on topographic surveys. Develop preliminary designs for proposed pumping stations.

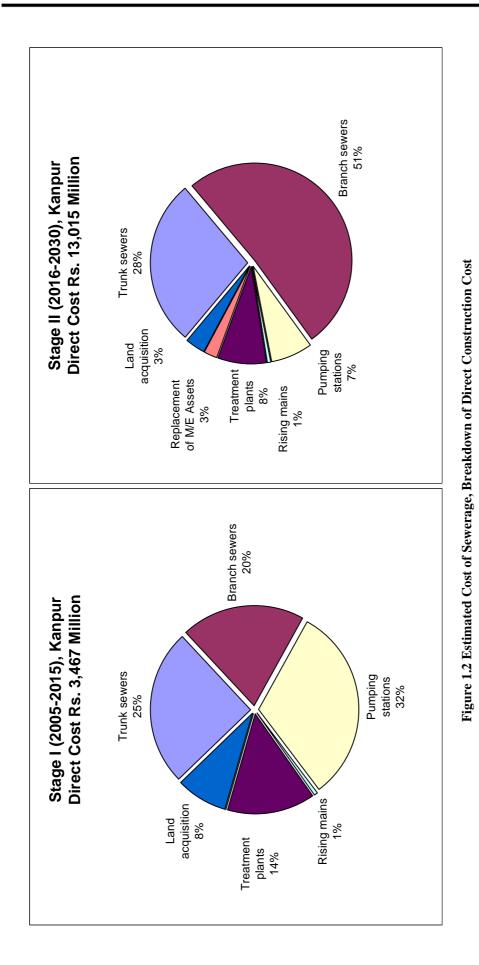

Population		2003	2015	2030
Municipal		2,819,827	4,342,031	5,629,081
Outside municipal boundary		-	-	-
Floating		-	-	-
Total		2,819,827	4,342,031	5,629,081
Water Supply		2003	2015	2030
Population served by municipal system		2,733,800	4,000,000	5,629,081
Demand (UPJN estimates)	mld	589	1,067	1,534
Water supply treatment capacity	mld			
Existing	mld	350	350	350
Proposed	mld	28	778	1,337
Total	mld	378	1,128	1,687
Water sources				
Municipal-river	mld	350	1,128	1,678
Municipal-wells	mld	112	112	112
Private	mld	40	40	40
Other	mld	-	7	7
Total	mld	502	1,287	1,837
		2002	2015	2020
Wastewater		2003	2015	2030
Population in sewer service area		1,848,335	2,983,898	5,629,081
Population connected to sewer		677,264	1,686,470	4,210,800
Percentage of total population		24%	39%	75%
Wastewater return rate per capita (core)	lpcd	140	145	155
Total wastewater generated	mld	395	630	873
Amount intercepted	mld	259	433	873
Treatment capacity				. – .
Existing	mld	171	171	171
Sanctioned	mld	-	200	200
Proposed	mld	-	179	519
Total	mld	171	550	890

Table 1.1 Project Data Sheet, Kanpur

			(Million Rs.)
Project	Estimated	+Physical	Cumulative
-	Cost	Contingency	Cost
1. District I (City Central)			
(a) Replacing existing trunk sewers	169.9	203.9	
(b) New Trunk Sewers	158.7	190.4	
(c) Nala tapping pumping stations and rising mains	54.5	65.4	
(d) Branch Sewer	113.3	135.9	
(e) Land acquisition for new pumping station	4.0	4.0	
Sub Total	500.3	599.6	599.6
2. District I (City East)			
(a) New Trunk Sewers	58.3	69.9	
(b) Upgrade treatment plant	129.0	154.8	
(c) Upgrade pumping station	0.3	0.4	
(d) Branch Sewer	282.1	338.5	
Sub Total	469.7	563.6	1,163.2
3. District II			
(a) New Trunk Sewers	64.1	76.9	
(b) Branch Sewer	156.3	187.5	
Sub Total	220.3	264.4	1,427.6
4. District III			
(a) New Trunk Sewers	423.1	507.7	
(b) New treatment plant	360.0	432.0	
(c) New pumping station	1,066.2	1,279.4	
(d) Branch Sewer	143.8	172.6	
(e) Land acquisition for STP and SPS	284.0	284.0	
Sub Total	2,277.1	2,675.7	4,103.3
Total	3,467.4	4,103.3	4,103.3

Table 1.2 Stage I Project - Implementation Cost

1-10

CHAPTER 2 INTRODUCTION

CHAPTER 2 INTRODUCTION

2.1 PRESENT WASTEWATER SYSTEMS

The city of Kanpur's wastewater facilities include a collection system and three wastewater treatment plants at Jajmau:

- 5mld pilot UASB
- 36mld UASB
- 130 mld ASP

The collection system covers about 30 % of the city area and most of this is within the old, densely populated centre core. The total amount of wastewater measured in drains and at the STPs in 1997 was about 370 mld of which 160 mld was intercepted under GAP-I. At present, average inflow to the treatment plants is 79 mld, only about 20% of the total wastewater generated.

A separate collection system serves the tannery industries located in the Jajmau area conveys by pumping stations directly to the 36 mld UASB. Originally designed for 9 mld it now collects approximately13 mld of tannery wastewater.

Households that are not connected to sewers discharge sullage (wastewater from kitchen/bathing and grey water from septic tanks) directly to street drains that ultimately discharge to the rivers. Sanitary wastewater (from toilets) is discharged to soak pits or septic tanks where solids are retained and partially reduced in volume.

UPJN is responsible for pollution prevention and planning capital projects for sewerage. UPJN also operates and maintains large pumping stations and the treatment plants. Jal Sansthan is responsible for maintenance of trunk sewers, lateral sewers and collection of revenue from house connections.

2.2 **REVIEW OF EXISTING INFORMATION**

The following background information regarding the city of Kanpur's wastewater collection and treatment capabilities were provided to the JICA Study Team:

- Influent and effluent wastewater characteristics for Jajmau treatment plants
- UPJN Preliminary Estimate for water supply for east district of Kanpur Nagar through Ganga Barrage, August 2003
- UPJN Preliminary feasibility report for 1,600 mld water supply scheme through Ganga Barrage
- UPJN Detailed project report for laying trunk sewer along COD Nala
- Rapid environmental impact assessment report, 200 mld UASB STP, Kanpur South, May 16,2001, under Indo-Ducth assistance
- UPJN addendum to detailed project report Intermediate sewage pumping station at Munshi Purwa 1999-2000
- UPJN addendum to detailed project report Intermediate sewage pumping station at Rakhi Mandi
- UPJN Kanpur Sewerage Reorganization Master Plan 1979-2001
- Census data 2001 for wards administered by Kanpur Municipal Corporation
- UPJN feasibility report for integrated pollution abatement & river management for Ganga basin at Kanpur, March 2003
- Jal Sansthan drawings of existing trunk, lateral and branch sewers

2.2.1 Infrastructure Management Issues

A comprehensive proposal is required for providing adequate sewerage systems to improve sanitary conditions and reduce the impact on water quality of receiving streams. Key issues identified in previous studies that must be addressed by the Master Plan include:

1) On-site systems:

Pour flush toilets discharging to leach pits or septic tanks are the most popular on-site sanitation facility. In the core area, space limitation constrains the installation of on-site sanitation system and construction of a private toilet within the household. Leach pits require periodic emptying, which is done manually in an unhygienic manner. There is no centralized service for cleaning of on-site systems. Septic tanks and leach pits overflow and discharge to street side drains, which contributes to the pathogen load in the environment.

2) Discharge of sullage:

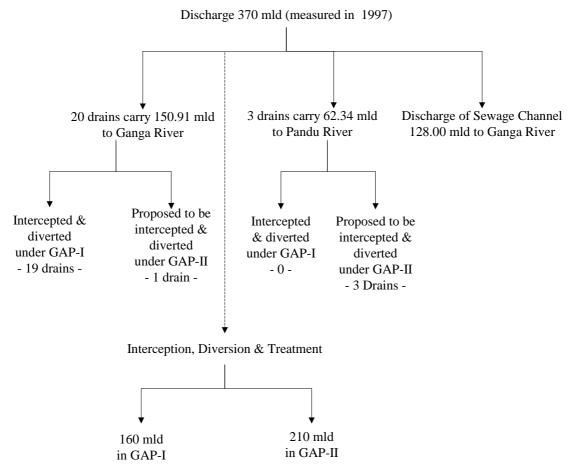
A large proportion of households' sullage water from kitchen, bathing and laundry is discharged into street side drains. This compounds the problem arising from inadequate surface water drainage. The reluctance to discharge sullage to the sewer is due to the frequency of and duration of sewer blockages.

3) Inadequate sewerage coverage and low connection ratios:

Of the total volume of sewage generated within the city, only a small proportion enters the main sewerage system. A large fraction enters the surface water drainage system either directly or through spillage from damaged or blocked sewers. This pollutes the water environment and results in unsanitary living conditions particularly when it rains.

4) Ingress of storm water and solid waste into sewer system:

Damaged manholes, sewer defects particularly around the nalas and connections of nalas to the sewerage system have led to the increased risk of solid waste entering and blocking the system. There is currently no way of controlling the amount of storm water that enters the system at locations where drains have been diverted. Storm water overloads the sewer system and causes overflows to the river. Augmentation of trunk sewers and treatment capacities to deal with the storm water runoff is too costly therefore a solution is required for storm water by-pass.


2.3 SUMMARY OF GANGA ACTION PLAN

Prior to the Ganga Action Plan, about 240 mld of domestic water and 5-6 mld of tannery wastewater was generated in Kanpur. In response to growing concern over water quality and environmental degradation UPJN planned a phased pollution abatement program. The Ganga Action Plan Phase I (GAP-I) was launched in June, 1986 to reduce the amount of untreated wastewater reaching the Ganga river. The primary focus was on interception and treatment of municipal sewage. Schemes completed by UP Jal Nigam under GAP-I are summarized as follows:

- Cleaning of trunk and main sewers
- Interception of 16 drains
- Construction of 160 mld main sewage pumping station at Jajmau
- Construction of 130 mld domestic wastewater treatment plant (activated sludge process)
- Construction of 5 mld UASB pilot treatment plant under Indo-Dutch assistance

- Construction of 36 mld UASB treatment plant for combined tannery and domestic wastewater under Indo-Dutch assistance
- Construction of a separate open drain collection system and tapping of 4 nalas in the tannery district under Indo-Dutch assistance

Under GAP-I, only 160 mld could be intercepted because of the limitation of the existing 90 inch outfall sewer.

Source: flows measured by UPJN

Figure 2.1 Flows Intercepted under GAP-I

GAP-II is aimed at intercepting and diverting the remaining flow of about 210 mld to wastewater facilities being constructed south of the city under Indo-Dutch assistance. The following works have been sanctioned under GAP-II and are at present under construction:

- Tapping Sisamau nala that discharges about 120 mld of domestic wastewater to Ganga river
- Tapping of COD nala, Ganda nala, Halwa Khanda nala that discharge about 50 mld of domestic wastewater to Pandu river which ultimately meets with Ganga river at about 25 kms downstream of Kanpur.
- Relieving sewers, about 8 km
- Intermediate pumping stations at Munshi Purwa and Rakhi Mandi to pump about 180 mld
- Trunk sewer along COD nala to proposed treatment plant
- Land acquisition for proposed STP at Bingawan

Projects not yet sanctioned (but identified in DPR)

200 mld UASB STP at Bingawan

Execution of GAP-II projects will significantly reduce the pollutant load of Ganga river. However, increasing population will add to the amount of wastewater generated. A comprehensive plan for the development of sewerage is required to prevent increased flows in nalas and further degradation of the environment.

The proposals contained in previous studies and DPR provide useful information for this master planning effort. Projects implemented under GAP-I have not provided the intended improvements in water quality because there is insufficient collection and treatment capacity. The weakest links in the existing scheme are the pumping stations. At present sewage overflows occur at these stations during daily power failures lasting up to 8 hours. Although emergency power generators are provided, the operating authority (UPJN) has insufficient funds for the purchase of diesel fuel. Furthermore, some of the nala tapping stations have insufficient capacity to deal with dry weather flows which have increased beyond the quantities predicted.

Under GAP-II, UPJN has proposed several new diversion and treatment works to reduce the amount of sewage flowing to the Pandu and Ganga rivers. It is noted, however, that the proposals do not provide a comprehensive plan for the development of a sewerage system that is needed to prevent increased flows in nalas and further degradation of the environment. Most notable is the absence of timeframes for the development of new facilities and budgets for maintenance, rehabilitation or replacement of existing facilities.

CHAPTER 3

CITY PLANNING AND POPULATION PROJECTIONS

CHAPTER 3 CITY PLANNING AND POPULATION PROJECTIONS

The focus of this section of the study is to document from available information the existing population in Kanpur, understand their spatial distribution, and then develop population growth and distribution scenarios.

Kanpur is an industrial city, located about 78 kilometres from Lucknow, the capital of Uttar Pradesh, and 425 km east of the national capital, Delhi. Situated on the right bank of holy river Ganga and developed linearly along this river, the expansion of the city was restricted in southern direction by the river Pandu.

The project study area falls within the jurisdiction of Kanpur Development Authority (KDA), subdivided into rural and urban areas. The rural areas covers Kalyanpur (with some urban area), Bignu and Sarsaul and the urban area covers Kanpur Municipal Corporation, Cantonment, Armapur Industrial Estate, Railway Colony, Chakeri, IIT, etc. The total area under KDA is 829 sq.km out of the total Kanpur Nagar District area of 1040 sq.km.

In this project study the detailed analysis of Kanpur has been focussed on the municipal extents. The peripheral growth areas outside of the municipal extents have also been examined and considered for the future growth and expansion of the city, however in this city, in contrast to Allahabad, Lucknow, and Varanasi, no significant extended urban development was seen outside the municipal areas. The efforts of this study are concentrated on this area, examining intra-area growth patterns and trends using satellite imagery, field observations, and inputs of local agencies.

3.1 UNDERSTANDING PAST AND EXISTING POPULATION

The base data used for this study was (provisional census) data obtained from the Census of India, with detailed urban area population and municipal wards for 2001. This data provided the numeric basis for benchmarking the actual population and its decadal growth for the past decade. This information was complemented with past decadal growth rates and population data for earlier decades from the master plan documents.

The city witnessed significant population growth from 1.275 million in 1971 to 2.037 million in 1991 with average annual growth rate of 2.6 percent. Based on the 2001 census records, the population of the Kanpur municipal area was 2,531,138 persons. For the same period, the urban area had a population of 2,721,145 persons of which a population of 94,780 is attributed to the areas under the cantonment board.

Year	Urban Area Population	Source	Growth	Growth Rate
1901	202,797	Census Data		
1911	178,557	Census Data	-24,240	-11.95%
1921	216,436	Census Data	37,879	21.21%
1931	243,755	Census Data	27,319	12.62%
1941	487,324	Census Data	243,569	99.92%
1951	705,383	Census Data	218,059	44.75%
1961	971,062	Census Data	265,679	37.66%
1971	1,275,242	Census Data	304,180	31.32%
1981	1,641,064	Census Data	365,822	28.69%
1991	2,111,284	Census Data	470,220	28.65%
2001	2,721,145	Census Data	609,861	28.89%

 Table 3.1 Decadal Population and Growth Rate of Kanpur Urban Area

3.2 UNDERSTANDING DISTRIBUTION OF EXISTING POPULATION

As described in the methodology under the City Planning and Population Projections report, the project team developed an understanding of the existing population distribution across the urban areas of Kanpur. Comparing this population distribution with a visual interpretation of the satellite imagery helped in a better characterization of the urban development pattern into patches of varying population density levels. This approach helped in assessing the urban development character of the city in the face of limitations of time and resources under this project.

The linear development of Kanpur city along the right banks of river Ganga in east-west direction is restricted towards south with river Pandu. The land use pattern of the city is marked with a heavily built CBD area near railway station hosting the wholesale market and cantonment area in the eastern side. The development of public, semi-public, residential and other mixed land-uses have come-up in the western direction and mixed with the industrial growth in that direction.

The city of Kanpur addresses multiple functions such as an industrial growth centre with important industrial establishments of urea fertiliser plant, thermal power plant, LML scooters, Indian Oil Corporation and National Textile Corporation Mills, trade and commerce centre as major distribution centre for finished leather products, textile, fertiliser and for the products not manufactured in the city; as a transit point; an educational centre with educational institutes of International reputation (IIT Kanpur), National Sugar Institute, CLRI, National Textile Institute, ICAR, Kanpur University, etc. While these functions have distributed residential demand and development across the city, there still remains a shortage of housing stock for the city residents. In addition, the industrial activity also attracts short-term migrant labour which remains unaccounted for in population estimates and forecasts.

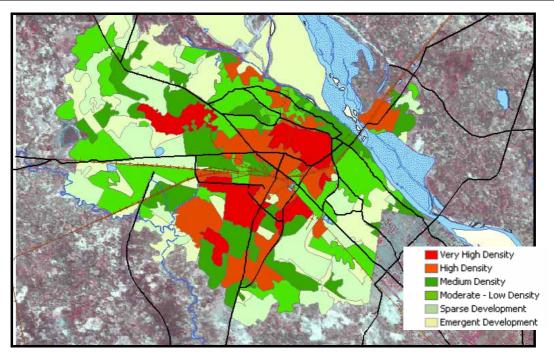


Figure 3.1 Satellite Imagery Interpretation for Development Density

3.3 POPULATION GROWTH PROJECTIONS

The basis of developing the population projections for this study have been the information collected from the Census Department, Lucknow, information provided by Kanpur Nagar Nigam and from data made available in the master plan documents through the Kanpur Development Authority.

The Master Plan for 2021 was developed with a population projection of 4.5 million. These projections were developed with the background data of 1991 census figures of a population of approximately 2.15 million. This increase over a 30 year period translates in a decadal growth rate of approximately 28.6%, projecting a declining growth rate for the city as compared to earlier decadal intervals which have been upwards at 30% and up to 45% for the period from 1951 to 1991.

While these growth figures projected in the Master Plan appear to be normative and more realistic as compared to the figures observed in the Kanpur Master Plan for the same period, there is also an assumption that Kanpur as a city will have to seriously address the developmental problems and its poor environmental quality. If the direction provided by the 2021 Master Plan and the "Vision Statements" being developed are implemented effectively, in tandem with major infrastructural enhancements to transportation, sewerage, water supply, and solid waste management, only then would it seem possible that these growth rates and projections will be achieved.

Accepting that Master Plan projections are normally more optimistic than that achieved, and given that the ground reality in Kanpur does not reflect much activity to energetically address the poor urban environment, the growth rates should be expected to reflect a further slow-down. Also, examining the regional growth and the national trends of slower growth rates in larger cities, the growth trajectory for the target year of the study, 2030, should be still lower. However, in keeping with the practice of including safety margins in the population forecasts, the decadal growth rate of 28.6% has been adopted for our project target period extending beyond the Master Plan.

While the Master Plan attempts to chart new growth directions for Kanpur as a city, there is no specific activity or development magnet. As such, Kanpur may be considered a city in decline with its deteriorating urban environment, closure of industries, and loss of employment opportunities. Its

proximity to Lucknow, further enhanced by the National Highway Development Program, have not resulted in any direct benefit to Kanpur, and in contrast, it has lost some of its growth momentum to Lucknow itself, and to Unnao.

Year	Urban Area Population	Source	Growth	Growth Rate
2001	2,721,145	Census Data	609,861	28.89%
2011	3,499,307	Projected by Study Team	778,162	28.60%
2021	4,500,000	Master Plan Numbers	1,000,693	28.60%
2031	5,786,859	Projected by Study Team	1,286,859	28.60%

It is a logical progression then to expect the exercise of population forecasts to be complemented with a spatial distribution of the population and a forecast of the increased extents of urbanization, which will encompass the forecasted population. This has been addressed in the section on Population Distribution Projections.

3.4 POPULATION DISTRIBUTION PROJECTIONS

3.4.1 Defining Growth Characteristics

Forecasting growth distributions for Kanpur is a difficult task. The city is a heterogeneous mix of opportune development areas which are made immensely less attractive due to the poor infrastructure, traffic networks, and major through traffic of road and rail networks that bisect the city as well as disrupt intra-city movement.

Due to this intersection of the major road and railroad networks, the city is fragmented into separate development quadrants. The peripheral areas of the city, away from Ganga, towards Pandu river on the south are more appropriate for new, planned developments.

On the eastern edge of the city, growth remains relatively slow and is confined due to the presence of the cantonment and the airstrip at Chakeri. There is no development pressure or magnet to catalyse and extend growth beyond this eastern edge.

Based on an analysis of the growth characteristics of each ward, depending on its current density, road network, master-plan designation, and adjacent ward characteristics, the individual ward growth rates were redefined. Although the table below represents the average growth rate for each decadal interval for the categories defined below, the actual ward-wise growth rates are significantly divergent due to the complex character of the urban development potential within the municipal limits of Kanpur.

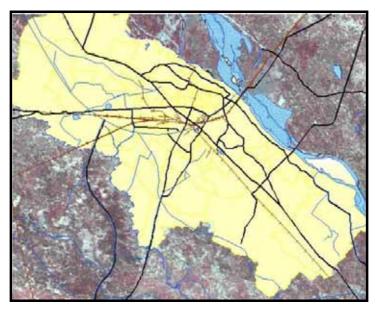


Figure 3.2 Municipal Extents of Kanpur

Figure 3.3 Growth Rates of Kanpur

The growth characterization of Kanpur area has been organized into three major classes. The approximate decadal growth rates for these classes are also given below. These growth rates were spatially studied in the context of existing development densities, proximity to institutional and industrial facilities, and constraints imposed by presence of cantonments and growth restriction areas such as the Chakeri airstrip.

Cotogowy	Description	Decadal Growth Rate			
Category	Description	2001-2011	2011-2021	2021-2031	
Far-Open	Outer Area, away from Core	75%	60%	50%	
Proximal	Proximal to Core	40%	15%	10%	
Core	Core Area	3%	1%	1%	
Avg	Background Average Growth Rate	25%	22%	20%	

Table 3.3 Growth Characteristics Defined

* Outliers to these growth rates exist and are a result of localized characteristics which in instances have a lower or higher growth rate than that for the defined ward characteristics.

3.4.2 Influence on Development Characteristics

The lack of planning, congestion, encroachments and deteriorated environment, acute shortage of housing, over-stressed infrastructure, inadequate drinking water supply and inadequate waste collection & disposal facilities, etc, are detriments to the growth of the city. The present transportation network and system is inadequate to take the load of existing traffic. While the lack of proper public transport system is a problem for the city residents, mobility within the city is further limited by an inadequate road network, a large number of level crossings along existing meter-gauge rail tracks which create bottle-necks to the traffic. Added to this is the through-traffic experienced by the city which adds to the air pollution, increased traffic load, and generally contributes to making a poor living environment in the city.

The housing quality of Kanpur, which by and large depends on civic services (water supply, sewage collection), power supply, roads, greenery, commuting facilities, community shopping centres etc., is difficult to characterise and ranges from average to bad in different areas. The city core area is densely populated, very old blocks in dilapidated condition, old sewerage system, broken-down water supply lines, improper garbage collection and insufficient open spaces.

Kanpur, once an industrial growth centre of the development in the region, faced the problems of unorganised growth coupled with decline in industrial production resulting into the adverse impact on the urban set-up. The cause of decay could be attributed to closure of many large industrial units and deterioration in infrastructure facilities.

The city landscape is dotted with about 75 large & medium scale industries which followed western direction of expansion along the railway line and G.T. road. These industries include Government owned units viz. Elgin Mills, Muir Mill, Cawnpore Woollen Mills, Ordinance factories, New Victoria Mill, M.P. Udyog, HVOC, and Lal Imli which are facing threat of closure owing to problems like old technology, gigantic workforce, high input cost and low output. Despite this grim scenario, Kanpur is still a major industrial centre with few operating textile mills, defence establishments, power plants, fertiliser unit, automobile industry, vanaspathi oil mill and tanneries.

In real terms, the urban infrastructure of Kanpur remains in relatively poor condition and as the city tries to articulate new growth areas beyond the municipal limits, there remains adequate space and opportunity within the current municipal limits of Kanpur. Unless a new vision is crafted, and additional development created, it is probable that Kanpur will see growth rates slower than that projected in this study.

Although a new Master Plan is now being adopted for the city, the existing violations and unauthorized developments make it a difficult task to realize the vision for planned development and improvement of the city. Since the validity of the last Master Plan expired (in 1991) to present day,

there has been little action to suggest that the city as a whole is finding new ways to re-invent itself and emerge from this unattractive living environment.

3.4.3 Data Constraints and Limitations

Specific concerns of ward areas and population densities was discussed with officers in the Nagar Nigam and in the Development Authority. Although the digital data with Kanpur Nagar Nigam was not accessible to use directly in the project work, GIS resource persons were helpful in reviewing and addressing ward-mapping issues.

The limited time on this project did not allow for detailed ground truthing and assessment of the actual development density across the entire city. Consequently, the inputs of local agencies was essential in validating the existing conditions. The support of the officials of the Nagar Nigam and that of the PPCU is acknowledged in this regard.

3.4.4 Population Projections by Ward

The table below gives the finalized ward-wise population figures and the overall summaries of population for each of the years of consideration under this study.

	18	able 3.4 Ward Wis	-		. 0			1
Ward No.	Ward Name	Character	Population	Population	Population	Population	Population	Population
1	Labahari Dama	Com	2003	Density 2003	2015	Density 2015	2030	Density 2030
1 2	Lakshmi Purwa Makrahartaani	Core	26,741 22,134	268	27,627	277	27,903 23,097	279 299
3	Makrobertganj Khalasi Line	Core Core	15,699	286 434	22,868 16,219	296 448	16,381	453
4	Jawahar Nagar	Core	14,334	812	14,810	839	14,958	847
5	Kalyanpur	Far-Open	57,346	94	110,817	181	150.676	246
6	Nankari	Far-Open	14,761	21	52,697	75	93,460	132
7	Rawatpur	Proximal Developed	39,947	369	46,678	431	49,012	452
8	Old Kanpur	Proximal Open	24,118	946	24,118	946	24,118	946
9	Chakeri	Far-Open	30,432	11	66,061	23	114,929	40
10	Colnelgunj	Core	8,808	803	9,100	830	9,191	838
11	Govendnagar Harijan Basti	Proximal Developed	29,202	123	45,384	192	54,683	231
12	Trasport Nagar	Core	19,807	254	20,463	262	20,668	265
13	Bhannana Purwa	Core	21,215	179	21,918	185	22,137	187
14	Ambedkar Nagar Kakadeo	Proximal Developed	19,322	294	30,028	458	33,456	510
15	Gwal Toli	Proximal Open	21,377	662	23,225	720	23,549	730
16	Sisamau Om Dumu	Core	23,810	1,648	24,599	1,702	24,845	1,719
17 18	Om Purwa Rai Purwa	Proximal Developed Core	25,187 21,379	238 518	41,748 22,088	394 536	50,500 22,308	477 541
18	Vijay Nagar	Proximal Developed	25,548	358	33,277	466	36,604	513
20	Ashok Nagar	Proximal Developed	23,348	207	45,985	331	55,408	399
20	Benajhawar	Proximal Developed	20,725	477	25,253	581	27,778	639
22	Saraimita Ward	Far-Open	35,913	30	128,210	108	239,045	202
23	Bakarganj	Proximal Developed	24,618	1,416	25,038	1,441	25,288	1,455
24	Sanigwan	Far-Open	27,844	10	132,202	46	330,504	116
25	Tilak Nagar	Proximal Developed	30,057	128	51,541	220	69,580	296
26	Anwar Ganj	Core	14,639	1,710	15,124	1,767	15,276	1,785
27	Nawab Ganj	Institutional	31,176	63	56,494	115	76,266	155
28	Sisamau First	Core	18,497	809	19,110	836	19,301	845
29	Coolie Bazar	Core	14,704	1,087	15,191	1,123	15,343	1,134
30	Vishnupuri	Proximal Developed	19,947	243	30,078	366	33,511	407
31	Safipur	Proximal Developed	28,995	36	87,823	108	146,575	180
32	Khyoa Panki	Far-Open	31,471 32,454	39 23	122,232 105,444	150 74	205,600	252 149
33 34	Chunni Ganj	Far-Open Core	13,000	383	13,430	396	210,888 13,565	400
35	Yashoda Nagar	Proximal Developed	59,130	82	101,394	141	123,114	400
36	Juhi Hamirpur Road	Proximal Developed	29,848	342	36,368	416	38,365	439
37	Dabauli	Proximal Developed	20,685	314	25,838	392	27,129	412
38	Naubasta East	Far-Open	59,157	76	133,327	171	181,898	233
39	Fahimabad	Core	8,936	1,282	9,232	1,325	9,324	1,338
40	Tiwaripur	Proximal Developed	32,500	74	54,132	123	73,078	166
41	Barra World Bank	Far-Open	61,922	82	103,137	137	148,484	198
42	Maswan Pur	Far-Open	26,401	208	42,505	335	49,483	390
43	Rambagh	Core	16,681	435	17,234	450	17,406	454
44	Naubasta	Proximal Developed	54,571	159	99,934	292	122,626	358
45	Sabji Mandi Kidwainagar	Proximal Developed	24,683	203	38,360	316	42,739	352
46	Nehru Nagar	Core	14,008	700	14,472	724	14,616	731
47	Vikas Nagar Cuioni Word	Proximal Developed	16,091	65	29,467	118	40,202	161
48	Gujani Ward Sarojini Nagar	Proximal Developed	30,263	327	39,418	426	41,582	449
<u>49</u> 50	Sarojini Nagar Lajpat Nagar	Proximal Developed Proximal Developed	20,653	282	26,596 29,777	391	28,056 32,901	412 397
51	Gandhi Nagar	Core	13,333	638	13,774	659	13,912	665
52	Civil Lines	Proximal Open	18,184	131	23,061	166	26,520	190
53	Harjendra Nagar	Proximal Developed	24,043	62	40,045	103	54,061	139
54	Dudhawala Bunglow	Proximal Open	19,614	163	24,874	206	28,605	237
55	Permat	Proximal Open	13,619	2,214	13,619	2,214	13,619	2,214
56	Sujat Ganj Gaon	Proximal Developed	52,287	464	61,098	542	64,153	569
57	Naseemabad	Core	20,537	754	21,218	779	21,430	787
58	Jajmau	Proximal Developed	41,871	268	60,369	386	66,701	427
59	Sarvodya Nagar	Proximal Developed	20,684	151	35,468	259	44,678	326
60	Swaraj Nagar (Panki)	Far-Open	15,307	44	36,561	104	55,197	157
61	Shastri Nagar II	Proximal Developed	19,742	545	23,069	637	24,222	669
62	Cooparganj Purwa	Core	12,176	720	12,579	744	12,705	752
63	Darshan Purwa	Core Provimal Open	13,717	768	14,171	793	14,313	801
64 65	Suther Ganj Barra (1 and 2)	Proximal Open Proximal Developed	20,412 77,729	555 345	22,177 105,375	603 467	23,286 116,429	633 516
	Kakadev	Proximal Developed	14,214	477	105,375	561	116,429	617
								362
66 67	Iuhi	Core	50 221	214	86 5/1			
67 68	Juhi Narmau	Core Far-Open	59,221 11,385	214	86,541 36,989	312 70	100,355 82,251	155

Ward No.	Ward Name	Character	Population	Population	Population	Population	Population	Population
			2003	Density 2003	2015	Density 2015	2030	Density 2030
70	Babu Purwa	Proximal Developed	17,454	1,034	17,751	1,052	17,929	1,062
71	Govind Nagar	Core	20,409	422	21,086	436	21,297	441
72 73	Patka Pur Kidwai Nagar K Block	Core	23,809	3,674	24,023	3,707	24,263	3,744
	Gita Nagar K Block	Proximal Developed Proximal Developed	25,424 21,257	56	54,665	120 413	79,534 37,864	175
74 75	Ajit Nagar	Proximal Developed	16,968	268 762	32,785 18,435	828	19,357	477 869
75	Harbansh Mohal	Core	22,968	962	23,730	994	23,967	1,004
70	Gandigram	Proximal Developed	22,908	63	87,663	192	134,281	294
78	Hiraman Purwa	Core	24,545	1,348	24,766	1,360	25,013	1,374
70	Prem Nagar	Core	20,051	782	20,716	808	20,923	816
80	Fazal Ganj	Proximal Developed	16,944	178	29,054	305	33,953	356
81	Munshi Purwa	Proximal Developed	15,811	1,322	16,081	1,345	16,242	1,358
82	Nirala Nagar	Proximal Developed	26,594	243	45,602	418	53,290	488
83	Juhi Lal Colony	Proximal Developed	23,049	517	29,057	651	30,653	687
84	Babu Purwa Colony	Proximal Developed	19,684	210	33,753	360	39,444	420
85	Ratan Lal Nagar	Proximal Developed	59,316	341	94,906	546	105,740	609
86	Govind Nagar III	Core	14,088	260	14,555	269	14,700	272
87	Usmanpur	Proximal Developed	29,990	133	51,425	228	64,778	287
88	Becon Ganj	Core	32,471	1,950	32,763	1,968	33,091	1,987
89	Maheshwari Mohaal	Core	22,538	1,688	22,741	1,703	22,968	1,720
90	Pushpant Nagar	Proximal Developed	25,019	148	42,902	253	52,092	307
91	Dana Khori	Core	18,973	875	19,602	904	19,798	913
92	Navin Nagar	Proximal Developed	17,430	385	25,471	562	28,378	626
93	Chandri Ward	Proximal Developed	28,753	206	49,305	353	57,617	412
94	Parade	Core	21,413	1,638	21,606	1,653	21,822	1,670
95	Chamanganj	Core	16,068	826	16,600	853	16,766	862
96	Kidwai Nagar (1)	Proximal Developed	15,543	318	26,652	546	29,923	613
97	Krishna Nagar Block 11	Proximal Developed	15,073	94	25,846	162	32,558	204
98	Kaushal Puri	Core	14,351	427	14,826	442	14,974	446
99 100	Chatai Mohal	Core	15,871 22,742	1,213	16,014	1,224	16,174	1,237
100	Begum Purva Shastri Nagar	Proximal Developed Proximal Developed	14,773	684 487	23,860 18,624	717 614	24,098 19,646	725 648
101	Collecterganj	Core	22,720	487	23,473	810	23,708	818
102	Colonel Gunj	Core	23,224	1,437	23,473	1,450	23,667	1,465
103	Vinayak Nagar	Proximal Developed	24,930	45	68,122	1,430	100,061	1,405
104	Sita Ram Mohal	Core	17,217	1,462	17,372	1,475	17,546	1,489
105	Talak Mohaal	Core	18,928	1,402	19,251	1,170	19,443	1,182
100	Kidwai Nagar (2)	Proximal Developed	8,867	272	11,549	354	13,223	406
107	Chowk Sarrafa	Core	18,106	1,116	18,415	1,135	18,599	1,146
109	Govind Nagar	Core	27,585	314	28,055	319	28,336	322
110	General Ganj	Core	21,083	457	22,119	480	22,340	484
111	Akhapur Estate (Cant)	Cantonement	20,900	29	21,796	30	22,341	31
112	Cantonment Area	Cantonement	95,249	67	99,333	70	101,816	72
	TOTALS		2,819,827		4,342,031		5,629,081	

CHAPTER 4

WATER SUPPLY SYSTEMS

CHAPTER 4 WATER SUPPLY SYSTEMS

4.1 MUNICIPAL WATER SUPPLY

The present water supply is insufficient to meet the demand. The main source of raw water for the municipal piped water supply system is the Ganga river and lower Ganga Canal. Intake of water from the river in 2002 was about 350 mld (approximately 83% of the total municipal water supply). The raw water intake is located near Bhairon Ghat upstream of Sisamau nala. The Ganga river has gradually shifted its course since 1941 and as a result the intake well is no longer located in the main channel. Jal Sansthan has to dredge a channel every year to bring water from the Ganga to the intake well.

To overcome this problem a Barrage has been proposed across the Ganga river, 1 km upstream of Bhairon Ghat raw water pumping station. A new 190 mld water treatment plant has also been proposed to supply the western district of the city. This treatment plant is currently under construction. Another water treatment plant is under construction at Gujaini to service the south district (under Indo-Dutch assistance).

Areas	Production Capacity (mld)					
Areas	Surface	Groundwater	Total			
Municipal	350	70	420			
Private wells and hand pumps		40	40			
South district (GAP Support Project)		42	42			
Total	350	152	502			

 Table 4.1 Total Municipal Water Production

Source: UPJN Kanpur, 2002 data.

4.2 QUANTITY OF WATER SUPPLIED AND CONSUMED

As shown in Figure 4.1, Kanpur city has been divided into 4 districts for the distribution of water. These districts correspond roughly to the boundaries adopted for the sewerage master plan.

The city service district is supplied exclusively from surface water treated at the 350 mld water works constructed under assistance from World Bank. The treatment plant is at present supplying about 240 mld.

The south service district is at present served exclusively by tube wells and hand pumps. This district has experienced rapid population growth. A recent project under Indo-Dutch assistance has increased capacity by 42 mld.

The east service district, which includes the tanneries and other industries of Jajmau has been expanding at a slow pace and there is still agricultural area present in the district. Water supply in this district is dependent on tube wells and hand pumps.

The west service district has been identified as the next growth area for housing colonies. Several colonies have already been developed and these are provided with their own water supply systems using tube wells. UPJN is at present implementing a scheme to augment water supply by 200 mld. Details of the scheme are presented in Figure 4.2.

Based on 2001 census data and projections for 2002 the population of Kanpur was about 2,756,865. Estimated water production from all sources in 2002 was 502 mld, giving a per capita production of 140 lpcd.

Population served	2,756,865 (in 2002)
Production capacity per capita	182 lpcd
Less leakage losses estimated at 30%	140 lpcd

Table 4.2 Estimated Per Capita Water Consumption

Including institutional/commercial components but excluding private supplies.

4.3 WATER SUPPLY PROBLEMS THAT AFFECT THE DEVELOPMENT OF SEWERAGE

The following water supply deficiencies have been identified in the water supply master plan by UPJN:

4.3.1 Severe Power Supply Situation

The prevailing power situation in the city is quite severe with frequent power failures for prolonged periods. Vital components like raw water pumping, equipments in Treatment Works, clear water pumping, tube well pumps in the water supply system are dependent exclusively on power supply for their operation. Poor power situation hence leads to severe dislocation and damage to the system operation as well as operational schedule.

For supply of water to consumers, the intended schedule by the Authority is an intermittent supply spread over a daily period of 10 hours in three shifts, 6 a.m. to 10 a.m., 12.00 a.m. to 2.00 p.m. and 6.00 p.m. to 10.00 p.m. This schedule with adequate level of supply can hardly be met due to various operational constraints. Residents at lower elevations receive water for a longer period while those at higher locations have shorter duration of supply.

4.3.2 Unaccounted for Water

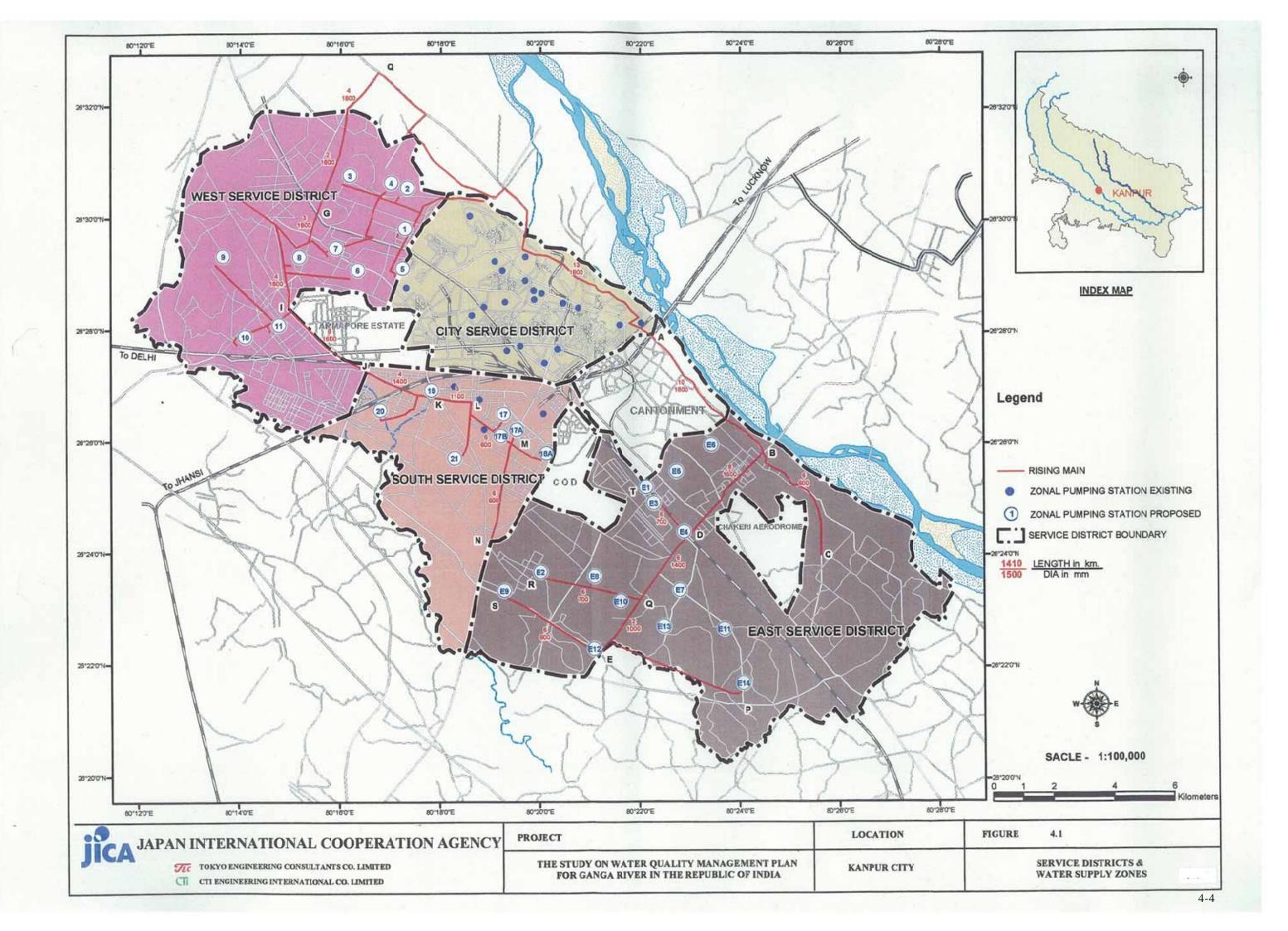
Large quantity of water is lost through the system due to leakages in pipeline and appurtenances as well as due to unaccounted for water consumption. A pilot study conducted in a small area, of the city during the previous master plan identified about 40% of water is lost in the system. The component of UFW associated with leakage is estimated at approximately 15%.

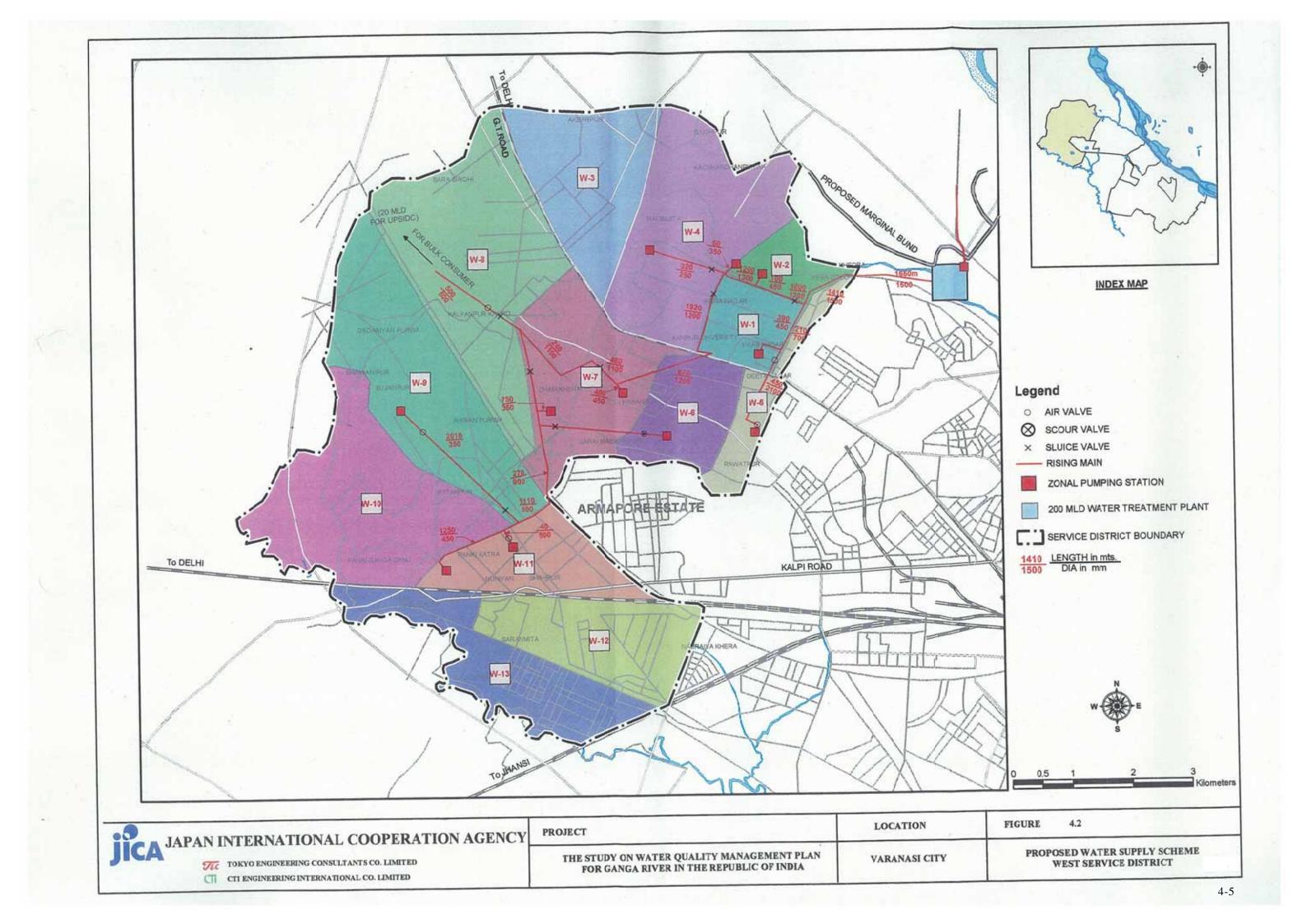
4.4 MASTER PLAN FOR IMPROVED WATER SUPPLY

The implementation of additional treatment capacity and strengthening of the distribution is essential to support the development of sewerage systems.

UPJN is presently implementing a water supply project under the Ganga Barrage project in which a new treatment plant is being constructed with distribution system for the West district to provide 200 mld supply. UPJN has a master plan for 2031 to augment raw water supply, treatment and distribution capacity up to 1,600 mld. Information regarding the master plan has been provided by UPJN and is presented in Table 4.3 and Table 4.4.

Areas	Population			Water demand (mld)		
	2001	2016	2031	2001	2016	2031
West	597,000	1,582,000	1,974,000	208.4	503.0	600.6
City	1,121,500	1,514,000	2,466,000	185.1	249.8	406.9
South	635,800	1,068,000	1,795,000	104.9	176.2	296.2
East	379,500	636,000	1,065,000	62.6	104.9	175.7
Bulk Consumers	-	-	-	27.5	33.0	55.0
Total	2,733,800	4,800,000	7,300,000	588.5	1,067.0	1,534.4


Table 4.3 Water Demand Estimates


Source: UPJN Kanpur, Feasibility Report for 1600 mld through Barrage on Ganga River

		I	I.	I.		(mld)
Areas	2003	2004	2005	2006-07	2016-17	Total
West	0	200		200	200	600
City	350				200	550
South	28		150		150	328
East	0		200			200
Total	378	200	350	200	550	1,678

Table 4.4 Proposed Treatment Plant Capacity

Source: UPJN Kanpur, Feasibility Report for 1600 mld through Barrage on Ganga River

CHAPTER 5

SEWERAGE PLANNING FRAMEWORK

CHAPTER 5 SEWERAGE PLANNING FRAMEWORK

This section identifies the criteria used for planning sewerage improvements as well as evaluating sewerage development strategies.

5.1 PLANNING HORIZON

The planning horizon for the sewerage master plan is 2030 with phased implementation occurring in 5-year intervals. The first phase will consist of priority projects that should be completed within one to five years following the adoption of the Master Plan.

The capacity of civil works is sized for the projected requirements in the year 2030. The capacity of mechanical and electrical systems is planned for the year 2015 with provision for future expansion by adding or changing pumps in subsequent phases as flows increase.

Land requirements for sewage treatment works are based on the projected capacity required for the year 2030. In the first phase, treatment works would be implemented with capacity for the year 2015 and provision for future expansion to ultimate design capacity.

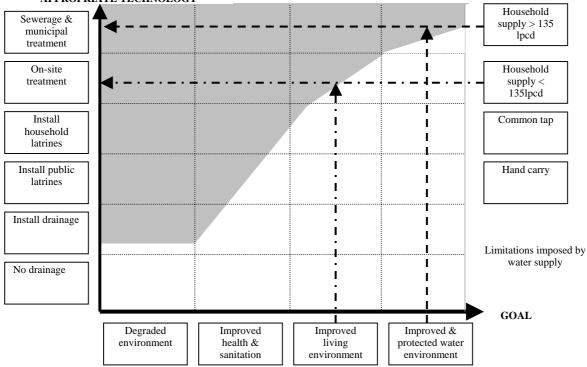
5.2 PLANNING CAPACITY

The timing for future sewerage infrastructure and the expansion of capacity depends on actual population growth and wastewater flows. "Planning capacity" refers to maintaining the infrastructure capacity above projected loadings. In general planning capacity serves three purposes:

- 1) It allows the system to remain effective over the period required to implement capital improvement projects (typically 2 to 5 years). Coupled with projected demands, planning capacity gives the City a mechanism to initiate master planning updates and staged improvements over the planning horizon. This allows the City to stay ahead of system needs.
- 2) Planning capacity can allow the system to accommodate unplanned growth over short time periods without unduly overtaxing the system, thereby allowing the City to plan or adjust infrastructure upgrade schedules to accommodate the growth.
- 3) Planning capacity is necessary to address flow variations. Wastewater flow can vary considerably from projected flows depending on actual population growth trends, connection rates and changes in per capita water consumption. Flows can also vary considerably over the short term. In Kanpur, seasonal variations are associated with infiltration and inflow due to rainfall and groundwater during the monsoon season. The floating population (visitors, and workers) magnifies diurnal flow variation.

Based on engineering experience, the JICA study team has included planning capacity when sizing main trunk facilities and treatment plants by assuming a 100% connection ratio.

Future capital improvements such as expansion of treatment plants or augmentation of capacity at pumping stations should be triggered at 10% of the design capacity during the growth phase in each sewerage service district. As the district approaches the phase where it has maximized growth within its boundaries, and it's population has stabilized (for example central district), wastewater needs will be driven primarily by maintenance of the existing system. During this phase 5% represents a reasonable target for triggering capital improvements.


5.3 LEVEL OF SERVICE

Reducing the pollutant loads to water resources and improving the living environment for residents of Kanpur are important issues that must be addressed by appropriate sanitation and sewerage interventions. These long-term goals can only be met if the existing sewerage infrastructure is fully utilized and extended to serve all densely populated urban areas.

Sewerage is an appropriate method of meeting pollution control goals when two criteria are met:

- As shown in Figure 5.1, the technology used to achieve a given goal depends on the level of water supply. The goal of protecting the water environment can only be met by providing conventional sewerage and only if water supply is sufficient to produce selfcleansing velocities. As prescribed by Indian Standard Code IS 1172 and National Building Code a minimum per capita water supply of 135 lpcd is required to sustain conventional sewerage.
- 2) Another limiting factor is population density. Current practice and experience in other developing countries indicates that conventional sewerage is seldom cost effective in urban areas where the population density is less than 120 persons per hectare.

Wherever these two criteria cannot be met, properly constructed on-site treatment systems should be used and upgraded over time as population density increases or to complement improvements in water supply services.

APPROPRIATE TECHNOLOGY

Figure 5.1 Goal and Level of Service Matrix

A summary of the goals, levels of service and stepwise implementation approach proposed for each district/area is presented in Table 5.1:

Goal	District I City	District II South	District III West	District IV East
Protecting water environment	Sewerage and off- site treatment	Sewerage and off- site treatment	Sewerage and off- site treatment	Sewerage and off- site treatment 2015- 2030
Improving living environment				On-site treatment for low population
Improved health and sanitation				densities
Present situation 2003	40% sewerage coverage. High population densities	Sewerage in some colonies High growth area, large drains	Sewerage in some colonies High growth area	No sewerage coverage Low population densities until 2015

 Table 5.1 Step-wise Progression to Sewerage Development in Kanpur

5.4 SEWERAGE DEVELOPMENT STRATEGY

Development of sewerage will, wherever possible, be integrated with existing GAP infrastructure in order to reduce the overall investment cost.

- 1) Existing infrastructure should, where economically feasible, be rehabilitated before investing in new works. This approach will in most cases be more cost effective and result in more immediate benefits such as improved treatment levels.
- 2) Eventually sewerage should be provided in all urban areas where densities exceed 120 persons per hectare and water supply is sufficiently developed to support water borne sewerage (i.e. > 135 lpcd).
- Households with water connections should be obligated to connect to sewer systems if they are located in areas that are already sewered.
- Households that have adequate water supply connections but are located in areas where trunk sewers will likely not be provided for some time should be required to improve their sanitation by upgrading their existing cesspits or septic tanks. In later years they should be connected to the extended sewer network.
- Households that do not have adequate water supply should, for the immediate future, be served by pour flush toilets with new cesspits or septic tanks. The choice between cesspits or septic tanks depends on whether enough land is available for the more efficient and cost effective septic tanks.
 - 3) Peripheral areas where population densities are 120 persons per hectare or less should be provided with proper on-site sanitation systems. This intervention is also required to improve sanitary conditions and reduce the amount of pathogens in the environment. Systems for collecting and treating septage are required.
 - 4) Development of new housing colonies in peripheral areas requires special measures to ensure they are in line with urban master plans, water supply and sewerage master plans. It may not be possible or cost effective to extend trunk sewers into these colonies until several years later. It is proposed that in new developments, sewerage systems including small-scale treatment works should be built ahead of trunk sewer facilities with the cost borne by the developer in accordance with user-pay principal. As the overall sewerage master plan is implemented, the small-scale decentralized treatment

facilities in various colonies can be shut down in a planned order once the trunk collector sewers and centralized treatment facilities are completed.

- 5) Institutional reform and capacity building will be required to ensure that operating authorities have the ability and equipment to properly manage and finance the operation and maintenance of sewerage schemes. Otherwise continued development will not be sustainable.
- 6) Whether planned or not, it is often the case that people will be living illegally on publicly owned land, land used by railroads, along nalas or similar areas. Although it is undesirable, people are living there, and usually they cannot easily be relocated. Most of these people are living in extremely bad sanitary conditions and their needs for improved sanitation cannot be ignored. It is difficult to move ahead with sewerage in these areas because people do not have land ownership rights or cannot afford such services. The same holds true in economically disadvantaged communities where people cannot afford the connection and service charges for sewerage. Therefore, realistic measures are required to ensure a proper level of sanitation in these areas. Non-sewerage schemes and low cost sanitation improvements are discussed in a separate report.
- 7) The implementation and monitoring of on-site treatment facilities in urban centers must be formalized to make them more effective. Formalizing on-site treatment will require:
- a. Setting standards for construction of pit latrines, septic tanks and soak away pits
- b. Regulating construction by issuing permits and follow-up inspections
- c. Regulating maintenance intervals of septic tanks and cesspits through mandatory collection
- d. Providing equipment and facilities for collection and disposal of septage
- e. Regulating municipal and/or private sludge collection services through licensing and manifest system to ensure proper disposal

5.5 SEWER SERVICE AREAS AND POPULATIONS

Future population projections are an integral component of planning for future wastewater infrastructure. These projections have been developed by JICA study team with reference to 2001 census data and the City's land use master plan for 2030. Using computerized GIS tools, the projected populations for each ward is allocated to each sewage district in proportion to the area falling within each district.

5.5.1 Existing Sewerage Districts

The previous Sewerage Master Plan divided the Municipal Corporation of Kanpur into four sewerage districts with outfall sewers to three treatment facilities:

1.	City Central District	:	to Jajmau	outfall	
~	D 10 1D'		. D'	· C 11 /	

- 2. East and South District: to Bingawan outfall (proposed Indo-Dutch UASB STP)
- 3. West District : to Panka outfall

The previously defined districts must be reconfigured to deal with the following new constraints and developments that have occurred since the Master Plan was contemplated:

- Sewage loads in City District have exceeded the capacity of the outfall sewer to Jajmau
- Excess sewage flows from City Central District are being diverted to the South District
- The proposed STP and outfall sewer do not have sufficient capacity to accommodate sewage load from East District

5.5.2 Proposed Sewerage Districts

The present Master Plan retains the concept of four sewerage districts. West district will have its own treatment plant as previously proposed. The boundaries for the South district catchment are redefined to match the future sewage load to the ultimate expanded capacity of the proposed Indo-Dutch UASB treatment plant. A separate treatment plant is proposed for the East district instead of expanding the South district treatment plant. The proposed sewer service areas and sewerage districts for 2030 are discussed in more detail in Section 7 of the report and presented in Figure 7.2.

The Sewerage Master Plan is developed for areas within the greater limits of the Municipal Corporation (as defined by the Development Authority) that have or will have population densities greater than 120 persons per hectare. Approximate population densities based on a visual interpretation of land use are derived from satellite images.

5.5.3 **Populations Served**

	Area	2003	2015	2030
Sewer Service Areas	(ha)			
District I City Central zone	1,961	694,517	802,336	869,853
District I City East zone	3,664	310,349	461,718	585,168
District II City Central zone	2,706	843,469	1,072,781	1,172,659
District II South	4,254	547,771	934,330	1,172,711
District III West	7,243	335,790	801,640	1,283,484
District IV East	3,439	69,114	211,602	428,512
District IV East - NSA	2,543	31,586	68,120	116,694
Total	25,810	2,819,827	4,342,031	5,629,081

 Table 5.2 Populations and Sewer Service Areas

NSA=non-sewered area

Only the area east is proposed as a non sewered area because population densities will remain lower than 120 persons per hectare until 2030.

5.6 WATER CONSUMPTION PER CAPITA

The quantity of wastewater to be intercepted and treated will depend on the population and on the amount of water consumed. Unfortunately the amount of water consumed per capita is not well documented because there are no water meters and many households have installed private tube wells.

The Manual on Water Supply and Treatment (Ministry of Urban Development, New Delhi, May 1999) recommends the following values for planning municipal water supply systems for domestic and non-domestic purposes:

SI.	Classification of towns/cities	Recommended maximum net per capita water supply (lpcd)
1	Towns provided with piped water supply but without sewerage system	70
2	Cities provided with piped water supply where sewerage system is existing or contemplated	135
3	Metropolitan and mega cities provided with piped water supply where sewerage system is existing or contemplated	150

 Table 5.3 Guideline Values for Future Per Capita Water Supply

Figures exclude unaccounted for water (UFW) which should be limited to 15%

Figures include requirements for water for commercial, institutional and minor industries. However, the bulk supply to such establishments should be assessed separately with proper justification

Based on production figures reported by UPJN the present estimated per capita consumption is approximately 140 lpcd, which is slightly lower than 150 lpcd proposed by Indian guidelines for planning water supply systems. In accordance with planning guidelines, the lower per capita rates are increased gradually to 150 lpcd by 2030 to reflect water supply system planning criteria. The following values for domestic water consumption are adopted in the Master Plan (including allowance for commercial/institutional (C/I) and minor industries estimated by UPJN):

2003: 140 lpcd + 30% UFW allowance = 182 lpcd 2015: 145 lpcd + 20% UFW allowance = 174 lpcd 2030: 150 lpcd + 15% UFW allowance = 172.5 lpcd

The allowance on 15% for UFW is in accordance with National guidelines. This assumes that some programs for reducing UFW will be implemented.

5.7 WASTEWATER RETURN FACTOR AND PER CAPITA CONTRIBUTION

Wastewater generated per capita is calculated using the proposed per capita water supply rates:

Item	2003	2015	2030
Per capita water consumption (lpcd)	182	174	172.5
Return factor	0.70	0.75	0.80
Per capita wastewater discharge (lpcd)	127	131	138
+infiltration allowance (10%)	140	144 (say 145)	152 (say 155)

 Table 5.4 Per Capita Wastewater Generation Rates

The wastewater return factors are within the range of 0.7 and 0.8 in the "Manual on Sewerage and Sewage Treatment (Ministry of Urban Development, December 1993). A 10% allowance is included for groundwater infiltration.

The return ratio is estimated by comparing total water production to measured wastewater flows as follows: total measured wastewater flow 370 mld \div total water supply production 502 mld = 0.7.

It is expected that water distribution will be improved to serve a larger percentage of the population. In parallel with water supply improvements, sewerage coverage will be extended to more homes and hence it is expected that a higher percentage of the population will be able to use flush toilets. Therefore the return factor will increase gradually from 0.7 to 0.8 to reflect larger amounts of wastewater from improved sanitation facilities and water supply conditions.

5.8 **PREDICTED WASTEWATER QUANTITY**

5.8.1 Total Wastewater Quantity

The population for each sewered and non-sewered area is multiplied by per capita contribution to obtain estimated wastewater flow.

Sewer Service Areas	2003	2015	2030
Per capita (lpcd)	140	145	155
District I City Central	97.2	116.3	134.8
District I City East	43.4	66.9	90.7
District II City Central	118.1	155.6	181.8
District II South	76.7	135.5	181.8
District III West	47	116.2	198.9
District IV East	12.3	39.0	84.5
Total	394.7	629.5	872.5

Table 5.5 Projected Total Wastewater Production (mld)

Detailed calculations showing sewage generated by ward, by sewerage district and tributary area for the years 2003, 2015 and 2030 are presented in Table 5.6.

5.8.2 Sewer Connection Ratios

The number of households connected to sewers at present is unknown but thought to be relatively high in sewer-covered areas. However, a comparison between the total amount of wastewater produced to total amount measured in open drains indicates that only 10 to 15% of the sewage is actually reaching trunk sewers. This indicates a serious problem at the branch sewer level.

The Master Plan identifies a number of trunk sewers facilities and lateral sewers. However the full benefits of these facilities cannot be realized unless a program to improve coverage of branch sewers and household connections is carried in parallel. Future targets are proposed as a means of identifying the quantities of infrastructure and approximate budget requirements required over the planning horizon.

The ultimate sewer connection ratio of 80% has been selected to meet water quality improvement goals. However, achieving such a target may not be realistic given the large number of projects that have to be implemented in such a short timeframe. Furthermore, it is not only a question of providing new infrastructure. There is also a huge backlog of maintenance and repair to restore existing systems.

Sewer Service Areas	2003	2010	2015	2030
District I City Central	40%	45%	55%	80%
District I City East	20%	30%	40%	50%
District II City Central	40%	45%	55%	80%
District II South - Central	0%	0%	0%	80%
District II South - West	0%	0%	0%	50%
District II South - East	0%	0%	0%	50%
District III West-1	30%	40%	50%	80%
District III West-2	0%	0%	0%	80%
District IV East	0%	0%	0%	50%

 Table 5.7 Existing and Proposed Sewer Connection Targets

Note: the connection ratio for district IV is less than 80% because it is at present less populated and therefore a lower priority. Sewerage will only be implemented later therefore it is not likely that a higher sewer connection ratio can be achieved.

5.9 WASTEWATER TREATMENT PLANT DESIGN

5.9.1 Wastewater Characteristics

Wastewater composition differs from one situation to the other and is dependant on the level of sanitation, water usage, type of collection system, retention time in sewers and infiltration. Characteristics influence the choice of treatment method, extent of treatment and quantities of solids produced.

Average Biochemical Oxygen Demand (BOD) and Total Suspended Solids (TSS) are the two most important factors for sizing treatment plants in the Master Plan. JICA study team conducted a sampling programme to determine wastewater characteristics. Various contributing drains were identified for this purpose and the influent wastewater at Jajmau STP was also measured.

Parameter		STP ⁽²⁾			
Parameter	Muir Mill	Sisamau	COD	Ganda	(130 mld AS)
BOD (mg/l)	64	110	65	140	190
COD (mg/l)	140	174	102	222	488
TSS (mg/l)	85	100	76	120	1,210
pH	7.4	7.0	7.5	7.4	7.5
Temp .(⁰ C)	30	29	32	29	

 Table 5.8 Summary of Measured Wastewater Characteristics

Source: (1) JICA study team, measurements taken May 7 to 18 June, 2003.

(2) Average monthly reported by UPJN

Theoretical wastewater strength is calculated based on the amount of wastewater discharged per capita, i.e., BOD loading of 45 grams/person/day and SS loading of 90 grams/person/day.

Parameter	Unit	2003	2015	2030
Per capita wastewater	lpcd	140	145	155
BOD	mg/l	311	310	290
TSS	mg/l	622	620	580

 Table 5.9 Theoretical Wastewater Strength

The values actually measured at the treatment plant and sewer outfall are much weaker. The dilute wastewater can be easily explained by the very large amount of wastewater from tapped drains. BOD and TSS values during the earlier phases of the project will likely be weaker than those calculated above because a large portion of the flow will be from tapped drains. However, as sewerage coverage and household connection rates are improved, the BOD and SS values will increase. Therefore, wastewater strength used for preliminary process calculations and sizing of treatment facilities should be based on a proportional blend using proposed connection ratios. The BOD strength recommended for design of future wastewater facilities has been calculated for each district and presented in Table 5.10.

5.10 TREATMENT EFFLUENT QUALITY STANDARDS

The degree of treatment depends on the standards specified by the Central Pollution Control Board and adopted by the NRCD.

Parameter	Unit	Discharged to water bodies	Discharged to land for agriculture
Total suspended solids	mg/l	50	100
BOD (5 days at 20°C)	mg/l	30	50
COD	mg/l	250	_
Faecal coliforms**	MPN/100 ml	Désirable < 1000 Max < 10,000	< 10,000
pH value		5.5-9.0	5.5-9.0
Sulphides	mg/l (as S)	2.0	-
Total Chromium	mg/l (as Cr)	2.0	5.0

 Table 5.11 Treated Effluent Quality Standards

** NRCD guidelines August 2002

Irrespective of final mode of disposal, faecal coliform in treated effluent should not exceed 10,000 MPN/100ml which is ten times higher than WHO guideline for unrestricted irrigation. This will require that all treatment plants have some form of disinfection process or tertiary treatment process such as maturation ponds for reducing faecal coliform counts.

5.11 EFFLUENT DISCHARGE ALTERNATIVES

In general the cost estimates have assumed that STP effluent will be discharged to nearby rivers. However, one could consider the use of STP effluent for irrigation in agriculture. This would, in most cases, require an effluent pumping station in most locations. Information on required pump capacity and effluent distribution facilities is not available since the master plan didn't include survey of the proposed treatment plant or potential irrigation sites.

5.11.1 Unrestricted Irrigation

Unrestricted irrigation, that is, the irrigation of crops having direct contact with humans, either by uncooked consumption or other contacts like recreational use (sport fields, parks), is subjected to effluent FC counts lower than a value of 10,000 per 100ml, according to NRCD standards. The WHO guideline for unrestricted irrigation is 1,000/100ml.

As pointed out in the next paragraph, the application of maturation ponds is the only practicable alternative for the removal of pathogens unless chlorine is used.

5.11.2 Restricted Irrigation

Although the health risks of restricted irrigation will be lower, compared to unrestricted irrigation, they will still remain. Furthermore, it will be difficult to enforced that effluent will only be used for restricted irrigation. Therefore, the same standards should be applied to restricted irrigation and suitable post treatment will be required.

5.12 CHOICE OF TREATMENT TECHNOLOGY

5.12.1 General

The performance of several treatment plants implemented under GAP and YAP has been reviewed by the study team with the objective of identifying which processes would be most suitable for future treatment facilities. Findings of the review are reported Vol. III-11 in Supporting Report. "Case Study of Sewage Treatment Plants".

A qualitative comparison of treatment processes is presented in Table 5.12.

The choice of a treatment technology is driven primarily by the availability of land, the ability of the process to meet required effluent criteria and total life cycle cost. If sufficient land can be provided, then the JICA study team recommends that Waste Stabilization Ponds be used since these will provide the most reliable treatment at the lowest annual operating cost.

Where land is limited, the following processes should be considered (in order of preference) with the addition of tertiary treatment to reduce fecal coliform:

- Aerated facultative ponds (AL) <50 mld
- Up flow anaerobic sludge blanket (UASB) for flows > 50 mld
- Fluidized aerated bed (FAB) for flows up to 70 mld

5.12.2 Post Treatment Options for UASB Technology

The Up flow Anaerobic Sludge Blanket (UASB) treatment process is in general unable to meet the required effluent criteria without the addition of post treatment processes. Typically UASB is suitable for treatment of very high BOD waste from industries as a form of pre-treatment before disposal to municipal wastewater treatment systems. Data from a number of UASB plants indicates that the effluent is highly anoxic because of dissolved gases. Thus the effluent exerts a very high immediate oxygen demand on receiving streams, i.e., same effect as a high BOD load. The BOD, sulphides and sulphate contents in UASB effluent generally exceed NRCD effluent standards for discharge to inland waters even with 1 day polishing ponds as post treatment.

The option of combining UASB with some form of aerobic post treatment has been suggested by the Steering Committee for the present Study. For obtaining better effluent quality, the following post-treatment alternatives may be taken into consideration:

- Trickling filter
- Aerated lagoon

(1) Trickling Filter

In this option high rate trickling filters would be applied instead of an effluent polishing pond. The trickling filters are followed by final sedimentation tanks. Sludge from the sedimentation tanks is sent to drying beds. A trickling filter is a biological filter system, in which wastewater is continuously distributed over a bed of media. The wastewater organic and nitrogen components will give rise to bacterial growth as a bio film onto the fixed media. The bacteria remove BOD, and if sufficiently low loading rates are applied the nitrification (conversion of ammonia to nitrate) will also occur.

Trickling filters may be expected to reduce the BOD and sulphide content of the wastewater appreciably, bringing these parameters well within the standards. They will, however, not be sufficient to bring faecal coliform counts to within the desired standards. Nevertheless, they greatly improve effluent quality.

Assuming BOD load of 300 mg/l in raw wastewater, the effluent from a typical 200 mld UASB can be expected to have a BOD of 105 mg/l, representing a loading rate of 21,000 kg/day. A total of 20 trickling filters 36.0 m in diameter would be necessary.

After the trickling filters, final sedimentation should be provided with a surface loading rate of 1 $m^3/m^2/hr$. Three sedimentation tanks with a diameter of 59.5 m would be required.

The total land requirement for 200 mld UASB is roughly 54 hectare. Substituting trickling filters for final polishing ponds would require 42 hectare (54 - 16 for FPU + 4 for TF). The investment cost for trickling filters is relatively high and so are the O&M requirements. Typical energy requirements would be in the range of 100 to 120 kW for pumping and 50 to 60 kW for ventilation.

The effluent quality would be much better than required by the standard. However FC levels remain higher than allowable:

- TSS : 20-30 mg/l
- BOD : 10-15 mg/l
- Sulphides : 0 mg/l
- FC count : aprox. 100,000 MPN/100 ml

(2) Aerated Lagoons

In this alternative aerated lagoons would be applied instead of effluent polishing ponds.

An aerated lagoon is a basin in which the wastewater is treated on a flow-through basis. Generally aeration is provided by floating aerator equipment. From the engineering aspect, they should be considered complete-mix reactors without recycle, having a residence time of minimum three days. After the aerated part, an area should be provided for sedimentation of the solids, which can be an un aerated end-part of the lagoon, or final sedimentation tanks, depending on the amount of solids to be settled.

Aerated lagoons require less surface than ponds because depth can be substantially larger (up to 4.0m), but since decay of faecal coliform is related more to HRT than to any other parameter, pond surface still would have to be fairly substantial unless chlorination is used for disinfection.

For a flow of 200 mld the volume required to reduce BOD from 105 mg/l to 30 mg/l would require about a 1.5 day retention period. This is equivalent to $300,000 \text{ m}^3$, with a surface area of $320,000\text{m}^2$ assuming a 3.5 m depth in the aeration zone and 1.0m in the quiescent zone.

The total land requirement for 200 mld UASB including a 1 day FPU is roughly 54 hectare. Substituting aerated lagoons instead of final polishing ponds would require 70 hectare (54 - 16 for FPU + 32 for AL). Investment costs for aerated lagoons are in the order of Rs 53 million.

The effluent quality can be estimated to be:

TSS	:	20 - 30 mg/l;
BOD	:	5 - 10 mg/l;
Sulphides	:	0 mg/l
FC count	:	aprox. 10,000 to 100,000 MPN/100 ml.

Energy use would be in the range of 400 to 600 kW per hour, mainly determined by the energy used for the aerator equipment which varies depending on the season.

(3) Overall Comparison of Post Treatment Options:

Criteria	Trickling filter	Aerated lagoon
Land	1	2
Investment cost	2	1
O&M	2	1
Effluent	2	1
Total	7	5

Most favorable=1

The ranking indicates that aerated lagoons provide the most cost-effective post treatment of UASB effluent enable it to meet the discharge criteria set by NRCD.

5.12.3 Unit Rates Applied in the Calculation of Treatment Costs

Land requirements and cost criteria used for comparison of options in the Master Plan are presented in Table 5.13.

				(million I	Rs., million	Rs./year)
Treatment Process		Area	(Capital Cos	t	Annual O&M
Treatment Process		Required (ha/mld)	Total	M/E	Civil	Cost
Wastewater Stabilization Pond*	WSP	1.25	1.6	0.03 (2%)	1.57 (98%)	0.06
Aerated Lagoon + Chlorine Disinfection	AL	0.35	2.5	0.50 (20%)	2.00 (80%)	0.30
Aerated Lagoon + Maturation Ponds	AL+	0.75	3.2	0.64 (20%)	2.56 (80%)	0.32
Activated Sludge + Chlorine Disinfection	AS	0.20	2.7	1.08 (40%)	1.62 (60%)	0.36
Activated Sludge + Maturation Ponds	AS+	0.60	3.4	1.36 (40%)	2.04 (60%)	0.38
Fluidized Aerated Bed + Chlorine Disinfection	FAB	0.06	4.6	2.76 (60%)	1.84 (40%)	0.59
UASB with + Post Treatment (AL)	UASB++	0.35	3.0	1.05 (30%)	1.95 (70%)	0.13

Table 5.13 Land Requirements and Cost Per mld for V	Various Treatment Processes
---	-----------------------------

Source: JICA Study Team "Evaluation of Sewage Treatment Plants" under GAP and YAP.

* WSP includes maturation ponds and cost of low lift pumps at head works

Capital costs exclude cost of land; O&M costs include energy costs and staffing costs.

WSP includes the use of maturation ponds to reduce faecal coliform counts. Other options assume disinfection using chlorine, which is inexpensive and generally very effective. Other alternative disinfection technologies are still being evaluated at pilot scale plants and have not yet been proven cost effective for large-scale applications. Maturation ponds are added to other treatment processes if the life cycle cost is attractive and sufficient land is available.

5.13 SEWER DESIGN CRITERIA

Criteria used for the evaluation and preliminary sizing of trunk sewers, pumping stations criteria are in accordance with the Manual on Sewerage and Sewage Treatment (Ministry of Urban Development, December 1993) and current practice adopted in Detailed Project Reports.

Sewers

Peak factors	Nalas	2.5
	Trunk sewers	2.5 for Population < 50,000
		2.25 for population 50,000 – 750,000
·· · · · ·		2.00 for population > 750,000
Hydraulic design:		$1/ p^{2/3} c^{1/2}$
Gravity pi	pe: Manning's equation	$V = 1/n R^{2/3} S^{4/2}$,
	Roughness factor	n= 0.015 old concrete pipe n= 0.017 old brick sewer
	Minimum velocity	0.60 m/s initial flow
	Winning verberry	0.80 m/s ultimate flow
	Maximum velocity	3.00 m/s
	Maximum depth	d/D= 0.8 at ultimate peak flow
Pressure pipe:	Hazen William's formula	$V = 0.85 C R^{0.63} S^{0.54}$
r ressure pipe.	Roughness factor	C = 100 new cast iron pipe
	100000100001	C = 80 old cast iron pipe
		C = 110 PSC pipes
	Minimum velocity	0.8 m/s
	Maximum velocity	3.0 m/s
Pumping stations:		
De els fe stern		2.0 for large stations
Peak factor: Sump detention time	26.	2.0 for large stations
Sump detention time	Vertical turbine pumps:	5 minutes at ultimate peak flow
	· · ·	3.75 minutes at ultimate peak flow
	Maximum:	30 minutes at average flow
Minimum number o	f pumps:	3 pumps each with capacity for 1/2 PF
		2 pumps each with capacity for the non-PF
At critical stations:		50% standby capacity at peak hour
		100% standby capacity at non-peak

Table 5.6 District Wise Population and Wastewater Generation

(1) District Wise Population and Wastewater Generation

		20	03	20	15	2030		
	Area (ha)	Population	Wastewater Generation (MLD)	Population	Wastewater Generation (MLD)	Population	Wastewater Generation (MLD)	
District I (City Central)	1,961	694,517	97.2	802,336	116.3	869,853	134.8	
District I (City East)	3,664	310,349	43.4	461,718	66.9	585,168	90.7	
District II (City Central)	2,706	843,469	118.1	1,072,781	155.6	1,172,659	181.8	
District II (South)	4,254	547,771	76.7	934,330	135.5	1,172,711	181.8	
District III (West)	7,243	335,790	47.0	801,640	116.2	1,283,484	198.9	
District IV (East)	5,982	87,931	12.3	269,226	39.0	545,206	84.5	
Total	25,810	2,819,827	394.7	4,342,031	629.5	5,629,081	872.5	

		20	03	20	15	2030		
District	Sub-Catchment	Population	Wastewater Generation (MLD)	Population	Wastewater Generation (MLD)	Population	Wastewater Generation (MLD)	
	CC-01	9,871	1.38	11,153	1.62	12,001	1.86	
District I	CC-02	75,434	10.56	78,960	11.45	81,695	12.66	
City Central	CC-03	61,947	8.67	63,546	9.21	64,148	9.94	
	CC-04	69,584	9.74	71,930	10.43	72,706	11.27	
	CC-07 CC-08	19,608 43,621	2.75 6.11	19,909 44,397	2.89 6.44	20,112 44,902	3.12	
	CC-08 CC-09	8,213	1.15	10,400	1.51	11,899	1.84	
	CC-10	2,910	0.41	3,683	0.53	4,225	0.65	
	CC-11	24,321	3.40	25,984	3.77	27,090	4.20	
	CC-12	31,658	4.43	34,831	5.05	36,712	5.69	
	CC-13	36,516	5.11	39,276	5.70	40,377	6.26	
	CC-14	94,738	13.26	96,526	14.00	97,490	15.11	
	CC-16	11,521	1.61	11,910	1.73	12,021	1.86	
	CC-17	12,864	1.80	13,329	1.93	13,480	2.09	
	CC-18	11,118	1.56	13,378	1.94	14,499	2.25	
	CC-19	13,100	1.83	20,684	3.00	24,695	3.83	
	CC-20 CC-21	29,616	4.15 2.42	40,272	5.84 2.75	46,796 19,753	7.25	
	CC-21 CC-22	17,316 23,532	3.29	18,983 28,413	4.12	32,176	4.99	
	CC-23	15,682	2.20	19,754	2.86	22,300	3.46	
	CC-24	28,826	4.04	44,195	6.41	52,314	8.11	
	CC-25	2,152	0.30	3,929	0.57	5,295	0.82	
	CC-26	19,214	2.69	33,547	4.86	43,593	6.76	
	CC-28	12,326	1.73	20,835	3.02	26,233	4.07	
	CC-29	7,092	0.99	12,550	1.82	16,900	2.62	
	CC-30	11,737	1.64	19,962	2.89	26,441	4.10	
Sub	Total	694,517	97.22	802,336	116.34	869,853	134.83	
	CC-05	23,315	3.26	24,096	3.49	24,338	3.77	
District II	CC-06	77,675	10.87	80,567	11.68	81,535	12.64	
City Central	CC-15	49,820	6.97	51,468	7.46	51,990	8.06	
	CC-16 CC-17	11,619 12,973	1.63 1.82	12,012 13,443	1.74 1.95	12,123 13,595	1.88	
	CC-18	11,213	1.57	13,491	1.95	14,622	2.11	
	CC-27	12,133	1.70	19,952	2.89	24,077	3.73	
	CC-31	48,465	6.79	72,802	10.56	84,177	13.05	
	CC-32	60,675	8.49	82,760	12.00	92,093	14.27	
	CC-33	10,426	1.46	14,632	2.12	15,645	2.42	
	CC-34	23,530	3.29	29,162	4.23	30,871	4.79	
	CC-35	11,584	1.62	15,429	2.24	17,382	2.69	
	CC-36	56,728	7.94	72,233	10.47	77,724	12.05	
	CC-37	40,087	5.61	42,999	6.23	44,401	6.88	
	CC-38 CC-39	32,346 25,537	4.53 3.58	42,798 34,985	6.21 5.07	47,556 39,770	7.37	
	CC-40	11,655	1.63	12,838	1.86	13,349	2.07	
	CC-41	5,619	0.79	8,140	1.18	9,425	1.46	
	CC-42	17,201	2.41	24,765	3.59	28,613	4.44	
	CC-43	31,743	4.44	36,668	5.32	38,817	6.02	
	CC-44	15,362	2.15	26,416	3.83	31,095	4.82	
	CC-45	39,552	5.54	55,184	8.00	61,616	9.55	
	CC-46	11,061	1.55	20,093	2.91	26,381	4.09	
	CC-47	9,299	1.30	13,999	2.03	16,736	2.59	
	CC-48	30,372	4.25	41,067	5.95	44,385	6.88	
	CC-49	10,997	1.54	13,057	1.89	13,887	2.15	
	CC-50 CC-51	15,192 8,792	2.13	16,533 11,549	2.40	17,076 12,546	2.65	
	CC-51 CC-52	25,308	3.54	41,059	5.95	46,819	7.26	
	CC-53	11,315	1.58	15,829	2.30	18,285	2.83	
	CC-54	5,704	0.80	9,899	1.44	12,123	1.88	
	CC-55	17,908	2.51	25,229	3.66	28,237	4.38	
	CC-56	45,437	6.36	47,450	6.88	48,371	7.50	
	CC-57	22,826	3.20	30,177	4.38	32,999	5.11	
CC-57								

(2) Contributing Population by Sewer Sub-Catchment (Page 1 of 3)

		20	03	20	15	2030		
District	Sub-Catchment	Population	Wastewater Generation (MLD)	Population	Wastewater Generation (MLD)	Population	Wastewater Generation (MLD)	
	CE-01	146,253	20.48	157,293	22.81	163,097	25.28	
District I	CE-02	17,304	2.42	30,369	4.40	39,978	6.20	
City East	CE-03	14,271	2.00	31,861	4.62	49,143	7.62	
	CE-04	32,744	4.58	54,777	7.94	69,649	10.80	
	CE-05	47,964	6.71	71,194	10.32	81,236	12.59	
	CE-06	6,256	0.88	10,730	1.56	14,716	2.28	
	CE-07	23,665	3.31	40,986	5.94	56,123	8.70	
	CE-08	4,737	0.66	13,261	1.92	21,726	3.37	
	CE-09	17,155	2.40	51,247	7.43	89,500	13.87	
Sub	Total	310,349	43.44	461,718	66.94	585,168	90.71	

		20	03	20	15	2030		
District	Sub-Catchment		Wastewater		Wastewater		Wastewate	
District	Suo culonnent	Population	Generation	Population	Generation	Population	Generation	
		_	(MLD)	_	(MLD)	_	(MLD)	
	SD-01	13,997	1.96	25,005	3.63	34,858	5.4	
District II	SD-02	1,960	0.27	7,100	1.03	13,272	2.0	
South	SD-03	66,280	9.28	95,580	13.86	104,951	16.	
	SD-04	48,119	6.74	74,351	10.78	83,298	12.	
	SD-05	36,877	5.16	52,435	7.60	59,090	9.	
	SD-06	11,904	1.67	16,214	2.35	17,908	2.	
	SD-07	8,427	1.18	12,616	1.83	15,459	2.	
	SD-08	25,392	3.55	39,244	5.69	49,834	7.	
	SD-09	11,256	1.58	18,921	2.74	27,334	4.	
	SD-10	10,257	1.44	17,241	2.50	24,906	3.	
	SD-11	3,642	0.51	6,271	0.91	8,699	1.	
	SD-12	2,556	0.36	4,680	0.68	5,825	0.	
	SD-13	17,149	2.40	31,153	4.52	39,354	6.	
	SD-14	29,786	4.17	54,182	7.86	66,545	10.	
	SD-15	6,011	0.84	10,629	1.54	13,034	2.	
	SD-16	17,752	2.49	30,697	4.45	37,250	5.	
	SD-17	3,560	0.50	6,566	0.95	8,044	1.	
	SD-18	5,431	0.76	9,395	1.36	11,389	1.	
	SD-19	959	0.13	1,700	0.25	2,087	0.	
	SD-20	10,170	1.42	19,785	2.87	25,374	3.	
	SD-21	2,058	0.29	4,466	0.65	5,989	0.	
	SD-22	9,803	1.37	20,462	2.97	27,028	4.	
	SD-23	6,532	0.91	14,789	2.14	20,141	3.	
	SD-24	2,700	0.38	6,112	0.89	8,325	1.	
	SD-25	6,820	0.95	15,333	2.22	20,908	3.	
	SD-26	10,622	1.49	21,002	3.05	29,329	4.	
	SD-27	13,182	1.85	22,266	3.23	32,131	4.	
	SD-28	3,312	0.46	7,496	1.09	10,209	1.	
	SD-29	4,719	0.66	10,682	1.55	14,549	2.	
	SD-30	5,087	0.71	11,516	1.67	15,684	2.	
	SD-31	1,647	0.23	3,715	0.54	5,054	0.	
	SD-32	7,058	0.99	13,575	1.97	17,388	2.	
	SD-33	8,432	1.18	17,075	2.48	23,736	3.	
	SD-34	6,700	0.94	11,590	1.68	14,050	2.	
	SD-35	9,362	1.31	16,306	2.36	19,992	3.	
	SD-36	5,883	0.82	10,177	1.48	12,337	1.	
	SD-37	4,104	0.57	7,068	1.02	8,571	1.	
	SD-38	5,737	0.80	10,939	1.59	14,549	2.	
	SD-39	3,942	0.55	7,578	1.10	10,129	1.	
	SD-40	8,991	1.26	19,520	2.83	27,959	4.	
	SD-41	6,643	0.93	11,557	1.68	14,090	2.	
	SD-42	48,086	6.73	62,959	9.13	69,779	10.	
	SD-43	16,625	2.33	36,466	5.29	49,029	7.	
	SD-44	9,934	1.39	21,918	3.18	31,769	4.	
	SD-45	8,307	1.16	15,998	2.32	21,475	3.	
Sut	o Total	547,771	76.67	934,330	135.51	1,172,711	181.	

		20	03	20	15	20	30
District	Sub-Catchment	Population	Wastewater Generation (MLD)	Population	Wastewater Generation (MLD)	Population	Wastewater Generation (MLD)
	WD-01	19,619	2.75	61,471	8.91	99,236	15.38
District III	WD-02	13,219	1.85	48,836	7.08	88,879	13.78
West	WD-03	2,601	0.36	8,671	1.26	19,199	2.98
	WD-04	6,605	0.92	23,263	3.37	43,015	6.67
	WD-05	3,761	0.53	13,265	1.92	24,407	3.78
	WD-06	5,901	0.83	15,643	2.27	29,185	4.52
	WD-07	9,897	1.39	21,178	3.07	30,628	4.75
	WD-08	6,221	0.87	12,038	1.75	16,384	2.54
	WD-09	7,882	1.10	23,684	3.43	36,979	5.73
	WD-10	12,003	1.68	35,340	5.12	56,299	8.73
	WD-11	6,348	0.89	13,326	1.93	18,743	2.91
	WD-12	3,039	0.43	8,239	1.19	12,089	1.87
	WD-13	63,541	8.90	99,917	14.49	120,621	18.70
	WD-14	11,920	1.67	26,014	3.77	36,203	5.61
	WD-15	12,345	1.73	23,140	3.36	30,734	4.76
	WD-16	6,633	0.93	12,772	1.85	17,358	2.69
	WD-17	9,019	1.26	17,366	2.52	23,602	3.66
	WD-18	2,894	0.41	6,587	0.96	9,837	1.52
	WD-19	1,557	0.22	5,559	0.81	9,784	1.52
	WD-20	3,357	0.47	11,714	1.70	21,251	3.29
	WD-21	2,879	0.40	8,111	1.18	15,160	2.35
	WD-22	3,918	0.55	12,605	1.83	25,380	3.93
	WD-23	3,518	0.49	10,987	1.59	21,799	3.38
	WD-24	7,979	1.12	19,388	2.81	31,206	4.84
	WD-25	5,394	0.76	17,282	2.51	34,699	5.38
	WD-26	3,813	0.53	12,269	1.78	24,703	3.83
	WD-27	6,378	0.89	20,860	3.02	41,546	6.44
	WD-28	1,503	0.21	4,836	0.70	9,736	1.51
	WD-29	1,675	0.23	5,181	0.75	10,141	1.57
	WD-30	4,185	0.59	9,709	1.41	14,544	2.25
	WD-31	12,771	1.79	14,764	2.14	16,361	2.54
	WD-32	7,888	1.10	21,258	3.08	35,133	5.45
	WD-33	2,809	0.39	8,112	1.18	15,043	2.33
	WD-34	2,803	0.39	9,535	1.38	18,505	2.87
	WD-35	4,499	0.63	16,194	2.35	30,290	4.69
	WD-36	18,437	2.58	65,245	9.46	121,510	18.83
	WD-37	36,979	5.18	57,281	8.31	73,295	11.36
Sub	Total	335,790	47.02	801,640	116.24	1,283,484	198.94

(2) Contributing Population by Sewer Sub-Catchment (Page 3 of 3)

		20	03	20	15	20	30
District	Sub-Catchment	Population	Wastewater Generation (MLD)	Population	Wastewater Generation (MLD)	Population	Wastewater Generation (MLD)
	ED-01	11,883	1.66	33,491	4.86	50,600	7.84
District IV	ED-02	935	0.13	3,163	0.46	6,684	1.04
East	ED-03	5,650	0.79	17,887	2.59	29,347	4.55
	ED-04	4,447	0.62	15,976	2.32	31,570	4.89
	ED-05	5,816	0.81	17,393	2.52	33,907	5.26
	ED-06	1,303	0.18	5,994	0.87	15,114	2.34
	ED-07	2,281	0.32	10,492	1.52	26,459	4.10
	ED-08	1,635	0.23	7,520	1.09	18,963	2.94
	ED-09	261	0.04	1,199	0.17	3,023	0.47
	ED-10	747	0.10	3,435	0.50	8,662	1.34
	ED-11	6,078	0.85	23,482	3.40	56,266	8.72
	ED-12	1,763	0.25	8,109	1.18	20,448	3.17
	ED-13	1,891	0.26	8,700	1.26	21,939	3.40
	ED-14	3,683	0.52	16,942	2.46	42,723	6.62
	ED-15	607	0.08	2,790	0.40	7,036	1.09
	ED-16	1,338	0.19	6,052	0.88	15,194	2.36
	ED-17	1,479	0.21	3,974	0.58	8,178	1.27
	ED-18	4,548	0.64	14,507	2.10	32,399	5.02
	NSA	31,586	4.42	68,120	9.88	116,694	18.09
Sub	Total	87,931	12.30	269,226	39.04	545,206	84.51

			20	03	20	15	2030		
District		X/ d NI h /X/ d NI		Wastewater		Wastewater		Wastewater	
District	· ·	Ward Number/Ward Name	Population	Generation	Population	Generation	Population	Generation	
			ropulation	(MLD)	ropulation	(MLD)	ropulation	(MLD)	
	1	Lakshmi Purwa	4,194	0.59	4,334	0.63	4,366	0.68	
District I	2	Makrobertganj	22,121	3.10	22,896	3.32	23,128	3.58	
City Central	3	Khalasi Line	15,711	2.20	16,219	2.35	16,399	2.54	
eny contai	4	Jawahar Nagar	942	0.13	974	0.14	983	0.15	
	8	Old Kanpur	24,126	3.38	24,126	3.50	24,126	3.74	
	10	Colnelgunj	8,812	1.23	9,108	1.32	9,196	1.43	
	13	Bhannana Purwa	10,622	1.49	10,978	1.59	11,097	1.72	
	14	Ambedkar Nagar Kakadeo	4,460	0.62	6,947	1.01	7,736	1.20	
	15	Gwal Toli	21,360	2.99	23,232	3.37	23,554	3.65	
	20	Ashok Nagar	22,761	3.19	36,397	5.28	43,875	6.80	
	21	Benajhawar	20,745	2.90	25,269	3.66	27,790	4.31	
	25	Tilak Nagar	30,045	4.21	51,640	7.49	69,481	10.77	
	27	Nawab Ganj	28,599	4.00	52,203	7.57	70,361	10.91	
	28	Sisamau First	5,980	0.84	6,180	0.90	6,246	0.97	
	29	Coolie Bazar	11,022	1.54	11,387	1.65	11,499	1.78	
	30	Vishnupuri	19,988	2.80	30,105	4.37	33,478	5.19	
	34	Chunni Ganj	13,006	1.82	13,446	1.95	13,582	2.11	
	39	Fahimabad	830	0.12	858	0.12	866	0.13	
	43	Rambagh	4,182	0.59	4,326	0.63	4,364	0.68	
	46	Nehru Nagar	294	0.04	304	0.04	307	0.05	
	47	Vikas Nagar	2,132	0.30	3,870	0.56	5,281	0.82	
	50	Lajpat Nagar	11,193	1.57	16,138	2.34	17,847	2.77	
	52	Civil Lines	18,249	2.55	23,127	3.35	26,470	4.10	
	54	Dudhawala Bunglow	15,667	2.19	19,801	2.87	22,781	3.53	
	55	Permat	13,624	1.91	13,624	1.98	13,624	2.11	
	57	Naseemabad	2,782	0.39	2,874	0.42	2,904	0.45	
	59	Sarvodya Nagar	2,307	0.32	3,956	0.57	4,980	0.77	
	62	Cooparganj Purwa	6,187	0.87	6,394	0.93	6,462	1.00	
	64	Suther Ganj	20,412	2.86	22,177	3.22	23,281	3.61	
	69	Dalel Purwa	595	0.08	615	0.09	622	0.10	
	72	Patka Pur	23,791	3.33	24,005	3.48	24,245	3.76	
	74	Gita Nagar	5,503	0.77	8,481	1.23	9,795	1.52	
	76	Harbansh Mohal	20,057	2.81	20,726	3.01	20,933	3.24	
	78	Hiraman Purwa	21,814	3.05	22,008	3.19	22,234	3.45	
	79	Prem Nagar	9,089	1.27	9,390	1.36	9,484	1.47	
	88	Becon Ganj	32,376	4.53	32,674	4.74	32,990	5.11	
	89	Maheshwari Mohaal	22,535	3.15	22,735	3.30	22,962	3.56	
	91	Dana Khori	18,967	2.66	19,595	2.84	19,791	3.07	
	94	Parade	21,412	3.00	21,609	3.13	21,831	3.38	
	95	Chamanganj	11,320	1.58	11,690	1.70	11,813	1.83	
	98	Kaushal Puri	4,200	0.59	2,056	0.30	1,559	0.24	
	99	Chatai Mohal	15,866	2.22	16,012	2.32	16,181	2.51	
	102	Collecterganj	22,568	3.16	23,316	3.38	23,547	3.65	
	103	Colonel Gunj	23,229	3.25	23,439	3.40	23,681	3.67	
	104	Vinayak Nagar	157	0.02	424	0.06	623	0.10	
	105	Sita Ram Mohal	17,216	2.41	17,370	2.52	17,534	2.72	
	106	Talak Mohaal	18,935	2.65	19,249	2.79	19,445	3.01	
	108	Chowk Sarrafa	18,109	2.54	18,417	2.67	18,597	2.88	
	110	General Ganj	20,854	2.92	21,904	3.18	22,085	3.42	
	112	Cantonment Area	3,572	0.50	3,732	0.54	3,838	0.59	
		Sub Total	694,517	97.23	802,336	116.36	869,853	134.83	

(3) Contributing Population by Ward (Page 1 of 3)

(3) Contributing Population by Ward (Page 2 of 3)

			20	03	20	15	2030	
District	V	Ward Number/Ward Name	Population	Wastewater Generation	Population	Wastewater Generation	Population	Wastewat Generatio
			1 opulation	(MLD)	i opulation	(MLD)	i opulation	(MLD)
	1	Lakshmi Purwa	13,460	1.88	13,912	2.02	14,013	2.
	4	Jawahar Nagar	13,401	1.88	13,847	2.01	13,978	2.
	7	Rawatpur	9,920	1.39	11,587	1.68	12,151	1.
	11	Govendnagar Harijan Basti	8,349	1.17	13,031	1.89	15,677	2.
	12	Trasport Nagar Bhannana Purwa	11,639 10,622	1.63 1.49	12,006 10,978	1.74 1.59	12,143 11,097	1.
	13	Ambedkar Nagar Kakadeo	14,834	2.08	23,109	3.35	25,733	3.
	16	Sisamau	23,805	3.33	24,585	3.56	24,831	3.
	18	Rai Purwa	21,362	2.99	22,105	3.21	22,312	3.
	19	Vijay Nagar	20,275	2.84	26,390	3.83	29,052	4
	20	Ashok Nagar	5,998	0.84	9,591	1.39	11,560	1
	23	Bakarganj	24,605	3.44	25,039	3.63	25,283	3
	26	Anwar Ganj	14,637	2.05	15,125	2.19	15,279	2
	28	Sisamau First	12,507	1.75	12,924	1.87	13,063	2
	29	Coolie Bazar	3,686	0.52	3,809	0.55	3,846	0
	36 39	Juhi Hamirpur Road Fahimabad	29,880	4.18	36,344 8,373	5.27 1.21	38,354 8,455	5
	43	Rambagh	8,101 12,497	1.13	8,373	1.21	8,455	1
	45	Sabji Mandi Kidwainagar	24,630	3.45	38,339	5.56	42,707	6
	46	Nehru Nagar	13,707	1.92	14,177	2.06	14,314	2
	49	Sarojini Nagar	19,191	2.69	26,609	3.86	28,039	4
	50	Lajpat Nagar	9,433	1.32	13,600	1.97	15,040	2
	51	Gandhi Nagar	13,339	1.87	13,777	2.00	13,902	2
	56	Sujat Ganj Gaon	7,491	1.05	8,750	1.27	9,185	1
	57	Naseemabad	17,740	2.48	18,329	2.66	18,517	2
	59	Sarvodya Nagar	18,396	2.58	31,553	4.58	39,715	6
	61	Shastri Nagar II	19,740	2.76	23,073	3.35	24,232	3
	62 63	Cooparganj Purwa Darshan Purwa	5,984 13,714	0.84	6,184 14,161	0.90 2.05	6,250 14,304	0
	66	Kakadev	14,215	1.92	16,718	2.03	14,304	2
	67	Juhi	58,144	8.14	84,772	12.29	98,359	15
	69	Dalel Purwa	15,349	2.15	15,856	2.30	16,025	2
	70	Babu Purwa	10,681	1.50	10,867	1.58	10,971	1
	71	Govind Nagar	20,386	2.85	21,062	3.05	21,303	3
	73	Kidwai Nagar K Block	5,664	0.79	12,136	1.76	17,698	2
	74	Gita Nagar	15,767	2.21	24,298	3.52	28,062	4
	75	Ajit Nagar	16,970	2.38	18,439	2.67	19,353	3
	78	Hiraman Purwa	2,728	0.38	2,752	0.40	2,780	0
	79 80	Prem Nagar Fazal Ganj	10,964 16,973	1.53 2.38	11,328 29,082	1.64 4.22	11,440 33,945	1 5
	81	Munshi Purwa	8,600	1.20	8,750	1.27	8,834	1
	82	Nirala Nagar	23,086	3.23	39,713	5.76	46,364	7
	83	Juhi Lal Colony	23,071	3.23	29,051	4.21	30,657	4
	84	Babu Purwa Colony	19,600	2.74	33,602	4.87	39,201	6
	85	Ratan Lal Nagar	159	0.02	255	0.04	284	0
	86	Govind Nagar III	14,073	1.97	14,561	2.11	14,723	2
		Usmanpur	20,714	2.90	35,510	5.15	44,698	6
	88	Becon Ganj	99	0.01	100	0.01	101	0
	90	Pushpant Nagar	576	0.08	984	0.14	1,194	0
	92 93	Navin Nagar Chandri Ward	17,450 5,063	2.44 0.71	25,472 8,677	3.69 1.26	28,373 10,127	4
	95	Chamanganj	4,758	0.71	4,913	0.71	4,965	0
	96	Kidwai Nagar (1)	15,532	2.17	26,668	3.87	29,940	4
	98	Kaushal Puri	10,136	1.42	12,784	1.85	13,413	2
	100	Begum Purva	15,387	2.15	16,130	2.34	16,310	2
	101	Shastri Nagar	14,763	2.07	18,612	2.70	19,643	3
			1,556	0.22	4,219	0.61	6,189	0
	107	Kidwai Nagar (2)	8,865	1.24	11,538	1.67	13,234	2
	109	Govind Nagar	27,601	3.86	28,041	4.07	28,306	4
	110 111	General Ganj Akhapur Estate (Cant)	219 1,378	0.03	230	0.03	232	0
	111	•		0.19	1,426	0.21	1,473	0
	1	Sub Total	843,469	118.07	1,072,781	155.54	1,172,659	181.

(3) Contributing Population by Ward (Page 3 of 3)

District	Ward Number/Ward Name		2003		2015		2030	
			Population	Wastewater Generation (MLD)	Population	Wastewater Generation (MLD)	Population	Wastewat Generatio (MLD)
	11	Govendnagar Harijan Basti	3,396	0.48	5,334	0.77	6,415	0.
District II South	22	Saraimita Ward	5,670	0.79	20,538	2.98	38,394	5.
	24	Sanigwan	147	0.02	683	0.10	1,721	0.
	35	Yashoda Nagar	58,541	8.20	101,274	14.68	122,766	19
	37	Dabauli Naubasta East	17,789 55,608	2.49 7.79	22,343 125,884	3.24 18.25	23,472 171,446	3
	41	Barra World Bank	60,993	8.54	102,523	14.87	148,105	20
	44	Naubasta	54,357	7.61	100,437	14.56	123,084	19
	48	Gujani Ward	28,834	4.04	37,793	5.48	39,815	6
	56	Sujat Ganj Gaon	41,645	5.83	48,942	7.10	51,358	7
	65	Barra (1 and 2)	77,607	10.86	105,690	15.33	116,728	18
	73 77	Kidwai Nagar K Block Gandigram	19,706	2.76 1.49	42,482 32,580	6.16 4.72	61,923 49,863	9
	82	Nirala Nagar	10,625 3,447	0.48	5,965	4.72	49,803	1
	84	Babu Purwa Colony	98	0.43	168	0.02	196	0
	85	Ratan Lal Nagar	58,952	8.25	94,967	13.77	105,878	16
	87	Usmanpur	9,254	1.30	15,963	2.31	20,084	3
	90	Pushpant Nagar	24,468	3.43	42,083	6.10	51,042	7
	93	Chandri Ward	16,634	2.33	28,681	4.16	33,461	5
		Sub Total	547,771	76.70	934,330	135.46	1,172,711	181
	1	Lakshmi Purwa	9,123	1.28	9,429	1.37	9,498	1
District I City East	9	Chakeri	600	0.08	1,255	0.18	2,183	0
	12	Trasport Nagar	8,201	1.15	8,459	1.23	8,556	1
	17	Om Purwa	25,200	3.53	41,717	6.05	50,504	7
	24	Sanigwan Safipur	1,550 26,220	0.22 3.67	7,136 78,661	1.03 11.41	17,995 131,097	20
	40	Tiwaripur	30,800	4.31	51,193	7.42	69,092	10
	53	Harjendra Nagar	23,091	3.23	38,362	5.56	51,768	8
	54	Dudhawala Bunglow	3,987	0.56	5,039	0.73	5,798	0
	56	Sujat Ganj Gaon	3,084	0.43	3,602	0.52	3,782	0
	58	Jajmau	41,813	5.85	60,222	8.73	66,620	10
	67	Juhi	1,126	0.16	1,642	0.24	1,905	0
	70 76	Babu Purwa Harbansh Mohal	6,769 2,909	0.95	6,887 3,005	1.00	6,952 3,036	1
	70	Gandigram	2,909	0.41	5,005	0.44	1,133	0
	81	Munshi Purwa	7,211	1.01	7,337	1.06	7,408	1
	84	Babu Purwa Colony	13	0.00	22	0.00	26	0
	93	Chandri Ward	4,821	0.67	8,261	1.20	9,641	1
	97	Krishna Nagar Block 11	14,811	2.07	25,524	3.70	32,140	4
	100	Begum Purva	7,361	1.03	7,716	1.12	7,802	1
	102 112	Collecterganj Cantonment Area	151 91,265	0.02 12.78	156 95,352	0.02 13.83	157 98,075	0
	112	Sub Total	310,349	43.44	461,718	66.95	585,168	90
							,	
District III West	5	Kalyanpur	57,564	8.06	110,838	16.07	150,639	23
	6 7	Nankari Rawatpur	14,771 30,070	2.07 4.21	52,752 35,122	7.65	92,846 36,833	<u>14</u> 5
	11	Govendnagar Harijan Basti	17,352	2.43	27,086	3.93	32,588	5
	19	Vijay Nagar	5,274	0.74	6,864	1.00	7,557	1
	22	Saraimita Ward	29,703	4.16	106,929	15.50	199,997	31
	27	Nawab Ganj	2,462	0.34	4,495	0.65	6,058	0
	32	Khyoa	31,839	4.46	122,461	17.76	205,736	31
	33 37	Panki Dabauli	32,400	4.54	104,241	15.11 0.52	209,892	32
			2,860 26,358	0.40 3.69	3,571 42,452	0.52 6.16	3,753 49,423	0
	42			5.09			34,839	5
	42	Maswan Pur Vikas Nagar		1.97	25.534	3.70		
	42 47 48	Vikas Nagar Gujani Ward	14,065 1,365	1.97 0.19	25,534	3.70 0.26	1,874	0
	47	Vikas Nagar	14,065 1,365 15,432	0.19 2.16	1,778 36,477	0.26 5.29	1,874 55,066	
	47 48 60 68	Vikas Nagar Gujani Ward Swaraj Nagar (Panki) Narmau	14,065 1,365 15,432 11,097	0.19 2.16 1.55	1,778 36,477 36,993	0.26 5.29 5.36	1,874 55,066 81,912	8 12
	47 48 60 68 85	Vikas Nagar Gujani Ward Swaraj Nagar (Panki) Narmau Ratan Lal Nagar	14,065 1,365 15,432 11,097 28	0.19 2.16 1.55 0.00	1,778 36,477 36,993 45	0.26 5.29 5.36 0.01	1,874 55,066 81,912 50	8 12 0
	47 48 60 68 85 104	Vikas Nagar Gujani Ward Swaraj Nagar (Panki) Narmau Ratan Lal Nagar Vinayak Nagar	14,065 1,365 15,432 11,097 28 23,479	0.19 2.16 1.55 0.00 3.29	1,778 36,477 36,993 45 63,651	0.26 5.29 5.36 0.01 9.23	1,874 55,066 81,912 50 93,391	8 12 0 14
	47 48 60 68 85	Vikas Nagar Gujani Ward Swaraj Nagar (Panki) Narmau Ratan Lal Nagar Vinayak Nagar Akhapur Estate (Cant)	14,065 1,365 15,432 11,097 28 23,479 19,671	0.19 2.16 1.55 0.00 3.29 2.75	1,778 36,477 36,993 45 63,651 20,351	0.26 5.29 5.36 0.01 9.23 2.95	1,874 55,066 81,912 50 93,391 21,030	8 12 0 14 3
	47 48 60 68 85 104	Vikas Nagar Gujani Ward Swaraj Nagar (Panki) Narmau Ratan Lal Nagar Vinayak Nagar Akhapur Estate (Cant) Sub Total	14,065 1,365 15,432 11,097 28 23,479	0.19 2.16 1.55 0.00 3.29 2.75 47.01	1,778 36,477 36,993 45 63,651	0.26 5.29 5.36 0.01 9.23	1,874 55,066 81,912 50 93,391	8 12 0 14 3
	47 48 60 68 85 104 111 9	Vikas Nagar Gujani Ward Swaraj Nagar (Panki) Narmau Ratan Lal Nagar Vinayak Nagar Akhapur Estate (Cant) Sub Total Chakeri	14,065 1,365 15,432 11,097 28 23,479 19,671 335,790 31,147	0.19 2.16 1.55 0.00 3.29 2.75 47.01 4.36	1,778 36,477 36,993 45 63,651 20,351 801,640 65,124	0.26 5.29 5.36 0.01 9.23 2.95 116.24 9.44	1,874 55,066 81,912 50 93,391 21,030 1,283,484 113,260	8 12 0 14 3 198 17
District IV	47 48 60 68 85 104 111 9 24	Vikas Nagar Gujani Ward Swaraj Nagar (Panki) Narmau Ratan Lal Nagar Vinayak Nagar Akhapur Estate (Cant) Sub Total Chakeri Sanigwan	14,065 1,365 15,432 11,097 28 23,479 19,671 335,790 31,147 26,783	$\begin{array}{r} 0.19\\ 2.16\\ 1.55\\ 0.00\\ 3.29\\ 2.75\\ 47.01\\ 4.36\\ 3.75\end{array}$	1,778 36,477 36,993 45 63,651 20,351 801,640 65,124 123,194	0.26 5.29 5.36 0.01 9.23 2.95 116.24 9.44 17.86	1,874 55,066 81,912 50 93,391 21,030 1,283,484 113,260 310,662	8 12 0 14 3 198 17 48
District IV East	47 48 60 68 85 104 111 9 24 31	Vikas Nagar Gujani Ward Swaraj Nagar (Panki) Narmau Ratan Lal Nagar Vinayak Nagar Akhapur Estate (Cant) Sub Total Chakeri Sanigwan Safipur	14,065 1,365 15,432 11,097 28 23,479 19,671 335,790 31,147 26,783 3,087	$\begin{array}{r} 0.19\\ 2.16\\ 1.55\\ 0.00\\ 3.29\\ 2.75\\ 47.01\\ 4.36\\ 3.75\\ 0.43\\ \end{array}$	1,778 36,477 36,993 45 63,651 20,351 801,640 65,124 123,194 9,263	$\begin{array}{r} 0.26\\ 5.29\\ 5.36\\ 0.01\\ 9.23\\ 2.95\\ 116.24\\ 9.44\\ 17.86\\ 1.34\\ \end{array}$	$ \begin{array}{r} 1,874 \\ 55,066 \\ 81,912 \\ 50 \\ 93,391 \\ 21,030 \\ 1,283,484 \\ 113,260 \\ 310,662 \\ 15,438 \\ \end{array} $	8 12 0 14 3 198 17 48 2
	47 48 60 68 85 104 111 9 24 31 35	Vikas Nagar Gujani Ward Swaraj Nagar (Panki) Narmau Ratan Lal Nagar Vinayak Nagar Akhapur Estate (Cant) Sub Total Chakeri Sanigwan Safipur Yashoda Nagar	14,065 1,365 15,432 11,097 28 23,479 19,671 335,790 31,147 26,783 3,087 458	$\begin{array}{r} 0.19\\ 2.16\\ 1.55\\ 0.00\\ 3.29\\ 2.75\\ 47.01\\ 4.36\\ 3.75\\ 0.43\\ 0.06\\ \end{array}$	1,778 36,477 36,993 45 63,651 20,351 801,640 65,124 123,194 9,263 787	$\begin{array}{r} 0.26\\ 5.29\\ 5.36\\ 0.01\\ 9.23\\ 2.95\\ 116.24\\ 9.44\\ 17.86\\ 1.34\\ 0.11\\ \end{array}$	$\begin{array}{r} 1,874\\ 55,066\\ 81,912\\ 50\\ 93,391\\ 21,030\\ 1,283,484\\ 113,260\\ 310,662\\ 15,438\\ 954 \end{array}$	8 12 0 14 3 198 17 48 2 0
	47 48 60 68 85 104 111 9 24 31 35 38	Vikas Nagar Gujani Ward Swaraj Nagar (Panki) Narmau Ratan Lal Nagar Vinayak Nagar Akhapur Estate (Cant) Sub Total Chakeri Sanigwan Safipur Yashoda Nagar Naubasta East	14,065 1,365 15,432 11,097 28 23,479 19,671 335,790 31,147 26,783 3,087 458 3,421	$\begin{array}{r} 0.19\\ 2.16\\ 1.55\\ 0.00\\ 3.29\\ 2.75\\ 47.01\\ 4.36\\ 3.75\\ 0.43\\ 0.06\\ 0.48\end{array}$	1,778 36,477 36,993 45 63,651 20,351 801,640 65,124 123,194 9,263 787 7,698	$\begin{array}{r} 0.26\\ 5.29\\ 5.36\\ 0.01\\ 9.23\\ 2.95\\ 116.24\\ 9.44\\ 17.86\\ 1.34\\ 0.11\\ 1.12\\ \end{array}$	$\begin{array}{r} 1,874\\ 55,066\\ 81,912\\ 50\\ 93,391\\ 21,030\\ 1,283,484\\ 113,260\\ 310,662\\ 15,438\\ 954\\ 10,489\\ \end{array}$	8 12 00 14 3 198 17 48 2 00 1
	$ \begin{array}{r} 47\\ 48\\ 60\\ 68\\ 85\\ 104\\ 111\\ 9\\ 24\\ 31\\ 35\\ 38\\ 40\\ \end{array} $	Vikas Nagar Gujani Ward Swaraj Nagar (Panki) Narmau Ratan Lal Nagar Vinayak Nagar Akhapur Estate (Cant) Sub Total Chakeri Sanigwan Safipur Yashoda Nagar Naubasta East Tiwaripur	14,065 1,365 15,432 11,097 28 23,479 19,671 335,790 31,147 26,783 3,087 458 3,421 1,721	$\begin{array}{c} 0.19\\ 2.16\\ 1.55\\ 0.00\\ 3.29\\ 2.75\\ 47.01\\ 4.36\\ 3.75\\ 0.43\\ 0.06\\ 0.48\\ 0.24\\ \end{array}$	1,778 36,477 36,993 45 63,651 20,351 801,640 65,124 123,194 9,263 787 7,698 2,861	$\begin{array}{r} 0.26\\ 5.29\\ 5.36\\ 0.01\\ 9.23\\ 2.95\\ 116.24\\ 9.44\\ 17.86\\ 1.34\\ 0.11\\ 1.12\\ 0.41\\ \end{array}$	1,874 55,066 81,912 50 93,391 21,030 1,283,484 113,260 310,662 15,438 954 10,489 3,862	8 12 0 14 3 198 17 48 2 0 0 1 1 0
	47 48 60 68 85 104 111 9 24 31 35 38	Vikas Nagar Gujani Ward Swaraj Nagar (Panki) Narmau Ratan Lal Nagar Vinayak Nagar Akhapur Estate (Cant) Sub Total Chakeri Sanigwan Safipur Yashoda Nagar Naubasta East	14,065 1,365 15,432 11,097 28 23,479 19,671 335,790 31,147 26,783 3,087 458 3,421	$\begin{array}{r} 0.19\\ 2.16\\ 1.55\\ 0.00\\ 3.29\\ 2.75\\ 47.01\\ 4.36\\ 3.75\\ 0.43\\ 0.06\\ 0.48\end{array}$	1,778 36,477 36,993 45 63,651 20,351 801,640 65,124 123,194 9,263 787 7,698	$\begin{array}{r} 0.26\\ 5.29\\ 5.36\\ 0.01\\ 9.23\\ 2.95\\ 116.24\\ 9.44\\ 17.86\\ 1.34\\ 0.11\\ 1.12\\ \end{array}$	$\begin{array}{r} 1,874\\ 55,066\\ 81,912\\ 50\\ 93,391\\ 21,030\\ 1,283,484\\ 113,260\\ 310,662\\ 15,438\\ 954\\ 10,489\\ \end{array}$	8 12 0 14 3 198 17 48 2 0 0 1 1 0 0 0 0 0 0
	$\begin{array}{c} 47\\ 48\\ 60\\ 68\\ 85\\ 104\\ 111\\ \\ \\ 9\\ 24\\ 31\\ 35\\ 38\\ 40\\ 53\\ \end{array}$	Vikas Nagar Gujani Ward Swaraj Nagar (Panki) Narmau Ratan Lal Nagar Vinayak Nagar Akhapur Estate (Cant) Sub Total Chakeri Sanigwan Safipur Yashoda Nagar Naubasta East Tiwaripur Harjendra Nagar	14,065 1,365 15,432 11,097 28 23,479 19,671 335,790 31,147 26,783 3,087 458 3,421 1,721 1,023	$\begin{array}{c} 0.19\\ 2.16\\ 1.55\\ 0.00\\ 3.29\\ 2.75\\ 47.01\\ 4.36\\ 3.75\\ 0.43\\ 0.06\\ 0.48\\ 0.24\\ 0.14\\ \end{array}$	$\begin{array}{r} 1,778\\ 36,477\\ 36,993\\ 45\\ 63,651\\ 20,351\\ 801,640\\ 65,124\\ 123,194\\ 9,263\\ 787\\ 7,698\\ 2,861\\ 1,700\\ \end{array}$	$\begin{array}{r} 0.26\\ 5.29\\ 5.36\\ 0.01\\ 9.23\\ 2.95\\ 116.24\\ 9.44\\ 17.86\\ 1.34\\ 0.11\\ 1.12\\ 0.41\\ 0.25\\ \end{array}$	$\begin{array}{r} 1,874\\ 55,066\\ 81,912\\ 50\\ 93,391\\ 21,030\\ 1,283,484\\ 113,260\\ 310,662\\ 15,438\\ 954\\ 10,489\\ 3,862\\ 2,295\\ \end{array}$	8 12 0 14 14 3 198 17 48 2 0 1 0 0 0 0 0 12
	47 48 60 68 85 104 111 9 24 31 35 38 40 53 77	Vikas Nagar Gujani Ward Swaraj Nagar (Panki) Narmau Ratan Lal Nagar Vinayak Nagar Akhapur Estate (Cant) Sub Total Chakeri Sanigwan Safipur Yashoda Nagar Naubasta East Tiwaripur Harjendra Nagar Gandigram	14,065 1,365 15,432 11,097 28 23,479 19,671 335,790 31,147 26,783 3,087 458 3,421 1,721 1,023 17,859	$\begin{array}{c} 0.19\\ 2.16\\ 1.55\\ 0.00\\ 3.29\\ 2.75\\ 47.01\\ 4.36\\ 3.75\\ 0.43\\ 0.06\\ 0.48\\ 0.24\\ 0.14\\ 2.50\\ \end{array}$	1,778 36,477 36,993 45 63,651 20,351 801,640 65,124 123,194 9,263 787 7,698 2,861 1,700 54,429	$\begin{array}{r} 0.26\\ 5.29\\ 5.36\\ 0.01\\ 9.23\\ 2.95\\ 116.24\\ 9.44\\ 17.86\\ 1.34\\ 0.11\\ 1.12\\ 0.41\\ 0.25\\ 7.89\\ \end{array}$	$\begin{array}{r} 1,874\\ 55,066\\ 81,912\\ 50\\ 93,391\\ 21,030\\ 1,283,484\\ \hline 113,260\\ 310,662\\ 15,438\\ 954\\ 10,489\\ 3,862\\ 2,295\\ 83,345\\ \end{array}$	0 8 12 0 14 3 198 2 2 0 0 17 48 2 0 0 11 0 0 0 12 0 0 84

		Condition	Ratio	BOD	(mg)
		Collution	Katio	Respective	Composite
	2015	Sewered	55%	310	213
District I(CC)	2015	Via Nalas	45%	95	215
District I(CC)	2030	Sewered	80%	290	251
	2030	Via Nalas	20%	95	231
	2015	Sewered	40%	310	181
District I(CE)	2015	Via Nalas	60%	95	181
District I(CE)	2030	Sewered	80%	290	251
	2030	Via Nalas	20%	95	231
	2015	Sewered	1%	310	98
District II	2013	Via Nalas	99%	95	98
District II	2030	Sewered	51%	290	195
	2030	Via Nalas	49%	95	195
	2015	Sewered	25%	310	148
District III	2013	Via Nalas	75%	95	148
District III	2030	Sewered	80%	290	251
	2030	Via Nalas	20%	95	231
	2015	Sewered	0%	310	95
District IV	2015	Via Nalas	100%	95	93
District IV	2030	Sewered	50%	290	193
	2030	Via Nalas	50%	95	195

Table 5.10 Calculated Future Wastewater Strength

Calculated Future Westawater Strength

		2003	2015	2030
Per capita wastewater	lcpd	140	145	155
Per capita BOD loading	g/d	45	45	45
BOD	mg/l	321	310	290

Measured Nala BOD Strength

Name of Nala	BOD(mg/l)
Muir Mill Nala	64
Sisamu Nala	110
COD Nala	65
Ganda Nala	140
Average	95

District wise Overall Connecting Rate

	Year	Zone	Population	Connecting Rate	Pop. Connected	Overall Rate
District I(CC)	2015			55%	0	55%
District I(CC)	2030			80%	0	80%
District I(CE)	2015			40%	0	40%
District I(CE)	2030			80%	0	80%
		Central	38,929	30%	11,679	
	2015	West	608,134	0%	0	
	2013	East	287,267	0%	0	
District II		Total	934,330		11,679	1%
District II		Central	49,975	80%	39,980	
	2030	West	754,628	50%	377,314	
	2030	East	368,108	50%	184,054	
		Total	1,172,711		601,348	51%
		West-1	250,612	35%	87,714	
	2015	West-2	551,028	20%	110,206	
District III		Total	801,640		197,920	25%
District III		West-1	354,016	80%	283,213	
	2030	West-2	929,468	80%	743,574	
		Total	1,283,484		1,026,787	80%
District IV	2015			0%	0	0%
District IV	2030			50%	0	50%

				Treatment Method			
	WSP	AL	AL+	AS	AS+	FAB	UASB++
Process	Anarobic Pond +Faculative Pond +Maturation Pond	Aerated Lagoon +Sedimentation Lagoon +Chlorine Disinfection	Acrated Lagoon +Sedimentation Lagoon +Maturation Pond	Primary Clarifier +Aeration Tank +Secondary Clarifier +Chlorine Disinfection	Primary Clarifier + Aeration Tank + Secondary Clarifier + Maturation Pond	FAB reactor +Secondary Clarifier +Chlorine Disinfection	UASB reactor Aerated Lagoon +Sedimentation Lagoon +Chlorine Disinfection
Flow Sheet	Annobic Fieldate Mannion	Chaine Definition Arread Admention Ligon Ligon	Arrad Soluceutan Mannion Ligon Ligon Paral	Philes Christer Chris	Prime And Andrew Markin	In Christer Damaterian Part Scondary Reactor Cutter	In the second se
HRT (days)	14.0 Anarobic Pond(1d) +Faculative Pond(7d) +Maturation Pond(6d)	5.5 Aerated Lagoon(3.5d) +Sedimentation Lagoon(2d) +Chlorine Disinfection	9.5 Aerated Lagoon(3.5d) +Sedimentation Lagoon(2d) +Maturation Pond(4d)	0.5 Primary Clarifier(4hr) + Aeration Tank(4hr) + Secondary Clarifier(4hr) + Chlorine Disinfection	4.5 Primary Clarifier(4hr) + Aeration Tank(4hr) + Secondary Clarifier(4hr) + Maturation Pond(4d)	0.2 FAB reactor(2hr) +Secondary Clarifier(2hr) +Chlorine Disinfection	4.3 UASB reactor(8hr) Aerated Lagoon(2d) +Sedimentation Lagoon(2d) +Chlorine Disinfection
Land area (ha/mld)	1.25	0.35	0.75	0.2	0.6	0.06	0.35
Capital costs (Rs.10 ⁶ /mld)	1.6	2.5	3.2	2.7	3.4	4.6	3.5
O M&E cost (% of total)	0.02	0.2	0.2	0.4	0.4	0.6	0.35
Annual O&M (Rs.10 ⁶ /mld)	90.0	0.2	0.22	0.36	0.38	0.59	0.4
Sludge handling	Manual desludging once in several years, then dry on beds.	Manual desludging once in several years, then dry on beds.	Manual desludging once in several years, then dry on beds.	Fitst thicken and digest, then dry on beds.	Fitst thicken and digest, then dry on beds.	Fitst thicken, then directly dry on beds.	Directly dry on beds.
Operational characteristics	Simplest	Simple	Simple	Skilled operation required	Skilled operation required	Skilled operation required	Simpler than activated sludge
Energy requirement (except initial pumping)	Negligible	Lower than activated sludge	Lower than activated sludge	Highest	Highest	Highest	Lelatively low
Performance stability	Affected by temperature and seasonal changes. Not susceptivle to power failure.	Less affected by temperature and seasonal changes than WSP. But affected by power failure.	Less affected by temperature and seasonal changes than WSP. But affected by power failure.	Not affected by wastewater characteristices and seasonal changes. But adversely affected by power failure.	Not affected by wastewater characteristices and seasonal changes. But adversely affected by power failure.	Not affected by wastewater characteristices and seasonal changes. But adversely affected by power failure.	Not affected by wastewater characteristices and seasonal changes. Not susceptivle to power failure.
Sludge	Less potential for application because the sludge is not be produced on continuous basis.	Less potential for application because the sludge is not be produced on continuous basis.	Less potential for application because the sludge is not be produced on continuous basis.	Substantial quantity of sludge is produced and have potential for application to manure or soil conditioner.	Substantial quantity of sludge is produced and have potential for application to manure or soil conditioner.	Substantial quantity of sludge is produced and have potential for application to manure or soil conditioner.	Substantial quantity of sludge is produced and have potential for application to manure or soil conditioner.
Resorce recovery Biogas	No biogas is produced.	No biogas is produced.	No biogas is produced.	Biogas is produced and have potential for generating electricity or selling them to consumers.	Biogas is produced and have potential for generating electricity or selling them to consumers.	No biogas is produced.	Biogas is produced and have potential for generating electricity or selling them to consumers.

Table 5.12 Qualitative Comparison of Treatment Process

CHAPTER 6

EVALUATION OF ALTERNATIVES

CHAPTER 6 EVALUATION OF ALTERNATIVES

6.1 SUMMARY

Projected wastewater flows of 873 mld far exceed the present treatment capacity of 171 mld at Jajmau. The treatment plants at Jajmau can be expanded however the additional capacity would be insufficient to treat all wastewater flows. Furthermore, conveying sewage across the city to Jajmau would be too costly. It will therefore be necessary to build new treatment plants and the location of these treatment plants must be within reasonable proximity to the service area to minimize conveyance costs. Land for new STPs is available east of Jajmau along Ganga river and south of the city at various locations along the Pandu river.

Proposals identified in the previous master plan will be implemented as far as they are still practical. As planned, sewage from the west district will be conveyed in a southerly direction towards the Pandu river. A new 200 mld STP will be required to meet the sewage load projected for the year 2030.

For South and East Districts the previous master plan identified a common STP to serve both districts. The plan also identified the need to relieve flows from the City District by diverting flows from part of the catchment area to the new treatment plant in the South. The scheme has been sanctioned and is at present under construction. A 200 mld UASB plant is being sanctioned and the site plan indicates that sufficient land has been reserved for a future capacity of 350 to 365 mld. The projected sewage load for the South and East Districts including the amount diverted from City District is expected to be 430 mld by the year 2030. This will exceed the present capacity therefore a number of alternatives must be evaluated to determine the most cost effective option for servicing the South and East Districts.

Each alternative has implications for the collection system, the sizing of pumping stations and capacity of new treatment plants. Conceptual development of the collection system and treatment plant requirements for each alternative is discussed and evaluated in the following sub-sections.

The key focus for evaluating the alternatives involves comparison of the estimated capital costs, and O&M costs to determine the least cost solution. Cost comparison tables for the alternatives are presented in this volume in Appendix A.

If the cost of two or more alternatives is relatively close the alternatives are screened through a qualitative evaluation using criteria such as reliability of operation, availability of land, ease of construction, and potential impact on water quality and downstream users. Alternatives that appear to be impractical, too difficult to construct, operate or maintain are screened out.

6.2 DESCRIPTION OF ALTERNATIVE LAYOUTS FOR EAST DISTRICT

Five alternatives are considered for servicing East District. A brief description of each alternative is provided in the following paragraphs with capacities indicated for 2030. Increasing the flow to Jajmau activated sludge treatment plant is common to all alternatives.

Alternative I (4 STPs): presented schematically in Figure 6.1. Bingawan STP (Indo-Dutch UASB), treats 364 mld of sewage from South District including 182 mld relieved from City District. A new STP at Karankhera would treat 151 mld of sewage from the East District and City District-East zone. Sewage would be collected at a main pumping station in Ruman and pumped to the STP. Treated effluent would be discharged to irrigation or to Ganga river. The capacity of the existing activated sludge plant at Jajmau would remain at its present 130 mld.

Alternative II (4 STPs): presented in Figure 6.2. Similar to Alternative I except that flows to Karankhera STP would only be 84 mld because sewage from City District-East zone is conveyed to Jajmau. The activated sludge treatment plant at Jajmau would be augmented to 173 mld.

Augmentation would be achieved as identified in the original design and layout of the plant by adding a third line to the liquid process, a third primary digester and a second secondary digester. Sewage from the East District would be collected at a main pumping station in Ruman and pumped 4,200 m through a 1400 mm dia. rising main to Karankhera STP. Bingawan STP, would treat 364 mld of sewage from the South District including 182 mld relieved from City District.

Alternative III (5 STPs): presented in Figure 6.3. Bingawan STP, would treat 364 mld of sewage from the South District including 182 mld relieved from City District. A new STP at Kathonagar would treat 66 mld of sewage from the East District south of the railway. Treated effluent would be discharged to irrigation. The new STP at Karankhera would take 85 mld of sewage from the City District - East zone (north of the railway). Sewage would be collected at a main pumping station in Ruman and pumped 4,200 m through a 1400 mm dia. rising main to the STP. The capacity of the existing activated sludge plant at Jajmau would remain at its present 130 mld.

Alternative IV (4 STPs): presented schematically in Figure 6.4. Similar to Alternative III except there would be no new treatment plant at Karankhera. Sewage from the City District-East zone would be treated at the Jajmau activated sludge plant, which would be expanded to treat a total domestic sewage load of 203mld. Bingawan STP, would treat 364 mld of sewage from the South District including 182 mld relieved from City District. A new treatment plant at Kathonagar with capacity 66 mld would treat sewage from the East district (south of railway).

Alternative V (3 STPs): presented schematically in Figure 6.5. Similar to Alternative IV except that 66 mld from the East District (south of railway) would be pumped 4,000m through a 1200 mm dia. rising main to the UASB plant at Bingawan which would be expanded to treat 430 mld.

6.3 SELECTION OF TREATMENT PROCESS

The type of treatment process at proposed treatment plants must be selected before proceeding with a cost comparison of the alternative sewerage layouts for the East District. The preliminary selection of a treatment processes is based on a comparison of life cycle costs for various treatment processes that could be used to meet effluent criteria. Land requirements and costs are based on a survey of existing installations provided under GAP and YAP and typical values reported in literature. In the case of UASB installations it assumed that post treatment will be achieved by adding aerated lagoons to meet discharge criteria for BOD and sulphides and a 3 day retention period to reduce faecal coliform counts.

Detailed cost calculations for each treatment plant are presented in Appendix A. The following treatment capacities have been identified for the year 2030 based on population and wastewater generated by sewerage district.

Treatment Plan	ts	Alt I	Alt II	Alt III	Alt IV	Alt V
Jajmau (ASP)	AE	130	173	130	203	130
Bingawan	Р	365	365	365	365	430
Karankhera	Р	155	85	85	0	0
Kathonagar	Р	0	0	70	70	0
AE = augment existing	$\mathbf{P} = \mathbf{p}$	roposed	S = sanctione	d		

Table 6.1	Summarv	of Treatment	Capacities for	· Comparison	of Alternatives	(in mld)
			oupneties ion			(

The following abbreviations and assumptions are used in the cost comparison tables that are presented in the following sub-sections:

• WSP: waste stabilization pond, including maturation ponds;

- AL: facultative aerated lagoon;
- ASP: activated sludge process
- UASB: upflow anaerobic sludge blanket
- + indicates additional maturation ponds, sized for minimum 3 day retention time
- ++ indicates post treatment provided by aerated lagoons.
- Land costs: 40 lakhs per ha (reported by UPJN Varanasi at Workshop on Feb 17 2004)
- Land area: taken from NRCD guidelines and review of existing STPs implemented under GAP
- Capital and O&M costs taken from a review of STPs implemented under GAP
- Present value based on 5% and 30 year life with replacement of mechanical equipment after 15 years

6.3.1 Jajmau STP

The existing activated sludge plant at Jajmau has been designed and constructed with provision for future expansion. The site plan identifies space for the addition of a third line to the liquid process, and an additional primary and secondary anaerobic sludge digester.

Other process options could be selected to treat the incremental flows however these could not be accommodated within the existing site and as such would require significant investment in land and new infrastructure. Therefore, the comparison of servicing alternatives is based on expansion of the existing activated sludge plant.

6.3.2 Bingawan STP

A 200 mld UASB treatment plant with 1 day final polishing pond discharging to Pandu river has been identified under the Indo-Dutch project. Land acquisition is for 56 hectare. The site plan indicates provision for future expansion by providing additional UASB modules and polishing ponds. The site could potentially accommodate from 350 to 365 mld. As noted in the rapid environmental assessment, effluent from the final polishing ponds will not comply with NRCD standards therefore cost comparison of sewerage layout alternatives will be based on UASB++.

6.3.3 Karankhera STP

Karankhera STP is common to Alternatives I, II and III. The capacity required for Alternative I is 155 mld while the capacity for Alternative II & III is 85 mld. A comparison of costs for various process alternatives indicates that UASB with post treatment by aerated lagoon offers the lowest life cycle cost. The cost of waste stabilization ponds is relatively close and this option is attractive because it has the lowest O&M cost of all options. However, the land requirement for WSP is significant and it is doubtful that such a large site can be obtained, therefore cost comparison of sewerage layout alternatives will be based on UASB++ at Karankhera STP.

Cost (Rs. million)	WSP	AL	AL+	AS	AS+	FAB	UASB ++
			Altern	ative I - 15	5 mld		
Land area for treatment process (ha)	194	54	116	31	93	9	54
Land cost	775	217	465	124	372	37	217
Capital cost	248	388	496	419	527	713	465
Annual O&M	9	47	50	56	59	91	20
Total present value (including land cost)	1,168	1,357	1,761	1,481	1,885	2,362	1,059
	Alternative II&III - 85 mld						
Land area for treatment process (ha)	106	32	68	18	54	5	32
Land cost	425	126	270	72	216	22	126
Capital cost	136	225	288	243	306	414	270
Annual O&M	5	27	29	32	34	53	12
Total present value (including land cost)	641	788	1,022	860	1,094	1,371	615

Table 6.2 Karankhera STP: Preliminary Cost Comparison of Process Alternatives

6.3.4 Kathonagar STP

Kathonagar STP is common to Alternatives III & IV only. The capacity required for both alternatives is 70 mld. A comparison of costs for various process alternatives indicates that UASB with post treatment by aerated lagoons offers the lowest life cycle cost. The cost of waste stabilization ponds is relatively close and this option is attractive because it has the lowest O&M cost of any option. However, the land requirement for WSP is significant and it is doubtful that such a large site can be obtained; therefore cost comparison of sewerage layout alternatives will be based on UASB++.

Cost (Rs. million)	WSP	AL	AL+	AS	AS+	FAB	UASB ++
	Alte	rnative III	& IV 70 m	ıld			
Land area for treatment process (ha)	88	25	53	14	42	4	25
Land cost	350	98	210	56	168	17	98
Capital cost	112	175	224	189	238	322	210
Annual O&M	4	21	22	25	27	41	9
Total present value (including land cost)	528	613	795	669	851	1,067	478

 Table 6.3 Kathonagar STP: Preliminary Cost Comparison of Process Alternatives

6.4 COLLECTION SYSTEM FOR COST COMPARISONS

Conveyance costs for trunk sewers are calculated for each layout. The carrying capacity (and size) of the trunk sewers have been computed in accordance with Manning's formula with value of 'n' = 0.015 corresponding to concrete pipes. Flows in each segment are peak flows, based on contributing populations. Conveyance costs include the cost of pumping where the invert depth of gravity sewer exceeds 10m. Pumping costs are also included at the head of treatment plants where the incoming flow is by gravity sewer.

						(mld)
Pumping stations		Alt I	Alt II	Alt III	Alt IV	Alt V
Jajmau SPS	E	25	89	25	107	107
Ruman SPS	Р	133	66	67	0	0
PS at Kathonagar STP	Р	0	0	66	66	0
PS East district to Bingawan STP	Р	0	0	0	0	66

 Table 6.4 Summary of Pumping Requirements for Alternatives

Capacity at Jajmau SPS is incremental to the existing capacity of the two existing domestic wastewater pumping stations at Jajmau. The maximum allowable average flow for the two pumping stations is 137 mld with 50% reserve capacity. Costs assume that a new pumping station will be required, complete with a 5 minute sump, and a new rising main to the activated sludge treatment plant.

Ruman SPS is common to Alternatives I, II, and III. This station would be required to pump the flows to a distance of 4,200 m through a 1600 mm dia. rising main directly to Karankhera STP.

The pumping station at Kathonagar is common to Alternatives II and IV. It is required to lift sewage at the head of the treatment process. The lift exceeds 9 m therefore the use of screw pumps would not be feasible unless two-stage pumping is considered. To simplify the analysis the comparison of options is based on the use of vertical centrifugal pumps.

The pumping station for Alternative V would be located at the same site as the STP proposed for Alternative II and IV. The pumping station would collect flows from the entire East District (south of the railway) and pump approximately 4,000m through a 1200 mm dia. rising main to the UASB treatment plant at Bingawan.

Pumping station costs include initial investment cost and energy costs, which depend on flow, static head and size of rising main. The size of rising main is based on the most economical combination of energy costs, supply and installation costs, cost of pumps and annual maintenance costs. Preliminary calculations for the selection of the most economic diameter are presented in Appendix A.

6.5 COST COMPARISON OF ALTERNATIVES

A comparison of investment and O&M costs for each alternative is summarized in Table 6.5 and presented in more detail in Appendix A. Alternative I is rejected because it has the highest life cycle cost, Alternative V, augmentation of UASB plant in South District, is rejected because it has a higher life cycle cost and the highest annual O&M cost. The lowest life cycle cost is provided by Alternative II followed closely by Alternative IV. Since the costs are relatively close it is necessary to consider other factors before making a final decision.

Item	Alt I	Alt II	Alt III	Alt IV	Alt V
Land (ha)	53.5	32.0	53.5	28.5	29.0
Land cost (million Rs.)	214.0	128.0	214.0	114.0	116.0
Capital Cost (Rs. million)					
Treatment plants	453	392	453	387	387
Pumping stations	474	487	496	487	487
Trunk sewers	214	128	214	114	116
Sub-total	1,471	1,271	1,423	1,266	1,338
Annual O&M (1)	54.38	58.44	55.72	65.22	67.18
Life Cycle Cost ⁽²⁾	3,520	3,264	3,516	3,349	3,503

 Table 6.5 Preliminary Cost Comparison of Alternatives East District

(1) Includes energy costs, repair and maintenance of mechanical and civil works, staff costs

(2) At 5% interest, 30 year life, and replacement of M&E at treatment plants and pumping stations after 15 years

6.6 QUALITATIVE COMPARISON AND SELECTION OF PREFERED ALTERNATIVE

This subsection of the report provides a qualitative comparison of Alternatives II and IV. The relative merits of each alternative are discussed in the following paragraphs.

6.6.1 Evaluation Criteria

A series of factors are developed to provide qualitative evaluation for plan alternatives. These factors are:

- **Reliability** The potential for mechanical and electrical failure of the system must be minimized by reducing the number of pumping stations and selecting treatment processes that can meet effluent criteria even under adverse operating conditions.
- *Compatibility* All new options must be compatible with the existing system in order to minimize disruption and cost.
- *Implementability* The plan must minimize construction costs and have the ability to be phased into connection with the existing system. This allows for ease of construction and reduces the overall financial burden.
- *Environmental impact* Treatment plant location and selection of process must reduce the impact on water quality. Outfalls should not be located upstream of raw water supply intakes or within close proximity of religious bathing sites.
- *Stability of Treatment processes* Processes that are easily upset by prolonged and frequent power outrages (e.g. activated sludge) are less favorable because they will not easily recover and have the potential to produce poor quality effluent day after day resulting in high pollutant loads. Alternatives that allow for more robust treatment processes such as waste stabilization ponds or aerated lagoons are more favorable.
- *Flexibility* The plan should consider the ability to expand for future increased flows and be able to meet effluent criteria and potential future regulations.

6.6.2 Evaluation of Alternatives II and IV for East District

Plan alternatives are ranked relative to each other using the qualitative criteria discussed above. A ranking of 1 to 3 is given with 3 being the least favorable.

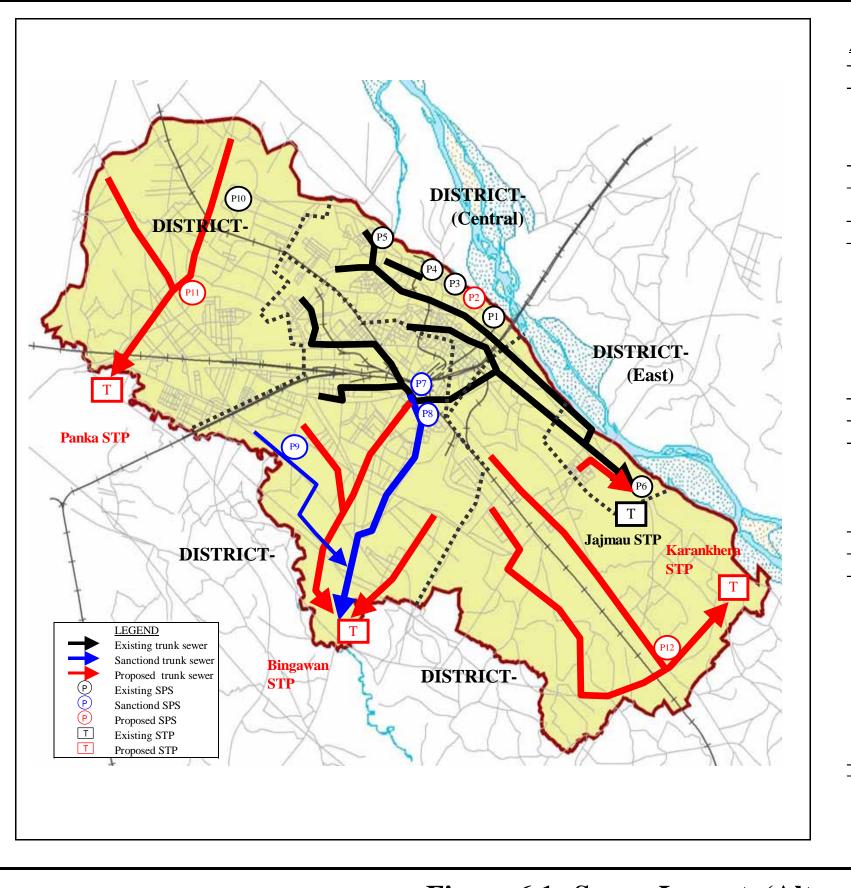
Item	ALT II	ALT IV
Operational reliability	1	3
Compatibility	2	2
Implementability	2	2
Potential environmental impact	2	2
Stability of treatment process	1	3
Flexibility	1	3
Total	9	15
Overall Ranking	1	3
1 - most favorable 3- least favorabl	<u>.</u>	-

Table 6.6 Qualitative Ranking of Sewerage Alternatives

1 = most favorable 3 = least favorable

Operational reliability: Alternative IV requires a larger pumping station at Jajmau and a larger activated sludge treatment plant. Larger pumps and mechanical requirements at the activated sludge plant make Alternative IV more susceptible to mechanical failure, thus less reliable.

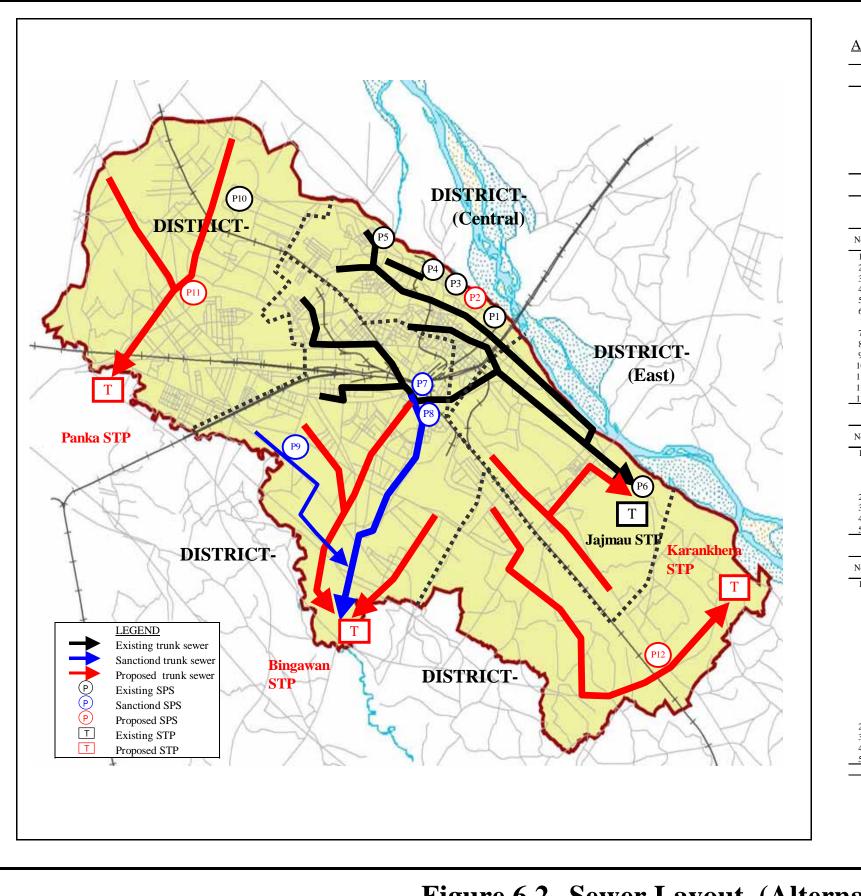
Compatibility: Both alternatives are the same. There are no existing sewer systems in the East District therefore no re-organization or disruption of services. The expansion of the existing pumping station at Jajmau and the activated sludge plant is required in both alternatives. Although the capacity for Alternative IV is larger the level of disruption to the existing installations will be minimal.


Implementability: Both alternatives are the same and can easily be implemented in a phased approach.

Potential environmental impact: Both options can be designed with discharge to irrigation therefore they are equal in terms of potential impacts. Alternative IV has a slight disadvantage since the amount of wastewater treated at the ASP is larger and the process produces more sludge than the aerated lagoon.

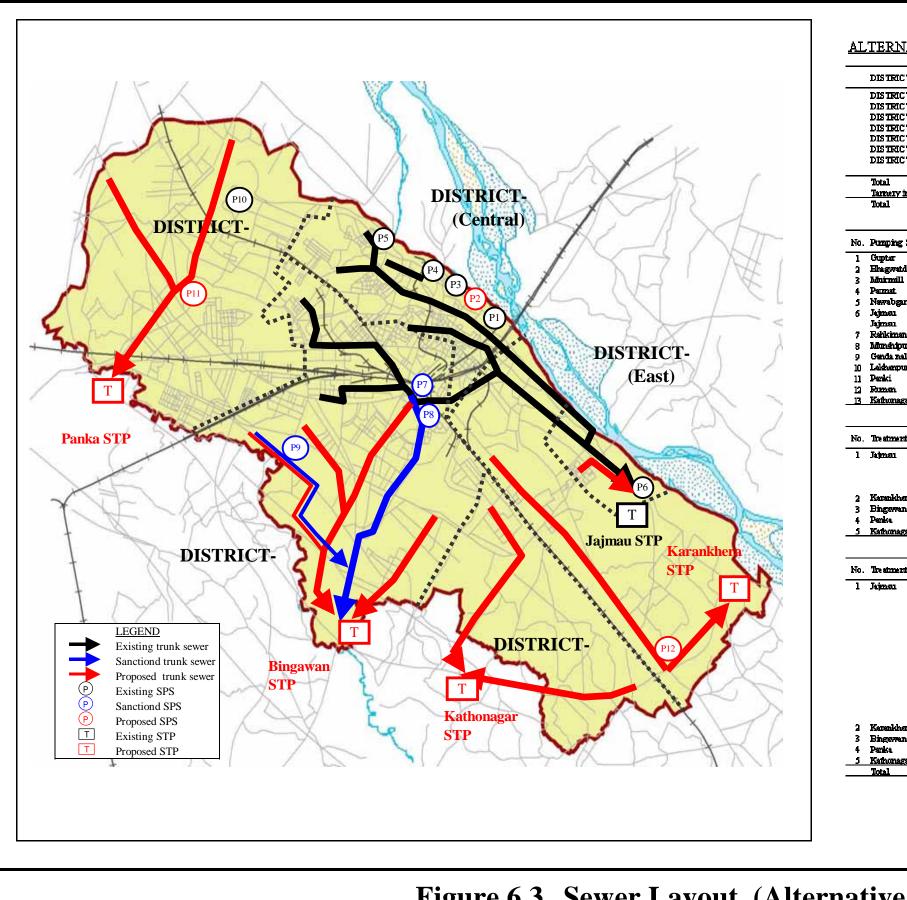
Stability of treatment process: Alternative II is more favorable because a larger flow would be treated by the aerated lagoon process. The aerated lagoon is operationally simpler and more stable than the activated sludge process. It is also easier and faster to recover after prolonged daily power outrages.

Flexibility: Alternative II provides more options for future expansion and growth as well as the potential of diverting flow from Jajmau STP in case of rehabilitation or major maintenance. Alternative IV is less favorable because the ASP site will have been fully utilized with augmentation of capacity.


On the basis of the qualitative evaluation and the cost comparison, Alternative II is selected as the preferred alternative and will be used for preparing the master plan and preliminary infrastructure cost estimates.

<u>ALTERNATIVE - I</u>

	DISTRICT				Population			er Generatio	. ,
				2003	2015	2030	2003	2015	2030
	DISTRICT-	Central		694,517	802,336	869,853	97 11	116 18	135 24
	DISTRICT- DISTRICT-	Tannety Central		77,885 843,469	122,910 1,072,781	152,075 1,172,659	118	156	182
	DISTRICT-	South		547,771	934,330	1,172,711	77	135	182
	DISTRICT-			335,790	801,640	1,283,484	47	116	199
	DISTRICT-	SA		288,809	539,914	861,605	41	79	133
		NSA		31,586	68,120	116,694	4	10	18
	Total			2,819,827	4,342,031	5,629,081	395	630	873
	Tannery industri	al wastew	vater				13	13	13
	Total						408	643	886
No.	Pumping Station		Status]	Inflow (mld) 2015	2030	Remark		
1	Guptar		Existing		4	2030			
2	Bhagwatdas ghat	nala	Proposed		8	8			
3	Muirmill		Existing		4	5			
4	Parmat		Existing		54	54			
5	Nawabganj		Existing		6	8			
6	Jajmau		Existing		116	135			
	Jajmau		Existing		18	24	For tannery a	rea domestio	;
7	Rahkimandi		Sanctioned		86	99			
8	Munshipurwa		Sanctioned		70	82			
9	Ganda nala		Sanctioned		19	24			
10	Lakhanpur		Existing		16	27			
11	Panki		Proposed		80	126			
12	Ruman		Proposed		79	133			
13	Kathonagar		Proposed		-				
No	Treatment Plant	inflow]	Inflow (mld)		Remark		
					2015	2030	Kelliark		
1	Jajmau	Domesti			134	159			
		Tannery			13	13	Previous M/I	9mld	
		Total			147	172			
2	Karankhera				89	151			
3	Bingawan				291	364			
4	Panka				116	199			
5	Kathonagar				-	-			
				C	apacity (mld)			
No.	Treatment Plant	capacity	Status		2015	2030	Remark		
1	Jajmau	UASB1	Existing		5	5	For domestic		
			Existing		36	36	For tannery		
		ASP1	Existing		130	130	For domestic		
			Sub Total		171	171			
		HASRI	Augument						
					16	16	For tannery 4	⊥ domestic	12
		ASP1	Augument Augument		10	10	130 mld x 1/.		12
		ASP2	Augument				100 mu x 1/.	-	
			Sub Total		16	16			
					10				
			Total		187	187			
2	Karankhera		Proposed		90	155			
3	Bingawan		Proposed		295	365			
4	Panka		Proposed		120	200			
5	Kathonagar		Proposed		-	-			
	Total				692	907			

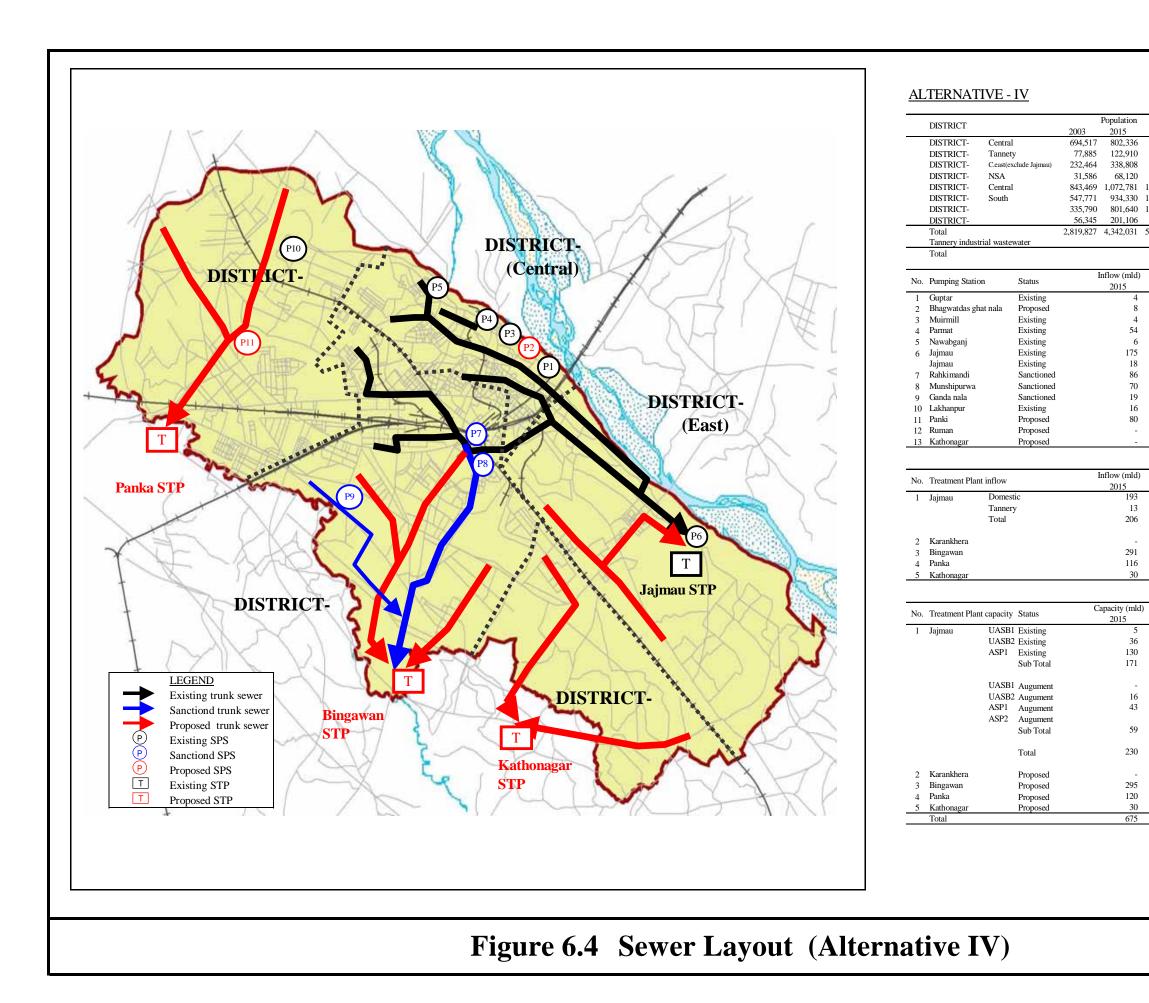

Figure 6.1 Sewer Layout (Alternative I)

<u>ALTERNATIVE - II</u>

DISTRICT Population 2003 2015 2030 DISTRICT- Central 694,517 802,336 869,853 DISTRICT- Tannety 77,885 122,910 152,075 DISTRICT- Tannety 77,885 122,910 152,075		
2003 2015 2030 DISTRICT- Central 694,517 802,336 869,853 DISTRICT- Tannety 77,885 122,910 152,075	Wastewater Generation (· ·
DISTRICT- Tannety 77,885 122,910 152,075		030
	97 116	135
	11 18	24
DISTRICT- East 232,464 338,808 433,093 DISTRICT- Central 843,469 1.072,781 1.172,659	33 49	67
	118 156 77 135	182 182
DISTRICT- South 547,771 934,330 1,172,711 DISTRICT- 335,790 801,640 1,283,484	47 116	192
DISTRICT- SA 56,345 201,106 428,512	8 30	66
NSA 31,586 68,120 116,694	4 10	18
Total 2,819,827 4,342,031 5,629,081	395 630	873
Tannery industrial wastewater	13 13	13
Total	408 643	886
No. Pumping Station Status Inflow (mld)	Remark	
2015 2030	Kemark	
1 Guptar Existing 4 4		
2 Bhagwatdas ghat nala Proposed 8 8		
3 Muirmill Existing 4 5		
4 Parmat Existing 54 54 5 Nawabgani Existing 6 8		
5NawabganjExisting686JajmauExisting165202		
Jajmau Existing 165 202 Jajmau Existing 18 24	For tannery area domestic	
7 Rahkimandi Sanctioned 86 99	i or tannery area domestic	
8 Munshipurwa Sanctioned 70 82		
9 Ganda nala Sanctioned 19 24		
10LakhanpurExisting1627		
11 Panki Proposed 80 126		
12 Ruman Proposed 29 66		
13 Kathonagar Proposed		
No. Treatment Plant inflow. Inflow (mld)	Remark	
No. Treatment Plant inflow 2015 2030	Remark	
No. I reatment Plant inflow 2015 2030 1 Jajmau Domestic 183 226		
No. Treatment Plant inflow 2015 2030	Remark Previous M/P 9mld	
No.I reatment Plant inflow201520301JajmauDomestic183226Tannery1313Total196239		
No.Ireatment Plant inflow201520301JajmauDomestic183226Tannery1313Total1962392Karankhera3984		
No.I reatment Plant inflow201520301JajmauDomestic183226Tannery1313Total196239		
No. Treatment Plant inflow 2015 2030 1 Jajmau Domestic 183 226 Tannery 13 13 13 Total 196 239 2 Karankhera 39 84 3 Bingawan 291 364		
No. Ireatment Plant inflow 2015 2030 1 Jajmau Domestic 183 226 Tannery 13 13 13 Total 196 239 2 Karankhera 39 84 3 Bingawan 291 364 4 Panka 116 199		
No. Ireatment Plant inflow 2015 2030 1 Jajmau Domestic 183 226 Tannery 13 13 13 Total 196 239 2 Karankhera 39 84 3 Bingawan 291 364 4 Panka 116 199		
No. Treatment Plant inflow 2015 2030 1 Jajmau Domestic Tannery 183 226 Tannery 13 13 13 Total 196 239 2 Karankhera 39 84 3 Bingawan 291 364 4 Panka 116 199 5 Kathonagar - - No. Treatment Plant capacity Status Capacity (mld) 2015 2030 1 Jajmau UASB1 Existing 5 5	Previous M/P 9mld Remark For domestic	
No. Treatment Plant inflow 2015 2030 1 Jajmau Domestic 183 226 Tannery 13 13 13 Total 196 239 2 Karankhera 39 84 3 Bingawan 291 364 4 Panka 116 199 5 Kathonagar - - Capacity (mld) 005 2030 1 Jajmau UASB1 Existing 5 UASB2 Existing 36 36	Previous M/P 9mld Remark For domestic For tannery	
No. Treatment Plant inflow 2015 2030 1 Jajmau Domestic 183 226 Tannery 13 13 13 Total 196 239 2 Karankhera 39 84 3 Bingawan 291 364 4 Panka 116 199 5 Kathonagar - - Capacity (mld) No. Treatment Plant capacity Status 2015 2030 1 Jajmau UASB1 Existing 36 36 ASP1 Existing 130 130 130	Previous M/P 9mld Remark For domestic	
No. Treatment Plant inflow 2015 2030 1 Jajmau Domestic 183 226 Tannery 13 13 13 Total 196 239 2 Karankhera 39 84 3 Bingawan 291 364 4 Panka 116 199 5 Kathonagar - - Capacity (mld) 005 2030 1 Jajmau UASB1 Existing 5 UASB2 Existing 36 36	Previous M/P 9mld Remark For domestic For tannery	
No. Treatment Plant inflow 2015 2030 1 Jajmau Domestic 183 226 Tannery 13 13 13 Total 196 239 2 Karankhera 39 84 3 Bingawan 291 364 4 Panka 116 199 5 Kathonagar - - Capacity (mld) No. Treatment Plant capacity Status 2015 2030 1 Jajmau UASB1 Existing 36 36 ASP1 Existing 130 130 130	Previous M/P 9mld Remark For domestic For tannery	
No. Treatment Plant inflow 2015 2030 1 Jajmau Domestic Tannery 183 226 Tannery 13 13 13 Total 196 239 2 Karankhera 39 84 3 Bingawan 291 364 4 Panka 116 199 5 Kathonagar - - No. Treatment Plant capacity Status Capacity (mld) 2015 2030 1 Jajmau UASB1 Existing 5 5 UASB2 Existing 36 36 36 36 ASP1 Existing 130 130 130 Sub Total 171 171 171	Previous M/P 9mld Remark For domestic For tannery	
No. Treatment Plant inflow 2015 2030 1 Jajmau Domestic Tannery 183 226 Tannery 13 13 13 Total 196 239 2 Karankhera 39 84 3 Bingawan 291 364 4 Panka 116 199 5 Kathonagar - - No. Treatment Plant capacity Status Capacity (mld) 2015 2030 1 Jajmau UASBI Existing 5 5 UASB2 Existing 36 36 36 ASP1 Existing 130 130 130 Sub Total 171 171 171 UASB1 Augument - - - UASB2 Augument 16 16 16 ASP1 Augument 43 43 43	Previous M/P 9mld Remark For domestic For tannery For domestic	
No. Treatment Plant inflow 2015 2030 1 Jajmau Domestic Tannery 183 226 Tannery 13 13 13 Total 196 239 2 Karankhera 39 84 3 Bingawan 291 364 4 Panka 116 199 5 Kathonagar - - No. Treatment Plant capacity Status Capacity (mld) 2015 2030 1 Jajmau UASB1 Existing 5 5 UASB2 Existing 36 36 36 36 ASP1 Existing 130 130 130 Sub Total 171 171 171 UASB2 Augument - - - UASB2 Augument 16 16 16 ASP1 Augument 43 43 ASP2 Augument 10 10	Previous M/P 9mld Previous M/P 9mld Remark For domestic For tannery For domestic For tannery 4 + domestic 12	
No. Treatment Plant inflow 2015 2030 1 Jajmau Domestic Tannery 183 226 Tannery 13 13 13 Total 196 239 2 Karankhera 39 84 3 Bingawan 291 364 4 Panka 116 199 5 Kathonagar - - No. Treatment Plant capacity Status Capacity (mld) 2015 2030 1 Jajmau UASBI Existing 5 UASB2 Existing 36 36 ASP1 Existing 130 130 Sub Total 171 171 171 UASB1 Augument - - - UASB2 Augument 16 16 16 ASP1 Augument 43 43	Previous M/P 9mld Previous M/P 9mld Remark For domestic For tannery For domestic For tannery 4 + domestic 12	
No. Treatment Plant inflow 2015 2030 1 Jajmau Domestic Tannery 183 226 Tannery 13 13 13 Total 196 239 2 Karankhera 39 84 3 Bingawan 291 364 4 Panka 116 199 5 Kathonagar - - No. Treatment Plant capacity Status Capacity (mld) 2015 2030 1 Jajmau UASB1 Existing 5 5 UASB2 Existing 36 36 36 36 ASP1 Existing 130 130 130 Sub Total 171 171 171 UASB2 Augument - - - UASB2 Augument 16 16 16 ASP1 Augument 43 43 ASP2 Augument 10 10	Previous M/P 9mld Previous M/P 9mld Remark For domestic For tannery For domestic For tannery 4 + domestic 12	
No. Treatment Plant inflow 2015 2030 1 Jajmau Domestic Tannery 183 226 Tannery 13 13 13 Total 196 239 2 Karankhera 39 84 3 Bingawan 291 364 4 Panka 116 199 5 Kathonagar - - Capacity (mld) 0 UASB1 Existing 5 5 UASB2 Existing 36 36 36 ASP1 Existing 130 130 Sub Total 171 171 171 UASB1 Augument - - - UASB2 Augument 16 16 16 ASP1 Augument 43 43 43 ASP2 Augument 59 69 69 Total 230 240 240	Previous M/P 9mld Previous M/P 9mld Remark For domestic For tannery For domestic For tannery 4 + domestic 12	
No.Treatment Plant inflow201520301JajmauDomestic183226Tannery1313Total1962392Karankhera39843Bingawan2913644Panka1161995KathonagarCapacity StatusCapacity (mld) 20151JajmauUASB1 Existing55UASB2 Existing3636ASP1Existing130130Sub Total171171UASB2 Augument1616ASP1Augument4343ASP2Augument10Sub Total5969Total2302402KarankheraProposed4085	Previous M/P 9mld Previous M/P 9mld Remark For domestic For tannery For domestic For tannery 4 + domestic 12	
No.Treatment Plant inflow201520301JajmauDomestic183226Tannery1313Total1962392Karankhera39843Bingawan2913644Panka1161995KathonagarNo.Treatment Plant capacity StatusCapacity (mld) 20151JajmauUASB1 Existing3636ASP1Existing130130 Sub Total171UASB2AugumentUASB2Augument1616 ASP1ASP2Augument4343 ASP2Augument5969 Total5969Total2302402KarankheraProposed4085	Previous M/P 9mld Previous M/P 9mld Remark For domestic For tannery For domestic For tannery 4 + domestic 12	
No. Treatment Plant inflow 2015 2030 1 Jajmau Domestic Tannery 183 226 Tannery 13 13 13 Total 196 239 2 Karankhera 39 84 3 Bingawan 291 364 4 Panka 116 199 5 Kathonagar - - No. Treatment Plant capacity Status Capacity (mld) 2015 2030 1 Jajmau UASB1 Existing 5 5 UASB2 Existing 36 36 36 36 36 ASP1 Existing 130 130 130 130 Sub Total 171 171 171 171 UASB2 Augument - - - - UASB2 Augument 16 16 16 ASP1 Augument 43 ASP2 Augument 59 69 -	Previous M/P 9mld Previous M/P 9mld Remark For domestic For tannery For domestic For tannery 4 + domestic 12	

Figure 6.2 Sewer Layout (Alternative II)

<u>ALTERNATIVE - III</u>


DISTRICT	Population.				Wastewater Generation (mld)			
		2003	2015	2030	2003	2015	2030	
DISTRICT. I	Central	694_517	802 336	869.853	97	116	135	
DISTRICT. I	Turnety	77,885	122,910	152,075	11	18	24	
DISTRICT. I	Central	843,469	1072781	1,172,659	118	156	182	
district. I	South	547,771	934,330	1,172,711	77	135	182	
DISTRICT- II		335,790	801 <i>6</i> 40	1,283,484	47	116	199	
DISTRICT-IV	Cassifembila Jejman)	232,464	338,909	433,093	33	49	67	
DISTRICT-IV	East SA	56,345	201,106	428,512	8	30	66	
	C.east NSA	31,586	68 120	116,694	4	10	18	
Total		2,819,827	4342031	5,629,081	395	630	873	
Tarnery industr	ial wastewater				13	13	13	
Total					408	643	886	

No.	Punping Sation	Status	2003	inflow (mid) 2015	2030	Renate
1	Guptar	Existing		4	4	
â	Elegyvilder ghitnele	Proposed		8	8	
3	bāni mill	Existing		4	5	
4	Parmat.	Existing		54	54	
5	Navabganj	Existing		6	8	
6	Jejmai	Existing		116	135	
	Jujman	Existing		18	24	Fur tarmery area dome sti
7	Rahkimandi	Sanctioned		86	99	
8	Munchipurwa	Sanctioned		70	82	
9	Genda nala	Senctioned.		19	24	
10	Lakharpur	Existing		16	27	
11	Perici	Proposed		80	126	
12	Ruman	Proposed		49	67	
13	Kathonagar	Proposed		-	-	
No.	Treatment Plant inflow			inflow (mid) 2015	2030	Remark
1	Jajman Dome	stic		134	1.59	
	Tanne	ry .		13	13	Previous M/P 9mld

LT.			htlow (nid)		D
MO.	Treatment Pla		2015	2030	Remark
1	Jajman	Domestic	134	159	
		Tamery	13	13	Brevious M/P 9ml
		Total	147	172	
2	Karankhera		59	85	
3	Bingawan		291	364	
4	Penisa.		116	199	
5	Kathonagar		30	66	

No.	Tre atment Plant o	Party	Status	Capacity (mM) 2015	2030	Remark
1	Jaimen	UASB1	Existing	5	5	For domestic
	•		Existing	36	36	For terrery
		ASP1	Existing	130	130	Fur domestic
			Sub Total	171	171	
		UASB1	Augument.	-	-	
		UASB2	Augument	16	16	For targery 4 + domestic 12
		ASP1	Augument			B0 mld x 1/3
		ASD2	Aneument.			
			Sub Total	16	16	
			Total	187	187	
2	Karankhera.		Proposed	60	85	
3	Bingeven		Proposed	295	365	
4	Parisa		Proposed	120	200	
5	Kathonagar		Proposed	30	70	
	Total			692	907	

Figure 6.3 Sewer Layout (Alternative III)

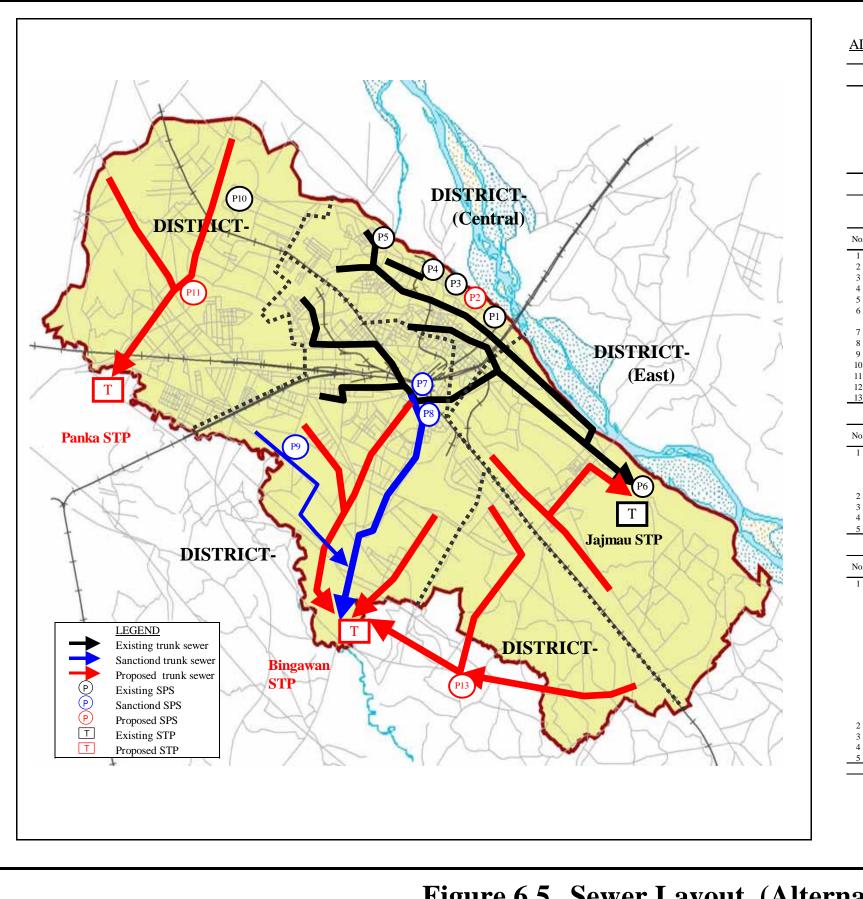
	Wastewater Generation (mld)						
2030	2003	2015	2030				
869,853	97	116	135				
152,075	11	18	24				
433,093	33	49	67				
116,694	4	10	18				
1,172,659	118	156	182				
1,172,711	77	135	182				
1,283,484	47	116	199				
428,512	8	30	66				
5,629,081	395	630	873				
	13	13	13				
	408	643	886				

2030	Remark
4	
8	
5	
54	
8	
220	
24	For tannery area domestic
99	-
82	
24	
27	
126	
-	

Population

802,336

122,910


68,120

Inflow (mld)

Inflow (mld)

Capacity (mld) 2015

2030	Remark
244 13 257	Previous M/P 9mld
- 364	
199 66	
2030	Remark
5	For domestic
36	For tannery
130	For domestic
171	
-	
16	For tannery 4 + domestic 12
43	130 mld x 1/3
30	
89	
260	
365	
200	
200 70	
895	

<u>ALTERNATIVE - V</u>

	DISTRICT				Population				er Generatio	. ,
				2003	2015	2030	200	-	2015	2030
	DISTRICT-	Central		694,517	802,336	869,853		97	116	135
	DISTRICT-	Tannety		77,885	122,910	152,075		11	18	24
	DISTRICT-		clude Jajmau)	232,464	338,808	433,093		33	49	67
	DISTRICT-	NSA		31,586	68,120	116,694		4	10	18
	DISTRICT-	Central		843,469	1,072,781	1,172,659		118	156	182
	DISTRICT-	South		547,771	934,330	1,172,711		77	135	182
	DISTRICT-			335,790	801,640	1,283,484		47	116	199
	DISTRICT-			56,345	201,106	428,512		8	30	66
	Total			2,819,827	4,342,031	5,629,081		395	630	873
	Tannery industri	al wastev	water					13	13	13
	Total							408	643	886
No	Pumping Station		Status	I	nflow (mld)		Remarl	le l		
10.	Fullping Station		Status		2015	2030	Kennan	ĸ		
1	Guptar		Existing		4	4				
2	Bhagwatdas gha	t nala	Proposed		8	8				
3	Muirmill		Existing		4	5				
4	Parmat		Existing		54	54				
5	Nawabganj		Existing		6	8				
6	Jajmau		Existing		175	220				
	Jajmau		Existing		18	24	For tan	nery a	rea domesti	0
7	Rahkimandi		Sanctioned		86	99				
8	Munshipurwa		Sanctioned		70	82				
9	Ganda nala		Sanctioned		19	24				
10	Lakhanpur		Existing		16	27				
11	Panki		Proposed		80	126				
12	Ruman		Proposed		-	-				
13	Kathonagar		Proposed		30	66				

No.	Treatment Pla	nt inflow	Inflow (mld 2015		
1	Jajmau	Domestic	193		
	-	Tannery	13		
		Total	206		
2	Karankhera				
3	Bingawan		321		
4	Panka		116		
5	Kathonagar		30		

Ma	Treatment Diant and	apposity Status		Capacity (mld)		Remark
INO.	Treatment Plant cap	pacity	Status	2015	2030	Kemark
1	Jajmau U	ASB1	Existing	5	5	For domestic
	U	ASB2	Existing	36	36	For tannery
	A	SP1	Existing	130	130	For domestic
			Sub Total	171	171	
	U	ASB1	Augument	-	-	
	U	ASB2	Augument	16	16	For tannery 4 + domesti
	A	SP1	Augument	43	43	130 mld x 1/3
	A	SP2	Augument		30	
			Sub Total	59	89	
			Total	230	260	
2	Karankhera		Proposed	-	-	
3	Bingawan		Proposed	325	430	
4	Panka		Proposed	120	200	
5	Kathonagar		Proposed	-	-	
	Total			675	890	

Figure 6.5 Sewer Layout (Alternative V)

2030	
	244
	13
1	257
	-
	430

430 199 66	
30	Remark
5	For domestic
36	For tannery
130	For domestic
171	

Remark

Previous M/P 9mld

stic 12

CHAPTER 7

PROPOSED MASTER PLAN

CHAPTER 7 PROPOSED MASTER PLAN

7.1 SUMMARY

This chapter describes the collection and treatment components of the future sewerage system based on the recommended Alternative II selected in the Chapter 6. In addition, this section of the Master Plan evaluates current capacity, and existing deficiencies and identifies capacity of each component to handle projected wastewater flows over the planning horizon.

District wise delineation of the sewerage scheme is presented in Figure 7.1 for 2015 and Figure 7.2 for 2030. The overall sewerage scheme will consists of 4 separate sewerage Districts each with its own treatment plant:

- District I: City center, and areas surrounding Jajmau conveying 239 mld of sewage to 2 treatment plants at Jajmau
- District II: South of City district, conveying 364 mld sewage to a sanctioned UASB treatment plant near Bingawan village. Approximately 182 mld is diverted from the City District to relieve flows in the 90" outfall to Jajmau.
- District III: West of City and South districts, conveying 199 mld of sewage to a proposed aerated lagoon near Panka village. This district includes areas north of GT road identified in former master plan as north/west district
- District IV: East of South district conveying 84 mld of sewage to a proposed aerated lagoon near Karankhera village.

Populations, and wastewater generated by sewerage district are presented in Planning Framework Chapter 5 Table 5.6. Sewage generation quantities have been computed considering tributary areas proposed under the Master Plan. These tributaries areas are presented in Table 5.6 and are also shown on layout drawings in Appendix B. Peak sewage generation volumes at various phase years have been computed on peak factors as per design criteria identified in Chapter 5.

Hydraulic calculations for evaluating capacity of existing trunk sewers and replacement sewer are presented in Table 7.1. Calculations for sizing proposed trunk sewers are presented in Table 7.2.

Existing pumping station data is presented in Table 7.4. Evaluation of pumping station capacity for present and future wastewater loads is presented in Table 7.5.

7.2 STORM WATER DRAINS

Locations of existing drains are shown in Figure. 7.3. Kanpur city has 23 drains that carry significant amounts of wastewater to Ganga and Pandu rivers. These drains are also a significant source of pollution during wet weather when cow dung and human waste that accumulates during the dry season are flushed away by runoff.

Flow measurements, taken in 2003 are presented in Table 7.6 and these indicate a total wastewater flow of 360 mld. Out of the 23 nalas, 20 nalas were found to carry 150.91 mld of wastewater to Ganga river, while 3 nalas carry 62.34 mld of wastewater to Pandu river.

Under GAP-I, pumping stations and relief sewers were implemented to divert 160 mld of sewage through the 90" outfall sewer to two treatment plants at Jajmau. However, the combined average inflow at both treatment plants is only 79 mld and this indicates that most of the wastewater is not reaching the treatment plant, i.e., the collection system is not operating properly.

Nala-tapping arrangements are essential for intercepting wastewater during dry weather and reducing pollution loads, however the present tapping arrangements are inadequate:

- They allow a substantial quantity of silt and debris into the sewer system which is detrimental to its life and proper functioning.
- They allow large quantities of storm water into the sewerage system which causes flooding and hydraulic overloads at treatment plants

Such nala tapping arrangements are considered as interim measures only and should be phased out gradually with the improvement in sewerage coverage into all urban areas, i.e., implementation of the Master Plan. However, house connection targets for 2030 are at most 80% therefore there will always be some flow in the nalas. It is recommended that each tapping point be provided with screening and grit removal facilities to protect the collection system. Furthermore, each tapping point should have a means of automatically regulating the inflow during wet weather.

7.3 GENERAL ASSESSMENT: PHYSICAL CONDITION OF TRUNK SEWERS

A detailed survey of the trunk sewers was beyond the scope of the present Master Plan study. However the JICA team did carry out a visual survey of the trunk sewers at random locations to get an appreciation for potential problems. The visual surveys were supplemented by discussions with Jal Sansthan and Jal Nigam.

7.3.1 Current Deficiencies

- 1) Poor maintenance: The majority of the branch sewerage system is at any time either completely blocked or its capacity is severely reduced by silt and solid waste. Sewer maintenance is restricted to emergency clearing of blockages and is given low priority.
- 2) Silting and Surcharging: Visual surveys by JICA study team indicates that sections of the trunk sewers are heavily silted. Reduced capacity from silting results in sewage overflows from manholes to surface drains during peak flow periods. Problems may also be caused by structural damage in some sections.
- 3) Ageing infrastructure: The existing trunk sewer system is over 75 years old and has been allowed to deteriorate to the point where rehabilitation or replacement is necessary. Many of the sewers have not been inspected.
- 4) Poor record keeping and inadequate information for planning: The limited availability of records relating to pumping stations and the sewerage system makes planning for extending services and assessing the amount of sewage presently flowing into the sewer system difficult. This also prevents effective maintenance and corrective actions.
- 5) Storm water and solid waste ingress to sewers: Damaged manholes, sewer defects particularly around the nala and connections of nala to the sewerage system have led to the increased risk of solid waste entering and blocking the system.

7.3.2 Current Capital Needs

Trunk sewers and branch sewers in the city need to be cleaned. Sewers that have been diverted to drains as a temporary relief from chronic blockage or surcharging should be re-instated and connected to the sewage collection system.

Drains that have been diverted directly into sewers must be rerouted to formal tapping points. These tapping points must be constructed with proper screening and grit removal facilities. Tapping points will also require some physical means of by-passing large storm water flows. The present solution of manual gates is inadequate and creates operational difficulties.

7.4 SEWERAGE DISTRICT I (CITY DRAINAGE): JAJMAU STP

7.4.1 General Description

This sewerage district is bounded by the Ganga river to the North, H.B.T.I. and roadways workshop to the West, Armapur Estate, Dada nagar, Kidwai nagar and COD in the South. The area extends along the east axis of the city taking in the area north of Delhi Calcutta track beyond COD gate up to the master planning boundary in the East.

This area includes the old city core with an old sewerage network dating back to as early as 1910 and the tannery district located east of the cantonment lands. Wastewater from District I is conveyed to Jajmau pumping station via a 90" trunk sewer with maximum carrying capacity of 3,878 lps peak flow (168 mld average flow). At Jajmau, domestic wastewater is pumped to the 130 mld activated sludge treatment plant and a 5 mld UASB pilot plant.

A separate network of open drains and pumping stations collects about 13 mld of tannery wastewater in the Jajmau area and pumps it to the 36 mld UASB treatment works

The total wastewater load for the City district exceeds the carrying capacity of the outfall sewer. The existing sewerage network in City district must therefore be reconfigured to provide a smaller catchment area population of 8.7 lakhs in 2030 to generate no more than 168 mld (estimated carrying capacity for the 90" trunk). It is therefore proposed to divert flow from the Central district (182 mld equivalent to a population of 11.7 lakhs) to a new outfall and treatment plant south of the city.

Both treatment plants at Jajmau will need to be augmented to cope with increased domestic flows:

- By 2015,
- the domestic activated sludge (AS) treatment plant will be augmented from 130 mld to 173 mld.
 - the UASB plant will need an additional 16 mld capacity
- Post treatment processes should be added to the UASB plant
- By 2030,
- the AS plant will need an additional 10 mld capacity.

7.4.2 Jajmau Tannery Wastewater Treatment Facility

(1) General

This section includes information pertaining to the city's existing 36 mld tannery wastewater treatment plant at Jajmau. Process control data for the facility is unavailable and plant performance data provided to the study team is limited to monthly average, max and min, for influent and effluent parameters such as BOD, COD and SS.

Detailed analysis of plant process is beyond the scope of the present study. Nevertheless, a brief review of available data is useful for identifying the potential problem areas and solutions that should be investigated in more detail in subsequent studies.

(2) Facility Overview

The site plan presented in Drawing B1 provides actual layout and location of the various process units. This STP is operated and maintained by a contractor under the supervision of UP Jal Nigam.

The process consists of 2 x 18 mld UASB reactors giving a total capacity of 36 mld. The plant is designed to treat 9 mld of wastewater from 175 tanneries in the Jajmau cluster diluted with 27 mld of

domestic wastewater (mixing ratio of 1:3). At present, the average monthly inflow to the STP is only 25 mld of which approximately 13 mld is tannery wastewater, the balance being domestic wastewater.

Average monthly data made available to the study team for the period of Nov 2002 to Oct 2003 is presented in Table 7.7 and Figure 7.4. In general, the data shows that actual strength of the incoming wastewater exceeds the design parameters. This is not surprising since tannery wastewater is not being diluted in the ratio that was intended.

Parameters		Design value	Actual
	Peak (m ³ /min)	n.a.	n.a.
Flow	Average (m ³ /day)	36,000	25,000
	Minimum (m ³ /min)	n.a.	n.a.
	BOD ₅ (mg/l)	775	119 to 1,228
	TSS (mg/l)	1,625	215 to 1,835
Wastewater quality	COD (mg/l)	1,875	540 to 4,170
	Chromium (mg/l)	30	84.9
	Sulphates (mg/l)	738	532
BOD ₅ (mg/l)		175	82 to 382
	TSS (mg/l)	570	170 to 940
Effluent quality	COD	600	245 to 1,046
	Chromium (mg/l)	4.3	12
	Sulphates (mg/l)	120	543

Table 7.8 Design Parameters versus Actual

Influent values are after mixing with domestic sewage

Actual values for BOD, COD and TSS are monthly minimum and maximum from Nov-02 to Oct-03 as reported by UPJN Kanpur.

Actual values for Chromium and Sulphates taken by JICA Study Team, from two day composite samples, June 16, 17 2003.

The plant was not designed to meet present NRCD effluent criteria. In fact, effluent from the plant is worse than anticipated by the design. Again, this is probably because tannery wastewater is not being sufficiently diluted with domestic sewage as originally intended. Chromium levels in the treated effluent exceed NRCD discharge standards.

The following recommendations should be investigated in more detail in subsequent studies:

- The influent should be diluted to respect design parameters
- The post treatment process should be improved to reduce BOD and sulphides to acceptable limits. Options include adding aerated lagoons, trickling filters or forced aeration of the final polishing pond.
- Effluent must be disinfected either by chlorination or preferably by maturation ponds if land is available.

(3) Master Plan Provisions

Tannery wastewater flows have already increased from 9 mld to 13 mld. Furthermore, additional flows will be diverted to the UASB by the Project to isolate the collection system in Jajmau tannery district.

In order to achieve the correct dilution factor of 1:3 the treatment plant should be augmented from 36 mld to 52 mld. The revised design flows are as follows:

• 2015: 13 mld (tannery) + 39 mld (domestic) 52 mld @ 1: 3 dilution ratio

7.4.3 Jajmau Domestic Wastewater Treatment Facility

(1) General

This section includes information pertaining to the existing 130 mld domestic wastewater treatment plant at Jajmau. Process control data for the facility is unavailable and plant performance data provided to the team is limited to monthly average, max and min, for influent and effluent parameters such as BOD, COD and SS.

Detailed analysis of plant processes to identify potential improvements for optimizing performance of the present treatment plant is beyond the scope of the present Master Planning study. Nevertheless ,a brief review of available data is provided to identify the potential problem areas and solutions that should be investigated in more detail in subsequent studies.

(2) Facility Overview

The site plan presented in Drawing B1 provides the actual layout and location of the various process units.

The treatment plant was commissioned in January 1999. The process was designed with 3 parallel liquid streams giving a total capacity of 130mld. There is provision for adding a fourth 43 mld module. This STP is operated and maintained by a contractor under the supervision of UP Jal Nigam.

At present the average monthly inflow is 49 mld with a seasonal fluctuation ranging from 40 mld to 56 mld. Under the proposed Master Plan the treatment capacity would eventually be augmented to 183 mld to accommodate projected sewage flows from the City District I.

(3) Liquid Process Units

The present wastewater treatment process consists of two stages: primary treatment and secondary treatment. Each phase of treatment acts as a removal mechanism for targeted pollutants in the influent wastewater stream.

The wastewater flow enters the inlet collection chamber and preliminary treatment is carried out in the subsequent grit chamber. The flow is measured at the Parshall flume.

The flow is divided into three equal streams and enters circular primary clarifier. In the primary clarifier, not only some settleable solids but also some settleable organic load is removed from the bottom and conveyed to solids handling process with the sludge generated from secondary clarifiers.

Secondary treatment accomplishes the conversion of soluble organic material into settleable biomass by utilizing metabolic mechanism of micro-organisms. The biomass is settled in final secondary clarifiers. At Jajmau STP, secondary treatment is accomplished with the conventional activated sludge process in three aeration tanks using surface aerators. The settled sludge in the secondary clarifier is drawn off the bottom and pumped back to the head of the aeration tank to maintain MLSS concentrations.

Treated effluent is pumped through a 1500 mm dia. rising main to an effluent channel used for irrigation. A by-pass arrangement is also available to discharge effluent to a nearby drain when pumps at the lift station fail or when irrigation water is not required.

Table 7.9 contains an itemized list of major plant components related to liquid process. The various components are listed by treatment stage. The condition of each component could not be assessed and will need to be evaluated in subsequent study. Furthermore some of the dimensional data required for process calculations is unavailable.

Level	Process	Component	Condition
	Inlet collection chamber	1 – 6.4m x 6.4m x 5.0m(D)	n.a.
Headworks	Grid chamber	3 – 9.3m x 9.3m x 1.22m(D)	n.a.
	Flow measurement	1 – Parshall flume TW= 2.134m	n.a.
Primary Treatment	Primary clarifier $3-44$ Um diameter SWD		n.a.
Secondary	Aeration tank	3 – 52.5m x34.5m x , SWD= 4.032 m	n.a.
Treatment	Secondary clarifiers	3 – 48.0m diameter, SWD= 3.802 m	n.a.

 Table 7.9 Major Liquid Process Components

n.a. = not available

(4) Solids Handling Units

Table 7.10 provides an inventory of solids handling process. Sludge consists of primary clarifier sedimentation and biological sludge from secondary clarifier ,that is conversion of organic materials into cellular mass.

Biological sludge from the secondary clarifiers is recirculated to the head of aeration tank and to the primary clarifiers. The combined sludge settled in the bottom of the primary clarifiers is pumped to the 2 sludge thickeners. Thickened sludge is then pumped to two primary sludge digesters. Sludge entering the digester is stabilized anaerobically where volatile fraction of the sludge is converted by bacteria into methane and water. Digested sludge from primary digesters is sent by gravity to secondary sludge digesters. Finally, digested sludge is pumped to 4 centrifuges where it is dewatered and then air-dried. The gas containing methane and CO_2 is utilized for the production of electricity.

Table 7.10	Major	Solids	Handling	Components
-------------------	-------	--------	----------	------------

Process	Component	Condition
Sludge Thickener	2– 28.0m diameter, SWD= 3.485m	n.a.
Digesters	Primary digesters: 2 – 29.0m diameter, SWD= 9.1 m Secondary digesters: 2 – 25.0m diameter, SWD= 9.7 m	n.a.
Sludge Drying Beds	n.a.	n.a.

n.a. = not available

(5) Evaluation

The treatment plant was designed to treat 130 mld of domestic wastewater with a BOD strength of 300mg/l.

Average monthly data made available to the study team for the period of Nov 2002 to Oct 2003 are presented in Table 7.7. In general, the data shows that actual strength of the incoming wastewater exceeds the design parameters. Relatively high average monthly COD values and high sulphates

indicate that a large amount of industrial wastewater is present in the domestic wastewater stream. The average TSS values are also relatively high and are indicative that tannery wastewater is present.

Parameters		Design value	Actual
	Peak (m ³ /min)	n.a.	n.a.
Flow	Average (m ³ /day)	130,000	49,000
	Minimum (m ³ /min)	n.a.	n.a.
	BOD ₅ (mg/l)	300	269 to 360
	TSS (mg/l)	600	751 to 1205
	COD (mg/l)	180	n.a.
Wastewater quality	Chromium (mg/l)	420	n.a.
	Sulphates (mg/l)	450-550	768 to 1468
	BOD ₅ (mg/l)		79.5
an I	TSS (mg/l)		262
	COD	30	25 to 52
	Chromium (mg/l)	50	102 to 128
Effluent quality	Sulphates (mg/l)		0.04
	Peak (m ³ /min)		176

Table 7.11 Influent and Effluent Design Parameters versus Actual

Actual values are monthly averages from Nov-02 to Oct-03 reported by UPJN Kanpur

Effluent generally does not meet the requirements set out in NRCD standards for discharge to water bodies or used for agricultural irrigation. The treatment plant is not hydraulically overloaded. However BOD removal efficiency ranging from 61% to 83% is lower than the norm for activated sludge plants. Poor performance of the treatment plant is no doubt caused by the high strength of the wastewater. It could also be caused by frequent power failures or discharge of toxic pollutants from industry.

The following recommendations should be investigated in more detail in subsequent studies:

- Tannery wastewater should be separated from the domestic wastewater stream. This can be achieved by implementing a separate collection system for the tannery district and conveying all sewage from the area to the UASB plant.
- The domestic wastewater collection system in the City district must be improved to increase the amount of wastewater conveyed to the treatment plant.
- The activated sludge process should be protected from shock loads by providing a roughing filter before the aeration tanks. This might be achieved by installing trickling filters.
- Effluent must be disinfected either by chlorination or preferably by maturation ponds if land is available.

(6) Master plan Provisions

Projected domestic wastewater flows in District I are as follows:

- 2015: 183 mld
- 2030: 226 mld

The activated sludge treatment plant can be expanded by adding a third stream to treat up to 183 mld. The remaining balance of domestic wastewater (43 mld) will be treated as follows:

• 5 mld at the pilot plant

• 39 mld for dilution with tannery waste at the UASB

7.4.4 Tannery District Wastewater Collection System

The tannery district is served by two collection systems.

A separate network of shallow open drains, implemented under the Indo-Dutch assistance program, collects tannery wastewater at four intermediate pumping stations designated as IPS 1 to 4. These pumping stations convey tannery wastewater through a common rising main directly to the UASB treatment plant where it is supposed to be diluted in a ratio of 1:3 with domestic wastewater (i.e. 9 mld tannery wastewater to 27 mld domestic wastewater) before passing through the treatment process.

A conventional network of branch and lateral sewers collects domestic wastewater from households in a part of the tannery area. These sewers are connected to the 90" outfall sewer and conveyed to the main pumping station at Jajmau and from there to the activated sludge treatment plant.

The activated sludge treatment plant is at present experiencing operational difficulties because the BOD, COD and SS loads are quite high. The presence of high chromium levels in the influent is an indication that tannery wastewater is still finding its way into the domestic wastewater stream. The reason tannery waste is reaching the activated sludge plant can be attributed to the following factors:

- Not all tanneries are disposing wastewater to the special collection system
- Solid wastes from the tannery process is frequently dumped into manholes of the domestic collection system
- Existing branch sewers installed in the north side area of 150m road are discharging tannery industrial wastewater to 90 inch sewer.
- According to UPJN, the UASB treatment plant frequently overflows, and the overflow pipes are connected to the 90" outfall. The result is that overflows from UASB are subsequently pumped to the activated sludge treatment plant.

The following solutions are proposed as possible countermeasures.:

- Domestic wastewater from the tannery district should be collected separately and conveyed directly to the UASB. The estimated domestic wastewater load is 24 mld. Existing branch and lateral sewers should be disconnected from the 90" outfall sewer and reconnected to a new service pipe dedicated to the tannery district. The service pipe would be terminated at a low lift pumping station located near the UASB plant.
- Manhole covers on the 90" trunk sewer, in the tannery district, should be redesigned so that they can only be opened by authorized maintenance personnel.
- Overflow pipes from the UASB plant should be disconnected from the 90" trunk sewer and redirected to the drain east of the site, discharging to Ganga river.
- According to the monitoring study carried out by IIT Kanpur, the quantity of tannery industrial wastewater is estimated to be 13 mld. Therefore, existing 36 mld UASB reactor needs additional 16 mld capacity in order to treat tannery industrial wastewater at the mixing ratio 1:3 (tannery 13mld : domestic 39mld).

A schematic of the tannery collection system and proposed solutions is presented in Drawing B2.

7.4.5 Domestic Wastewater Collection System

The city district has an existing network of sewers. The carrying capacity of this network is evaluated in Table 7.1. The carrying capacity of the existing sewers is computed in accordance with Manning's formula with value of 'n' = 0.015 for concrete pipes and 0.017 for brick sewers. Sewage quantities are peak flows that the collection system has to sustain.

From the hydraulic analysis it is evident that most existing trunk sewers will not have sufficient carrying capacity even after flows have been diverted to the South District. Table 7.2 identifies a total of 30.8 km of sewer pipe that will need to be replaced before 2015. Considering the congested situation of streets in the area the new sewers will probably have to be laid along the same alignment as old sewers. Maps and data on existing sewer alignments is either unavailable or extremely unreliable. It will therefore be necessary to confirm the location and condition of existing sewers, as well as the feasibility of replacement by carrying out detailed site surveys in subsequent studies.

Tentative alignment and sizing of proposed sewers is presented in Drawing B4.

7.4.6 Muir Mill Pumping Station

A pumping station was implemented under the Ganga Action Plan (GAP-I) to intercept wastewater from Muir mill nala.

Pumping station data is presented in Table 7.4. And evaluations of pumping station capacities is presented in Table 7.5.

Wastewater is pumped through a 735 m long rising main with diameter of 400 mm. A total of 3 x 2,800 lpm pumps are installed. The allowable discharge with 50% reserve is 93 lps. The flow measured by the study team in 2003 was 3.13 mld (4.54 mld was reported by UPJN in 1997). Assuming the higher of the two values the peak flow is 105 lps which slightly exceeds the allowable discharge capacity.

Assuming that sewerage will be improved, the peak sullage flows are expected to decrease, however it is difficult to predict when or how much less the flows will be. If sewerage schemes are not implemented the flow could even increase, therefore a program of on-going flow monitoring is essential.

The 168 m³ sump provides ample storage capacity. Excessively long holding time can result in septic wastewater and should be avoided by operating the pumps at least 4 to 5 starts per hour.

7.4.7 Guptar Ghat Pumping Station

A pumping station was implemented under the Ganga Action Plan (GAP-I) to intercept wastewater from Guptar ghat nala.

Pumping station data is presented in Table 7.4 and an evaluation of pumping station capacities are presented in Table 7.5.

Wastewater is pumped through a 300 m long rising main with diameter of 150 mm. A total of 3 x 1,000 lpm pumps are installed. The allowable discharge with 50% reserve is 33 lps. The flow measured by the study team in 2003 was 2.29 mld while a flow of 13.74 mld was reported by UPJN in 1997. Assuming the higher of the two values, the peak flow is 318 lps which greatly exceeds the allowable discharge capacity and the total installed capacity of the pumping station. If the lower value is adopted the pumping station would have enough capacity. The flow in the nala should be confirmed before determining the capacity that will be required. Several measurements should be taken for two or three days over a period of months.

Assuming that sewerage will be improved, the peak sullage flows are expected to decrease, however it is difficult to predict when or how much less the flows will be. If sewerage schemes are not implemented the flow could even increase, therefore a program of on-going flow monitoring is essential.

The 118m³ sump provides sufficient capacity at peak flow even when using the higher of the two flow measurements. Therefore expansion, if required, would be limited to providing additional pumping capacity.

7.4.8 Bhagwatdas Ghat Nala Pumping Station

Bhagwatdas ghat nala is located near Guptar ghat nala and has not been tapped yet. Although the flow measured by UPJN is not available, projected flows based on populations in future service area are as follows:

- 2015 Average: 8 mld Peak: 185 lps
- 2030 Average: 8 mld Peak: 185 lps

7.4.9 Parmat Pumping Station

A pumping station was implemented under the Ganga Action Plan (GAP-I) to intercept wastewater from the following nalas: Tafco nala, Parmat ghat nala, Police lines nala, and Jail nala. The pumping station also collects wastewater from local sewers. Under the Ganga Action Plan (GAP-II), Sisamau nala, the largest nala in Kanpur city (measured flow 138 mld) will be diverted to treatment. Out of 138 mld, 80-100 mld will be tapped upstream and diverted to Bingawan STP. The remaining 30-50 mld will be tapped down stream at Parmat pumping station and diverted to Jajmau STP.

Pumping station data is presented in Table 7.4 and an evaluation of pumping station capacities is presented in Table 7.5.

The wastewater flow estimated on the basis of population in the contributing catchment area is as follows:

•	2015	Average: 17 mld	Peak:	394 lps
•	2030	Average: 20 mld	Peak:	463 lps

However the design flow should be based on amount of tapping Sisamau nala. According to Table 7.4, capacity of existing pumping facility is estimated 54 mld (average), which is enough for 30-50 mld tapping. Therefore, the design wastewater flow for Parmat SPS is selected as follows;

•	2015	Average: 54 mld	Peak:	1,250 lps
•	2030	Average: 54 mld	Peak:	1,250 lps

There is no data regarding the amount of wastewater being conveyed to the pumping station by the sewer system and there is no flow meter on the rising main. Therefore it is impossible to assess capacity against existing conditions. The 310 m^3 sump provides ample storage capacity. Excessively long holding time can result in septic wastewater and should be avoided by operating the pumps at least 4 to 5 starts per hour. Alternatively, the wet well can be divided into two compartments to reduce holding time.

7.4.10 Nawab Ganj Pumping Station

A pumping station was implemented under the Ganga Action Plan (GAP-I) to intercept wastewater from the following nalas: Kesa colony nala, Roadways colony nala, Jageswar nala, Jewra nala, Nawabganj nala, and Rani ghat nala. The pumping station also collects wastewater from local sewers. There is no data regarding the amount of wastewater being conveyed to the pumping station by the sewer system and there is no flow meter on the rising main therefore it is impossible to assess capacity against existing conditions.

The flow measured in the contributing nalas by the study team in 2003 was 4.2 mld while a flow of 12.9 mld was reported by UPJN in 1997. The wastewater flow estimated on the basis of populations in the contributing catchment area is as follows:

- 2015 Average: 6 mld Peak: 139 lps
- 2030 Average: 8 mld Peak: 185 lps

Pumping station data is presented in Table 7.4 and an evaluation of pumping station capacities is presented in Tables 7.5.

The allowable discharge with a 50% reserve is 234 lps. Assuming that sewerage will be improved, the pumping station should have sufficient capacity for the future peak flows. If sewerage schemes are not implemented the flow in nalas can be expected to increase, therefore a program of on-going flow monitoring is essential.

The 288 m³ sump provides ample storage capacity. Excessively long holding time can result in septic wastewater and should be avoided by operating the pumps at least 4 to 5 starts per hour.

7.5 SEWERAGE DISTRICT II: BINGAWAN STP

7.5.1 General Description

This sewerage district is bounded by the City district to the North, Kanpur Jhansi railway line to the West and Pandu river to the South. The Eastern boundary has been arbitrarily drawn to the east of Hamirpur road to include those areas that are already more heavily populated.

Some areas of this district just south of the canal and along Hamirpur road are already developed. Several housing schemes sponsored by the Kanpur Development Authority also lie in this district. However, quite a large area of this district is yet undeveloped. Total population for the year 2030 is 1.17 million.

At present UPJN is implementing a scheme to divert sewage from the City district to a proposed 200 mld UASB treatment plant. The catchment area that will be diverted from the City district is depicted in drawing B5. Diversion is required to relieve flows in the 90" outfall to Jajmau. The scheme, which is at present under construction includes relieving sewers in the City district, pumping stations at Munshi purwa and Rakhi mandi, a 2.2 m diameter outfall sewer to Bingawan and a gravity sewer for tapping Ganda nala and Halawakanda nala. The scheme also includes intercepting COD nala.

Contributing	2015		2030	
catchment	Population	Flow (mld)	Population	Flow (mld)
Diverted from District I	1,072,781	156	1,172,659	182
District II	934,330	135	1,172,711	182
Total	2,007,111	291	2,345,370	364

Projected flows based on populations in future service area are as follows:

The projected wastewater flows clearly exceed the scope of the sanctioned treatment plant project. Additional collection and treatment capacity will be required before 2015.

7.5.2 Sewers

Details of the diversion scheme are presented in Drawing B6. The size of sanctioned trunk sewers presently under construction is taken from DPR documents provided by UPJN.

The carrying capacity of existing and proposed trunk sewers have been computed in accordance with Manning's formula with value of 'n' = 0.015 corresponding to used concrete pipes with allowance for build up of sediment. Sewage quantities in Table 7.3 are peak flows that the collection system has to sustain for the year 2015 and 2030. The hydraulic analysis indicates that the 2.2 m dia outfall sewer has a carrying capacity of approximately 300 mld at 80% full depth. This should be sufficient up to the year 2015. Additional outfall sewers will be required after 2015.

Tentative alignment and size of the future sewer network are shown in Drawing B7. Some of the sewer alignments shown in this area are along roads that do not yet exist or roads that have been proposed in the City Master Plan. Therefore the sewerage scheme will need to be revised when the detailed project is taken up.

7.5.3 Rakhi Mandi Pumping Station

This pumping station is at present being constructed under the Indo-Dutch project to divert sewage flows from existing sewers in the City district. The pumping station has been designed for the following flows:

•	2007	Average: 96 mld	Peak:	2,109 lps
•	2020	Average: 99 mld	Peak:	2,197 lps

Revised wastewater flows estimated on the basis of population in the contributing catchment area is as follows:

•	2015	Average:	86 mld	Peak:	1,990 lps
•	2030	Average:	99 mld	Peak:	2,292 lps

The allowable discharge with a 50% reserve is 2,667 lps and is sufficient for the ultimate projected sewage load. Pumping station data is presented in Table 7.4 and an evaluation of pumping station capacities is presented in Table 7.5.

The 568 m^3 sump provides only 4.1 minutes of storage at peak flow, which is slightly less than the standard requirement of 5 minutes.

7.5.4 Munshi Purwa Pumping Station

This pumping station is at present being constructed under the Indo-Dutch project to divert sewage flows from existing sewers in the City district. The pumping station has been designed for the following flows:

•	2007	Average: 76 mld	Peak:	1,980 lps
•	2020	Average: 82 mld	Peak:	2,138 lps

The revised wastewater flow estimated on the basis of population in the contributing catchment area is as follows:

•	2015	Average: 70 mld	Peak:	1,620 lps
•	2030	Average: 82 mld	Peak:	1,898 lps

The installed capacity is 2,400 lps but the allowable discharge with a 50% reserve is only 1,600 lps and is sufficient for projected sewage load up to the year 2015. Additional pumps would be required to meet the ultimate projected sewage load. Pumping station data is presented in Table 7.4 and an evaluation of pumping station capacities is presented in Tables 7.5. The 606 m³ sump provides 5.3 minutes of storage at peak flow, which is adequate.

7.5.5 Ganda Nala Pumping Station

This pumping station is sanctioned and is designed to tap wastewater from Ganda nala (design flow 22.72 mld). The wastewater flow estimated on the basis of population in the contributing catchment area is as follows:

- 2015 Average: 19 mld Peak: 439 lps
- 2030 Average: 24 mld Peak: 556 lps

The installed capacity is 725 lps and the allowable discharge with a 50% reserve is 483 lps and is sufficient for projected sewage load up to the year 2015. Additional pumps would be required to meet the ultimate projected sewage load. Pumping station data is presented in Table 7.4 and an evaluation of pumping station capacities is presented in Tables 7.5. The 130.4 m³ sump provides 3.9 minutes of storage at peak flow.

7.5.6 Bingawan STP

A 200 mld UASB treatment plant with 1 day final polishing pond discharging to Pandu River has been identified under the Indo-Dutch project. The STP and land acquisition for 56 ha is in the process of being sanctioned. The site plan presented in Drawing B3 indicates provision for future expansion by adding additional UASB modules and polishing ponds. The site could potentially accommodate up to 365 mld if additional post treatment units are not added.

Although total wastewater generation in District II including diverted flow from the City District would amount to 291 mld in year 2015, incoming wastewater to the treatment plant will be estimated under the sanctioned capacity 200 mld because of slow implementation of wastewater collection system in newly developed colonies. So the treatment plant may be expanded in Stage II (after year 2015). Furthermore, the process should be modified with appropriate post aeration to improve effluent quality. Additional study is needed to identify land requirements and feasibility of expansion.

7.6 SEWERAGE DISTRICT III: PANKA STP

7.6.1 General Description

The district is bounded by the Pandu river to the South, development master plan boundaries to the West and North and the Kanpur-Jhansi railway line to the East. City and South sewerage districts are its adjoining neighbours on the eastern flank. Important localities included in this district include:

- To the South of GT road, the Fertilizer Factory, Armapur Estate, Panki Power Generating Station, Indian Institute of Technology are located in this district
- To the North of GT Road, Lakhanpur area, Kanpur University, HBTI

To the North of GT Road the Lakhanpur area has some sewerage system. A temporary outfall has been provided to the North along Kalyanpur road to Naubasta village. As proposed under the previous master plan, sewage from this area should ultimately be diverted south to the Panka outfall and STP.

Projected flows based on population in future service area are as follows:

•	Year:	2015	Pop	ulat	tion:	801,640	Sev	vage	loa	d:	116 r	nld
			-	-			~					

Year: 2030 Population: 1,283,484 Sewage load: 199 mld

7.6.2 Sewers

Tentative alignment and size of the future sewer network is shown in Drawing B8. Some of the sewer alignments shown in this area are along roads that do not yet exist or roads that have been proposed in

the City Master Plan. Therefore, the sewerage scheme will need to be revised when the detailed project is taken up. Carrying capacity of the new trunk sewers have been computed in accordance with Manning's formula with value of 'n' = 0.015 corresponding to old concrete pipe. Sewage quantities in Table 7.3 are peak flows that the collection system has to sustain.

Two outfall sewers will convey sewage from below the Pandu river to a main pumping station located at the treatment plant. The outfall sewers will have an invert level of about 8 m at the STP and it should be possible to cross the Pandu river depending on the scour depth of the river during flood season. Locating the pumping station at the treatment plant will improve operational reliability, facilitate maintenance by treatment staff, and reduce the cost of providing transmission lines for electrical services. Further detailed investigation is required in subsequent studies. If crossing under the river is not feasible then the scheme can easily be modified by locating the pumping station and screening facilities on the north side of the river, conveying flows under pressure directly to the STP.

7.6.3 Panki Pumping Station

Panki Pumping Station will be on the north side of the Kanpur Branch of the Ganga Canal. A rising main will carry sewage under the canal to a gravity sewer starting immediately on the south side of the Canal. Details of the required capacities of pumps, rising mains and sumps are presented in Table 7.12.

The pumping station will cater to the following design flows from the northern part of the West district:

•	2015	Average: 80 mld	Peak:	1,852 lps
•	2030	Average: 126 mld	Peak:	2,916 lps

The new pumping station would have the following characteristics:

	<u>2015</u>	<u>2030</u>
Pumps	: 6 x 260 lps	: 8 x 370 lps
Rising main	: 1 x 1600 mm dia.	: 1 x 1600 mm dia.
Sump	: 888 m ³ - (10 minutes at peak flow)	: 888 m ³ - (5 minutes at peak flow)

Both rising mains should be installed under the canal during Stage I to minimize disruption in the future. Pipes will be installed by jacking method therefore dual rising mains are recommended to reduce the overall diameter to simplify construction. Dual rising mains will also provide more operating flexibility in the event of repairs or maintenance.

7.6.4 Lakhanpur Pumping Station

This pumping station was commissioned in 1982, however, is not working now. Therefore the pumping station needs to be rehabilitated. The pumping station should collect flow from a colony developed on the north side of the GT road. At present, wastewater from this colony discharges via natural drains to the Ganga river. The Master Plan proposes to rehabilitate this station. Sewage will be pumped to a new trunk sewer and conveyed to proposed Panka STP.

Pumping station data is presented in Table 7.4. and an evaluation of pumping station capacities is presented in Table 7.5.

Projected flows based on population in future service area are as follows:

•	2015	Average:	16 mld	Peak:	370 lps
---	------	----------	--------	-------	---------

• 2030 Average: 27 mld Peak: 625 lps

7.6.5 Panka STP

The ultimate capacity of the treatment plant proposed for the year 2030 is 200 mld. A detailed comparison of various treatment process options is presented in Appendix A and summarized in Table 7.13.

Cost (Rs. million)	WSP	AL	AL+	AS	AS+	FAB	UASB ++
		200	mld				
Land area for treatment process (ha)	250	70	150	40	120	12	70
Land cost	1,000	280	600	160	480	48	280
Capital cost	320	500	640	540	680	920	600
Annual O&M	12	60	64	72	76	118	26
Total present value (including land cost)	1,508	1,750	2,272	1,911	2,432	3,047	1,366

 Table 7.13 Panka STP: Preliminary Cost Comparison of Process Alternatives

The comparison indicates that Waste Stabilization Ponds offer the lowest O&M cost. However the land requirement is excessive. The next most attractive option would be UASB plus post treatment with aerated lagoons because it is simple to operate and maintain, and has a low running cost compared to other options. The addition of maturation ponds to reduce faecal coliform counts would significantly increase the land requirement therefore it is proposed to use disinfection with chlorine.

A potential site has been identified near Panka Bahadur Nagar village and UPJN has confirmed that land could be acquired. Final site location and the potential for effluent re-use should be investigated in more detail at the feasibility study stage.

7.7 SEWERAGE DISTRICT IV: KARANKHERA STP

7.7.1 General Description

This district is bounded by the Delhi Calcutta railway line to the North, Pandu river to the South, and the City Master Plan boundary in the East. It is sparsely populated and has no sewerage system at present.

The district also includes a small pocket north of the railway line to the east of the Jajmau STP which has been designated as a non-sewered area since population densities will remain below 120 persons per hectare over the planning horizon.

	20	15	20	30
Areas	Population	Sewage load (mld)	Population	Sewage load (mld)
Sewer service area	201,106	29	428,512	66
Non sewer area	68,120	11	116,694	18
Total	269,226	40	545,206	84

Projected flows based on populations in future service area are as follows:

7.7.2 Sewers

Tentative alignment and size of the future sewer network is shown in Drawing B9. Most of the sewer alignments shown in this area are along roads that do not yet exist or roads that have been proposed in the City Master Plan and have yet to be built. Therefore the sewerage scheme will need to be revised when the detailed project is taken up. Carrying capacity of the new trunk sewers have been computed in accordance with Manning's formula with value of 'n' = 0.015 corresponding to old concrete pipes. Sewage quantities in Table 7.3 are peak flows that the collection system has to sustain.

The main trunk sewer will convey sewage to a pumping station located at Ruman village just on the north side of the railway line. The pumping station will convey sewage directly to the head of the treatment plant.

7.7.3 Ruman Pumping Station

Ruman pumping station will be on the north side of the Delhi Kolkatta railway line. A rising main will carry sewage from Ruman SPS directly to the sewage treatment plant at Karankhera. The pumping station will be implemented some time after 2015 along with the treatment plant and trunk sewers for the East District. Details of the required capacities of pumps, rising mains and sumps are presented in Tables 7.14.

The pumping station will cater to the following design flows from the East district:

• 2030 Average: 66 mld Peak: 1,600 lps

The new pumping station would have the following characteristics:

Pumps	: 6 x 260 lps
Rising main	: 1 x 1200 mm dia.
Sump	: 468 m^3 (5 minutes at peak flow)

7.7.4 Karankhera STP

The ultimate capacity of the treatment plant proposed for the year 2030 is 84 mld. The cost comparison of treatment options indicates that UASB++ is the most cost effective process. UPJN has reported that a suitable site is available near Karankhera Village. The effluent can be discharged directly to Ganga river or can be used for irrigation. There may also be enough land available for maturation ponds to reduce faecal coliform counts instead of using chlorine. Final site location and the potential for effluent re-use, including polishing using wetlands, should be investigated in more detail at the feasibility study stage.

7.8 SUMMARY

The Master Plan in this study is summarized in Table 7.15.

	DISTRICT				Population			er Generatio	n (mld)
				2003	2015	2030	2003	2015	2030
	DISTRICT- C	entral		694,517	802,336	869,853	97	116	135
		annety		77,885	122,910	152,075	11	18	24
	DISTRICT- E	ast		232,464	338,808	433,093	33	49	67
	DISTRICT- C	entral		843,469	1,072,781	1,172,659	118	156	182
	DISTRICT- S	outh		547,771	934,330	1,172,711	77	135	182
	DISTRICT-			335,790	801,640	1,283,484	47	116	199
		А		56,345	201,106	428,512	8	30	66
		ISA		31,586		116,694	4	10	18
	Total			2,819,827			395	630	873
	Tannery industrial	waetow	ator	2,017,027	4,542,051	5,029,001	13	13	13
	Total	wastew	ater				408	643	886
	Total						100	015	000
No	Pumping Station		Status	I	inflow (mld)		Remark		
	Guptar		Existing		2015	2030 4	Kelliark		
1	Bhagwatdas nala		U		4 8				
2	Bhagwatdas nala Muirmill		Proposed			8			
3			Existing		4	5			
4	Parmat		Existing		54	54			
5	Nawabganj		Existing		6	8			
6	Jajmau		Existing		165	202			
	Jajmau		Existing		18	24	For tannery a	rea domestic	2
7	Rahkimandi		Sanctioned		86	99			
8	Munshipurwa		Sanctioned		70	82			
9	Ganda nala		Sanctioned		19	24			
10	Lakhanpur		Existing		16	27			
11	Panki		Proposed		80	126			
12	Ruman		Proposed		29	66			
No.	Treatment Plant inf	flow		Ι	inflow (mld) 2015	2030	Remark		
1	Jajmau D	omesti	c		183	226			
	Т	annery			13	13	Previous M/H	9mld	
	Т	otal			196	239			
2	Karankhera				39	84			
3	Bingawan				175	364	District II (ce	entral)+ Gano	da Nala in 20
4	Panka				116	199			
No.	Treatment Plant cap	pacity	Status	С	apacity (mld 2015	2030	Remark		
1	Jajmau U	ASB1	Existing		5	5	For domestic	_	
	U	JASB2	Existing		36	36	For tannery		
			Existing		130	130	For domestic		
			Sub Total		171	171			
			Augument		-	-			
	U	JASB2	Augument		16	16	For tannery 4	+ domestic	12
	А	SP1	Augument		43	43	130 mld x 1/3	3	
	А		Augument			10			
			Sub Total		59	69			
			Total		230	240			
2	Karankhera		Durana 1		40	85			
2			Proposed						
3	Bingawan Bhaunti		Proposed		295	365			
4	Bhaunti		Proposed		120 685	200			
	Lotal				685	xun			

Table 7.15 Summary of Master Plan

685

890

Total

Contributory		Design							Gradient	Invert level (m)	vel (m)	Ground level (m)	vel (m)	Covering (m)	(m)	Full pipe capacity	apacity	De	Design capacity	>	Design Flow(l/s)
Shape	Flow Shape (lps)		S E	Size (inch)	e (f	Size (mm)	Length (m)	Gradient	Pre viousM	n/s	d/s	n/s	d/s	u/s	_	Velocity 1	ge	Ţ.	Velocity	S	/ Design capacity(l/s)
									/P							(m/s)	(J/S)	d/df	(m/s)	(1/s)	
5,295 27 Circle 12	27 Circle		12			305	1,150	303	300	122.060	118.260	126.500	125.220	4.14	6.65	0.690	50	0.80	0.787	48	1.78
				1																	
22,300 100 Circle 36	100 Circle	Circle	36			914	900	300	300	118.260	115.260	125.230	126.000	6.06	9.83	1.440	945	0.80	1.642	915	9.15
38,388 173 Circle 36	173 Circle	Circle	36	_		914	500	1,263	480	115.130	114.734	126.600	118.855	10.56	3.21	0.702	461	0.80	0.800	446	2.58
54,476 221 Circle 36	221 Circle	Circle	36			914	750	550	550	114.614	113.250	118.855	116.000	3.33	1.84	1.064	698	0.80	1.213	676	3.06
91,188 369 Circle 36	369 Circle	Circle	36			914	1,200	1,395	1,000	112.250	111.390	116.000	116.500	2.84	4.20	0.668	438	0.80	0.762	424	1.15
0 0 Circle 24	0 Circle	Circle	24			610	1,200	851	1,000	112.250	110.840	116.000	116.500	3.14	5.05	0.653	191	0.80	0.744	185	•
250,000 1,008 Circle	1,008					1,400	1,200	1,395		112.250	111.390	116.000	116.500	2.35	3.71	0.887	1,365	0.80	1.011	1,321	1.31 (Proposed)
through Rising Main																					
				_																	
31,315 140 Circle 24	140 Circle	Circle	24			610	1,200	759	1,000	110.840	109.260	118.000	116.500	6.55	6.63	0.691	202	0.80	0.788	196	1.40
through Rising Main																					
						1,650															
20,112 90 Rectangle 20x 30	90 Rectangle 20x	Rectangle 20x	20x		0		845	1,018	1,000	117.380	116.550	126.820	124.200						0.586	181	2.01
137,490 556 Rectangle 28x 4	556 Rectangle 28x	Rectangle 28x	28x	4	42		1,600	1,032	1,000	118.580	117.030	122.860	124.100						0.729	442	0.79
202,504 817 Rectangle 32x 48	817 Rectangle	Rectangle		4	~		720	1,200	1,200	117.030	116.430	124.100	124.200	+					0.739	586	0.72
	1,076 Rectangle	Rectangle			54		1,200	1,500	1,500	116.200	115.400	124.200	124.340						0.715	717	0.67
				_																	
52,314 212 Circle 24	212 Circle	Circle	24	_		610	1,150	852	850	121.920	120.570	126.570	125.220	4.04	4.04	0.653	191	0.80	0.744	185	0.87
86,726 351 Circle 18	351 Circle		18			457	1,036	500	500	122.790	120.720	125.500	125.220	2.25	4.04	0.703	115	0.80	0.801	111	0.32
-	-	i		-			007		080	0.000							3	000			:
689 Circle	689 Circle	Circle	6	4		610	400	851	850	120.570	120.100	125.220	124.750	4.04	4.04	0.653	191	0.80	0.744	185	0.27
979 Circle	979 Circle	Circle	3(_		762	880	1,000	1,000	119.950	119.070	124.750	124.500	4.04	4.67	0.699	319	0.80	0.797	309	0.32
262,020 1,058 Circle 48	1,058 Circle	Circle	48			1,219	600	1,714	1,700	118.620	118.270	124.000	123.000	4.16	3.51	0.730	852	0.80	0.832	825	0.78
302,397 1,220 Circle 48	1 220 Circle	Circle	48	_		1 219	800	1111	1 700	118 270	117 550	123,000	174 710	251	201	2000	1 057	0.00			0.64

					Table 7	Table 7.1 Existing Trunk Sewer: Hydraulic Capacity Analysis (DISTRICT I) (2/2)	ting Tru	nk Sewe	r: Hydr	aulic Ca	apacity .	Analysi	(DIST)	RICT I)	(2/2)						
Z	Node	Contributory Population	Design	Choro	Size	Size		Geodiant	Gradient	Invert level (m)	/el (m)	Ground level (m)	vel (m)	Covering (m)		Full pipe capacity	pacity	Des	Design capacity		Design Flow(l/s)
From	To	Each Cumulative		ollape	(inch)		Lengui (III)		PreviousM /P	s/n	d/s	n/s	d/s	n/s	d/s V	Velocity D (m/s)	Discharge D (J/s)	Depth ratio Velocity d/df (m/s)		Discharge (1/s)	/ Design capacity(l/s)
Parmat SPS	S																				
Rising Main(To H)	n(To H)		0	Circle		600	1,000			113.820	122.030	116.500	124.710	2.00	2.00	0.00	0				
Rising Main(To B)	n(To B')	122,503	3 440	Circle		700	1,000			113.720	121.930	116.500	124.710	2.00	2.00	1.14	440				Proposed
	-																				
н	c	11 800 218,400	0 882	Circle	60	1,524	1,274	2,404	2,400	116.950	116.420	124.710	120.820	6.24	2.88	0.715	1,304	0.80	0.815	1,262	1.43
=	2	218,400	0 882	Circle		1,600	1,274	2,404	2,400	116.950	116.420	124.710	120.820	6.16	2.80	0.739	1,486	0.80	0.842	1,438	1.63 (Proposed)
ť	Ъ,	81 605 259,247	7 1,046	Circle	09	1,524	1,200	2,927	2,900	116.120	115.710	120.820	124.390	3.18	7.16	0.648	1,182	0.80	0.739	1,144	1.09
2	2	259,247	7 1,046	Circle		1,600	1,200	2,927	2,900	116.120	115.710	120.820	124.390	3.10	7.08	0.669	1,345	0.80	0.763	1,302	1.24 (Proposed)
B'	B-A	12,001 271,248	-8 1,096	Circle	60	1,524	7,123	2,400	2,400	115.448	112.480	124.390	115.250	7.42	1.25	0.716	1,306	0.80	0.816	1,264	1.15
à	B'(F) A'	77 70K 119,721	1 484	Rectangle	36x 54		1,810	3,017	3,000	114.940	114.340	124.390	124.400						0.504	506	1.05
2	v-(a) a	478,884	4 1,933	Circle	78	2,000	1,810	3,017	3,000	114.940	114.340	124.390	124.400	7.45	8.06	0.765	2,403	0.80	0.872	2,326	1.20 (Proposed)
Α"	Α"	0	0 0	Circle	72	1,829	2,255	3,351	3,350	115.600	114.927	126.335	125.520	8.91	8.76	0.684	1,797	0.80	0.780	1,739	
Α"	A'	163,097 163,097	7 659	Circle	78	1,981	1,905	3,521	3,350	114.912	114.371	125.520	124.400	8.63	8.05	0.704	2,170	0.80	0.803	2,101	3.19
Α'	А	0 761,702	2,732	Circle	84	2,134	3,434	1,561	1,700	114.190	111.990	124.400	115.250	8.08	1.13	1.110	3,970	0.80	1.265	3,843	1.41
						_															
A	К	0 1,032,950	0 3,706	Circle	90	2,286	340	2,267	2,200	111.730	111.580	115.250	120.625	1.23	6.76	0.965	3,961	0.80	1.100	3,834	1.03
К	PS (J)	0 1,032,950	0 3,706	Circle	90	2,286	5,140	2,216	2,200	111.580	109.260	120.625	114.510	6.76	2.96	0.976	4,006	0.80	1.113	3,878	1.05

9
IRIC
is (DISTRICT I)
Analysis
acity /
Cap
Iraulic
Hyc
Sewer:
Trunk
Existing 1
7.1
a)

Design Flow(l/s)	/ Design capacity(l/s)		1.71	0.71	0.61	0.49	0.62	0.45	0.66											28.57	1.63	1.62	5.45
Desi			185	309	309	309	430	562	943											1,457	325	324	1,482
acity	y Discharge (1/s)																						
Design capacity	Velocity (m/s)		0.746	0.797	0.797	0.797	0.772	0.741	0.751											0.777	0.694	0.692	0.791
-	Depth ratio d/df		0.80	0.80	0.80	0.80	0.80	0.80	0.80											0.80	0.80	0.80	0.80
capacity	Discharge (l/s)		191	319	319	319	444	581	974											1,505	336	335	1,531
Full pipe capacity	Velocity (m/s)		0.654	0.699	0.699	0.699	0.677	0.650	0.659											0.682	0.609	0.607	0.694
(1/7) (1/7)	d/s		3.47	5.11	4.05	4.25	4.06	7.89	8.15											2.74	5.05	2.48	2.41
Covering (m)	s/n		2.55	3.42	5.11	4.05	4.25	4.05	8.30										+	8.16	4.29	5.33	2.89
ng 1runk Sewer: Hydraulic Capacity Analysis (DISTRUCT II) (1/2) and (m) Gradient Invert level (m) Covering (m)	d/s		126.650	127.300	125.200	125.000	124.740	127.435	126.610											121.065	125.585	121.065	120.235
Ground level (m)	s/n		126.360	126.650	127.300	125.200	125.000	124.740	127.435	-	-									126.610	125.580	125.850	121.065
acity AI	d/s		122.570	121.430	120.390	119.990	119.770	118.480	117.090	-	-			-						116.650	119.700	117.750	116.150
Invert level (m)	n/s		123.200 12	122.470 12	121.430 12	120.390 11	119.840 11	119.620 11	117.760 11	-	-									116.770 11	120.450 11	119.680 11	116.500 11
ydraui ent li			850 123	1,000 122	1,000 121	1,000 120	1,400 119	1,800 119	2,500 117											2,900 116	1,500 120	1,500 119	2,900 116
Wer: H Gradi	t Gradient PreviousM		849 8																				
unk Se	ength (m) Gradient			1,000	1,000	1,000	1,357	1,807	2,463											3,000	1,493	1,503	2,900
	Length (m		535	1,040	1,040	400	95	2,060	1,650											360	1,120	2,900	1,015
I able 7.1 Existin Size Size	(um)		610	762	762	762	914	1,067	1,372											1,676	838	838	1,676
able 7.	(inch)		24	30	30	30	36	42	54	_	_									66	33	33	66
			ile	-	-			-						le	le	ile	e						
	Snape		108 Circle	437 Circle	506 Circle	632 Circle	695 Circle	58 Circle	20 Circle					-				88		51 Circle	200 Circle	200 Circle	272 Circle
Design								1,258	1 1,420			-	0			-		7 2,588					
Contributory Population	Cumulative		24,077	108,254	125,636	156,507	172,152	311,801	351,571			351,571				351,571		640,847		9,425	44,401	44,401	67,713
Contr Popt	Each	.2	24,077	84,177	17,382	30,871	15,645	139,649	39,770								289,276			9,425	44,401	0	13,887
ch.	To	Sewer No.	X11	X10	6X	X8	X7	X6	X 4			to South	3		huth	4	-5-2			X3	Y2	X3	X2
Node	From	3T Rd Trunk Sewer No.2	X12	X11	X10	6X	X8	Х7	X6		From X4	to S.	to X3		Diverted to south	from X4	from X5-2	Total	1	X4	Y3	Y2 Y1	X3

E
Ê
ICT II)
IST
9
ysis
nal
y Al
acity
apa
U U
ilii
dra
Hy
'er:
Sew
nk
Iru
ຼົຍ
İstir
Exis
Б.

	Design Flow(l/s)	capacity(l/s)	1.57	1.25	0.40	3.76	1 72	- 1 - F	1.25	1.08	0.54	0.98								
		Discharge (1/s)	185	124	422	248	309	202	185	424	806	1,844								
	Design capacity	Velocity (m/s)	0.746	0.498	0.758	000	797.0		0.746	0.762	1.448	0.827								
	De	Depth ratio d/df	0.80	0.80	0.80	0.80	0.80	0000	0.80	0.80	0.80	0.80								
	Full pipe capacity	Discharge (l/s)	191	128	436	756	319	110	191	438	833	1,905								
5)	Full pipe	Velocity (m/s)	0.654	0.437	0.665	0.876	0 699	1000	0.654	0.668	1.270	0.725								
· II) (2/	Covering (m)	d/s	6.93	5.58	8.52	4.74			5.65	7.41	3.32	8.96								
FRICT	Cover	s/n	3.04	4.03	7.38	3.43			5.37	5.11	7.41	2.41								
is (DIST	Ground level (m)	d/s	126.210	125.160	125.980	123 940	124 190		124.990	125.980	120.235	126.335								
Analys	Ground	s/n	124.500	124.130	125.160	125 500	123 940	0-00-	125.770	124.190	125.980	120.235								
apacity	Invert level (m)	d/s	118.670	118.970	116.550	119 090	118 320	0.000	118.730	117.660	116.000	115.550								
raulic C	Invert l	s/n	120.850	119.490	116.870	121 460	118 750	001-011	119.790	118.170	117.660	116.000								
ır: Hydı	Gradient	PreviousM /P	850	550	1,400	850	1 000	, , ooo	850	1,400	?	3,000								
nk Sewe	Gradiant	UI auton	849	1,904	1,406	473	1 000	, voor	849	1,394	386	2,978								
ing Tru	I anoth (m) Gradiant	Leugui (III)	1,850	066	450	1 120	430	2027	900	711	640	1,340								
Table 7.1 Existing Trunk Sewer: Hydraulic Capacity Analysis (DISTRICT II) (2/2)	Size	(mm)	610	610	914	610	762	-0-	610	914	914	1,829								
Fable 7.	Size	(inch)	24	24	36	24	30	2	24	36	36	72								
-	Chana	odane	Circle	Circle	Circle	Circle	Circle	21212	Circle	Circle	Circle	Circle		-	-			-		
	Design		118 0	66	1,042	yy Yy			148	394 0	1,503	1,874		-	2,147		4,208	2,694	1,703	
	tory tion	Cumulative	26,381	18,285	257,863	12 123	40.360	000101	32.999	97,545	372,484	464,382	67,430		531,812	0	1,172,659	750,659	422,000	
	Contributory Population	Each C	26,381	18,285	12,546	12 123	78 237		32.999	24,186	17,076	24,186					1.			
	e	То	Z2.	Z	XI	74	73	3	Z3	XI	X2	Α"'			to South	- A"		to Relief	E11	
	Node	From	Z2	Z1.1	Z	75	74	i	Z3.1	Z3	X1	X 2	From Y2	From X2	to S	to A	South Total	to F	to E	

9
(II)
E
R
Ē
Ĩ
is (
lysi
Ana
à
aci
àp
U U
ulic
dra
Hyc
••
ver
Se
nk
E
50
ting
xist
ŝ

	No	ode	Existing		sting pipe size	Replace	ement	Length	Т	arget ye	ar
			Pipe shape			Pipe dia	meter		2010	2015	2030
	From	То		(inch)	(mm)	(mm)	(inch)	(m)			
	Е	D	Rectangle	28 x42	711 x1,067	1,000	39	1,600			
	D	С	Rectangle	32 x48	813 x1,219	1,200	47	720			
	С	C'-B(b)	Rectangle	36 x54	914 x1,372	1,400	55	1,200			
	H2	H1	Circle	24	610	1,400	55	1,200			
ΙLΟ	I4	I3	Circle	24	610	700	28	1,150			
DISTRICT I	I3(a)	I3	Circle	18	457	800	31	1,036			
DIS	I3	I2	Circle	24	610	1,200	47	400			
	I2	I1	Circle	30	762	1,200	47	880			
	I1	Ι	Circle	48	1,219	1,600	63	600			
	Ι	Н	Circle	48	1,219	1,400	55	800			
	Total							9,586			
										-	
	X11	X10	Circle	30	762	900	35	1,040			
	X10	X9	Circle	30	762	1,000	39	1,040			
	X9	X8	Circle	30	762	1,000	39	400			
П	X8	X7	Circle	36	914	1,600	63	95			
DISTRICT II	X7	X6	Circle	42	1,067	1,600	63	2,060			
ISTF	X6	X4	Circle	54	1,372	1,600	63	1,650			
D	Z	X1	Circle	36	914	1,400	55	450			
	X1	X2	Circle	36	914	1,200	47	640			
	X2	A'''	Circle	72	1,829	2,200	87	1,340			
	Total							8,715			

 Table 7-2(1/3)
 Trunk Sewer Replacement Schedule

 Table 7-2(2/3)
 Relief Sewer Installation Schedule

	No	ode	Existing	Exist	ing pipe size	Relief s	sewer	Length	Т	arget ye	ar
			Pipe shape			Pipe dia	meter		2010	2015	2030
	From	То		(inch)	(mm)	(mm)	(inch)	(m)			
I	Н	G	Circle	60	1,524	1,600	63	1,274			
	G	Β'	Circle	60	1,524	1,600	63	1,200			
DISTRICT	Β'	B'(b)-A'	Rectangle	36 x54	914 x1,372	2,000	79	1,810			
	Total							4,284			

Table 7-2(3/3) Rising Main Installation Schedule	Table 7-2(3/3)	Rising Main Installation Schedule
--	----------------	--

		Inflo	W	Diameter	Velocity	Length	Т	arget ye	ar
	(avg;mld)	(peak;mld)	(peak;lps)	(mm)	(m/s)	(m)	2010	2015	2030
Parmat SPS	54	108	1,250	1,000	1.59	1,000			
Bhagwatdas nala SPS	8	16	185	400	1.47	1,000			

	Domortzo	NGIII41 KS	1.08	1.31	1.37	1.38	1.25	1.29	1.29	1.29	1.29			1.07	1.19	1.19		
	iy	Discharge (1/s)	392	733	246	1.052	351	1,409	1,409	1,409	1,409			351	733	733		
	Design capacity	Velocity (m/s)	0.726	0.763	0.752	0.805	0.823	0.825	0.825	0.825	0.825			0.560	0.763	0.763		
	De	Depth ratio d/df	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80			0.80	0.80	0.80		
East)	capacity	Discharge 1 (J/s)	405	757	254	1.087	363	1,456	1,456	1,456	1,456			363	757	757		
	Full pipe capacity	Velocity (m/s)	0.64	0.67	0.66	0.71	0.72	0.72	0.72	0.72	0.72			0.72	0.67	0.67		
(DISTR	ng (m)	d/s	2.80	4.91	3.20	4.22	3.55	4.50	2.00	2.00	2.00			2.00	2.05	2.02		
Analysis	Covering (m)	s/n	2.00	2.78	2.00	4.88	2.00	4.22	5.10	4.70	4.80			4.40	4.67	4.75		
ıpacity ∕	Ground level (m)	d/s	124.00	125.10	125.10	124.10	124.10	124.10	120.60	117.60	114.50			120.60	117.60	114.50		
aulic Ca	Ground	s/n	124.40	124.00	125.90	125.10	125.00	124.10	124.10	120.60	117.60			124.10	120.60	117.60		
s: Hydr:	Invert level (m)	d/s	120.20	118.88	121.12	118.34	119.66	117.86	116.86	113.86	110.76			117.71	114.24	111.17		
Sewer	Invert l	s/n	121.40	119.90	123.12	118.68	122.11	118.14	117.26	114.16	111.06			118.81	114.61	111.54		
ed Trunk	Geodiant	OI aUIGIII	1,500	2,000	1,000	2,200	1,000	2,500	2,500	2,500	2,500			1,000	2,000	2,000		
Propose	Length	(m)	1,800	2,050	2,000	750	2,450	700	1,000	750	750			1,100	750	750		
Table 7.3 Proposed Trunk Sewers: Hydraulic Capacity Analysis (DISTRICT-	Size	(mm)	900	1,200	700	1.400	800	1,600	1,600	1,600	1,600			800	1,200	1,200		
Ľ	Design Elour	(lps)	362	560	180	765	281	1,089	1,089	1,089	1,089			329	614	614		
	utory ation	Cumulative	89,500	138,643	39,978	189.484	69,649	269,996	269,996	269,996			a	81,236	152,075			
	Contributory Population	Each (89,500	49,143	39,978	10.863	69,649	10,863	0	0			Tamery are	81,236	70,839			
	e	To	CE2	CE4	CE4	CE6	CE6	CE7	CE8	CE9(SPS)			eral sewer in	Tannery-2	Tannery-3			
	Node	From	CE1	CE2	CE3	CE4	CE5	CE6	CE7	CE8 (Domestic lateral sewer in Tannery area	Tannery-1	Tannery-2			

(DISTRICT-
Analysis
Capacity
Hydraulic (
Sewers:
Trunk
Proposed
ŗ.

Table 7.3 Proposed and Sanctioned Trunk Severs: Hydraulic Capacity Analysis (DISTRICT) Note Contribution Propint Design (m) San (m) Invertiend (m) Invertiend (m) Contribution Pathysis (DISTRICT) No.2 100 Paylin Invertiend 100 Invertiend 100 100 100 No.2 1005/91 155/97 210 1000 123/91		Design capacity	Depth ratio Velocity Discharge Velocity d/df (I/s)	0.80 0.780 520 Proposed		0.80 0.716 172 Sanctioned	0.80 0.622 598 Sanctioned	0.80 0.695 668 Sanctioned	0.80 0.690 901 Sanctioned	0.80 0.690 901 Sanctioned	0.80 0.653 1,115 Sanctioned	0.80 0.759 182 Sanctioned	0.80 0.823 351 Sanctioned	0.80 0.781 422 Sanctioned	0.80 0.780 1.331 Sanctioned	0.80 0.744 1,609 Sanctioned	0.80 0.392 94 Sanctioned	0.80 0.890 481 Sanctioned	0.80 0.890 481 Sanctioned	0.80 0.890 481 Sanctioned	0.80 0.706 678 Proposed		0./ 20 292		0.80 0.726 392 Sanctioned	0.80 0.604 403 Sanctioned	0.80 0.782 751 Sanctioned		
Node Contributory Depulation To Each Cumulative [1] X5-2 105,941 105,941 [1] X5-2 105,941 105,941 [1] ER 5,199 5,199 [2] ER 5,199 5,199 [3] ER 10,388 15,597 [3] ER1 10,388 15,597 [3] ER3 10,388 15,597 [3] ER4 15,597 51,990 [4] CR 12,169 12,169 [4] CR 12,123 64,113 [6] CR 12,169 12,169 [6] CR 12,169 12,169 [6] CR 12,149 289,276 [6] X5-2 20,344 65,106 [6] X5 23,5593 44,722 [6] X4 13,349 289,276 [6] X5 2 15,349 289,276 <td>is (DISTRICT-II</td> <td>Full pipe capacity</td> <td>Discharge (1/s)</td> <td></td>	is (DISTRICT-II	Full pipe capacity	Discharge (1/s)																										
Node Contributory Depulation To Each Cumulative [1] X5-2 105,941 105,941 [1] X5-2 105,941 105,941 [1] ER 5,199 5,199 [2] ER 5,199 5,199 [3] ER 10,388 15,597 [3] ER1 10,388 15,597 [3] ER3 10,388 15,597 [3] ER4 15,597 51,990 [4] CR 12,169 12,169 [4] CR 12,123 64,113 [6] CR 12,169 12,169 [6] CR 12,169 12,169 [6] CR 12,149 289,276 [6] X5-2 20,344 65,106 [6] X5 23,5593 44,722 [6] X4 13,349 289,276 [6] X5 2 15,349 289,276 <td>Japacity Analysi</td> <td>Covering (m)</td> <td>d/s</td> <td></td>	Japacity Analysi	Covering (m)	d/s																										
Node Contributory Depulation To Each Cumulative [1] X5-2 105,941 105,941 [1] X5-2 105,941 105,941 [1] ER 5,199 5,199 [2] ER 5,199 5,199 [3] ER 10,388 15,597 [3] ER1 10,388 15,597 [3] ER3 10,388 15,597 [3] ER4 15,597 51,990 [4] CR 12,169 12,169 [4] CR 12,123 64,113 [6] CR 12,169 12,169 [6] CR 12,169 12,169 [6] CR 12,149 289,276 [6] X5-2 20,344 65,106 [6] X5 23,5593 44,722 [6] X4 13,349 289,276 [6] X5 2 15,349 289,276 <td>s: Hydraulic C</td> <td>iround level (m)</td> <td></td>	s: Hydraulic C	iround level (m)																											
Node Contributory Depulation To Each Cumulative [1] X5-2 105,941 105,941 [1] X5-2 105,941 105,941 [1] ER 5,199 5,199 [2] ER 5,199 5,199 [3] ER 10,388 15,597 [3] ER1 10,388 15,597 [3] ER3 10,388 15,597 [3] ER4 15,597 51,990 [4] CR 12,169 12,169 [4] CR 12,123 64,113 [6] CR 12,169 12,169 [6] CR 12,169 12,169 [6] CR 12,149 289,276 [6] X5-2 20,344 65,106 [6] X5 23,5593 44,722 [6] X4 13,349 289,276 [6] X5 2 15,349 289,276 <td>ied Trunk Sewei</td> <td></td> <td></td> <td>120.30</td> <td></td> <td>119.95</td> <td>118.43</td> <td>118.16</td> <td>117.80</td> <td>117.71</td> <td>117.45</td> <td>120.36</td> <td>119.67</td> <td>119.39</td> <td>117.23</td> <td>116.80</td> <td>119.13</td> <td>119.58</td> <td>119.05</td> <td>118.25</td> <td>118.25</td> <td>01.011</td> <td>118./0</td> <td>118.54</td> <td>118.01</td> <td>117.32</td> <td>117.04</td> <td></td> <td></td>	ied Trunk Sewei			120.30		119.95	118.43	118.16	117.80	117.71	117.45	120.36	119.67	119.39	117.23	116.80	119.13	119.58	119.05	118.25	118.25	01.011	118./0	118.54	118.01	117.32	117.04		
Node Contributory Depulation To Each Cumulative [1] X5-2 105,941 105,941 [1] X5-2 105,941 105,941 [1] ER 5,199 5,199 [2] ER 5,199 5,199 [3] ER 10,388 15,597 [3] ER1 10,388 15,597 [3] ER3 10,388 15,597 [3] ER4 15,597 51,990 [4] CR 12,169 12,169 [4] CR 12,123 64,113 [6] CR 12,169 12,169 [6] CR 12,169 12,169 [6] CR 12,149 289,276 [6] X5-2 20,344 65,106 [6] X5 23,5593 44,722 [6] X4 13,349 289,276 [6] X5 2 15,349 289,276 <td>d and Sanction</td> <td></td> <td></td> <td>1,500</td> <td></td> <td>006</td> <td>3,000</td> <td>2,400</td> <td>3,000</td> <td>3,000</td> <td>4,000</td> <td> 800</td> <td>1,000</td> <td>1,300</td> <td> 2,800</td> <td> 3,600</td> <td></td> <td></td> <td></td> <td>1,000</td> <td>2,337</td> <td>1 200</td> <td>1,200</td> <td>1,500</td> <td>1,500</td> <td>2,500</td> <td></td> <td></td> <td></td>	d and Sanction			1,500		006	3,000	2,400	3,000	3,000	4,000	 800	1,000	1,300	 2,800	 3,600				1,000	2,337	1 200	1,200	1,500	1,500	2,500			
Node Contributory Depulation To Each Cumulative [1] X5-2 105,941 105,941 [1] X5-2 105,941 105,941 [1] ER 5,199 5,199 [2] ER 5,199 5,199 [3] ER 10,388 15,597 [3] ER1 10,388 15,597 [3] ER3 10,388 15,597 [3] ER4 15,597 51,990 [4] CR 12,169 12,169 [4] CR 12,123 64,113 [6] CR 12,169 12,169 [6] CR 12,169 12,169 [6] CR 12,149 289,276 [6] X5-2 20,344 65,106 [6] X5 23,5593 44,722 [6] X4 13,349 289,276 [6] X5 2 15,349 289,276 <td>le 7.3 Propose</td> <td></td> <td></td> <td>1,000</td> <td></td> <td>600</td> <td>1,200</td> <td>1,200</td> <td>1,400</td> <td>1,400</td> <td>1,600</td> <td></td> <td>800</td> <td>006</td> <td></td> <td></td> <td>600</td> <td>006</td> <td>006</td> <td>006</td> <td></td> <td></td> <td></td> <td>900</td> <td>006</td> <td></td> <td>1,200</td> <td></td> <td></td>	le 7.3 Propose			1,000		600	1,200	1,200	1,400	1,400	1,600		800	006			600	006	006	006				900	006		1,200		
Node Contri To Each X5-2 105,941 X5-2 105,941 ER 5,199 ER 5,199 ER 10,398 ER2 10,398 ER3 10,398 ER4 10,398 ER3 10,398 ER4 12,153 CR 12,169 CR 12,169 CR 12,169 CR 12,153 CR 12,169 CR 12,153 CR 12,153 CR 12,153 CR 12,153 CR 12,153 CR 12,153 CR 13,349 X5-2 40,768 X5 20,384 Z1 15,548 Z1 15,548 Z1 15,548 Z1 15,548 Z1 20,344 Z1 2 Z	Tab	Design																											
		Contributory Population																								67,	67,		
		Node	From To	F2 X5-2	_	D1 ER	ER ER1	ER1 ER2	ER2 ER3	ER3 ER4	ER4 CR	C1 C2	C2 C3	C3 CR	CR X5-2	X5-2 X4	Z2' Z1		•			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 7X	•		-		Munsi puruwa	

			 				_			_	_					_						 				_
	Damarke	INCIDALING						Sanctioned		Sanctioned	Sanctioned	Sanctioned	Sanctioned													
	y	Discharge (1/s)	520		172	733		439	72	506	581	669	901	351	1,409	1,928	1,928		1,928	1,928	1,928	120	2,555	2,555	120	3,514
	Design capacity	Velocity (m/s)	0.780		0.716	0.763		0.659	0.669	0.759	0.719	0.727	0.690	0.823	0.825	0.893	0.893		0.893	0.893	0.893	0.719	0.958	0.958	0.719	1.089
	Des	Depth ratio d/df	0.80	0	0.80	0.80		0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80		0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
(capacity	Discharge (l/s)	537		178	757		454	74	523	600	722	931	363	1,456	1,992	1,992		1,992	1,992	1,992	124	2,639	2,639	124	3,630
RICT-	Full pipe capacity	Velocity (m/s)	0.68	e c	0.63	0.67		0.58	0.59	0.67	0.63	0.64	0.61	0.72	0.72	0.78	0.78		0.78	0.78	0.78	0.63	0.84	0.84	0.63	0.96
is (DIST	lg (m)	d/s	3.03	4	2.30	3.71		5.99	6.20	5.63	6.18	5.22	5.20	3.50	7.34	8.33	8.51		2.00	2.00	2.16	3.90	4.87	5.65	2.93	7.26
/ Analys	Covering (m)	u/s	2.00	4	2.00	3.02		1.10	2.00	5.99	5.63	6.21	5.20	2.00	6.14	7.33	8.33		2.24	2.10	2.00	2.00	3.81	4.87	2.00	8.46
Capacity	Ground level (m)	d/s	123.80		123.80	124.00		126.38	124.20	125.58	125.51	123.35	122.92	124.20	125.00	125.00	125.00		124.50	124.00	124.00	124.00	124.50	125.00	125.00	123.35
lraulic (Ground 1	s/n	124.00		124.00	123.80		122.00	122.00	126.38	125.58	125.55	123.35	124.00	124.20	125.00	125.00		125.90	124.50	124.00	124.10	124.00	124.50	125.00	125.00
ers: Hyd	Invert level (m)	d/s	119.67		120.82	118.98		119.29	117.52	118.85	118.12	116.82	116.18	119.81	115.92	114.72	114.54		120.55	120.05	119.89	119.52	117.46	117.18	121.49	113.69
nk Sewe	Invert le	s/n	120.90		121.32	119.47		119.80	119.52	119.29	118.75	118.02	116.62	121.11	116.32	115.72	114.72		121.71	120.45	120.05	121.52	118.02	117.46	122.42	114.14
Table 7.3 Proposed Trunk Sewers: Hydraulic Capacity Analysis (DISTRICT-	Gradiant	Olaurun	1,500	0	906	2,000		2,101	600	1,583	2,000	2,198	3,000	1,000	2,500	2,500	2,500		2,500	2,500	2,500	700	2,500	2,500	700	2,200
.3 Prope	Length	(m)	1,850	0	450	980		1,080	1,200	690	1,260	2,640	1,305	1,300	1,000	2,500	450		2,900	1,000	400	1,400	1,400	700	650	1,000
Table 7	Size	(mm)	1,000	0	600	1,200		1,000	400	1,000	1,100	1,200	1,400	800	1,600	1,800	1,800		1,800	1,800	1,800	500	2,000	2,000	500	2,200
	Design	(lps)	423		158	619		680	0	223	360	572	666	335	1,328	1,595	1,620		1,703	1,703	1,755	98	1,994	2,025	93	3,334
	utory ation	Cumulative	104,951	0	34,858	153,081		168,540	0	49,834	89,188	141,428	165,164	83,298	328,836	395,381	401,206	422,000	422,000	422,000	435,034	21,475	493,759	501,803	17,388	929,096
	Contributory Population	Each	104,951	0	34,858	13,272		15 150	7C+,CI	49,834	39,354	52,240	23,736	83,298	76,998	66,545	5,825		0	0	13,034	21,475	37,250	8,044	17,388	8,699
	de	То	S3	4	S3	S4(SPS)		S9	S5	S6	S7	S20	R5	S9	S10	S11	S19	District	S13	S14	S16	S16	S17	S19	S19	S20
	Node	From	S1	4	S2	S3		S4(SPS)	S4(SPS)	S5	S6	S7	S20	S8	S9	S10	S11	From City District	S12	S13	S14	S15	S16	S17	S18	S19
				_																						

(DISTRICT-
Analysis
Capacity A
Hydraulic (
Sewers: H
l Trunk
.3 Proposed
e J
Įq

	Domodre	Kemärks																								Sanctioned	Sanctioned	Sanctioned	Sanctioned	Sanctioned
	٨	Discharge (1/s)	3,514	3,683	3,683	351	246	733	2	72	C 11	711	1,052	120	140	120	1,052	120	172	1,409	1,409	120	1,409	1,928		3,193	3,415	3,543	3,689	4,404
	Design capacity	Velocity (m/s)	1.089	1.141	1.141	0.823	0.752	0 763	0000	0.669	0 716	01/10	0.805	0.719	011.0	0.719	0.805	0.719	0.716	0.825	0.825	0.719	0.825	0.893		1.197	1.280	1.328	1.383	1.365
	Ď	Depth ratio d/df	0.80	0.80	0.80	0.80	0.80	0.80	000	0.80	000	0.00	0.80	0.80	0000	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80		0.80	0.80	0.80	0.80	0.80
(capacity	Discharge (1/s)	3,630	3,805	3,805	363	2.54	757	2	74	170	1/0	1,087	124	121	124	1,087	124	178	1,456	1,456	124	1,456	1,992		3,299	3,528	3,660	3,811	4,550
FRICT-	Full pipe capacity	Velocity (m/s)	0.96	1.00	1.00	0.72	0.66	0.67	0.0	0.59	0.62	c0.0	0.71	0.63	60.0	0.63	0.71	0.63	0.63	0.72	0.72	0.63	0.72	0.78		1.05	1.12	1.17	1.21	1.20
Proposed Trunk Sewers: Hydraulic Capacity Analysis (DISTRICT-	ng (m)	d/s	7.68	7.15	8.00	2.65	3.45	7 97	i	4.35	Ϋ́ c	1 .,	5.75	5 43	<u>.</u>	2.79	6.77	3.71	3.00	7.04	6.58	4.47	6.60	4.69		1.84	2.04	5.02	4.85	0.85
y Analys	Covering (m)	s/n	7.26	7.68	7.15	2.00	2.00	3 47	1	2.00		7.00	4.30	000	00.7	2.00	5.75	2.00	2.00	6.76	7.04	2.00	6.58	6.59		1.97	1.84	2.04	5.02	5.22
Capacity	Ground level (m)	d/s		122.00	122.40	125.50	125.50	124 50	00111	124.50	05 101		125.50	125 50		125.50	126.00	126.00	126.00	126.00	125.40	125.40	125.00	122.40		124.01	123.62	125.10	122.92	117.35
draulic (Ground	s/n		123.00	122.00	125.80	125.00			123.40	175.00		124.50	123 50		126.00	125.50	126.00	126.00	126.00	126.00	124.00	125.40	125.00		125.94	124.01	123.62	125.10	122.92
ers: Hy	Invert level (m)	d/s	112.92	112.45	112.00	 121.96	121.27			119.67	171.20		118.22	11949		122.13	117.70	121.71	122.32	117.22	117.08	120.35	116.66	115.76			119.40	117.90	115.90	114.10
ınk Sew	Invert	s/n		112.92	112.45	122.91	122.22			120.92	177 27		118.67	120.92		123.42	118.22	123.42	123.32	117.50	117.22	121.42	117.08	116.46		121.80	120.00	119.40	117.90	115.30
osed Tru	C. color	Uradient	2,200	2,000	2,000	1,000	1.000	2 000	5	600	000	2006	2,200	002	2	200	2,200	700	006	2,500	2,500	700	2,500	2,500		1,600	1,400	1,300	1,200	1,400
.3 Prop	Length	(m)	1,700	950	006	950	950	1 100	00111	750	050	000	1,000	1 000	1,000	006	1,150	1,200	006	700	350	750	1,050	1,750		2,820	900	1,920	1,410	1,710
Table 7.3	Size	(mm)	2,200	2,200	2,200	800	700	1 200	2211	400	002	000	1,400	500	80	500	1,400	500	600	1,600	1,600	500	1,600	1,800		2,000	2,000	2,000	2,000	2,200
	Design	(lps)	3,448	3,554	3,630	281	2.20	608	000	54	301	147	819	75	2	108	1,006	115	120	1,242	1,283	84	1,404	1,485	2,694	2,694	2,746	2,818	3,436	3,466
	utory ttion	Cumulative	961,227	990,556	1,011,464	69,779	49.029	150577	t officer	10,129	050 20	606,17	202,755	14.050	00011	19,992	249,134	25,374	27,028	307,525	317,734	15,684	347,967	368,108	750,659	750,659	765,208	785,168	957,473	965,798
	Contributory Population	Each C	32,131	29,329	20,908	69,779	49.029	31 769	00:00	10,129	02020	666,17	14,090	14.050	00011	19,992	12,337	25,374	27,028	5,989	10,209	15,684	14,549	20,141		0	14,549	19,960	7,141	8,325
	e	To	S21	S22	S23(STP)	S26	S26	628	à	S29	003	670	S32	632	400	S32	S35	S35	S35	S36	S38	S38	S39	S23(STP)	District	R2	R3	R4	R5	R6(STP)
	Node	From	S20	S21	S22	S24	S25	S26		S27	063	070	S29	830	000	S31	S32	S33	S34	S35	S36	S37	S38	S39	From City District	R1	R2	R3	R4	R5

Table 7.3 Promosed Trunk Sewers: Hydraulic Canacity Analysis (MISTRICT-

					Table 7.	3 Propo	Table 7.3 Proposed Trunk Sewers: Hydraulic Capacity Analysis (DISTRICT-	nk Sewe	rs: Hydi	raulic C	apacity	Analysi	s (DIST	RICT-					
Z	Node	Contributory Population	utory ttion	Design	Size	Length	Curbin t	Invert level (m)	vel (m)	Ground level (m)	vel (m)	Covering (m)	3 (m)	Full pipe capacity	capacity	D	Design capacity	ty	Damada
From	To	Each	Cumulative	(lps)	(mm)	(m)	OTAUTEIL	s/n	d/s	s/n	d/s	s/n	d/s	Velocity (m/s)	Discharge (1/s)	Depth ratio d/df	Velocity (m/s)	Discharge (1/s)	Kelliarks
Wl	W2(SPS)	99,236	99,236	401	1,000	1,700	1,500	122.90	121.77	127.00	127.00	3.00	4.13	0.68	537	0.80	0.780	520	1.30
Lakhanpur SPS	- SPS																		
W2(SPS)	W4	74,789	174,025	702	1,200	600	2,000	123.69	123.39	127.00	127.00	2.00	2.30	0.67	757	0.80	0.763	733	1.04
W3	W4	71,103	71,103	288	800	1,500	1,000	124.61	123.11	127.50	127.00	2.00	3.00	0.72	363	0.80	0.823	351	1.22
W4	W12	17,776	262,904	1,062	1,600	1,250	2,500	122.31	121.81	127.00	127.60	2.95	4.05	0.72	1,456	0.80	0.825	1,409	1.33
W5	W6	30,832	30,832	138	600	850	906	125.82	124.88	128.50	128.00	2.00	2.44	0.63	178	0.80	0.716	172	1.25
9M	W12	18,490	49,322	220	700	1,850	1,000	124.78	122.93	128.00	127.60	2.44	3.89	0.66	254	0.80	0.752	246	1.12
LΜ	6M	19,199	19,199	102	500	1,500	700	124.22	122.08	126.80	126.70	2.00	4.04	0.63	124	0.80	0.719	120	1.18
W8	6M	43,015	43,015	193	700	1,000	1,000	123.72	122.72	126.50	126.70	2.00	3.20	0.66	254	08.0	0.752	246	1.27
6M	W11	24,407	86,621	349	800	1,000	1,000	121.78	120.78	126.70	127.00	4.03	5.33	0.72	363	0.80	0.823	351	1.01
W10	W11	30,628	30,628	138	600	1,150	006	124.82	123.54	127.50	127.00	2.00	2.78	0.63	178	08.0	0.716	172	1.25
W11	W12	29,185	146,434	592	1,200	1,150	2,000	120.38	119.81	127.00	127.60	5.31	6.47	0.67	757	0.80	0.763	733	1.24
W12	W13	16,384	475,043	1,917	1,800	700	2,500	119.21	118.93	127.60	127.50	6.44	6.62	0.78	1,992	0.80	0.893	1,928	1.01
W13	W15	36,203	511,246	2,063	2,000	1,300	2,500	118.73	118.21	127.50	127.30	6.60	6.92	0.84	2,639	0.80	0.958	2,555	1.24
W14	W15	120,621	120,621	486	1,000	3,300	1,500	125.40	123.20	128.50	127.30	2.00	3.00	0.68	537	0.80	0.780	520	1.07
W15	W22(SPS)	30,734	662,601	2,675	2,200	950	2,500	118.01	117.63	127.30	128.00	6.89	7.97	06.0	3,402	0.80	1.020	3,293	1.23
W16	W17	9,784	9,784	54	400	1,400	600	125.02	122.69	127.50	128.50	2.00	5.33	0.59	74	0.80	0.669	72	1.33
W17	W19	9,837	19,621	105	500	1,050	700	122.59	121.09	128.50	129.00	5.33	7.33	0.63	124	0.80	0.719	120	1.14
W18	W19	23,602	23,602	105	500	650	700	125.42	124.49	128.00	129.00	2.00	3.93	0.63	124	0.80	0.719	120	1.14
W19	W22(SPS)	17,358	60,581	245	700	2,000	1,000	120.89	118.89	129.00	128.00	7.33	8.33	0.66	254	0.80	0.752	246	1.00

(DISTRICT-
Analysis
Capacity
Hydraulic
Sewers:
d Trunk
Proposed
7.3

					TAULT	Table 1.5 I tupus			TOTAL SEWERS. ITYULAUTIC CAPACITY FILALY SUBJECT OF THE TAME TO T		hucury 1	cicturi			1				
Z	Node	Contributory Population	Contributory Population	Design	Size	Length	Curdiant	Invert level (m)	/el (m)	Ground level (m)	el (m)	Covering (m)		Full pipe capacity	apacity	Ď	Design capacity	y	Decoder
From	To	Each	Cumulative	riow (lps)	(mm)	(m)	Orauleitt	s/n	d/s	s/n	d/s	s/n	d/s V	Velocity I (m/s)	Discharge 1 (1/s)	Depth ratio d/df	Velocity (m/s)	Discharge (1/s)	Kelliarks
W20	W21	73,295	73,295	295	800	1,500	1,000	122.11	120.61	125.00	127.50	2.00	6.00	0.72	363	0.80	0.823	351	1.19
W21	W22(SPS)	16,361	89,656	362	900	4,000	1,500	120.51	117.84	127.50	128.00	5.99	9.16	0.64	405	0.80	0.726	392	1.08
SPS																			
(SdS)ccM	M24	14 544	413,691	1,484	1,800	1,000	2,500	124.05	123.65	128.00	127.60	2.00	2.00	0.78	1,992	0.80	0.893	1,928	1.30
			413,691	1,484	1,800	1,000	2,500	124.05	123.65	128.00	127.60	2.00	2.00	0.78	1,992	0.80	0.893	1,928	1.30
W23	W24	31,206	31,206	140	600	1,500	006	125.82	124.15	128.50	127.60	2.00	2.77	0.63	178	0.80	0.716	172	1.23
VC/M	W/30	15.043	436,816	1,568	1,800	1,250	2,500	122.95	122.45	127.60	127.00	2.70	2.60	0.78	1,992	0.80	0.893	1,928	1.23
t7 M	00	C+0,01	436,816	1,568	1,800	1,250	2,500	122.95	122.45	127.60	127.00	2.70	2.60	0.78	1,992	0.80	0.893	1,928	1.23
W25	W26	21,251	21,251	95	500	1,100	700	124.92	123.35	127.50	127.70	2.00	3.77	0.63	124	0.80	0.719	120	1.26
W26	W27	15,160	36,411	163	600	1,000	906	123.25	122.14		128.00	3.77	5.18	0.63	178	0.80	0.716	172	1.06
W27	W28	25,380	61,791	250	800	1,750	1,000	121.94	120.19	128.00	128.00	5.17	6.92	0.72	363	0.80	0.823	351	1.40
W28	W29	56,498	118,289	477	1,000	1,100	1,500	119.99	119.26	128.00	127.50	6.91	7.14	0.68	537	0.80	0.780	520	1.09
W29	W30	10,141	128,430	518	1,000	1,300	1,500	119.26	118.39	127.50	127.00	7.14	7.51	0.68	537	0.80	0.780	520	1.00
W30	W33	9.736	505,899	1,816	1,800	700	2,500	117.59	117.31	127.00	126.00	7.46	6.74	0.78	1,992	0.80	0.893	1,928	1.06
	2	00111	505,899	1,816	1,800	700	2,500	117.59	117.31	127.00	126.00	7.46	6.74	0.78	1,992	0.80	0.893	1,928	1.06
W31	W32	24,703	24,703	110	500	1,850	700	126.02	123.38	128.60	127.00	2.00	3.04	0.63	124	0.80	0.719	120	1.09
W32	W33	41,546	66,249	268	800	1,300	1,000	123.08	121.78	127.00	126.00	3.03	3.33	0.72	363	0.80	0.823	351	1.31
W33	W37	18.505	548,276	1,968	2,000	300	2,500	117.11	116.99		126.00	6.72	6.84	0.84	2,639	0.80	0.958	2,555	1.30
			548,276	1,968	2,000	300	2,500	117.11	116.99	126.00	126.00	6.72	6.84	0.84	2,639	0.80	0.958	2,555	1.30
													1						
W34	W36	121,510	121,510	491	1,000	2,500	1,500	120.90	119.23	124.00	127.00	2.00	6.67	0.68	537	0.80	0.780	520	1.06
W35	W36	35,133	35,133	158	600	2,150	906	125.32	122.93	128.00	127.00	2.00	3.39	0.63	178	0.80	0.716	172	1.09
W36	W37	30,290	186,933	754	1,400	1,750	2,200	118.83	118.03	127.00	126.00	6.64	6.44	0.71	1,087	0.80	0.805	1,052	1.40
W/37	W/38/CTD)	C	641,742	2,302	2,000	300	2,500	116.99	116.87	126.00	126.00	6.84	6.96	0.84	2,639	0.80	0.958	2,555	1.11
	(110)001	þ	641,742	2,302	2,000	300	2,500	116.99	116.87	126.00	126.00	6.84	6.96	0.84	2,639	0.80	0.958	2,555	1.11

 Table 7.3 Proposed Trunk Sewers: Hydraulic Capacity Analysis (DISTRICT-)

	Domination	NGHRIAS	1.20	1.01	1.20	1.07	1.12	1.48	1.28	1.32	1.02	1.24	1.21	1.15	1.22	1.29	1.02	1.21	1.11	1.00	
		Discharge (1/s)	246	351	172	520	172	120	351	1,052	120	1,409	1,409	1,409	120	246	351	1,928	1,928		
	Design capacity	Velocity I (m/s)	0.752	0.823	0.716	0.780	0.716	0.719	0.823	0.805	0.719	0.825	0.825	0.825	0.719	0.752	0.823	0.893	0.893		
	De	Depth ratio d/df	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80		
	Full pipe capacity	Velocity Discharge I (m/s) (1/s)	254	363	178	537	178	124	363	1,087	124	1,456	1,456	1,456	124	254	363	1,992	1,992	1,730	
(-	Full pipe	Velocity (m/s)	0.66	0.72	0.63	0.68	0.63	0.63	0.72	0.71	0.63	0.72	0.72	0.72	0.63	0.66	0.72	0.78	0.78	1.53	
TRICT	Covering (m)	d/s	2.80	3.64	3.94	4.65	2.94	2.81	4.53	4.97	4.91	5.78	6.02	6.54	6.07	6.32	6.71	7.07	8.01	2.00	
sis (DIS	Coveri	s/n	2.00	2.79	2.00	3.92	2.00	2.00	2.93	4.61	2.00	4.96	5.78	6.02	2.00	6.07	6.31	6.65	10°L	2.00	
ty analy	Ground level (m)	d/s	124.00	124.50	124.50	124.80	125.00	125.00	124.80	124.70	124.70	124.50	124.50	124.50	125.00	125.00	124.50	124.50	124.50	124.00	
c capaci	Ground]	s/n	125.00	124.00	125.00	124.50	126.00	124.90	125.00	124.80	124.00	124.70	124.50	124.50	124.00	125.00	125.00	124.50	124.50	124.50	
[ydrauli	Invert level (m)	d/s	120.42	119.97	119.88	119.05	121.38	121.61	119.38	118.20	119.21	116.98	116.74	116.22	118.35	117.90	116.90	115.48	114.54	120.69	
wers: H	Invert le	s/n	122.22	120.32	122.32	119.48	123.32	122.32	121.18	118.65	121.42	118.00	116.98	116.74	121.42	118.15	117.80	115.90	115.48	121.19	
trunk se	, and the set	Claucif	1,000	1,000	906	1,500	006	700	1,000	2,200	700	2,500	2,500	2,500	700	1,000	1,000	2,500	2,500		
Table 7.3 Proposed trunk sewers: Hydraulic capacity analysis (DISTRICT-	Length	(m)	1,800	350	2,200	650	1,750	500	1,800	1,000	1,550	2,550	600	1,300	2,150	250	006	1,050	2,350	4,200	
ble 7.3 F	Size	(mm)	700	800	600	1,000	600	500	800	1,400	500	1,600	1,600	1,600	500	700	800	1,800	1,800	1,200	
Ta	Stage A;2010	B;2015 C;2030	С	С	C	C	С	C	С	С	C	С	C	С	С	C	С	С	С	С	
	Design	(lps)	205	349	143	488	153	81	275	66L	118	1,132	1,166	1,226	98	190	344	1,600	1,730	1,730	
	utory ation	Cumulative	50,600	86,631	31,570	121,224	33,907	15,114	67,984	197,870	 26,459	280,595	288,773	303,967	 21,939	42,387	85,110	396,113	428,512	428,512	
	Contributory Population	Each	50,600	36,031	31,570	3,023	33,907	15,114	18,963	8,662	26,459	56,266	8,178	15,194	21,939	20,448	42,723	7,036	32,399	0	
	e	To	E2	E4	E4	E8	E7	 E7	E8	E10	E10	E11	E12	E16	E14	E15	E16	E17	E18(SPS)	E19(STP)	
	Node	From	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12	E13	E14	E15	E16	E17	E18(SPS)	

$\mathbf{\circ}$	
(DISTRI	
analysis	
apacity	
Hydraulic c	
trunk sewers:	
oposed	
3 Pr	

			E	xisiting pu	umps		Allowable of	lischarge (1)	Sump capacity	Exisi	ting rising r	nains
Pump station	Status	No.	lpm	lps	Head (m)	Total installed (lps)	PK (lps)	AVG (mld)	m3	dia (mm)	Length (m)	Static Head (m)
Muir Mill	Е	3	2,800	47		140	93.33	4.03	168.0	400	735	15.0
Guptar Ghat	Е	3	1,000	17		50	33.33	1.44	118.0	150	300	15.0
ISPS No.1	Е	3	2,580	43	27.5	129	86.00	3.72	10.0	300	1,232	1.5
ISPS No.2	Е	4	4,560	76	25.0	304	202.67	8.76	18.0	500	545	25.0
										600	1,950	
ISPS No.3	Е	3	3,450	58	20.0	173	115.00	4.97	14.0	300	35	17.7
										700	794	
ISPS No.4	Е	2	1,766	29	20.0	59	39.24	1.70	7.0	300	765	20.0
Nawab ganj	Е	2	4,950	83		350	233.47	10.09	288.6	450	1,500	10.0
		2	2,475	41								
		1	6,162	103								
Parma Ghat	Е	3	22,000	367		1,883	1,255.56	54.24	310.4	600	1,000	10.0
		2	15,000	250						250	1,000	
		2	8,500	142								
Rakhi Mandi	S	3	60,000	1,000	23.0	4,000	2,666.67	115.20	568.0	1,300	2,310	20.0
		2	30,000	500								
Munshi purwa	S	6	24,000	400	20.0	2,400	1,600.00	69.12	606.0	1,200	450	27.0
Jajmau MPS	Е	7	36,000	600		4,200	2,800.00	120.96	360.0	1,500	1,500	
Jajmau MPS	Е	4	8,700	145		580	386.67	16.70		700	200	20.0
Ganda nala PS	S	5	8,700	145		725	483.33	20.88	130.4	700	30	8.0
Lakhanpur	Е	1	2,250	38		171	113.89	4.92		700	1,600	17.5
	Е	2	4,000	67								

Table 7.4 Kanpur Pump Stations: Existing and Sanctioned

(1) Assuming 50% spare capacity

Table 7.5 (1/3) Pump Sation Design

201. 105	pk x 1.5 157.6	Installed capacity (lps) 93	Status E	Pump stations Muir Mill
201		capacity	Status	Pump stations
		Installed		
			0.5	Non-peak (npk)
			-	Average (avg)
			2	Peak (pk)

		Installed				Design dise	Design discharge (lps)			
Pump stations	Status	capacity		2015	15			2030	30	
		(lps)	pk x 1.5	pk	avg	npk	pk x 1.5	pk	avg	npk
Muir Mill	Е	63	157.6	105	53	26	157.6	105	53	26
Guptar Ghat	Е	33	477.1	318	159	80	477.1	318	159	80
Nawab ganj	Е	233	208.3	139	69	35	277.8	185	93	46
Parma Ghat	Е	1,256	1,875.0	1,250	625	313	1,875.0	1,250	625	313
Lakhanpur	Е		555.6	370	185	93	937.5	625	313	156
Bagwatdas nala	Р		277.8	185	93	46	277.8	185	93	46
Jajmau new or expanded	Ρ		625.0	417	208	104	833.3	556	278	139
Ruman	Р						2,291.7	1,528	764	382
Panki	Ρ		2,777.8	1,852	926	463	4,375.0	2,917	1,458	729

Table 7.5 (2/3) Pump station design

						Propose	Proposed pumps						Proposed 1	Proposed rising main
Pump stations			20	2015					20	2030			dia.	length
	Pk (lps)	Pk * 1.5	No.	lps	lpm	total (lps)	Pk (lps)	Pk * 1.5	No.	lps	lpm	total (lps)	mm	m
Muir Mill			3	09	3,600	180	•		3	60	3,600	180	existing	
Guptar Ghat	•		3	110	6,600	490	,		3	110	6,600	490	1 x400	300
			2	80	4,800				2	80	4,800			
Nawab ganj			3	10 20	4,200	310			3	70	4,200	310	existing	
			2	50	3,000				2	50	3,000			
Parma Ghat	•		2	200	12,000	009	,		2	240	14,400	720	existing	
			2	100	6,000				2	120	7,200			
Lakhanpur			3	200	12,000	009			2	250	15,000	500		
Bagwatdas nala	•		3	100	6,000	300			3	100	6,000	300		
Jajmau augmented			5	150	9,000	750		-	9	150	9,000	006	1x700	1,500
Ruman	'						,		8	200	12,000	1,600	1x1200	4,200
Panki			12	240	14.400	2.880			12	370	22.200	4.440	1x1600	30

Required installed capacity is 1.5 x projected peak flow

Table 7.5 (3/3) Pump Sation Design

Pump station		Peak flo	Peak flows (lps)	Exisiting/ Sanctioned sump	Exisiting Su Tir	Exisiting Sump Holding Time	Jesign Holding R Time	Required sump capacity	mp capacity
		2015	2030	m3	2015	2030	(min)	2015	2030
Muir Mill	Е			0	26.64	26.64	5.0		
Guptar Ghat	Е	T	-	0	6.18	6.18	5.0	-	
Nawab ganj	Е	-	-	0	34.63	25.97	5.0	-	
Parmat Ghat	Е	-	-	0	4.14	4.14	5.0	-	
Lakhanpur	Е	-	-	-			5.0	-	

		(mld)
No.	Name of Nala	Flow
1	Jadeshwar Nala	0.92
2	Jewra Nala	0.79
3	Ranighat Nala	0.32
4	Tafco Nala	0.43
5	Permatghat Nala	1.78
6	Muir Mill Nala	3.13
7	Police Line Nala	0.79
8	Jail Nala	1.22
9	Golf Club Nala -I	1.26
10	Golf Club Nala -II	0.40
11	KESA Colony Nala	0.16
12	Roadway Colony Nala	0.40
13	Kheora Nala	0.14
14	Nawabganj Nala	1.66
15	Sisamau Nala	138.33
16	Guptarghat Nala	2.29
17	Dubka Nala	
18	Buriaghat Nala	
19	Wazidpur Nala	
20	Bangalighat Nala	
21	Halwa Khanda Nala	11.44
22	COD Nala	8.81
23	Ganda Nala	55.09
	Sub Total	229.36
	Discharge of sewage channel	129.50
	Total	358.86
	Say	360.00

Table 7.6 Nalas Measured Flows

Inflow			Ū			e	· ·							
		Nov-02	Dec-02	Jan-03	Feb-03	Mar-03	Apr-03	May-03	Jun-03	Jul-03	Aug-03	Sep-03	Oct-03	AVG
	5MLD	4.5	4.0	4.3	4.6	4.6	4.5	4.5	4.7	0.0	4.6	4.2	4.1	4.1
STP	36MLD	-	-	-	-	-	-	29	31	30	-	15	21	25
	130MLD	47	45	50	51	46	40	56	49	40	52	54	56	49
	Total	52	49	54	56	51	45	90	85	70	57	73	81	63

Table7.7 Jajmau STP: Average Monthly Inflow and Effluent Characteristics

5MLD STP

		N. 02	D 00	I 02	F 1 02	16 02	1 02	16 02	T 02	T 1 02	4 02	a 02	0 + 02	11/0
		Nov-02	Dec-02	Jan-03	Feb-03	Mar-03	Apr-03	May-03	Jun-03	Jul-03	Aug-03	Sep-03	Oct-03	AVG
BOD	influent	268	271	312	307	296	365	361	312	288	271	251	320	302
	effluent	147	123	128	129	141	180	151	178	161	136	131	205	151
	polishing	67	60	55	72	57	87	97	104	84	92	87	113	81
BOD	influent	118	115	130	130	114	129	130	116	118	120	100	145	122
filtered	effluent	56	56	60	66	65	85	89	64	74	86	56	75	69
	polishing	35	27	38	36	30	59	61	46	35	28	39	54	41
COD	influent	778	779	933	858	839	1,004	996	1,147	1,171	1,070	991	1,371	995
	effluent	340	300	316	341	345	459	468	448	366	394	360	519	388
	polishing	190	180	196	198	174	231	285	247	155	149	143	234	199
TSS	influent	785	793	894	845	860	1,057	962	1,009	968	999	891	1,110	931
	effluent	312	300	312	356	280	356	474	399	252	274	304	347	331
	polishing	125	117	131	151	116	108	123	124	114	123	122	147	125
VSS	influent	271	314	334	315	287	346	342	426	341	312	266	299	321
	effluent	194	117	139	187	148	210	206	180	159	174	194	196	175
	polishing	100	89	101	108	91	82	96	96	84	90	97	119	96

36MLD STP

		Nov-02	Dec-02	Jan-03	Feb-03	Mar-03	Apr-03	May-03	Jun-03	Jul-03	Aug-03	Sep-03	Oct-03	AVG
BOD	influent	498	445	298	391	395	447	439	470	416		331	495	420
	effluent	247	251	194	313	353	256	243	272	240		198	280	259
	polishing	161	172	173	224	267	201	199	220	185		138	213	196
BOD	influent	183	172	108	198	204	180	170	193	194		138	194	176
filtered	effluent	125	97	82	158	161	139	116	134	130		104	108	123
	polishing	99	78	62	122	133	111	97	116	106		123	86	103
COD	influent	1,465	1,504	885	1,212	1,119	1,396	1,281	1,478	1,378		1,079	1,369	1,288
	effluent	656	659	599	838	983	745	592	647	445		409	586	651
	polishing	414	392	400	432	633	556	471	509	341		303	392	440
TSS	influent	1,342	1,272	892	1,247	1,147	1,412	1,251	1,306	1,156		933	1,198	1,196
	effluent	559	491	444	816	974	716	536	521	409		306	517	572
	polishing	283	317	281	406	577	419	377	352	218		230	240	336
VSS	influent	467	410	286	424	368	395	402	472	361		296	399	389
	effluent	286	204	191	322	236	235	243	211	227		187	213	232
	polishing	201	131	125	214	185	179	167	131	159		171	120	162

130MLD STP

		Nov-02	Dec-02	Jan-03	Feb-03	Mar-03	Apr-03	May-03	Jun-03	Jul-03	Aug-03	Sep-03	Oct-03	AVG
BOD	influent	269	274	308	310	298	323	308	313	288	287	269	360	301
	effluent	38	29	52	28	32	37	39	29	29	25	31	25	33
	polishing													
BOD	influent	118	120	132	127	119	129	131	118	117	123	105	150	124
filtered	effluent	23	20	27	18	21	24	26	17	13	15	21	17	20
	polishing													
COD	influent	768	779	899	845	830	938	975	1,160	1,204	1,115	1,007	1,466	999
	effluent	144	133	170	135	133	140	142	129	137	119	126	143	138
	polishing													
TSS	influent	751	799	901	869	862	1,035	1,009	1,030	1,006	1,092	936	1,205	958
	effluent	109	113	128	112	108	102	126	115	113	107	115	108	113
	polishing													
VSS	influent	257	279	303	299	295	302	334	310	311	352	343	329	310
	effluent	77	92	70	81	88	82	98	84	87	84	95	80	85
	polishing													

Table 7.12Panki Pumping Station (1/4)

Average flow	126 mld

							actual
	Flow			no. of	Calculated	Proposed	hours of
Condition	factor	Hours	Total flow	pumps	discharge	discharge	pumping
			m3		lps		
1 peak	2	4	42000	8	370	370	3.94
2 Average	1	12	63000	4	370	370	11.82
3 non-peak	0.5	8	21000	2	370	370	7.88
		24	126000				23.65

Length of rising main	30 m		
Friction factor C	110	$Hf = 10.7 Q^{1.85} L / C^{1.85} D^{4.87}$	
minor losses	10%		
Static head	13 m		
Peak flow	2.960 m3/s	sump volume 888 m3	
Average flow	1.48 m3/s	diameter 14.00	
non-peak flow	0.74 m3/s	depth 5.77	

Table 7.12Panki Pumping Station (2/4)

	Dia of		Head loss				
	rising	flow	in rising		minor	static	
	main	condition	main	Velocity	losses	head	total head
	mm		m	m/s	m	m	m
1	1200	peak	0.16	2.62	0.02	12.67	12.85
	1200	average	0.05	1.31	0.00	12.67	12.72
	1200	non-peak	0.01	0.65	0.00	12.67	12.68
2	1400	peak	0.08	1.92	0.01	12.67	12.75
	1400	average	0.02	0.96	0.00	12.67	12.69
	1400	non-peak	0.01	0.48	0.00	12.67	12.68
3	1600	peak	0.04	1.47	0.00	12.67	12.71
	1600	average	0.01	0.74	0.00	12.67	12.68
	1600	non-peak	0.00	0.37	0.00	12.67	12.67

Pum	p efficiency	0.82								
Moto	or efficiency	0.91								
Cost	of electricity	3.1	Rs/kwH							
			Actual			Power	Power	Total power		
I	Dia of rising	flow	pumping			required by	required by	consummed		Annual
	main	condition	hours	Total head	Flow	each pump	motor	per day	energy cost	Energy Cost
	mm			m	m3/s	kw	kw	kwh	Rs	Rs
1	1200]	peak	3.94	12.85	2.96	56.88	62.50	1,971	6,110	
	1200 :	average	11.82	12.72	1.48	56.30	61.87	2,926	9,071	
	1200 1	non-peak	7.88	12.68	0.74	56.14	61.69	973	3,015	
									18,196	6,641,421
2	1400]	peak	3.94	12.75	2.96	56.46	62.04	1,956	6,064	
	1400 :	average	11.82	12.69	1.48	56.18	61.74	2,920	9,052	
	1400 1	non-peak	7.88	12.68	0.74	56.11	61.65	972	3,013	
		-							18,130	6,617,302
3	1600	peak	3.94	12.71	2.96	56.27	61.84	1,950	6,045	
	1600 a	average	11.82	12.68	1.48	56.13	61.68	2,917	9,044	
		non-peak	7.88	12.67	0.74	56.09	61.64	972	3,013	
		-							18,101	6,606,992

Table 7.12 Panki Pumping Station (3/4)

Table 7.12 Panki Pumping Station (4/4)

Length of rising main	30 m
Pump cost	36000 Rs/Kw
Pump design period	15 years
Pipeline Design period	30 years
Pipeline Maintenance cost	0.25%
Pump Maintenance cost	3%
Capital discount factor	5%

2 1400 31,196,539 668,716 1,672 935,896 6,617,302 7,554,870 78,416,965 110,28					Annual				Present Value '	Fotal Cost
mm 1 1200 31,351,527 551,952 1,380 940,546 6,641,421 7,583,346 78,712,542 110,61 2 1400 31,196,539 668,716 1,672 935,896 6,617,302 7,554,870 78,416,965 110,28					Pipeline	Pump			of annual	
1 1200 31,351,527 551,952 1,380 940,546 6,641,421 7,583,346 78,712,542 110,61 2 1400 31,196,539 668,716 1,672 935,896 6,617,302 7,554,870 78,416,965 110,28	Dia	meter	Cost of pumps	Cost of pipe	maintenance	maintenance	Energy charges	Total	recurring cost	
2 1400 31,196,539 668,716 1,672 935,896 6,617,302 7,554,870 78,416,965 110,28	mm	ı								
	1	1200	31,351,527	551,952	1,380	940,546	6,641,421	7,583,346	78,712,542	110,616,021
3 1600 31 130 280 804 537 2 011 933 909 6 606 992 7 542 912 78 292 850 110 22	2	1400	31,196,539	668,716	1,672	935,896	6,617,302	7,554,870	78,416,965	110,282,220
5 1000 51,150,287 804,557 2,011 $555,507$ 0,000,772 7,542,712 76,272,850 110,22	3	1600	31,130,289	804,537	2,011	933,909	6,606,992	7,542,912	78,292,850	110,227,675

assume PSC pipe

Average flow	Average flow 66 mld										
							actual				
	Flow			no. of	Calculated	Proposed	hours of				
Condition	factor	Hours	Total flow	pumps	discharge	discharge	pumping				
			m3		lps						
1 peak	2	4	22000	8	200	200	3.82				
2 Average	1	12	33000	4	200	200	11.46				
3 non-peak	0.5	8	11000	2	200	200	7.64				
		24	66000				22.92				

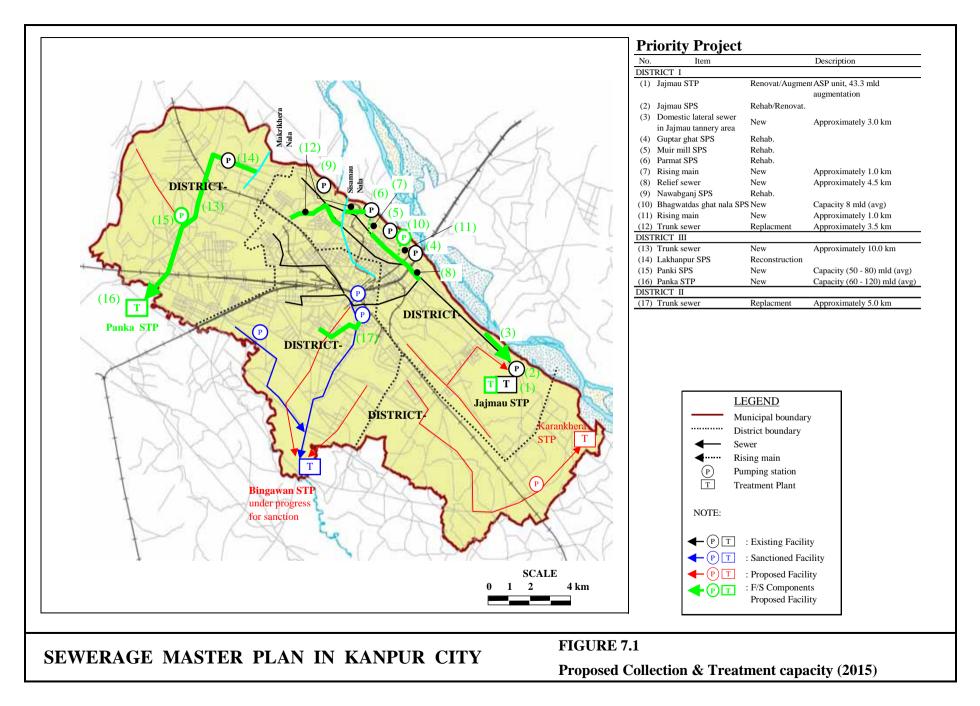
Table 7.14 Ruman Pumping Station (1/4)

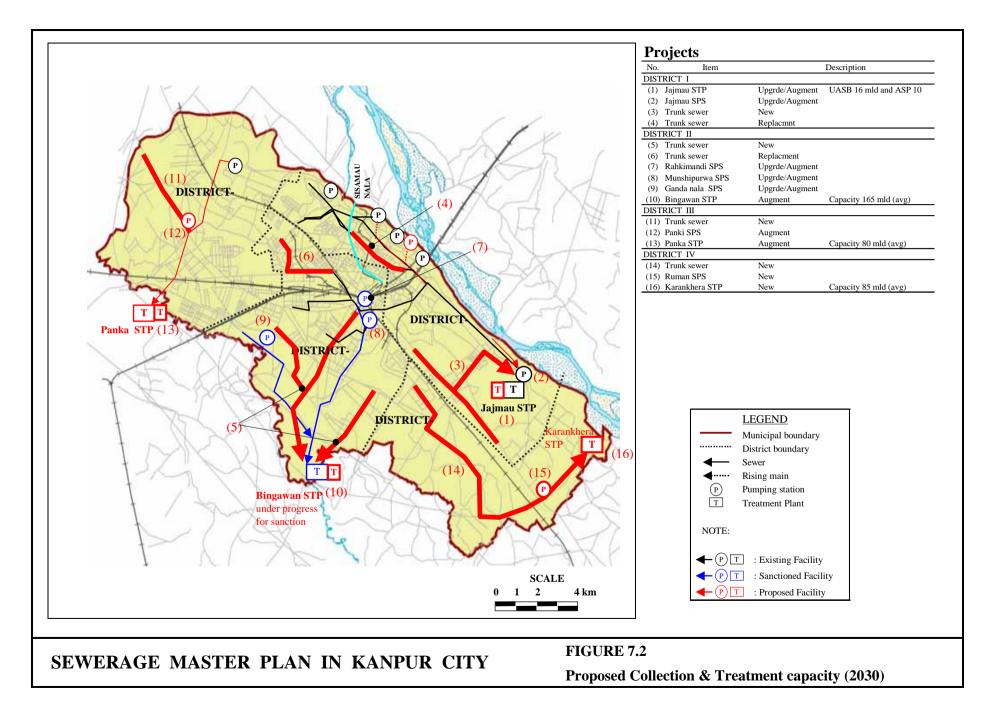
Length of rising main	4200 m			
Friction factor C	110	$Hf = 10.7 Q^{1.85} L / C^{1.85} I$	$O^{4.87}$	
minor losses	10%			
Static head	16 m			
Peak flow	1.600 m3/s	sump volume	480	m3
Average flow	0.8 m3/s	diameter	14.00	
non-peak flow	0.4 m3/s	depth	3.12	

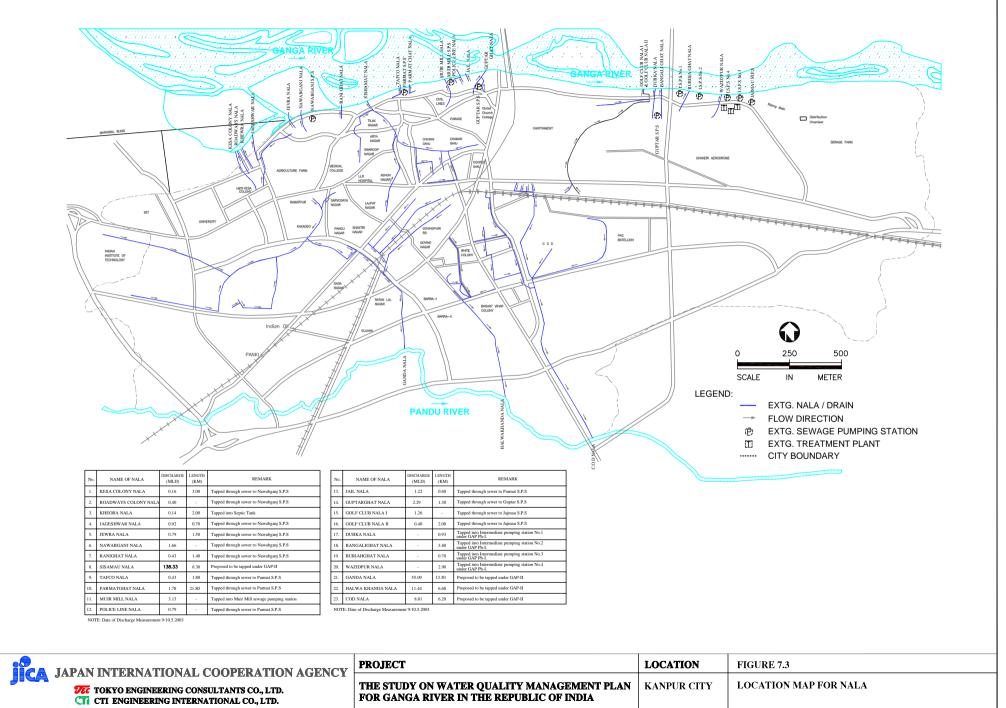
Table 7.14 Ruman Pumping Station (2/4)

	Dia of		Head loss				
	rising	flow	in rising		minor	static	
	main	condition	main	Velocity	losses	head	total head
	mm		m	m/s	m	m	m
1	1000	peak	17.93	2.04	1.79	15.62	35.35
	1000	average	4.97	1.02	0.50	15.62	21.09
	1000	non-peak	1.38	0.51	0.14	15.62	17.14
2	1200	peak	7.38	1.41	0.74	15.62	23.74
	1200	average	2.05	0.71	0.20	15.62	17.87
	1200	non-peak	0.57	0.35	0.06	15.62	16.24
3	1400	peak	3.48	1.04	0.35	15.62	19.45
	1400	average	0.97	0.52	0.10	15.62	16.68
	1400	non-peak	0.27	0.26	0.03	15.62	15.91

Pun	np efficiency	0.82								
Mo	tor efficiency	0.91								
Cos	st of electricity	3.1	Rs/kwH							
			A / 1				D	T (1	D 11	
		~	Actual			Power	Power	Total power	Daily	
	Dia of rising	flow	pumping	Total		required by	required by	consummed	energy	Annual
	main	condition	hours	head	Flow	each pump	motor	per day	cost	Energy Cost
	mm			m	m3/s	kw	kw	kwh	Rs	Rs
1	1000 ј	peak	3.82	35.35	1.60	84.57	92.93	2,840	8,803	
	1000 a	average	11.46	21.09	0.80	50.46	55.45	2,542	7,879	
	1000 1	10n-peak	7.64	17.14	0.40	41.00	45.06	688	2,134	
									18,816	6,867,814
2	1200 1	peak	3.82	23.74	1.60	56.79	62.41	1,907	5,912	
	1200 a	average	11.46	17.87	0.80	42.76	46.99	2,154	6,676	
	1200 1	non-peak	7.64	16.24	0.40	38.86	42.71	652	2,023	
									14,610	5,332,751
3	1400	beak	3.82	19.45	1.60	46.54	51.14	1,563	4,844	
	1400 a	average	11.46	16.68	0.80	39.91	43.86	2,010	6,232	
		10n-peak	7.64	15.91	0.40	38.07	41.84	639	1,982	
		-							13,058	4,766,005


Table 7.14Ruman Pumping Station (3/4)


Table 7.14 Ruman Pumping Station (4/4)


Length of rising main	4200	m
Pump cost	36000	Rs/Kw
Pump design period	15	years
Pipeline Design period	30	years
Pipeline Maintenance cost	0.25%	
Pump Maintenance cost	3%	
Capital discount factor	5%	

Annual							Present Value Total Cost		
I	Diameter	Cost of pumps	Cost of pipe	Pipeline maintenance	Pump maintenance	Energy charges	Total	of annual recurring cost	
r	nm								
1	1000	37,994,616	58,522,996	146,307	1,139,838	6,867,814	8,153,960	84,635,318	181,152,929
2	1200	27,815,147	77,273,328	193,183	834,454	5,332,751	6,360,389	66,018,663	171,107,138
3	1400	24,056,878	93,620,274	234,051	721,706	4,766,005	5,721,762	59,389,930	177,067,082

assume PSC pipe

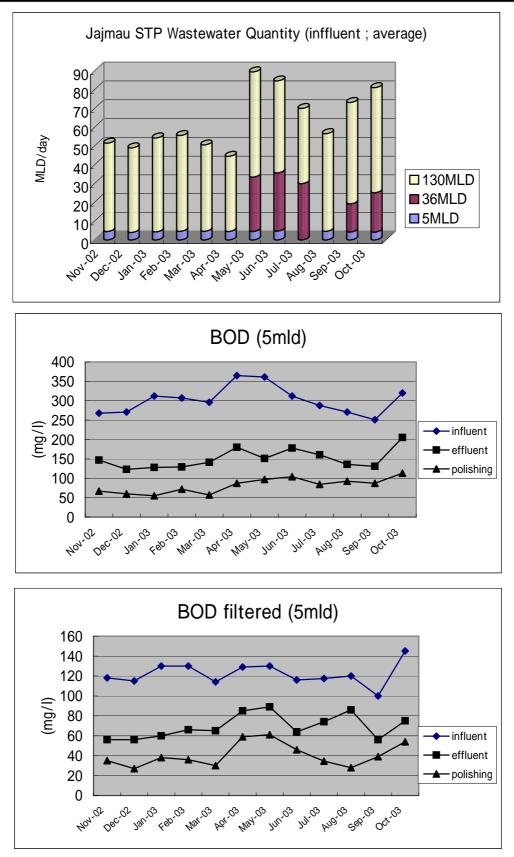
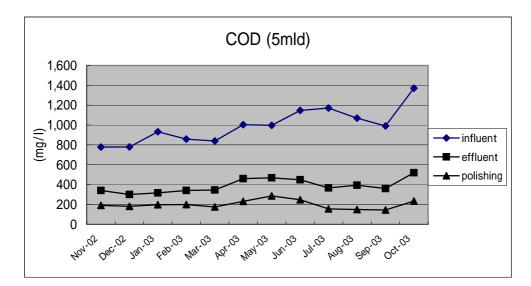
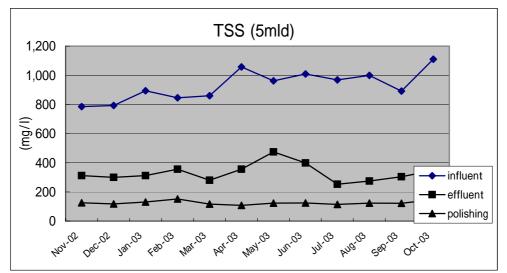




Figure 7.4 Jajmau STP: Average Monthly Inflow and Effluent Characteristics(1/6)

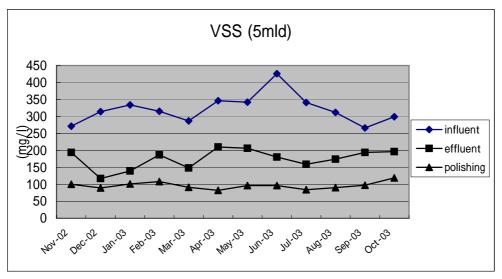
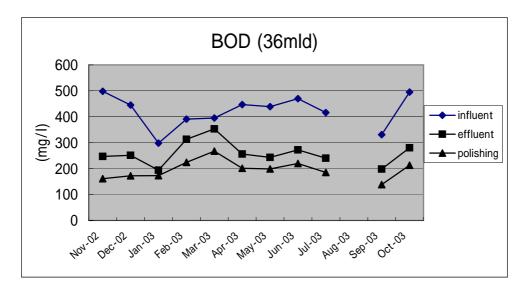
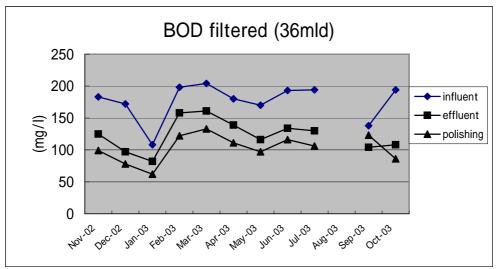




Figure 7.4 Jajmau STP: Average Monthly Inflow and Effluent Characteristics(2/6)

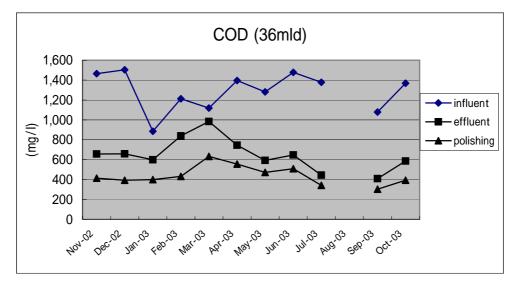


Figure 7.4 Jajmau STP: Average Monthly Inflow and Effluent Characteristics(3/6)

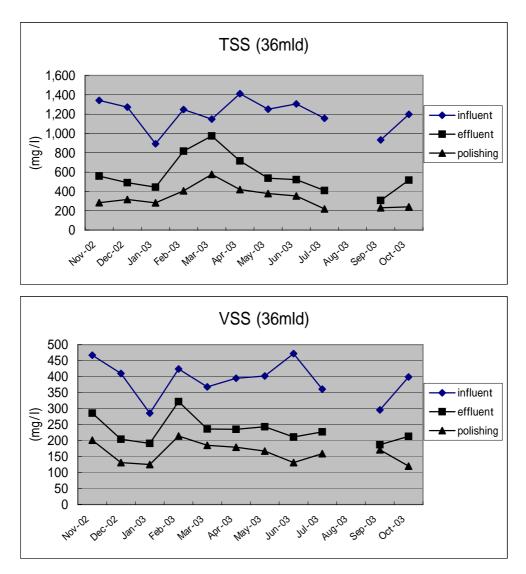


Figure 7.4 Jajmau STP: Average Monthly Inflow and Effluent Characteristics(4/6)

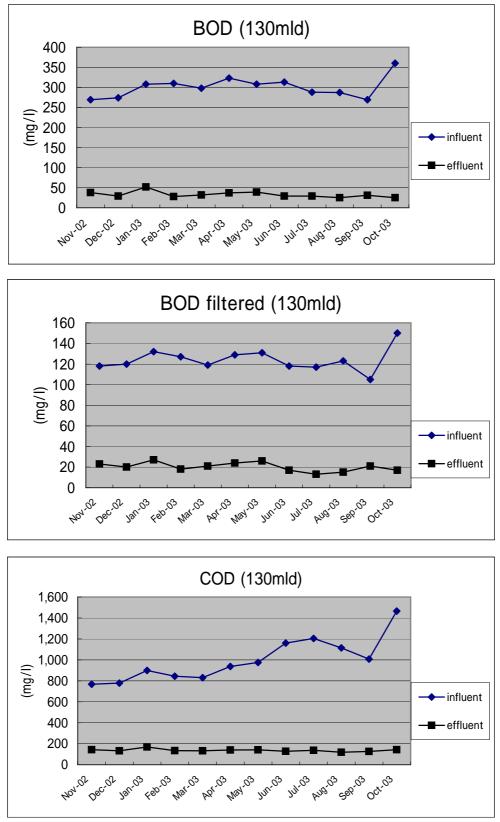


Figure 7.4 Jajmau STP: Average Monthly Inflow and Effluent Characteristics(5/6)



Figure 7.4 Jajmau STP: Average Monthly Inflow and Effluent Characteristics(6/6)

CHAPTER 8

IMPLEMENTATION STRATEGY AND PHASING

CHAPTER 8 IMPLEMENTATION STRATEGY AND PHASING

A number of options were evaluated in Chapter 6 leading to the selection of a recommended plan. The details of the sewerage infrastructure, location, capacity, and type of treatment process were determined in Chapter 7. This section of the Master Plan identifies the implementation strategy and recommends priorities. It also identifies the required infrastructure components, along with implementation phases.

8.1 OVERALL STRATEGY

Sewerage will be developed gradually, with a series of interventions implemented in a phased approach. Although the time line to full build out cannot be predicted with any certainty, and may not happen within the 2030 planning horizon, it is assumed that all the improvements will take place within the planning horizon. The implementation of sewerage over the planning horizon has been divided into two stages:

- Stage I: immediate interventions required by 2015
- Stage II: continuing long-term development of sewerage 2016 to 2030

8.1.1 Stage I

The following projects have been identified as critical needs and should be implemented within one to five years following the adoption of the Master Plan:

- Augmentation of existing treatment works
- Construction of new treatment plants
- Interception of all drains and diversion to treatment
- Major trunk sewers and pumping stations required to service densely populated areas and convey sewage to treatment works.
- Cleaning and rehabilitation of existing sewers
- Capacity building for project implementation organization
- Capacity building of O&M organizations for sewers and treatment plants

The second phase of improvements will be the development of sewerage as a foundation for long-term growth. Projects are aimed at extending trunk sewer facilities and increasing sewer connection rates to improve health, sanitation and living environment.

Projects in the second part of Stage I are considered a priority and should be implemented between 2011 and 2015. Projects will generally consist of:

- Reorganization of existing trunk sewers to divert sewage to new treatment works
- The extension of trunk sewers in all areas of the city that do not have adequate sewerage infrastructure
- Improving branch sewers in existing sewered areas
- Development of branch sewers in formerly unserviced areas
- An on-going program of house connections to increase amount of wastewater collected and treated
- Removing informal connections of storm drains to the sewer system
- Disconnecting informal connections of branch sewers to storm drains.
- On-going capacity building for O&M organizations

8.1.2 Stage II

Stage II projects implemented beyond 2015 are required to service population growth in new areas. These projects will generally include:

- Additional trunk sewers in new growth areas
- Replacement pumping equipment and/or augmentation of pumping capacity
- Augmentation of capacity at treatment plants to handle increased flows over the planning horizon.
- On-going program for development of branch sewers and improving house connections ratios.

8.2 TIMING FOR IMPLEMENTATION OF SEWERAGE COMPONENTS

District wise delineation of the sewerage scheme is presented in Chapter 7 Figure 7.1 for 2015 and Figure 7.2 for 2030. The overall scheme will consist of 4 separate sewerage districts each with its own treatment plant.

8.2.1 Treatment Plants

Treatment plants for each district have been selected on the basis of cost comparisons and technology options for meeting required effluent standards. Capacities are for full build out conditions in 2030.

Table 8.1 Phase wise Implementation of Treatment Plant Capacity

					(mld)
STP	District	Status	2003	2015	2030
Jajmau tannery	Ι	E/A	36	52	52
Jajmau domestic	Ι	E/A	130+5	173+5	183+5
Bingawan STP	II	S/A	-	200	365
Panka STP	III	Р	-	120	200
Karankhera STP	IV	Р	-	0	85
Total			171	550	890

STP	District	Process	Effluent discharge	Disinfection
Jajmau tannery	Ι	UASB	Irrigation and Ganga River	
Jajmau Domestic	Ι	AS, UASB(Pilot)	Irrigation and Ganga River	Add chlorination or maturation ponds
Bingawan STP	II	UASB++	Irrigation or Pandu River	Chlorination
Panka STP	III	UASB++	Irrigation or Pandu River	Chlorination
Karankhera STP	IV	UASB++	Irrigation or Ganga River	Chlorination or maturation ponds

++ indicates the addition of post treatment by aeration.

8.2.2 Collection System Components

Proposed trunk sewers, pumping stations and preliminary alignments are presented in layout drawings B4 to B9 Appendix B. The drawings also identify tributary areas used to calculate hydraulic capacity of trunk sewers. A phase wise summary for implementation of sewerage system infrastructure improvements is presented in Table 8.2.

Implementation period	Pumping stations	Trunk sewers/ Rising mains	Lateral and branch sewers
Stage I (- 2015)	Upgrade equipment and augment capacity: Jajmau Main PS Parmat PS Nawab ganj SPS Muir mill SPS Guptar ghat PS Lakhanpur SPS <u>New pumping station</u> : Bhagwatdas ghat nala SPS PankiSPS	 <u>Rehabilitate and replace</u>: Old trunk sewers in District I, city center <u>New trunk sewers</u>: District III 	District I District III
Stage II (- 2030)	New pumping station Ruman SPS Upgrade equipment and augment capacity: Jajmau Main SPS Panki SPS Ganda nala SPS Rakhi Mandi SPS Munshi Purwa SPS	<u>New trunk sewers</u> • Districts II, IV	On-going III District II, IV

 Table 8.2 Phase wise Implementation of Collection System Improvements

8.2.3 Discussion

(1) District I

Most of the existing trunk sewers in the city center are overloaded and do not have sufficient carrying capacity for future populations. These sewers can either be paralleled or replaced by larger pipes in areas that are congested. Furthermore, many sewers are probably in poor condition and in need of cleaning or repairs.

The existing treatment plants in Jajmau are at present not receiving sufficient domestic wastewater flow that is slightly less than 50% of their design flow. The collection system should be improved in order to fully utilize the existing treatment capacity.

Tannery wastewater flows have already increased from 9 mld to 13 mld. Furthermore, additional flows will be diverted to the UASB by the Project to isolate the collection system in Jajmau tannery district. In order to achieve the correct dilution factor of 1:3 the treatment plant should be augmented from 36 mld to 52 mld. Augmentation of the UASB treatment plant is included for Stage I.

Expansion of the activated sludge treatment plant is included during Stage I. The existing capacity of 130 mld is insufficient to handle projected domestic wastewater flows from the city center well beyond 2015. The timing for expanding the activated sludge treatment plant will depend on how much growth, if any, will take place in the area around Jajmau.

The catchment area for the 90" outfall sewer is at present being reconfigured (reduced in size) to limit the ultimate flow to 168 mld, thereby matching the maximum carrying capacity. The outfall pipe need

not be replaced. However its condition should be confirmed and if necessary it should be cleaned and repaired.

Existing pumping stations are more than 20 years old and the mechanical/electrical equipment should be replaced. Other improvements may also be necessary and should be identified and planned in more detail during subsequent studies.

(2) District II

Many improvements are already being implemented by UPJN under Indo-Dutch assistance program. Sewage projections indicate that the treatment plant will need to be augmented in Stage II (after year 2015) assuming that most of the wastewater will not be intercepted by sewer because of slow implementation of wastewater collection system in this district. The outfall pipe being constructed at present has a carrying capacity of 300 mld. It will be able to convey projected wastewater loads after year 2015, but additional trunk sewers will be required to service the South District and convey sewage directly to the treatment plant before year 2030.

(3) District III

Sewerage in District III is urgently required because UPJN is at present providing water supply infrastructure that will add an extra 200 mld. Combined with rapid population growth in this area, the amount of wastewater is expected to increase significantly. Therefore the treatment plant, main north south trunk sewer and pumping station should be implemented as early as possible.

(4) District IV

Sewerage in District IV is less urgent. Except for a few colonies, population density in the area is less than 120 persons per hectare. Trunk sewers and the treatment plant at Karankhera can be implemented sometime after 2015. The exact timing will depend on growth trends.

8.3 **PRIORITY PROJECTS**

The sewerage system is required to improve sanitary conditions in the city with the goal of removing wastewater from open drains and improving water quality in water bodies. In the beginning, priority should be given to developing sewerage in areas upstream of water supply intake.

Development of sewerage should then follow in the downstream direction with priority given to diverting sewage away from the rivers and improving services in the most densely populated areas. Finally sewerage should be implemented in new growth areas.

The timing of any sewerage development will depend on actual population growth and growth patterns. It is also essential that sewerage development be integrated with development of water supply. Installation of sewers in areas where water distribution is inadequate will lead to failure of the system. Delayed installation of sewers in areas that have adequate water supplies will lead to discharge of sewage to drains and pollution of the environment.

Priority projects are defined as projects that should be implemented as soon as possible to achieve pollution reduction targets. Projects that have already been sanctioned are not identified because funding is in place and it is assumed they will be fully implemented in the short term.

Priority projects (listed in order of priority):

- 1) Develop a plan and identify the cost for inspection of existing trunk sewers and the 90" outfall sewer to Jajmau.
- 2) Feasibility study to isolate the domestic wastewater collection system in the Jajmau tannery area and treat it at the UASB along with industrial wastewater (to protect the activated sludge process).
- 3) Feasibility of augmenting the treatment capacity at Jajmau activated sludge treatment plant.
- 4) Field surveys to confirm alignment, and invert levels of trunk sewers that need to be replaced. Determine the feasibility of installing a parallel pipe or develop a plan for replacement in the same alignment.
- 5) Field surveys for the following existing pumping stations:
 - Nawab ganj
 - Muir mill
 - Parmat
 - Guptar ghat
 - Jajmau
 - Lakhanpur
- 6) Determine physical condition of existing mechanical, electrical equipments, rising mains and sumps. Identify repair or replacement needs. Confirm catchment areas (existing and future). Determine future flows, required size of replacement pumps and rising mains if required.
- 7) Field surveys for new pumping station to intercept and divert Bhagwatdas ghat Nala in Central District, confirm catchment areas (existing and future). Determine future flows, required size of civil structures, pumping plants and rising mains.
- 8) Feasibility of Panka treatment plant for West District. Confirm and survey site, method of treatment, method of disposal for effluent and sludge. Develop preliminary design for STP including influent pumping station.
- 9) Feasibility of Panka outfall sewer, Panki pumping station and main North-South trunk sewers. Confirm and survey proposed alignments, confirm size of pipes, develop profile drawings. Determine feasibility of crossing under Pandu river with gravity sewer; identify river cross section, flood levels and scouring depth. If necessary adjust conceptual trunk sewer layout based on topographic surveys. Develop preliminary designs for proposed pumping stations.

CHAPTER 9

COST ESTIMATES

CHAPTER 9 COST ESTIMATES

9.1 CAPITAL COST ESTIMATE

9.1.1 General

The total estimated direct construction costs including a 20% physical contingency for planning level estimates and land acquisition are as follows:

			(Crores)
Item	Stage I	Stage II	Total
Direct Cost	317.9	1,259.6	1,577.6
Physical Contingency (20%)	63.6	251.9	315.5
Land Acquisition	28.8	41.9	70.7
Total	410.3	1,553.4	1,963.8

Direct cost does not include house connection cost

Summary of preliminary direct cost is presented phase wise in Table 9.1 and the breakdown of component costs is represented in the form of a pie chart in Figure 9.1.

All costs are with 2003 base prices, in Indian Rupees. Taxes and duties vary depending on the equipment or material supplied therefore these are included in the unit costs.

The estimate of investment costs has been worked out based on a phase wise implementation plan that corresponds to priorities and timeframes discussed in the report. The following costs have been included in estimated costs for project evaluation:

Item	Capital	O&M	Replacement
Existing facilities and Sanctioned projects (GAP-II)	Х	0	0
Augmenting existing pumping stations and treatment plants or replacing outdated equipment	0	Ο	0
Proposed master plan projects	0	0	Ο

X = not included O = included in cost estimate

The investment costs for Stage II (2015 to 2030) include an estimate of replacement costs for mechanical/electrical equipment installed during the first phase that will have reached the end of their useful life after 15 years.

Total costs for the facilities identified in the master plan are comprised of the following items:

- Direct construction cost based on preliminary design of facilities (based on unit costs including taxes and duties) plus 10% for contractor's profit.
- Land acquisition cost
- Engineering cost: Add 15% of direct construction cost for design and construction supervision
- Administrative costs: Add 10% of direct construction cost for centage fees related to project preparation and supervision (refer Indo-Dutch project 4% preparation + 6% admin. during construction)
- Physical contingency: add 20% to the sum of direct construction cost

9.1.2 Capital Costs for Trunk Sewers and Manholes

The cost estimate for laying trunk sewers and laterals has been prepared on the basis of preliminary design for Master Plan.

The estimated costs include ancillary items like excavation, reinstatement of road surfaces, provision of protection works, closed timbering, and cost of bedding. The cost per linear meter of pipe includes the cost of manholes. The cost of new trunk sewers and laterals is presented in Table 9.2. Total length of trunk sewers and laterals is approximately 133 km. The cost of trunk sewers and laterals is estimated at Rs. 4,483 million.

9.1.3 Capital Costs for Branch Sewers

The capital cost of branch sewers has been worked out on the basis of cost per unit length of 1,000 Rs/m (Jal Sansthan Allahabad) assuming 250mm diameter concrete pipe. The average length of branch sewer per hectare is 385 m/ha which has been worked out from a review of sewer drawings for typical colonies and urban areas.

The estimated cost of branch sewers includes cost of manholes, road reinstatement and other ancillary works. The estimated cost of branch sewers is presented in Table 9.3. The total cost of branch sewers is worked out to be Rs. 7,349 million.

9.1.4 Capital Costs for House Connections

The number of house connections to be made during various project years have been assessed on the basis of number of dwellings calculated from census population and family size. The number of houses connected to the wastewater collection system will reach up to 80% by the end of phase 2. The connection ratios at each phase have been identified in Section 5 "Planning Framework".

The unit cost of house connections is taken as 7,750 Rs./connection. This unit cost is obtained from discussions with Jal Sansthan Allahabad and costs identified in Allahabad sewerage master plan adjusted to 2003 cost base using wholesale price index. Costs for household connections are estimated for each District in Table 9.4.

9.1.5 Capital Costs for Sewage Pumping Stations

The total capital cost of pumping stations has two major components: civil works and electromechanical works. The cost of each component has been worked out separately as shown in Table 9.5

The costs are worked out on the basis of cost per mld developed from a review of recent UPJN tenders and DPR cost estimates. The following formulae and costs are applied depending on the type of pumping station:

			Cost : Rs. 10° /mld
	Civil works	Electro-mechanical	Electrical service
Submersible < 6 mld	y = 0.1073x + 2.7675	1.0	0.8
Submersible > 6 mld	y = 0.1679x + 1.3616	0.3	0.8
Centrifugal	y = 26.958Ln(x) - 80.598	Y = 0.2462x + 5.0009	25.0

The electro-mechanical costs include the cost of diesel generators. The cost of electrical service entrance assumes 11 kV, and includes an average transmission line length of 5 km.

The cost of new pumping stations and upgrades to existing is estimated at Rs. 1,994 million.

9.1.6 Capital Costs for Rising Mains

The size and other details of rising mains have been worked out on the basis of preliminary design. All rising mains are estimated on the basis of unit cost per length for pre-stressed concrete pipe. Costs include installation, jointing, and testing, and connection to outfall sewer.

Cost details are provided in Table 9.6. The total length of new rising mains is 6.2 km and the estimated cost is Rs. 97 million.

9.1.7 Capital Costs for Treatment Plants

Capital costs of treatment plants have been worked out in Section 6 "Evaluation" for comparison and selection of treatment processes. Capital costs per unit mld are based on a review of treatment plants constructed under GAP and YAP presented in Supporting Report (Vol. III-11). The estimated cost of treatment works is presented in Table 9.7. The total cost is Rs. 1,554 million. The estimated cost includes treatment units along with piping, pumping, cost of laboratory, administrative building, electrical sub-station, site development and boundary walls. The cost of dual fuel engine generators is included for treatment processes that produce methane. Costs of land acquisition have been identified separately in Table 9.8.

9.2 ANNUAL O&M COSTS

Effective operation and maintenance is essential for the success of any sewerage system. Operation and maintenance involves the following major components:

- Operation, maintenance and monitoring personnel
- Parts, equipment and machinery
- Energy costs

Total O&M costs are summarized in Table9.10.

Annual repair and maintenance costs for pumping stations are estimated as a percentage of capital costs using the following factors as adopted by UPJN:

SI.	Description of items	Economic life (years)	Annual repair and maintenance cost as % of capital cost
1	Civil structures	30	1.5
2	Pumps	15	3.0
3	Pipelines	30	0.25
4	Electrical	15	3.0
5	Diesel generators	15	3.0

 Table 9.11 Unit Operation and Maintenance Costs

Source: UPJN Detailed Project Reports, Allahabad and Lucknow

Energy costs for pumping stations are calculated on the basis of electricity required to operate the pumps as calculated from the discharge and pumping head. The cost of electricity is taken as Rs 3.1 per kwh from the rate schedule issued by U.P. Power Corporation, August 2003. Recurring costs (excluding staff) for pumping stations are presented in Table 9.12.

Energy costs for treatment plants is worked out on the basis of unit consumption rates per mld identified in Supporting Report "Case Study of Sewage Treatment Plants". Recurring costs for treatment plants are identified in Table 9.13.

Proposals regarding staffing are described in the following sub-sections.

9.2.1 Staff

The number of staff required for carrying out regular operational, preventive and corrective maintenance activities can be grouped into the following categories:

- Personnel for sewer maintenance
- Personnel for sewage pumping stations
- Personnel for operation and maintenance of sewage treatment works
- Personnel for process control

Staff requirements for pumping stations and treatment plants are in accordance with directives issued for GAP projects by UP Ministry for Urban Development Annual recurring costs on staffing is based on the manpower required and salaries that have been given by UPJN Allahabad for 2002, and increased by 10% to bring them to 2003 base.

(1) Sewer Maintenance

Sewer maintenance generally involves regular inspection of all sewers, sewer cleaning operations, both preventive and corrective, and occasional repairs to manholes. Category and extent of personnel required for these activities have been worked out on the basis of quantity of work. Recommended personnel requirements for this component are presented in Table 9.14. A total of 6 gangs are recommended for Stage I, and 14 gangs for Stage II.

(2) Sewage Pumping Stations

The personnel requirement for operation and maintenance of sewage pumping stations varies depending on the size of the station. Staff requirements for pumping stations are presented in Table 9.15 in accordance with directives issued for GAP projects by UP Ministry for Urban Development.

(3) Sewage Treatment Plants

The personnel requirement for operation and maintenance of treatment plants varies depending on the size of the station. Staff requirements for GAP projects are determined by UP Ministry for Urban Development and presented in Table 9.16 and Table 9.20.

9.3 COST SCHEDULE

The annual investment costs and recurring costs for implementing the Sewerage Master Plan are presented for each district in Table 9.21. The schedule of costs is based on a preliminary implementation plan and priorities discussed in previous sections. The cost breakdown of projects identified for implementation during Stage I is listed in order of priority in Table 9.22.

	Cost (Rs. million)				
Item	Stage I	Stage II	T . (. 1		
-	-2015	2016-2030	Total		
Trunk sewers (including manholes)	873.96	3,609.19	4,483.1		
Branch sewers	695.48	6,653.07	7,348.5		
Pumping stations	1,100.80	893.50	1,994.3		
Rising mains	20.17	76.47	96.6		
Treatment plants	489.00	1,065.00	1,554.0		
Replacement of M/E assets	0.00	299.06	299.0		
Sub-total	3,179.41	12,596.29	15,775.7		
Physical Contingency (20%)	635.88	2,519.26	3,155.		
Cost of detailed engineering (15%)	476.91	1,889.43	2,366.3		
Cost of project administration (10%) ⁽¹⁾	317.94	1,259.63	1,577.5		
Land acquisition	288.00	419.20	707.2		
Sub-total	1,718.73	6,087.52	7,806.2		
Grand total	4,898.14	18,683.81	23,581.9		
Direct Cost (including land acquisition)	3,467.41	13,015.49	16,482.9		
House connections	830.00	2,840.28	3,670.2		

Table 9.1 Preliminary Capital Cost Estimate: Summary

Base year : 2003 City: Kanpur

Note (1): 4% preparation + 6% administration during construction

Base year : 2003 City: Kanpur

	Cost (Rs. million)				
Item	Stage I	Stage II	Total		
	-2015	2016-2030	l otal		
Trunk sewers (including manholes)	328.57	313.05	641.6		
Branch sewers	113.25	264.25	377.5		
Pumping stations	34.30	25.80	60.1		
Rising mains	20.17	0.00	20.1		
Treatment plants	0.00	0.00	0.0		
Replacement of M/E assets	0.00	0.00	0.0		
Sub-total	496.29	603.10	1,099.3		
Physical Contingency (20%)	99.26	120.62	219.8		
Cost of detailed engineering (15%)	74.44	90.46	164.9		
Cost of project administration (10%) ⁽¹⁾	49.63	60.31	109.9		
Land acquisition	4.00	0.00	4.0		
Sub-total	227.33	271.39	498.7		
Grand total	723.62	874.49	1,598.1		
House connections	197.96	308.31	506.2		

District I (City Central)

Note (1): 4% preparation + 6% administration during construction

Base year : 2003 City: Kanpur

	Cost (Rs. million)				
Item	Stage I	Stage II	Total		
	-2015	2016-2030	Total		
Trunk sewers (including manholes)	58.25	347.17	405.4		
Branch sewers	282.12	705.32	987.4		
Pumping stations	0.30	27.00	27.3		
Rising mains	0.00	0.00	0.0		
Treatment plants	129.00	75.00	204.0		
Replacement of M/E assets	0.00	227.01	227.0		
Sub-total	469.67	1,381.50	1,851.1		
Physical Contingency (20%)	93.93	276.30	370.2		
Cost of detailed engineering (15%)	70.45	207.22	277.6		
Cost of project administration (10%) ⁽¹⁾	46.97	138.15	185.1		
Land acquisition	0.00	8.00	8.0		
Sub-total	211.35	629.67	841.0		
Grand total	681.02	2,011.17	2,692.1		
House connections	148.48	130.67	279.1		

District I (City East)

Note (1): 4% preparation + 6% administration during construction

Base year : 2003 City: Kanpur

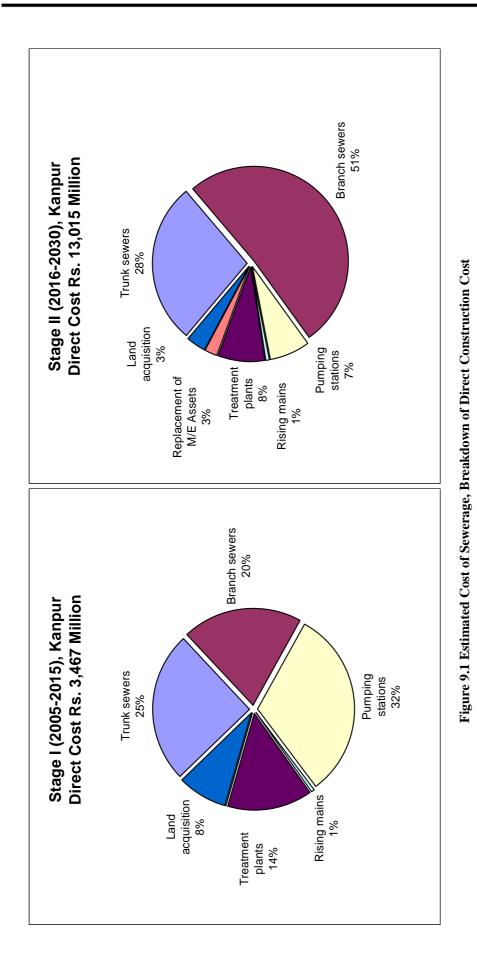
District II (South)

	Cost (Rs. million)			
Item	Stage I	Stage II	Total	
	-2015	2016-2030	Total	
Trunk sewers (including manholes)	64.05	923.11	987.16	
Branch sewers	156.27	2,002.43	2,158.70	
Pumping stations	0.00	520.80	520.80	
Rising mains	0.00	0.00	0.00	
Treatment plants	0.00	495.00	495.00	
Replacement of M/E assets	0.00	72.05	72.05	
Sub-total	220.32	4,013.39	4,233.71	
Physical Contingency (20%)	44.06	802.68	846.74	
Cost of detailed engineering (15%)	33.05	602.01	635.06	
Cost of project administration (10%) ⁽¹⁾	22.03	401.34	423.37	
Land acquisition	0.00	288.00	288.00	
Sub-total	99.14	2,094.03	2,193.17	
Grand total	319.46	6,107.42	6,426.88	
House connections	305.93	1,149.73	1,455.66	

Note (1): 4% preparation + 6% administration during construction

Base year : 2003 City: Kanpur

	Cost (Rs. million)			
Item	Stage I	Stage II	T ()	
	-2015	2016-2030	Total	
Trunk sewers (including manholes)	423.09	1,270.59	1,693.6	
Branch sewers	143.84	2,357.05	2,500.8	
Pumping stations	1,066.20	98.10	1,164.3	
Rising mains	0.00	0.00	0.0	
Treatment plants	360.00	240.00	600.0	
Replacement of M/E assets	0.00	0.00	0.0	
Sub-total	1,993.13	3,965.74	5,958.8	
Physical Contingency (20%)	398.63	793.15	1,191.7	
Cost of detailed engineering (15%)	298.97	594.86	893.8	
Cost of project administration (10%) ⁽¹⁾	199.31	396.57	595.8	
Land acquisition	284.00	0.00	284.0	
Sub-total	1,180.91	1,784.58	2,965.4	
Grand total	3,174.04	5,750.32	8,924.3	
House connections	177.63	992.12	1,169.7	


Base year : 2003

City: Kanpur

	Cost (Rs. million)				
Item	Stage I	Stage II	Total		
	-2015	2016-2030	Total		
Trunk sewers (including manholes)	0.00	755.27	755.27		
Branch sewers	0.00	1,324.02	1,324.02		
Pumping stations	0.00	221.80	221.80		
Rising mains	0.00	76.47	76.47		
Treatment plants	0.00	255.00	255.00		
Replacement of M/E assets	0.00	0.00	0.00		
Sub-total	0.00	2,632.56	2,632.56		
Physical Contingency (20%)	0.00	526.51	526.51		
Cost of detailed engineering (15%)	0.00	394.88	394.88		
Cost of project administration (10%) ⁽¹⁾	0.00	263.26	263.26		
Land acquisition	0.00	123.20	123.20		
Sub-total	0.00	1,307.85	1,307.85		
Grand total	0.00	3,940.41	3,940.41		
Cost of house connections	0.00	259.45	259.45		

District IV (East)

Note (1): 4% preparation + 6% administration during construction

Table 9.2 Preliminary Capital Cost Estimate: Trunk Sewers and Laterals (Page 1 of 3)

Base year : 2003 City: Kanpur

	N	Node		Node Diameter put		Length	Unit Cost	C	Cost (Rs. million)	
District	1	ouc	(mm)	Depth	(m)	(Rs./m)	Stage I	Stage II	Total	
	From	То	(11111)		(11)	(RS./III)	-2015	2016-2030	Total	
District I (City										
Replace Old										
	E	D	1,000	Е	1,600	46,940		75.10		
	D	C	1,200	Е	720	51,434		37.03		
	С	Β'	1,400	F	1,200	69,180		83.02		
	H2	H1	1,400	F	1,200	69,180	83.02			
	I4	I3	700	D	1,200	36,548		43.86		
	I3(a)	I3	800	С	1,036	30,812	31.92			
	13	I2	1,200	D	400	42,918	17.17			
	I2	I1	1,200	D	880	42,918	37.77			
	I1	Ι	1,600	D	600	55,997		33.60		
	Ι	Н	1,400	D	800	50,555		40.44		
			Sub-Total		9,636		169.88	313.05	482.9	
New										
	Н	G	1,600	D	1,000	37,331	37.33			
	G	B'	1,600	Е	1,600	43,425	69.48			
	B'	B'(b)-A7	2,000	G	700	74,109	51.88			
			Sub-Total		3,300		158.69	0.00	158.6	
					Тс	tal	328.57	313.05	641.6	
District I (City	y East)									
	CE1	CE2	900	С	1,800	19,986		35.97		
	CE2	CE4	1,200	D	2,050	28,612		58.65		
	CE3	CE4	700	D	2,000	24,365		48.73		
	CE4	CE6	1,400	Е	750	39,685		29.76		
	CE5	CE6	800	С	2,450	20,541		50.33		
	CE6	CE7	1,600	Е	700	43,425		30.40		
	CE7	CE8	1,600	D	1,000	37,331		37.33		
	CE8	SPS	1,600	D	1,500	37,331		56.00		
	Tan-1	Tan-2	800	С	1,100	20,541	22.60			
	Tan-2	Tan-3	1,200	С	1,500	23,768	35.65			
			Sub-Total		14,850		58.25	347.17	405.42	
					Тс	tal	58.25	347.17	405.42	
District II (Sou	,									
Replace Old	Sewer (150	% of const	ruct cost)							
	X11	X10	900	D	1,040	37,046		38.53		
	X10	X9	1,000	D	1,040	38,621		40.17		
	X9	X8	1,000	D	400	38,621		15.45		
	X8	X7	1,600	D	95	55,997		5.32		
	X7	X6	1,600	Е	2,060	65,138		134.18		
	X6	X4	1,600	G	1,650	87,933		145.09		
	Z	X1	1,400	F	450	69,180	31.13			
	X1	X2	1,200	Е	640	51,434	32.92			
	X2	A'''	2,200	Е	1,340	93,702		125.56		
			Sub-Total		8,715		64.05	504.30	568.3	

Depth

Depui	
Symbol	Range
А	-1.5 m
В	1.5 - 3.0 m
С	3.0 - 4.5 m
D	4.5 -6.0 m
E	6.0 - 7.5 m
F	7.5 - 9.0 m
G	9.0 - 10.5m
Н	10.5 - 12.0 m

Table 9.2 Preliminary Capital Cost Estimate: Trunk Sewers and Laterals (Page 2 of 3)

Base year : 2003 City: Kanpur

District	N	ode	Diameter	Depth	Length	Unit Cost	Stage I	Cost (Rs. million) Stage II	
District	From	То	(mm)	Depui	(m)	(Rs./m)	-2015	2016-2030	Total
New	110111	10					-2015	2010-2030	
1100	F2	X5-2	1,000	D	1,800	25,747		46.34	
	S1	S3	1,000	С	1,850	20,996		38.84	
	S2	S3	600	В	450	13,718		6.17	
	S 3	SPS	1,200	D	980	28,612		28.04	
	crossing (Ganda nala	1,200	Н	20	55,620		1.11	
	SPS	S8	1,000	D	1,080	25,747	Sanctioned		
	SPS	S8	1,000	D	1,080	25,747		27.81	
	S5	S 7	800	С	1,300	20,541		26.70	
	S6	S7	700	В	700	14,483		10.14	
	S 7	S8	1,200	D	1,000	28,612		28.61	
	S8	S9	1,000	Е	690	31,293	Sanctioned		
	S8	S9	1,400	Е	690	39,685		27.38	
	S9	S10	1,100	Е	1,260	51,899	Sanctioned		
	S9	S10	1,600	F	1,260	50,021		63.03	
	S10	S21	1,200	E	2,640	34,289	Sanctioned	114.64	
	S10	S21	1,600	Е	2,640	43,425	0.00	114.64	410.0
			Sub-Total		19,440		0.00	418.81	418.8
					To	tal	64.05	923.11	987.1
District III (W	est)								
Source III (W	W1	W2	1.000	D	1,700	25,747	43.77		
	W1 W2	W2 W4	1,000	C	600	23,747	14.26		
	W3	W4	800	<u>с</u>	1,500	20,541	11.20	30.81	
	W4	W12	1,600	D	1,250	37,331		46.66	
	W5	W6	600	В	850	13,718		11.66	
	W6	W12	800	С	1,850	20,541		38.00	
	W7	W9	500	С	1,500	17,162		25.74	
	W8	W9	700	С	1,000	19,352		19.35	
	W9	W11	800	D	1,000	25,594		25.59	
	W10	W11	600	В	1,150	13,718		15.78	
	W11	W12	1,200	Е	1,150	34,289		39.43	
	W12	W13	1,800	F	700	57,045	39.93		
	W13	W15	2,000	F	1,300	64,190	83.45		
	W14	W15	1,000	С	3,300	20,996		69.29	
	W15	SPS	2,200	G	950	80,749	76.71		
	W16	W17	400	С	1,400	17,162		24.03	
	W17	W19	500	Е	1,050	27,720		29.11	
	W18	W19	500	С	650	17,162		11.16	
	W19	SPS	700	G	2,000	43,754		87.51	
	W20	W21	800	D	1,500	25,594		38.39	
	W21	SPS	900	F	4,000	35,991	20.45	143.96	
	SPS	W24	1,800	C	1,000	38,454	38.45	20.45	
	SPS	W24	1,800	C	1,000	38,454		38.45	
	W23 W24	W24	600 1,800	B C	1,500 1,250	13,718 38,454	48.07	20.58	
	W24 W24	W30		<u>с</u>	1,250	38,454	48.07	48.07	
	W24 W25	W30 W26	1,800 500	<u>с</u>	1,250	38,454		48.07 18.88	
	W25 W26	W20 W27	500	D	1,100	22,083		22.08	
	W20 W27	W27 W28	800	E	1,000	31,420		54.99	
	W27 W28	W28 W29	1,000	F	1,730	37,162		40.88	
	W28 W29	W29 W30	1,000	F	1,100	37,162		48.31	
	W30	W30	1,800	F	700	57,045	39.93		
	W30	W33	1,800	F	700	57,045	27.75	39.93	
	W30	W32	500	C	1,850	17,162		31.75	
	W31 W32	W32	800	C	1,300	20,541		26.70	
	W33	W37	2,000	F	300	64,190	19.26		
	W33	W37	2,000	F	300	64,190		19.26	
	W34	W36	1,000	D	2,500	25,747		64.37	
	W35	W36	600	C	2,150	18,557		39.90	
	W36	W37	1,400	F	1,750	46,120		80.71	
	W37	STP	2,000	F	300	64,190	19.26		
	W37	STP	2,000	F	300	64,190		19.26	
			Sub-Total		54,800	· · · ·	423.09	1,270.59	1,693.6

	N	ode	Diameter		Lawath	Unit Cost	(Cost (Rs. million)	
District	110	Jue	(mm)	Depth	Length	(Rs./m)	Stage I	Stage II	Total
	From	То	(IIIII)		(m)	(KS./III)	-2015	2016-2030	Total
District IV (Ea	st)								
	E1	E2	700	С	1,800	19,352		34.83	
	E2	E4	800	С	350	20,541		7.19	
	E3	E4	600	С	2,200	18,557		40.83	
	E4	E8	1,000	D	650	25,747		16.74	
	E5	E7	600	С	1,750	18,557		32.47	
	E6	E7	500	В	500	12,368		6.18	
	E7	E8	800	D	1,800	25,594		46.07	
	E8	E10	1,400	Е	1,000	39,685		39.69	
	E9	E10	500	С	1,550	17,162		26.60	
	E10	E11	1,600	Е	2,550	43,425		110.73	
	E11	E12	1,600	F	600	50,021		30.01	
	E12	E16	1,600	F	1,300	50,021		65.03	
	E13	E14	500	D	2,150	22,083		47.48	
	E14	E15	700	Е	250	30,132		7.53	
	E15	E16	800	Е	900	31,420		28.28	
	E16	E17	1,800	F	1,050	57,045		59.90	
	E17	SPS	1,800	G	2,350	66,261		155.71	
			Sub-Total		22,750		0.00	755.27	755.
					To	otal	0.00	755.27	755.

Table 9.2 Preliminary Capital Cost Estimate: Trunk Sewers and Laterals (Page 3 of 3)

Base year : 2003 City: Kanpur

Table 9.3 Preliminary Capital Cost Estimate: Branch Sewers

Base year : 2003 City: Kanpur

		Lengt	h (m)	C	Cost (Rs million))
District/Zone	Area (ha)	Stage I	Stage II	Stage I	Stage II	Total
	(114)	-2015	2016-2030	-2015	2016-2030	
District I (City Cen.)						
	1,961	113,248	264,245	113.25	264.25	377.50
Sub-Total	1,961			113.25	264.25	377.50
District I (City East)						
	3,664	282,128.00	705,320	282.12	705.32	987.44
Sub-Total	3,664			282.12	705.32	987.44
District II (South)						
Central	2,706	156,272	364,634	156.27	364.63	520.90
South-Central	240	0	92,400	-	92.40	92.40
South-West	2,469	0	950,565	-	950.57	950.57
South-East	1,545	0	594,825	-	594.83	594.83
Sub-Total	6,960			156.27	2,002.43	2,158.70
District III (West)						
West-1	1,868	143,836	287,672	143.84	287.67	431.51
West-2	5,375	0	2,069,375	-	2,069.38	2,069.38
Sub-Total	7,243			143.84	2,357.05	2,500.89
District IV (East)						
	3,439	0	1,324,015	0	1,324.02	1,324.02
(NSA)	2,543					
Sub-Total	5,982			0	1,324.02	1,324.02
Total	25,810				6,653.07	6,653.07

1. Average length of branch sewer per hectare taken as

385 m/ha.

2. A factor of increment in connection target in each Phase, has been used for calculation of lengths of branch sewers. Branch sewer length = 385 x Area (ha) x Increment in connection target (%)

3. Cost per unit length taken as Rs. 1000 / m (Jal Sansthan, Allahabad) assuming 250 mm diameter concrete pipe.

Existing and proposed branch sewer coverage

		Y	ear	
	2003	2010	2015	2030
District I (City Cen.)				
	50%	55%	65%	100%
District I (City East)				
	30%	40%	50%	100%
District II (South)				
Central	50%	55%	65%	100%
South-Central	0%	0%	0%	100%
South-West	0%	0%	0%	100%
South-East	0%	0%	0%	100%
District III (West)				
West-1	40%	50%	60%	100%
West-2	0%	0%	0%	100%
District IV (East)				
	0%	0%	0%	100%

	No	of households	with connection	1	C	lost (Rs. Million)	
District/Zone	2003	2010	2015	2030	Stage I	Stage II	Total
	2005	2010	2015	2030	-2015	2016-2030	TOTAL
District I (City Cen.)							
	43,407	53,256	68,950	108,732	197.96	308.31	506.27
Sub-Total					197.96	308.31	506.27
District I (City East)							
	9,698	18,687	28,857	45,717	148.48	130.67	279.15
Sub-Total					148.48	130.67	279.15
District II (South)							
Central	52,717	68,712	92,192	146,582	305.93	421.52	727.45
South-Central	0	0	0	6,247	0.00	48.41	48.41
South-West	0	0	0	58,956	0.00	456.91	456.91
South-East	0	0	0	28,759	0.00	222.88	222.88
Sub-Total					305.93	1,149.73	1,455.66
District III (West)							
West-1	8,374	19,256	31,294	75,468	177.63	342.35	519.98
West-2	0	0	0	83,842	0.00	649.78	649.78
Sub-Total					177.63	992.12	1,169.75
District IV (East)							
	0	0	0	33,478	0.00	259.45	259.45
Sub-Total					0.00	259.45	259.45
Total						2,840.28	3,670.28

Table 9.4 Preliminary Capital Cost Estimate: House Connections Base year : 2003 City: Kanpur

1. Unit cost per connection taken as Rs. 7750

2. Existing and proposed connection targets (%) have been used to calculate the Number of households with connection. Cost = Rs. 7750 x Increase in Number of households with connection.

Population and number of households

		20	03		Sta	ge I		Sta	geII
Zone	No. of persons	20	05	Before	e 2010	2011	-2015	2016	-2030
	per household	Population	Total Households	Population	Total Households	Population	Total Households	Population	Total Households
District I (City Cen.)									
	6.4	694,517	108,518	757,412	118,346	802,326	125,363	869,853	135,915
District I (City East)									
	6.4	310,349	48,492	398,648	62,289	461,718	72,143	585,168	91,433
District II (South)									
Central	6.4	843,469	131,792	977,234	152,693	1,072,781	167,622	1,172,659	183,228
South-Central	6.4	20,578	3,215	31,283	4,888	38,929	6,083	49,975	7,809
South-West	6.4	369,346	57,710	508,639	79,475	608,134	95,021	754,628	117,911
South-East	6.4	157,847	24,664	233,342	36,460	287,267	44,885	368,108	57,517
District III (West)									
West-1	6.4	178,645	27,913	308,091	48,139	400,555	62,587	603,746	94,335
West-2	6.4	157,146	24,554	299,445	46,788	401,086	62,670	670,739	104,803
District IV (East)									
	6.4	56,345	8,804	140,789	21,998	201,106	31,423	428,512	66,955

No. of persons per household, for the city of Kanpur has been taken as 6.4.
 Population considered here is the total population.

Existing and proposed household connection targets

District/Zone		Ye	ear	
District/Zone	2003	2010	2015	2030
District I (City Cen.)				
	40%	45%	55%	80%
District I (City East)				
	20%	30%	40%	50%
District II (South)				
Central	40%	45%	55%	80%
South-Central	0%	0%	0%	80%
South-West	0%	0%	0%	50%
South-East	0%	0%	0%	50%
District III (West)				
West-1	30%	40%	50%	80%
West-2	0%	0%	0%	80%
District IV (East)				
	0%	0%	0%	50%

te: Pumping Stations	
apital Cost Estimat	
Table 9.5 Preliminary C	

Base year : 2003 City: Kanpur

				Design (anacity				Cost (Rs	Cost (Rs. million)			
	ć	,	Type of	Average flow (mld)	ow (mld)					Misc. Road,		Total capital cost	t
Name	District	Status	Pump	Stage I	Stage II	Electrical service	M&E (Stage I)	M&E (Stage II)	Civil works	wall, staff quarters	Stage I	Stage II	Later
				-2015	2016-2030		6	þ		10% of civil	-2015	2016-2030	1 0121
Guptar SPS	I(CC)	E/R	Submersible	4.0	4.0		1.2	1.2			1.2	1.2	2.4
Bhagwatdas Nala SPS	I(CC)	Р	Submersible	8.0	8.0	6.4	2.4	2.4	2.7	0.3	11.8	2.4	14.2
Muirmill SPS	I(CC)	E/R	Submersible	4.0	5.0		1.2	1.5			1.2	1.5	2.7
Parmat SPS	I(CC)	E/R	Centrifugal	54.0	54.0		18.3	18.3			18.3	18.3	36.6
Nawabganj SPS	I(CC)	E/R	Submersible	6.0	8.0		1.8	2.4			1.8	2.4	4.2
Taiman SDS (ASD)	ICEN	Е	Centrifugal	121.0	121.0						(Existing)		0.0
		А	Centrifugal	44.0	81.0			24.9				24.9	24.9
(ITACR)	I/CE/	Е	Centrifugal	17.0	17.0						(Existing)		0.0
(GCAU) CIC UMINING		А	Centrifugal	1.0	7.0		0.3	2.1			0.3	2.1	2.4
Rahkimanj SPS	п	s	Centrifugal	86.0	9.66						(Sanctioned)		0.0
Mushipurwa SPS	п	s	Centrifugal	70.0	82.0						(Sanctioned)		0.0
Ganda Nala SPS	Π	s	Centrifugal	45.0	45.0						(Sanctioned)		0.0
Lakhanpur SPS	Ш	E/R	Centrifugal	16.0	27.0	67.5	4.8	8.1			72.3	8.1	80.4
Panki SPS	Ш	Р	Centrifugal	80.0	126.0	315.0	24.7	36.0	49.8	5.0	394.5	36.0	430.5
Ruman SPS	IV	Р	Centrifugal	0.0	66.0	165.0		21.3	32.3	3.2	0.0	221.8	221.8
MPS at Ringauan STP	ш	S	Centrifugal	200.0	200.0			54.2			(Sanctioned)		0.0
н сладата с им	Ŧ	Р	Centrifugal		165.0	412.5		45.6	57.0	5.7		520.8	520.8
MPS at Panka STP	III	Р	Centrifugal	116.0	199.0	497.5	33.6	54.0	62.1	6.2	599.4	54.0	653.4
Sanctioned facilities													
Rahkimanj SPS	п	S	Centrifugal	86.0	99.0	247.5	29.4				276.9		
Mushipurwa SPS	п	S	Centrifugal	70.0	82.0	205.0	25.2				230.2		
Ganda Nala SPS	п	S	Centrifugal	45.0	45.0	112.5	16.1				128.6		
MPS at Bingawan STP	п	S	Centrifugal	200.0	200.0	500.0	54.2				554.2		
Tyme of numb			Costs (Costs (Rs. million)							Stage I	Stage II	Total
dund to add t	M&E			Civil		Electrical Service	Service				-2015	2016-2030	1 0001
Centrifugal (>=30mld)	Y = 0.2462x + 5.0009	- 5.0009	Y=2	Y=26.958Ln(x) - 80.598	.598	Y=2.5x	2.5x		District I (City Central)	ity Central)	34.3	25.8	60.1
Submersible (<30mld)	Y = 0.3x	x	y =	y = 0.1679x + 1.3616	16	Y = 0.8x	0.8x		District I (District I (City East)	0.3	27.0	27.3
									Distr	District II	0.0	520.8	520.8

1,164.3 221.8 1,994.3

1,066.2

District II District III District IV Total

221.8 98.1

893.5

1,100.8 0.0

Table 9.6 Preliminary Capital Cost Estimate: Rising Mains

Base year : 2003 City: Kanpur

							Cost (Rs. million)	
Pump station	Status	Diameter (mm)	Length (m)	Type of material	Unit Cost (Rs./m)	Stage I	Stage II	Total
		()	()	material	(100/11)	-2015	2016-2030	Total
District I (City Center)								
Parmat SPS	Р	1,000	1,000	PSC	13,806	13.81		13.81
Bhagwantdas Nala SPS	Р	400	1,000	DIP	6,362	6.36		6.36
Sub-Total						20.17	0.00	20.17
District IV (East)								
Ruman SPS	Р	1,200	4,200	PSC	18,208	0.00	76.47	76.47
Total						20.17	76.47	96.64

Table 9.7 Preliminary Capital Cost Estimate: Treatment Plants

Base year : 2003 City: Kanpur

					Incremental C	Incremental Capacity (mld)	Civil Cost (Rs. million)	Rs. million)	M&E Cost (M&E Cost (Rs. million)	Tota	Total Cost (Rs. million)	(uo
	District	Process	Unit Cost Rs.10 ⁶ /mld	Status	Stage I	Stage II	Stage I	Stage II	Stage I	Stage II	Stage I	Stage II	Totol
	_				-2015	2016-2030	-2015	2016-2030	-2015	2016-2030	-2015	2016-2030	1 0141
Jajmau STP (UASB)	I (CE)	UASB++	3.0	Α		16.0		28.8		19.2		48.0	48.0
Jajmau STP (ASP)	I (CE)	ASP	2.7	A	43.0	10.0	77.4	16.2	51.6	10.8	129.0	27.0	156.0
Binmun CTD	Ш	TIASP	00	s	200.0						Sanctioned		0.0
Ulligawall O II	=		0.0	Ρ		165.0		346.5		148.5		495.0	495.0
Panka STP	Ш	UASB++	3.0	Ρ	120.0	80.0	252.0	168.0	108.0	72.0	360.0	240.0	600.0
Karankher STP	IV	UASB++	3.0	Ρ		85.0		178.5		76.5		255.0	255.0
Total							329.4	738.0	159.6	327.0	489.0	1,065.0	1,554.0
Sanctioned facility									(Replace)				
Bingawan STP	П	II UASB++	3.0	S	200.0		420.0		180.0		600.0		

Totol	T OLGI	204.0	495.0	600.0	255.0	1,554.0
Stage II	2016-2030	75.0	495.0	240.0	255.0	1,065.0
Stage I	-2015	129.0	0.0	360.0	0.0	489.0
		District I (CE)	District II	District III	District IV	Total

Final Report on Water Quality Management Plan for Ganga River Volume III-2, Sewerage Master Plan for Kanpur City

Base year : 2003 City: Kanpur

+
-
=
5
—
Λ.
H
=
പ
a
=
G
പ
Ē.
~
<u> </u>
<u>.</u> .

				Ultimate Ca _l	Ultimate Capacity (mld)	Land Requi	Land Requirement (ha)		Cost (Rs. million)	
Dist	District Process	SS And Req.	Status	Stage I	Stage II	Stage I	Stage II	Stage I	Stage II	
				-2015	2016-2030	-2015	2016-2030	-2015	2016-2030	Total
1(6	I (CE) ASP	0.20	E/A		10.0		2.0		8.0	8.0
-	I UASB++	++ 0.35	S/A		365.0		72.0		288.0	288.0
-	II UASB++	++ 0.35	Р	200.0		70.0		280.0		280.0
Ľ.	IV UASB++	++ 0.35	Р		85.0		29.8		119.2	119.2
						70.0	103.8	280.0	415.2	695.2

(2) Pumping Station

				Land Requirement (ha)	rement (ha)		Cost (Rs. million)	
	District	Status	• • • • •	Stage I	Stage II	Stage I	Stage II	
				-2015	2016-2030	-2015	2016-2030	Total
Bhagwantdas Nala SPS	I(CC)	Ь		1.0		4.0		4.0
Panki SPS	Ш	Р		1.0		4.0		4.0
Ruman SPS	IV	Р			1.0		4.0	4.0
Total				2.0	1.0	8.0	4.0	12.0

Note (1): Land requirement 72.0 ha=0.35x365MLD-56.0, 56.0ha sanctioned

288.0 284.0 123.2

284.0

0.0

707.2

288.0

0.0

4.0 8.0

0.0 8.0 288.0 0.0 123.2 419.2

4.0

District I (City Central) District I (City East) District II (South) District II (West) District IV (East) Total

Total

Stage II 2016-2030

Stage I -2015

Table 9.9 Replacement Cost of Existing Assets

(1) I uniping stations					
	District	Capacity	Turno	Capital cos	st Rs x 10 ⁶
	District	(MLD)	Туре	Civil	M/E
ISPS No.1	I(CE)	3.7	S	2.18	1.11
ISPS No.2	I(CE)	8.8	S	3.11	2.63
ISPS No.3	I(CE)	5.0	S	2.42	1.49
ISPS No.4	I(CE)	1.7	S	1.81	0.51
Sub Total					5.74
Jajmau MPS	I(CE)	121.0	С	53.55	34.78
Jajmau MPS	I(CE)	17.0	С	4.64	9.19
Sub-Total		43.97			
Rakhi Mandi SPS	П	115.2	С	52.10	33.36
Munshi purwa SPS	П	82.0	С	42.02	25.19
Ganda Nala SPS	П	45.0	С	9.81	13.50
Sub-Total					72.05

(1) Pumping Stations

(2) Treatment Plant

	District	Capacity	Туре	Capital cos	st Rs x 10 ⁶
	District	(MLD)	Type	Civil	M/E
Jajmau STP (Pilot)	I(CE)	5	UASB++	10.50	4.50
Jajmau STP (UASB)	I(CE)	36	UASB++	75.60	32.40
Jajmau STP (ASP)	I(CE)	130	ASP	210.60	140.40
Sub-Total					177.30

Summary
Costs:
Maintenance
and
Operation
Annual
Table 9.10

	C 4 2 4 1 2	Titte C		Stage I	εI			Stage II	еП	
	Status	DISTRICT	Maintenance	Staff	Energy	Total	Maintenance	Staff	Energy	Total
Sewer Maintenance										
District I (City Central)			8.19	0.60	-	8.79	13.97	0.60		14.57
District I (City East)			7.64		-	7.64	18.16	09.0	•	18.76
District II (South)			11.58	0.60		12.18	36.67	1.20		37.87
District III (West)			19.49	0.60		20.09	44.82	1.20		46.02
District IV (East)			,				20.79	09.0		21.39
Sub-total Sewers			46.90	1.80		48.70	134.41	4.20		138.61
Pump stations										
Guptar Ghat	Е	I(CC)	0.07	0.47	0.55	1.09	0.07	0.47	0.55	1.09
Bhagwatdas Nala SPS	Р	I(CC)	0.13	0.47	0.40	1.00	0.13	0.47	0.40	1.00
Muir Mill	Е	I(CC)	0.07	0.47	0.21	0.75	0.08	0.47	0.21	0.76
Parma Ghat	Е	I(CC)	0.99	0.67	0.55	2.21	66.0	0.67	0.83	2.49
Nawabganj	Е	I(CC)	0.09	0.47	0.23	0.80	0.11	0.47	0.40	0.99
Jajmau MPS (ASP)	Е	I(CE)	1.77	0.83	4.38	66.9	2.03	0.83	6.61	9.46
Jajmau MPS (UASB)	Е	I(CE)	0.50	0.67	0.47	1.64	0.54	0.67	0.81	2.02
ISPS No.1	Е	I(CE)	0.05	0.47	0.08	09.0	0.05	0.47	0.08	0.60
ISPS No.2	Е	I(CE)	0.09	0.47	0.20	0.77	60.0	0.47	0.20	0.77
ISPS No.3	Е	I(CE)	0.06	0.47	0.11	0.64	0.06	0.47	0.11	0.64
ISPS No.4	Е	I(CE)	0.03	0.47	0.04	0.54	0.03	0.47	0.04	0.54
Rakhi Mandi	Е	Π	1.43	0.83	3.02	5.28	1.53	0.83	4.31	6.67
Munshi Purwa	Е	п	1.24	0.83	2.00	4.07	1.33	0.83	2.79	4.95
Ganda Nala SPS	Р	Π	0.81	0.47	0.49	1.78	0.81	0.47	0.80	2.08
MPS at Bingawan STP	Р	Π	3.57	-	7.88	11.45	4.78	-	11.70	16.49
Lakhanpur SPS	Е	Ш	0.42	0.02	0.12	0.56	0.50	0.98	0.98	2.45
Panki SPS	Ь	Π	1.49	0.98	1.84	4.31	1.83	0.98	4.07	6.88
MPS at Panka STP	Р	Ш	1.94		2.76	4.70	2.55	ı	6.40	8.95
Ruman SPS	Р	IV	-	0.83	-	0.83	1.31	0.83	3.13	5.26
Sub-total Pumping Station			14.74	9.90	25.37	50.01	18.82	10.85	44.43	74.10
Treatment Plants										
Jajmau Tannery STP (Pilot)	Е	I(CE)	0.29		0.42	0.71	0.29		0.42	0.71
Jajmau Tannery STP (UASB)	Е	I(CE)	2.11	8.76	3.01	13.88	3.04	8.76	4.35	16.16
Jajmau STP (ASP)	Е	I(CE)	7.37	8.76	29.42	45.55	17.68	8.76	41.41	67.85
Bingawan STP	S/A	Π	11.70	8.76	25.12	45.58	21.35	8.76	30.56	60.68
Panka STP	Р	Ш	7.02	4.83	10.05	21.89	11.70	4.83	16.75	33.27
Karankhera STP	Р	IV					4.97	2.99	7.12	15.08
Sub-total of Treatment Plants			28.49	31.11	68.02	127.62	59.04	34.10	100.61	193.75
Total			00	10.01	0000	00,000				

														(Ks. million)
					Stage I	I					Stage II	e II		
	Ctotuc	District	AI	Annual Repairs	ļ					Annual Repairs				
	Slauds	האוואנות	M&E F	Rising Main	Civil works	Staff	Energy	Total	M&E	Rising Main	Civil works	Staff	Energy	Total
			3%	0.25%	1.5%				3%	0.25%	1.5%			
New pumping stations														
Bhagwatdas Nala SPS	Ρ	I(CC)	0.07	0.02	0.04	0.47	0.40	1.00	0.07	0.02	0.04	0.47	0.40	1.00
Ganda Nala SPS	Р	п	0.48		0.33	0.47	0.49	1.78	0.48		0.33	0.47	0.80	2.08
MPS at Bingawan STP	S	П	1.78	1	1.79		7.88	11.45	3.00	-	1.79		11.70	16.49
Panki SPS	Р	Ш	0.74	1	0.75	0.98	1.84	4.31	1.08		0.75	0.98	4.07	6.88
MPS at Panka STP	Ρ	Ш	1.01	1	0.93	1	2.76	4.70	1.62	'	0.93		6.40	8.95
Ruman SPS	Р	IV	-	1		0.83	-	0.83	0.64	0.19	0.48	0.83	3.13	5.26
Existing pumping station														
Guptar Ghat SPS	Е	I(CC)	0.04	1	0.03	0.47	0.55	1.09	0.04	1	0.03	0.47	0.55	1.09
Muir Mill SPS	Е	I(CC)	0.04	1	0.03	0.47	0.21	0.75	0.05		0.03	0.47	0.21	0.76
Parma Ghat SPS	Е	I(CC)	0.55	0.03	0.40	0.67	0.55	2.21	0.55	0.03	0.40	0.67	0.83	2.49
Nawabganj SPS	Е	I(CC)	0.05	ı	0.04	0.47	0.23	0.80	0.07	-	0.04	0.47	0.40	0.99
Jajmau MPS (ASP)	Е	I(CE)	1.04	1	0.73	0.83	4.38	6.99	1.30	-	0.73	0.83	6.61	9.46
Jajmau MPS (UASB)	Е	I(CE)	0.43	ı	0.06	0.67	0.47	1.64	0.48	-	0.06	0.67	0.81	2.02
ISPS No.1	Е	I(CE)	0.02	ı	0.03	0.47	0.08	0.60	0.02	-	0.03	0.47	0.08	0.60
ISPS No.2	Е	I(CE)	0.05	ı	0.04	0.47	0.20	0.77	0.05	-	0.04	0.47	0.20	0.77
ISPS No.3	Е	I(CE)	0.03	1	0.03	0.47	0.11	0.64	0.03	-	0.03	0.47	0.11	0.64
ISPS No.4	Е	I(CE)	0.01	ı	0.02	0.47	0.04	0.54	0.01	-	0.02	0.47	0.04	0.54
Rakhi Mandi SPS	Е	Π	0.79	ı	0.65	0.83	3.02	5.28	0.88	ı	0.65	0.83	4.31	6.67
Munshi Purwa SPS	Е	П	0.67	ı	0.57	0.83	2.00	4.07	0.76	-	0.57	0.83	2.79	4.95
Lakhanpur SPS	Е	Ш	0.27	0.02	0.12	0.98	0.33	1.72	0.35	0.02	0.12	0.98	0.98	2.45
Total			8.07	0.07	6.60	10.85	25.57	51.17	11.47	0.27	7.08	10.85	44.43	74.10

Table 9.12 Annual Operation and Maintenance: Pumping Stations

				ı								(Rs. million)
					Stage I					Stage II		
	District		Annual	Annual Repairs				Annual	Annual Repairs			
	ראוואוע	LIUCESS	M&E	Civil works	Staff	Energy	Total	M&E	Civil works	Staff	Energy	Total
			3%	1.5%				3%	1.5%			
Jajmau Tannery STP (Pilot)	Ι	UASB++	0.14	0.16		0.42	0.71	0.14	0.16		0.42	0.71
Jajmau Tannery STP (UASB)	Ι	UASB++	0.97	1.13	8.76	3.01	13.88	1.40	1.64	8.76	4.35	16.16
Jajmau STP (ASP)	Ι	ASP	4.21	3.16	8.76	29.42	45.55	10.10	7.58	8.76	41.41	67.85
Bingawan STP	Π	UASB++	5.40	6.30	8.76	25.12	45.58	9.86	11.50	8.76	30.56	60.68
Panka STP	Ш	UASB++	3.24	3.78	4.83	10.05	21.89	5.40	6.30	4.83	16.75	33.27
Karankhera STP	IV	UASB++		1			1	2.30	2.68	2.99	7.12	15.08
Total			13.96	14.53	31.10844	68.02	127.62	29.19	29.85	34.10	100.61	193.75

Treatment Plants
Maintenance:
Operation and
Table 9.13 Annual

nerov Cost

inergy Cost								Cost of electricity (Rs./kWhr):	
	еП	kwhr/day	370	3,848	36,600	27,010	14,800	6,290	
	Stage II	mld	5	52	183	365	200	85	
	ge I	kWhr/day	370	2,664	26,000	22,200	8,880	0	
	Stage I	mld	5	36	130	300	120	0	
	kWhr/mld		74	74	200	74	74	74	
	Decores	LIUCESS	UASB++	UASB++	ASP	UASB++	UASB++	UASB++	
	District	הזווגוע	Ι	I	Ι	Π	Ш	IV	
Energy Cost			Jajmau Tannery STP (Pilot)	Jajmau Tannery STP (UASB)	Jajmau STP (ASP)	Bingawan STP	Panka STP	Karankhera STP	

Initial Cost for Calculating Maintenance Cost

				Capaci	Capacity (mld)	Civil	Civil Cost	M&E	M&E Cost	Total	Total Cost
	District	Process	Unit Cost Re 10 ⁶ /mld	Stage I	Stage II	Stage I	Stage II	Stage I	Stage II	Stage I	Stage II
				-2015	2016-2030	-2015	2016-2030	-2015	2016-2030	-2015	2016-2030
Jajmau Tannery STP (Pilot)	Ι	UASB++	3.0	5	5	10.5	10.5	4.5	4.5	15.0	15.0
Jajmau Tannery STP (UASB)	Ι	UASB++	3.0	36	52	75.6	109.2	32.4	46.8	108.0	156.0
Jajmau STP (ASP)	Ι	ASP	2.7	130	183	210.6	505.1	140.4	336.7	351.0	841.8
Bingawan STP	Π	UASB++	3.0	200	365	420.0	766.5	180.0	328.5	600.0	1,095.0
Panka STP	Ш	UASB++	3.0	120	200	252.0	420.0	108.0	180.0	360.0	600.0
Karankhera STP	N	UASB++	3.0		85		178.5		76.5	0.0	255.0
Total						968.7	1,989.8	465.3	973.0	1,434.0	2,962.8

Table 9.14 Staff Requirement per Sewer Cleaning Crew

		Unit	Sta	ge I	Stag	ge II
Staff	No. Required	Salaries/Month	Number of Crews	Annual Cost (Rs.)	Number of Crews	Annual Cost (Rs.)
Supervisor	1	5,500	6	396,000	14	924,000
Sewer inspector	1	4,500	6	324,000	14	756,000
Machine Operator	2	3,600	6	259,200	14	604,800
Helper	2	2,700	6	194,400	14	453,600
Sweeper	1	2,700	6	194,400	14	453,600
Unskilled laborer	3	2,700	6	194,400	14	453,600
Mason	1	3,300	6	237,600	14	554,400
Total				1,800,000		4,200,000

Staff Cost

	No. o	f Crews	Staff	Cost
	Stage I	Stage II	Stage I	Stage II
District I (City Central)	2	2	600,000	600,000
District I (City East)	0	2	0	600,000
District II (South)	2	4	600,000	1,200,000
District III (West)	2	4	600,000	1,200,000
District IV (East)	0	2	0	600,000
	6	14	1,800,000	4,200,000

Capital Cost of Trunk Sewer

	Staff	Cost
	Stage I	Stage II
District I (City Central)	328.57	641.62
District I (City East)	58.25	405.42
District II (South)	64.05	987.16
District III (West)	423.09	1,693.68
District IV (East)	0.00	755.27
	873.96	4,483.15

Capital Cost of Branch Sewer

Capital Cost of Branch Sewer								(Rs. million)
	Area	Branch Cov	er Area (ha)	Length per ha	Branch L	ength (m)	Capita	al Cost
	(ha)	Stage I	Stage II	(m/ha)	Stage I	Stage II	Stage I	Stage II
District I (City Central)	1,961	1,275	1,961	385	490,875	754,985	490.88	754.99
District I (City East)	3,664	1,832	3,664	385	705,320	1,410,640	705.32	1,410.64
District II (South)	6,960	2,842	6,960	385	1,094,170	2,679,600	1094.17	2,679.60
District III (West)	7,243	3,963	7,243	385	1,525,755	2,788,555	1525.76	2,788.56
District IV (East)	3,439	0	3,439	385	0	1,324,015	0.00	1,324.02
Total	23,267	9,912	23,267		3,816,120	8,957,795	3816.12	8,957.80

	Maintenar	ice Cost
	Stage I	Stage II
District I (City Central)	8.19	13.97
District I (City East)	7.64	18.16
District II (South)	11.58	36.67
District III (West)	19.49	44.82
District IV (East)	0.00	20.79
Total	46.90	134.41

Maintenance Cost = 1.0% of Initial Co

Required Staff	Staff															
S. No.	Post	Shifts	Muir Mill	Bhagwatdas Nala	Guptar Ghat	ISPS No.1 to 4	Nawabganj	Parma Ghat	Rakhimandi	Parma Ghat Rakhimandi Munshipurwa	Jajmau	Jajmau (New)	Ruman	Panki	Ganda Nala	Rahkanpur
1	Junior Engineer	1	0.25	0.25	0.25	0.25	0.25	0.5	0.5	0.5	1	0.5	0.5	1	0.25	1
2	Electician		-1	1	1	1	1	1	-	1	1.5	-	1	1.5	1	1.5
3	Mech. cum fitter	1	-	1	1	1	1	1	2	2	1.5	1	2	2.5	1	2.5
4	Pump Operator	3	1	1	1	1	1	1	1	1	1	1	1	1	1	1
5	Screen Operator	3	0	0	0	0	0	1	1	1	1	1	1	1	0	1
9	Gen Set Operator	1	0	0	0	0	0	1	1	1	1	1	1	1	0	1
7	Beldar	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1
8	Sweeper	1	1	1	1	1	1	1	4	4	1	1	4	4	1	4
Annual St	Annual Staffing Costs (in Rs.)															
				Bhagwatdas	5	SPSI		č A		:		Jaimau	ſ	:		:

Table 9.15 Operation and maintenance staff: Requirements at Pumping Stations

Annual	Annual Mating Costs (in KS.)														
S. No.	Post	Muir Mill	Bhagwatdas Nala	Guptar Ghat	ISPS No.1 to 4	Nawabganj	Parma Ghat	Rakhimandi	Munshipurwa	Jajmau	Jajmau (New)	Ruman	Panki	Ganda Nala	Rahkanpur
1	Junior Engineer	56,100	56,100	56,100	56,100	56,100	112,200	112,200	112,200	224,400	112,200	112,200	224,400	56,100	224,400
2	electrician	47,520	47,520	47,520	47,520	47,520	47,520	47,520	47,520	71,280	47,520	47,520	71,280	47,520	71,280
3	Mech. cum fitter	47,520	47,520	47,520	47,520	47,520	47,520	95,040	95,040	71,280	47,520	95,040	118,800	47,520	118,800
4	Pump Operator	213,840	213,840	213,840	213,840	213,840	213,840	213,840	213,840	213,840	213,840	213,840	213,840	213,840	213,840
5	Screen Operator						106,920	106,920	106,920	106,920	106,920	106,920	106,920		106,920
9	Gen Set Operator	-	1		-		35,640	35,640	35,640	35,640	35,640	35,640	35,640		35,640
7	Beldar	71,280	71,280	71,280	71,280	71,280	71,280	71,280	71,280	71,280	71,280	71,280	71,280	71,280	71,280
8	Sweeper	35,640	35,640	35,640	35,640	35,640	35,640	142,560	142,560	35,640	35,640	142,560	142,560	35,640	142,560
	TOTAL	471,900	471,900	471,900	471,900	471,900	670,560	825,000	825,000	830,280	670,560	825,000	984,720	471,900	984,720
															Ī

Table 9.16 Operation and Maintenance Staff: Requirements for JajmauSTP (ASP)

Activated sludge

<i>a</i>		Staff Red	quirement	Monthly Salary	Annual was	ges in Rs.
S. No.	Designation	Stage I	Stage II	in Rs.	Stage I	Stage II
1	Executive Engineer (Project Manager)	1	1	27,500	330,000	330,000
2	Assistant Engineer (E&M) (Asstt. Manager)	1	1	24,200	290,400	290,400
3	Assistant Engineer (Civil)	1	1	24,200	290,400	290,400
4	Junior Engineer (E&M) (Junior Manager)	6	6	19,800	1,425,600	1,425,600
5	Junior Engineer (Civil) (Junior Manager)	2	2	19,800	475,200	475,200
6	Fitter (Mech.) I Class	2	2	3,960	95,040	95,040
7	Electrician I Class	3	3	3,960	142,560	142,560
8	Fitter II Class	1	1	3,630	43,560	43,560
9	Electrician II Class	2	2	3,630	87,120	87,120
10	Gardener	2	2	3,080	73,920	73,920
11	Driver	1	1	7,700	92,400	92,400
12	Cleaner	1	1	3,080	36,960	36,960
13	Junior Accountant	1	1	11,550	138,600	138,600
14	UDC (Senior Assistant)	2	2	9,570	229,680	229,680
15	LDC/Typist (Junior Assistant)	3	3	8,360	300,960	300,960
16	Peon	3	3	6,050	217,800	217,800
17	Junior Stenographer	1	1	9,570	114,840	114,840
18	Chemist	1	1	7,700	92,400	92,400
19	Assistant Chemist	1	1	6,600	79,200	79,200
20	Lab Assistant	1	1	4,950	59,400	59,400
21	Lab Attendant	2	2	3,080	73,920	73,920
22	Sweeper	2	2	2,970	71,280	71,280
23	Weldar-cum-black smith	1	1	3,630	43,560	43,560
24	Operator	19	19	5,940	1,354,320	1,354,320
25	Labour (Beldar)	73	73	2,970	2,601,720	2,601,720
	TOTAL	133	133		8,760,840	8,760,840

Table 9.17 Operation and Maintenance Staff: Requirements for JajmauSTP

<i>a</i>		Staff Ree	quirement	Monthly Salary	Annual wa	ges in Rs.
S. No.	Designation	Stage I	Stage II	in Rs.	Stage I	Stage II
1	Executive Engineer (Project Manager)	1	1	27,500	330,000	330,000
2	Assistant Engineer (E&M) (Asstt. Manager)	1	1	24,200	290,400	290,400
3	Assistant Engineer (Civil)	1	1	24,200	290,400	290,400
4	Junior Engineer (E&M) (Junior Manager)	6	6	19,800	1,425,600	1,425,600
5	Junior Engineer (Civil) (Junior Manager)	2	2	19,800	475,200	475,200
6	Fitter (Mech.) I Class	2	2	3,960	95,040	95,040
7	Electrician I Class	3	3	3,960	142,560	142,560
8	Fitter II Class	1	1	3,630	43,560	43,560
9	Electrician II Class	2	2	3,630	87,120	87,120
10	Gardener	2	2	3,080	73,920	73,920
11	Driver	1	1	7,700	92,400	92,400
12	Cleaner	1	1	3,080	36,960	36,960
13	Junior Accountant	1	1	11,550	138,600	138,600
14	UDC (Senior Assistant)	2	2	9,570	229,680	229,680
15	LDC/Typist (Junior Assistant)	3	3	8,360	300,960	300,960
16	Peon	3	3	6,050	217,800	217,800
17	Junior Stenographer	1	1	9,570	114,840	114,840
18	Chemist	1	1	7,700	92,400	92,400
19	Assistant Chemist	1	1	6,600	79,200	79,200
20	Lab Assistant	1	1	4,950	59,400	59,400
21	Lab Attendant	2	2	3,080	73,920	73,920
22	Sweeper	2	2	2,970	71,280	71,280
23	Weldar-cum-black smith	1	1	3,630	43,560	43,560
24	Operator	19	19	5,940	1,354,320	1,354,320
25	Labour (Beldar)	73	73	2,970	2,601,720	2,601,720
	TOTAL	133	133		8,760,840	8,760,840

Table 9.18 Operation and Maintenance Staff: Requirements for Bingawan STP

<i>a</i>		Staff Ree	quirement	Monthly Salary	Annual wa	ges in Rs.
S. No.	Designation	Stage I	Stage II	in Rs.	Stage I	Stage II
1	Executive Engineer (Project Manager)	1	1	27,500	330,000	330,000
2	Assistant Engineer (E&M) (Asstt. Manager)	1	1	24,200	290,400	290,400
3	Assistant Engineer (Civil)	1	1	24,200	290,400	290,400
4	Junior Engineer (E&M) (Junior Manager)	6	6	19,800	1,425,600	1,425,600
5	Junior Engineer (Civil) (Junior Manager)	2	2	19,800	475,200	475,200
6	Fitter (Mech.) I Class	3	3	3,960	142,560	142,560
7	Electrician I Class	2	2	3,960	95,040	95,040
8	Fitter II Class	2	2	3,630	87,120	87,120
9	Electrician II Class	1	1	3,630	43,560	43,560
10	Gardener	2	2	3,080	73,920	73,920
11	Driver	1	1	7,700	92,400	92,400
12	Cleaner	1	1	3,080	36,960	36,960
13	Junior Accountant	1	1	11,550	138,600	138,600
14	UDC (Senior Assistant)	2	2	9,570	229,680	229,680
15	LDC/Typist (Junior Assistant)	3	3	8,360	300,960	300,960
16	Peon	3	3	6,050	217,800	217,800
17	Junior Stenographer	1	1	9,570	114,840	114,840
18	Chemist	1	1	7,700	92,400	92,400
19	Assistant Chemist	1	1	6,600	79,200	79,200
20	Lab Assistant	1	1	4,950	59,400	59,400
21	Lab Attendant	2	2	3,080	73,920	73,920
22	Sweeper	2	2	2,970	71,280	71,280
23	Weldar-cum-black smith	1	1	3,630	43,560	43,560
24	Operator	19	19	5,940	1,354,320	1,354,320
25	Labour (Beldar)	73	73	2,970	2,601,720	2,601,720
	TOTAL	133	133		8,760,840	8,760,840

Table 9.19 Operation and Maintenance Staff: Requirements for Panka STP

<i>a</i>		Staff Re	quirement	Monthly Salary	Annual wag	es in Rs.
S. No.	Designation	Stage I	Stage II	in Rs.	Stage I	Stage II
1	Executive Engineer (Project Manager)	0	0	27,500	0	0
2	Assistant Engineer (E&M) (Asstt. Manager)	1	1	24,200	290,400	290,400
3	Assistant Engineer (Civil)	1	1	24,200	290,400	290,400
4	Junior Engineer (E&M) (Junior Manager)	4	4	19,800	950,400	950,400
5	Junior Engineer (Civil) (Junior Manager)	2	2	19,800	475,200	475,200
6	Fitter (Mech.) I Class	1	1	3,960	47,520	47,520
7	Electrician I Class	2	2	3,960	95,040	95,040
8	Fitter II Class	1	1	3,630	43,560	43,560
9	Electrician II Class	2	2	3,630	87,120	87,120
10	Gardener	2	2	3,080	73,920	73,920
11	Driver	1	1	7,700	92,400	92,400
12	Cleaner	1	1	3,080	36,960	36,960
13	Junior Accountant	1	1	11,550	138,600	138,600
14	UDC (Senior Assistant)	1	1	9,570	114,840	114,840
15	LDC/Typist (Junior Assistant)	2	2	8,360	200,640	200,640
16	Peon	2	2	6,050	145,200	145,200
17	Junior Stenographer	0	0	9,570	0	0
18	Chemist	0	0	7,700	0	0
19	Assistant Chemist	1	1	6,600	79,200	79,200
20	Lab Assistant	1	1	4,950	59,400	59,400
21	Lab Attendant	1	1	3,080	36,960	36,960
22	Sweeper	2	2	2,970	71,280	71,280
23	Weldar-cum-black smith	0	0	3,630	0	0
24	Operator	4	4	5,940	285,120	285,120
25	Labour (Beldar)	34	34	2,970	1,211,760	1,211,760
	TOTAL	67	67		4,825,920	4,825,920

Table 9.20 Operation and Maintenance Staff: Requirements for Karankhera STP

<i>a</i>		Staff Re	quirement	Monthly Salary	Annual wag	ges in Rs.
S. No.	Designation	Stage I	Stage II	in Rs.	Stage I	Stage II
1	Executive Engineer (Project Manager)		0	27,500	0	0
2	Assistant Engineer (E&M) (Asstt. Manager)		1	24,200	0	290,400
3	Assistant Engineer (Civil)		0	24,200	0	0
4	Junior Engineer (E&M) (Junior Manager)		4	19,800	0	950,400
5	Junior Engineer (Civil) (Junior Manager)		1	19,800	0	237,600
6	Fitter (Mech.) I Class		0	3,960	0	0
7	Electrician I Class		1	3,960	0	47,520
8	Fitter II Class		1	3,630	0	43,560
9	Electrician II Class		1	3,630	0	43,560
10	Gardener		1	3,080	0	36,960
11	Driver		0	7,700	0	0
12	Cleaner		0	3,080	0	0
13	Junior Accountant		1	11,550	0	138,600
14	UDC (Senior Assistant)		1	9,570	0	114,840
15	LDC/Typist (Junior Assistant)		1	8,360	0	100,320
16	Peon		1	6,050	0	72,600
17	Junior Stenographer		0	9,570	0	0
18	Chemist		0	7,700	0	0
19	Assistant Chemist		0	6,600	0	0
20	Lab Assistant		1	4,950	0	59,400
21	Lab Attendant		1	3,080	0	36,960
22	Sweeper		1	2,970	0	35,640
23	Weldar-cum-black smith		0	3,630	0	0
24	Operator		4	5,940	0	285,120
25	Labour (Beldar)		14	2,970	0	498,960
	TOTAL	0	35		0	2,992,440

						Stage I									Stage II	e II			
	2005	2006 2	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Direct Construction Cost																			
Trunk Sewer				65.7	65.7	65.7	65.7	65.8				62.6	62.6	62.6	62.6	62.6			
Rising Main				20.2															
Branch Sewer				14.1	14.1	14.1	14.2	14.2	14.2	14.2	14.2	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6
Bhagwatdas Nala SPS				3.9	7.9														2.4
Guptar SPS				1.2															1.2
Muir Mill SPS				1.2															1.5
Parmat SPS				18.3															18.3
Nawabganj SPS				1.8															2.4
Sub Total of Direct Cost				126.4	87.7	79.8	79.9	80.0	14.2	14.2	14.2	80.2	80.2	80.2	80.2	80.2	17.6	17.6	43.4
0/M Cost																			
Sewers				8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	14.6	14.6	14.6	14.6	14.6	14.6	14.6	14.6
Bhagwatdas Nala SPS						1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Guptar SPS				1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
Muir Mill SPS				0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Parmat SPS				2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
Nawabganj SPS				0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Sub Total of O/M Cost				13.7	12.9	13.9	13.9	13.9	13.9	13.9	13.9	21.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
Sum of Direct Cost and O/M Cost				140.1	100.6	93.7	93.8	93.9	28.1	28.1	28.1	101.2	100.2	100.2	100.2	100.2	37.6	37.6	63.4
House Connection																			
City Central				24.7	24.7	24.7	24.7	24.8	24.8	24.8	24.8	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.6
Sub Total of Houseconnection Cost				24.7	24.7	24.7	24.7	24.8	24.8	24.8	24.8	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.6
Land Acquisition																			
Bhagwatdas Nala SPS				4.0															
Sub Total of Land Acquisition				4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Cost				168.8	125.3	118.4	118.5	118.7	52.9	52.9	52.9	121.7	120.7	120.7	120.7	120.7	58.1	58.1	84.0

of 2)
age1 (
ĝ
Central)
(City
Ι
District I
chedule,
Ň
ivestment
E.
<u>j</u>
tio
ta
nen
leı
Imp
.21.1
.6
le
Table
-

				Stage II				
; ; ;	2024	2025	2026	2027	2028	2029	2030	Total
Direct Construction Cost								
Trunk Sewer								641.6
Rising Main								20.2
Branch Sewer	17.6	17.6	17.6	17.6	17.6	17.7	17.7	377.5
Bhagwatdas Nala SPS								14.2
Guptar SPS								2.4
Muir Mill SPS								2.7
Parmat SPS								36.6
Nawabganj SPS								4.2
Sub Total of Direct Cost	17.6	17.6	17.6	17.6	17.6	17.7	17.7	1,099.4
O/M Cost								
Sewers	14.6	14.6	14.6	14.6	14.6	14.6	14.6	289.4
Bhagwatdas Nala SPS	1.0	1.0	1.0	1.0	1.0	1.0	1.0	21.0
Guptar SPS	1.1	1.1	1.1	1.1	1.1	1.1	1.1	25.3
Muir Mill SPS	0.8	0.8	0.8	0.8	0.8	0.8	0.8	18.4
Parmat SPS	2.5	2.5	2.5	2.5	2.5	2.5	2.5	55.1
Nawabganj SPS	1.0	1.0	1.0	1.0	1.0	1.0	1.0	21.4
Sub Total of O/M Cost	20.0	20.0	20.0	20.0	20.0	20.0	20.0	411.0
Sum of Direct Cost and O/M Cost	37.6	37.6	37.6	37.6	37.6	37.7	37.7	1,510.4
House Connection								
City Central	20.6	20.6	20.6	20.6	20.6	20.6	20.6	506.3
Sub Total of Houseconnection Cost	20.6	20.6	20.6	20.6	20.6	20.6	20.6	506.3
Land Acquisition								
Bhagwatdas Nala SPS								
Sub Total of Land Acquisition	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0
Total Cost	58.2	58.2	58.2	58.2	58.2	58.3	58.3	2,020.7

						Stage I					ľ				Stage II	еП			Γ
	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Direct Construction Cost																			
Trunk Sewer				19.4	19.4	19.5						69.4	69.4	69.4	69.4	69.5			
Rising Main																			
Branch Sewer				35.2	35.2	35.2	35.3	35.3	35.3	35.3	35.3	47.0	47.0	47.0	47.0	47.0	47.0	47.0	47.0
Jajmau SPS (ASP)												24.9							34.8
Jajmau SPS (UASB)												2.4							9.2
ISPS No.1 - No.4																			5.7
Jajmau STP (ASP)												48.0							140.4
Jajmau STP (UASB)				43.0	86.0							27.0							36.9
Sub Total of Direct Cost	0.0	0.0	0.0	97.6	140.6	54.7	35.3	35.3	35.3	35.3	35.3	218.7	116.4	116.4	116.4	116.5	47.0	47.0	274.0
O/M Cost						<u> </u>													
Sewers				7.6	7.6	7.6	7.6	7.6	7.6	7.6	7.6	18.8	18.8	18.8	18.8	18.8	18.8	18.8	18.8
Jajmau SPS (ASP+UASB)				8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5
ISPS No.1 - No.4				2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6
Jajmau STP (Pilot)				0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Jajmau STP (ASP)				45.6	45.6	45.6	45.6	45.6	45.6	45.6	45.6	67.9	67.9	67.9	67.9	67.9	67.9	67.9	67.9
Jajmau STP (UASB)				14.6	14.6	14.6	14.6	14.6	14.6	14.6	14.6	16.2	16.2	16.2	16.2	16.2	16.2	16.2	16.2
Sub Total of O/M Cost				7.9.7	79.7	7.9.7	79.7	7.9.7	79.7	79.7	79.7	117.7	117.7	117.7	117.7	117.7	117.7	117.7	117.7
Sum of Direct Cost and O/M Cost	0.0	0.0	0.0	177.3	220.3	134.4	115.0	115.0	115.0	115.0	115.0	336.4	234.1	234.1	234.1	234.2	164.7	164.7	391.7
House Connection																			
City East				18.5	18.5	18.5	18.5	18.6	18.6	18.6	18.6	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7
Sub Total of Houseconnection Cost	0.0	0.0	0.0	18.5	18.5	18.5	18.5	18.6	18.6	18.6	18.6	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7
Land Acquisition																			
Jajmau STP (ASP)												8.0							
Sub Total of Land Acquisition	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Cost	0.0	0.0	0.0	195.8	238.8	152.9	133.5	133.6	133.6	133.6	133.6	353.1	242.8	242.8	242.8	242.9	173.4	173.4	400.4

ลิ
of
1
6
ğ
Å,
$\widetilde{}$
ISt
Eas
5
G
S
tΙ
ict
Ξ
is.
Ω
e,
Iule
ed
ų.
Š
nt
JG.
Ξ
S
Ā
I
ğ
Ĕ
ta
EN.
Ē
le
- Et
In
9
_
2
ۍ او
able
Ta
-

of 2
5
age
Ð
nst)
Eas
lity
I (C
ict I
str
D
ule,
ledi
Sch
nt
tme
vest
/Im
ion
tat
nen
len
du
.2 I
.21
le 9
abl
Ξ

2024 2025 2026 2027 2028 2 struction Cost $ -$					Stage II				
47.0 47.0 47.0 47.1 47.0 47.0 47.1 47.1 47.0 47.0 47.1 47.1 47.0 47.0 47.0 47.1 47.0 47.0 47.0 47.1 47.0 47.0 47.0 47.1 47.0 47.0 47.0 47.1 11.1 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.7 11.7 11.5 11.7 117.7 117.7 11.7 117.7 117.7 117.7 11.7 117.7 117.7 117.7 11.7 117.7 117.7 117.7 11.7 117.7 117.7 117.7 11.7 117.7 117.7 117.7 11.7 117.7 117.7 117.7 11.7 117.7 117.7 117.7 11.3 1.6.2 67.9 67.9 67.9 67.9 67.9 67.9 164.7 164.7 164.7 164.8 173.4 13.4 73.4 173.4 <t< th=""><th></th><th>2024</th><th>2025</th><th>2026</th><th>2027</th><th>2028</th><th>2029</th><th>2030</th><th>Total</th></t<>		2024	2025	2026	2027	2028	2029	2030	Total
47.0 47.0 47.0 47.1 47.0 47.0 47.1 47.1 47.0 47.0 47.1 47.1 47.0 47.0 47.1 47.1 47.0 47.0 47.1 47.1 47.0 47.0 47.0 47.1 47.0 47.0 47.0 47.1 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 1164.7 164.7 164.8 8.8 8.7 8.7 8.7 8.8 8.7 8.7 8.7 8.8	Direct Construction Cost								
47.0 47.0 47.0 47.1 47.0 47.0 47.1 47.1 47.0 47.0 47.1 47.1 47.0 47.0 47.1 47.1 47.0 47.0 47.1 47.1 47.0 47.0 47.0 47.1 47.0 47.0 47.0 47.1 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.7 11.5 11.7 11.7 11.7 11.64.7 164.7 164.7 164.8 164.7 164.7 164.7 164.8 164.7 164.7 164.8 8.8 8.7 8.7 8.7 8.8	Trunk Sewer								405.4
47.0 47.0 47.1 47.1 47.0 47.0 47.1 47.1 47.0 47.0 47.1 47.1 47.0 47.0 47.0 47.1 47.0 47.0 47.0 47.1 47.0 47.0 47.0 47.1 47.0 47.0 47.0 47.1 11.5 11.5 11.5 11.5 11.8 11.8 11.8 11.8 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 0.7 0.7 0.7 0.7 67.9 67.9 67.9 67.9 67.1 11.7 11.7 11.7 117.7 117.7 117.7 117.7 1164.7 164.7 164.7 164.8 164.7 164.7 164.7 164.8 164.7 164.7 164.7 164.8 164.7 164.7 164.7 164.8 164.7 164.7 164.7 164.8 8.7	Rising Main								0.0
47.0 47.0 47.0 47.1 47.0 47.0 47.1 47.1 47.0 47.0 47.1 47.1 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 2.6 2.6 2.6 2.6 0.7 0.7 0.7 0.7 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9 11.7.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 116.2 16.2 16.2 16.3 8.7 8.7 8.7 8.8 8.7 8.7 8.7 8.8 8.7 8.7 8.7 8.8 9.0 0.0 0.0 0.0 10.3.4 173.4 173.4	Branch Sewer	47.0	47.0	47.0	47.0	47.1	47.1	47.1	987.4
47.0 47.0 47.0 47.1 47.0 47.0 47.0 47.1 47.0 47.0 47.1 47.1 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 21.6 2.6 2.6 2.6 0.7 0.7 0.7 0.7 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9 11.7.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 116.4 164.7 164.7 164.8 8.7 8.7 8.7 8.8 8.7 8.7 8.7 8.8 8.7 8.7 8.7 8.8 9.0 0.0 0.0 0.0 0.13.4 173.4 173.4 173.6 <th>Jajmau SPS (ASP)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>59.7</th>	Jajmau SPS (ASP)								59.7
47.0 47.0 47.0 47.1 47.0 47.0 47.0 47.1 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 2.6 2.6 2.6 2.6 0.7 0.7 0.7 0.7 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9 11.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 16.2 16.2 16.2 16.3 16.7 16.7 16.7 16.4 16.7 117.7 117.7 117.7 16.7 16.7 16.4 16.4 16.7 16.7 16.7 16.4 16.7 16.7 16.7 16.4 16.7 16.7 16.7 16.4 16.7 16.7 16.7 16.4 16.7 16.7 16.7 16.4 16.7 16.7 16.7 16.4 16.7 16.7 16.7 16.4 113.4 7 16.7 113.4 7 17.7 <th>Jajmau SPS (UASB)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>11.6</th>	Jajmau SPS (UASB)								11.6
47.0 47.0 47.0 47.1 47.0 47.0 47.1 47.1 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 2.6 2.6 2.6 2.6 0.7 0.7 0.7 0.7 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9 11.7.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 116.2 16.2 16.2 16.3 8.7 8.7 8.7 8.8 8.7 8.7 8.7 8.8 8.7 8.7 8.7 8.8 9.0 0.0 0.0 0.0 0.13.4 173.4 173.4 173.4 <th>ISPS No.1 - No.4</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>5.7</th>	ISPS No.1 - No.4								5.7
47.0 47.0 47.0 47.1 47.0 47.0 47.1 47.1 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 11.5 11.5 11.5 11.5 2.6 2.6 2.6 2.6 0.7 0.7 0.7 0.7 67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9 16.2 16.2 16.2 16.2 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 16.2 16.2 16.2 16.2 16.3 16.4.7 164.7 164.8 16.4.7 164.7 164.7 164.8 8.7 8.7 8.7 8.8 8.7 8.7 8.7 8.8 8.7 8.7 8.7 8.8 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Jajmau STP (ASP)								188.4
47.0 47.0 47.0 47.1 18.8 18.8 18.8 18.8 18.8 11.5 11.5 11.5 11.5 11.5 2.6 2.6 2.6 2.6 2.6 0.7 0.7 0.7 0.7 0.7 67.9 67.9 67.9 67.9 67.9 67.9 11.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 16.2 16.2 16.2 16.2 16.2 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.8 8.7 8.7 8.7 8.7 8.8 8.7 8.7 8.7 8.7 8.8 8.7 8.7 8.7 8.7 8.8 9.0 0.0 0.0 0.0 0.0	Jajmau STP (UASB)								192.9
I8.8 I1.5 I1.5 I1.5 0.7 0.	Sub Total of Direct Cost	47.0	47.0	47.0	47.0	47.1	47.1	47.1	1,851.1
I8.8 I1.5 I1.7 I1.7 <th< th=""><th>O/M Cost</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	O/M Cost								
11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 2.6 <th2.6< th=""> 2.6 2.6</th2.6<>	Sewers	18.8	18.8	18.8	18.8	18.8	18.8	18.8	342.8
2.6 2.6 2.6 2.6 2.6 0.7 0.7 0.7 0.7 0.7 67.9 67.9 67.9 67.9 67.9 16.2 16.2 16.2 16.2 16.2 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 164.7 164.7 164.7 164.7 164.8 8.7 8.7 8.7 8.7 8.8 8.7 8.7 8.7 8.7 8.8 8.7 8.7 8.7 8.7 8.8 9.0 0.0 0.0 0.0 0.0 9.0 0.0 0.0 0.0 0.0 0.0	Jajmau SPS (ASP+UASB)	11.5	11.5	11.5	11.5	11.5	11.5	11.5	241.3
0.7 0.7 0.7 0.7 0.7 0.7 67.9 67.9 67.9 67.9 67.9 67.9 16.2 16.2 16.2 16.2 16.2 16.2 117.7 117.7 117.7 117.7 117.7 117.7 164.7 164.7 164.7 164.7 164.8 164.8 8.7 8.7 8.7 8.7 8.8 8.8 8.7 8.7 8.7 8.8 8.8 8.8 9.7 0.0 0.0 0.0 0.0 0.0 10.0 9.7 8.7 8.7 8.7 8.8 8.8 8.8 8.8 8.8 8.8 10.9 10.0 1	ISPS No.1 - No.4	2.6	2.6	2.6	2.6	2.6	2.6	2.6	59.8
67.9 67.9 67.9 67.9 67.9 67.9 67.9 67.9 17.0 11.1 <th< th=""><th>Jajmau STP (Pilot)</th><td>0.7</td><td>0.7</td><td>0.7</td><td>0.7</td><td>2.0</td><td>0.7</td><td>0.7</td><td>16.1</td></th<>	Jajmau STP (Pilot)	0.7	0.7	0.7	0.7	2.0	0.7	0.7	16.1
16.2 16.2 16.2 16.2 16.2 117.7 117.7 117.7 117.7 164.7 164.7 164.7 164.8 164.7 164.7 164.7 164.8 87 8.7 8.7 8.7 8.7 8.7 8.7 8.7 9.0 0.0 0.0 0.0 173.4 173.4 173.4 173.4	Jajmau STP (ASP)	67.9	67.9	67.9	67.9	6.7.9	6.73	67.9	1,383.3
117.7 117.7 117.7 117.7 117.7 164.7 164.7 164.7 164.7 164.8 164.7 164.7 164.7 164.8 164.8 87 87 87 88 88 87 8.7 8.7 8.8 88 97 8.7 8.7 8.8 88 90.0 0.0 0.0 0.0 0.0 173.4 173.4 173.4 173.4 173.6	Jajmau STP (UASB)	16.2	16.2	16.2	16.2	16.2	16.2	16.2	359.8
164.7 164.7 164.7 164.7 164.8 <th< th=""><th>Sub Total of O/M Cost</th><th>117.7</th><th>117.7</th><th>117.7</th><th>117.7</th><th>117.7</th><th>117.7</th><th>117.7</th><th>2,403.1</th></th<>	Sub Total of O/M Cost	117.7	117.7	117.7	117.7	117.7	117.7	117.7	2,403.1
8.7 8.7 8.7 8.7 8.7 8.8 8.7 8.7 8.7 8.7 8.8 0.0 0.0 0.0 0.0 0.0 173.4 173.4 173.4 173.6	Sum of Direct Cost and O/M Cost	164.7	164.7	164.7	164.7	164.8	164.8	164.8	4,254.2
8.7 8.7 8.7 8.7 8.7 8.8 <th>House Connection</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	House Connection								
8.7 8.7 8.7 8.7 8.8 <th>City East</th> <th>8.7</th> <th>8.7</th> <th>8.7</th> <th>8.7</th> <th>8.8</th> <th>8.8</th> <th>8.8</th> <th>279.2</th>	City East	8.7	8.7	8.7	8.7	8.8	8.8	8.8	279.2
P) P)<	Sub Total of Houseconnection Cost	8.7	8.7	8.7	8.7	8.8	8.8	8.8	279.2
IP (ASP) D<	Land Acquisition								
of Land Acquisition 0.0 0.0 0.0 0.0 0.0 0.0 0.0 173.4 173.4 173.4 173.4 173.5 173.6	Jajmau STP (ASP)								8.0
173.4 173.4 173.4 173.4 173.6	Sub Total of Land Acquisition	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.0
	Total Cost	173.4	173.4	173.4	173.4	173.6	173.6	173.6	4,541.4

-						Ctoro I									Ctores	Ш			Γ
	-				-	Didge 1				ŀ					Diago II	T D			
	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Direct Construction Cost	-				<u> </u>					-					-				
Trunk Sewer				64.1								184.6	184.6	184.6	184.6	184.7			
Rising Main																			
Branch Sewer				71.6	71.7	71.7	71.7	71.7	71.7	71.7	71.7	105.6	105.6	105.6	105.7	105.7	105.7	105.7	105.7
MPS at Bingawan STP												104.2	208.3	208.3					
Rakhi Mandi SPS (Sanctioned)																			276.9
Mushi Purwa SPS (Sanctioned)																			230.2
Ganda Nala SPS (Sanctioned)																			128.6
Bingawan STP												0.66	198.0	198.0					
Sub Total of Direct Cost				135.7	71.7	71.7	71.7	71.7	71.7	71.7	71.7	493.4	696.5	696.5	290.3	290.4	105.7	105.7	741.4
O/M Cost	-																		
Sewers				12.2	12.2	12.2	12.2	12.2	12.2	12.2	12.2	37.9	37.9	37.9	37.9	37.9	37.9	37.9	37.9
Rakhi Mandi SPS				5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7
Mushi Purwa SPS				4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Ganda Nala SPS				1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
MPS at Bingawan STP				11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5
Bingawan STP				45.6	45.6	45.6	45.6	45.6	45.6	45.6	45.6	60.7	60.7	60.7	60.7	60.7	60.7	60.7	60.7
Sub Total of O/M Cost				80.5	80.5	80.5	80.5	80.5	80.5	80.5	80.5	128.9	128.9	128.9	128.9	128.9	128.9	128.9	128.9
Sum of Direct Cost and O/M Cost				216.2	152.2	152.2	152.2	152.2	152.2	152.2	152.2	622.3	825.4	825.4	419.2	419.3	234.6	234.6	870.3
House Connection																			
South				52.0	52.0	52.0	52.0	52.1	52.1	52.1	52.1	69.2	69.2	69.3	69.3	69.3	69.3	69.3	69.3
Sub Total of Houseconnection Cost				52.0	52.0	52.0	52.0	52.1	52.1	52.1	52.1	69.2	69.2	69.3	69.3	69.3	69.3	69.3	69.3
Land Acquisition																			
Bingawan STP				288.0															
Sub Total of Land Acquisition	0.0	0.0	0.0	288.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Cost	0.0	0.0	0.0	556.2	204.2	204.2	204.2	204.3	204.3	204.3	204.3	691.5	894.6	894.7	488.5	488.6	303.9	303.9	939.6

-
of 2
-
(Page
ίΠ
District
Schedule,
nt
/Investme1
n o
Implementati
9.21
Table

					0	Ì		
				Stage II				
	2024	2025	2026	2027	2028	2029	2030	Total
Direct Construction Cost								
Trunk Sewer								987.2
Rising Main								0.0
Branch Sewer	105.7	105.7	105.7	105.7	105.7	105.7	105.7	2,158.7
MPS at Bingawan STP								520.8
Rakhi Mandi SPS (Sanctioned)								276.9
Mushi Purwa SPS (Sanctioned)								230.2
Ganda Nala SPS (Sanctioned)								128.6
Bingawan STP								495.0
Sub Total of Direct Cost	105.7	105.7	105.7	105.7	105.7	105.7	105.7	4,797.4
O/M Cost								
Sewers	37.9	37.9	37.9	37.9	37.9	37.9	37.9	666.1
Rakhi Mandi SPS	6.7	6.7	6.7	6.7	6.7	6.7	6.7	142.9
Mushi Purwa SPS	5.0	5.0	5.0	5.0	5.0	5.0	5.0	107.8
Ganda Nala SPS	2.1	2.1	2.1	2.1	2.1	2.1	2.1	45.9
MPS at Bingawan STP	16.5	16.5	16.5	16.5	16.5	16.5	16.5	339.5
Bingawan STP	60.7	60.7	60.7	60.7	60.7	60.7	60.7	1,275.3
Sub Total of O/M Cost	128.9	128.9	128.9	128.9	128.9	128.9	128.9	2,577.5
Sum of Direct Cost and O/M Cost	234.6	234.6	234.6	234.6	234.6	234.6	234.6	7,374.9
House Connection								
South	69.3	69.3	69.3	69.3	69.3	69.3	69.3	1,455.7
Sub Total of Houseconnection Cost	69.3	69.3	69.3	69.3	69.3	69.3	69.3	1,455.7
Land Acquisition								
Bingawan STP								288.0
Sub Total of Land Acquisition	0.0	0.0	0.0	0.0	0.0	0.0	0.0	288.0
Total Cost	303.9	303.9	303.9	303.9	303.9	303.9	303.9	9,118.6

Table 9.21.3 Implementation/Investment Schedule, District II (Page 2 of 2)

		L						Stage I									Stage II				
	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017 2	2018 2	2019	2020	2021	2022	2023
Direct Construction Cost																					
Trunk Sewer						84.6	84.6	84.6	84.6	84.7				254.1	254.1	254.1	254.1	254.2			
Rising Main																					
Branch Sewer						17.9	17.9	18.0	18.0	18.0	18.0	18.0	18.1	157.1	157.1	157.1	157.1	157.1	157.1	157.1	157.1
Lakhanpur SPS							24.1	48.2													
Panki SPS							131.5	263.0													
MPS at Panka STP						119.9	239.8	239.8						54.0							
Panka STP						72.0	144.0	144.0						240.0							
Sub Total of Direct Cost						294.4	641.9	797.6	102.6	102.7	18.0	18.0	18.1	705.2	411.2	411.2	411.2	411.3	157.1	157.1	157.1
O/M Cost																					
Sewers						20.1	20.1	20.1	20.1	20.1	20.1	20.1	20.1	46.0	46.0	46.0	46.0	46.0	46.0	46.0	46.0
Lakhanpur SPS									0.6	0.6	0.6	0.6	0.6	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
Panki SPS									4.3	4.3	4.3	4.3	4.3	6.9	6.9	6.9	6.9	6.9	6.9	6.9	6.9
MPS at Panka STP									5.1	5.1	5.1	5.1	5.1	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5
Panka STP									21.9	21.9	21.9	21.9	21.9	33.3	33.3	33.3	33.3	33.3	33.3	33.3	33.3
Sub Total of O/M Cost						20.1	20.1	20.1	52.0	52.0	52.0	52.0	52.0	98.2	98.2	98.2	98.2	98.2	98.2	98.2	98.2
Sum of Direct Cost and O/M Cost			0.0	0.0	0.0	314.5	662.0	817.7	154.6	154.7	70.0	70.0	70.1	803.4	509.4	509.4	509.4	509.5	255.3	255.3	255.3
House Connection																					
West						22.2	22.2	22.2	22.2	22.2	22.2	22.2	22.2	66.1	66.1	66.1	66.1	66.1	66.1	66.1	66.1
Sub Total of Houseconnection Cost						22.2	22.2	22.2	22.2	22.2	22.2	22.2	22.2	66.1	66.1	66.1	66.1	66.1	66.1	66.1	66.1
Land Acquisition																					
Panki SPS						4.0															
Panka STP						280.0															
Sub Total of Land Acquisition			0.0	0.0	0.0	284.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Cost						620.7	684.2	839.9	176.8	176.9	92.2	92.2	92.3	869.5	575.5	575.5	575.5	575.6	321.4	321.4	321.4

ŝ
5
ō
e1
50
Ę,
Ĕ
Π
ct
Ξ
ist
D
e,
E
ed
ch
Ň
nt
e
Ē
ŝ
'n
Ţ
8
iti
Ita
er
Ë
le
ď
П
4
21
6
e
Įq.
La

-				Stag	Stage II			
	2024	2025	2026	2027	2028	2029	2030	Total
Direct Construction Cost								
Trunk Sewer								1,693.7
Rising Main								0.0
Branch Sewer	157.1	157.1	157.2	157.2	157.2	157.2	157.2	2,500.9
Lakhanpur SPS		8.1						80.4
Panki SPS		36.0						430.5
MPS at Panka STP								653.5
Panka STP								600.0
Sub Total of Direct Cost	157.1	201.2	157.2	157.2	157.2	157.2	157.2	5,959.0
O/M Cost								
Sewers	46.0	46.0	46.0	46.0	46.0	46.0	46.0	850.8
Lakhanpur SPS	2.5	2.5	2.5	2.5	2.5	2.5	2.5	40.5
Panki SPS	6.9	6.9	6.9	6.9	6.9	6.9	6.9	125.0
MPS at Panka STP	9.5	9.5	9.5	9.5	9.5	9.5	9.5	168.0
Panka STP	33.3	33.3	33.3	33.3	33.3	33.3	33.3	0.909
Sub Total of O/M Cost	98.2	98.2	98.2	98.2	98.2	98.2	98.2	1,793.3
Sum of Direct Cost and O/M Cost	255.3	299.4	255.4	255.4	255.4	255.4	255.4	7,752.3
House Connection								
West	66.1	66.1	66.1	66.1	66.1	66.1	66.1	1,169.1
Sub Total of Houseconnection Cost	66.1	66.1	66.1	66.1	66.1	66.1	66.1	1,169.1

Table 9.21.4 Implementation/Investment Schedule, District III (Page2 of 2)

280.0 284.0 9,205.4

0.0

0.0

0.0

0.0 321.5

0.0

0.0 365.5

0.0

Sub Total of Land Acquisition

Total Cost

Land Acquisition Panki SPS Panka STP

321.5

321.5

321.5

321.5

321.4

4.0

						Stage I									Stage II	п			
	2005 2	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Direct Construction Cost																			
Trunk Sewer												151.0	151.0	151.1	151.1	151.1			
Rising Main														76.5					
Branch Sewer												88.2	88.2	88.2	88.2	88.2	88.3	88.3	88.3
Ruman SPS													73.9	147.9					
Karankher STP												51.0	102.0	102.0					
Sub Total of Direct Cost	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	290.2	415.1	565.7	239.3	239.3	88.3	88.3	88.3
O/M Cost																-		-	
Sewers												21.4	21.4	21.4	21.4	21.4	21.4	21.4	21.4
Ruman SPS															5.3	5.3	5.3	5.3	5.3
Karankher STP															15.1	15.1	15.1	15.1	15.1
Sub Total of O/M Cost	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21.4	21.4	21.4	41.8	41.8	41.8	41.8	41.8
Sum of Direct Cost and O/M Cost	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	311.6	436.5	587.1	281.1	281.1	130.1	130.1	130.1
House Connection																			
East												17.3	17.3	17.3	17.3	17.3	17.3	17.3	17.3
Sub Total of Houseconnection Cost												17.3	17.3	17.3	17.3	17.3	17.3	17.3	17.3
Land Acquisition																			
Ruman SPS												4.0							
Karankher STP												119.2							
Sub Total of Land Acquisition												123.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Cost												452.1	453.8	604.4	298.4	298.4	147.4	147.4	147.4
		l											-				-		Ī

(Page 1 of 2)
t IV
District
Schedule,
Investment
Implementation/I
Table 9.21.5]

				Stage II				
	2024	2025	2026	2027	2028	2029	2030	Total
Direct Construction Cost								
Trunk Sewer								755.3
Rising Main								76.5
Branch Sewer	88.3	88.3	88.3	88.3	88.3	88.3	88.3	1,324.0
Ruman SPS								221.8
Karankher STP								255.0
Sub Total of Direct Cost	88.3	88.3	88.3	88.3	88.3	88.3	88.3	2,632.6
O/M Cost								
Sewers	21.4	21.4	21.4	21.4	21.4	21.4	21.4	321.0
Ruman SPS	5.3	5.3	5.3	5.3	5.3	5.3	5.3	63.6
Karankher STP	15.1	15.1	15.1	15.1	15.1	15.1	15.1	181.2
Sub Total of O/M Cost	41.8	41.8	41.8	41.8	41.8	41.8	41.8	565.8
Sum of Direct Cost and O/M Cost	130.1	130.1	130.1	130.1	130.1	130.1	130.1	3,198.4
House Connection								
East	17.3	17.3	17.3	17.3	17.3	17.3	17.3	259.5
Sub Total of Houseconnection Cost	17.3	17.3	17.3	17.3	17.3	17.3	17.3	259.5
Land Acquisition								
Ruman SPS								4.0
Karankher STP								119.2
Sub Total of Land Acquisition	0.0	0.0	0.0	0.0	0.0	0.0	0.0	123.2
Total Cost	147.4	147.4	147.4	147.4	147.4	147.4	147.4	3,581.1

Table 9.21.5 Implementation/Investment Schedule, District IV (Page 2 of 2)

			(Million Rs.)
Project	Estimated	+Physical	Cumulative
	Cost	Contingency	Cost
1. District I (City Central)			
(a) Replacing existing trunk sewers	169.9	203.9	
(b) New Trunk Sewers	158.7	190.4	
(c) Nala tapping pumping stations and rising mains	54.5	65.4	
(d) Branch Sewer	113.3	135.9	
(e) Land acquisition for new pumping station	4.0	4.0	
Sub Total	500.3	599.6	599.6
2. District I (City East)			
(a) New Trunk Sewers	58.3	69.9	
(b) Upgrade treatment plant	129.0	154.8	
(c) Upgrade pumping station	0.3	0.4	
(d) Branch Sewer	282.1	338.5	
Sub Total	469.7	563.6	1,163.2
3. District II			
(a) New Trunk Sewers	64.1	76.9	
(b) Branch Sewer	156.3	187.5	
Sub Total	220.3	264.4	1,427.6
4. District III			
(a) New Trunk Sewers	423.1	507.7	
(b) New treatment plant	360.0	432.0	
(c) New pumping station	1,066.2	1,279.4	
(d) Branch Sewer	143.8	172.6	
(e) Land acquisition for STP and SPS	284.0	284.0	
Sub Total	2,277.1	2,675.7	4,103.3
Total	3,467.4	4,103.3	4,103.3

Table 9.22 Stage I Project - Implementation Cost

CHAPTER 10

INITIAL ENVIRONMENTAL EXAMINATION (IEE) STUDY FOR KANPUR

CHAPTER 10 INITIAL ENVIRONMENTAL EXAMINATION (IEE) STUDY FOR KANPUR

10.1 OBJECTIVE OF THE IEE STUDY

IEE is a very important and useful planning tool for development projects/programs at early stage. Original formulation of any projects/programs may be modified, if significant negative impact is predicted by the IEE. According to the JICA Environmental Guidelines, IEE is defined as "an examination undertaken at the outset of the development project planning stage to determine the environmental impacts that may be created by the particular project based on existing information and data."

The IEE has the following two objectives:

(1) To evaluate whether EIA is necessary for the project and, if so, to define its contents, and (2) to examine from an environmental viewpoint, the measures for mitigating the impacts of the project, which require environmental considerations but not a full-scale environmental impact assessment.

For the above objectives, the study on IEE was investigated (1) knowing the existing social and natural environmental conditions of the Study area, (2) identifying constraints and problems for the master plan projects/programs on the water quality management for Ganga River.

10.2 METHODOLOGY OF THE IEE STUDY

10.2.1 Procedure

There are three steps for the IEE as follows.

- (a) Identification of master plan projects/programs for the IEE,
- (b) Survey evaluation of environmental impact at the construction or rehabilitation and the operation stage by using an environmental impact checklist, and
- (c) Output of evaluation.

10.2.2 Evaluation of Environmental Elements

An environmental impact matrix is used as a checklist of environmental effects. Environmental elements of impact matrix are based on JICA Guideline including JBIC Guideline. The major components are social issues, demographic issues, economic activity, institutional and custom related issues, health and sanitary issues, and cultural asset issues as social environment, and biological and ecological issues, soil resources, land resources, hydrology, water quality and temperature, pollution and landscape as natural environment.

10.3 SURVEY AREA

The survey area is four (4) cities of Lucknow, Kanpur, Allahabad and Varanasi. This part of the Report focuses on Kanpur.

10.4 PROJECTS/PROGRAMS FOR THE IEE STUDY

(a) District I

- (1) Renovation and augmentation of Jajmau STP
- (2) Renovation and augmentation of Jajmau SPS
- (3) Rehabilitation of ghat area SPSs
- (4) Installation of trunk sewer, rising main

- (5) Installation of trunk and lateral sewers in Jajmau tannery area
- (6) Construction of Bigwandas ghat nala SPS

(b) District II

- (7) Augmentation of Rakimandi SPS and Munshipurwa SPS
- (8) Augmentation of Ganda nala SPS
- (9) Augmentation of Bingawan STP
- (10) Installing and replacement of trunk sewers

(c) District III

- (11) Reconstruction of Lakhanpur SPS
- (12) Installation of trunk sewer
- (13) Construction of Panki SPS
- (14) Construction of Panka STP

(d) District IV

- (15) Installation of trunk sewer
- (16) Construction of Kathonagar SPS
- (17) Construction of Karankhera STP

10.5 EXISTING ENVIRONMENTAL CONDITION

Kanpur is the eighth largest metropolis in India and it is one of the important industrial cities. It is situated on the right bank of river Ganga at 125.6 m above MSL. It is located at $26^{0}28$ ' N latitude and $80^{0}21$ ' E longitude, at a distance of 93 Km south west of Lucknow, 435 Km south east of Delhi, 192 Km north west of Allahabad.

The topography is generally flat with minimum level of nearly 125.6 m and the maximum of about 126.8 m above MSL. The city is located within alluvial Gangetic plains. The area is under laid with sediments deposited in successive stages. The bed of clay, fine sand, mixed with kankar and stone bajri is found in layers. The deep tube well have been bored successfully in Panki, Moti jheel, Phool bagh and Jajmau area of Kanpur city.

The climate of the area is extreme type, i.e., very hot summer and severe winter. During November to March the weather is cold and from March the temperature gradually rises and becomes very hot during May and June.

Bulk of the rainfall occurs from southwest monsoon, which lasts from middle June to September, and maximum rainfall takes place during July and August. The average annual rainfall is approximately 800 mm and temperature varies between 35 ° C to 12 ° C, and humidity varies from 15 % to 25 % during the year.

The major existing environmental conditions are as following.

(1) Pollution of River Ganga

The pollution of river Ganga in Kanpur is more due to the following main reasons:

- Due to chocking of sewers, the sewage flows into different storm water drains leading towards river Ganga.
- Low capacity utilisation of sewage treatment plant at Jajmau, which is treating only 40-50 mld of sewage which is applied to sewage farm and balance waste water finds its way to river Ganga.
- 354 tanneries at Jajmau produce about 13mld of highly toxic waste water which finds its way to river Ganga after partial treatment only.
- Burning of dead bodies along river ghats.
- Pollution due to settlement of people along the river banks.

(2) Drainage

The river Ganga enters the town from western side and flows out in eastern direction whereas the river Pandu enters the city from western side and joins the river Ganga at a distance of about 25 Km down stream of Kanpur. The city is thus surrounded by the river Ganga on one side (north) and the river Pandu on the other side (south).

There are 23 nalas identified to be carrying wastewater that pollute the Ganga and Pandu rivers. Among them, 20 nalas drain into the Ganga river and three into the Pandu river.

(3) Sewage Treatment Facility

There are three Sewage Treatment Plants (STP) named as 5 mld Pilot STP, 36 mld UASB STP and 130 mld STP.

(4) Wastewater Irrigation

In India, the oldest sewage farm was established around 1895, and even today one of principal modes of final disposal of wastewater is on land. It is preferred that wastewaters from even large cities be used in this manner. Presently, there are over 150 farms covering over 12,000 hectare (ha) and utilizing over 5×10^8 m³ of sewage annually.

In Kanpur, there is a big sewage farm area getting discharge from Jajmau treatment plant in south-east part of Kanpur city. It was informed by UP Jal Nigam that treated effluent is being used for irrigating 3,000 hectares of land of private farmers. Digested sludge after drying is converted to manure. It is very good fertilizer for high yield because including Nitrogen, Phosphate, Potassium minerals, 1.45-1.60, 1.12-1.15, and 1.04-1.06 mg/Kg respectively. At the present, farmers are cultivating wheat, paddy rice, vegetables, and flower.

(5) Industrial Scenario

Kanpur is one of the India's earliest industrial cities. It is an important centre of Textile industries and tanneries. After independence, a large fertilizer factory and several arms factories were established. Besides this many small-scale industries such as steel re-rolling, casting, chemicals, paints, varnish and other miscellaneous industries have come up in the city.

At present, in Kanpur district, there are many kinds of industrial units. Especially, cluster of Jajmau tanneries and ordinance factories are discharging much effluent with high BOD load every day. Effluent from these units is treated at Jajmau STP.

Some industrial wastes are unfit for land disposal as they contain hazardous components such as tannery wastes containing heavy metals which accumulate in the food chain or migrate in the soils and pollute ground waters. Regular monitoring of heavy metals present in treated water is important.

(6) National Standards (MINAS) for Tannerie's Effluents

The parameters of relevance for wastewater quality in tannery industry are BOD, total chromium, sulphides, total suspended solids, total dissolved solids, chloride, sulphate, oil and grease, etc. National standards for tannery effluents are as following.

Parameter	Limits not to Exceed
1. pH	6.5 - 9.0
2. BOD ₅ at 20° C (mg/l)	100*
3. Total Suspended Solids (mg/l)	100
4. Sulphides (mg/l)	2
5. Total Chromium (mg/l)	2
6. Oil and Grease (mg/l)	10

Note: *For effluent discharged into inland surface waters, BOD limit is stricter to 30 mg/litre.

Source: Central Pollution Control Board, 1991-1992

(7) Sanitation

On account of rapid growth of population, the development of unplanned colonies has come up in outskirts and surroundings of city area. These colonies are facing so many problems such as lack of proper roads, drainage and sewerage, etc.

(8) Open Space

Open spaces with recreational facilities are Allen Park with zoo, Company Bagh Park, and Green Park.

10.6 EVALUATION AND CONCLUSION OF THE IEE STUDY

The Ministry of Environment and Forests (MoEF) enforced the notification in January 1994 and amended it in May 1997, April 1997, January 2000, December 2000, August 2001 and November 2001 for conducting Environmental Impact Assessment (EIA) studies which are obligatory for the establishment of certain categories of industries specified in Schedule I. The Schedule I industries include 30 categories. The appraisal committees comprising experts, Governmental official and non-government organisations (NGOs) were set up by the MoEF to scrutinise various EIAs prepared for the establishment of such industries and projects. The appraisal committees would accord an environmental clearance to the project in consultation with MoEF after scrutinising the EIA report for the proposed project. Sewerage project is not included in these industries and does not require EIA study according to the Notification.

An Initial Environmental Examination (IEE) for the proposed project components in the Master Plan for the four cities was carried out by JICA Study Team based on a JICA guideline, to briefly identify the impacts of the facilities proposed in the Sewerage Master Plans on natural and social environment. The important environmental issues are identified and the impacts are ranked as (A) strong impact, (B) medium impact, (C) not fully known, and (blank) no major impact during the construction and operation stage.

The results of the IEE to Master Plan Projects that have been planned for Kanpur city are shown in Table 10.1. The major impacts identified for the proposed facilities are related to construction and operation of sewage treatment plants as given in table below.

Impact items	Phase	Spatial range	Time range	Range/ affected people
1. Land acquisition for construction of STP	Construction	Agricultural field	Long term	Farmers
2. Income loss of agriculture due to construction of STP in agricultural field	Construction	(Social issue)	Long term	Farmers
3. Landscape and land use change	Construction	Agricultural field	Long term	Nearby villagers
4. Sludge disposal from STP	Operation	Disposal sites	Long term	Disposal sites
5. Contamination of surface water and groundwater by discharging treated effluent and seepage from STP	Operation	River, irrigation canal and groundwater	Long term	Nearby villagers
6. Contamination of soil through application of treated water and dried sludge	Operation	Agricultural field	Long term	Farmers

The proposed projects are, however, in general, environmental mitigation projects by providing sewerage system to properly dispose of municipal sewage. Therefore, the projects themselves have preferable environmental impacts on the water environment and the public health of the residents.

Social Environment	Scheme Scheme Scheme Split of Communities Cultural Properties Water Right/Right of Common Public Health Condition	$\begin{array}{c c} C & B' & B' \\ C & C & C \end{array}$	0 C	C C C	0 0	C C C	0	C C C	0
	Solid Waste Hazard	U	c		С				
1	Topography and Geology Soil Erosion								
Natural Environment	Groundwater		C C						
Environ	Hydrological Situation Coastal Zone		7.)						
ment	Flora and Fauna								
	Local Meteorology	C B/							
	noitullo¶ riA								
Pe	Water Pollution		B/ B/ C C					С	
Pollution	Soil Contamination Noise and Vibration	C	c c	C	C	C		C	
	Ground Subsidence								

Table 10.1 Possible Environmental Impact Matrix for IEE

Remarks:

C: Indicates construction (rehabilitation) stage. O: Indicates operation stage.

A: Indicates that the development scheme is foreseen to have strong impact on the environmental element. B: Indicates that the development scheme is foreseen to have some impact on the environmental element.

C: Indicates that the development scheme is foreseen to have minor impact on the environmental element

Balnk: indicates no impact

Appendix A

Cost Comparison, Kanpur

A. Initial Cost

(1) Treatment Plant

1) Capacity Required (incremental)

Name	Process	Status		Incremen	tal Capacit	y (MLD)	
ivame	FIOCESS	Status	Option-1	Option-2	Option-3	Option-4	Option-5
Jajmau No.1	UASB	Е					
Jajmau No.2	UASB	Е					
Jajmau No.3	ASP	Е	0	52	0	70	70
Karankhera	UASB	Р	151	84	85	0	0
Kathonagar	UASB	Р	0	0	66	66	0
Bingawan (Inclemental)	UASB	S/A	0	0	0	0	66

2) Initial Cost (incremental)

Name	Process	Unit Cost Rs.Million/ML		Initial	Cost (Rs.M	illion)	
Iname	Flocess	D D	Option-1	Option-2	Option-3	Option-4	Option-5
Jajmau No.1	UASB						
Jajmau No.2	UASB						
Jajmau No.3	ASP	2.7	0.0	140.4	0.0	189.0	189.0
Karankhera	UASB	3.0	453.0	252.0	255.0	0.0	0.0
Kathonagar	UASB	3.0	0.0	0.0	198.0	198.0	0.0
Bingawan (Inclemental)	UASB	3.0					198.0
Total			453.0	392.4	453.0	387.0	387.0

(2) Pumping Station

1) Capacity Required

Name	Type	Status		Incre	mental Cap	acity	
Ivanie	Type	Status	Option-1	Option-2	Option-3	Option-4	Option-5
Jajmau SPS	Centrifugal	Е	0	64	0	82	82
Ruman SPS	Centrifugal	Р	151	84	85	0	0
PS in Kathonagar STP	Centrifugal	Р	0	0	66	66	66
PS in Bingawan STP (incremental)	Centrifugal	Р					66

2) Initial Cost

Name			Initial	Cost (Rs.M	illion)	
ivane		Option-1	Option-2	Option-3	Option-4	Option-5
Jajmau SPS			212.3		268.4	268.4
Ruman SPS		474.3	274.5	277.6		
PS in Kathonagar STP				218.6	218.6	218.6
Total		474.3	486.8	496.2	487.0	487.0

(3) Land Acquisition

1) Land Required								
Name	Process	Process Land Required		Land Required (ha)				
INdific	Tiocess	ha/MLD	Option-1	Option-2	Option-3	Option-4	Option-5	
Treatment Plant								
Jajmau No.1	UASB	-						
Jajmau No.2	UASB	-						
Jajmau No.3	ASP	0.20	0.0	2.0	0.0	5.0	5.0	
Karankhera	UASB	0.35	53.0	29.0	30.0	0.0	0.0	
Kathonagar	UASB	0.35	0.0	0.0	23.0	23.0	0.0	
Bingawan (Inclemental)	UASB	0.35					23.0	
Pumping Station								
Jajmau SPS				0.5		0.5	0.5	
Ruman SPS			0.5	0.5	0.5			
PS in Kathonagar STP							0.5	
Total			53.5	32.0	53.5	28.5	29.0	

Note(1): Land for Augmentation is already prepared at Jajmau No.1 and No.2 STP

Note(2): Land for 43MLD-Augmentation is already prepared at Jajmau No.3 STP

2) Land Acquisition Cost

	Initial Cost (Rs.Million) Option-1 Option-2 Option-3 Option-4 Ootion				
	Option-1	Option-2	Option-3	Option-4	Ootion-5
Land Acquisition Cost (Rs.Million)	214.0	128.0	214.0	114.0	116.0

(4) Trunk Sewer/Rising Main

	Initial Cost (Rs.Million)				
	Option-1	Option-2	Option-3	Option-4	Ootion-5
District I (city east)	715.8	515.9	667.7	511.1	511.1
District IV	755.2	755.2	754.9	754.9	754.9
Rising Main from District IV(East) to II(South)					72.1
Total (Rs.Million)	1,471.0	1,271.1	1,422.6	1,266.0	1,338.1

(5) Total Initial Cost

		Initial	Cost (Rs.M	illion)	
	Option-1	Option-2	Option-3	Option-4	Ootion-5
Treatment Plant	453	392	453	387	387
Pumping Station	474	487	496	487	487
Land Acquisition	214	128	214	114	116
Trunk Sewer	1,471	1,271	1,423	1,266	1,338
Total	2,612	2,278	2,586	2,254	2,328

(6) Treatment Plant O&M

		Unit cost	Cost (Rs. million)				
Treatment Plant Name	Process	Rs/mld	Option -1	Option -2	Option -3	Option -4	Option-5
Jajmau No.1	UASB	0.13	0.00	0.00	0.00	0.00	0.00
Jajmau No.2	UASB	0.13	0.00	0.00	0.00	0.00	0.00
Jajmau No.3	AS	0.36	0.00	18.72	0.00	25.20	25.20
Karankhera	UASB	0.13	19.63	10.92	11.05	0.00	0.00
Bingawan (Inclemental)	UASB	0.13	0.00	0.00	0.00	0.00	8.58
Kathonagar	UASB	0.13	0.00	0.00	8.58	8.58	0.00
		Total	19.63	29.64	19.63	33.78	33.78

(7) Pump station O&M

1) Energy requirements

	Cost (Rs. million)				
Pump station name	Option -1	Option -2	Option -3	Option -4	Option-5
Jajmau SPS - new	1.30	4.84	1.30	6.47	6.47
Ruman SPS	14.68	6.67	7.24	0.00	0.00
PS at Kathonagar STP					9.77
PS at Karankhera STP	0.00	0.00	7.98	7.98	
Total	15.99	11.51	16.53	14.45	16.24

2) Rising main maintenance

		Cost (Rs. million)				
Pump station name		Option -1	Option -2	Option -3	Option -4	Option-5
Jajmau SPS - new		0.06	0.08	0.06	0.08	0.08
Ruman SPS		0.28	0.23	0.23	0.00	
PS at Kathonagar STP						0.18
PS at Karankhera STP		0.00	0.00	0.00	0.001	
	Total	0.34	0.32	0.29	0.08	0.27

3) mechanical maintenance

		Cost (Rs. million)				
Pump station name	3%	Option -1	Option -2	Option -3	Option -4	Option-5
Jajmau SPS - new		0.33	0.81	0.33	0.94	0.94
Ruman SPS		1.27	0.77	0.78	0.00	
PS at Kathonagar STP						0.64
PS at Karankhera STP		0.00	0.00	0.64	0.64	
	Total	1.60	1.58	1.75	1.58	1.58

4)Civil maintenance

1.:	5%	Cost (Rs. million)				
Pump station name		Option -1	Option -2	Option -3	Option -4	Option-5
Jajmau SPS - new		0.09	0.61	0.09	0.68	0.68
Ruman SPS		0.82	0.58	0.59	0.00	
PS at Kathonagar STP						0.49
PS at Karankhera STP		0.00	0.00	0.49	0.49	
Total		0.91	1.19	1.17	1.17	1.17

5)Staffing

		Cost (Rs. million)				
Pump station name		Option -1	Option -2	Option -3	Option -4	Option-5
Jajmau SPS - new		0.47	0.67	0.47	0.67	0.67
Ruman SPS		0.74	0.83	0.83	0.00	
PS at Kathonagar STP						0.83
PS at Karankhera STP		0.00	0.00	0.83	0.83	
	Total	1.21	1.50	2.12	1.50	1.50

(8) Total Annual O&M

	Cost (Rs. million)				
	Option -1	Option -2	Option -3	Option -4	Option-5
Trunk sewers	14.71	12.71	14.23	12.66	12.66
Treatment plants	19.63	29.64	19.63	33.78	33.78
Pump stations	20.04	16.09	21.86	18.78	20.74
Total	54.38	58.44	55.72	65.22	67.18

(9) Total life cycle cost

	Cost (Rs. million)				
	Option -1	Option -2	Option -3	Option -4	Option-5
Total initial cost	2,612	2,278	2,586	2,254	2,328
Net present value of O&M & equipment replacement	907	986	930	1,095	1,175
Total	3,520	3,264	3,516	3,349	3,503

A2. Karankhera STP: Comparison of cost for various treatment methods ALT I

					Land cost Interest	Rs. million	4 5%
					Project life	years	30
					Capacity	mld	155
Unit rates	WSP	AL	AL+	AS	AS +	FAB	UASB++
Land area Ha/mld	1.25	0.35	0.75	0.20	0.60	0.06	0.35
Capital costs (Rs.million/mld)	1.60	2.5	3.2	2.7	3.4	4.6	3.0
M&E cost (% of total)	29	6 209	6 20%	40%	40%	60%	30%
Annual O&M (Rs.million/mld)	0.06	0.30	0.32	0.36	0.38	0.59	0.13
Capital Cost Component						Cost (Rs. million)
Land area for treatment process Ha	194	54	- 116	31	93	9	54
Land	775	217	465	124	372	37	217
Capital costs	248	388	496	419	527	713	465
Recurring Cost Component						Cost (Rs. million)
Replace M&E every 15 years	4	5 78	78	167	167	428	140
Annual O&M Cost ⁽¹⁾	9	9 47	50	56	59	91	20
Present value recurring cost	145	752	800	938	986	1,612	377
Total present value (²⁾ 1,168	1,357	1,761	1,481	1,885	2,362	1,059
(1) includes energy costs	WSP= waste	stabilization por	ıd	AS=activated s	sludge		

(2) includes land costs

WSP= waste stabilization pond AL= aerated lagoon

								Land cost	Rs. m	illion	4
								Interest			5%
								Project life	•		30 00
								Capacity	mld		90
Unit rates	WSP	AL		AL+		AS		AS +	FAB		UASB
Land area Ha/mld	1.25	5	0.35		0.75		0.20	0.60		0.06	0.35
Capital costs (Rs.million/mld)	1.60)	2.5		3.2		2.7	3.4		4.6	3.0
M&E cost (% of total)	2	%	20%		20%		40%	40%		60%	30%
Annual O&M (Rs.million/mld)	0.00	5	0.30		0.32		0.36	0.38		0.59	0.13
Capital Cost Component										Cost (Rs. million)
Land area for treatment process Ha	113	3	32		68		18	54		5	32
Land	450)	126		270		72	216		22	126
Capital costs	144	1	225		288		243	306		414	270
Recurring Cost Component										Cost (Rs. million)
Replace M&E every 15 years		3	45		45		97	97		248	81
Annual O&M Cost ⁽¹⁾		5	27		29		32	34		53	12
Present value recurring cost	84	4	437		464		545	572		936	219
Total present value (²⁾ 67	8	788	1	1,022		860	1,094	1	,371	615

A3. Karankhera STP: Comparison of cost for various treatment methods ALT II&III

(1) includes energy costs(2) includes land costs

WSP= waste stabilization pond AL= aerated lagoon

								Land cost	Rs. million		4
								Interest			5%
								Project life	years		30
								Capacity	mld		70
Unit rates	WSP	AL		AL+		AS		AS +	FAB		UASB
Land area Ha/mld	1.2	5	0.35		0.75		0.20	0.60		0.06	0.35
Capital costs (Rs.million/mld)	1.6	i0	2.5		3.2		2.7	3.4		4.6	3.0
M&E cost (% of total)	,	2%	20%		20%		40%	40%		60%	30%
Annual O&M (Rs.million/mld)	0.0	6	0.30		0.32		0.36	0.38		0.59	0.13
Capital Cost Component										Cost (Rs. million)
Land area for treatment process Ha		88	25		53		14	42		4	25
Land	35	60	98		210		56	168		17	98
Capital costs	11	2	175		224		189	238		322	210
Recurring Cost Component										Cost (Rs. million)
Replace M&E every 15 years		2	35		35		76	76		193	63
Annual O&M Cost ⁽¹⁾		4	21		22		25	27		41	9
Present value recurring cost	(66	340		361		424	445		728	170
Total present value (²⁾ 52	28	613		795		669	851	1	.,067	478

A4. Kathonagar STP: Comparison of cost for various treatment methods ALT III&IV

(1) includes energy costs(2) includes land costs

WSP= waste stabilization pond AL= aerated lagoon

A5. Panka STP: Comparison of cost for various treatment methods

					Land cost Interest Project life Capacity	Rs. million years mld	4 5% 30 200
Unit rates	WSP	AL	AL+	AS	AS +	FAB	UASB++
Land area Ha/mld	1.25	0.35	0.75	0.20	0.60	0.06	0.35
Capital costs (Rs.million/mld)	1.60	2.5	3.2	2.7	3.4	4.6	3.0
M&E cost (% of total)	2%	20%	20%	40%	40%	60%	30%
Annual O&M (Rs.million/mld)	0.06	0.30	0.32	0.36	0.38	0.59	0.13
Capital Cost Component						Cost ((Rs. million)
Land area for treatment process Ha	250	70	150	40	120	12	70
Land	1,000	280	600	160	480	48	280
Capital costs	320	500	640 、	540	680	920	600
Recurring Cost Component						Cost (Rs. million)
Replace M&E every 15 years	6	100	100	216	216	552	180
Annual O&M Cost ⁽¹⁾	12	60	64	72	76	118	26
Present value recurring cost	188	970	1,032	1,211	1,272	2,079	486
Total present value (²⁾ 1,508	1,750	2,272	1,911	2,432	3,047	1,366
(1) includes energy costs	WSP= waste s	stabilization pon	d	AS=activated s	ludge		

(2) includes land costs

WSP= waste stabilization pond AL= aerated lagoon

A6. Bingawa STP: Comparison of cost for various treatment methods

					Land cost	Rs. million	4
					Interest Project life	Vears	5% 30
					Capacity	mld	365
						inita	
Unit rates	WSP	AL	AL+	AS	AS +	FAB	UASB++
Land area Ha/mld	1.25	0.35	0.75	0.20	0.60	0.06	0.35
Capital costs (Rs.million/mld)	1.60	2.5	3.2	2.7	3.4	4.6	3.0
M&E cost (% of total)	2%	5 20%	20%	40%	40%	60%	30%
Annual O&M (Rs.million/mld)	0.06	0.30	0.32	0.36	0.38	0.59	0.13
Capital Cost Component							(Rs. million)
Land area for treatment process Ha	456	128	274	73	219	22	128
Land	1,825	511	1,095	292	876	88	511
Capital costs	584	913	1,168	986	1,241	1,679	1,095
Recurring Cost Component						Cost	(Rs. million)
Replace M&E every 15 years	12	183	183	394	394	1,007	329
Annual O&M Cost ⁽¹⁾	22	110	117	131	139	215	47
Present value recurring cost	342	1,771	1,883	2,210	2,322	3,795	887
Total present value	²⁾ 2,751	3,195	4,146	3,487	4,439	5,562	2,493
(1) includes energy costs	WSP= wastes	stabilization pond	1	AS=activated s	ludge		

(2) includes land costs

WSP= waste stabilization pond AL= aerated lagoon

A7. Bingawa STP: Comparison of cost for various treatment methods

					Land cost Interest	Rs. million	4 5%
					Project life	years	30
					Capacity	mld	430
Unit rates	WSP	AL	AL+	AS	AS +	UASB++	FAB
Land area Ha/mld	1.25	0.35	0.75	0.20	0.60	0.35	0.06
Capital costs (Rs.million/mld)	1.60	2.5	3.2	2.7	3.4	3.0	4.6
M&E cost (% of total)	2%	20%	20%	40%	40%	30%	60%
Annual O&M (Rs.million/mld)	0.06	0.30	0.32	0.36	0.38	0.13	0.59
Capital Cost Component					Cost	(Rs. million)	
Land area for treatment process Ha	538	151	323	86	258	151	26
Land	2,150	602	1,290	344	1,032	602	103
Capital costs	688	1,075	1,376	1,161	1,462	1,290	1,978
Recurring Cost Component					Cost	(Rs. million)	
Replace M&E every 15 years	14	215	215	464	464	387	1,187
Annual O&M Cost ⁽¹⁾	26	129	138	155	163	56	254
Present value recurring cost	403	2,086	2,219	2,603	2,735	1,045	4,471
Total present value	²⁾ 3,241	3,763	4,885	4,108	5,229	2,937	6,552
(1) includes energy costs	WSP= waste s	stabilization pond	l	AS=activated s	ludge		

(2) includes land costs

WSP= waste stabilization pond AL= aerated lagoon