6. HYDRO-MECHANICAL EQUIPMENT

6. HYDRO-MECHANICAL EQUIPMENT

The outline of the site survey results for hydro-mechanical equipment is as follows. Also, attached are the main features for the hydro-mechanical equipment.

Equipment	Wimalasurendra Hydropower Station	Old Laxapana Hydropower Station	Canyon Hydropower Station
Penstock	No significant defects	No significant defects Repair for the remote control of the penstock valve	Leakage from expansion joints
Spillway	Plan for regulating the spillway gates	Plan for regulating spillway gates	Installation of accesses to anchorage
Intake	Repairing the intake equipment by CEB	No significant defects	Plan for intake air valve modification
Bottom outlet	CEB Plans for repairing the needle valve	No significant defects	No significant defects
Tailrace	No significant defects	No gate	Repairing the tailrace gate by CEB
Other	-	-	-

Equipment	New Laxapana Hydropower Station	Polpitiya Hydropower Station
Penstock	Repair the drain and passages	Touch up painting for corroded portions
Spillway	Installation of accesses to anchorage	Touch up painting Drain holes at gate leafs Installation of accesses to anchorage Plan for a dam control system
Intake	Plan for Raking machine	Plan for Raking machine
Bottom outlet	No significant defects	No significant defects
Tailrace	No gate	No significant defects
Other	Plan for Removing sedimentation	Plan for Removing sedimentation

Power Station	Wimalasurendra	Old Laxapana	Canyon	New Laxapana	Poipitiya
Capacity(MW)	25×2	10×5	30×2	50×2	37.5 × 2
Completion Date	1965	Stage I, 1950 (54years)	1983	1974	1969
-	(39years)	Stage II, 1958	(21years)	(30years)	(35years)
		(46years)			
Reservoir	Castlereagh Reservoir	Norton Pond	Maussakelle Reservoir	Canyon Pond	Laxpana Pond
Storage capacity (10^3m^3)	59,700	394	14,714	92	202
Usable capacity (10^3m^3)	53,583	245	107,929	629	113
Dam	Concrete Gravity	Concrete Gravity	Concrete Gravity	Concrete Gravity	Concrete Gravity
Length (m) x Height (m)	236.8×47.2	103.0×28.7	187.5×41.1	182.9×27.4	137.2×29.6
Headrace Tunnel					
Length (km)	6.1	2.6	4.1	5.6	7.7
Penstock					
Туре	Welded, Ring support	Spigot & socket, Ring	Welded, Ring support	Welded, Saddle support	Mechanical joint,
	(wheel)	support (wheel)	(slide)	(concrete)	Saddle support (steel)
Lines	2	4	2	2	2
Length (m)	887.7	1,527.4	823.0	1,889.8	603.5
Diameter (m)	1.98 (78in)	1.22 (48in)	2.51 (99in)	1.68 (66in)	2.29 (90in)
Design head (m)	(227.4)	(472.4)	314.5(204.2)	724.8(541.0)	(259.1)
Material	JIS SM50	9.5 – 28.5mm	ASTM A537 CL1	SELCO 56CN	CASG 40.8 Grade B
Design thickness	17 – 23mm	SOUTH DURAHAM	12 -24mm	8 – 31 mm	18 -27mm
Fabricator	SAKAI IRON WORKS	STEEL & IRON	B.V.S-JONNERET	GIOVANOLA FREES	
			SWITZERLAND	S.A	
Penstock Guard Valve	Penstock valve	Penstock valve	Tunnel inlet valve	Penstock valve	Penstock valve
			Penstock valve		
Flow (m ³ /s) / line	14	2.1 (Stage I)	18	11.5	17
		3.25 (Stage II)			

 Table 6.1
 Main Features of Hydro-mechanical Equipment

Power Station Capacity(MW)	Wimalasurendra 25 × 2	Old Laxapana 10 × 5	Canyon 30 × 2	New Laxapana 50 × 2	Poipitiya 37.5 × 2
Spillway Gate					
Туре	Natural spillway	Natural spillway	Radial Gate	Radial Gate	Radial Gate
Quantity	Flash board 4 ft \times 14		3	2	3
Width (m) x Height (m)			10.7×4.6	12.2×8.8	10.7×7.3
Hoist			Wire rope type	Wire rope type	Wire rope type
Design flood	Max. Flood level	Max. Flood level	Max. Flood level	Max. Flood level	Max. Flood level
	1096.4m	870.2m	1170.43m	963.17m	381m
Intake Equipment					
Intake Gate					
Intake Service Gate	Sliding gate	Stoplogs (wooden)	1-Roller Gate	Fixed wheel gate	Fixed wheel gate
Width x Height	$1.83m \times 4.42m$		4.11 m × 4.72 m	$3.2m \times 3.2m$	$4.11 \text{m} \times 4.72 \text{m}$
Hoist	Overhead gantry crane		Electric motor		
Intake Guard Gate	Roller gate	Width – 2.06m	1-Slide Gate	Bulk head gate	Fixed wheel gate
Width x Height	$1.83m \times 3.96m$			$3.2m \times 3.2m$	$4.11 \text{m} \times 4.72 \text{m}$
Hoist					
Intake Trashrack		Rotary screen	Moving Glory type	Fixed screen 03 Nos.	Fixed screen
		, , , , , , , , , , , , , , , , , , ,		$2.44m \times 4.57m$	$2.33 \text{m} \times 5.94 \text{m} \times 03$
				2.44111 × 4.37111	2.55m×5.94m×05
Raking Machine	No	By high pressure water	No	No	No
		spraying			
Bottom Outlet Works	Hydraulic-operated	Stoplog gate – 02 nos	Hovel bunger valve	1.525m × 2.135m	Fixed wheel gate
	Needle valve	Lifting by chain blocks	D=2.43m	Control gate	Electric motor
	D=1.5m			$1.525 \text{m} \times 2.135 \text{m}$	
				Emergency gate	
	Guard gate			Fixed wheel gate	

Power Station	Wimalasurendra	Old Laxapana	Canyon	New Laxapana	Poipitiya
Capacity(MW)	25×2	10×5	30×2	50×2	37.5×2
Tailrace Gate Type Quantity Width x Height Hoist	Slide Gate 2 Overhead gantry crane for stoplog gate Separate electric motor driven and bulk head gate	No	Slide Gate 2 Monorail hoist	No	Slide Gate 2
Other Hydro-mechanical Equipment	Trashrack placed inside of the intake with grab mechanism				
Remarks	Intake gate & structures completely repaired		There is a pipe piece in between the dam and the tunnel. Nearby the dam there is a butterfly valve. According to the reports, this intake has been designed for only one machine		

r

Attached are the rough rehabilitation costs for the hydro-mechanical equipment.

Hydropower Station	Rehabilitation Item	Cost Estimate (10 ³ US\$)
Wimalasurendra	New spillway gate(SR gate)	
	Width $9.1m \times$ Height $1.2 m 14$ nos.	5,600
Old Laxapana	New spillway gate(SR gate)	
	Width $9.1m \times$ Height $1.2m \otimes 8$ nos.	3,200
	Repair for remote control at penstock valve	200
Canyon	Improving the air valve of the intake valve (an anti-negative pressure valve) Change the air valve position	300
New Laxapana	Intake	
	Trash rake machine	500
Polpitiya	Intake	
	Trash rake machine	500
Common	Removal Sedimentation of Canyon & Laxapana reservoir	
	Dredging grab 1m ³	100
	Mobile crane 30t	300
	Dam control system of Canyon & Laxapana	600
	Robot for repainting the inside penstock	
	Blasting machine & Painting machine	1,500
	Equipment for outside repainting machine	
	Blasting machine & airless spray	200
Consulting fee		1,300
Contingency		1,400
Total cost		15,700

	Table 6.2	Rehabilitation	Work Cost	of Hydro-mechanic	al Equipment
--	-----------	----------------	------------------	-------------------	--------------

(Note)

The purchase of the robot for repainting the inside penstock will be discussed by CEB due to the expensive.

6.1 Wimalasurendra Hydropower Station

6.1.1 Site Survey

(1) Penstock

The exposed outer surface of the penstock was visually inspected for excessive leakage, corrosion, pitting, coating deficiency, etc.

<Appearance investigation>

The penstock's exterior was visually inspected while the penstock was under full pressure in order to observe any leakage. Deformation of steel pipes, loosed bolts, anchor blocks and concrete saddles were visually inspected.

<Plate thickness measurements>

The shell plate thickness of the steel penstock was checked using an ultrasonic thickness meter at the mean of the anchor blocks.

<Vibration measurements>

Vibration of the steel penstock was checked using a vibration meter at the mean of the anchor blocks.

<Painting film thickness measurements>

Painting film thickness was checked using an electromagnetic coating thickness meter at the mean of the anchor blocks.

Measurement instrument	Туре	Model
Plate thickness	Ultrasonic 0.1mm	JFE TI-50K
Vibration	Digital	Showa Model 1332A
Painting film thickness	Electromagnetic	Sanko SDM-3000T

 Table 6.3
 Measurement Instrument

(2) Gate and Trashrack

The gates and trashracks were visually inspected.

6.1.2 Penstock

(1) Present Status

The penstock was constructed in 1965 and has been in peroration for more than 39 years. No serious problems have been observed so far.

The penstock is 887.7m long and extends from the penstock valve house to the powerhouse. General penstock data are as follows.

Туре	:	Welded type, Ring support with wheel
No. of Penstock	:	2
Length	:	887.7m
Diameter	:	1.980 – 1.600m
Design head	:	227.4m (static design head)
Material	:	JIS SM50
Design thickness	:	17 – 23mm

Picture 6.1 Panorama view of penstock

Picture 6.2 Ring girder support with wheels

The collected data of the plate thickness for the penstock were consistent and reasonable. According to the data, there was no significant loss in metal due to corrosion. Also, there were no significant vibrations in the penstock.

More specific information can be found on the attached checklist.

(2) Rehabilitation plan

May not be necessary

6.1.3 Flashboard of Spillway

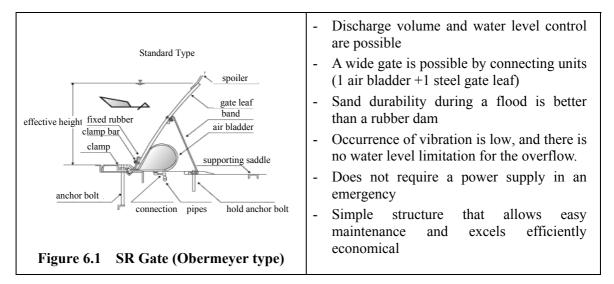
(1) Present Status

The spillway was designed as an ungated ogee crest with 14 bays that are 9.1m in width. A 1.2m flashboard system was installed in the dam crest. This flashboard system was designed by Preece Cardew in 1982. The flashboards are consisted of 1.2m high timber gates. The flashboards were cleaned and painted by CEB.

However, the existing flashboards require a high degree of manual operation.during a flood. Furthermore, the reliability of controlling flashboards with shear pins is very low.

Therefore, CEB wishes to install a mechanical gate system that will regulate discharge.

(2) Rehabilitation Plan


The following gates were compared. The recommended gate is the SR gate (Obermeyer type).

- SR Gate (Obermeyer type)
- Rubber Dump Spillway Gate
- Steel Dump Spillway Gate

SR gates were developed in the USA and possess excellent characterikstics. Recently, SR gates have been installed in Japan.

The SR gate is composed of a steel gate leaf and air bag (bladder) made of rubber. The steel gate leaf can be operated by adjusting the amount of air in the air bags.

A comparison table of the spillway gates are attached..

6.1.4 Intake Gate and Trashrack

(1) Present status

The intake tower is located on the right side bank of the reservoir. The intake equipment consists of intake gates, bulkhead gates, intake trashracks, trash rakes, and a gantry crane. That equipment has been repaired by CEB.

(2) Rehabilitation plan

May not be necessary

6.1.5 Bottom Outlet Works

(1) Present status

The bottom outlet works consist of a roller gate and a needle valve. The needle valve was leaking at a rate of a few liters per seconds. The seals of the needle valve will be repaired by CEB.

(2) Rehabilitation Plan

May not be necessary

	SR Gate (Obermeyer type)	Rubber Dam	Steel Damp Spillway Gate
Schematic diagram			
Basic structure	The gate is constructed of various units that are each respectively composed of a steel gate leaf and rubberized air bladder. The gate is risen using an air compressor. Lowering the gate is carried out by an	The inflate rubber dam is composed of rubberized air bladders. The rubber dam rise and lower mechanism is actuated with a pump for hydraulic systems or with an air	horizontal stiffeners. The rise and lower mechanism is provided with an oil cylinder.
Diameter of bladder	automatic lowering device.About 1/3 of weir height (steel gate leaf)	compressor for pneumatic systems. Same as height of weir	-
Width of weir	The gate is constructed of various units that are each respectively composed of a steel gate leaf and rubberized air bladder. (Previous result :296m)	Middle piers should be placed in intervals of about 40m and less.	Middle piers should be placed in intervals of about 40m and less.
Against falling objects	The air bladder is protected with a steel gate leaf against sharply edged flowing-down objects preventing damage.	from sharply edged flowing-down	The hydraulic cylinder protected by a steel gate leaf from flowing-down objects preventing damage.
Water flow control	The water flow can be easily adjusted in a large variety of ways.		The water flow can be easily adjusted in a large variety of ways.

 Table 6.4
 Comparison Table of SR Gate, Rubber Dam and Steel Gate

	SR Gate (Obermeyer type)	Rubber Dam	Steel Damp Spillway Gate
Vibration of gate leaves	Spoilers are used to solve the gate leaf vibration problem caused by overflow water.	5	Spoilers are used to solve the gate leaf vibration problem caused by overflow water.
V-notch phenomenon	Does not occur	V-notch may occur if the rubber dam lies down	Does not occur
Air dryer	Necessary	Not Necessary	Not Necessary
Transportation and installation	Excels in workability in the process of design, manufacture, assembly, transport and installation, and requires no large-scale machinery.	A	Large-scale trucks and cranes are necessary for transportation and installation of large size gates,.

Picture 6.3 Repairing of Intake Equipment

Picture 6.4 Leakage from needle valve

- 6.1.6 Tailrace Gate
- (1) Present Status

The tailrace gate is located outside the powerhouse.

(2) Rehabilitation Plan

May not be necessary

6.2 Old Laxapana Hydropower Station

- 6.2.1 Site Survey
- (1) Penstock

The exposed outer surface of the penstock was visually inspected for excessive leakage, corrosion, pitting, coating deficiency, etc.

(2) Gates and Trashrack

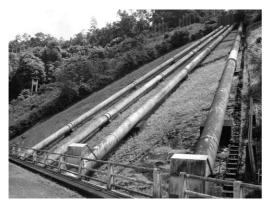
The gates and trashracks were visually inspected.

6.2.2 Penstock

(1) Present Status

The penstock was constructed in 1950 and has been in operating for more than 54 years. No serious problems have been observed so far.

The penstock is 1,527.4m long and extends from the penstock valve house to the powerhouse.


General penstock data are as follows.

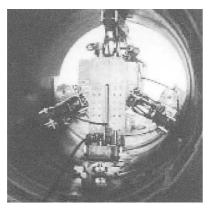
Туре	:	Spigot & socket, Welded type, Ring support with wheel
No. of Penstock	:	4
Length	:	1,527.4m
Diameter	:	1.035 - 1.238m
Design head	:	472.4m (static design head)
Material	:	Unconfirmed
Design thickness	:	9.5 – 28.5mm

The collected data of the penstock's plate thickness was consistent and reasonable. According to the data, there was no significant loss of metal to corrosion and there were no significant vibrations discovered in the penstock.

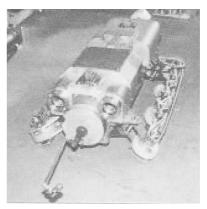
For more specific information see the attached checklist.

Atomic Energy Authority inspected the penstock's thickness on October 2000 with an ultrasonic thickness gauge. There were no problems found.

Picture 6.5 Panorama view penstock



Picture 6.6 Spigot & socket (1st stage)


(2) Rehabilitation Plan

Repainting of the inner side of the penstock is difficult due to narrow space and the penstock inclines. Therefore, a blasting robot and painting system will be considered. The purchase of the robot will be discussed by the CEB due to the expensive.

An outside blasting and painting machine also will be considered.

Picture 6.7 Blasting machine

Picture 6.8 Painting machine

6.2.3 Spillway

(1) Present Status

The spillway is designed as a non-gated ogee crest with 8 bays that are 9.1m wide using 1.2m wide piers that supports the above bridge deck.

CEB plans to install the flashboards, similar to the Castlereagh dam flashboards, to increase of the reservoir capacity.

(2) Rehabilitation Plan

The most suitable gate type will be selected. The SR gate (Obermeyer type) is the most recommendable at this moment for regulating the gate at Norton dam.

To establish new gates the spillway capacity, influence on the surrounding area and safety of the existing structure must be first studied

Picture 6.9 Spillway of Norton Dam

A detailed study must be done before increasing the reservoir capacity and establishing new gates.

- To confirm the ability of the discharge capacity of spillway after the new gates are established.
- To confirm the need of EIA due to the increased reservoir capacity and pond area
- To confirm the safety of existing structures after new gates has been established

6.2.4 Intake Gate and Trashrack

(1) Present Status

The intake tower is located at the left side bank of the pond. The intake equipment consists of intake gates, bulkhead gates, intake trashracks and trash rakes. The trash rake is a rotary type with high pressure water cleaning system.

(2) Rehabilitation Plan

May not be necessary

6.2.5 Bottom Outlet Works

(1) Present Status

The bottom outlet is located in a tunnel at the left abutment (originally the diversion tunnel). The gate is a vertical lift gate, connected with screw driven rods powered by an electric motor.

(2) Rehabilitation Plan

May not be necessary

6.2.6 Tailrace Gate

(1) Present Status

No tailrace gate

6.3 Canyon Hydropower Station

6.3.1 Site Survey

(1) Penstock

The exposed outer surface of the penstock was visually inspected for excessive leakage, corrosion, pitting, deterioration, and deficiencies etc.

(2) Gates and Trashrack

Gates and trashracks were visually inspected for corrosion, deterioration, and deficiencies.

6.3.2 Penstock

(1) Present Status

The penstock was constructed in 1983 and has been in operation for more than 21 years. No serious problems have been observed so far.

The penstock is 823.0m long and extends from the penstock valve house to the powerhouse. General penstock data are as follows.

Туре	:	Welded type, Ring support with slide shoe
No. of Penstock	:	2
Length	:	823.0m
Diameter	:	2.440 - 2.000m
Design head	:	314.5m (Max. design head)
Material	:	ASTM A537 CL1
Design thickness	:	12 – 24mm

Picture 6.10 Measuring for plate thickness

Picture 6.11 Check of slide shoe

The collected data of the penstock's plate thickness was consistent and reasonable. According to the data, there was no significant loss of metal to corrosion and there was no significant vibration present at penstock.

For more specific information see the attached checklist.

A leakage in the expansion joint will be repaired by CEB.

Picture 6.12 Leakage from expansion joint

(2) Rehabilitation Plan

May not be necessary

6.3.3 Spillway

(1) Present Status

The spillway in the center of the dam consists of 3 bays of gated ogee crested weir. The radial gates are 10.7m wide x 4.6m high. They are operated using a wire rope hoist mounted on the platforms over the piers. The hoists are a drum cable type driven by an electrical motor. The hoists can be manually cranked. A standby generator is provided adjacent to the gate No.1 hoist.

The gates were generally in good condition.

(2) Rehabilitation Plan

May not be necessary

6.3.4 Intake Gate and Trashrack

(1) Present Status

The intake tower is located at the dam. The intake equipment consists of intake gates, bulkhead gates, and intake trashracks.

(2) Rehabilitation Plan

May not be necessary

6.3.5 Bottom Outlet Works

(1) Present Status

The bottom outlet consists of a 2.44m diameter penstock through the dam. A fixed wheel type intake gate is located on the upstream face of the dam.

One branch leads to the scour outlet with a 2.44m Howell-Bunger sleeve valve ad hood. The other branch connects to the Canyon power station tunnel with a 3.4m diameter penstock. This is controlled using a butterfly valve that is operated by hydraulic cylinders.

(2) Rehabilitation Plan

May not be necessary

6.3.6 Intake Guard Valve

(1) Present Status

Anti-negative pressure valve is located just downstream of the butterfly valve.

The anti-negative pressure valve may open when the reservoir water level is low and intake discharge volume is large.

(2) Rehabilitation Plan

The anti-negative pressure valve position will be moved to the top of the roof. Or the position for oil and control units will be switched to other rooms.

6.3.7 Tailrace Gate

(1) Present Status

The tailrace gate is installed at the tailrace and is used when the turbines are being inspected or repaired. The slide gate with a bypass valve is used for a tailrace gate.

Tailrace gate was repaired by CEB.

Picture 6.13 Intake guard valve house

Picture 6.14 Repairing the tailrace gate by CEB

(2) Rehabilitation Plan

May not be necessary

6.4 New Laxapana Hydropower Station

6.4.1 Site Survey

(1) Penstock

The exposed outer surface of the penstock was visually inspected for excessive leakage, corrosion, pitting, deterioration, and deficiencies etc.

(2) Gates and Trashrack

The gate and trashrack were visually inspected for corrosion, deterioration, and deficiencies.

6.4.2 Penstock

(1) Present Status

Penstock was constructed in 1974 and has been in operation for more than 30 years. No serious problems have been observed so far.

The penstock is 1,889.8m long and extends from the penstock valve house to the powerhouse.

General penstock data are as follows.

Туре	:	Welded type, Concrete saddle support
No. of Penstock	:	2
Length	:	1,889.8m
Diameter	:	1,700 – 1,500m
Design head	:	724.8m (Max. design head)
Material	:	SELCO 56CN
Design thickness	:	8 – 31mm

Picture 6.15 Panorama view

Picture 6.16 Touch up paint for welding joint by CEB

The collected data of the penstock's plate thickness were consistent and reasonable. According to the data, there was no significant loss of metal to corrosion and there was no significant vibrations present in the penstock.

For more specific information see the attached checklist.

(2) Rehabilitation Plan

Eroded drain gutters should be repaired immediately due to the high risk of concrete saddles sinking.

Deteriorated filler material between the concrete saddles and penstock should be changed due to the influence that is present to the expansion joint leak.

Picture 6.17 Repair work of drain

Picture 6.18 Filler material of concrete saddle

6.4.3 Spillway gate

(1) Present Status

The spillway in the center of the dam consists of 2 bays of gated ogee crested weir. The radial gates are 12.2m wide x 8.8m high. They are operated using a wire rope hoist mounted on the platforms over the piers. The hoists are a drum cable type driven by an electrical motor. The hoist can be manually cranked. The gates can be operated from the local control board or can be wounded up manually at each hoist. A standby generator is located in the house on the right side of the dam.

The gates were generally in good condition.

(2) Rehabilitation Plan

May not be necessary

6.4.4 Intake Gate and Trashrack

(1) Present Status

The intake tower is located on the right side bank of the pond. The intake equipment consists of intake gates, bulkhead gates, and intake trashracks. There was no intake trash rake machine.

(2) Rehabilitation Plan

Provisions for the intake rake machine or a movable trashrack will be considered.

- Movable trashrack type
- Rotary type trash rake machine
- Wire rope type trash rake machine

Item	Movable trashrack type	Rotary type trash rake machine	Wire rope type trash rake machine
Structure	Trashracks are exchanged regularly	Rakes will be installed on a chain that is controlled through turning	Rake that moves up and down using a wire rope winch
Characteristic	Structure is simple Cleaning method is reliable	Rotary turning the chain is a very stable operation Capable of disposing much debris	Best suited for high lifting ranges

(Note)

A study for remodeling and repairing the existing trashrack should be carried out separately. Though a rotary type trash rake machine is recommended due to its efficiency, the decision should keep in consideration the conformity of the existing structures

6.4.5 Bottom Outlet Works

(1) Present Status

The bottom outlet is located on the right side of the spillway. It consists of controls and emergency fixed wheel gates operated by an electric motor. These gates are used for de-silting and lowering the reservoir water level for maintenance.

(2) Rehabilitation Plan

May not be necessary.

6.4.6 Sedimentation

(1) Present Status

Due to the small size of the pond the silt around the intake and bottom outlet works should be removed often.

(2) Rehabilitation Plan

Currently methods for dredging using a garb and mobile carne are being examined. The grab and mobile crane will be used for removing silt around the intake and bottom outlet works etc. The silt will then be transported by CEB's dump trucks to a disposal area. CEB will look into method of transportation and the disposal area.

Picture 6.19 Sedimentation of reservoir

Picture 6.20 Plan for dredging by grab

6.5 Polpitiya Hydropower Station

6.5.1 Site Survey

(1) Penstock

The exposed outer surface of the penstock was visually inspected for excessive leakage, corrosion, pitting, deterioration, deficiencies etc.

(2) Gates and Trashrack

The gate and trashrack were visually inspected for corrosion, deterioration, and deficiencies.

6.5.2 Penstock

(1) Present Status

The penstock was constructed in 1969 and has been in operating for more than 35 years. No serious problems have been observed so far.

The penstock is 603.5m long and extends from the penstock valve house to the powerhouse. General penstock data are as follows.

Туре	:	Mechanical joint, Saddle support (steel)
No. of Penstock	:	2
Length	:	603.5m
Diameter	:	2.250 - 2.000m
Design head	:	259.1m (static design head)
Material	:	CASG 40.8 Grade B
Design thickness	:	18 – 27mm

Picture 6.21 Panorama view of penstock

Picture 6.22 Mechanical joint

The collected data of the penstock's plate thickness were consistent and reasonable. According to the data, there was no significant loss of metal to corrosion, further, there were no significant vibrations present in the penstock.

For more specific information see the attached checklist.

Early touch up painting is recommended for extensively corroded areas on the welded joints and bottoms of the penstock.

Picture 6.23 Outside surface of welded joint

Picture 6.24 Outside surface of bottom

(2) Rehabilitation Plan

May not be necessary

6.5.3 Spillway Gate

(1) Present Status

The spillway in the center of the dam consists of 3 bays of gated ogee crested weir. The radial gates are 10.7m wide \times 7.3m high. The gates are operated by using wire rope hoist mounted on the platforms over the piers. The hoists are a drum cable type driven by an electrical motor. The hoist can be manually cranked. The gates can be operated remotely from the Old Laxapana power station or can be wounded up manually using the local control board at each hoist. The gates were generally in good condition.

The trunnion is an important part that bears the concentrate load during high pressure. The inspection and maintenance, such as a lubrication of trunnion parts, are necessary. It is recommended to install access bridges, ladders, stairways, handrails etc. to allow inspection. Water tends accumulating on sections of gate arms and main girder was observed. It is recommended to regularly clean the drain holes or to provide new drain holes.

Touch up painting is also required for some corroded portions on the gate leaf.

Picture 6.25 Trunnion requires access facility

Picture 6.26 Arm requires drain holes

(2) Rehabilitation Plan

The automatic gate operation system is under consideration due to the spillway gate being operated several times to discharge floods. The most suitable dam control method will investigated using Japan's experience.

Picture 6.27 Gate operation

Picture 6.28 Gate operation table (manual operation)

6.5.4 Intake Gate and Trashrack

(1) Present Status

The intake equipment is located on the right bank of the pondage. The intake equipment consists of intake service gates, bulkhead gates and intake trashracks. There is no intake trash rake machine.

Air–entraining caused by vortexes decreases turbine efficiency, vortexes pull floating debris into the turbine (or onto the trashrack) creating the turbine operation to be rough.

Picture 6.29 Intake equipment

Picture 6.30 Vortex on the Surface

(2) Rehabilitation Plan

The following types of intake trash rake machines and a movable trashracks were compared.

- Movable trashrack type
- Rotary type trash rake machine
- Wire rope type trash rake machine

Though a rotary type trash rake machine is recommended due to its efficiency, the decision will be based upon the ability to conform with the existing structures.

A countermeasure against the vortex at the intake will be also investigated.



Figure 6.2 Rotary type trash rake machine

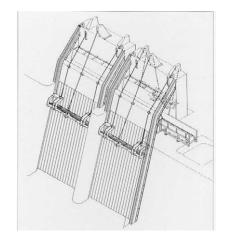


Figure 6.3 Wire rope type rotary rake machine

6.5.5 Bottom Outlet Works

(1) Present Status

The bottom outlet is located on the right side of the spillway. It is composed of controls and emergency fixed wheel gates operated by an electric motor. These gates are used for de-silting and lowering the reservoir water level for maintenance.

(2) Rehabilitation Plan

May not be necessary

6.5.6 Sedimentation

(1) Present status

Due to the small pondage size it is necessary to remove silt around the intake and bottom outlet works often.

(2) Rehabilitation Plan

Currently, methods of dredging by using grabs and mobile cranes are under investigation. The grab and mobile crane will be used for removing silt around the intake and bottom outlet works. The silt will then be transported by CEB's dump trucks to a disposal area.

Table 6.5 (1) Measurement Result

Power Station: Wimalasurendra

12th August 2004

Penstock: No.1

Measurement Point	Р	Plate thickness (mm)					Vibration(mm)	Remarks				
	1	2	3	4	5	1	2	3	4	5		
No.1	200	211	281	245	263	17.6	17.7	18.1	18.1	17.8	0.018	
No.2	164	140	192	175	182	17.8	-	17.3	-	-	0.04	
No.3						17.5	18	17.5	17.2	17.7		
No.4	166	157	142	180	158	18.1	17.6	17.9	18.7	18	0.05	
N0.5						18.4	18.5	18.2	17.7	18.1	0.04	
No.6	120	168	138	146	157	20.5	20.7	20.4	20.7	20.3	0.04	
No.7	264	320	329	413	393	22.7	22.9	22.9	23.6	23.2	0.03	

ement R	lesult										
apana Sta	ation			Brd Aug	gust 200)4					
F	ainting	thickness(µm)			Plate thickness (mm)				Vibration(mm)	Remarks	
1	2	3	4	5	1	2	3	4	5		
187	177	260	273	269	10.3	10.6	10.4	9.7	10.7	0.006	 Outside is dirty, but painting film is in good cond
347	257	301	316	225	14.9	14.1	14	14.3	14	0.01	♦ Leakage from Expansion joint
183	147	210	93	139	16.3	16.2	16.1	15.6	15.2	0.01	
261	398	320	242	298	20.7	20.8	20.7	20.8	20.8	0.01	◆ Outside is fine
177	182	221	293	136	24.1	23.1	23.6	24	24.3	0.01	
181	290	317	338	297	26	25.7	26.1	25.7	25.7	0.01	◆ Outside is fine
378	416	419	388	430	29.4	29.6	30.8	30.1	28.8	0.01	
311	281	364	349	381	-	-	-	30.8	-	0.01	♦ Outside is dirty
174	148	128	152	142	32.8	-	32.2	-	-	0.01	◆ Outside is dirty
119	111	175	166	227	33.6	33.7	33.8	34.5	33	0.01	
109	158	133	183	125	31.3	31.8	31.6	32.4	31.7	0.01	◆ Outside is fine
	apana Sta F 1 187 347 347 183 261 177 181 378 311 174 119	1 2 187 177 347 257 183 147 261 398 177 182 181 290 378 416 311 281 174 148 119 111	apana Station Painting thickness 1 2 3 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 347 257 301 301 1 183 147 210 261 398 320 320 1 177 182 221 1 181 290 317 378 416 419 311 281 364 174 148 128 119 111 175	apana Station 3 Painting thickness(µm) 1 2 3 4 1 2 3 4 1 2 3 4 187 177 260 273 347 257 301 316 183 147 210 93 261 398 320 242 177 182 221 293 181 290 317 338 378 416 419 388 311 281 364 349 174 148 128 152 119 111 175 166	apana Station 3rd Aug Painting thickness(μ m) 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 187 177 260 273 269 347 257 301 316 225 183 147 210 93 139 261 398 320 242 298 177 182 221 293 136 181 290 317 338 297 378 416 419 388 430 311 281 364 349 381 174 148 128 152 142 119 111 175 166 227	3rd August 200 Painting thickness(μ m) 1 2 3 4 5 1 1 2 3 4 5 1 187 177 260 273 269 10.3 347 257 301 316 225 14.9 183 147 210 93 139 16.3 261 398 320 242 298 20.7 177 182 221 293 136 24.1 181 290 317 338 297 26 378 416 419 388 430 29.4 311 281 364 349 381 - 174 148 128 152 142 32.8 119 111 175 166 227 33.6	apana Station $3rd August 2004$ Painting thickness(μ m) Plate th 1 2 3 4 5 1 2 1 2 3 4 5 1 2 187 177 260 273 269 10.3 10.6 347 257 301 316 225 14.9 14.1 183 147 210 93 139 16.3 16.2 261 398 320 242 298 20.7 20.8 177 182 221 293 136 24.1 23.1 181 290 317 338 297 26 25.7 378 416 419 388 430 29.4 29.6 311 281 364 349 381 - - 174 148 128 152 142 32.8 - 119 111 175 166 227 33.6 33.7	$3rd August 2004$ Painting thickness(μ m) Painting thickness(μ m) Plate thickness 1 2 3 4 5 1 2 3 1 2 3 4 5 1 2 3 187 177 260 273 269 10.3 10.6 10.4 347 257 301 316 225 14.9 14.1 14 183 147 210 93 139 16.3 16.2 16.1 261 398 320 242 298 20.7 20.8 20.7 177 182 221 293 136 24.1 23.1 23.6 181 290 317 338 297 26 25.7 26.1 3311 281 364 349 381 - - - 174 148 128 152 142 32.8 - 32.2 119 111 175 166 227 33.6 <td>$3rd August 2004$ Painting thickness(μm) Painting thickness(μm) Plate thickness(mm) 1 2 3 4 5 1 2 3 4 1 2 3 4 5 1 2 3 4 1 2 3 4 5 1 2 3 4 1 2 3 4 5 1 2 3 4 1 2 3 4 5 1 2 3 4 187 177 260 273 269 10.3 10.6 10.4 9.7 347 257 301 316 225 14.9 14.1 14 14.3 183 147 210 93 139 16.3 16.2 16.1 15.6 261 398 320 242 298 20.7 20.8 20.7 20.8 177 182 221 293 136 24.1 23.1 23.6 <t< td=""><td>$3rd August 2004$ Painting thickness(μm) Painting thickness(μm) Plate thickness(mm) 1 2 3 4 5 1 2 3 4 5 187 177 260 273 269 10.3 10.6 10.4 9.7 10.7 347 257 301 316 225 14.9 14.1 14 14.3 14 183 147 210 93 139 16.3 16.2 16.1 15.6 15.2 261 398 320 242 298 20.7 20.8 20.7 20.8 20.8 177 182 221 293 136 24.1 23.1 23.6 24 24.3 181 290 317 338 297 26 25.7 26.1 25.7 25.7 25.7 3378 416 419 388 430 29.4 29.6 30.8 30.1 28.8 311 281 364 349 381</td><td>ard August 2004 Image: Station 3rd August 2004 Vibration (mm) Painting thickness(μm) Vibration (mm) 1 2 3 4 5 1 2 3 4 5 187 177 260 273 269 10.3 10.6 10.4 9.7 10.7 0.006 187 177 260 273 269 10.3 10.6 10.4 9.7 10.7 0.006 347 257 301 316 225 14.9 14.1 14 14.3 14 0.01 347 257 301 316 225 14.9 14.1 14 14.3 14 0.01 183 147 210 93 139 16.3 16.2 16.1 15.6 15.2 0.01 261 398 320 242 298 20.7 20.8 20.7 20.8 20.8 20.8 0.01 177 182 221 293 136 2</td></t<></td>	$3rd August 2004$ Painting thickness(μ m) Painting thickness(μ m) Plate thickness(mm) 1 2 3 4 5 1 2 3 4 1 2 3 4 5 1 2 3 4 1 2 3 4 5 1 2 3 4 1 2 3 4 5 1 2 3 4 1 2 3 4 5 1 2 3 4 187 177 260 273 269 10.3 10.6 10.4 9.7 347 257 301 316 225 14.9 14.1 14 14.3 183 147 210 93 139 16.3 16.2 16.1 15.6 261 398 320 242 298 20.7 20.8 20.7 20.8 177 182 221 293 136 24.1 23.1 23.6 <t< td=""><td>$3rd August 2004$ Painting thickness(μm) Painting thickness(μm) Plate thickness(mm) 1 2 3 4 5 1 2 3 4 5 187 177 260 273 269 10.3 10.6 10.4 9.7 10.7 347 257 301 316 225 14.9 14.1 14 14.3 14 183 147 210 93 139 16.3 16.2 16.1 15.6 15.2 261 398 320 242 298 20.7 20.8 20.7 20.8 20.8 177 182 221 293 136 24.1 23.1 23.6 24 24.3 181 290 317 338 297 26 25.7 26.1 25.7 25.7 25.7 3378 416 419 388 430 29.4 29.6 30.8 30.1 28.8 311 281 364 349 381</td><td>ard August 2004 Image: Station 3rd August 2004 Vibration (mm) Painting thickness(μm) Vibration (mm) 1 2 3 4 5 1 2 3 4 5 187 177 260 273 269 10.3 10.6 10.4 9.7 10.7 0.006 187 177 260 273 269 10.3 10.6 10.4 9.7 10.7 0.006 347 257 301 316 225 14.9 14.1 14 14.3 14 0.01 347 257 301 316 225 14.9 14.1 14 14.3 14 0.01 183 147 210 93 139 16.3 16.2 16.1 15.6 15.2 0.01 261 398 320 242 298 20.7 20.8 20.7 20.8 20.8 20.8 0.01 177 182 221 293 136 2</td></t<>	$3rd August 2004$ Painting thickness(μ m) Painting thickness(μ m) Plate thickness(mm) 1 2 3 4 5 1 2 3 4 5 187 177 260 273 269 10.3 10.6 10.4 9.7 10.7 347 257 301 316 225 14.9 14.1 14 14.3 14 183 147 210 93 139 16.3 16.2 16.1 15.6 15.2 261 398 320 242 298 20.7 20.8 20.7 20.8 20.8 177 182 221 293 136 24.1 23.1 23.6 24 24.3 181 290 317 338 297 26 25.7 26.1 25.7 25.7 25.7 3378 416 419 388 430 29.4 29.6 30.8 30.1 28.8 311 281 364 349 381	ard August 2004 Image: Station 3rd August 2004 Vibration (mm) Painting thickness(μ m) Vibration (mm) 1 2 3 4 5 1 2 3 4 5 187 177 260 273 269 10.3 10.6 10.4 9.7 10.7 0.006 187 177 260 273 269 10.3 10.6 10.4 9.7 10.7 0.006 347 257 301 316 225 14.9 14.1 14 14.3 14 0.01 347 257 301 316 225 14.9 14.1 14 14.3 14 0.01 183 147 210 93 139 16.3 16.2 16.1 15.6 15.2 0.01 261 398 320 242 298 20.7 20.8 20.7 20.8 20.8 20.8 0.01 177 182 221 293 136 2

Table 6.5 (3) Measur	ement I	Result										
Power Station: Canyon	Station				10th Au	igust 20	04					
Penstock: No.1												
Measurement Point		Painting	thickne	ss(µm)			Plate th	nickness	s(mm)		Vibration(mm)	Remarks
	1	2	3	4	5	1	2	3	4	5		
No.1 AB-No.2 AB	124	137	121	149	126	13.2	13.2	13.2	13.2	13.2	0.15	♦ Leakage from Expansion Joint
	121	157	121	117	120	15.2	13.2	13.2	13.2	13.2	0.15	
No.2 AB-No.3 AB	146	173	154	143	146	14.2	14.2	14.2	14.3	14.3	0.03	
No.3 AB-No.4 AB	120	70	103	122	77	14.1	14.2	14.1	14.4	14.2	0.04	
No.4 AB-No.5 AB	149	116	112	160	123	16.4	16.9	16.6	16.5	16.5	0.012	
No.5 AB-No.6 AB	105	126	111	122	113	16.2	16.3	16.2	16.2	16.3	0.111	
						10.0	10.0					
No.6 AB-No.7 AB	113	114	112	163	128	18.3	18.3	18.3	18.4	18.3	0.014	
No.7 AB-No.8 AB	133	115	136	179	165	18.4	18.3	18.5	18.6	18.5	0.018	
NO. / AB-NO.8 AB	155	115	130	1/9	103	18.4	18.3	18.3	18.0	18.3	0.018	
No.8 AB-No.9 AB	156	73	152	170	188	20.5	20.4	20.5	20.4	20.5	0.022	
				- , •								
No.9 AB-No.10 AB	183	221	196	148	203	22.7	22.7	22.9	22.6	22.8	0.024	◆ Leakage from Expansion Joint
Steel Lining	151	153	152	127	141	11.3	11.4	11.6	11.4	11.3	0.02	
(intake valve)	131	155	132	12/	141	11.3	11.4	11.0	11.4	11.3	0.02	
(make valve)												

ement R	lesult										
xapana S	station			4th Aug	gust 200	4					
F	Painting thickness(µn					Plate th	nickness	(mm)		Vibration(mm)	Remarks
1	2	3	4	5	1	2	3	4	5		
253	112	79	101	73	7.6	7.7	7.6	7.7	7.7	0	 Painting film is in good condition
164	90	126	119	113	8.9	8.6	8.5	8.8	7.8	0	♦ Outside is dirty
146	145	149	163	122	9.7	9.1	9.3	9.3	9.1	0.01	
111	82	99	91	98	10.5	10.3	10.2	10.2	10.5	0	
55	56	44	84	83	10	9.9	9.9	10.3	9.9	0	 Measured the thin painting film portion
104	96	139	119	127	11.5	11.5	10.6	11.6	11.5	0	
90	115	80	88	122	13.2	13.3	13.2	13.3	13.3	0	
											 Measurement was omitted because
											the area was not in good condition
96	123	113	92	120	16.7	16.3	16.3	16.4	16.3	0	
											 Measurement was omitted because
150	160	176	102	109	1 0 2	20.2	70 1	20 5	20 5		the area was not in good condition
139	108	1/0	182	108	28.3	29.2	28.4	28.3	28.5	0	
67	131	66	61	78	29	28.8	29	28.9	28.9	0.01	
	xapana S F 1 253 253 164 146 111 555 104 90 90 90 96 96 159	1 2 253 112 164 90 146 145 111 82 55 56 104 96 90 115 96 123 96 123 159 168	Name Station Painting thickness 1 2 3 253 112 79 253 112 79 164 90 126 146 145 149 146 145 149 111 82 99 55 56 44 104 96 139 90 115 80 90 115 80 90 115 80 96 123 113 96 123 113 96 123 113 96 123 113 91 168 176	xapana Station Image: matrix stress str	Tail of the constraint	kapana Station4th August 200Painting thickness(μ m)12345112345125311279101737.6164901261191138.9164901261191138.9164901261191138.9164901261191138.9164901261191039.7164901261191039.716556448483105556448483101049613911912711.590115808812213.2961231139212016.7961231139210828.315916817618210828.3	Nation 4th August 2004 Nation Nation Painting thickness(μ m) Plate the 1 2 3 4 5 1 2 2 3 4 5 1 2 2 3 4 5 1 2 2 3 4 5 1 2 2 3 4 5 1 2 253 112 79 101 73 7.6 7.7 253 112 79 101 73 7.6 7.7 164 90 126 119 113 8.9 8.6 114 82 99 91 98 10.5 10.3 111 82 99 91 98 10.5 10.3 111 82 99 91 98 10.5 10.3 155 56 44 84 83 10 9.9 104 96 139 <	the set of	xapana Station 4th August 2004 Image: constraint of the sector of	Name of the set of the	xapana Station4th August 2004IIIIIIIIIIVibration (mm)Vibration (mm)Vibration (mm)12345123451234512345III<

Table 6.5 (5) Measurement Result

Power Station: Polipitya Station

12th August 2004

Penstock: No.1

Measurement Point	P	ainting	thickn	ess(µm)		Plate th	nicknes	s(mm)		Vibration (mm)	Remarks
	1	2	3	4	5	1	2	3	4	5		
No.1 AB-No.2 AB	161	199	285	263	195	18.4	18.1	18.2	18.2	17.8	0.044	
No.2 AB-No.3 AB												
No.3 AB-No.4 AB	142	151	134	185	161	17.4	-	-	17.9	-	0.014	
No.4 AB-No.5 AB												
No.5 AB-No.6 AB												
No.6 AB-No.7 AB												
No.7 AB-No.8 AB	126	162	89	131	124	18.1	-	-	18.4	18.1		• Welded and bottom portion were corroded
						26.7	26.3	26	-	25.2		
						26.5	27.1	27.4	26.6	-		
						26.5	26.5	26.1	26.4	26.4		

7. ELECTRO-MECHANICAL EQUIPMENT

7. ELECTRO-MECHANICAL EQUIPMENT

7.1 General

The CEB has been creating and carrying out its Rehabilitation Plan from the 1990s as a large-scale repair plan for the electro-mechanical equipment of the hydropower stations in the Kelani River Basin (Laxapana Complex).

This Rehabilitation Plan is divided into three steps, and the main object items are as follows.

Step	Status	Period	Main equipment for rehabilitation
Stage I	Finished	1994-95	Old Laxapana hydropower station Stage I(Unit 1-3)
			• Governor
			Excitation equipment
			11kV main circuit
			Control equipment
			Protection equipment
Stage II	Finished	2002-03	Old Laxapana hydropower station Stage II (Unit 4, 5)
			• Governor
			Excitation equipment
			11kV main circuit
			• Controller
			• Protection
			Polpitiya hydropower station (Unit 1, 2)
			• Governor
			Excitation equipment
			12.5kV main circuit
			Control equipment
			Protection equipment
			 132kV switchgear in switchyard
Stage III	Not carried	Undecided	Wimalasurendra hydropower station (Unit 1, 2)
	out yet.		• Governor
			Excitation equipment
			11kV main circuit
			Control equipment
			Protection equipment
			Repair of stator coil
			New Laxapana hydropower station (Unit 1, 2)
			• Governor
			Excitation equipment
			• 12.5kV main circuit
			Control equipment
			Protection equipment
			• 132kV switchgear in switchyard

 Table 7.1
 CEB's Rehabilitation Plan

Rehabilitation Plan Stage I and II have been completed. However, there are no prospects yet for Rehabilitation Plan Stage III (hereinafter referred to as Stage III) because the CEB cannot obtain any cooperation for Stage III from donors.

The content of Stage III should be scrutinized, because a long time has passed since Stage III was prepared and some bases for rehabilitation items in Stage III were lost due to staff re-assignment, etc.

In this study, a realistic rehabilitation plan for the electro-mechanical equipment of the Laxapana Complex was established after confirming the validity of Stage III, first of all, and adding repair items required for three hydropower stations (Old Laxapana, Canyon, Polpitiya), which were excluded from the scope of Stage III.

The present overall status of the hydropower stations in the Kelani River Basin checked in the study is summarized as follows.

- No significant problems that limited the operations of each power station have been observed. However, some faults that may cause a big accident in the future were observed.
- Daily inspection and cleaning are carried out very carefully by the CEB, and of the equipment looks new considering its operation years. However, no planned overhaul has been carried out for the power stations since their commissioning date. No disassembly inspection has been performed other than that made in cases of trouble. For the reason mentioned above, the lifetime of the equipment is conjectured to be short compared with the same equipment in Japan for which overhauls are carried out periodically. In fact, the tendency to be superannuated beyond the elapsed years has been confirmed by the results of an efficiency test and collected records.
- The replacement criteria of the CEB for spare parts are based on manufacturers manuals. However, not enough spare parts are stocked. The shortage is caused by the slow correspondence of manufacturers and by the inadequate budget at the CEB. For these reasons, some equipment remains in operation despite some faults, such as leakage of water.

The main features of each power station are shown in Table 7.2.

Hydropower Station		Wimalasurendra	Old Laxapana (Stage I)	Old Laxapana (Stage II)	Canyon	New Laxapana	Polpitiya
a. Number of Units	(Unit)	2	3 (Unit No. 1-3)	2 (Unit No. 4, 5)	2	2	2
b. Commissioning Year		1965	1950	1958	Unit 1: 1983 Unit 2: 1989	1974	1969
c. Turbine							
Туре		Vertical Francis	Horizontal Pelton	Horizontal Pelton	Vertical Francis	Vertical Pelton	Vertical Francis
Normal Effective Head	(m)	219	449	449	195.8	519.4	264.0
Rated Output	(kW)	29,900	8,330	12,870	32,080kW at 195.8m	51,500	39,100
Rated Discharge	(m ³ /s)	14	2.1	3.25	18	11.5	17
Rotating Speed	(rpm)	500	600	500	500	428.5	500
Elevation of W.T. center	(m)	865		389	956.5	384	107
Manufacturer		Neyrpic	English Electric Co.	Socite des forges et atleir Du cresent (Usines Schneider)	Fuji	Neyrpic	Dominion Engineering works Ltd. (Canada)
d. Generator							
Туре		Conventional	Horizontal shaft	Horizontal shaft	Conventional	Semi Umbrella	Conventional
Rated Output	(kVA)	31,250	9,800	14,700	37,500	72,000	46,900
Power Factor	(%)	80%	85%	85%	85.0%	80%	80%
Rated Voltage	(kV)	11	11	11	12.5	12.5	12.5
Manufacturer		Le Material Electrique	The British Thomson Houston Co.	Le Material Electrique	Fuji	Alsthom	Canadian General Electric Company
e. Transformer							
Rated Capacity	(kVA)	10,700	_ 13,330	_ 5,333	38,000	24,000	17,900
Rated Voltage	(kV)	132/ √3 /11	132/ √3 /11	132/ √3 /11	132/12.5	145/ $\sqrt{3}$ -132/ $\sqrt{3}$ /12.5	$139/\sqrt{3} - 125/\sqrt{3}/12.0$
Rated Ampere	(A)	140.4 / 1685	174.9/1212	70/485	125/1316	286.3-315 /1920	223.7-247.3 / 1492
Phase	(phase)	single	single	single	3	single	single
Type of Cooling		OFW	ONAN/ONAF	FOW	ONAF	ONAF	OFW
Manufacturer		Le Material Electrique	Alsthom (Common transformer for 1, 2, 3)	Le Material Electrique	Fuji	Alsthom Savoisiene	Canadian General Electric Company

 Table 7.2
 Facility Data of the Hydropower Stations in the Kelani River Basin

7.2 Present Status of and Rehabilitation Plan for Wimalasurendra Hydropower Station

7.2.1 Mechanical Equipment

- (1) Turbine
 - 1) Deterioration diagnosis results
 - a) Maintenance and outage records

There are no major faults in turbines. The units have been operated for 40 years without a complete overhaul involving a total disassembly and reassembly.

b) Spare parts

A new spare runner is stored in the powerhouse. It has not been used since the commissioning date.

c) Simplified efficiency test

The operation without cavitation erosion after commissioning indicates good performance of the turbines. The simplified efficiency test was not implemented due to be the sufficient conditions of the turbines and the difficult accessibility of proper penstock locations where ultrasonic sensors are installed. Accessible places of the penstock are far from the powerhouse.

d) Visual inspection and interviews of maintenance personnel

No overhaul with disassembly for whole turbine components has been implemented since the commissioning date. An annual inspection over four weeks is performed every year in lieu of an overhaul.

2) Countermeasures

The replacement of the turbines is not necessary. It is recommended that overhauls are undertaken periodically. Consumables and damaged parts such as packing, wicket gate stem bushings and wearing rings should be replaced as soon as possible.

- (2) Inlet Valve
 - 1) Deterioration diagnosis results
 - a) Maintenance and outage records

Leakage of water from the valve seat and seal ring of the inlet valve was observed at this and the other power stations due to delays in their replacement. The normal replacement interval is 10 to 15 years depending on the silt concentration in the water.

b) Spare parts

The procurement of the necessary spare parts has been delayed.

c) Visual inspection and interviews of maintenance personnel

There is no major problem other than the leakage of water.

2) Countermeasures

The procurement and replacement of the spare valve seats and the seal rings is recommended. They should be prepared and replaced by the CEB.

- (3) Governor
 - 1) Deterioration diagnosis results
 - a) Maintenance and outage records

The governor is satisfactory for the operation.

b) Spare parts

It will be almost impossible to expect the same products, due to their discontinued production. There is no stock of spare parts such as control motors, switches, solenoid valves, etc.

c) Visual inspection and interviews of maintenance personnel

The CEB expects to replace the mechanical governor, including the wicket gate operation system if necessary.

The mechanical governing system is obsolete. Most of original automatic functions have been lost and the hydraulic turbines are operated manually.

2) Countermeasures

As mentioned above, the governor is the old-fashioned mechanical type and its production has been discontinued. If the governors experience a fault, a long turbine shutdown will result because it is very difficult to procure spare parts. And it is difficult to coordinate the present governor with numerical control equipment. Therefore it is recommended that the whole mechanical governor system is replaced with the latest numerical one.

- (4) Other Auxiliary Equipment
 - 1) Deterioration diagnosis results
 - a) Maintenance and outage records

Records are not well arranged. The water drainage system, compressed air system and grease lubrication system are deteriorating. The life of that auxiliary equipment is generally 25 to 40 years, and replacement is recommended at 30-year intervals. The power station has been operated for 40 years since its commissioning date.

b) Spare parts

It will be almost impossible to expect the same products due to their discontinued production.

c) Visual inspection and interview of maintenance personnel

The auxiliary equipment, such as drainage pumps, auxiliary pumps, air compressors, and brake systems, has been operated for 40 years. The CEB expects to replace them.

2) Countermeasures

Since the equipment has not been overhauled since the commissioning date, the leakage of water and air is increased by deterioration of the equipment. The auxiliary equipment is old-fashioned and spare parts are no longer available. The equipment is old enough to be replaced.

7.2.2 Electrical Equipment

- (1) Generator
 - 1) Deterioration diagnosis results

Detailed disassembly inspection records were not found.

The measured insulation resistance is shown below.

		• •			
Measurement time		1 min. (M Ohm)	10 min. (M Ohm)	P.I.	Remarks
#1 Stator	Red phase-Earth	500	1,000	2.0	Date of measurement:
	Yellow phase-Earth	600	1,200	2.0	Unit 1 23 rd Mar. 23, 2003
	Blue-Earth	600	1,000	1.7	Unit 2 27 th Dec. 27, 2000
#2 Stator	Red phase-Earth	425	1,200	2.8	Measurement voltage: 5,000VDC
	Yellow phase-Earth	450	1,300	2.9	
	Blue-Earth	450	1,200	2.7	

Table 7.3Insulation Resistance of Generator Stators at the Wimalasurendra
Hydropower Station

Picture 7.1 Present Status of the Unit 1 Stator

The insulation resistance values of the stator coil satisfy the requirement of over 100M Ohm as specified by Japanese criteria. The polarization index values are over the 1.5 stated in the Japanese criteria, for all generators. Based on these findings, the status of the stator coils is judged to be "good."

A fault took place in 2002 on the Unit 1 stator coil, which was moved downward by 6mm at maximum. Only an emergency measure has been made to prevent further downward movement in the two years since the fault was found. The present status of the stator is shown in Picture 7.1.

It was found, in an investigation after the fault happened, that the downward movement was due to superannuated wedges, which caused a loose fit of the stator coil. There is concern that Unit No. 2 is deteriorating as well, because the wedge loosening was also found in that unit, although no similar failure has been experienced there.

The major spare parts are stocked at Wimalasurendra P/S.

2) Countermeasures

It is common for the stator coil and iron core of a 40-year old generator to be replaced immediately upon downward movement of the stator coil. However, the unit has been operated with the problem unsolved because it could not be shut down for a long time due to the tightness of power demand and the limited budget.

An 18-month shutdown would normally be necessary for the replacement of the coil and the iron core, as shown in Table 8.3. Considering the machine age of 40 years, the most economical option should be selected through a comparison study of the option of a total generator replacement (14-month shutdown—refer to Table 8.4).

In either case, the generator should be disassembled to confirm its actual dimensions because there are no useful drawings. However, in this disassembly inspection, there is concern that the generator shutdown period may become longer than the estimated period due to unforeseeable troubles or unskilled installation work. Therefore, the timing of disassembly inspection work should be determined by taking into account the reserve capacity for Sri Lankan power system and the hydrological situation.

It is not necessary for the specification of the generators to be changed, because the existing turbines are not to be replaced.

- (2) Excitation Equipment
 - 1) Deterioration diagnosis results

This excitation equipment is a DC exciter system. This type requires much maintenance work, such as frequent brush cleaning, and has low functional reliability compared with brush-less exciter systems, which are now more common.

An investigation showed the automatic voltage regulator in the excitation control unit to be out of order. Under these circumstances, operators at the Wimalasurendra hydropower station are controlling voltage manually since no spare parts are available for the automatic voltage regulator.

2) Countermeasures

The automatic voltage regulator in the excitation control unit is already a discontinued item, and is very difficult to procure. Moreover, deterioration is progressing in other control portions in the excitation equipment. Although it is possible to control the voltage manually for a while, an automatic voltage regulator should be employed for greater system voltage stability.

In the described situation, the deteriorated exciter controller should be replaced with the numerical type equipped with automatic voltage regulator, which is now more common, in order to improve the reliability of the power station and the stability of the system voltage.

Although the DC exciter itself is old-fashioned, few troubles have been shown in the record in recent years. Therefore, the replacement of the exciters should be carried out together with the generators.

- (3) Generator Transformer
 - 1) Deterioration diagnostic result

The insulation resistance values of the generator transformer and a generator stator have been measured in every annual inspection, which have been called "overhauls" by the CEB. However, the measuring methods differ from one inspection to another. Therefore, the

measurement values have not been utilized in an effective manner. It is urgently required to standardize the measurement methods common to all the power stations.

The insulation resistance values of the Unit 1 and 2 transformers are the Wimalasurendra hydropower station are shown in Table 7.4 and 7.5.

Da	ate	May 9, '02		Mar. 26, '04		Remarks				
Measu	rement	1 min.	10 min.	1min.	3 min.					
Ti	me	(M Ohm)	(M Ohm)	(M Ohm)	(M Ohm)					
Red	HT-E	750	1,000	140	160	HT - High-voltage side terminal				
Phase	LT-E	340	375	350	400	LT - Low-voltage side terminal				
	HT-LT	675	900	320	360	E - Earth				
Yellow	HT-E	300	330	120	125					
Phase	LT-E	625	875	350	375					
	HT-LT	575	800	325	350					
Blue	HT-E	900	1,400	600	700					
phase	LT-E	350	390	210	230					
	HT-LT	1,000	1,400	700	800					

Table 7.4Insulation Resister of No. 1 Transformers at the Wimalasurendra
Hydropower Station

Table 7.5	Insulation Resister of No. 2 Transformers at the Wimalasurendra
	Hydropower Station

Da	Date 29 th Dec. 00		ec. 00	16 th Aug.03		Remarks
	rement	1 min.	3 min.	3 min.	10 min.	
Ti	me	(M Ohm)	(M Ohm)	(M Ohm)	(M Ohm)	
Red	HT-E	240	280	155	160	Legend:
phase	LT-E	600	650	350	375	HT - High-voltage side terminal
	HT-LT	550	710	300	325	LT - Low-voltage side terminal
Yellow	HT-E	290	300	-	-	E - Earth
phase	LT-E	700	780	-	-	
	HT-LT	650	800	-	-	
Blue	HT-E	260	295	160	170	
phase	LT-E	650	800	370	400	
	HT-LT	650	825	305	350	

Major spare parts are stocked at Wimalasurendra P/S.

2) Countermeasures

The following items are considered in view of the results shown in Table 7.4 and 7.5.

- Insulation resistance values are decreasing greatly in most transformers judging from the comparisons of the resistance between 1-minute values in 2002 and 2004 for Unit 1, and between 3-minute values in 2002 and 2004 for Unit 2.
- A few of the 1-minute values are close to 100M Ohm, which is the lower limit for a judgment as a "defect" in the criteria in Japan. Therefore, the deterioration of the transformers is accelerated considerably.

It is an urgent matter that all of the transformers be replaced.

- (4) Other Electric Equipment
 - 1) Deterioration diagnostic results and countermeasures

The 11kV circuit breaker has caused an annual average of 3.5 operation accidents. Deterioration has been also reported on the other equipment of the 11kV main circuit.

The 11kV main circuit, which includes the circuit breaker and cables, is important equipment that directly affects the reliability of the power station in spite of the small cost allocation in the power station. The circuit equipment should be completely replaced in view of the accelerated deterioration that has occurred in the equipment and the shortage of the spare parts.

The 132kV switchgears have been in operation now for 25 to 33 years. Since the lifetime of switchgear is normally 25 years, all the switchgears have exceeded their designed lifetime. Accordingly, it has been judged that all 132kV switchgears have reached the time for their replacement.

7.2.3 Control Equipment

- (1) Control and Protection Equipment
 - 1) Deterioration diagnosis results

One-man control of start-up, stop and paralleling of the turbine-generator has not been available in recent years. Therefore, the governor and the excitation equipment have been operated manually by operators. The well-trained operators have carried out their missions efficiently to minimize the sequence operation time. The main switchboard room is arranged well so that all the equipment — not only the control equipment of the turbine, the generator, and the transmission line and protection equipment but also other equipment such as the control desk, auxiliary power panel, and battery charging system — could be located compactly. (Refer to Appendix C-3 List of Control Room Layout.)

It will be next to impossible to expect replacement with the same control and protection equipment, due to the discontinuation of its production. Procurement of the spare parts is very difficult. The CEB expects to replace all of the control and protection systems with new systems to avoid trouble such as relay failures or malfunctions due to the deterioration of the parts now in use. In addition, the standard lifetime of the electrolytic condensers on the relays is 12 years, by J-POWER standards. This power station could be judged to have already reached the replacement time for the entire control and protection system. (Refer to Appendix C-3 Summary for Investigation.)

2) Countermeasures

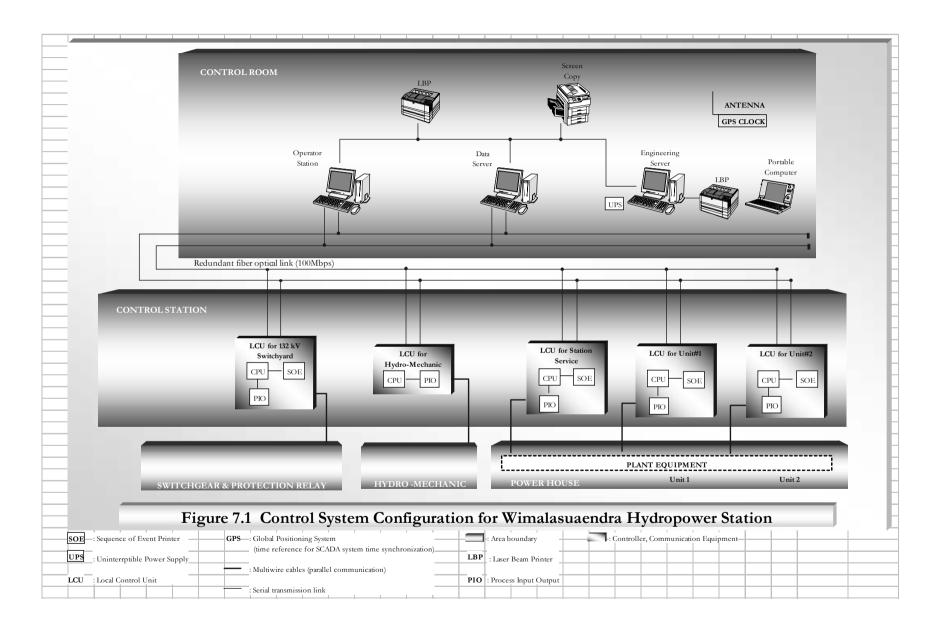
The best option for the control and protection system of this power station is to improve operational reliability, introducing the latest technology into all of the equipment of the power station control and protection system, not by making partial repairs of 40-year-old parts. In fact, the CEB replaced the control and protection systems with new numerical systems prior to 2003 at two power stations, Old Laxapana and Polpitiya, which are included in this study.

Considering the efficient operation of the whole water basin system, the entire control and protection systems of this power station should also be replaced with new ones having performance equal to or greater than those of the two power stations mentioned above.

The scope of the replacement should be as shown below.

a) Control equipment:

Supervisory and control board for turbine, generator, generator transformer, switchyard, transmission line, auxiliary circuit Governor control board Excitation control board Control desk


b) Protection equipment:

Protection for turbine, generator, generator transformer, switchyard, transmission line

c) Spare parts:

Spare parts for the above control equipment and protection device

The configuration of the control and protection system for Wimalasurendra hydropower station is shown in Figure 7.1.

- (2) Control Power Source Equipment
 - 1) Deterioration diagnosis results

This equipment has been well maintained (maintenance and inspection have been implemented every two weeks) and has operated in good condition despite the fact that this equipment has been in operation for more than 40 years. However, the spare parts of each device are in short supply, so that recovery work following failures and breakdowns of the equipment is becoming more difficult. The CEB expects to replace this equipment.

2) Countermeasures

The 220V battery and battery charger of the control power source, which includes the control and power cables, should be replaced at the same time of the replacement of the power station control and protection system. An uninterruptible power supply system should be installed at the same time also to improve the reliability of the control and protection system.

- (3) Communication Equipment
 - 1) Deterioration diagnosis results

The microwave signal system is not used for signal transmission for transmission line protection, but a power line carrier system is used for signal transmission. However, the capacity of the power line carrier system is inadequate for data transmission.

There is no remote display of the dam water level, which is reported by telephone.

2) Countermeasures

The CEB expects to operate the Wimalasurendra hydropower station from the Old Laxapana hydropower station by the Supervisory Control and Data Accusation (SCADA) system. Therefore, the communication line OPGW should be installed between both hydropower stations of Old Laxapana and Wimalasurendra.

It will be necessary to study in a detailed design stage an interface with the communication equipment as well as the items for the remote control of the control and protection equipment of the power stations.

- (4) Dam Distribution Equipment
 - 1) Deterioration diagnostic results

The electric power used at Castlereagh Dam is supplied from WPS- Dickoya feeder. Though the line is currently operated without any problems, it is deteriorating.

2) Countermeasures

Although it is not necessary to replace existing equipment at present, a study of future replacement should be started by the CEB.

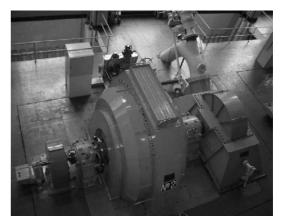
7.3 Present Status of and Rehabilitation Plan for Old Laxapana hydropower station

7.3.1 Mechanical Equipment

- (1) Turbine
 - 1) Deterioration diagnosis results
 - a) Maintenance and suspension records

Old Laxapana P/S Stage I (Units 1 to 3): Picture 7.2 shows an overview of the turbine and generator of the Stage I (Units 1 to 3) at the Old Laxapana hydropower station. The Stage I (Units 1 to 3) turbines are equipped with a very obsolete mechanism for energy dissipation. Instead of a deflector, which is currently the most popular mechanism, a diffuser with a couple of vanes has been installed in the needle rod as shown in Picture 7.3. The diffuser will dissipate energy when the machine is quickly stopped.

Brake disks were installed in place of braking jet nozzles in the previous renovation.


The material of the runner is 18% Cr- 8% Ni stainless steel. The runner is composed of 22 buckets.

On twelve occasions, repairs have been performed on six runners of Stage I, i.e. three operating and three spare runners, over 12 years, according to the record. Repair work on the runners is carried out approximately once a year. However, individual detailed records on six runners are not available.

Consequently, it is roughly estimated that repair works have been performed nine times in 54 years, assuming each runner has been repaired every six years and the six runners have been repaired equally.

Repeating weld repairs increase the residual stress and worsen the cracks and ruptures that are observed on the runner bucket in Stage I (Units 1 to 3). Pictures 7.4 to 7.6 indicate runner cracks and repairs.

Fortunately, skilled technicians repair the runner bucket cracks by welding at the powerhouse maintenance shop. They intently support the maintenance of the equipment in these circumstances, without new spare parts.

Picture 7.2 Turbine and Generator of Old Laxapana Stage I (Unit 2)

Picture 7.3 Diffuser and Needle of Old Laxapana Stage I

Picture 7.4 Repairing of Runner Crack of Old Laxapana Stage I

Old Laxapana hydropower station Stage II (Units 4 and 5):

The Stage II turbines (Units 4 and 5) are equipped with an ordinary deflector, that is currently the most common such mechanism.

Cavitation erosion on the runner bucket has been repaired by welding at the powerhouse maintenance shop. However, cavitation erosion is less serious than that in Stage I (Units 1 to 3). The material of the runner is 13 % Cr–4% Ni stainless steel. The runner is composed of 18buckets. Runner cracks are not revealed by visual inspection.

b) Spare parts

Old Laxapana hydropower station Stage I (Units 1 to 3):

The original manufacturer (English Electric Co.) went out of business many years ago. New spare parts are no longer available. Three used spare runners have been repaired and are stored in the powerhouse. Other components are also repaired at the maintenance shop.

Old Laxapana P/S Stage II (Units 4 and 5): New spare parts were not seen. Two used spare runners have been repaired and are

Picture 7.5 Repaired Runner Bucket of Old Laxapana Stage I

Picture 7.6 Indication of Runner Crack at Old Laxapana Stage I

stored in the powerhouse. Other components are also repaired at the maintenance shop.

c) Simplified efficiency test

Old Laxapana hydropower station Stage I (Units 1 to 3):

The simplified efficiency test, which was implemented at Unit 1 using a portable ultrasonic flow meter, revealed remarkably low efficiency even considering the 54 years operation, as shown in Figure 2 in Appendix C-1. The test result suggests the deterioration of needle tips and nozzles as well as the malfunctioning of the correlation between needle and diffuser openings, which is likely caused by the previous governor replacement or maintenance in 1995.

It also suggests that the maintenance of the existing machines is very difficult due to the absence of the original design documents and installation test records.

Additionally, the present operation procedure to control two needles simultaneously provides lower turbine efficiency under a partial load, in comparison with the procedure to control them separately.

Old Laxapana hydropower station Stage II (Units 4 and 5):

The simplified efficiency test, which was implemented at Unit 4 using an ultrasonic flow meter, indicates slightly lower efficiency even in consideration of the power station's 46 years operation, as shown in Figure 3 in Appendix C-1. The deterioration of needle tips and nozzles is suggested by the result. However, the efficiency level is better than that of Stage I (Units 1 to 3), which suggests allowing the turbine operation to continue for now.

Additionally, the present operation procedure to control two needles simultaneously provides lower turbine efficiency under a partial load, in comparison with the procedure to control them separately.

d) Visual inspection and hearing from maintenance personnel

Old Laxapana hydropower station Stage I (Units 1 to 3):

As mentioned above, the design and structure of the Pelton turbines are obsolete. Remarkably low efficiency is observed in the simplified efficiency test at this site. The Pelton turbines and accessories have been operated without an overhaul, but with partial disassembly, for 54 years.

The CEB requested a partial or total replacement of the equipment.

Old Laxapana hydropower station Stage II (Units 4 and 5): The turbine is available for operation for the time being.

2) Countermeasures

Old Laxapana hydropower station Stage I (Units 1 to 3): It is recommended that a complete replacement is made of the hydraulic turbines, inlet valves, governors and associated accessories if the results of economical analysis are feasible.

Appendix C-2 describes a few studies for estimating the unit specification after rehabilitation. In consideration of the high plant factor of the power plant as well as the requirements of the CEB, it was decided to pursue the possibility of increasing the total turbine output in regard to the unit expansion with three 9MW units.

Appendix C-2 shows the study on the waterway (headrace tunnel, penstock and surge chamber), loss head, effective head and unit efficiency. However, most of the design data and drawings at the installation stage with respect to the waterway condition and loss head as well as effective head are missing. Therefore, the present loss head and effective head are estimated on the basis of the measured head loss obtained in the simplified efficiency test.

The turbine efficiency of the existing unit has deteriorated remarkably, as clarified in the simplified efficiency test (Appendix C-1). Therefore, the present turbine discharge is required to be more than that of the design stage to obtain the maximum output of the power station.

It was reported that a bursting sound was heard when the units were shut down. This suggests air was sucked into the penstock in the existing units when the water level of surge chamber, i.e., the upper reservoir, was lower. It is speculated that compressed air in the penstock flowed upward, resulting in the bursting sound at the surge chamber, due to the limited waterway capacity and the improper elevation of penstock inlet.

In consideration of the air suction mentioned above, it has been concluded that greater discharge than the present amount should not be recommend.

Consequently, studies on the proper unit capacity and quantities were implemented based on the collected brochures and data at the installation stage.

Unit output of 9MW was selected rather than the 8MW of the existing unit. Table 13 and 14 in Appendix C-2 show the specifications of the turbine and generator, respectively. A turbine efficiency comparison of the 9MW plan and the existing unit is shown in Figure 4 of Appendix C-2.

When the rehabilitated three units of the 9MW and existing two units (Units 4 and 5) are operated in parallel, the maximum discharge is estimated to be $14.32 \text{ m}^3/\text{s}$, as shown in Table 9 of Appendix C-2. Table 9 of Appendix C-2 indicates that this discharge is less than the estimated discharge of $14.64 \text{ m}^3/\text{s}$ when existing 5 units are operated at maximum load in parallel. Consequently, the unit specification with three 9MW units (total output of 27 MW) is favorable under the conditions of the allowable maximum discharge.

According to the surge chamber water level calculation, air suction into the penstock also may occur under the condition of a lower water level of the upper reservoir in the case of the 3 units of the 9MW plan. Then it is recommended to define the operation range of the upper reservoir. The calculation result and recommendation are described in Chapter 5.7.

Following the above studies, the number of units (two units or three units) has been compared. The advantages and disadvantages of each plan are compared in Table 11 of Appendix C-2.

With respect to the plan for two units of 13.5 MW, the total axial length of the turbine and generator is longer than the existing unit span (9.8 m), resulting in a conflict with the existing Unit 4.

In addition, it is necessary to implement penstock modification (from three branches to two branches) and foundation excavation.

In view of the three units of 9MW plan, the existing foundation and penstock can be applied with minor modification, resulting in the cheaper rehabilitation cost. Consequently, it is recommended to apply three units of the 9MW plan to the rehabilitation of Stage I.

However, due to the lack of existing drawings and data, it is necessary to check the dimensions and make new drawings of the existing layouts and foundations. Then it is strongly recommended to disassemble one unit and precisely confirm the dimensions and layouts prior to the detailed design.

Old Laxapana hydropower station Stage II (Units 4 and 5): It is recommended that present equipment continues to be used. Spare parts should be procured in a timely manner.

(2) Inlet Valves

- 1) Deterioration diagnosis results
 - a) Maintenance and outage records

Old Laxapana hydropower station Stage I (Units 1 to 3): An obsolete center balance type inlet valve (CB valve) is installed in place of the usual spherical valve. It often failed to close due to control system malfunctions.

It is reported in the maintenance records that the rotating speed soared to 694 m⁻¹ when the machine was stopped because the inlet valve (MIV) failed to close.

The configuration of the CB valve is more complicated than that of the usual spherical valve, resulting in more malfunctioning due to the long operation period. However, an individual maintenance record has not been kept as repeated repairs have been implemented.

Old Laxapana hydropower station Stage II (Units 4 and 5):

Spherical valves are installed. Inlet valves (MIV) have no major problems except leakage-water from the valve seat and seal ring as at other power stations.

b) Spare parts

Old Laxapana hydropower station Stage I (Units 1 to 3): New spare parts are not available because the procurement is very difficult.

Old Laxapana hydropower station Stage II (Units 4 and 5): New spare parts are not available.

c) Visual inspection and hearing from maintenance personnel

Old Laxapana hydropower station Stage I (Units 1 to 3): CEB requested the replacement of inlet valves.

Old Laxapana hydropower station Stage II (Units 4 and 5): Procurement of spare parts is necessary.

2) Countermeasure

Old Laxapana hydropower station Stage I (Units 1 to 3): Replacement of the inlet valves is recommended from the present center balance type to the spherical one.

Old Laxapana hydropower station Stage II (Units 4 and 5): Replacement of the inlet valves is not necessary because the spherical type is currently used, while it is recommended that the valve seats and seal rings are replaced periodically. Necessary parts will be prepared and replacement carried out by the CEB.

- (3) Governors
 - 1) Deterioration diagnosis results
 - a) Maintenance and suspension records

Old Laxapana hydropower station Stage I (Units 1 to 3):

Governors, oil pressure systems, compressed air systems, inlet valve control and associated control valves were replaced in 1995. However, existing servomotors for diffusers, needles and inlet valves have been used without renewal. Oil and air pressures have been maintaining the original 24 bars.

Oil levels are reported to be decreasing in the accumulators.

b) Spare parts

Old Laxapana hydropower station Stage I (Units 1 to 3): The CEB renewed spare parts in 1995. But there are no control motors in stock.

Old Laxapana hydropower station Stage II (Units 4 and 5): The CEB renewed spare parts in 2003. But there are no solenoid valves in stock.

c) Visual inspection and interviews of maintenance personnel

Old Laxapana hydropower station Stage I (Units 1 to 3):

Both pressured water from the penstock and pressured oil are used to control the needle and diffuser servomotors. It seems that insufficient adjustment or misalignment due to the complicated operating mechanism might result in unsatisfactory turbine operation characteristics.

Old Laxapana hydropower station Stage II (Units 4 and 5): There is no major problem.

2) Countermeasures

Old Laxapana hydropower station Stage I (Units 1 to 3): In order to increase the reliability of the turbine control, it is recommended that the governors, including oil pressure systems and compressed air systems, should be replaced. The governor should be able to control the correlation of the openings between the deflector and the needle optimally.

Old Laxapana hydropower station Stage II (Units 4 and 5): Governor replacement is not necessary. It is recommended that the governor continues in operation with replenishing by spare parts.

- (4) Other Auxiliary Equipment
 - 1) Deterioration diagnosis results
 - a) Maintenance and suspension records

Old Laxapana hydropower station Stage I (Units 1 to 3): The failures of the cooling water system has caused a shortage of oil cooling water and high turbine bearing temperatures. Cleaning the coolers has often been necessary. Lubrication systems of main bearings and compressed air systems have deteriorated.

Old Laxapana hydropower station Stage II (Units 4 and 5): The failures of cooling water system are almost the same as those of Stage I (Units 1 to 3).

b) Spare parts

Old Laxapana hydropower station Stage I (Units 1 to 3): Procurement of new spare parts is difficult.

Old Laxapana hydropower station Stage II (Units 4 and 5): Procurement of new spare part is difficult.

c) Visual inspection and interviews of maintenance personnel

Old Laxapana hydropower station Stage I (Units 1 to 3): The CEB expects the cooling water supply system, lubrication oil system and compressed air system to be replaced.

Old Laxapana hydropower station Stage II (Units 4 and 5): The CEB expects the compressed air system for generator brake to be replaced.

2) Countermeasures

Old Laxapana hydropower station Stage I (Units 1 to 3): It is recommended that the cooling water supply system, lubrication oil system and compressed air system for the generator brake are replaced. In order to prevent the temperature of the bearings for the turbine and generator from rising, it is necessary to reexamine the existing troubles and produce a design to supply the sufficient cooling water. Old Laxapana hydropower station Stage II (Units 4 and 5):

It is recommended that the compressed air system for generator brake is replaced. However, the CEB should repair and replace the cooling water supply system and the lubrication system.

7.3.2 Electrical Equipment

- (1) Generators
 - 1) Deterioration diagnosis results

As with the Wimalasurendra hydropower station, detailed disassembly inspection records were not found.

The original B-type stator coils in Unit 1 to 3 were replaced in 1978 with F-type coils, which can withstand higher temperatures. Moreover, the stator coil of Unit 2 was rewound due to a breakdown in 1998.

Me	asurement time	1 min. (M Ohm)	10 min. (M Ohm)	P.I.	Remarks
#1 Stator	Red phase - Earth	1,280	3,120	2.44	Year of measurement:
	Yellow phase - Earth	1,250	2,860	2.29	2004
	Blue phase - Earth	1,600	4,360	2.73	Lagand
#2 Stator	Red phase - Earth	1,280	3,120	2.44	Legend: R, Y, B -
	Yellow phase - Earth	1,250	2,860	2.29	Red phase, yellow phase
	Blue phase - Earth	1,600	4,360	2.73	and blue phase
#3 Stator	Red phase - Earth	1,710	4,860	2.84	E - Earth
	Yellow phase - Earth	1,670	4,780	2.86	
	Blue phase - Earth	1,660	4,440	2.67	
#4 Stator	Red phase - Earth	380	-	-	
	Yellow phase - Earth	362	-	-	
	Blue phase - Earth	354	-	-	
	R, Y, B - E	117	240	2.05	
#5 Stator	Red phase - Earth	540	1,210	2.24	
	Yellow phase - Earth	515	1,810	3.51	
	Blue phase - Earth	496	1,130	2.28	

Table 7.6	Insulation Resister of Generator Stators at the Old Laxapana
	Hydropower Station

The insulation resistance values of the stator coil satisfy the level of over 100M Ohm as specified by Japanese criteria. The polarization index values are over the 1.5 specified in Japanese criteria in all generators. Based on these conditions, the status of the stator coils is judged to be "good". The conditions of Unit No. 4 are estimated to be similar to those of Unit No. 5 even though the records of each phase were not found, because no fault has occurred in the last two years and the polarization index values in the three-phases package exceed 1.5.

As for other parts, the stator core temperatures of Unit 2 and 3 maintain a high level around 90° Centigrade. Since this temperature level is below the maximum temperature of the F-type coil, further operation will be feasible by continuing to observe the temperature. The main spare parts are stocked at the Old Laxapana hydropower station.

2) Countermeasures

Though the replacement of generators including the excitation equipment is not necessary independent form that of the turbines under the current conditions, the generators should be replaced if the turbine is replaced as described in the article 7.3.1 because of the following reasons.

- The generators have already been operated for more than its lifetime and the superannuation has been progressing. Therefore, the replacement of the generators will also be essential in the near future after the turbines are replaced. The total shutdown period of the power station can be minimized if the generators and the turbines are replaced simultaneously.
- The generator bearing should be modified to match with the modified thrust, which will be changed if the turbines are replaced. A wide scope of the modification will be necessary regarding the generator bearing mechanism, especially if the output of the turbines increases.
- In the case of the turbine output increasing, the generator should be replaced to match the turbine output.

It is necessary for the generators to increase the output from 9.8MVA to 11MVA together with increase of the turbine output.

- (2) Generator transformer
 - 1) Deterioration diagnostic results and a countermeasure

Insulation resistance is shown below.

Table 7.7Insulation Resistance of Generator Transformers for Units 1, 2, and 3
at the Old Laxapana Hydropower Station

Measurement Time		1 min. (M Ohm)	Remarks			
Red phase	HT-E LT-E HT-LT	2,160 3,000 3,420	Measurement voltage: Unknown Legend:			
Yellow phase	HT-E LT-E HT-LT	2,160 3,000 3,420	HT - High-voltage side terminal LT - Low-voltage side terminal E - Earth			
Blue phase	HT-E LT-E HT-LT	2,160 3,000 3,420				

Measurement Tir	Measurement Time		Remarks			
Red phase	Red phase HT-E		Measurement voltage: Unknown			
	LT-E	2,700				
	HT-LT	4,000	Legend: HT - High-voltage side terminal			
Yellow phase	HT-E	1,610	LT - Low-voltage side terminal			
	LT-E	2,700	E - Earth			
	HT-LT	4,000				
Blue phase	HT-E	1,610				
	LT-E	2,700]			
	HT-LT	4,000				

Table 7.8Insulation Resistance of Unit 4 Generator Transformers
at the Old Laxapana Hydropower Station

Table 7.9Insulation Resistance of Unit 5 Generator Transformers
at the Old Laxapana Hydropower Station

Measurement Time		1 min. (M Ohm)	Remark			
Red phase	LT-E 236		Measurement voltage: Unknown			
Yellow phase	HT-LT HT-E LT-E	795 570 212	Legend: HT - High-voltage side terminal LT - Low-voltage side terminal			
	HT-LT	800	E - Earth			
Blue phase	HT-E LT-E	545 226				
	HT-LT	805				

All coil insulation resistance values are over 100M Ohm.

No abnormalities were found in visual inspections. No trouble was caused by a fault of the generator transformers, according to the records for the last two years.

It has been judged that the transformers can be operated normally for a while. However, it is difficult to diagnose deterioration correctly by such inspection alone. It is recommended that deterioration diagnostic data be collected by suitable methods, such as through the installation of an automatic temperature recorder, period oil gas analysis, etc. in order to provide data for a decision on future replacement.

The total capacity of the transformer connected to Units 1, 2 and 3 is 40MVA and that of the replaced generators is 33MVA. The existing transformer has enough capacity even after replacement of the turbines and the generators.

There are not enough spare parts for the transformer at the Old Laxapana hydropower station. The CEB needs to assure a suitable budget and needs to stock the spare parts.

- (3) Other electric equipment
 - 1) Deterioration diagnostic results and a countermeasure

The replacement of the 11kV main circuit was carried out in the CEB's Rehabilitation Plan Stage I and II. No appreciable trouble was found in these installations during the investigations in the study.

As far as external visual inspections are concerned, no trouble was observed. No trouble caused by a fault of the switchgear has occurred, according to the records for the last two years. It will be possible to use the 11kV and 135kV circuit for a while.

As for other equipment, low operational reliability was found in the bearing lubrication pump. This trouble is caused not only by deterioration of the equipment but also by an improper motor system design. The lubrication pump system uses AC and DC motors. The system is far too outdated to be reliable. The system often causes the pump to stop in the case of an AC auxiliary circuit failure. The stop would be unavoidable because it is difficult for the system to select one adequate motor out of those involved in the AC auxiliary circuit failure. This stoppage will directly affect the reliability of the power station. For this reason, it is necessary to make a system change by introducing a double DC motor or double AC motor with an inverter to supply AC power from a DC battery in the case of the generator replacement option.

The status of the spare parts for the "other electric equipment" is the same as that for the generator transformer in Old Laxapana hydropower station. The CEB needs to assure a suitable budget and needs to stock the spare parts.

7.3.3 Control Equipment

- (1) Control and Protection Equipment
 - 1) Deterioration diagnosis results

The control and protection equipment was replaced with numerical type equipment in 1994 to 1995 and in 2003. The batteries were replaced in 1994 and, subsequently, modernization has been in progress. Two sets of numerical-type control and protection equipment are installed. The first set, SCADA No. 1, is used for Unit 1, Unit 2, Unit 3 and the powerhouse utility source. The second set, SCADA No.2 is used for Unit 4, Unit 5 and the switchyard.

The old control and protection equipment is still installed in the old control room following the installation of the new controller and protection devices. (Refer to Appendix C-3 List of Control Room Layout.) Almost all the functions of these old controllers and protection devices became useless since the numerical type was employed in 2003. The remote-control desk of the New Laxapana hydropower station, the supervisory board for the Norton and Laxapana dams, and a microwave communication board are still in use. Four operators are using Cathode-Ray Tube (CRT) installed in the old control room to control the turbines and the generators with assistance from additional personnel (one chief operator and two equipment surveillance operators). The replaced control and protection equipment for the turbines, the generators (including the governors and excitation equipment), the main circuit, transmission line, auxiliary circuit, the battery charger and the motor control center (MCC) (Refer to Appendix C-3 List of Control Room Layout) is installed in the new control room. Only the replaced general-purpose switchboard is installed in the turbine-generator room.

As some spare parts for the replaced numerical- type control and protection equipment are in short supply and some parts are kept un-recovered. An urgent plan for the recovery is necessary (Refer to Appendix C-3 Summary for Investigation).

There are also old-fashioned remote-control desks for the Canyon, Polpitiya, and Wimalasurendra hydropower stations in the old control room. However, there is no record of using the old-fashioned control desks. The CEB expects to install new remote-control systems for all power stations in the Kelani River Basin in the future. When a communication facility is completed between the Polpitiya hydropower station and the Old Laxapana hydropower station, the Polpitiya hydropower station can be controlled by the existing remote-control numerical system.

The state display in the control panel for the Polpitiya -Laxapana transmission line is not normal. It will be necessary to study the control and protection equipment so as to coordinate with the existing governor and the excitation equipment when the hydraulic turbines and generators are replaced.

2) Countermeasures

Continuous normal operation will be possible as a whole for the new control and protection equipment replaced. Therefore the replacement is not required. However, the above-mentioned abnormal state display comes about due to trouble of the integrated circuit board, and the CEB faces many difficulties in solving the problem. Since the new equipment it is still within the guarantee period, the CEB should request the equipment contractor to fulfill the guarantee clause.

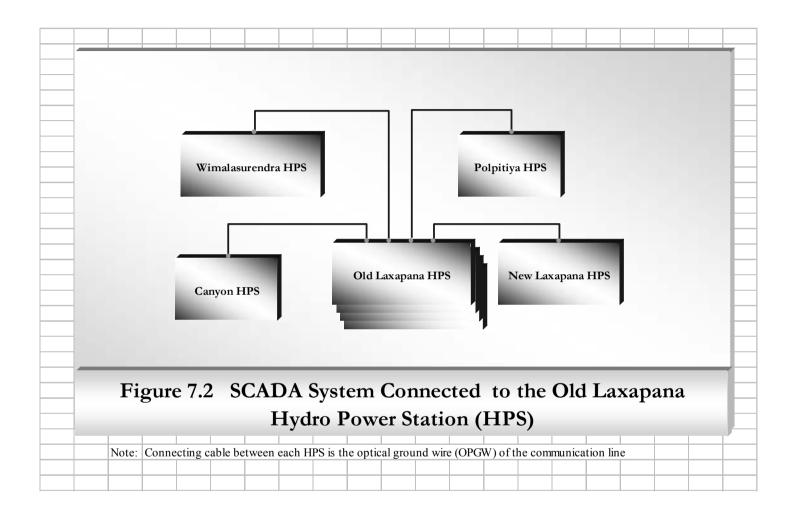
- (2) Control Power Source Equipment
 - 1) Deterioration diagnostic results

The batteries of this equipment at the Old Laxapana hydropower station Stage I (Units 1 to 3) and Stage II (Units 4 and 5) were replaced in 1994 and 2004, respectively. However, two battery chargers have been operated for more than 45 years, and one of them is out of order. Ground phenomenon is observed on the positive terminal side of a direct-current (DC) control power source.

An uninterruptible power supply system is installed and operates normally.

2) Countermeasures

The failed battery charger should be urgently restored by the CEB in order to improve the operational reliability of the power station. The CEB should also be urged to investigate and repair the ground phenomenon on the positive terminal side.


- (3) Communication Equipment
 - 1) Deterioration diagnostic result

A microwave signal system is not used for transmission line protection signals; rather, a power line carrier system is used for the signal transmission. However, the capacity of the power line carrier system is inadequate for data transmission.

The water levels of the related dams are confirmed by remote display and telephone calls. In addition, the communication equipment serves also as the communication equipment for the neighboring New Laxapana hydropower station.

2) Countermeasures

The CEB expects to shift all power stations in the Kelani River Basin to a remote control system by using the SCADA system from the Old Laxapana power station. The OPGW communication line will be installed between the Old Laxapana hydropower station and others at the time of the replacement of the turbines and generators, as shown in Figure 7.2, SCADA System Connected to Old Laxapana hydropower station. A highly reliable communication network will be established by installing the OPGW communication line and will make possible remote control of the relevant hydropower stations from the Old Laxapana hydropower station. It will be necessary to study in the detailed design stage the interface with the communication equipment as well as the items of remote control of the control and protection equipment at the concerned power stations.

(4) Dam Distribution Equipment

1) Deterioration diagnostic results

The electric power used at Norton Dam is fed from the Norton district grid via a distribution line. Though the dam distribution line is currently operated normally, its deterioration is apparent.

2) Countermeasures

Although it is not necessary to replace the line, a study of the future replacement should be started by the CEB.

7.4 Present Status of and Rehabilitation Plan for Canyon hydropower station

7.4.1 Mechanical Equipment

- (1) Turbine
 - 1) Deterioration diagnosis results
 - a) Maintenance and suspension records

The units are being operated satisfactorily. It is reported that no major deterioration is observed on turbines.

Shear pin failures (approximate five times per year) are reported likely due to the damage of inlet trash rack. Four failures were reported from January to August, 2004. The trash rack should be checked and repaired as soon as possible.

The carbon rings of the shaft seal are replaced approximately every two years.

b) Spare parts

A used spare runner is stored in the powerhouse.

c) Simplified efficiency test

The simplified efficiency test was not implemented because the turbines are rather new and are operated without any appreciable failure. Also, Unit 1 and Unit 2 at the Canyon hydropower station have been operated for the shortest period, at 21 years and 15 years, of the five hydropower stations.

Meanwhile, the model test and installation test reports are kept properly and high efficiency is confirmed and reported in those.

d) Visual inspection and hearing from maintenance personnel

The operation condition is satisfactory other than a shear pin failure. There is no request for rehabilitation from the CEB.

2) Countermeasures

Periodic maintenance and repair are recommended without replacement. Timely procurement of spare parts is essential.

It is recommended that the equipment is overhauled due to the passage of 21 years for Unit 1 and 15 years for Unit 2 since their commissioning dates.

- (2) Inlet valve
 - 1) Deterioration diagnosis results
 - a) Maintenance and suspension records

Large amount of leakage (approximate 0.5 liter/s by observation) from the valve seat has been observed as at other power stations. The valve seat has not experienced replacement with spare parts at least since 1993. A disassembled valve seat is stored in the powerhouse. It is reported that repair welding has been done at intervals of more than five years.

b) Spare parts

The lack of spare valve seats and seal rings causes significant leakage from the inlet valve.

c) Visual inspection and hearing from maintenance personnel

Spare parts are in short supply.

2) Countermeasures

It is not necessary to replace the inlet valve. Timely procurement of spare parts is essential. The CEB should prepare necessary parts and implement replacement.

- (3) Governor
 - 1) Deterioration diagnosis results
 - a) Maintenance and suspension records

Although the governor is an obsolete mechanical type, its operating condition is good.

b) Spare parts

Necessary spare parts are stocked.

c) Visual inspection and interviews of maintenance personnel

There is no major problem and no request for rehabilitation from the CEB.

2) Countermeasures

Replacement is not necessary. The CEB should repair when necessary.

- (4) Other auxiliary equipment
 - 1) Deterioration diagnosis results
 - a) Maintenance and suspension records

There is no major problem.

b) Spare parts

Necessary spare parts are stocked.

c) Visual inspection and interviews of maintenance personnel

There are no major problem and no request for replacement from the CEB.

2) Countermeasures

Replacement is not necessary.

7.4.2 Electrical Equipment

(1) Generator

1) Deterioration diagnosis results and countermeasures

The insulation resistance values of the stator coil satisfy the level of over 100M Ohm specified by Japanese criteria. The polarization index values in all generators are over the 1.5 specified by Japanese criteria. Based on these conditions, the status of the stator coils is judged to be "good."

М	leasurement time	1 min. (M Ohm)	10 min. (M Ohm)	P.I.	Remarks
#1 Stator	Red phase – Earth	3,000	14,000	4.67	Year of measurement:
	Yellow phase - Earth	4,000	15,750	3.94	2004
	Blue phase - Earth	4,500	22,500	5.00	
#2 Stator	Red phase – Earth	3,500	11,000	3.14	
	Yellow phase - Earth	3,000	8,000	2.67	
	Blue phase - Earth	3,400	11,200	3.29	

 Table 7.10
 Insulation Resister of Generator Stators at Canyon Hydropower Station

Even though some peeled insulating materials and a loose wedge were recognized in the generator of Unit 1, this unit has been operated with emergency measures taken. At the Canyon hydropower station, Units 1 and 2 have been operated for 21 and 15 years since their commissioning dates. An overhaul is recommended for each unit by the CEB. Re-wedging of Unit 1 is also recommended.

The insulation resistance values of the generator transformers are shown below.

Table 7.11	Insulation Resistance of Generator Transformers
	at the Canyon Hydropower Station

Measurement Time		1 min. (M Ohm)	10 min. (M Ohm)	P.I.	Remarks
Red phase	HT - E	2,000	9,000	4.5	Measurement voltage: 5,000V
	LT - E	2,000	6,500	3.3	
Yellow phase	HT - E	2,500	8,500	3.4	Legend:
	LT - E	2,000	6,000	3.0	HT - High-voltage side terminal
Blue phase	HT - E	2,000	7,000	3.5	LT - Low-voltage side terminal
	LT - E	2,500	6,000	2.4	E - Earth
	HT - LT	-	2,000	-	

Table 7.12	Insulation Resistance of Generator Transformers
	at the Canyon Hydropower Station

Measurement Time		1 min. (M Ohm)	10 min. (M Ohm)	P.I.	Remarks
Red phase	HT - E	4,000	6,000	4.5	Date of measurement: Feb. 3,
	LT - E	3,500	9,000	3.3	Measurement voltage: 5,000V
Yellow phase	HT - E	3,500	6,500	3.4	
-	LT - E	2,500	8,500	3.0	Legend:
Blue phase	HT - E	3,000	6,000	3.5	HT - High-voltage side terminal
-	LT - E	2,000	7,000	2.4	LT - Low-voltage side terminal E - Earth
	HT - LT	-	4,000	-	E - Earth

The insulation resistance values of the coil satisfy the level of over 100M Ohm specified as the Japanese criteria. The polarization index values of all generator transformers are over the 1.5 stated as the Japanese criteria. From these conditions, the status of the stator coils is judged to be "good."

Since other equipment is rather new and is being operated without any appreciable failure, it is not necessary to replace it.

7.4.3 Control Equipment

- (1) Control and Protection Equipment
 - 1) Deterioration diagnosis results

There are two sets of control equipment, which include the protection equipment and the auxiliary circuit control equipment. One set is used for Unit 1 and the other is used for Unit 2. (Refer to Appendix C-3.) This power station, in which electromagnetic-type control equipment is mostly used for relays, uses a one-man control type. Electromagnetic type relays have been partially repaired and maintained stability in the routine maintenance and operation.

The control display instruments are kept in good condition, except for some failed displays. As the trouble recorder and the temperature recorder are out of order, these records are kept in a daily handwritten report.

The procurement of some spare parts for the relays takes an extended time. The CEB's site engineers expect to replace the control and protection equipment with numerical-type equipment. They also expect the controller for the diesel engine generator to be repaired.

Overall, continuous normal operations will be possible for the control and protection equipment. Therefore, the replacement of the control and protection equipment is unnecessary.

2) Countermeasures

Though the control and protection equipment requires no urgent replacement for a while, it is to be replaced by numerical-type equipment. The replacement time should be studied by the CEB to improve the operational reliability within the next 10 years.

- (2) Control Power Source Equipment
 - 1) Deterioration diagnosis results

Two sets of batteries are installed for two hydraulic turbine and generator sets. The batteries for Unit 1 and Unit 2 were manufactured by Oldham AG and Yuasa Co., respectively. Since the products from Oldham AG have a tendency to experience corrosion in the terminals, the CEB's site engineers expect to replace the equipment.

2) Countermeasures

The 220V batteries for control power source equipment directly affect the operational reliability of the power station. Therefore, the Oldham AG batteries for Unit 1 should be replaced. These batteries have already passed the service life of 20 years specified by J-POWER standards. Those replacement times should be studied by the CEB, taking above situation into consideration.

- (3) Communication Equipment
 - 1) Deterioration diagnosis results

A microwave signal system is not used for signal transmission for the transmission line protection, but a power line carrier system is used for that purpose. However, the capacity of the power line carrier system is inadequate for data transmission.

There is no remote display of the dam water level; rather, this is reported by a telephone call.

A new telephone system manufactured by Siemens is used for the station telephone service.

2) Countermeasures

The CEB expects to shift all power stations in the Kelani River Basin to a remote control system by using the SCADA system of the Old Laxapana power station.

The OGPW communication line will be installed between the Canyon hydropower station and the Old Laxapana hydropower station. It will be necessary to study at the detailed design stage an interface with the communication equipment as well as the items of remote control of the controller and protection equipment at the concerned power stations.

- (4) Dam Distribution Equipment
 - 1) Deterioration diagnosis results

The electric power source at the Moussakelle Dam is fed from the neighboring district grid via a distribution line. Though the dam distribution line is currently operated normally, its deterioration is apparent.

2) Countermeasures

Although it is not necessary to replace the line, a study of future replacement should be started by the CEB.

7.5 Present Status of and Rehabilitation Plan for the New Laxapana hydropower station

7.5.1 Mechanical Equipment

- (1) Turbine
 - 1) Deterioration diagnosis results
 - a) Maintenance and suspension records

It is reported that no harmful cavitation erosion has been observed on the runner buckets. Oil leakage from the needle servomotor packing is accumulated in the temporary containers.

b) Spare parts

One used runner is stored as a spare in the powerhouse.

c) Simplified efficiency test

The simplified efficiency test, which was carried out for Unit 2 using a portable ultra-sonic flow meter, revealed a higher efficiency than the guaranteed values, as shown in Figure 5 in Appendix C-1. However, it tends to indicate a strong correlation with the guaranteed value. This reflects the superior original design and proper maintenance during 30 years operation.

The maximum unit output of the generator is currently limited to 50MW. The installation test report and the simplified efficiency test result suggest that it is possible to operate up to 57MW of original generator output if the needle servomotor is more completely opened. However, 57MW operation is not recommended due to the possibility of cavitation erosion.

d) Visual Inspection and Hearing from Maintenance Personnel

The turbine maintains its original performance even after 30 years operation.

2) Countermeasures

Higher oil pressure may be applied to servomotors due to the replacement of governors. In this case, it is recommended that the needle and deflector servomotors are replaced.

- (2) Inlet Valve
 - 1) Deterioration diagnosis results
 - a) Maintenance and suspension records

Leakage of water from the valve seat of the inlet valve has been observed, as at the other power stations, due to replacement delays.

A needle-type drain valve is preferable, while the present one is a gate type.

b) Spare parts

The procurement of spare valve seats and seal rings seems to be difficult due to the high prices as well as the poor responsiveness of the original manufacture.

c) Visual Inspection and Hearing from Maintenance Personnel

The delayed procurement of spare parts causes the excessive leakage.

2) Countermeasure

It is recommended that periodical maintenance and repair including replacement of the valve seats and seal rings are carried out. Replacement of the present gate type drain valve with a needle-type valve is also recommended.

Necessary parts will be prepared and replacement done by the CEB.

- (3) Governors
 - 1) Deterioration diagnosis results
 - a) Maintenance and suspension records

The governor is an obsolete mechanical type. However, it is reported that the maintenance is easy and there has been no harmful malfunction.

b) Spare parts

The procurement of spare parts is difficult due to the suspension of production of mechanical-type governors. It is reported that switches and speeder springs are in short supply.

c) Visual inspection and interviews of maintenance personnel

The CEB expects to replace the governors.

2) Countermeasures

It is recommended that the mechanical-type governors are replaced with numerical-type governors when the generator is replaced in order to increase reliability.

- (4) Other Auxiliary Equipment
 - 1) Deterioration diagnosis results
 - a) Maintenance and suspension records

The compressed air system, the grease lubrication system and the water supply system are deteriorating.

b) Spare parts

Procurement of new spare parts is difficult.

c) Visual inspection and interviews of maintenance personnel

The CEB expects to replace the compressed air system, grease lubrication system and water supply system.

2) Countermeasures

It is recommended that the compressed air system, grease lubrication system and water supply system are replaced.

7.5.2 Electrical Equipment

- (1) Generator
 - 1) Deterioration diagnosis results

There is no record of detailed disassembly inspection. Major trouble records are as follows.

- Because of a dielectric breakdown in Unit 1, the stator coil was replaced in 1980.
- Because unusually low voltage of part of the rotor coil was recognized in a voltage sharing test on a rotor, that part of the rotor coil in Unit 1 was replaced in 2001.

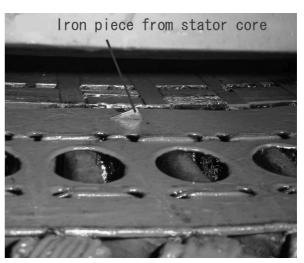

The insulation resistance values of the stator coil satisfy the level of over 100M Ohm specified by Japanese criteria. The polarization index values in all generators are over the 1.5 specified by Japanese criteria. Based on these conditions, the status of the stator coils is judged to be "good."

Table 7.13	Insulation Resistance of Generator Stators at the New Laxapana
	Hydropower Station

Measurement Time		1 min. (M Ohm)	10 min. (M Ohm)	P.I.	Remarks
#1 Stator	Red phase - Earth	905	2920	3.23	Year of measurement:
	Yellow phase - Earth	830	2,960	3.57	2004
	Blue phase - Earth	840	3,500	4.17	
#2 Stator	Red phase - Earth	850	2,200	2.59	
	Yellow phase - Earth	765	2,380	3.11	
	Blue phase Earth	1,420	3,200	2.25	

There is no problem in the generators from the electrical point of view. But from the mechanical point of view, they have some serious problems.

- It was found that a piece of piled core iron slipped out of the stator core in February 2004. It seems that a loose stator clamp and/or superannuation of the iron core caused the slippage. Picture 7.7 shows the accident. There is concern that the iron piece may cause serious damage to the generator, resulting in а long-term stoppage. Further, operation wedge loosening was found also on stator in the both units as well as in the generators at the Wimalasurendra hydropower station.
- Both units have a problem with oil leaking from generator bearings. Leaking oil is conveyed by the rotor-cooling fan and adheres to the stator. The adhesion of oil accelerates damage and softening of the

Picture 7.7 Slipped iron piece

insulating material on the stator. Dust stuck to the leaked oil on the stator can harm generator performance by further deteriorating the insulation and reducing cooling efficiency. The location of the oil leakage has never been identified because it requires the complete

The location of the oil leakage has never been identified because it requires the complete disassembly of the generator.

As a countermeasure against the leakage, the CEB shuts down the generator twice each month and cleans the stator.

Major spare parts are stocked in the New Laxapana hydropower station.

2) Countermeasures

The replacement of the generator is recommended for the following reasons.

The CEB desires more reliable methods and shorter shutdown periods than possible with repair work such as re-wedging the coil. The CEB regards the New Laxapana hydropower station as the most important power station in the Kelani River basin because the output is the largest among the power stations in the basin and the function to control frequency is available only at the New Laxapana hydropower station.

However, the generator should be disassembled to measure its actual dimensions. This is because there are no useful drawings for the replacement. In this disassembly inspection, there is concern that the generator shutdown period may become longer than the estimated period due to unforeseeable troubles or unskilled installation work. Therefore, the timing of the disassembly inspection work should be determined taking into account the reserve capacity of the Sri Lankan power system and the hydrological situation.

It is not necessary for the specifications of the generators because the existing turbines are not to be replaced.

- (2) Excitation Equipment
 - 1) Deterioration diagnosis results and countermeasures

This excitation equipment is a DC-exciter system. This type requires a great deal of maintenance work, such as frequent brush cleaning, and has low functional reliability compared with brush-less exciter systems, which are currently the most common.

Therefore, the replacement of the exciters should be carried out together with the generators.

- (3) Generator transformer
 - 1) Deterioration diagnosis results and countermeasure

Insulation resistance of the generator transformers is shown below.

Measurement Time		1 min. (M Ohm)	10 min. (M Ohm)	P.I.	Remarks	
Red phase	HT-E	700	1,180	1.7	Measurement voltage: Unknown	
	LT-E	840	1,189	1.3		
	HT-LT	1,161	2,840	2.4	Legend:	
Yellow phase	HT-E	895	2,100	2.5	HT - High-voltage side terminal LT - Low-voltage side terminal	
	LT-E	800	1,350	1.7		
	HT-LT	1,780	3,140	1.8	E - Earth	
Blue phase	HT-E	1,030	2,280	2.2		
-	LT-E	955	1,700	1.8		
	HT-LT	2,040	3,820	1.9		

Table 7.14	Insulation Resistance of Generator Transformers
at	the New Laxapana Hydropower Station

Measurement Time		1 min. (M Ohm)	10 min. (M Ohm)	P.I.	Remarks
Red phase	HT-E	1,540	2,340	1.5	Date of measurement: Unknown
	LT-E	1,220	3,460	2.8	Measurement voltage: Unknown
	HT-LT	3,220	5,500	1.7	
Yellow phase	HT-E	1,090	2,060	1.9	Legend:
	LT-E	995	2,780	2.8	HT - High-voltage side terminal
	HT-LT	2,160	3,540	1.6	E - Earth
Blue phase	HT-E	1,370	3,950	2.9	
	LT-E	1,280	3,420	2.7	
	HT-LT	2,520	5,400	2.1	

Table 7.15 Insulation Resistance of Generator Transformers at the New Laxapana Hydropower Station

The insulation resistance values of the coil are over 100M Ohm.

No abnormalities were found in visual inspections. No trouble was caused by a fault of the generator transformer, according to the records for the last two years.

From these values, the condition of the transformer coils is judged to be "good."

However, it is difficult to diagnose deterioration correctly by visual inspection alone. It is recommended that deterioration diagnostic data should be collected by suitable methods such as installation of an automatic temperature recorder, periodic oil gas analysis, etc., for the purpose of judging materials for future replacement.

The major spare parts are stocked at the New Laxapana hydropower station.

- (4) Other Electric Equipment
 - Deterioration diagnosis results 1)

The 12.5kV circuit, including the auxiliary circuit, has been operated since the commission date. Superannuation has been progressing. Therefore, the replacement of the circuit should be carried out along with that of the generators.

With respect to the 132kV circuit, no abnormality was found on the switchgears of the circuit.

No trouble has occurred on the 132kV circuit during the last two years, according to the records. The switchgears have operated for 19 years and 23 years but have not yet reached their time of replacement. It is possible to continue to use the 135kV circuit.

The transformer for the auxiliary circuit has experienced no trouble that would prevent continuing with normal operation. However, PCB is used as the insulation oil in the transformer. In view of environmental concerns, the PCB transformer should be replaced at the earliest opportunity. The CEB is responsible for storing PCB insulation oil in an appropriate place at the power station and for strictly preventing any eventual leakage to the environment.

7.5.3 **Control Equipment**

- (1)**Control and Protection Equipment**
 - 1) Deterioration diagnosis results

This plant is of a one-man control type and is remotely controlled from the Old Laxapana plant. Two operators are in the control room (refer to Appendix C-3 List of Control Room Layout), and other two operators are on the generator floor. They supervise the operational conditions of the

governor equipment, the excitation equipment, etc. The control and protection equipment in the control room is old-fashioned and consists mostly of electromagnetic relays and a few numerical lockout relays. The governor equipment is of the mechanical type, which is operated at a permanent speed droop (SD) of 5%. The excitation equipment is of a sub-exciter system type, which uses rotation amplifier (Amply-dyne). This power station is an important plant in that it performs the frequency control for the power system. Therefore, improving the reliability of control and protection equipment is indispensable.

The electrolytic condensers used for the relays exceed the standard life of 12 years specified by J-POWER standards. Therefore, it is essential to replace all of the control and protection equipment with state-of-the-art equipment in order to improve its operational reliability.

2) Countermeasures

The best choice is to introduce the latest technologies for all control and protection equipment components in order to enhance operation reliability, rather than making partial replacements or repairs. The CEB replaced the old equipment with numerical-type equipment in 2003 in the Old Laxapana and Polpitiya hydropower stations. When the efficient management of the entire river system is taken into consideration, the equipment of this power station should also be replaced with new equipment of a grade equal to or higher than that of the Old Laxapana and Polpitiya hydropower stations.

The scope of the replacement is shown below.

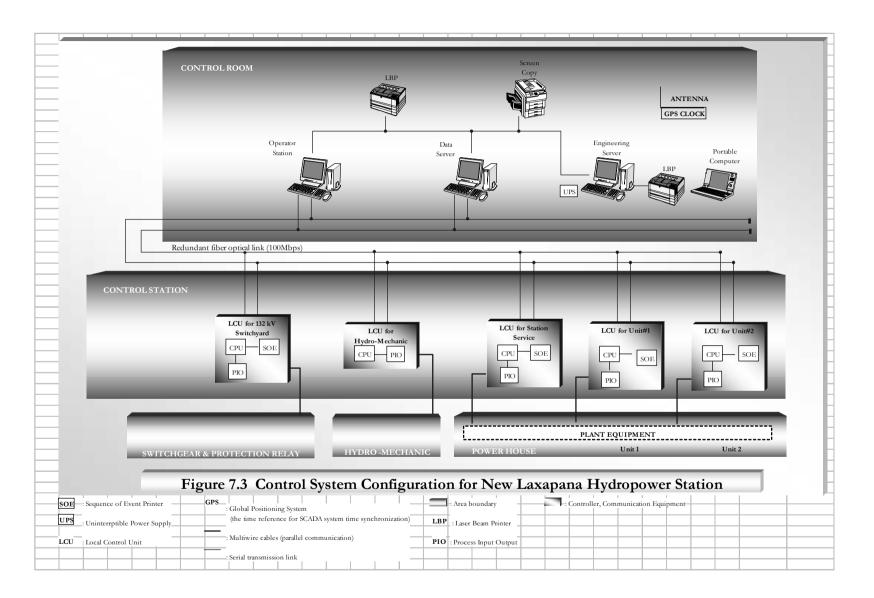
a) Control equipment:

Supervisory and control board for turbine, generator, generator transformer, switchyard, transmission line, and auxiliary circuit

Governor control board

Excitation control board

Control desk


b) Protection equipment:

Protection for turbine, generator, generator transformer, switchyard, and transmission line

c) Spare parts:

Spare parts for the above control equipment and protection device

The configuration of the control and protection system for New Laxapana hydropower station is shown in Figure 7.3.

- (2) Control Power Source Equipment
 - 1) Deterioration diagnostic result

The control power source batteries were replaced in 1989 and have been used normally in a good condition. However, since only one battery and battery charger set is available, the reliability of the control power source is insufficient. Moreover, the CEB expects to replace both because they have been in use for more than 20 years.

2) Countermeasures

The 220V battery and charger for the control power source should be replaced and uninterruptible power source equipment should be installed to enhance the reliability of the plant when the above-mentioned control and protection equipment is replaced.

- (3) Communication Equipment
 - 1) Deterioration diagnostic result

The communication equipment of this plant is that used with the Old Laxapana plant. (Refer to 7.3.3 (3)).

2) Countermeasures

(Refer to 7.3.3 (3)).

- (4) Dam Distribution Equipment
 - 1) Deterioration diagnostic result

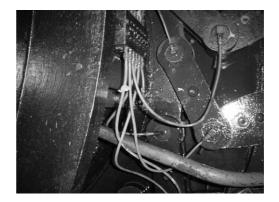
The electric power used at Canyon Dam is fed from the neighboring district grid via a distribution line. Though the dam distribution line is currently operated normally, its deterioration is apparent.

Emergency diesel generator has been operated for 30 years, its deterioration is apparent.

2) Countermeasures

Although it is not necessary to replace the line, a study of its future replacement should be started by the CEB.

7.6 Present Status of and Rehabilitation Plan for Polpitiya hydropower station


7.6.1 Mechanical Equipment

- (1) Turbines
 - 1) Deterioration diagnosis results
 - a) Maintenance and suspension records

The units have been operated only at generator outputs of 5MW, 32MW and 37.5MW, due to turbine vibration. An inspection at 5MW output with a wicket gate opening of 16% and at 37.5 MW with a wicket gate opening of 72% indicated very noisy operation (approximately 100dB, as estimated through listening). However, no remarkable vibration was identified.

According to simplified efficiency test, a small turbine shaft run-out of 0.05mm was confirmed in an operating range from 36MW generator output with estimated net head of 248.6m to 4.86MW with an estimated net head of 260.1m. The submergences were between -4.43m and -3.95m at that time.

The existing test report on aeration relevant to the modified air supply pipes at the installation stage indicated a couple of aeration tests to decrease the vibration. It is reported that the inlet configuration of the draft pipe was modified from cylindrical to circular, which is reported to provide reduced vibration. The original manufacturer (Dominion Engineering Works) recommended the limited operation of 5MW, 32MW, and 37.5MW, in 1975.

In addition to the vibration, following problems were reported.

Picture 7.8 Crack in Guide Ring for Wicket Gate Operating Mechanism of Polpitiya Turbine

- Cracks were found on the guide ring for wicket gate operating mechanism as shown in Picture 7.8. They were caused by the concentration of stress at the welded joint of the guide ring and were repaired by welding. There remains a risk of renewed cracking.
- Turbine shear pin failures were reported seven times from 2002 to August of 2004. They seem to be caused by the failure of the intake trash rack.
- The seal carbon of the turbine shaft has worn very quickly, resulting in a large amount of leakage (approximate 3 to 4 liters/s, estimated by visual observation) and this keeps the draft pipe bolts in water at all times. This seems to accelerate bolt corrosion.

The records indicate turbine repairs and replacements as shown in Table 7.16.

Item	Date		Remarks
	Unit 1	Unit 2	
Runner		Aug. 7, '90	
Runner	July 20, '96		Repair work of wicket gate, operation structure, lever, link, etc., included.
Runner		Nov. 15, '97	Wearing ring, bearing of wicket gate, facing plate, etc., included.
Runner		May 13, '02	

Table 7.16	Turbine	Repair	Record
------------	---------	--------	--------

The runners have been replaced every four or five years and repaired repeatedly. Repair records before 1990 are not available. Picture 7.9 shows a runner repair.

The upper guide bearing of the generator was replaced on Jan. 20, 1988. The turbine bearing has not been replaced since the commissioning date.

A cooling water shortage has been reported. This results in a failure due to high bearing temperature and a shaft seal alarm causing a turbine trip.

The repair record of bearing oil coolers are shown in Table 7.17. This confirms that repair work was carried out repeatedly.

Picture 7.9 Repair Welding of Polpitiya Runner

Table 7.17	Bearing Oil Cooler Repair Record
-------------------	---

Item]	Date	Remarks
	Unit No.1	Unit No.2	
TGB		Feb. 24, '03	
TGB, LGB, T & UGB	Sept. 1, '03		
T & UGB		Jan.12, '04	

Where:

TGB: Turbine guide bearing

LGB: Lower guide bearing of generator

T & UGB: Thrust bearing and upper guide bearing of generator

b) Spare parts

One turbine bearing, one wicket gate and one used runner are stored in the powerhouse. The used runner was under repair.

c) Simplified efficiency test

The result of the simplified efficiency test, which was carried out on Unit 2, shows lower efficiency than the typical Francis turbine even considering this turbine's 36 years of operation. The results are shown in Figure 4 in Appendix C-1. The maximum efficiency was

measured at a generator output of 36MW. It was reported that 40MW was the maximum generator output at the initial stage.

d) Visual inspection and hearing from maintenance personnel

Both turbines are operated only at generator outputs of 5MW, 32MW, and 37.5MW. It seems that the vibration is caused by the original characteristics of the turbine.

In "The Vibration Test Report" issued on 2003 by the CEB Mahaweli River Complex, the vibration frequency clearly corresponds to the frequency spectrum of rotational speed (8.33Hz) and multiples of that speed. This suggests that the runner seal configuration of the original design has some problems.

The submergence became deeper because the two units were in operation with a large amount of discharge. Considering this, some latent vibration problems may exist with shallow submergences and larger generator outputs than 37.5MW, such as 40 MW. In addition to making this inspection, it is necessary to analyze the history of the vibration problem and the operating conditions.

The turbine submergence will increase approximately 10m after completion of the Broadlands Project. Natural aeration into the draft tube, which minimize the vortex around the outlets of the runners and to control the vibration, will be impossible under these conditions. And it is supposed that vibration will increase to a high level in the situation.

2) Countermeasures

Concerning the circumstances as described, if the result of economical analysis shows feasibility, it is recommend that the turbines and accessories are replaced entirely, apart from embedded parts such as spiral cases, stay rings and embedded piping.

Appendix C-2 describes the studies on the specification of the new turbine after replacement. It is recommended that the turbine output is increased to 40MW. However, it is necessary to study the waterways in further detail.

The thrust bearing of the generator should be replaced along with the turbine because the turbine hydraulic thrust is expected to increase due to the new turbine.

The proper timing of the turbine replacement will be studied by the CEB.

(2) Inlet Valve

- 1) Deterioration diagnosis results
 - a) Maintenance and suspension record

The main inlet valve (MIV) has no major problem except water leakage from the valve seat ring. However, it is reported that the interaction with the control valve causes an oscillation of the valve disk at a 50% opening of the inlet valve due to the increased leakage.

b) Spare parts

A shortage of spare parts, such as valve seat and seal ring, is reported

c) Visual inspection and interviews of maintenance personnel

There is the shortage of spare parts.

2) Countermeasures

It is recommended to procure spare parts and replace deteriorated parts immediately. Necessary parts will be prepared and replaced by the CEB.

- (3) Governor
 - 1) Deterioration diagnosis results
 - a) Maintenance and suspension records

The governor was replaced in 2003; this included turbine servomotors and the governor control cubicle. The oil pressure was changed to a high level such as 15.5MPa (155bar). However, some failures, such as low oil levels and pressure drops, still happen.

b) Spare parts

Shortage are reported related to the proximity switch, pressure switch, level switch, solenoid valve, and filter pump set.

c) Visual inspection and hearing from maintenance personnel

The function of the governor may be insufficient.

2) Countermeasures

It is recommended that the existing governors are modified when the turbines are replaced. Modification of the pressure oil cylinder of the governor should be studied due to the limited capacity of the existing cylinder.

Necessary modifications will be implemented by the CEB.

- (4) Other Auxiliary Equipment
 - 1) Deterioration diagnosis results
 - a) Maintenance and suspension records

A shortage of cooling water is reported. However, this is not harmful to turbine operation. Meanwhile, deterioration is reported with respect to the cooling water supply system, drainage system, service air system and grease lubrication system.

b) Spare parts

A shortage of spare parts is reported related to the above-mentioned deteriorated equipment.

c) Visual inspection and interviews of maintenance personnel

The CEB expects to replace the cooling water supply system, drainage system, brake air system and grease lubrication system.

2) Countermeasures

It is recommended that the cooling water supply system, drainage system, brake air system and grease lubrication system are replaced.

The brake air system will be prepared and replacement carried out by the CEB.

7.6.2 Electrical Equipment

- (1) Generator and Excitation Equipment
 - 1) Deterioration diagnosis results and countermeasures

Detailed disassembly inspection records were not found.

The insulation resistance values of the stator coil are at the level of over 100M Ohm specified by Japanese criteria. Polarization index values were not confirmed because there is no record of 10-minute values for the insulation resistance. The yellow-phase insulation resistance value in Unit 1 decreased by half from January to September 2003. Therefore, the value needs to be observed continuously. The other coils are judged to be in "good" condition.

Da	ate	Jan. 23, '03	Sept. 2, '03	Apr. 28, '03	
Measurement time		1 min. (M Ohm)	1 min. (M Ohm)	1 min. (M Ohm)	Remarks
#1 Stator	R-E	1,170	900	_	
	Y-E	1,900	700	-	
	B-E	1,110	900	-	
#2 Stator	#2 Stator R-E		-	1.000	
	Y-E	-	-	1.000	
	B-E	-	-	1,000	

Table 7.18Insulation Resistance of Generator Stators at the Polpitiya
Hydropower Station

Considering the condition of the stator insulation and the age of the generators, it is not necessary to replace the generators at the same time of turbine replacement. But the following countermeasures should be taken before the turbine replacement.

- The generator bearings should be modified to match the modified thrust, which would be changed by a turbine replacement.
- Detailed generator deterioration diagnosis should be carried out before the turbine replacement. However, in this diagnosis, there is a concern that the generator shutdown period may become longer than the estimated period due to unforeseeable trouble or unskilled installation work.

The excitation equipment was replaced in 2003 and no problem was observed.

There are not enough spare parts for the generator and excitation equipment. The CEB needs to assure a suitable budget and needs to stock the spare parts.

- (2) Generator Transformers
 - 1) Deterioration diagnosis results and countermeasures

The insulation resistance values of Unit 1 and Unit 2 transformers at the Polpitiya hydropower station are shown in Table 7.19 and 7.20.

Date		Mar. 4, '02	Jan. 23, '03	Mar. 4, '03	June 17, ' 04	Remarks
Maaguramaa	at times	1 min.	1 min.	1 min.	1 min.	
Measurement time		(M Ohm)	(M Ohm)	(M Ohm)	(M Ohm)	
Red phase	HT-E	590	590	490	325	Legend:
	LT-E	425	468	408	225	HT -
	HT-LT	700	545	640	450	High-voltage side
Yellow phase	HT-E	360	426	365	325	terminal
	LT-E	390	444	394	225	LT -
	HT-LT	500	462	555	450	Low-voltage side
Blue phase	HT-E	250	240	200	80	terminal
	LT-E	400	442	398	190	E – Earth
	HT-LT	550	458	650	290	

Table 7.19Insulation Resistance of No.1 Transformers at the
Polpitiya Hydropower Station

Table 7.20Insulation Resistance of No.1 Transformers at the
Polpitiya Hydropower Station

Date		Mar. 4, '02	Jan. 23, '03	Mar. 4, '03	Remarks
Measureme	at time	1 min.	1 min.	1 min.	
Measuremen	it time	(M Ohm)	(M Ohm)	(M Ohm)	
Red phase	HT-E	150	90	70	Legend:
	LT-E	350	200	180	HT -
	HT-LT	400	300	210	High-voltage side terminal
Yellow phase	HT-E	150	300	200	LT -
	LT-E	290	350	300	Low-voltage side terminal
	HT-LT	400	600	400	E - Earth
Blue phase	HT-E	190	200	68	
	LT-E	350	500	130	
	HT-LT	700	700	200	

2) Countermeasures

Three insulation resistance values are less than 100M Ohm, which is the minimal level for a judgment of "defect" in terms of the criteria in Japan, and there is no transformer whose insulation resistance value exceeds 500M Ohm. The insulation resistance values have been decreasing significantly in all transformers, judging from the comparisons of the resistance values between 2002 and 2004.

Since deterioration was found in the coil in all generator transformers, the urgent replacement of all transformers is recommended.

There are not enough spare parts for the transformers. The CEB needs to ensure a suitable budget and needs to stock the spare parts.

- (3) Other Electrical Equipment
 - 1) Deterioration diagnosis results and countermeasures

The 12.5kV and 132kV switchgears were replaced in the last refurbishing. No appreciable trouble was found in these installations during the study's investigations.

The auxiliary circuit transformers have no trouble continuing with normal operation. However, PCB is used for insulation oil in these transformers. In view of environmental concerns, the PCB transformers should be replaced at the earliest convenience. The CEB is responsible for storing

PCB insulation oil in an appropriate place in the power station and for strictly preventing any eventual leakage to the environment.

There are not enough spare parts for this category of other electric equipment. The CEB needs to ensure a suitable budget and needs to stock the spare parts.

7.6.3 Control Equipment

- (1) Control and Protection Equipment
 - 1) Deterioration diagnostic results

The control and protection equipment was replaced with numerical-type equipment, which is similar to that of the Old Laxapana hydropower station, in 2003. To install the same type of equipment would be ideal due to ease of operation and maintenance as well as common use of spare parts.

However, it will be necessary to study the control and protection equipment in order to coordinate the control equipment with the existing governor and the excitation equipment when the hydraulic turbines and generators are replaced.

The replaced equipment (refer to Appendix C-3 List of Control Room Layout) of the latest numerical-type is designed so as to remotely controllable from the Old Laxapana hydropower station, but is not yet in use because the communication system has not been completed yet.

There are not enough spare parts for the equipment. This problem was caused by an improper clause for spare parts in the replacement contracts (refer to Appendix C-3 Summary for Investigation).

2) Countermeasures

As a whole, the control and protection equipment, which replaced in the same period as that of the Old Laxapana hydropower station in 2003, is capable of normal operation for now. And replacement or repair is not required.

- (2) Control Power Source Equipment
 - 1) Deterioration diagnostic result

The control power source batteries were replaced in 1998. A ground phenomenon was observed on the positive terminal side of a DC control power source.

An uninterruptible power supply system equipment is installed and is operation.

2) Countermeasures

It is necessary to investigate and repair the ground phenomenon in the positive terminal side in order to enhance the reliability of the power station.

- (3) Communication Equipment
 - 1) Deterioration diagnostic result

A microwave signal system is not used for signal transmission for transmission line protection, but a power line carrier system is used for signal transmission. However, the capacity of the power line carrier system is inadequate for data-transmission.

The control and protection equipment replaced in 2003 is designed to be remotely controllable from the Old Laxapana hydropower station by means of a SACADA system, but is not yet in use because the communication system has not been completed yet.

2) Countermeasures

The CEB expects to operate the Polpitiya hydropower station by means of a SCADA system from the Old Laxapana plant. Therefore, the OPGW communication line will be installed between the hydropower stations. It will be necessary to study in the detailed design stage an interface with the communication equipment as well as details for the remote control of the control and protection equipment of the Polpitiya power station

- (4) Dam Distribution Equipment
 - 1) Deterioration diagnostic result

The electric power used at Laxapana Dam is supplied from the auxiliary circuit of the Old Laxapana plant. Though the circuit is currently operating normally without any trouble, deterioration is apparent.

2) Countermeasures

Although it is not necessary to replace existing circuit at present, a study of future replacement should be started by the CEB.

8. REHABILITATION PLAN

8. REHABILITATION PLAN

8.1 General

In line with the study described in Chapters 5 to 7, the results of deterioration diagnosis in the study are shown in Table 8.1, with the ODA loan need and phase of implementation indicated. The cost and schedule of the recommended rehabilitation plan are shown in Tables 8.2, 8.3 and 8.4. The result, cost and schedule have already been confirmed with the Generation Project Branch of the CEB.

Table 8.1Present Condition of Each Hydro Power Station of the Laxapana Complex
(Including Civil and Hydro-mechanical Equipment)

Legend: Deterioration Level

- A: Immediate rehabilitation is required.
- B: Rehabilitation is required as soon as possible.
- C: Rehabilitation is desirable if conditions, such as budget, allow.
- D: Repair will be required in the future.
- E: There is no need for a measure, or observation is required.
- X: To be investigated further (or unknown)
- Necessity of ODA Loan
 - O: Necessary
 - NN: Not Necessary
- Phase of Implementation
 - SV: Purchase and installation can be started immediately
 - The scope and range of the rehabilitation are clear.
 - The cost can be estimated precisely.
 - The specification is already prepared or can be prepared immediately
 - DD: Detailed design work can be started immediately.
 - The scope and range of the rehabilitation is almost clear except for details.
 - The cost can be estimated.
 - The detailed design is necessary before implementing rehabilitation work.
 - IN: More detailed inspections, which include disassembly investigation, are needed
 - The scope and range of the rehabilitation are not clear.
 - The cost cannot be estimated.
 - Further inspections are necessary before the detailed design.

Notes:

- *1 The equipment is used to control and monitor the turbines, generators, transformers, switchyard and auxiliary circuit.
- *2 The equipment is used to protect the turbines, generators, transformers, switchyard and auxiliary circuit.

Table 8.1	Items	No.	Level	ODA	Phase
Common					
Canyon and Laxapana pond	 Removal sedimentation from the ponds Dredging grab 1m³ Mobile crane 30t 	1 lot	С	0	SV
Canyon and Laxapana dam	- Dam control system	2 lots	C	0	SV
Penstock and so on	- Robot for repainting the inside of penstock Blasting and painting machine	1 lot	C	0	SV
General use	- Small blasting and painting machine	1 lot	В	0	SV

Table 8.1	Items	No.	Level	ODA	Phase
Wimalasurendra					
Investigation	- Investigation for modification of spillway	1	Α	0	IN
(hydro-mech.)	investigation for modification of spinway	1	11	U	11,
Inspection before the	- Disassemble inspection for the	1	Α	0	SV
rehabilitation	electro-mechanical equipment	1	11	U	51
Turbine	In conjunction with the governors replacement	2	А	0	DD
	- Wicket gate stem			-	
	- Wicket gate stem packing				
	- Wicket gate servomotor				
	- Shaft seal packing				
	- Facing plate in bottom ring				
	- Whole stationary wearing ring				
Inlet valve	In conjunction with governors replacement	2	Α	NN	-
	- Modification of the controllers				
	- Seals	2	Α	NN	-
Governor	- Whole	2	Α	0	DD
Pressure oil supply	In conjunction with the governors replacement	2	Α	0	DD
system	- Whole				
Air supply system for	In conjunction with the governors replacement	2	Α	0	DD
governor	- Whole				
Air supply system for	In conjunction with the generators replacement	2	A	Ο	DD
brake	- Whole				
Grease lubrication	In conjunction with the governors replacement	2	A	Ο	DD
system	- Whole			-	
Water supply system	In conjunction with the generators replacement	2	A	Ο	DD
	- Whole				DD
Drainage system	- Whole	2	A	0	DD
Generator	Repair or replacement	2	Α	Ο	DD
	Case 1: Repair (rewinding and replacement				
	of the core)				
Exciter	Case 2: Replacement	2	A	0	DD
Exciter	Repair or replacement in conjunction with the generators	2	A	0	DD
	Case 1: Repair				
	Case 2: Replacement				
AVR	- Whole	2	Α	0	DD
Generator transformer	- Whole	7	A	0	SV
11kV main circuit	- Whole	2	A	0	SV
132kV switchgear	- Whole	6	B	0	SV
Plant control	- Whole *1	4 lots	A	0	DD
equipment		1 1015		U	00
Protection equipment	- Whole *2	4 lots	А	0	DD
LV auxiliary circuit	- Whole	1	A	0	DD
Control power source	- Whole	1	A	0	DD
equipment	- Installation of UPS			Ũ	22
Diesel generator	- Inspection and repair for control equipment	1	С	NN	-
	of diesel generator		-		
Communication	- Installation of OPGW and new	1	С	0	DD
equipment	communication equipment between WPS				
	and Old Laxapana P/S				
Dam distribution		1	D	-	-
equipment					
Dam (hydro-mech	- Modification of spillway	14	В	0	IN
and civil)					

Table 8.1	Items	No.	Level	ODA	Phase
Wimalasurendra					
Headrace tunnel (civil)	- Possible collapse	_	А	NN	-
Outlet (civil)	- Turbulent	-	Х	NN	-

Table 8.1	Items	No.	Level	ODA	Phase
Old Laxapana	(Stage I)				
Investigation (hydro-mech.)	- Investigation for installation of flashboard	1	А	0	IN
Inspection before the rehabilitation	- Disassembly inspection for electro-mechanical equipment	1	А	0	SV
Turbine	- Whole	3	Α	0	DD
Inlet valve	- Whole	3	Α	0	DD
Governor	In conjunction with turbines replacement - Whole	3	А	0	DD
Pressure oil supply system	In conjunction with turbines replacement - Whole	3	А	0	DD
Air supply system for governor	In conjunction with turbines replacement - Whole	3	А	0	DD
Air supply system for brake	In conjunction with generators replacement - Whole	3	А	0	DD
Oil lubrication system	In conjunction with generators replacement - Whole	3	А	0	DD
Water supply system	In conjunction with generators replacement - Whole	3	A	0	DD
Generator	In conjunction with turbines replacement - Whole	3	А	0	DD
Exciter	In conjunction with generators replacement - Whole	3	А	0	DD
AVR	In conjunction with generators replacement - Whole	3	A	0	DD
Generator transformer		4	D	-	-
11kV main circuit	In conjunction with generators replacement - Whole	3	А	0	DD
132kV switchgear	- Repair for operation mechanism of isolators	13	С	NN	-
Control equipment for Units 1, 2, 3	In conjunction with turbines and generators replacement - Modification	3 lots	С	NN	-
Control equipment for switchyard and auxiliary circuit	In conjunction with communication equipment modification - Modification	2 lots	С	NN	-
Protection equipment for Units 1, 2, 3	In conjunction with turbines and generators replacement - Modification	3 lots	С	NN	-
Protection equipment for switchyard and auxiliary circuit	In conjunction with communication equipment modification - Modification	2 lots	С	NN	-
LV auxiliary circuit		1	Е	-	-
Control power source equipment	- Repair for positive-side ground phenomenon	1	С	NN	-

Old Laxapana(Stage I)Image: Composition of the power station of the power station in LaxapanaImage: Composition of the power station in LaxapanaImage: Composition of the power station in LaxapanaCommunicationIn conjunction with communication equipment1CNN-equipmentIn conjunction in other power station in Laxapana1CNN-SCADA System- Modification and installation of some1CODDDam distribution-1DequipmentDam (hydro-mech. and civil)-Installation of flashboard8COINPenstock valve (hydro-mech.)Remote control system1CODDRight abutment of Dam (civil)XSurge tank (civil)X	Table 8.1	Items	No.	Level	ODA	Phase
Communication equipmentIn conjunction with communication equipment modification in other power station in Laxapana complex - Modification1CNN-SCADA System- Modification and installation of some equipment1CODDDam distribution equipment- Installation of flashboard1DDam (hydro-mech. and civil)- Installation of flashboard8COINPenstock valve (hydro-mech.)- Remote control system1CODDRight abutment of Dam (civil)- Leakage-X	Old Laxapana	(Stage I)				
equipmentmodification in other power station in Laxapana complex - ModificationICOSCADA System- Modification and installation of some equipment1CODDDam distribution equipment1DDam (hydro-mech. and civil)- Installation of flashboard and civil)8COINPenstock valve (hydro-mech.)- Remote control system1CODDRight abutment of Dam (civil)- Leakage-X	Diesel generator		1	Е	-	-
Dam distribution equipment1D-Dam distribution equipment1D-Dam (hydro-mech. and civil)-Installation of flashboard8COINPenstock valve (hydro-mech.)-Remote control system1CODDRight abutment of Dam (civil)-Leakage-X		modification in other power station in Laxapana complex	1	C	NN	-
equipment-Installation of flashboard8COINDam (hydro-mech. and civil)-Installation of flashboard8COINPenstock valve (hydro-mech.)-Remote control system1CODDRight abutment of Dam (civil)-Leakage-X	SCADA System		1	C	0	DD
and civil) - Remote control system 1 C O DD Penstock valve (hydro-mech.) - Leakage - X - - Right abutment of Dam (civil) - Leakage - - - -			1	D	-	-
(hydro-mech.) - X - Right abutment of Dam (civil) - X -		- Installation of flashboard	8	C	0	IN
Dam (civil)		- Remote control system	1	C	0	DD
Surge tank (civil) - Turbulence and explosive noise - X	U	- Leakage	-	X	-	-
	Surge tank (civil)	- Turbulence and explosive noise	-	Х	-	-

Table 8.1	Items	No.	Level	ODA	Phase
Old Laxapana	(Stage II)				
Inspection before the	- Disassembly inspection	1	Е	-	-
rehabilitation					
Turbine		2	D	-	-
Inlet valve	- Seals	2	A	NN	-
Governor		2	E	-	-
Pressure oil supply		2	E	-	-
system					
Air supply system for governor		2	Е	-	-
Air supply system for	In conjunction with Stage I generator replacement	2	А	0	DD
brake	- Whole				
Oil lubrication system	- Modification	2	С	NN	-
Water supply system	In conjunction with the Stage I generator	2	С	NN	-
	replacement				
	- Whole				
Generator		2	D	-	-
Exciter		2	D	-	-
AVR		2	Е	-	-
Generator transformer		7	D	-	-
11kV main circuit		2	Е	-	-
Plant control	*1	3 lots	Е	-	-
equipment					
Protection equipment	*2	3 lots	Е	-	-
LV auxiliary circuit		1	Е	-	-

Table 8.1	Items	No.	Level	ODA	Phase
Canyon					
Inspection before the rehabilitation	- Disassembly inspection	1	Е	-	-
Turbine	- Repair	2	С	NN	-
Inlet valve	- Seals	2	А	NN	-
Governor		2	D	-	-
Pressure oil supply		2	D	-	-
system					
Air supply system for		2	D	-	-
governor					
Air supply system for		2	D	-	-
brake					
Lubrication system		2	D	-	-
Water supply system		2	D	-	-
Drainage system	- Modification for the controller	2	С	NN	-
Generator	- Repair of the generators	2	С	NN	-
Exciter		2	D	-	-
AVR		2	D	-	-
Generator transformer		2	D	-	-
Spare generator	- Inspection	1	С	NN	-
transformer					
12.5kV main circuit	- Purchase of spare parts	2	С	NN	-
132kV switchgear		3	D	-	-
Plant control equipment	*1	4 lots	D	-	-
Protection equipment	*2	4 lots	D	-	-
LV auxiliary circuit		1	D	-	-
Control power source	- Inspection for the battery in Unit 1	1	С	NN	-
equipment					
Diesel generator	 Inspection for control equipment for diesel generator 	1	C	NN	-
Communication	- Installation of OPGW and new	1	С	0	DD
equipment	communication equipment between Canyon				
	and Old Laxapana P/S				
Dam distribution		1	D	-	-
equipment					
Penstock (civil)	- Erosion in foundation of anchor block concrete	-	С	NN	-
Tailrace (civil)	- Displacement in retaining wall concrete	-	Х	NN	-
Intake valve	- Modification of air valve of intake valve	1	В	0	DD
(hydro-mech.)					

Table 8.1	Items	No.	Level	ODA	Phase
New Laxapana					
Investigation	- Investigation for raking machine and access	1	А	0	IN
(hydro-mech.)	bridge for intake				
Inspection before	- Disassembly inspection	1	А	0	SV
rehabilitation					
Turbine	In conjunction with the governors replacement	2	А	0	DD
	- Guide vane servomotors	-	_		
Inlet valve	In conjunction with the governors replacement	2	В	NN	-
	- Modification for the controllers	-			
0	- Seals	2	A	NN	-
Governor	- Whole	2	A	0	DD
Pressure oil supply	In conjunction with governors replacement	2	А	0	DD
system Air supply system for	- Whole In conjunction with governors replacement	2	А	0	DD
governor	- Whole	2	А	0	
Air supply system for	In conjunction with generators replacement	2	А	0	DD
brake	- Whole	2	Л	0	
Grease lubrication	In conjunction with governors replacement	2	А	0	DD
system	- Whole	-		Ũ	22
Water supply system	In conjunction with generators replacement	2	А	0	DD
11 5 5	- Whole				
Generator	- Whole	2	А	0	DD
Exciter	In conjunction with governors replacement	2	А	0	DD
	- Whole				
AVR	In conjunction with generators replacement	2	Α	0	DD
	- Whole				
Generator transformer		7	D	-	-
12.5kV main circuit	- The circuit breaker for auxiliary circuit and	2	А	0	DD
	auxiliary transformer				
132kV switchgear	- Repair for operation mechanism of isolators	9	С	NN	-
Plant control	In conjunction with generators replacement	4 lots	А	0	DD
equipment	- Whole *1	4.1.4			DD
Protection equipment	In conjunction with generators replacement	4 lots	A	0	DD
IV anniliant ainstit	- Whole *2	1	•	0	DD
LV auxiliary circuit	In conjunction with generators replacement - Whole	1	А	0	DD
Control power source	- Whole	1	А	0	DD
equipment	- Installation of UPS	1	11	Ŭ	
Diesel generator		1	D	-	-
Communication		1	D	-	-
equipment			_		
Dam distribution		1	D	-	-
equipment					
Dam (civil)	- Cavity in foundation rock	-	В	NN	-
Surge tank vicinities	- Leakage	-	Х	NN	-
(civil)		ļ			ļ
Penstock (civil)	- Erosion in foundation of anchor block	-	С	NN	-
	concrete	1			
Tailrace (civil) Intake (hydro-mech.)	Erosion in concrete wallRaking machine and access bridge	1	C C	NN O	- IN

Table 8.1	Items	No.	Level	ODA	Phase
Polpitiya					
Investigation	- Disassembly inspection for	1	А	0	IN
0	electro-mechanical equipment			_	
Investigation	- Investigation for raking machine and access	1	А	0	IN
(hydro-mech.)	bridge for intake				
Turbine	- Whole the turbines except embedded parts	2	В	0	IN
Inlet valve	In conjunction with governors modification	2	В	NN	-
	- Modification for controllers				
	- Seals	2	А	NN	
Governor	In conjunction with turbines replacement	2	В	NN	-
	- Modification				
Pressure oil supply	In conjunction with turbines replacement	2	В	NN	-
system	- Modification				
Air supply system for	In conjunction with turbines replacement	2	В	NN	-
governor	- Modification				
Air supply system for	In conjunction with generators repair	2	С	NN	-
brake	- Modification				
Grease lubrication	In conjunction with turbines replacement	2	В	0	IN
system	- Whole				
Water supply system	- Whole	2	В	0	IN
Drainage system	- Whole	2	В	0	IN
Generator	In conjunction with turbines replacement	2	В	0	IN
	- Thrust bearing				
Exciter		2	D	-	-
AVR		2	E	-	-
Generator transformer	- Whole	7	Α	0	SV
12.5kV main circuit	- Auxiliary transformer	2	Α	0	SV
132kV switchgear		12	E	-	-
Control equipment for	In conjunction with turbines replacement	2 lots	С	NN	-
the Unit 1, 2	- Modification				
Control equipment for	In conjunction with communication equipment	2 lots	С	NN	-
the switchyard and the	modification				
auxiliary circuit	- Modification				
Protection equipment	In conjunction with turbines replacement	2 lots	С	NN	-
for Units 1, 2	- Modification				
Protection equipment	In conjunction with communication equipment	2 lots	С	NN	-
for switchyard and	modification				
auxiliary circuit	- Modification				
LV auxiliary circuit		1	E	-	-
Control power source	- Repair for the ground phenomenon at	1	С	NN	-
equipment	positive side				
Diesel generator		1	E C	-	-
Communication	- Installation of OPGW and new	1	C	0	DD
equipment	communication equipment between Polpitiya and Old Laxapana P/S				
Dam distribution		1	D	-	_
equipment		1	D		
Dam (civil)	Installation of rain gauge station	-	В	0	DD
Spillway (civil)	Reinforcement of spillway	-	Х	-	-
Intake (hydro-mech.)	Plan for raking machine and access bridge	1	С	0	IN
Intake (civil)	Vortex	-	Х	NN	-
Penstock (civil)	Erosion in foundation of anchor block concrete	-	С	NN	-
Powerhouse (civil)	Landslide		Х	NN	-
Powerhouse (civil)	Leakage in wall concrete	-	С	NN	-
Tailrace (civil)	Erosion in concrete wall	-	С	NN	-

Table 8.2 Cost of the Rehabilitation Plan (Including civil and hydro-mechanical equipment)

Notice: Recommended rehabilitation plan is shown in green.

Common rehabilitation Matrix

Tał	ole 7.4	Deterioration Level		
		А	В	С
Phase of Implementation	SV		- Small blasting and painting machine for general use Total cost: US\$200,000	 Removal of sedimentation from Canyon and Laxapana ponds Dredging grab Mobile crane Dam control system for Canyon and Laxapana pond Robot for repainting the inside of penstock Total cost: US\$2,500,000
	DD			
	IN			

Estimated cost of the recommended rehabilitation plan in this table

Item	Cost
Total cost of items in green, above	US\$2,700,000
Engineering fee (10%)	US\$300,000
Contingency (10%)	US\$300,000
Total cost	US\$3,300,000

Table	e 8.2	Deterioration Level		
		А	В	С
1	SV DD	 Disassembly inspection Total Cost: US\$1,200,000 Generator transformer 11kV main circuit Total cost: US\$1.800.000 Turbine (replacement of some parts) Governor Pressure oil supply system Air supply system for governor Air supply system for brake Grease lubrication system 	- 132kV switchgear Total cost: US\$3,200,000	- Communication equipment Total cost: US\$400,000
Phase of Implementation		 Water supply system Drainage system Generator: Case 1: Repair Case 2: Replacement Exciter and AVR Plant control equipment Protection equipment LV auxiliary circuit Control power source Total cost of case 1: US\$8,900,000 Total cost of case 2: US\$12,800,000 		
]	IN	- Investigation for modification of spillway Total Cost: US\$300,000	- Modification of spillway [Reference] Cost: US\$5,600,000	

Wimalasurendra Rehabilitation Matrix

Estimated cost of the recommended rehabilitation plan in this table

Item	Cost of Case 1	Cost of Case 2
Total cost of items in green, above (excluding the cost of investigation and disassembly inspection)	US\$14,300,000	US\$18,200,000
Engineering fee (10%)	US\$1,500,000	US\$1,900,000
Cost of investigation	US\$300,000	US\$300,000
Cost of disassembly inspection	US\$1,200,000	US\$1,200,000
Contingency (10%)	US\$1,600,000	US\$2,000,000
Total cost	US\$18,900,000	US\$23,600,000

Old Laxapana	(Stage I)	Rehabilitation	Matrix
--------------	-----------	----------------	--------

Table 8.2		Deterioration Level		
		А	В	С
	SV	Disassembly inspection Total cost: US\$1.200.000		
Phase of Implementation	DD	 Turbine Inlet valve Governor Pressure oil supply system Air supply system for governor Air supply system for brake Oil lubrication system Water supply system Generator Exciter AVR 11kV main circuit Total cost: US\$12,400,000 		 Communication equipment Total cost: US\$200,000 Repair for remote control system of the penstock valve Total cost: US\$200,000
	IN	- Investigation for Installation of flashboard	- Flashboard [Reference]	
		Total cost: US\$300,000	Cost: US\$3,200,000	

Old Laxapana (Stage II) Rehabilitation Matrix

Table 8.2		Deterioration Level		
		А	В	С
on	SV			
Phase of olementati	DD	- Air supply system for brake Total cost: US\$100,000		
Imi	IN			

Estimated cost of the recommended rehabilitation plan in this table

Item	Cost
Total cost of items in green, above, in Old Laxapana P/S Stage I (excluding the cost of investigation and disassembly inspection)	US\$12,600,000
Total cost of items in green, above, in Old Laxapana P/S Stage II	US\$100,000
Engineering fee (10%)	US\$1,300,000
Cost of investigation	US\$300,000
Cost of disassembly inspection	US\$1,200,000
Contingency (10%)	US\$1,500,000
Total cost (The cost includes the cost of rehabilitation plan of Old Laxapana Stage II.)	US\$17,000,000

Canyon Rehabilitation Matrix

Table 8.2		Deterioration Level		
		А	В	С
ion	SV			
Phase of dementation	DD		- Modification of air valve of intake valve Total cost: US\$300,000	- Communication equipment Total cost: US\$400,000
Imp				

Estimated cost of the recommended rehabilitation plan on this sheet

Item	Cost
Total cost of items in green, above	US\$700,000
Engineering fee (10%)	US\$100,000
Contingency (10%)	US\$100,000
Total cost	US\$900,000

Tal	ole 8.2	Deterioration Level		
		А	В	С
	SV	- Disassemble inspection Total cost: US\$1,400,000		
Phase of Implementation	DD	 Turbine (Replacement of some parts) Governor Pressure oil supply system Air supply system for governor Grease lubrication system Air supply system for brake Water supply system Generator Exciter AVR 2.5kV main circuit Plant control equipment Protection equipment LV auxiliary circuit Control power source Total cost: US\$15,800,000 		
	IN	- Investigation for raking		- Raking machine and access
		machine and access bridge		bridge
		Total cost: US\$500,000		[Reference] Cost: Unknown

New Laxapana Rehabilitation Matrix

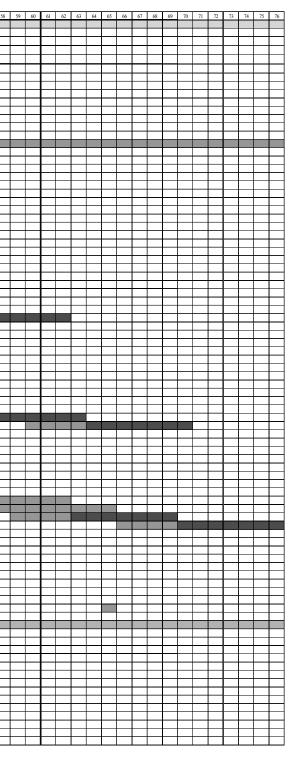
Estimated cost of the recommended rehabilitation plan on this sheet

Item	Cost
Total cost of items in green, above (excluding the cost of investigation)	US\$15,800,000
Engineering fee (10%)	US\$1,600,000
Cost of investigation	US\$500,000
Cost of disassembly inspection	US\$1,400,000
Contingency (10%)	US\$1,800,000
Total cost	US\$21,100,000

Polpitiya Rehabilitation Matrix

Ta	ble 8.2	Deterioration Level		
		А	В	С
Phase of Implementation	SV DD IN	A - Generator transformer 12.5kV main circuit Total cost: US\$2.100.000 - Investigation for the turbine Total cost: US\$1,400,000 - Investigation for raking machine and access bridge Total cost: US\$500,000	 B Installation of rain gauge station Total cost: US\$600,000 Turbine Grease lubrication system Water supply system Drainage system Generator (Parts replacement) [Reference] Cost: US\$10,00,000 	C - Communication equipment Total cost: US\$400,000 - Raking machine and access bridge [Reference] Cost: Unknown
			0000.0000000	

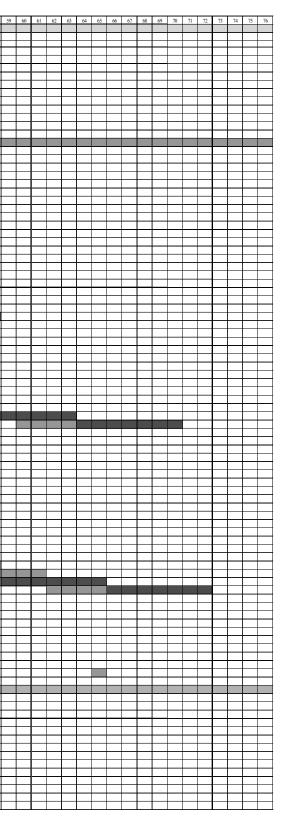
Estimated cost of the recommended rehabilitation plan on this sheet


Item	Cost
Total cost of items in green, above (excluding the cost of investigation)	US\$3,100,000
Engineering fee (10%)	US\$400,000
Cost of investigation items in green, above	US\$1,900,000
Contingency (10%)	US\$600,000
Total cost	US\$6,000,000

Total cost of recommended rehabilitation plan

Common		US\$3,300,000
Wimalasurendra	US\$18,900,000	US\$23,600,000
Old Laxapana Stage I (including the cost for Stage II)		US\$17,000,000
Canyon		US\$900,000
New Laxapana		US\$21,100,000
Polpitiya		US\$6,000,000
Total cost	US\$67,200,000	US\$71,900,000

Table 8.3 Schedule of the Rehabilitation Plan (Case 1)


Stopping period of the generator																													
Item Ist detail design and supervising Price(k\$)	1	2 3	4	5 6	7 8	9	10 11	12 13	14 15	16	17 18	19 20	21 22	23 24	25 26 2	28 29	30 31 3	32 33 34	35 36	37 38 39	40 41	42 43	44 45	46 47	48 49	50 51	52 53	54 55 5	56 57 58
Tst detail design and supervising PTCe(K3)												-																	
Preparation of bidding document for purchasing																													
Bidding																													
Bidding, evaluation and negotiating		\vdash					_					_							_								+++		
Approval of the contract Award of the contract		+-									_												_				+++		
Award of the contract																													
Design and approval of drawings																													
Manufacturing and shop test		\vdash																					_				++++		
Transportation Installation (First unit)		+-+-			+ $+$																	_	_				++++		
Installation (First unit)																											+++		
3 2nd detail design and supervision																													
[Common Item: Detail design stage]		+																									+++		
Preparation of bidding document for investigation																													
Bidding																													
Bidding, evaluation and negotiating		\vdash			+ $+$						_												_				++++		
Approval of the contract Award of the contract		\vdash																						_			+++		
Preparation of the investigation																													
Investigation work		+	$+ \neg$		+	$+\top$		\square	$+ \pm$	$+ \top$																$-\top$	$++\overline{+}$		
[WPS]		\vdash	+		+ $+$	+ +		\vdash	+ $+$	+ +									+		+ $+$ $+$		-+		+ +		+++		
Data analysis		\vdash	+		+	+			+ +	+																	+++		
Bidding, evaluation and negotiating																													
Approval of the contract		+	$+ \top$		+	$+\top$			$+ \mp$	$+\top$																$-\top$	$+ + \overline{+}$		
Award of the contract		\vdash	+		+ $+$	+		\vdash	+ +	++			\vdash			+ $-$	\vdash	+ $+$			+ $+$ $+$	-+	-		+	+ $+$	+++	+	
Design and approval of drawings		\vdash				+			+ +													- -	-+-1		+ +		+++		
Manufacturing and shop test																													
Transportation		\square					_																						
Installation (First machine) Installation (Second machine)											_																		
instanation (Second machine)																													
[Old Laxapana]																													
Data analysis		\square																					_				+++		
Bidding, evaluation and negotiating Approval of the contract		+-+-		_			_				-												_				+++		
Award of the contract																													
Design and approval of drawings Manufacturing and shop test											_												_				+++		
Transportation							-																_						
Installation (First machine)																													
Installation (Second machine)		\vdash																									╆╌┿┹		
Installation (Third machine)		\vdash		_			_				_												_				+++		
[New Laxapana]																													
Data analysis																													
Bidding, evaluation and negotiating		\vdash			+ $+$		_			+ $+$	_											_					++++		
Approval of the contract Award of the contract		\vdash																					_				+++		
Design and approval of drawings																											$ \rightarrow $		
Manufacturing and shop test Transportation		\vdash																											
Installation (First machine)																											+++		
Installation (Second machine)																													
		\square					_				_												_				+++		
[SCADA] Design and approval of drawings		\vdash					_																_				++++		
Manufacturing and shop test																													
Transportation																													
Installation		\square					_				_												_				+++		
[Civil works]																											+++		
Civil Works																													
[Hydromechanical works]																													
				_			_				_	_												_			┢╧╧╋		
4 Investigation																											+		
Preparation of bidding document for investigation								LL																					
Bidding		\square			+										$\neg \neg$							$\neg \neg$	$-\Box$				+ +		
Bidding, evaluation and negotiating		\vdash	+		+ + -	+		\vdash	+				+ + +		\rightarrow	+ $+$	+ + +	+ $+$ $+$			+ $+$ $+$				+	+ $+$	+++	+ +	+
Approval of the contract Award of the contract		\vdash	+			+		\vdash	+ $+$								\vdash										+++		
								LL																					
Preparation of the investigation																											\square		
Investigation work		\vdash	+		+ + -	+		\vdash	+ $+$	+			+ + +			+ $+$	+ + +	+ $+$ $+$			+ $+$ $+$				+ +	+ $+$	+++	+	+
			1							1								1 1			i		1 1	1					
Data analysis Reporting and submission			1																1										
Reporting and submission		E																									\blacksquare		
Data analysis Reporting and submission [Civil works]																													

Final Report

Table 8.4 Schedule of the Rehabilitation Plan (Case 2)

	et datail dagian and gunaruiging Drigo(LC)	1	2	3 4	5	6	7 8	9	10 11	12 1	3 14 15	16 17	18 19	20 21	22 23	24 25	26 27	28 29	30 31 32	2 33 34	35 36	37 38	39 40	41 42	43 44	45 46	47 48	49 50	51 52	53 54 55	55 56
	or derain desight and supervising rTRe(K\$)		_																								\square				
	Preparation of bidding document for purchasing	_	-	_	++		+-											+ $+$ $-$									├──┼──	+		-+-+-	
Andramine I	Bidding																														
AddamaAddam	Bidding, evaluation and negotiating		$ \rightarrow $		_																										
			\rightarrow																								\square				
	Award of the contract		\rightarrow				<u> </u>																				+	╉╌┼──┘			
			\rightarrow		+	-+	——																				++-	╉─┼──┘	┍━┥━┛		
	Design and approval of drawings		-+				_																				+-+-		┍─┼─┦		
	Manufacturing and shop test	\rightarrow	-+				<u> </u>																				+-+-		┍━┿╾┦		
			-+				_																				\vdash				
		\rightarrow	\rightarrow			_	—										_										<u> </u>		┍─┼─┦		
And Angender And Angender <td< td=""><td>Installation (Second unit)</td><td>\rightarrow</td><td>\rightarrow</td><td></td><td></td><td>—</td><td>—</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td>+</td><td>┍━┿━┩</td><td></td><td></td></td<>	Installation (Second unit)	\rightarrow	\rightarrow			—	—										_										<u> </u>	+	┍━┿━┩		
And Angender And Angender <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																															
Image: Section of the section of th	etali design and supervision		_																												
	uman Itam: Datail dagim etaga]	+																									++-				
	Brongerstion of hidding document for investigation																										\vdash				
																											+				
		\rightarrow	-+		+++	-+																									
		\rightarrow	\rightarrow		+++	-			_																		\vdash			-++	
			-+		+++																										
	Branemation of the investigation	\rightarrow	-+	-+		-+	+		-																		++				
	Investigation work		-																								+				
	Investigation work											_															<u> </u>	++		-+	
	1	+	+	+	++	-+	+-	1 +		+ +	+ +	+ +	+ +							+ + -	+			<u>├ </u>			<u>⊢</u> +−				
Base of the set of the s		++	+	+	++	-+	+-	+ $+$		+	+ +	+ +	1 -					+ +		+								1-+		-+-+-	+
		++	+	+	++	+	+	+		+ +		+ $+$	1					+ + -												-+	+
		+	+	-+	++	-+	+-	+			+							++-		+ $+$							\vdash		-+	-+	+
And and a bar a		+	+	+	++	+	+			+ +		+ $+$	+ $+$																	-+-	+
	Award of all contract	+	+	-+	++	-+	+-	+	_		+							++-		+	\vdash				\vdash		\vdash		-+-	-+	+
	Design and approval of drawings	+	+	+	++	-+	+-	+ +		+ +	+ +	+ +															\vdash			-+-+-	+
	Manufacturing and shop test		+	+	+-+	+	+-	+				+ $+$																	<u> </u>	-+	
		+	+	+	++	-+	+-	+ +		+ +	+ +	+ +																		-+-+-	+
		+	+	+	++	-+	+-	+ +		+ +	+ +	+ +	+ +	+ $+$ $-$				+ $+$ $-$		+	+										
		+	+	+	++	-+	+-	1 1			+ +	+ +																			
	instanation (Second Indennie)	++	+	+	++	-+	+	+		+ +		+ $+$						+ $+$													
																											++-				
	Data analusis	\rightarrow	-+		+++																						+			-+	
	Data analysis Bidding, conjustion and pagetieting	\rightarrow	-+		+++				-																		+				
		\rightarrow	-+		+++		-																				++-				
																											<u> </u>	++		-+	
	Award of the contract		-																												
	Design and approval of drawings	\rightarrow	\rightarrow		+++	-																					\vdash			-+	
	Manufacturing and shop test				+++	-																									
		\rightarrow	-+		+++	-+																									
		+			+++				-																						
		\rightarrow	-+		+++	-+																									
		\rightarrow	\rightarrow			-+	+		-																		++				
	instantion (Third Indefinite)																											1 1 1			
	w Jayanana]	_																													
	Prenaration of hidding document for investigation	+			+++				-																						
	Bilding				+++																										
	Bidding evaluation and negotiating	_																													
					+++																										
		+	-+		+++	-			-														-						-+-+		
	Award of the investigation		-																								++-				
	Investigation work	\rightarrow	-+		+++	-																					\vdash			-+	
Bidly condengement Bidly condengement<	Investigate/II WUIK	++	+	-+	++	-+	+	+		+		+ $+$						++-												-+-+-	+
	Data analysis	+	+	+	++	-+	+-	+ +		+ +	+ +	+ +						+ $+$												-+-+-	+
	Data analysis Bidding, evaluation and negotiating	\rightarrow	+	+	++	\rightarrow	+-	+		+	+ $+$	+ +	+ $+$	+				+ +						<u> </u>			\vdash	╉─┼─┙	-+	-+-+-	+
	A manual of the contract																													-+-+-	
		++	+	+	++	-+	+	+		+ +		+ $+$						+ $+$											-+	-+-+-	+
	Award of the contract	+	+	+-	+	-+	+-	1 1				+ $+$																		-+	+
	Design and approval of drawings	++	+	+	++	-+	+-	+		+ +	+ +	+ $+$	1					+ +										1		-+	+
	Manufacturing and shon test	++	+	+	++	+	+	+		+		+ $+$						+ + -													
Induking frame/information I	Transportation	+	+	+	++	+	+-	+			+ +	+ +								+ $+$											
		+	+	+	++	-+	+-	+				+ +										i + -									
		-	+	+	++			+				+ +											-						_ 		
Designation I <td< td=""><td></td><td>+</td><td>+</td><td>+</td><td>++</td><td>+</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td></td<>		+	+	+	++	+	+																								+
Designation I <td< td=""><td>DA</td><td></td><td>-+</td><td>-+</td><td>++</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	DA		-+	-+	++		-																								
		+	+	+	++	-+	+	+																				1 + +	_ 		+
Tangendamin <t< td=""><td>Manufacturing and shop test</td><td>+</td><td>+</td><td>+</td><td>++</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,+_+</td><td></td><td>+</td></t<>	Manufacturing and shop test	+	+	+	++																								, +_+		+
Independent of a bia			-+	+	++			+																					_ 		+
			-+	-	++																								_ 		-
matrix mat			\neg																												
mach mach<	works]			-+	++																								_ 		+
a b				+	++																								, 		+
and <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td>_ </td> <td></td> <td>+</td>								+																					_ 		+
Preprint on biding document from segation Preprint on biding d	omechanical works]				++												1														\neg
Pranta o finding dagement for segment for segme	omechanical works]																														
Biding conductional problema frequencies Biding conductional problema freque																															
Bading Bad			-+	+	++							+ +																	_ 	-+-+-	+
Biding, evaluation and negativing Biding, evalua	igation		+	+	++							+ $+$								+ $+$									-+-+	-+-+-	+
Approximation of the contract	igation Preparation of bidding document for investigation	\mp		+	++	+		+ +																					-+	-+	+
Avanded contract Avanded contract <td< td=""><td>igation Preparation of bidding document for investigation Bidding</td><td></td><td>-+</td><td>\rightarrow</td><td>++</td><td>+</td><td>+</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>++</td><td></td><td>+ $+$</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>+</td></td<>	igation Preparation of bidding document for investigation Bidding		-+	\rightarrow	++	+	+	+										++		+ $+$									_ 		+
Prparation flux with the state of the s	igation Preparation of bidding document for investigation Bidding Bidding evaluation and negotiating		—	1		-+	+	+		+ +								+ + -												-+	+
Investigation work Data analysis Investigation Inv	tigation Preparation of bidding document for investigation Bidding Bidding, evaluation and negotiating Approval of the contract		7	+							+ +							+ +										1-+		-+-+-	+
Investigation work Data analysis Delta conduction Delta conduction </td <td>tigation Preparation of bidding document for investigation Bidding Bidding, evaluation and negotiating Approval of the contract</td> <td></td> <td>=</td> <td>\pm</td> <td>++</td> <td>-+</td> <td></td> <td>1 1</td> <td></td> <td>I I I</td> <td>1 1</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>i 1</td> <td></td> <td></td> <td></td> <td></td> <td></td>	tigation Preparation of bidding document for investigation Bidding Bidding, evaluation and negotiating Approval of the contract		=	\pm	++	-+		1 1											I I I	1 1			1			i 1					
Data analysis	stigation Preparation of bidding document for investigation Bidding Bidding, evaluation and negotiating Approval of the contract Award of the contract			\pm	++	\mp	Ŧ	+ +															1				+-+-			-+-	
	stigation Preparation of bidding document for investigation Bidding Bidding Exding, evaluation and negotiating Approval of the contract Award of the contract Preparation of the investigation			\pm	+	+	Ŧ																				匚匚				
	stigation Preparation of bidding document for investigation Bidding Bidding, evaluation and negotiating Approval of the contract Award of the contract Preparation of the investigation Investigation work			+		\mp	\mp																				F				
	stigation Preparation of bidding document for investigation Bidding Bidding Bidding evaluation and negotiating Approval of the contract Award of the contract Preparation of the investigation Investigation work Data analysis						$\overline{+}$																								+
	tigation Preparation of bidding document for investigation Bidding Bidding, evaluation and negotiating Approval of the contract Award of the contract Preparation of the investigation Investigation work Data analysis																														

9. MAINTENANCE MANAGEMENT

9. MAINTENANCE MANAGEMENT

9.1 Civil Structures

9.1.1 Present Status

During the site visits, an interview was conducted to understand the present status of operations and maintenance for civil structures at the Laxapana Complex.

For spillway gates, CEB has prepared spillway rating curves for each dam that has a spillway gate equipped. The spillway rating curves indicate the relationship between the reservoir water level, the discharge at the spillway and the height of the open gate. The spillway rating curves are important for CEB in monitoring how spillway gates operate during floods. All spillway gates monitored operated properly except in some cases at the Laxapana Reservoir where overtopping and rise in water levels had occurred. The overtopping and rise in water levels were caused by gate trouble and heavy rain.

CEB has not carried out a periodic maintenance inspection and structure diagnosis on the civil structures in the Laxapana Complex. In addition, there is no inspection manual present, which lists the structures to be inspected, inspection items, frequency and procedures etc.

9.1.2 Recommended Inspection Manual

An inspection manual for civil structures inspection has been prepared and attached to this report. This manual is based on J-POWER's manual, which specifies the frequency and check items of the patrol, inspection, measurement, etc for civil structures. It may be necessary to review and revise the manual to the actual circumstances at Laxapana complex.

J-POWER has conducted structural diagnosis when it is necessary. In recent years, JSCE (Japan Society of Civil Engineers) has issued a structural diagnosis guideline for concrete structures, which describes the basic concepts of the structural diagnosis. However, if the guideline is applied to the hydropower plant, details for structural diagnosis of the plant must be specified. In this chapter, only the concepts of the structural diagnosis are presented.

The main purpose of structural diagnosis is to forecast future deterioration of concrete structures, which could be caused by neutralization, salt injury, chemical reaction, alkali-aggregate reaction and fatigue through physical testing and obtain data that will be useful in estimating the proper timing for measures to be implemented. In order to achieve this, each structure's level of importance has to be decided taking account the social and economical impact. For example, a dam is very important due to the massive impact of it collapsing. On the other hand, a collapsed gutter around a powerhouse is will not have a great impact lowering its importance. With this, it is necessary to classify the structures into categories of importance for maintenance works.

Structures that are classified as important should be examined through a physical property test. Such as an unconfined compression test for concrete which should be done in intervals of several years in order to obtain the deterioration curve of the structure. Figure 8.1 shows an image of the deterioration curve. This deterioration curve would suggest a proper timing for measures to be implemented.

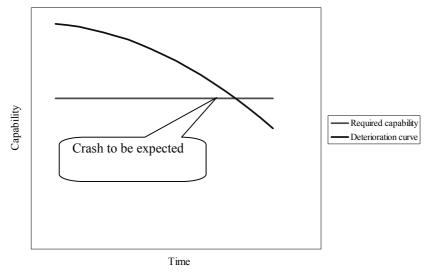


Figure 9.1 Image of Deterioration Curve

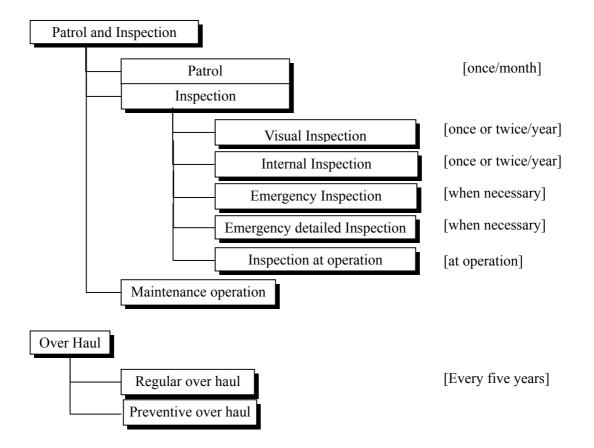
It is not necessary to conduct a physical test on non-important structures. However, the specified maintenance works stated in the inspection manual should be performed for these structures.

9.2 Hydromechanical Equipment

9.2.1 Present Status

CEB has listed the following repairs conducted. The repairs listed were mainly for the Laxapana Complex. These repairs were conducted by CEB directly. Due to restrictions in budget, labour and suspension, some works could not satisfy all the requirements for repair.

- (1) Penstock Repair Work
 - Touch up painting at places of corrosion on welded parts (New Laxapana)
 - Repaired leakage at the expansion joints (New Laxapana)
 - Measured the thickness of the old penstock (Old Laxapana)
- (2) Gate and Screen
 - 1) Spillway gate
 - Replacement of the wire rope for hoisting equipment (Polpitiya)
 - Touch up painting at places of corrosion (Polpitiya)
 - Cleaning and painting of the flush board (Wimalasurendra)
 - Annual test of gate operation (Canyon)
 - 2) Intake gate
 - Repaired Intake gate, Bulkhead gate, Trashrack and Gantry crane (Wimalasurendra)
 - Repair plan created for needle valve (Wimalasurendra)
 - 3) Tailrace gate
 - Repaired tailrace gate (Canyon)
 - 4) Screen
 - Repaired Intake trashrack (Polpitiya)


9.2.2 **Recommendations for Maintenance**

(1) Recommended Operation and Maintenance Manual

CEB has conducted the above repair works on the hydromechanical equipment. However, periodic patrols and inspections must be performed in order to prevent any accident and to prolong the life of the aging equipment.

The general system of patrol and inspection by J-Power is shown below. This system contains periodic patrols, visual inspections, internal inspections and emergency inspection based on safety regulations. These days, J-Power has carried out the deterioration diagnose for identifying deteriorated equipment in past years in order to supplement the conventional patrol and inspection.

It is recommended to create an O&M manual for CEB hydro-mechanical equipment that refers to J-Power's manual.

Example: J-Power's Inspection and maintenance of hydromechanical equipment

(2) Important Matters on Maintenance

Generally, the life of steel structures such as hydro-mechanical equipment depends on corrosion and metal fatigue. This is especially so for the hydro-mechanical equipment which requires re-painting to prolong the life of the equipment. Along with this, the maintenance of hoisting equipment of the spillway gate, including the wire rope and the auxiliary power, are important in preventing accidents at time of discharge,

Along with the periodic inspection of the hydromechanical equipment, the maintenance of the stairs, ladders and handrail which provides access to the spillway gate's trunnion and inspection gallery around penstock should be performed.

9.2.3 Technical Documents on Maintenance

The technical documents concerning the maintenance of the hydro-mechanical equipment is attached at the end of this report.

(1) Maintenance on Hydromechanical Equipment

This section is one of the excerpts from the maintenance regulations mentioned in the "Technical Standard for Gates and Penstocks" and was adjusted for use with the hydro-mechanical equipment in the Hydropower station.

(2) Inspection Manual

This manual is one of the excerpts from the inspection items on the penstock and radial gate mentioned in J-Power's manual on periodic patrols and inspections for hydro-mechanical equipment.

(3) Deterioration Monitoring Manual

This manual is an excerpt of a monitoring manual from J-Power's Deterioration Monitoring Manual for Hydro-mechanical equipment.

(4) Re-painting Manual

This manual is an excerpt of a re-painting manual from J-Power's Re-painting Manual for Hydro-mechanical equipment.

9.3 Electro-mechanical Equipment

9.3.1 Present Status

The inspection for the electro-mechanical equipment in CEB is divided into a scheduled inspection and unscheduled, similarly used in Japan. Furthermore, scheduled inspections are divided into daily inspections, monthly inspections, and overhaul.

It can be stated that daily inspection is "Cleaning and Data collection", monthly inspection is "Cleaning and Visual inspection", overhaul is "Characteristics inspection and Replacement of consumption articles."

(1) Daily Inspection

Daily inspection is basically cleaning and daily inspection at the shutdown period during normal operation. Data collection is carried out every hour using a daily data sheet in the operation room in each power station. Each power station's data sheet in the Laxapana Complex should be different. Listed below are the inspection items of Polpitiya power station for reference.

- Oil pressure of the brake and governor systems
- Water pressure in the spiral case
- Location of guide vanes and the limitations
- Voltage and current of field circuits
- Voltage, current, active power, reactive power and power factor of generators
- Oil and winding temperatures of the generator transformer
- Water flow of the generator transformer
- Voltage and current of the auxiliary circuits
- Voltage, current of the D.C. circuit
- Voltage, current, active power and reactive power of transmission lines
- Energy production of each generator, and energy consumption of the auxiliary circuit (Once / day)
- (2) Monthly Inspection

The date of monthly inspection is decided every month. The inspection is basically twice a month. Inspection items for the Canyon power station are shown in Appendix C-4 for reference. Most items listed in the monthly inspection are visual inspections. Furthermore, some special inspection items are applied to the following power stations.

- Wimalasurendra hydropower station; downward movement of coil in the stator was discovered in 2002. This fault has not been completely repaired. Visual inspection of the coil position has been carried out during monthly inspection since discovery.
- New Laxapana hydropower station; a leakage-oil from the bearing have sprayed on the stator in the generator. Visual inspection and cleaning the stator is carried out during the monthly inspection.

- Polpitiya hydropower station; the main shaft seal of the hydraulic turbine has rapidly worn out due to inflow of silt and sand during the rainy season. Replacing the seal is carried out during the monthly inspection.
- (3) Overhaul

Overhaul is characterized as measurement of equipment, such as insulation resistance, oil inspection and disassembly inspection of auxiliary equipment, etc. Major overhaul items for the Canyon hydropower station are shown in Appendix C-4 for reference.

9.3.2 The Issue of the Maintenance Work for Electro-mechanical Equipment

(1) Daily Inspection

Daily inspection should be frequent.

From mechanical point of view, recording temperatures during operation is important to help maintain the rotating equipment. A data logger is a useful way to record the temperature during operation. However, some data loggers stop at the power station due to the shortage of record sheets.

On the daily data sheet, columns for entering the temperature of equipment are less than the columns for electrical values, such as voltage, current, active and reactive power.

The number of columns for the electrical value is sufficient for daily inspection.

(2) Monthly Inspection

CEB specifies the items of monthly inspection on for each power station and carries out the whole items and keeps the records in power station adequately. The items and frequency of the monthly inspection are adequate.

For control and protection relay equipment, it is necessary to marshal data from characteristic tests to confirm if it is within the tolerance for each setting value of each instrument and protection relay. Further, it is also necessary to marshal a record of start and stop sequence tests of all of the equipment during operation at the end of the monthly inspection.

(3) Overhaul

Some measurement procedures are not precisely formulated. For example, measurement times of an insulation resistance use records which are based on different measurement times in the same unit. Normally, it is difficult to use the results on the records from different measurement times as data of deterioration diagnosis. Different measurement times seem to be caused by inadequate inspection time under times of tight power demand and supply balance and are also affected due to the lack of an original inspection manual for each power station.

Furthermore, the disassembly inspection for the generator and hydro-turbine are not carried out in the periodical overhaul. For these reasons, minor faults, which have left small impacts inside the equipment, have been left without any repair.

As for the control and protection relay equipment, it is necessary to carry out the same items for control and protection relay equipment such as monthly inspection.

Further, it is necessary to perform the load rejection test during operation, and to marshal data from the test.

9.3.3 Recommended Frequency and Items for Maintenance Works

(1) Daily Inspection

All data loggers should restart from the power station, which was equipped with loggers, as soon as possible.

CEB should consider adding the following temperature columns into the daily data sheets for the power station without data logger.

- Oil temperature of turbine, upper, lower and thrust bearing
- Coil temperature of stator
- (2) Monthly Inspection and Overhaul

It seems that monthly inspection items and overhaul is based on the manufacturer's instructions. Generally the inspection items listed in the manufacturer's instruction are not enough to conduct a deterioration diagnosis for electro-mechanical equipment. All power utility companies in Japan are equipped with original inspection items and manuals for monthly inspection and overhaul. Their inspection items are based on information from not only the manufacturer's instructions but also from past experiences, such as records of installation and disassembly and accident recovery works. The inspection items and frequency in J-Power are shown in Appendix C-5. The "Periodical inspection" from J-Power inspections is similar to the CEB's monthly inspection and overhaul.

It is important to build up an original inspection manual for overhaul at each power station. An original inspection manual allows CEB to not only properly conduct procedures for each inspection, but also allows common sense concerning the overhaul to enter in. This is why common sense among everyone concerned is the foundation of safety.

If possible the manual should be simple. The manual J-Power used at the simplified efficiency test on Unit 1 in Old Laxapana hydropower station is show in Appendix C-5.

10. ECONOMIC AND FINANCIAL ANALYSIS

10. ECONOMIC AND FINANCIAL ANALYSIS

10.1 Economic Analysis

The economic and financial analysis is focused on Wimalasurendra P/S (40 years old), Old Laxapana P/S (54 years old) and New Laxapana P/S (30 years old), for which replacement of the main electrical equipment is being planned.

Since hydro power stations have an actual lifetime beyond their accounting lifetime, the consultant has determined rehabilitation plans in consideration of actual lifetime. In consideration of this actual lifetime and in line with the results of other power stations around the world and based on J-POWER's experience, the lifetimes of the typical civil structure and electro-mechanical equipment are established as follows:

	Accounting lifetime	Actual lifetime
Civil structure	50 years	100 years
Electro-mechanical	35 years	Main equipment: 50 years
equipment		Others: 25 years

The rehabilitation plan is thoroughly considered from the technical standpoint, and when two or more rehabilitation plans can be considered, they should be analyzed for every case in regard to differences in improved generating efficiency, outage time, future operation and maintenance cost and so on. The detailed rehabilitation plans of each power station, as the object of economic analysis, are described in Chapter [7. ELECTRO-MECHANICAL EQUIPMENT]. Regarding the main equipment, the rehabilitation plan is summarized as follows:

(1) Wimalasurendra P/S

- Case 1: Repair of generator; replacement of stator coils and cores. Subsequently, the generator is used with continuous maintenance.
- Case 2: Replacement of generator.
- (2) Old Laxapana P/S

Replacement of hydraulic turbines and generators

(3) New Laxapana P/S

Replacement of generators

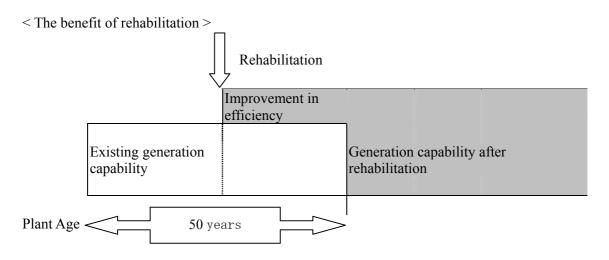
10.1.1 Estimate of Economic Benefits

The consultant assumed that an alternative thermal power plant will be required when if rehabilitation is not carried out — a plant that can meet peak demand, and its construction cost and operation and maintenance cost including fuel cost will be considered as a benefit in this analysis. A gas turbine type power plant has been chosen as the alternative thermal power plant for this analysis.

To calculate the economic benefit of kW-Value and kWh-Value, kW-Value adjustment factor of 1.13788 and kWh-Value adjustment factor of 0.98454 can be used to adjust the energy loss of hydro power and gas turbine power generation respectively. Detailed calculations are as shown in Table 10.1.

Thus, the output of each plant adjusted for kW-Value is set up as follows.

Power Station	Capacity	Alternative Gas Turbine Plant
Wimalasurendra	50MW (25MW*2)	57.0MW
Old Laxapana (Stage I)	25MW (8.33MW*3)	28.5MW
New Laxapana	100MW (50MW*2)	113.8MW


The construction cost, O&M cost and accounting lifetime of a plant with these characteristics are as follows, assuming gas turbine plants of 35MW for Wimalasurendra P/S and Old Laxapana (Stage I) P/S, and a 105MW plant for New Laxapana P/S based on data from "Long Term Generation Expansion Plan 2005-2019" (LTGEP).

	Wimalasurendra Old Laxapana (Stage I)	New Laxapana P/S
Pure Construction Cost	US\$ 586.6 /kW	US\$398.9/kW
Fixed O&M Cost	US\$ 6.29/kWh/year	US\$ 4.75/kWh/year
Variable O&M Cost	US\$ 0.420/kWh	US\$ 0.315/kWh
Accounting Lifetime	20 years	20 years

Thus, kW-Value of US\$ 85.56/kW and a kWh-Value of US\$ 95.42/MWh are indicated for Wimalasurendra P/S and Old Laxapana (Stage I) P/S, and a kW-value of US\$ 58.72/kW and kWh-Value of US\$ 72.01/MWh are indicated for New Laxapana P/S as shown in Table 10.2. The benefit is calculated in consideration of the power generation capability of each plant as follows;

Power Station	kW-Value	kWh-Value
Wimalasurendra(50MW) (Annual Generation; 112GWh) Before Rehabilitation After Rehabilitation Case1 After Rehabilitation Case2	4,278 4,278 (Improved 0%) 4,278 (Improved 0%)	10,687 10,687(Improved 0%) 10,794 (Improved 1%)
Old Laxapana (Stage I) (25MW) (Annual Generation; 143GWh) Before Rehabilitation After Rehabilitation	2,139 2,310 (Improved 8%)	13,645 15,009 (Improved 10%)
New Laxapana(100MW) (Annual Generation; 552GWh) Before Rehabilitation After Rehabilitation	5,872 5,872 (Improved 0%)	39,751 40,148(Improved 1%)

The illustration of the benefit of rehabilitation is shown in the following figure. The improvement in efficiency through rehabilitation is considered to be the benefit to up an actual lifetime of main electrical equipment of 50 years. It is considered that the rehabilitation project recovers the capability of each unit after it is51 years old, so the total power generation capability is considered a benefit.

As for Old Laxapana P/S, however, it is already more than 54 years old, so the benefit of efficiency improvement through rehabilitation is considered to begin immediately after the rehabilitation is completed.

The reductions of kW-Value and the production affected by outages during the rehabilitation are deducted from benefit of each plant. The outage periods and reduction of production corresponding to the term of the rehabilitation project are shown in Table 10.3 for Case1 and Table 10.4 for Case2 of Wimalasurendra P/S.

10.1.2 Estimate of Economic Costs

The estimated pure construction cost is in foreign currency and local currency, with the foreign currency portion accounting for 90% of the project cost. The local currency portion is calculated as an economic cost by a conversion factor which, based on discussions with CEB, was determined to be 0.9. The economic construction cost is shown in the table below and in Table 10.5. As for the rehabilitation of Wimalasurendra P/S Case1, it will not be completed thorough rehabilitation, so it is plausible that some amount of repair cost will be required. Therefore, the consultant estimates US\$1 million every five years as repair cost. And the cost of common items is divided among five power stations with the following percentage; 5% for Wimalasurendra P/S, 30% for Old Laxapana (Stage I) P/S, 30% for Canyon P/S, 30% for New Laxapana P/S and 5% for Polpitiya P/S.

Pure Construction Cost			
Power Station	Total Amount	Foreign Currency Portion	Local Currency Portion
Wimalasurendra (Case1) (Case2)	19,066 23,766	17,159 21,389	1,907 2,377
Old Laxapana (Stage I)	17,990	16,191	1,799
New Laxapana	22,090	19,881	2,209

(Unit: US\$1,000)

Power Station	Total Amount	Foreign Currency Portion	Local Currency Portion
Wimalasurendra (Case1)	18,875 repair cost of US\$1 million every 5 years	17,159	1,716
(Case2)	23,528	21,389	2,139
Old Laxapana (Stage I)	17,810	16,191	1,619
New Laxapana	21,869	19,881	1,988

The operation and maintenance cost (O&M cost) consists of personnel costs and equipment procurement costs in consideration of the actual cost. A 10% reduction of the O&M cost can be assumed when the main equipment is replaced by the rehabilitation project. These O&M costs are shown in Table 10.6 for Wimalasurendra P/S Case 1 and 2, Table 10.7 for Old Laxapana (Stage I) P/S, and Table 10.8 for New Laxapana P/S.

10.1.3 Result of Economic Evaluation

Three indices, surplus benefit (B-C), benefit cost ratio (B/C) and economic internal rate of return (EIRR), are calculated, and the consultant judges the feasibility from the economic standpoint. That is, the project is judged to be feasible when the surplus benefit (B-C) is positive, the benefit cost ratio (B/S) is grater than 1, and the economic internal rate of return (EIRR) is more than the discount rate. The discount rate was set as 10% upon discussion with CEB for this evaluation. The results of calculation are as follows and as shown in Table 10.9 to Table 10.11.

Power Station	B-C	B/C	EIRR	Reference
Wimalasurendra				
(Case1)	US\$45,087,000	3.95	21.91%	Table 10.9.1
(Case2)	US\$44,008,000	3.52	20.49%	Table 10.9.2
Old Laxapana (Stage I)	US\$87,018,000	7.26	45.60%	Table 10.10
New Laxapana	US\$50,083,000	4.39	15.65%	Table 10.11

These calculation results prove that each of the rehabilitation plans is feasible from the economic point of view.

Regarding Wimalasurendra P/S, the Case1 rehabilitation plan, in which repairs are made as required, shows better economic outcome than Case2 based on calculations because the initial investment is smaller. But in Case1, the generator is not replaced. Therefore, to analyze future trouble involving other equipment, which in an indefinite factor, the consultant tried some cases in which a US\$5 million per year as special repair cost, with the same outage term is added, used the result for comparison with Case2. As the results of this trial indicate, which are as shown in Table 10.12.1 to Table 10.12.4, the surplus benefit is reversed between 62 and 63 years. Case2 (scheduled replacement) is more economical when the special repairs are needed before the unit is 62 years old. On the other hand, Case1 (repair as required) is more economical if the special repairs are needed after it is 63 years old.

10.2 Sensitivity Analysis of EIRR

10.2.1 Sensitivity of Project Costs

Sensitivity analysis has been done for the cases in which the cost of the rehabilitation project is changed, and it has been verified that every project maintains economical feasibility against some rate of change because of the original stable economic feasibility. As a trial calculation, the change rates that make B-C minus, B/C less than 1, or EIRR less than 10% are as follows; when the project cost increases by 293% for Wimalasurendra P/S Case1, by 250% for Wimalasurendra P/S Case2, by 623% for Old Laxapana (Stage I) P/S, and by 339% for New Laxapana P/S. The details are shown in Table 10.13.

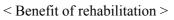
10.2.2 Sensitivity of Fuel Price

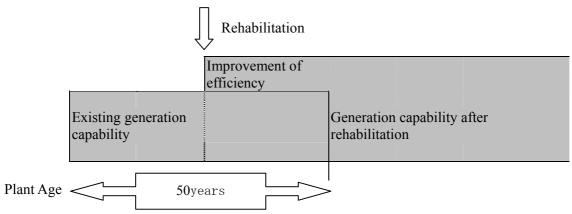
Sensitivity analysis is carried out for the cases in which the fuel price of the alternative thermal plant changes. But the economic feasibility of the cases are not affected by a change in the fuel price. Even if fuel price falls to less than US\$10/bbl, each project can maintain economic feasibility. The details are shown in Table 10.14.

10.2.3 The Limiting Time of without Project

The consultant analyzed the sensitivity of the timing and economic efficiency on the assumption that no rehabilitation will be done until power plant completely breaks down and functionally stops.

It is assumed that all generating units of each P/S will be replaced successively upon the breakdown of one unit. That is, to replace the two units of Wimalasurendra P/S and New Laxapana P/S, and the three units of Old Laxapana (Stage I) P/S, preparation for their purchase is begun upon the breakdown of the first unit. Conditions to study are as follows:


- The outage period is set on condition that the replacement of first unit starts 44 months after first unit is broken.


Power Station	Unit1	Unit2	Unit3
Wimalasurendra	44months(Crash) +7months (Replacement)	7months (Replacement)	-
Old Laxapana (Stage I)	44months(Crash) +7months (Replacement)	7months (Replacement)	7months (Replacement)
New Laxapana	44months(Crash) +7months (Replacement)	7months (Replacement)	-

- Construction cost is same as that of a scheduled replacement.

- Replacement is carried out successively from the broken-down unit.

In this analysis, benefit by existing equipment that is before rehabilitation is also considered. The same thing is applied to the cost. The benefit is illustrated in the figure below.

The loss of kW-Value and produced energy by outage period are shown in Table 10.15.

To continue operating without rehabilitation and await a crash with outage brings an enhanced the risk of blackouts. As stated in the LTGEP, once a blackout takes place, the economic cost of not supplying energy (Cost of Energy Not Served) occurs (US\$0.74/kWh). In this evaluation, as shown in Table 10.16, Table 10.17 and Table 10.18, a changed rate of LOLP (Loss of Load Probability) effected by an outage from crash one unit of each power plant has been computed by CEB, and the consultant calculated the increased outage risk (outage period) as Cost of Energy Not Served on the ERR calculation table. The average changed rate of LOLP for 10 years (2010-2019) is used here. However, this Cost of Energy Not Served is of course considered in the year of the crash, but is the smaller cost of this Cost of Energy Not Served and the cost of a new gas turbine thermal plant construction and its operation after the second year. The calculation result is shown in Figure10.1 Table 10.19, Table 10.20 and Table 10.21 and below.

Wimalasurendra P/S

In the case of a crash accompanying an outage at the plant 50 years old (2014), its value (B-C) becomes larger than that of the scheduled replacement. That means, if a crash occurs and replacement of the unit becomes necessary before it is 50 years old, implementing scheduled replacement is preferable.

Old Laxapana (Stage I) P/S

In the case of a crash accompanying an outage at the plant 65 years old (2015), its value (B-C) becomes larger than that of the scheduled replacement. That means, if a crash occurs and replacement of the unit becomes necessary before it is 65 years old, implementing scheduled replacement is preferable.

New Laxapana P/S

In the case of a crash accompanying an outage at the plant 46 years old (2020), its value (B-C) becomes larger than that of the scheduled replacement. That means, if a crash occurs and replacement of the unit becomes necessary before it is 46 years old, implementing scheduled replacement is preferable.

10.3 Financial Analysis

The financial internal rate of return (FIRR) is calculated by comparing the financial cost and financial benefit of the rehabilitation plan.

10.3.1 Estimate of Financial Benefit

Assumed income from electricity sales based on the electricity unit price is used as a financial benefit. Here, Rs7.68 /kWh, the average price indicated in Statistical Digest 2003, is used as the basis. This includes 15% value-added tax (VAT), which is paid to government but mostly returned to CEB. Sales energy is calculated after deduction of a 19.2% loss from overall generation.

10.3.2 Estimate of Financial Cost

The financial cost is estimated for the construction cost and O&M cost at a financial price. A 15% VAT is added to both foreign and local currency portions of the pure construction cost. Moreover, a custom duty of 3% and surcharge of 10% are also added to the foreign portion. The estimation results are shown below and Table 10.22.

(Unit: US\$1,000)

			(0)									
Pure Construction Cost												
Power Station	Total Amount	Foreign Currency Portion	Local Currency Portion									
Wimalasurendra												
(Case1)	19,066	17,159	1,907									
(Case2)	23,766	21,389	2,377									
Old Laxapana (Stage I)	17,990	16,191	1,799									
New Laxapana	22,090	19,881	2,209									

(Unit: US\$1,000)

	Financial Cost												
Power Station	Total Amount	Local Currency Portion											
W/:		Portion	Poltion										
Wimalasurendra (Case1)	24,550 repair cost of US\$1 million in every 5 years	22,358	2,193										
(Case2)	30,602	27,869	2,733										
Old Laxapana (Stage I)	23,165	21,096	2,069										
New Laxapana	28,444	25,904	2,540										

10.4 Result of Financial Evaluation

The financial internal rate of return (FIRR) has been calculated, and the consultant has judged feasibility from the financial standpoint. The calculation results are as follows and shown in Table 10.23, Table 10.24 and Table 10.25.

Power Station	FIRR	Reference
Wimalasurendra		
Case1	14.15%	Table 10.23.1
Case2	12.82%	Table 10.23.2
Old Laxapana (Stage I)	28.86%	Table 10.24
New Laxapana	14.23%	Table 10.25

These calculation results indicate that all of the rehabilitation plans are sufficiently feasible based on financial evaluation.

10.5 Sensitivity Analysis of FIRR

10.5.1 Sensitivity of Project Costs

For the case in which the project cost of the rehabilitation project is changed, sensitivity analysis was carried out.

Cases in which the cost changes from plus 50% to minus 50% and the rate at which FIRR 10% were calculated. The results are shown in Table 10.26.

The marginal rate of increasing the cost to be financially valuable is 66% for Wimalasurendra P/S Case1, 45% for Case 2, 257% for Old Laxapana (Stage I) P/S, and 187% for New Laxapana P/S. This means each project is sufficiently feasible when the project cost changes regarding FIRR, as expected.

10.5.2 Sensitivity of Electricity Price

Sensitivity analysis was carried out for cases in which the electricity price is changed.

Cases in which the electricity price changes from 50% to minus 50% and the rate that yields FIRR of 10% were calculated. The results are shown in Table 10.27.

The marginal rate of declining electricity price to be financially viable is minus 40% for Wimalasurendra P/S Case1, minus 31% for Case 2, minus 71% for Old Laxapana (Stage I) P/S, and 65% for New

Laxapana P/S. This means mean each project is sufficiently feasible in relation to changing electricity price in FIRR as expected.

10.6 ODA Finance

10.6.1 Analysis of ODA Finance

A revenue source to the fund the project was assumed to be supplied mainly from Official Development Assistance (ODA). The payment capability was analyzed by the consultant. Loan conditions were configured as follows:

	Loan Condition	Ground
Foreign Finance:	90% of project cost	Electro-Mechanical Equipment occupies major portion of the project cost and it will be imported.
	1.5% annual interest rate 30 year repayment period (including 10 year grace period)	Quoted from JBIC general Loan condition for category Lower - Middle income countries (GNI over US\$736 under US\$1,415).
Local Finance:	10% of project cost	
	13% annual interest rate20 year repayment period(including 4year grace period)	Quoted from status report of loan and sources. Ref; Table 10.28

Income tax of 35% is imposed on net profit for the year if the project has a net profit during the most recent five years.

As a measure of ODA finance analysis, three have been calculated. These are DSCR (Debt Service Coverage Ratio), ROI (Return on Investment), and LLCR (Loan Life Coverage Ratio). The calculation results are shown below. Though ROI is not very high because of low foreign loan interest rates, both DSCR and LLCR exceed the standard rate of around 1.5%, which indicates high repayment capability. The detail are shown in Table 10.29, Table 10.30 and Table 10.31.

Power Station	DSCR	ROI	LLCR
Wimalasurendra			
Case1	3.365	8.3%	2.996
Case2	2.772	8.3%	2.473
Old Laxapana (Stage I)	6.227	8.4%	5.328
New Laxapana	7.515	8.6%	5.577

10.7 Sensitivity Analysis of ODA Finance

10.7.1 Sensitivity Analysis of Electricity Price

The cases in which the electricity price changes from 50% to minus 50% have been calculated. The results are shown in Table 10.32.

The results indicated that each project is sufficiently feasible in regarding to changing electricity price as expected.

The marginal rate decline of electricity prices to be economically viable is minus 70% for Wimalasurendra P/S Case1, minus 64% for Case 2, minus 82% for Old Laxapana (Stage I) P/S, and plus 84% for New Laxapana P/S.

10.7.2 Sensitivity Analysis of Foreign Loan Condition

Cases in which the interest rate on foreign loan changes from 1% to 15% have been calculated. The results are shown in Table 10.33.

The results show that each project is sufficiently feasible in regard to change in the interest rate as expected.

The marginal rate for economic viability is 12% for Wimalasurendra P/S Case1, 10% for Case 2, 29% for Old Laxapana (Stage I) P/S, and 10% for New Laxapana P/S.

Table 10.1 Adjustment Factor, Power Value and Energy Value

Item	Hydropower System	Gas Turbine Powe	r
Itelli	Hydropower System	Generation System	1
Station Use	0.50% a	2.00% e	
Forced Outage	0.50% b	8.00% f	
Planned Outage	1.90% c	8.20% g	
Transmission Loss	4.00% d	1.00% h	
kW-Adjustment Factor	_	1.13788 i	
kWh-Adjustment Factor	-	0.98454 j	

Calculation of Power (kW) and Energy (kWh) Adjustment Factors

Note: 1. i = (1-a)*(1-b)*(1-c)*(1-d)/(1-e)*(1-f)*(1-g)*(1-h)

2. j = (1-a)*(1-d)/(1-e)*(1-h)

Table 10.2 Power Value and Energy Value

Calculation of Power Value (kW-Value)

Item	Unit	Gas Turbine Power Generation Sys						
		35MW	35MW 105MW					
kW Construction Cost*1	US\$/kW	586.6	398.9	а				
Plant Life	Years	20	20	b				
Discount Rate	%	10.00%	10.00%	с				
Capital Recovery Factor		0.11746	0.11746	d				
Fixed OM Cost	US\$/kW/yr	6.29	4.75	e				
Power Value (KW-Value)	US\$/kW	85.56	58.72	f				

Note: 1. f = (e+a*d)*(kW-adjustment Factor.)

Calculation of Energy Value (kWh-Value)

Item	Unit	Gas Turbine Power Generation Syste						
		35MW	105MW					
Fuel Type		Auto D	iesel					
Fuel Price*1	US ∉ /Gcal	3,030	3,030	а				
Heat Content	kcal/kg	10,550	10,550	b				
Thermal Efficiency	%	28.10%	30.10%	с				
Heat Rate	kcal/kWh	3,060.0	2,310.0	d				
Fuel Amount	kg/kWh	0.29005	0.21896	e				
Fuel Cost	US\$/kWh	0.09272	0.06999	f				
Variable OM Cost	US ∉ /kWh	0.420	0.315	g				
Energy Value (kWh-Value)	US\$/MWh	95.42	72.01	ĥ				

Note:

1. h = (f+g/100)*(kWh-adjustment Factor)*1,000

2. *1 US\$42.70/bbl at Colombo

Table 10.3Outage Term (1)

itage	Term of Wimalasurendra	P/S		Pmax =	50	MW (2uni	ts)					Outage fo	or Rehabi	litation		
	Case 1	, i														
	E (2003) (MWh)	Jan. 4.892	Feb.	Mar.	Apr. 8.976	May	Jun.	Jul.	Aug. 4.403	Sep. 4.315	Oct.	Nov.	Dec.	Total		
			3,922 5,286	6,867 9,254	8,976	12,204	11,129	6,805 9,171	4,403	<i>j.</i> .	5,599	5,246	8,748 11,789	83,106	Lass(LICC	1 000) man Vaan
	Adjusted E (MWh) ax. E by 1 unit (MWh)	6,593 18,600	5,280	9,254	12,097	18,600	14,998	9,171	5,934	5,815 18,000	7,546	7,070	18,600	219,000	LOSS(US\$	1,000) per Year
IVI	Outage (days)	18,600	16,800	18,600	18,000	18,600	18,000	18,600	18,600	18,000	18,600	18,000	18,600	219,000	kW loss	0 US\$1,000/
06	Loss of Energy (MWh)	0	0	0	0		0	0	0	0	0	0	0	0	kW loss kWh loss	0 US\$1,000/
-	Outage (days)	0	0				30	0	0	0	0	0	0	30	kW loss	-176 US\$1,000/
07	Loss of Energy (MWh)	0	0	0	~		0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000
-	Outage (days)	0	28	0			0	0	0	0	0	0	0	28	kW loss	-164 US\$1,000
08	Loss of Energy (MWh)	0	20	0			0	0	0	0	0	0	0	20	kWh loss	0 US\$1,000
-	Outage (days)	0	0	0		÷	0	0	0	30	31	30	31	122	kW loss	-715 US\$1,000
)9	Loss of Energy (MWh)	0	0	0			0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000
	Outage (days)	31	28	31	30	31	30	31	31	30	31	30	31	365	kW loss	-2,139 US\$1,000
10	Loss of Energy (MWh)	0	0	0		0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000
	Outage (days)	31	28	0			0	0	0	0	0	0	0	59	kW loss	-346 US\$1,000
11	Outage (days)	0	0				0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000
	Outage (days)	0	0	0	0	0	0	0	0	0	0	0	0	0	kW loss	0 US\$1,000
2	Loss of Energy (MWh)	0	0	0	0	0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000
	F (2002) (A (W/L))	Jan.	Feb.	Stage I Mar.	Apr.	MW (3 un May	Jun.	Stage II Jul.	Aug.	MW (2 un Sep.	Oct.	Nov.	Dec.	Total		
	E (2003) (MWh)	12,632	10,139	18,583	23,176	28,999	28,556	23,616	19,375	15,680	16,491	13,982	20,632	231,861		
	Adjusted E (MWh)	15,582	12,506	22,922	28,588	35,770	35,224	29,130	23,899	19,341	20,342	17,247	25,450	286,000	Loss(US\$	1,000) per Year
ax.	E by St.I & 2 unit (MWh)	31,000	28,000	31,000	30,000	31,000	30,000	31,000	31,000	30,000	31,000	30,000	31,000	365,000	1 897 1	0
)6	Outage (days)	0	0	0	0	0	0	0	0	0	0	0	0	0	kW loss	0 US\$1,000
_	Loss of Energy (MWh)	0	0	0	0	0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000
)7	Outage (days)	0	0	0			0	31	0	0	0	0	0	31	kW loss	-61 US\$1,000
-	Loss of Energy (MWh) Outage (days)	0	0	0	0		0	0	0	0	0	0	0	0	kWh loss kW loss	0 US\$1,000 0 US\$1,000
)8	Loss of Energy (MWh)	0	0	0		0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000
-	Outage (days)	0	0	0		0	0	0	0	0	0	0	0	0	kW loss	0 US\$1,000
)9	Outage (days)	0	0	0			0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000
-	Outage (days)	0	28	31	30	31	30	31	31	30	31	30	31	334	kW loss	-652 US\$1,000
10	Loss of Energy (MWh)	0	0			-4,770	-5 055	0	0	0	0	0	0	-9.825	kWh loss	-938 US\$1,000
	Outage (days)	31	28	31	30	31	30	31	31	30	31	0	0	304	kW loss	-594 US\$1,000
11	Loss of Energy (MWh)	0	0	0			-5,055	0	0	0	0	0	0	-9,825	kWh loss	-938 US\$1,000
-	Outage (days)	0	0	0		0	0,000	0	0	0	0	0	0	0	kW loss	0 US\$1,000
12	Loss of Energy (MWh)	0	0	0	0	0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000
ige	Term of New Laxapana P E (2003) (MWh)	Jan. 25.765	Feb.	Pmax = Mar. 17.341	100 Apr. 17.520	MW (2 un May 51,778	its) Jun. 50,576	Jul. 47,604	Aug. 44.100	Sep. 52.626	Oct. 43,561	Nov. 48.275	Dec. 48.589	Total 465.771		
	Adjusted E (MWh)	30,535	21,375	20,551	20,764	61,364	59,939	56,417	52,264	62,369	51,626	57,212	57,584	552,000	Loss(US\$	1,000) per Year
м	ax. E by 1 unit (MWh)	37,200	33,600	37,200	36,000	37,200	36,000	37,200	37,200	36,000	37,200	36,000	37,200	438,000	2035(0.55	1,000) per Teur
	Outage (days)	0	0	0	0		0	0	0	0,000	0	0	0	450,000	kW loss	0 US\$1,000
)6	Loss of Energy (MWh)	0	0	0	0		0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000
	Outage (days)	0		0			0	0	0	0	0	0	0	0	kW loss	0 US\$1,000
)7	Loss of Energy (MWh)	0		0			0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000
	Outage (days)	0	0	0	0		0	0	0	0	0	0	31	31	kW loss	-249 US\$1,000
	Loss of Energy (MWh)	0	0	0	0		0	0	0	0	0	0	-20,384	-20,384	kWh loss	-1,468 US\$1,000
0	Outage (days)	0	0	0			0	0	0	0	0	0	0	0	kW loss	0 US\$1,000
	Loss of Energy (MWh)	0	0	0			0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000
		0	0	0			0	0	0	0	0	0	0	0	kW loss	0 US\$1,000
)9	Outage (days)		0	0			0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000
09	Outage (days) Loss of Energy (MWh)	0														
09 10		0	0	31	30	31	30	31	31	30	31	30	31	306	kW loss	-2,461 US\$1,000
08 09 10 11	Loss of Energy (MWh) Outage (days)			31			-23,167	-19,217	-15,064	-25,518	-14,426	-20,528	-20,384	306 -162,468	kW loss kWh loss	-2,461 US\$1,000 ###### US\$1,000
09 10	Loss of Energy (MWh)	0	0	-												

Table 10.4Outage Term (2)

1	e Term of Wimalasurendra 1 Case 2	P/S		Pmax =	50	MW (2u	nits)					Outage f	or Reha	bilitation		
		Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total		
	E (2003) (MWh)	4,892	3,922	6,867	8,976	12,204	11,129	6,805	4,403	4,315	5,599	5,246	8,748	83,106		
	Adjusted E (MWh)	6,593	5,286	9,254	12,097	16,447	14,998	9,171	5,934	5,815	7,546	7,070	11,789	112,000	Loss(US\$	1,000) per Year
Ν	fax. E by 1 unit (MWh)	18,600	16,800	18,600	18,000	18,600	18,000	18,600	18,600	18,000	18,600	18,000	18,600	219,000		
2006	Outage (days)	0	0	0	0	0	0	0	0	0	0	0	0	0	kW loss	0 US\$1,000/year
2000	Loss of Energy (MWh)	0	0	0	0	0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000/year
2007	Outage (days)	0	0	0	0	0	30	0	0	0	0	0	0	30	kW loss	-176 US\$1,000/year
2007	Loss of Energy (MWh)	0	0		0	0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000/year
2008	Outage (days)	0	28	0	0	0	0	0	0	0	0	0	0	28	kW loss	-164 US\$1,000/year
	Loss of Energy (MWh)	0	0	0	0	0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000/year
2009	Outage (days)	0	0		0	0	0	0	0	30	31	30	31	122	kW loss	-715 US\$1,000/year
	Loss of Energy (MWh)	0	0	0	0	0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000/year
2010	Outage (days)	31	28	31	30	31	30	31	31	30	31	0	0	304	kW loss	-1,781 US\$1,000/year
	Loss of Energy (MWh)	0	0		0	0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000/year
2011	Outage (days)	0	0	0	0	0	0	0	0	0	0	0	0	0	kW loss	0 US\$1,000/year
	Loss of Energy (MWh)	0	0		0	0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000/year
2012	Outage (days)	0	0	0	0	0	0	0	0	0	0	0	0	0	kW loss	0 US\$1,000/year
	Loss of Energy (MWh)	0	0	0	0	0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000/year
Dutage	e Term of Old Laxapana Sta	ge I P/S Jan.	Feb.	Pmax = Stage I Mar.		MW MW (3 u May	inits) Jun.	Stage II Jul.	25 Aug.	MW (2 u Sep.	inits) Oct.	Nov.	Dec.	Total		
	E (2003) (MWh)	12,632	10,139	18,583	23,176	28,999	28,556	23,616	19,375	15,680	16,491	13,982	20,632	231,861		
	Adjusted E (MWh)	15,582	12,506	22,922	28,588	35,770	35,224	29,130	23,899	19,341	20,342	17,247	25,450	286,000	Loss(US\$	1,000) per Year
Max	. E by St.I & 2 unit (MWh)	31,000	28,000	31,000	30,000	31,000	30,000	31,000	31,000	30,000	31,000	30,000	31,000	365,000	2035(0.55	1,000) per 1 eur
	Outage (days)	0	20,000	0	0	0	0	0	0	0	01,000	0	0	0	kW loss	0 US\$1,000/year
2006	Loss of Energy (MWh)	0	0	0	0	0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000/year
	Outage (days)	0	0	0	0	0	0	31	0	0	0	0	0	31	kW loss	-61 US\$1,000/year
2007	Loss of Energy (MWh)	0	0	0	0	0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000/year
	Outage (days)	0	-	0	0	0	0	0	0	0	0	0	0	0	kW loss	0 US\$1,000/year
2008	Loss of Energy (MWh)	0	0	0	0	0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000/year
	Outage (days)	0	0	0	0	0	0	0	0	0	0	0	0	0	kW loss	0 US\$1,000/year
2009	Loss of Energy (MWh)	0	0	0	0	0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000/year
2010	Outage (days)	0	28	31	30	31	30	31	31	30	31	30	31	334	kW loss	-652 US\$1,000/year
2010	Loss of Energy (MWh)	0	0	0	0	-4,770	-5,055	0	0	0	0	0	0	-9,825	kWh loss	-938 US\$1,000/year
2011	Outage (days)	31	28	31	30	31	30	31	31	30	31	0	0	304	kW loss	-594 US\$1,000/year
2011	Loss of Energy (MWh)	0	0	0	0	-4,770	-5,055	0	0	0	0	0	0	-9,825	kWh loss	-938 US\$1,000/year
2012	Outage (days)	0	0	0	0	0	0	0	0	0	0	0	0	0	kW loss	0 US\$1,000/year
2012	Loss of Energy (MWh)	0	0	0	0	0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000/year
Dutage	e Term of New Laxapana P/ E (2003) (MWh)	S Jan. 25,765	Feb. 18,036	Pmax = Mar. 17,341	100 Apr. 17,520	MW (2 u May 51,778	units) Jun. 50,576	Jul. 47,604	Aug. 44,100	Sep. 52,626	Oct. 43,561	Nov. 48,275	Dec. 48,589	Total 465,771		
	Adjusted E (MWh)	30,535	21,375	20,551	20,764	61,364	59,939	56,417	52,264	62,369	51,626	57,212	57,584	552,000	Loss(US\$	1,000) per Year
N	Max. E by 1 unit (MWh)	37,200	33,600	37,200	36,000	37,200	36,000	37,200	37,200	36,000	37,200	36,000	37,200	438,000		,, F
1	Outage (days)	0	0		0	0	0	0	0	0	0	0	0	0	kW loss	0 US\$1,000/year
2006	Loss of Energy (MWh)	0	0		0	0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000/year
	Outage (days)	0	0		0	0	0	0	0	0	0	0	0	0	kW loss	0 US\$1,000/year
2007	Loss of Energy (MWh)	0			0	0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000/year
2000	Outage (days)	0	0		0	0	0	0	31	0	0	0	0	31	kW loss	-249 US\$1,000/year
2008	Loss of Energy (MWh)	0			0	÷	0	0		0	0	0	0	-15,064	kWh loss	-1,085 US\$1,000/year
2000	Outage (days)	0	-		0	0	0	0	0	0	0	0	0	0	kW loss	0 US\$1,000/year
	Loss of Energy (MWh)	0			0	0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000/year
2009	Outage (days)	0	0	0	0	0	0	0	0	0	0	30	31	61	kW loss	-491 US\$1,000/year
		0			0	0	0	0	0	0	0	-20,528	-20,384	-40,912	kWh loss	-2,946 US\$1,000/year
2009	Loss of Energy (MWh)				· ·	÷	-		-	Ů	-		.)			
2010		31	28	31	30	31	30	31	31	30	31	30	31	365	kW loss	-2,936 US\$1.000/vear
	Outage (days)	31 0	28 0		30 0	-	-23,167	31 -19,217	-15,064	30 -25,518	31 -14,426	30 -20,528	-20,384	-162,468	kW loss kWh loss	-2,936 US\$1,000/year -11,700 US\$1,000/year
2010			0	0		-										

Table 10.5 Pure Construction Cost & Economic Cost

Foreign portion is estimated to be 90% of total cost Pure construction cost of local portion is calculated into Economic cost by conversion factor

0.90

Case 1 (Repair as required)	-				(nit: US\$1,000
Item	Pure	Construction	Cost		Economic Cost	t
	Total	Foreign	Local	Total	Foreign	Local
	Total	Portion	Portion	Total	Portion	Portion
1. Total Cost	19,066	17,159	1,907	18,875	17,159	1,71
2. Annual Disbursement						
2006	1,157	1,041	116	1,145	1,041	104
2007	4,724	4,251	472	4,676	4,251	42
2008	1,053	947	105	1,042	947	9:
2009	7,630	6,867	763	7,554	6,867	68
2010	4,058	3,653	406	4,018	3,653	36:
2011	349	314	35	346	314	3
2012	94	85	9	93	85	
			As rep	air cost 1,000	(US\$1,000) in e	every 5years
Case 2(Scheduled replace)	1 1	I			(U	nit: US\$1,000
Item	Pure	Construction	Cost		Economic Cost	t
	T (1	Foreign	Local	T (1	Foreign	Local
	Total	Portion	Portion	Total	Portion	Portion
1. Total Cost	23,766	21,389	2,377	23,528	21,389	2,13
2. Annual Disbursement						
2006	1,257	1,131	126	1,245	1,131	11
2007	5,868	5,281	587	5,809	5,281	52
2008	1,346	1,212	135	1,333	1,212	12
2009	9,712	8,741	971	9,615	8,741	87
2010	5,137	4,624	514	5,086	4,624	46
2011	445	400	44	441	400	4
2012	0	0	0	0	0	

Old Laxapana Stage I P/S

Item	Pure	Construction	Cost	Economic Cost			
	Total	Foreign Portion	Local Portion	Total	Foreign Portion	Local Portion	
1. Total Cost	17,990	16,191	1,799	17,810	16,191	1,619	
2. Annual Disbursement							
2006	716	645	72	709	645	64	
2007	4,323	3,891	432	4,280	3,891	389	
2008	176	159	18	175	159	16	
2009	8,077	7,270	808	7,997	7,270	727	
2010	2,699	2,429	270	2,672	2,429	243	
2011	1,907	1,717	191	1,888	1,717	172	
2012	90	81	9	89	81	8	

New Laxapana P/S

Item	Pure	Construction	Cost]	Economic Cost		
	Total	Foreign	Local	Total	Foreign	Local Portion	
	Total	Portion	Portion	Total	Portion		
1. Total Cost	22,090	19,881	2,209	21,869	19,881	1,988	
2. Annual Disbursement							
2006	935	842	94	926	842	84	
2007	5,295	4,766	530	5,242	4,766	477	
2008	230	207	23	228	207	21	
2009	277	250	28	275	250	25	
2010	10,013	9,011	1,001	9,912	9,011	901	
2011	5,222	4,699	522	5,169	4,699	470	
2012	118	106	12	117	106	11	

	Unit			
Personal Cost (technician)	Rs/year	13,200,000		
Average Personal Salary	Rs/year	200,000		
Number of Person for Wimalasurendra PS	Person	66		
Parts Procurement Cost	Rs/year	4,000,000		
Total		17,200,000		
	(US\$)	166,032	=	170 (US\$1,000)
(Parts Procurement cost ; 2millionRs/year for 1 unit.)				
Adjustment factor for case1 (Repair as Required)	1	0%		
	(US\$)	166,032	=	170 (US\$1,000)
Adjustment factor for case2 (Scheduled Repla	ce)	-10%		
	(US\$)	149,428	=	150 (US\$1,000)

Table 10.6 O & M Cost of Wimalasurendra P/S

Table 10.7	O & M Cost of Old Laxapana P/S
-------------------	--------------------------------

	Unit			
Personal Cost (technician)	Rs/year	22,800,000		
Average Personal Salary	Rs/year	200,000		
Number of Person for Old Laxapana PS	Person	114		
Parts Procurement Cost	Rs/year	6,000,000		
Total		28,800,000		
	(US\$)	278,006	=	280 (US\$1,000)
(Parts Procurement cost ; 2millionRs/year for 1 unit.)				
Adjustment factor for Scheduled Replace		-10%		
	(US\$)	250,206	=	250 (US\$1,000)

Table 10.8	O & M Cost of New Laxapana P/S

	Unit			
Personal Cost (technician)	Rs/year	9,200,000		
Average Personal Salary	Rs/year	200,000		
Number of Person for New Laxapana PS	Person	46		
Parts Procurement Cost	Rs/year	4,000,000		
Total		13,200,000		
	(US\$)	127,420	=	130 (US\$1,000)
(Parts Procurement cost ; 2millionRs/year for 1 unit.)				
Adjustment factor for Scheduled Replace		-10%		
	(US\$)	114,678	=	110 (US\$1,000)

Table 10.9.1 Calculation of Economic Evaluation Indices

Wimalasurendra P/S Case 1 (Repair as Required)

(Unit: US\$1,000)

				Cost				Benefit			
Year	Plant Age	Year	Replace	Operation		Power	Power	Energy	Energy		Balance
n order				&	Total	Benefit	Loss	Benefit	Loss	Total	
	42	2006	1,145	Maintenance 0	1,145	0	0	0	0	0	-1,14
	42	2008	4,676	0	4,676	0	-176	0	0	-176	-1,1-
	43	2007	1,042	0	1,042	0	-164	0	0	-170	-4,0
	44	2008	7,554	0	7,554	0	-715	0	0	-715	-1,2
	45	2009	4,018	0	4,018	0	-2,139	0	0	-2,139	-6,1
1	40	2010	4,018	0	346	0	-2,139	0	0	-2,139	-0,1
2	47	2011	93	0	93	0	-540	0	0	-540	-0
3	48	2012	95	0	95 0	0	0	0	0	0	-
4	50	2013		0	0	0		0		0	
5	51	2015	1,000	170	1,170	4,278		10,687		14,965	13,7
6	52	2015	1,000	170	1,170	4,278		10,687		14,965	14,7
7	53	2010		170	170	4,278		10,687		14,965	14,7
8	54	2018		170	170	4,278		10,687		14,965	14,7
9	55	2010		170	170	4,278		10,687		14,965	14,7
10	56	2019	1,000	170	1,170	4,278		10,687		14,965	13,7
11	57	2020	1,000	170	170	4,278		10,687		14,965	14,7
12	58	2021		170	170	4,278		10,687		14,965	14,7
13	59	2022		170	170	4,278		10,687		14,965	14,7
14	60	2023		170	170	4,278		10,687		14,965	14,7
15	61	2024	1,000	170	1,170	4,278		10,687		14,965	13,7
16	62	2026	1,000	170	1,170	4,278		10,687		14,965	14,7
17	63	2020		170	170	4,278		10,687		14,965	14,7
18	64	2028		170	170	4,278		10,687		14,965	14,7
19	65	2029		170	170	4,278		10,687		14,965	14,7
20	66	2029	1,000	170	1,170	4,278		10,687		14,965	13,7
20	67	2030	1,000	170	1,170	4,278		10,687		14,965	14,7
22	68	2032		170	170	4,278		10,687		14,965	14,7
22	69	2032		170	170	4,278		10,687		14,965	14,7
24	70	2033		170	170	4,278		10,687		14,965	14,1
24	70	2034	1,000	170	1,170	4,278		10,687		14,965	13,3
23 26	71	2035	1,000	170	1,170	4,278		10,687		14,903	13,7
27	72	2030		170	170	4,278		10,687		14,965	14,7
28	74	2037		170	170	4,278		10,687		14,965	14,7
28 29	75	2038		170	170	4,278		10,687		14,965	14,7
30	76	2040	1,000	170	1,170	4,278		10,687		14,965	13,7
31	70	2040	1,000	170	1,170	4,278		10,687		14,965	14,7
32	78	2041		170	170	4,278		10,687		14,965	14,7
33	79	2042		170	170	4,278		10,687		14,965	14,1
34	80	2043		170	170	4,278		10,687		14,965	14,
35	81	2044	1,000	170	1,170	4,278		10,687		14,965	13,1
36	82	2045	1,000	170	1,170	4,278		10,687		14,965	14,7
37	83	2040		170	170	4,278		10,687		14,965	14,7
38	84	2047		170	170	4,278		10,687		14,965	14,7
39	85	2048		170	170	4,278		10,687		14,965	14,7
40	86	2049	1,000	170	1,170	4,278		10,687		14,965	13,7
40 41	87	2050	1,000	170	1,170	4,278		10,687		14,905	13,7
41	87	2051		170	170	4,278		10,687		14,905	14,7
42 43	88 89	2052		170	170	4,278		10,687		14,965	14,7
44	90	2053		170	170	4,278		10,087		14,965	14,
44	90 91	2054	1,000	170	1,170	4,278		10,687		14,965	14,7
43 46	91	2055	1,000	170	1,170	4,278		10,687		14,965	13,
40 47	92	2057		170	170	4,278		10,687		14,905	14,
47 48		2057		170	170			10,687		14,965 14,965	14,7
48 49	94 95	2058 2059		170 170		4,278		10,687		14,965 14,965	
49 50	95 06		1 000		170	4,278					14,7
30	96 Total	2060	1,000	170	1,170	4,278	3 520	10,687	0	14,965	13,7
1 ·	Total		28,875	7,820	36,695	196,780	-3,539	491,602	0	684,842	648,1
	ition of a dis	count rate o	01 10 %:		15 207					60 204	15 1
	ue: (B-C) e of return (H	IDDY			15,307					60,394	45,0 21.9
	(I										4i.

Table 10.9.2 Calculation of Economic Evaluation Indices

Year	Plant Age	Voor	Replace	Cost Operation		Power	Power	Benefit Energy	Energy		Balance
n order	Plant Age	rear	Replace	&	Total	Benefit	Loss	Benefit	Loss	Total	Dalatice
	42	2006	1,245	Maintenance 0	1,245	0	0	0	0	0	-1,2
	43	2007	5,809	0	5,809	0	-176	0	0	-176	-5,9
	44	2008	1,333	0	1,333	0	-164	0	0	-164	-1,4
	45	2009	9,615	0	9,615	0	-715	0	0	-715	-10,3
	46	2010	5,086	-9	5,077	0	-1,781	49	0	-1,732	-6,8
1	47	2011	441	-20	421	0	0	107	0	107	-3
2	48	2012	0	-20	-20	0	0	107	0	107	1
3	49	2013		-20	-20	0		107		107	1
4	50	2014		-20	-20	0		107		107	1
5	51	2015		150	150	4,278		10,794		15,072	14,9
6	52	2016		150	150	4,278		10,794		15,072	14,9
7	53	2017		150	150	4,278		10,794		15,072	14,9
8	54	2018		150	150	4,278		10,794		15,072	14,9
9	55	2019		150	150	4,278		10,794		15,072	14,9
10	56	2020		150	150	4,278		10,794		15,072	14,9
11	57	2021		150	150	4,278		10,794		15,072	14,9
12	58	2022		150	150	4,278		10,794		15,072	14,9
13	59	2023		150	150	4,278		10,794		15,072	14,9
14	60	2024		150	150	4,278		10,794		15,072	14,9
15	61	2025		150	150	4,278		10,794		15,072	14,9
16	62	2026		150	150	4,278		10,794		15,072	14,9
17	63	2027		150	150	4,278		10,794		15,072	14,9
18	64	2028		150	150	4,278		10,794		15,072	14,9
19	65	2029		150	150	4,278		10,794		15,072	14,9
20	66	2030		150	150	4,278		10,794		15,072	14,
21	67	2030		150	150	4,278		10,794		15,072	14,
22	68	2031		150	150	4,278		10,794		15,072	14,9
23	69	2032		150	150	4,278		10,794		15,072	14,
23	70	2033		150	150	4,278		10,794		15,072	14,
25	70	2035		150	150	4,278		10,794		15,072	14,
26	72	2035		150	150	4,278		10,794		15,072	14,
27	73	2030		150	150	4,278		10,794		15,072	14,
28	74	2038		150	150	4,278		10,794		15,072	14,
29	75	2030		150	150	4,278		10,794		15,072	14,
30	76	2040		150	150	4,278		10,794		15,072	14,
31	77	2040		150	150	4,278		10,794		15,072	14,
32	78	2041		150	150	4,278		10,794		15,072	14,
33	79	2043		150	150	4,278		10,794		15,072	14,
34	80	2043		150	150	4,278		10,794		15,072	14,
35	81	2044		150	150	4,278		10,794		15,072	14,
36	82	2045		150	150	4,278		10,794		15,072	14,
30 37	82	2040		150	150	4,278		10,794		15,072	14,
38	83 84	2047		150	150	4,278		10,794		15,072	14,
38 39	84 85	2048		150	150	4,278		10,794		15,072	14,
40	85 86	2049		150	150	4,278		10,794		15,072	14,
40 41	80 87	2050		150	150	4,278		10,794		15,072	14,
41 42	87	2051		150	150	4,278		10,794		15,072	14,
42 43	89	2052 2053		150	150	4,278		10,794		15,072	14,
43 44	89 90	2055 2054		150	150	4,278		10,794		15,072	14,
44 45	90 91	2034 2055		150	150	4,278		10,794		15,072	14,
45 46	91	2055 2056		150	150	4,278 4,278		10,794		15,072	14,
	92 93	2056 2057		150	150			10,794			
47 48						4,278				15,072	14,
48	94	2058		150	150	4,278		10,794		15,072	14,
49 50	95 96	2059		150	150	4,278		10,794		15,072	14,9
50	96 Total	2060	22 529	150	150	4,278	2020	10,794	0	15,072	14,9
10.00-1	Total	court	23,528	6,811	30,339	196,780	-2,836	496,994	0	690,938	660,
	ition of a dis ue: (B-C)	count fate 0	1 10 /0.		17,491					61,499	44,

Wimalasurendra P/S Case 2 (Scheduled Replace)

Table 10.10 Calculation of Economic Evaluation Indices

Old Laxapana Stage I P/S

Year Pla norder 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	56 57 58 59 60 61 62 63 64	Year 2006 2007 2008 2009 2010 2011	Replace 709 4,280 175	Operation & Maintenance 0 0	Total	Power Benefit	Power Loss	Energy Benefit	Energy Loss	Total	Balance
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\end{array} $	57 58 59 60 61 62 63	2007 2008 2009 2010	4,280 175	Maintenance 0		Benefit	Loss	Benefit	Loss	Total	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	57 58 59 60 61 62 63	2007 2008 2009 2010	4,280 175	0	700						
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	57 58 59 60 61 62 63	2007 2008 2009 2010	4,280 175			0		0		0	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	58 59 60 61 62 63	2008 2009 2010	175	()		0	0	0	0	0	-7
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	59 60 61 62 63	2009 2010			4,280	0	-61	0	0	-61	-4,
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	60 61 62 63	2010	7 007	0	175	0	0	0	0	0	-
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	61 62 63		7,997	0	7,997	0	0	0	0	0	-7,
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	62 63	2011	2,672	-3	2,668	257	-652	1,668	-938	334	-2,
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	63		1,888	-19	1,869	1,476	-594	9,589	-938	9,534	7
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20		2012	89	250	339	2,310	0	15,009	0	17,320	16
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	64	2013		250	250	2,310		15,009		17,320	17
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	10	2014		250	250	2,310		15,009		17,320	17
7 8 9 10 11 12 13 14 15 16 17 18 19 20	65	2015		250	250	2,310		15,009		17,320	17
8 9 10 11 12 13 14 15 16 17 18 19 20	66	2016		250	250	2,310		15,009		17,320	17
9 10 11 12 13 14 15 16 17 18 19 20	67	2017		250	250	2,310		15,009		17,320	17
10 11 12 13 14 15 16 17 18 19 20	68	2018		250	250	2,310		15,009		17,320	17
11 12 13 14 15 16 17 18 19 20	69	2019		250	250	2,310		15,009		17,320	17
12 13 14 15 16 17 18 19 20	70	2020		250	250	2,310		15,009		17,320	17
13 14 15 16 17 18 19 20	71	2021		250	250	2,310		15,009		17,320	17
14 15 16 17 18 19 20	72	2022		250	250	2,310		15,009		17,320	17
15 16 17 18 19 20	73	2023		250	250	2,310		15,009		17,320	17
16 17 18 19 20	74	2024		250	250	2,310		15,009		17,320	17
17 18 19 20	75	2025		250	250	2,310		15,009		17,320	17
18 19 20	76	2026		250	250	2,310		15,009		17,320	17
19 20	77	2027		250	250	2,310		15,009		17,320	17
20	78	2028		250	250	2,310		15,009		17,320	17
	79	2029		250	250	2,310		15,009		17,320	17
21	80	2030		250	250	2,310		15,009		17,320	17
	81	2031		250	250	2,310		15,009		17,320	17
22	82	2032		250	250	2,310		15,009		17,320	17
23	83	2033		250	250	2,310		15,009		17,320	17
24	84	2034		250	250	2,310		15,009		17,320	17
25	85	2035		250	250	2,310		15,009		17,320	17
26	86	2036		250	250	2,310		15,009		17,320	17
27	87	2037		250	250	2,310		15,009		17,320	17
28	88	2038		250	250	2,310		15,009		17,320	17
29	89	2039		250	250	2,310		15,009		17,320	17
30	90	2040		250	250	2,310		15,009		17,320	17
31	91	2041		250	250	2,310		15,009		17,320	17
32	92	2042		250	250	2,310		15,009		17,320	17
33	93	2043		250	250	2,310		15,009		17,320	17
34	94	2044		250	250	2,310		15,009		17,320	17
35	95	2045		250	250	2,310		15,009		17,320	17
36	96	2046		250	250	2,310		15,009		17,320	17
37	97	2047		250	250	2,310		15,009		17,320	17
38	98	2048		250	250	2,310		15,009		17,320	17
39	99	2049		250	250	2,310		15,009		17,320	17
40	100	2050		250	250	2,310		15,009		17,320	17
.0	Total	2000	17,810	9,728	27,538	91,824	-1,307	596,628	-1,875	685,269	657

Internal rate of return (EIRR):

B/C

45.60%

Table 10.11 Calculation of Economic Evaluation Indices

New Laxapana	P/S
--------------	-----

				Cost				Benefit			
Year	Plant Age	Year	Replace	Operation	T (1	Power	Power	Energy	Energy	T + 1	Balance
1 order				& Maintenance	Total	Benefit	Loss	Benefit	Loss	Total	
	32	2006	926	0	926	0	0	0	0	0	-9
	33	2000	5,242	0	5,242	ů 0	0	0	0	0	-5,2
	34	2008	228	0	228	0	-249	0	-1,468	-1,717	-1,9
	35	2009	275	0	275	0	0	0	0	0	-
	36	2010	9,912	0	9,912	0	0	0	0	0	-9,
	37	2011	5,169	-3	5,167	0	-2,461	50	-11,700	-14,111	-19,
1	38	2012	117	-17	100	0	-965	331	0	-634	-
2	39	2013		-20	-20	0		398		398	
3	40	2014		-20	-20	0		398		398	
4	41	2015		-20	-20	0		398		398	
5 6	42 43	2016 2017		-20 -20	-20 -20	0 0		398 398		398 398	
7	43 44	2017		-20 -20	-20	0		398 398		398 398	
8	44	2018		-20	-20	0		398		398	
9	45	2019		-20	-20	0		398		398	
10	47	2020		-20	-20	0		398		398	
11	48	2021		-20	-20	0		398		398	
12	49	2023		-20	-20	0		398		398	
13	50	2024		-20	-20	0		398		398	
14	51	2025		110	110	5,872		40,148		46,020	45
15	52	2026		110	110	5,872		40,148		46,020	45
16	53	2027		110	110	5,872		40,148		46,020	45
17	54	2028		110	110	5,872		40,148		46,020	45
18	55	2029		110	110	5,872		40,148		46,020	45
19	56	2030		110	110	5,872		40,148		46,020	45
20	57	2031		110	110	5,872		40,148		46,020	45
21	58	2032		110	110	5,872		40,148		46,020	45
22	59	2033		110	110	5,872		40,148		46,020	45
23	60	2034		110	110	5,872		40,148		46,020	45
24	61	2035		110	110	5,872		40,148		46,020	45
25 26	62 63	2036 2037		110 110	110 110	5,872		40,148 40,148		46,020 46,020	45. 45.
20 27	64	2037		110	110	5,872 5,872		40,148		46,020	43 45
27	65	2038		110	110	5,872		40,148		46,020	45
20	66	2039		110	110	5,872		40,148		46,020	45.
30	67	2010		110	110	5,872		40,148		46,020	45
31	68	2042		110	110	5,872		40,148		46,020	45
32	69	2043		110	110	5,872		40,148		46,020	45
33	70	2044		110	110	5,872		40,148		46,020	45
34	71	2045		110	110	5,872		40,148		46,020	45
35	72	2046		110	110	5,872		40,148		46,020	45
36	73	2047		110	110	5,872		40,148		46,020	45
37	74	2048		110	110	5,872		40,148		46,020	45
38	75	2049		110	110	5,872		40,148		46,020	45
39	76	2050		110	110	5,872		40,148		46,020	45
40	77	2051		110	110	5,872		40,148		46,020	45
41	78	2052		110	110	5,872		40,148		46,020	45
42	79	2053		110	110	5,872		40,148		46,020	45
43	80	2054		110	110	5,872		40,148		46,020	45
44	81	2055		110	110	5,872		40,148		46,020	45
45 46	82 83	2056		110	110	5,872		40,148		46,020	45
46 47	83 84	2057 2058		110 110	110	5,872 5,872		40,148 40,148		46,020 46,020	45
47 48	84 85	2058		110	110 110	5,872 5,872		40,148 40,148		46,020 46,020	45 45
48 49	83 86	2059		110	110	5,872 5,872		40,148		46,020	43 45
49 50	80 87	2060		110	110	5,872 5,872		40,148		46,020	45 45
50	Total	2001	21,869	3,811	25,680	217,271	-3,676	1,490,635	-13,168	1,691,062	1,665
ne cond	lition of a dis	count rate	,	5,011	20,000		5,070	1,120,000	10,100	1,071,002	1,005
	ue: (B-C)				14,760					64,843	50.

Table 10.12.1 Calculation of Economic Evaluation Indices

				Cost				Benefit			
Year n order	Plant Age	Year	Replace	Operation &	Total	Power Benefit	Power Loss	Energy Benefit	Energy Loss	Total	Balance
n order				a Maintenance	Totai	Benefit	LOSS	Benefit	Loss	Total	
	42	2006	1,145	0	1,145	0	0	0	0	0	-1,1
	43	2007	4,676	0	4,676	0	-176	0	0	-176	-4,8
	44	2008	1,042	0	1,042	0	-164	0	0	-164	-1,2
	45	2009	7,554	0	7,554	0	-715	0	0	-715	-8,2
	46	2010	4,018	0	4,018	0	-2,139	0	0	-2,139	-6,1
1	47	2011	346	0	346	0	-346	0	0	-346	-(
2	48	2012	93	0	93	0	0	0	0	0	
3	49	2013		0	0	0		0		0	
4	50	2014	1 000	0	0	0		0		0	
5	51	2015	1,000	170	1,170	4,278		10,687		14,965	13,
6	52	2016		170	170	4,278		10,687		14,965	14,
7	53	2017		170	170	4,278		10,687		14,965	14,
8	54	2018		170	170	4,278		10,687		14,965	14,
9	55	2019	1.000	170	170	4,278		10,687		14,965	14,
10	56	2020	1,000	170	1,170	4,278		10,687		14,965	13,
11	57	2021		170	170	4,278		10,687		14,965	14,
12	58	2022		170	170	4,278		10,687		14,965	14,
13	59	2023		170	170	4,278	0	10,687	0	14,965	14,
14	60	2024	1 000	170	170	4,278	0	10,687	0	14,965	14,
15	61	2025	1,000	170	1,170	4,278	-176	10,687	0	14,789	13,
16	62	2026	5,000	170	5,170	4,278	-164	10,687	0	14,801	9,
17	63	2027		170	170	4,278	-715	10,687	0	14,250	14,
18	64	2028		170	170	4,278	-2,139	10,687	0	12,826	12,
19	65	2029		170	170	4,278	-346	10,687	0	14,619	14,
20	66	2030	1,000	170	1,170	4,278	0	10,687	0	14,965	13,
21	67	2031		170	170	4,278		10,687		14,965	14,
22	68	2032		170	170	4,278		10,687		14,965	14,
23	69	2033		170	170	4,278		10,687		14,965	14,
24	70	2034		170	170	4,278		10,687		14,965	14,
25	71	2035	1,000	170	1,170	4,278		10,687		14,965	13,
26	72	2036		170	170	4,278		10,687		14,965	14,
27	73	2037		170	170	4,278		10,687		14,965	14,
28	74	2038		170	170	4,278		10,687		14,965	14,
29	75	2039		170	170	4,278		10,687		14,965	14,
30	76	2040	1,000	170	1,170	4,278		10,687		14,965	13,
31	77	2041		170	170	4,278		10,687		14,965	14,
32	78	2042		170	170	4,278		10,687		14,965	14,
33	79	2043		170	170	4,278		10,687		14,965	14
34	80	2044		170	170	4,278		10,687		14,965	14
35	81	2045	1,000	170	1,170	4,278		10,687		14,965	13,
36	82	2046		170	170	4,278		10,687		14,965	14,
37	83	2047		170	170	4,278		10,687		14,965	14,
38	84	2048		170	170	4,278		10,687		14,965	14,
39	85	2049		170	170	4,278		10,687		14,965	14,
40	86	2050	1,000	170	1,170	4,278		10,687		14,965	13,
41	87	2051		170	170	4,278		10,687		14,965	14,
42	88	2052		170	170	4,278		10,687		14,965	14,
43	89	2053		170	170	4,278		10,687		14,965	14,
44	90	2054		170	170	4,278		10,687		14,965	14,
45	91	2055	1,000	170	1,170	4,278		10,687		14,965	13,
46	92	2056		170	170	4,278		10,687		14,965	14
47	93	2057		170	170	4,278		10,687		14,965	14
48	94	2058		170	170	4,278		10,687		14,965	14,
49	95	2059		170	170	4,278		10,687		14,965	14,
50	96	2060	1,000	170	1,170	4,278		10,687		14,965	13,
	Total		33,875	7,820	41,695	196,780	-7,079	491,602	0	681,303	639,
		count rate o	of 10 %:		15 092					50.084	44
sent valu	. ,	IDD).			15,982					59,984	44,
ernal rate	of return (H	ыкк):									21.7
e 2	e: (B-C)										44,

Wimalasurendra P/S Case 1 (Repair as Required)

Final Report

Table 10.12.2 Calculation of Economic Evaluation Indices

Year Plar in order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66	Year 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026	Replace 1,145 4,676 1,042 7,554 4,018 346 93 1,000 1,000	Operation & Maintenance 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 170 17	Total 1,145 4,676 1,042 7,554 4,018 346 93 0 0 1,170 170 170 170 170 170 170 1,170	Power Benefit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Power Loss 0 -176 -164 -715 -2,139 -346 0	Energy Benefit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Energy Loss 0 0 0 0 0 0 0 0 0	Total 0 -176 -164 -715 -2,139 -346 0 0 0 14,965 14,965 14,965	-1,1+ -4,8: -1,2+ -8,2+ -6,1: -6(-1,-6) -1,-6(-1,-6) -1,-6(-1,-6) -1,-6(-1,-6) -1,-6(-1,-6) -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\23\\24\\25\\26\\27\\28\\29\end{array} $	43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2020 2021 2022 2023 2024 2025	4,676 1,042 7,554 4,018 346 93 1,000	Maintenance 0 0 0 0 0 0 0 0 0 0 0 0 170 170 170 170	1,145 4,676 1,042 7,554 4,018 346 93 0 0 1,170 170 170 170 170 170	0 0 0 0 0 0 0 4,278 4,278 4,278 4,278	0 -176 -164 -715 -2,139 -346	0 0 0 0 0 0 0 0 10,687 10,687	0 0 0 0 0 0	0 -176 -164 -715 -2,139 -346 0 0 0 14,965 14,965 14,965	-4,8: -1,20 -8,20 -6,1: -6,1: -6,1: -6,1: -13,79 14,79
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2020 2021 2022 2023 2024 2025	4,676 1,042 7,554 4,018 346 93 1,000	0 0 0 0 0 0 0 170 170 170 170 170 170 17	4,676 1,042 7,554 4,018 346 93 0 0 1,170 170 170 170 170	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 4,278\\ 4,278\\ 4,278\\ 4,278\\ 4,278\\ 4,278\end{array}$	-176 -164 -715 -2,139 -346	0 0 0 0 0 0 10,687 10,687 10,687	0 0 0 0	-176 -164 -715 -2,139 -346 0 0 0 14,965 14,965 14,965	-4,8 -1,2 -8,2 -6,1 -6 - 13,7 14,7
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025	1,042 7,554 4,018 346 93 1,000	0 0 0 0 170 170 170 170 170 170 170 170	1,042 7,554 4,018 346 93 0 0 1,170 170 170 170 170	0 0 0 0 4,278 4,278 4,278 4,278 4,278	-164 -715 -2,139 -346	0 0 0 0 10,687 10,687 10,687	0 0 0 0	-164 -715 -2,139 -346 0 0 0 14,965 14,965 14,965	-1,2 -8,2 -6,1 -6 -1 13,7 14,7
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025	7,554 4,018 346 93 1,000	0 0 0 0 170 170 170 170 170 170 170	7,554 4,018 346 93 0 0 1,170 170 170 170 170	0 0 0 0 4,278 4,278 4,278 4,278 4,278	-715 -2,139 -346	0 0 0 10,687 10,687 10,687	0 0 0	-715 -2,139 -346 0 0 14,965 14,965 14,965	-8,2 -6,1 -6 - 13,7 14,7
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025	4,018 346 93 1,000	0 0 0 170 170 170 170 170 170 170 170	4,018 346 93 0 1,170 170 170 170 170	0 0 0 4,278 4,278 4,278 4,278 4,278	-2,139 -346	0 0 0 10,687 10,687 10,687	0 0	-2,139 -346 0 0 0 14,965 14,965 14,965	-6,1 -6 -3 13,7 14,7
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025	346 93 1,000	0 0 170 170 170 170 170 170 170	346 93 0 1,170 170 170 170 170	0 0 4,278 4,278 4,278 4,278 4,278	-346	0 0 0 10,687 10,687 10,687	0	-346 0 0 14,965 14,965 14,965	-6 13,7 14,7
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025	93 1,000	0 0 170 170 170 170 170 170 170	93 0 1,170 170 170 170 170	0 0 4,278 4,278 4,278 4,278 4,278		0 0 10,687 10,687 10,687		0 0 14,965 14,965 14,965	13,7 14,7
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025	1,000	0 0 170 170 170 170 170 170 170	0 0 1,170 170 170 170 170	0 0 4,278 4,278 4,278 4,278 4,278	0	0 0 10,687 10,687 10,687	0	0 0 14,965 14,965 14,965	13,7 14,7
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025		0 170 170 170 170 170 170 170	0 1,170 170 170 170 170	0 4,278 4,278 4,278 4,278		0 10,687 10,687 10,687		0 14,965 14,965 14,965	14,7
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	2015 2016 2017 2018 2019 2020 2021 2022 2023 2023 2024 2025		170 170 170 170 170 170 170	1,170 170 170 170 170	4,278 4,278 4,278 4,278		10,687 10,687 10,687		14,965 14,965 14,965	14,7
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	52 53 54 55 56 57 58 59 60 61 62 63 64 65	2016 2017 2018 2019 2020 2021 2022 2023 2024 2025		170 170 170 170 170 170	170 170 170 170	4,278 4,278 4,278		10,687 10,687		14,965 14,965	14,7
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	53 54 55 56 57 58 59 60 61 62 63 64 65	2017 2018 2019 2020 2021 2022 2023 2024 2025	1,000	170 170 170 170 170	170 170 170	4,278 4,278		10,687		14,965	
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	54 55 56 57 58 59 60 61 62 63 64 65	2018 2019 2020 2021 2022 2023 2024 2025	1,000	170 170 170 170	170 170	4,278					14,7
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	55 56 57 58 59 60 61 62 63 64 65	2019 2020 2021 2022 2023 2024 2025	1,000	170 170 170	170						
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	56 57 58 59 60 61 62 63 64 65	2020 2021 2022 2023 2024 2025	1,000	170 170		4,278		10,687		14,965	14,7
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	57 58 59 60 61 62 63 64 65	2021 2022 2023 2024 2025	1,000	170	1.170			10,687		14,965	14,7
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	58 59 60 61 62 63 64 65	2022 2023 2024 2025				4,278		10,687		14,965	13,7
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	59 60 61 62 63 64 65	2023 2024 2025			170	4,278		10,687		14,965	14,7
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	60 61 62 63 64 65	2024 2025		170	170	4,278		10,687		14,965	14,
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	61 62 63 64 65	2025		170	170	4,278		10,687		14,965	14,
16 17 18 19 20 21 22 23 24 25 26 27 28 29	62 63 64 65			170	170	4,278		10,687		14,965	14,
17 18 19 20 21 22 23 24 25 26 27 28 29	63 64 65	2026	1,000	170	1,170	4,278	0	10,687	0	14,965	13,
18 19 20 21 22 23 24 25 26 27 28 29	64 65			170	170	4,278	-176	10,687	0	14,789	14,
19 20 21 22 23 24 25 26 27 28 29	65	2027	5,000	170	5,170	4,278	-164	10,687	0	14,801	9,
20 21 22 23 24 25 26 27 28 29		2028		170	170	4,278	-715	10,687	0	14,250	14,
21 22 23 24 25 26 27 28 29	66	2029		170	170	4,278	-2,139	10,687	0	12,826	12,
22 23 24 25 26 27 28 29		2030	1,000	170	1,170	4,278	-346	10,687	0	14,619	13,
23 24 25 26 27 28 29	67	2031		170	170	4,278	0	10,687	0	14,965	14,
24 25 26 27 28 29	68	2032		170	170	4,278		10,687		14,965	14,
25 26 27 28 29	69	2033		170	170	4,278		10,687		14,965	14,
26 27 28 29	70	2034		170	170	4,278		10,687		14,965	14,
27 28 29	71	2035	1,000	170	1,170	4,278		10,687		14,965	13,
28 29	72	2036		170	170	4,278		10,687		14,965	14,
29	73	2037		170	170	4,278		10,687		14,965	14,
	74	2038		170	170	4,278		10,687		14,965	14,
30	75	2039		170	170	4,278		10,687		14,965	14,
	76	2040	1,000	170	1,170	4,278		10,687		14,965	13,
31	77	2041		170	170	4,278		10,687		14,965	14,
32	78	2042		170	170	4,278		10,687		14,965	14,
33	79	2043		170	170	4,278		10,687		14,965	14,
34	80	2044		170	170	4,278		10,687		14,965	14,
35	81	2045	1,000	170	1,170	4,278		10,687		14,965	13,
36	82	2046		170	170	4,278		10,687		14,965	14,
37	83	2047		170	170	4,278		10,687		14,965	14,
38	84	2048		170	170	4,278		10,687		14,965	14,
39	85	2049		170	170	4,278		10,687		14,965	14,
40	86	2050	1,000	170	1,170	4,278		10,687		14,965	13,
41	87	2051		170	170	4,278		10,687		14,965	14,
42	88	2052		170	170	4,278		10,687		14,965	14,
43	89	2053		170	170	4,278		10,687		14,965	14,
44	90	2054		170	170	4,278		10,687		14,965	14,
45	91	2055	1,000	170	1,170	4,278		10,687		14,965	13,
46	92	2056		170	170	4,278		10,687		14,965	14,
47	93	2057		170	170	4,278		10,687		14,965	14,
48	94	2058		170	170	4,278		10,687		14,965	14,
49	95	2059		170	170	4,278		10,687		14,965	14,
50	96	2060	1,000	170	1,170	4,278		10,687		14,965	13,
	Total		33,875	7,820	41,695	196,780	-7,079	491,602	0	681,303	639,
he condition sent value: (E		count rate of	ot 10 %:		15,921					60,021	44,
ernal rate of r	· · ·	IRR).			,/21					00,021	21.8
	(L).									21.8
e 2											4.4
ent value: (E	D C										44,

Wimalasurendra P/S Case 1 (Repair as Required)

Final Report

Const. EIRR B/C B-C (US\$1,000) Wimalasurendra P/S Case 1 (Repair as Required) (US\$1,000) Case-A 50% 18.05% 2.63 37,434 Case-B 30% 19.38% 3.04 40,495 Base Case 0% 21.91% 3.95 45,087 Case-C -30% 25.46% 5.64 49,679 Case-D -50% 28.89% 7.89 52,740 Trial Case 293% 10.03% 1.00 238 Wimalasurendra P/S Case2 (Scheduled Replace) 2.34 35,263 Case-A 50% 16.73% 2.34 35,263 Case-A 50% 18.02% 2.70 38,761 Base Case 0% 20.49% 3.52 44,008 Case-A 50% 10.73% 2.34 35,263 Case-C -30% 24.03% 5.02 49,256 Case-C -50% 27.52% 7.03 52,754		1	Evaluatio	n Indices	
Wimalasurendra P/S Case 1 (Repair as Required) Case-A 50% 18.05% 2.63 37,434 Case-B 30% 19.38% 3.04 40,495 Base Case 0% 21.91% 3.95 45,087 Case-C -30% 25.46% 5.64 49,679 Case-D -50% 28.89% 7.89 52,740 Trial Case 293% 10.03% 1.00 238 Wimalasurendra P/S Case2 (Scheduled Replace) 2.34 35,263 Case-A 50% 16.73% 2.34 35,263 Case-B 30% 18.02% 2.70 38,761 Base Case 0% 20.49% 3.52 44,008 Case-C -30% 24.03% 5.02 49,256 Case-C -30% 25.50% 7.03 52,754 Trial Case 250% 10.03% 1.00 281 Old Laxapana Stage I P/S Case-A 50% 35.50% 4.84	Const		EIRR	B/C	B-C
Case-A 50% 18.05% 2.63 37,434 Case-B 30% 19.38% 3.04 40,495 Base Case 0% 21.91% 3.95 45,087 Case-C -30% 25.46% 5.64 49,679 Case-D -50% 28.89% 7.89 52,740 Trial Case 293% 10.03% 1.00 238 Wimalasurendra P/S Case2 (Scheduled Replace)	Cost				(US\$1,000)
Case-B 30% 19.38% 3.04 40,495 Base Case 0% 21.91% 3.95 45,087 Case-C -30% 25.46% 5.64 49,679 Case-D -50% 28.89% 7.89 52,740 Trial Case 293% 10.03% 1.00 238 Wimalasurendra P/S Case2 (Scheduled Replace) 35,263 Case-A 50% 16.73% 2.34 35,263 Case-B 30% 18.02% 2.70 38,761 Base Case 0% 20.49% 3.52 44,008 Case-C -30% 24.03% 5.02 49,256 Case-C -30% 24.03% 5.02 49,256 Case-C -50% 27.52% 7.03 52,754 Trial Case 250% 10.03% 1.00 281 Old Laxapana Stage I P/S Case-A 50% 35.50% 4.84 80,063 Case-B 30% 38.89% 5.58	Wimalasurendra P/S	S Case 1	(Repair as Required)		
Base Case 0% 21.91% 3.95 45,087 Case-C -30% 25.46% 5.64 49,679 Case-D -50% 28.89% 7.89 52,740 Trial Case 293% 10.03% 1.00 238 Wimalasurendra P/S Case2 (Scheduled Replace)	Case-A	50%	18.05%	2.63	37,434
Case-C -30% 25.46% 5.64 49,679 Case-D -50% 28.89% 7.89 52,740 Trial Case 293% 10.03% 1.00 238 Wimalasurendra P/S Case2 (Scheduled Replace)	Case-B	30%	19.38%	3.04	40,495
Case-D -50% 28.89% 7.89 52,740 Trial Case 293% 10.03% 1.00 238 Wimalasurendra P/S Case2 (Scheduled Replace)	Base Case	0%	21.91%	3.95	45,087
Trial Case 293% 10.03% 1.00 238 Wimalasurendra P/S Case2 (Scheduled Replace) Case-A 50% 16.73% 2.34 35,263 Case-B 30% 18.02% 2.70 38,761 Base Case 0% 20.49% 3.52 44,008 Case-C -30% 24.03% 5.02 49,256 Case-C -30% 27.52% 7.03 52,754 Trial Case 250% 10.03% 1.00 281 Old Laxapana Stage I P/S Case-A 50% 35.50% 4.84 80,063 Case-B 30% 38.89% 5.58 82,845 Base Case 0% 45.60% 7.26 87,018 Case-C -30% 55.73% 10.37 91,191 Case-D -50% 66.34% 14.51 93,972 Trial Case 623% 10.04% 1.00 360 New Laxapana P/S Case-A 50% 14.20% 2.93 42,703 Case-B 30% 14.72% 3.38 <th< td=""><td>Case-C</td><td>-30%</td><td>25.46%</td><td>5.64</td><td>49,679</td></th<>	Case-C	-30%	25.46%	5.64	49,679
Wimalasurendra P/S Case2 (Scheduled Replace) Case-A 50% 16.73% 2.34 35,263 Case-B 30% 18.02% 2.70 38,761 Base Case 0% 20.49% 3.52 44,008 Case-C -30% 24.03% 5.02 49,256 Case-C -50% 27.52% 7.03 52,754 Trial Case 250% 10.03% 1.00 281 Old Laxapana Stage I P/S Case-A 50% 35.50% 4.84 80,063 Case-B 30% 38.89% 5.58 82,845 Base Case 0% 45.60% 7.26 87,018 Case-C -30% 55.73% 10.37 91,191 Case-C -30% 55.73% 10.37 91,921 Trial Case 623% 10.04% 1.00 360 New Laxapana P/S - - - - 3.38 45,655 Base Case 0% 14.20% <t< td=""><td>Case-D</td><td>-50%</td><td>28.89%</td><td>7.89</td><td>52,740</td></t<>	Case-D	-50%	28.89%	7.89	52,740
Case-A 50% 16.73% 2.34 35,263 Case-B 30% 18.02% 2.70 38,761 Base Case 0% 20.49% 3.52 44,008 Case-C -30% 24.03% 5.02 49,256 Case-C -50% 27.52% 7.03 52,754 Trial Case 250% 10.03% 1.00 281 Old Laxapana Stage I P/S Case-A 50% 35.50% 4.84 80,063 Case-B 30% 38.89% 5.58 82,845 Base Case 0% 45.60% 7.26 87,018 Case-C -30% 55.73% 10.37 91,191 Case-C -30% 55.73% 10.37 91,912 Case-D -50% 66.34% 14.51 93,972 Trial Case 623% 10.04% 1.00 360 New Laxapana P/S Image: Case-A 50% 14.20% 2.93 42,703 Case-B	Trial Case	293%	10.03%	1.00	238
Case-A 50% 16.73% 2.34 35,263 Case-B 30% 18.02% 2.70 38,761 Base Case 0% 20.49% 3.52 44,008 Case-C -30% 24.03% 5.02 49,256 Case-C -50% 27.52% 7.03 52,754 Trial Case 250% 10.03% 1.00 281 Old Laxapana Stage I P/S Case-A 50% 35.50% 4.84 80,063 Case-B 30% 38.89% 5.58 82,845 Base Case 0% 45.60% 7.26 87,018 Case-C -30% 55.73% 10.37 91,191 Case-D -50% 66.34% 14.51 93,972 Trial Case 623% 10.04% 1.00 360 New Laxapana P/S Image: Case-A 50% 14.20% 2.93 42,703 Case-B 30% 14.72% 3.38 45,655 Base Case 0%					
Case-B 30% 18.02% 2.70 38,761 Base Case 0% 20.49% 3.52 44,008 Case-C -30% 24.03% 5.02 49,256 Case-C -50% 27.52% 7.03 52,754 Trial Case 250% 10.03% 1.00 281 Old Laxapana Stage I P/S Case-A 50% 35.50% 4.84 80,063 Case-B 30% 38.89% 5.58 82,845 Base Case 0% 45.60% 7.26 87,018 Case-C -30% 55.73% 10.37 91,191 Case-D -50% 66.34% 14.51 93,972 Trial Case 623% 10.04% 1.00 360 New Laxapana P/S Case-A 50% 14.20% 2.93 42,703 Case-A 50% 14.20% 2.93 42,703 Case-B 30% 14.72% 3.38 45,655 Base Case 0% 15,65% 4.39 50,083 Case-	Wimalasurendra P/3	S Case2	(Scheduled Replace)		
Base Case 0% 20.49% 3.52 44,008 Case-C -30% 24.03% 5.02 49,256 Case-C -50% 27.52% 7.03 52,754 Trial Case 250% 10.03% 1.00 281 Old Laxapana Stage I P/S Case-A 50% 35.50% 4.84 80,063 Case-B 30% 38.89% 5.58 82,845 Base Case 0% 45.60% 7.26 87,018 Case-C -30% 55.73% 10.37 91,191 Case-D -50% 66.34% 14.51 93,972 Trial Case 623% 10.04% 1.00 360 New Laxapana P/S - - - - - Case-A 50% 14.20% 2.93 42,703 - Case-B 30% 14.72% 3.38 45,655 - Base Case 0% 15.65% 4.39 50,083 -	Case-A	50%	16.73%	2.34	35,263
Case-C-30%24.03%5.0249,256Case-C-50%27.52%7.0352,754Trial Case250%10.03%1.00281Old Laxapana Stage I P/SCase-A50%35.50%4.8480,063Case-B30%38.89%5.5882,845Base Case0%45.60%7.2687,018Case-C-30%55.73%10.3791,191Case-D-50%66.34%14.5193,972Trial Case623%10.04%1.00360New Laxapana P/SCase-B30%14.20%2.9342,703Case-B30%14.72%3.3845,655Base Case0%15.65%4.3950,083Case-C-30%16.81%6.2854,511Case-D-50%17.78%8.7957,463	Case-B	30%	18.02%	2.70	38,761
Case-C -50% 27.52% 7.03 52,754 Trial Case 250% 10.03% 1.00 281 Old Laxapana Stage I P/S Case-A 50% 35.50% 4.84 80,063 Case-B 30% 38.89% 5.58 82,845 Base Case 0% 45.60% 7.26 87,018 Case-C -30% 55.73% 10.37 91,191 Case-D -50% 66.34% 14.51 93,972 Trial Case 623% 10.04% 1.00 360 New Laxapana P/S Zase-A 50% 14.20% 2.93 42,703 Case-B 30% 14.72% 3.38 45,655 Base Case 0% 15.65% 4.39 50,083 Case-C -30% 15.65% 4.39 50,083 Case-C -30% 16.81% 6.28 54,511 Case-D -50% 17.78% 8.79 57,463	Base Case	0%	20.49%	3.52	44,008
Trial Case250%10.03%1.00281Old Laxapana Stage I P/SCase-A50%35.50%4.8480,063Case-B30%38.89%5.5882,845Base Case0%45.60%7.2687,018Case-C-30%55.73%10.3791,191Case-D-50%66.34%14.5193,972Trial Case623%10.04%1.00360New Laxapana P/SImage: Case-A50%14.20%2.9342,703Case-B30%14.72%3.3845,655Base Case0%15.65%4.3950,083Case-C-30%16.81%6.2854,511Case-D-50%17.78%8.7957,463	Case-C	-30%	24.03%	5.02	49,256
Old Laxapana Stage I P/S 35.50% 4.84 80,063 Case-A 50% 35.50% 4.84 80,063 Case-B 30% 38.89% 5.58 82,845 Base Case 0% 45.60% 7.26 87,018 Case-C -30% 55.73% 10.37 91,191 Case-D -50% 66.34% 14.51 93,972 Trial Case 623% 10.04% 1.00 360 New Laxapana P/S 2.93 42,703 Case-A 50% 14.20% 2.93 42,703 Case-B 30% 14.72% 3.38 45,655 Base Case 0% 15.65% 4.39 50,083 Case-C -30% 16.81% 6.28 54,511 Case-D -50% 17.78% 8.79 57,463	Case-C	-50%	27.52%	7.03	52,754
Case-A50%35.50%4.8480,063Case-B30%38.89%5.5882,845Base Case0%45.60%7.2687,018Case-C-30%55.73%10.3791,191Case-D-50%66.34%14.5193,972Trial Case623%10.04%1.00360New Laxapana P/SCase-A50%14.20%2.9342,703Case-B30%14.72%3.3845,655Base Case0%15.65%4.3950,083Case-C-30%16.81%6.2854,511Case-D-50%17.78%8.7957,463	Trial Case	250%	10.03%	1.00	281
Case-A50%35.50%4.8480,063Case-B30%38.89%5.5882,845Base Case0%45.60%7.2687,018Case-C-30%55.73%10.3791,191Case-D-50%66.34%14.5193,972Trial Case623%10.04%1.00360New Laxapana P/SCase-A50%14.20%2.9342,703Case-B30%14.72%3.3845,655Base Case0%15.65%4.3950,083Case-C-30%16.81%6.2854,511Case-D-50%17.78%8.7957,463					
Case-B30%38.89%5.5882,845Base Case0%45.60%7.2687,018Case-C-30%55.73%10.3791,191Case-D-50%66.34%14.5193,972Trial Case623%10.04%1.00360New Laxapana P/SCase-A50%14.20%2.9342,703Case-B30%14.72%3.3845,655Base Case0%15.65%4.3950,083Case-C-30%16.81%6.2854,511Case-D-50%17.78%8.7957,463	Old Laxapana Stage	e I P/S			
Base Case 0% 45.60% 7.26 87,018 Case-C -30% 55.73% 10.37 91,191 Case-D -50% 66.34% 14.51 93,972 Trial Case 623% 10.04% 1.00 360 New Laxapana P/S Case-A 50% 14.20% 2.93 42,703 Case-B 30% 14.72% 3.38 45,655 Base Case 0% 15.65% 4.39 50,083 Case-C -30% 16.81% 6.28 54,511 Case-D -50% 17.78% 8.79 57,463	Case-A	50%	35.50%	4.84	80,063
Case-C-30%55.73%10.3791,191Case-D-50%66.34%14.5193,972Trial Case623%10.04%1.00360New Laxapana P/SCase-A50%14.20%2.9342,703Case-B30%14.72%3.3845,655Base Case0%15.65%4.3950,083Case-C-30%16.81%6.2854,511Case-D-50%17.78%8.7957,463	Case-B	30%	38.89%	5.58	82,845
Case-D-50%66.34%14.5193,972Trial Case623%10.04%1.00360New Laxapana P/SCase-A50%14.20%2.9342,703Case-B30%14.72%3.3845,655Base Case0%15.65%4.3950,083Case-C-30%16.81%6.2854,511Case-D-50%17.78%8.7957,463	Base Case	0%	45.60%	7.26	87,018
Trial Case623%10.04%1.00360New Laxapana P/SCase-A50%14.20%2.9342,703Case-B30%14.72%3.3845,655Base Case0%15.65%4.3950,083Case-C-30%16.81%6.2854,511Case-D-50%17.78%8.7957,463	Case-C	-30%	55.73%	10.37	91,191
New Laxapana P/S Case-A 50% 14.20% 2.93 42,703 Case-B 30% 14.72% 3.38 45,655 Base Case 0% 15.65% 4.39 50,083 Case-C -30% 16.81% 6.28 54,511 Case-D -50% 17.78% 8.79 57,463	Case-D	-50%	66.34%	14.51	93,972
Case-A50%14.20%2.9342,703Case-B30%14.72%3.3845,655Base Case0%15.65%4.3950,083Case-C-30%16.81%6.2854,511Case-D-50%17.78%8.7957,463	Trial Case	623%	10.04%	1.00	360
Case-A50%14.20%2.9342,703Case-B30%14.72%3.3845,655Base Case0%15.65%4.3950,083Case-C-30%16.81%6.2854,511Case-D-50%17.78%8.7957,463					
Case-B30%14.72%3.3845,655Base Case0%15.65%4.3950,083Case-C-30%16.81%6.2854,511Case-D-50%17.78%8.7957,463	New Laxapana P/S				
Base Case0%15.65%4.3950,083Case-C-30%16.81%6.2854,511Case-D-50%17.78%8.7957,463	Case-A	50%	14.20%	2.93	42,703
Case-C-30%16.81%6.2854,511Case-D-50%17.78%8.7957,463	Case-B	30%	14.72%	3.38	45,655
Case-D -50% 17.78% 8.79 57,463	Base Case	0%	15.65%	4.39	50,083
,	Case-C	-30%	16.81%	6.28	54,511
1rial Case 339% 10.00% 1.00 45	Trial Case	339%	10.00%	1.00	45

Table 10.13Economical Sensitivity of Construction Cost

	Auto			
	Diesel	E	valuation Indices	
	Price	EIRR	B/C	B-C
	(US\$/bbl)			(US\$1,000)
Wimalasurendra P/S	Case 1 (Repair	as Required)		
Case-A	40.00	21.91%	3.95	45,087
Case-B	35.00	20.46%	3.44	37,377
Base Case	42.70	21.91%	3.95	45,087
Case-C	30.00	20.88%	3.26	34,640
Case-D	25.00	18.34%	2.79	27,342
Trial Case	1.00	11.34%	1.21	3,272
Wimalasurendra P/S	Case2 (Scheduled	Replace)		
Case-A	50.00	21.68%	3.94	51,449
Case-B	35.00	19.11%	3.07	36,180
Base Case	42.70	20.49%	3.52	44,008
Case-C	30.00	18.14%	2.78	31,085
Case-D	25.00	17.10%	2.49	25,990
Trial Case	1.00	10.56%	1.09	1,550
Old Laxapana Stage I	P/S			
Case-A	40.00	44.14%	6.88	81,723
Case-B	35.00	41.27%	6.17	71,858
Base Case	42.70	45.60%	7.26	87,018
Case-C	30.00	38.36%	5.47	62,130
Case-D	25.00	34.88%	4.75	52,127
Trial Case	1.00	13.22%	1.35	4,802
New Laxapana P/S				
Case-A	40.00	15.45%	4.16	46,608
Case-B	35.00	15.05%	3.72	40,180
Base Case	42.70	15.65%	4.39	50,083
Case-C	30.00	14.57%	3.28	33,694
Case-D	25.00	14.03%	2.85	27,236
Trial Case	3.90	10.00%	1.00	e

Table 10.14Economical Sensitivity of Fuel Price

Table 10.15Outage Term (3) (Replace After Crash)

Outage	e Term of Wimalasurendra	P/S		Pmax =	50	MW (2unit	s)					outage fo outage ca	r installatio used by cr			
		Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total		
	E (2003) (MWh)	4,892	3,922	6,867	8,976	12,204	11,129	6,805	4,403	4,315	5,599	5,246	8,748	83,106		
	Adjusted E (MWh)	6,711	5,380	9,420	12,313	16,741	15,266	9,335	6,040	5,919	7,680	7,196	12,000	114,000	Loss(US\$	1,000) per Year
M	lax. E by 1 unit (MWh)	18,600	16,800	18,600	18,000	18,600	18,000	18,600	18,600	18,000	18,600	18,000	18,600	219,000		
2006	Outage (days)	31	28	31	30	31	30	31	31	30	31	30	31	365	kW loss	-2,139 US\$1,000
2000	Loss of Energy (MWh)	0	0	0	0	0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000
2007	Outage (days)	31	28	31	30	31	30	31	31	30	31	30	31	365	kW loss	-2,139 US\$1,00
2007	Loss of Energy (MWh)	0	0	0	0	0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000
2008	Outage (days)	31	28	31	30	31	30	31	31	30	31	30	31	365	kW loss	-2,139 US\$1,000
2008	Loss of Energy (MWh)	0	0	0	0	0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000
2009	Outage (days)	31	28	31	30	31	30	31	31	30	31	30	31	365	kW loss	-2,139 US\$1,000
2009	Loss of Energy (MWh)	0	0	0	0	0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000
2010	Outage (days)	31	28	31	30	31	30	31	31	30	31	0	0	304	kW loss	-1,781 US\$1,000
2010	Loss of Energy (MWh)	0	0	0	0	0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000
2011	Outage (days)	0	0	0	0	0	0	0	0	0	0	0	0	0	kW loss	0 US\$1,000
2011	Loss of Energy (MWh)	0	0	0	0	0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000
2012	Outage (days)	0	0	0	0	0	0	0	0	0	0	0	0	0	kW loss	0 US\$1,000
2012	Loss of Energy (MWh)	0	0	0	0	0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000
	*Condition															

Unitl crash (Jan.2006) 2 units replacement (Unit1:Sep2009-Mar2010, Unit2:Apr2010-Oct2010)

44 months is necessary before beginning installation for investigation & preparation

Outage	e Term of Old Laxapana St	age I P/S		Pmax =	50	MW										
	-	-		Stage I	25	MW (3 uni	ts)	Stage II	25	MW (2 uni	ts)					
		Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total		
	E (2003) (MWh)	12,632	10,139	18,583	23,176	28,999	28,556	23,616	19,375	15,680	16,491	13,982	20,632	231,861		
	Adjusted E (MWh)	15,200	12,200	22,361	27,888	34,895	34,362	28,417	23,314	18,868	19,844	16,825	24,827	279,000	Loss(US\$1,	000) per Year
Max.	E by St.I & 2 unit (MWh)	31,000	28,000	31,000	30,000	31,000	30,000	31,000	31,000	30,000	31,000	30,000	31,000	365,000		
2006	Outage (days)	31	28	31	30	31	30	31	31	30	31	30	31	365	kW loss	-713 US\$1,000/year
2000	Loss of Energy (MWh)	0	0	0	0	-3,895	-4,221	0	0	0	0	0	0	-8,116	kWh loss	-774 US\$1,000/year
2007	Outage (days)	31	28	31	30	31	30	31	31	30	31	30	31	365	kW loss	-713 US\$1,000/year
2007	Loss of Energy (MWh)	0	0	0	0	-3,895	-4,221	0	0	0	0	0	0	-8,116	kWh loss	-774 US\$1,000/year
2008	Outage (days)	31	28	31	30	31	30	31	31	30	31	30	31	365	kW loss	-713 US\$1,000/year
2008	Loss of Energy (MWh)	0	0	0	0	-3,895	-4,221	0	0	0	0	0	0	-8,116	kWh loss	-774 US\$1,000/year
2009	Outage (days)	31	28	31	30	31	30	31	31	30	31	30	31	365	kW loss	-713 US\$1,000/year
2009	Loss of Energy (MWh)	0	0	0	0	-3,895	-4,221	0	0	0	0	0	0	-8,116	kWh loss	-774 US\$1,000/year
2010	Outage (days)	31	28	31	30	31	30	31	31	30	31	30	31	365	kW loss	-713 US\$1,000/year
2010	Loss of Energy (MWh)	0	0	0	0	-3,895	-4,221	0	0	0	0	0	0	-8,116	kWh loss	-774 US\$1,000/year
2011	Outage (days)	31	28	31	30	31	0	0	0	0	0	0	0	151	kW loss	-295 US\$1,000/year
2011	Loss of Energy (MWh)	0	0	0	0	-3,895	0	0	0	0	0	0	0	-3,895	kWh loss	-372 US\$1,000/year
2012	Outage (days)	0	0	0	0	0	0	0	0	0	0	0	0	0	kW loss	0 US\$1,000/year
2012	Loss of Energy (MWh)	0	0	0	0	0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000/year
	*Condition															

'Condition

Unit I crash (Jan.2006) 3units replacement (Unit1:Sep2009-Mar2010, Unit2:Apr2010-Oct2010, Unit3: Nov2010-May2011) 44 months necessary before beginning installation for investigation & preparation.

Outage Term of New Laxapana P/S Pmax = 100 MW (2 units)

		Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total		
	E (2003) (MWh)	25,765	18,036	17,341	17,520	51,778	50,576	47,604	44,100	52,626	43,561	48,275	48,589	465,771		
	Adjusted E (MWh)	25,833	18,084	17,387	17,566	51,915	50,709	47,730	44,216	52,765	43,676	48,402	48,717	467,000	Loss(US\$1	,000) per Year
М	fax. E by 1 unit (MWh)	37,200	33,600	37,200	36,000	37,200	36,000	37,200	37,200	36,000	37,200	36,000	37,200	438,000		
2006	Outage (days)	0	0	0	0	0	0	0	0	0	0	0	0	0	kW loss	0 US\$1,000/year
2000	Loss of Energy (MWh)	0	0	0	0	0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000/year
2007	Outage (days)	0	0	31	30	31	30	31	31	30	31	30	31	306	kW loss	-2,461 US\$1,000/year
2007	Loss of Energy (MWh)	0	0	0	0	-14,715	-14,235	-10,530	-7,016	-16,224	-6,476	-12,002	-11,517	-92,715	kWh loss	-6,677 US\$1,000/year
2008	Outage (days)	31	28	31	30	31	30	31	31	30	31	30	31	365	kW loss	-2,936 US\$1,000/year
2008	Loss of Energy (MWh)	0	0	0	0	-14,715	-14,235	-10,530	-7,016	-16,224	-6,476	-12,002	-11,517	-92,715	kWh loss	-6,677 US\$1,000/year
2009	Outage (days)	31	28	31	30	31	30	31	31	30	31	30	31	365	kW loss	-2,936 US\$1,000/year
2009	Loss of Energy (MWh)	0	0	0	0	-14,715	-14,235	-10,530	-7,016	-16,224	-6,476	-12,002	-11,517	-92,715	kWh loss	-6,677 US\$1,000/year
2010	Outage (days)	31	28	31	30	31	30	31	31	30	31	30	31	365	kW loss	-2,936 US\$1,000/year
2010	Loss of Energy (MWh)	0	0	0	0	-14,715	-14,235	-10,530	-7,016	-16,224	-6,476	-12,002	-11,517	-92,715	kWh loss	-6,677 US\$1,000/year
2011	Outage (days)	31	28	31	30	31	30	31	31	30	31		31	365	kW loss	-2,936 US\$1,000/year
2011	Loss of Energy (MWh)	0	0	0	0	-14,715	-14,235	-10,530	-7,016	-16,224	-6,476	-12,002	-11,517	-92,715	kWh loss	-6,677 US\$1,000/year
2012	Outage (days)	0	0	0	0	0	0	0	0	0	0	0	0	0	kW loss	0 US\$1,000/year
2012	Loss of Energy (MWh)	0	0	0	0	0	0	0	0	0	0	0	0	0	kWh loss	0 US\$1,000/year

*Condition Unit1 crash (Mar2007)

2 units replacement (Unit1:Nov2010-May2011, Unit2:Jun2011-Dec2011) 44 months is necessary before beginning installation for investigation & preparation.

-2,139 US\$1,000/year 0 US\$1,000/year -2,139 US\$1,000/year 0 US\$1,000/year -2,139 US\$1,000/year 0 US\$1,000/year -2,139 US\$1,000/year 0 US\$1,000/year -1,781 US\$1,000/year 0 US\$1,000/year 0 US\$1,000/year 0 US\$1,000/year 0 US\$1,000/year 0 US\$1,000/year

Wimalasurendra P/S		ost for 10 yea	rs (2006-2)	015)	10,730	US\$1,000
Condition : Crash occurs 2010>>		25 MW 50 MW				
I Peak demand in 2010	2,484 MW	without	with			
II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)	0.040 %	0.204	0.124			
III Increased risk of blackout	0.146 day/y					
IV Adjustment (day to hour)	24 h					
V Cost of Energy Not Served	0.74 US\$/kWh					
Annual Cost of ENS : I*III*IV*V	6,440,913 US\$			=	6,441	US\$1,000
condition : Crash occurs 2011 >						
I Peak demand in 2011	2,684 MW	without	with			
II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)	0.021 %	0.106	0.064			
III Increased risk of blackout	0.07665 day/y					
IV Adjustment (day to hour)	24 h					
V Cost of Energy Not Served	0.74 US\$/kWh					
Annual Cost of ENS : I*III*IV*V	3,653,740 US\$			=	3,654	US\$1,000
condition : Crash occurs 2012 >						
I Peak demand in 2012	2,900 MW	without	with			
II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)	0.018 %	0.097	0.061			
III Increased risk of blackout	0.0657 day/y					
IV Adjustment (day to hour)	24 h					
V Cost of Energy Not Served	0.74 US\$/kWh					
Annual Cost of ENS : I*III*IV*V	3,383,813 US\$			=	3,384	US\$1,000
vi	3 131 3 4337	weight of				
I Peak demand in 2013	3,131 MW	without	with			
II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)	0.025 %	0.143	0.093			
III Increased risk of blackout	0.09125 day/y					
IV Adjustment (day to hour)	24 h					
V Cost of Energy Not Served Annual Cost of ENS : 1*III*IV*V	0.74 US\$/kWh 5,074,099 US\$			=	5.074	11561 004
Annual Cost of ENS . 1º11/1V*V	3,014,099 033			-	5,074	US\$1,000
Condition : Crash occurs 2014>>						
I Peak demand in 2014	3,380 MW	without	with			
II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)	0.021 %	0.122	0.080			
III Increased risk of blackout	0.07665 day/y					
IV Adjustment (day to hour)	24 h					
V Cost of Energy Not Served	0.74 US\$/kWh					
Annual Cost of ENS : I*III*IV*V	4,601,208 US\$			=	4,601	US\$1,000
Condition : Crash occurs 2015>>						
	3.647 MW	without	with			
I Peak demand in 2015	3,647 MW	without 0 708	with 0.509			
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)	0.100 %	without 0.708	with 0.509			
I Peak demand in 2015						
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout	0.100 % 0.363175 day/y					
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour)	0.100 % 0.363175 day/y 24 h			=	23,523	US\$1,000
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : 1*III*IV*V	0.100 % 0.363175 day/y 24 h 0.74 US\$/kWh			=	23,523	US\$1,000
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V <	0.100 % 0.363175 day/y 24 h 0.74 US\$/kWh 23,523,106 US\$	0.708	0.509	=	23,523	US\$1,000
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V I Peak demand in	0.100 % 0.363175 day/y 24 h 0.74 US\$/kWh 23,523,106 US\$ 3,933 MW	0.708 without	0.509 with	=	23,523	US\$1,000
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2016>> I Peak demand in 2016 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)	0.100 % 0.363175 day/y 24 h 0.74 US\$/kWh 23,523,106 US\$ 3,933 MW 0.100 %	0.708	0.509	=	23,523	US\$1,000
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V < <condition 2016="" :="" crash="" occurs="">> I Peak demand in 2016 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout</condition>	0.100 % 0.363175 day/y 24 h 0.74 US\$/kWh 23,523,106 US\$ 3,933 MW 0.100 % 0.365 day/y	0.708 without	0.509 with	=	23,523	US\$1,000
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V < <condition 2016="" :="" crash="" occurs="">> I Peak demand in 2016 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour)</condition>	0.100 % 0.363175 day/y 24 h 0.74 US\$/kWh 23,523,106 US\$ 3,933 MW 0.100 %	0.708 without	0.509 with	=	23,523	US\$1,000
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2016>> I Peak demand in 2016 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served	0.100 % 0.363175 day/y 24 h 0.74 US\$/kWh 23,523,106 US\$ 3,933 MW 0.100 % 0.365 day/y 24 h 0.74 US\$/kWh	0.708 without	0.509 with	=	23,523	
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V <	0.100 % 0.363175 day/y 24 h 0.74 US\$/kWh 23,523,106 US\$ 3,933 MW 0.100 % 0.365 day/y 24 h	0.708 without	0.509 with			
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V <	0.100 % 0.363175 day/y 24 h 0.74 US\$/kWh 23,523,106 U\$\$ 3,933 MW 0.100 % 0.365 day/y 24 h 0.74 U\$\$/kWh 25,495,279 U\$\$	0.708 without 0.745	0.509 with 0.545			
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V <condition 2016="" :="" crash="" occurs="">> I Peak demand in 2016 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V <condition 2017="" :="" crash="" occurs="">> I Peak demand in 2017</condition></condition>	0.100 % 0.363175 day/y 24 h 0.74 US\$/kWh 23,523,106 US\$ 3,933 MW 0.100 % 0.365 day/y 24 h 0.74 US\$/kWh 25,495,279 US\$ 4,240 MW	0.708 without 0.745 without	0.509 with 0.545 with			-
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2016>> I Peak demand in 2016 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2017>> I Peak demand in 2017 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)	0.100 % 0.363175 day/y 24 h 0.74 USS/kWh 23,523,106 USS 3,933 MW 0.100 % 0.365 day/y 24 h 0.74 USS/kWh 25,495,279 USS 4,240 MW 0.111 %	0.708 without 0.745	0.509 with 0.545			-
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2016>> I Peak demand in 2016 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2017>> I Peak demand in 2017 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout	0.100 % 0.363175 day/y 24 h 0.74 US\$/kWh 23,523,106 US\$ 3,933 MW 0.100 % 0.365 day/y 24 h 0.74 US\$/kWh 25,495,279 US\$ 4,240 MW 0.111 % 0.40515 day/y	0.708 without 0.745 without	0.509 with 0.545 with			-
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V <ccondition 2016="" :="" crash="" occurs="">> I Peak demand in 2016 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V <ccondition 2017="" :="" crash="" occurs="">> I Peak demand in 2017 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)</ccondition></ccondition>	0.100 % 0.363175 day/y 24 h 23,523,106 US\$ 3,933 MW 0.100 % 0.365 day/y 24 h 0.74 US\$/kWh 25,495,279 US\$ 4,240 MW 0.111 % 0.40515 day/y 24 h	0.708 without 0.745 without	0.509 with 0.545 with			-
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V	0.100 % 0.363175 day/y 24 h 0.74 US\$/kWh 23,523,106 US\$ 3,933 MW 0.100 % 0.365 day/y 24 h 0.74 US\$/kWh 25,495,279 US\$ 4,240 MW 0.111 % 0.40515 day/y 24 h 0.74 US\$/kWh	0.708 without 0.745 without	0.509 with 0.545 with	=	25,495	US\$1,000
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2016>> I Peak demand in 2016 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2017>> I Peak demand in 2017 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)	0.100 % 0.363175 day/y 24 h 23,523,106 US\$ 3,933 MW 0.100 % 0.365 day/y 24 h 0.74 US\$/kWh 25,495,279 US\$ 4,240 MW 0.111 % 0.40515 day/y 24 h	0.708 without 0.745 without	0.509 with 0.545 with		25,495	US\$1,000
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2016>> I Peak demand in 2016 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2017>> I Peak demand in 2017 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V	0.100 % 0.363175 day/y 24 h 0.74 US\$/kWh 23,523,106 US\$ 3,933 MW 0.100 % 0.365 day/y 24 h 0.74 US\$/kWh 25,495,279 US\$ 4,240 MW 0.111 % 0.40515 day/y 24 h 0.74 US\$/kWh	0.708 without 0.745 without	0.509 with 0.545 with	=	25,495	US\$1,000
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2016>> I Peak demand in 2016 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2017>> I Peak demand in 2017 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V	0.100 % 0.363175 day/y 24 h 0.74 US\$/kWh 23,523,106 US\$ 3,933 MW 0.100 % 0.365 day/y 24 h 0.74 US\$/kWh 25,495,279 US\$ 4,240 MW 0.111 % 0.40515 day/y 24 h 0.74 US\$/kWh	0.708 without 0.745 without	0.509 with 0.545 with	=	25,495	US\$1,000
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2016>> I Peak demand in 2016 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2017>> I Peak demand in 2017 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V Cost of Energy Not Served Condition : Crash occurs 2018>>	0.100 % 0.363175 day/y 24 h 23,523,106 US\$ 3,933 MW 0.100 % 0.365 day/y 24 h 0.74 US\$/kWh 25,495,279 US\$ 4,240 MW 0.111 % 0.40515 day/y 24 h 0.74 US\$/kWh 30,508,767 US\$	0.708 without 0.745 without 0.882	0.509 with 0.545 with 0.660	=	25,495	US\$1,000
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V CCondition : Crash occurs 2016>> I Peak demand in 2016 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V CCOndition : Crash occurs 2017>> I Peak demand in 2017 I Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V CCOndition : Crash occurs 2017> V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V CCOndition : Crash occurs 2018>> I Peak demand in 2018	0.100 % 0.363175 day/y 24 h 0.74 US\$/kWh 23,523,106 US\$ 3,933 MW 0.100 % 0.365 day/y 24 h 0.74 US\$/kWh 25,495,279 US\$ 4,240 MW 0.111 % 0.40515 day/y 24 h 0.74 US\$/kWh 30,508,767 US\$	0.708 without 0.745 without 0.882	0.509 with 0.545 with 0.660	=	25,495	US\$1,000
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V CCOndition : Crash occurs 2016>> I Peak demand in 2016 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V CCOndition : Crash occurs 2017>> I Peak demand in 2017 I Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V CCOndition : Crash occurs 2017>> I Peak demand in 2017 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V CCOndition : Crash occurs 2018>> I Peak demand in 2018 I Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)	0.100 % 0.363175 day/y 24 h 0.74 USS/kWh 23,523,106 USS 3,933 MW 0.100 % 0.365 day/y 24 h 0.74 USS/kWh 25,495,279 USS 4,240 MW 0.111 % 0.40515 day/y 24 h 0.74 USS/kWh 30,508,767 USS	0.708 without 0.745 without 0.882	0.509 with 0.545 with 0.660	=	25,495	US\$1,000
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V CCondition : Crash occurs 2016>> I Peak demand in 2016 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V CCondition : Crash occurs 2017>> I Peak demand in 2017 I Peak demand in 2017 I Peak demand in 2017 I Peak demand in 2017 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V CCondition : Crash occurs 2018>> I Peak demand in 2018 I Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V CCondition : Crash occurs 2018>> I Peak demand in 2018 I Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V CCondition : Crash occurs 2018>> I Peak demand in 2018 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout	0.100 % 0.363175 day/y 24 h 0.74 US\$/kWh 23,523,106 US\$ 3,933 MW 0.100 % 0.365 day/y 24 h 0.74 US\$/kWh 25,495,279 US\$ 4,240 MW 0.111 % 0.40515 day/y 24 h 0.74 US\$/kWh 30,508,767 US\$ 4,570 MW 0.115 % 0.417925 day/y	0.708 without 0.745 without 0.882	0.509 with 0.545 with 0.660	=	25,495	US\$1,000
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2016>> I Peak demand in 2016 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2017>> I Peak demand in 2017 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2017>> I Peak demand in 2017 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2018>> I Peak demand in 2018 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour)	0.100 % 0.363175 day/y 24 h 0.74 US\$/kWh 23,523,106 US\$ 3,933 MW 0.100 % 0.365 day/y 24 h 0.74 US\$/kWh 25,495,279 US\$ 4,240 MW 0.111 % 0.40515 day/y 24 h 0.74 US\$/kWh 30,508,767 US\$ 4,570 MW 0.115 % 0.417925 day/y 24 h	0.708 without 0.745 without 0.882	0.509 with 0.545 with 0.660	=	25,495 30,509	US\$1,000 US\$1,000
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2016>> I Peak demand in 2016 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2017>> I Peak demand in 2017 I Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2017>> I Peak demand in 2017 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2018>> I Peak demand in 2018 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V	0.100 % 0.363175 day/y 24 h 0.74 US\$/kWh 23,523,106 US\$ 3,933 MW 0.100 % 0.365 day/y 24 h 0.74 US\$/kWh 25,495,279 US\$ 4,240 MW 0.111 % 0.40515 day/y 24 h 0.74 US\$/kWh 30,508,767 US\$ 4,570 MW 0.115 % 0.417925 day/y 24 h 0.74 US\$/kWh	0.708 without 0.745 without 0.882	0.509 with 0.545 with 0.660	=	25,495 30,509	US\$1,000 US\$1,000
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2016>> I Peak demand in 2016 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2017>> I Peak demand in 2017 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2017>> I Peak demand in 2017 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2018>> I Peak demand in 2018 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V < <condition 2018="" :="" crash="" occurs="">></condition>	0.100 % 0.363175 day/y 24 h 0.74 US\$/kWh 23,523,106 US\$ 3,933 MW 0.100 % 0.365 day/y 24 h 0.74 US\$/kWh 25,495,279 US\$ 4,240 MW 0.111 % 0.40515 day/y 24 h 0.74 US\$/kWh 30,508,767 US\$ 4,570 MW 0.115 % 0.417925 day/y 24 h 0.74 US\$/kWh 33,920,130 US\$	0.708 without 0.745 without 0.882 without 0.946	0.509 with 0.545 with 0.660 with 0.717	=	25,495 30,509	US\$1,000 US\$1,000
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V CCOndition : Crash occurs 2016>> I Peak demand in 2016 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V CCOndition : Crash occurs 2017>> I Peak demand in 2017 I Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V CCOndition : Crash occurs 2017>> I Peak demand in 2017 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V CCOndition : Crash occurs 2018>> I Peak demand in 2018 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V CCOndition : Crash occurs 2018> I Peak demand in 2018 II Change of LOLP (Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V	0.100 % 0.363175 day/y 24 h 0.74 USS/kWh 23,523,106 USS 3,933 MW 0.100 % 0.365 day/y 24 h 0.74 USS/kWh 25,495,279 USS 4,240 MW 0.111 % 0.40515 day/y 24 h 0.74 USS/kWh 30,508,767 USS 4,570 MW 0.115 % 0.417925 day/y 24 h 0.74 USS/kWh 30,508,767 USS	0.708 without 0.745 without 0.882 without 0.946	0.509 with 0.545 with 0.660 with 0.717 with	=	25,495 30,509	US\$1,000 US\$1,000
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V CCOndition : Crash occurs 2016>> I Peak demand in 2016 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V CCOndition : Crash occurs 2017>> I Peak demand in 2017 I Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V CCOndition : Crash occurs 2017>> I Peak demand in 2017 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V CCOndition : Crash occurs 2018>> I Peak demand in 2018 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V CCOndition : Crash occurs 2019>> I Peak demand in 2019 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) II peak demand in 2019 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)	0.100 % 0.363175 day/y 24 h 0.74 USS/kWh 23,523,106 USS 3,933 MW 0.100 % 0.365 day/y 24 h 0.74 USS/kWh 25,495,279 USS 4,240 MW 0.111 % 0.40515 day/y 24 h 0.74 USS/kWh 30,508,767 USS 4,570 MW 0.115 % 0.417925 day/y 24 h 0.74 USS/kWh 33,920,130 USS	0.708 without 0.745 without 0.882 without 0.946	0.509 with 0.545 with 0.660 with 0.717	=	25,495 30,509	US\$1,000 US\$1,000
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2016>> I Peak demand in 2016 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2017>> I Peak demand in 2017 I Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2017>> I Peak demand in 2017 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2018>> I Peak demand in 2018 I Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2019>> I Peak demand in 2019 I Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (DLP) (Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (DLP) II Increased risk of blackout	0.100 % 0.363175 day/y 24 h 0.74 USS/kWh 23,523,106 US\$ 3,933 MW 0.100 % 0.365 day/y 24 h 0.74 USS/kWh 25,495,279 US\$ 4,240 MW 0.111 % 0.40515 day/y 24 h 0.74 USS/kWh 30,508,767 US\$ 4,570 MW 0.115 % 0.417925 day/y 24 h 0.74 USS/kWh 33,920,130 US\$ 4,923 MW 0.097 % 0.35405 day/y	0.708 without 0.745 without 0.882 without 0.946	0.509 with 0.545 with 0.660 with 0.717 with	=	25,495 30,509	US\$1,000 US\$1,000
I Peak demand in 2015 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V CCOndition : Crash occurs 2016>> I Peak demand in 2016 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V CCOndition : Crash occurs 2017>> I Peak demand in 2017 I Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V CCOndition : Crash occurs 2017>> I Peak demand in 2017 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V CCOndition : Crash occurs 2018>> I Peak demand in 2018 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V CCOndition : Crash occurs 2019>> I Peak demand in 2019 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) II peak demand in 2019 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)	0.100 % 0.363175 day/y 24 h 0.74 USS/kWh 23,523,106 USS 3,933 MW 0.100 % 0.365 day/y 24 h 0.74 USS/kWh 25,495,279 USS 4,240 MW 0.111 % 0.40515 day/y 24 h 0.74 USS/kWh 30,508,767 USS 4,570 MW 0.115 % 0.417925 day/y 24 h 0.74 USS/kWh 33,920,130 USS	0.708 without 0.745 without 0.882 without 0.946	0.509 with 0.545 with 0.660 with 0.717 with	=	25,495 30,509	US\$1,000 US\$1,000 US\$1,000

Table 10.16 Cost of Energy Not Served Wimalasurendra P/S

LOLP was calculated by CEB on the base 2004.

Since the calculation can be done only in case of station outage, change of LOLP is corrected by unit power / station power "Without rehabilitation" means one of the unit can not be operated due to crash.

Table 10.17 Cost of Energy Not Served Old Laxapana Stage I P/S

Old Laxapana Stage I P/S	0	Cost for 10 yea 3.33 MW	15 (2000-2	013)	3,917	US\$1,00
<< Condition : Crash occurs 2010>>	Station P	50 MW				
I Peak demand in 2010	2,484 MW	without	with			
II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)	0.014 %	0.209	0.124			
III Increased risk of blackout	0.05168765 day/y					
IV Adjustment (day to hour)	24 h					
V Cost of Energy Not Served	0.74 US\$/kW	h				
Annual Cost of ENS : I*III*IV*V	2,280,244 US\$			=	2,280	US\$1,00
I Peak demand in2011	2,684 MW	without	with			
I Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)	0.007 %	0.109	0.064			
III Increased risk of blackout	0.02736405 day/y	0.109	0.004			
IV Adjustment (day to hour)	24 h					
V Cost of Energy Not Served	0.74 US\$/kW	h				
Annual Cost of ENS : I*III*IV*V	1,304,385 US\$			=	1,304	US\$1,00
I Peak demand in2012	2,900 MW	without	with			
I Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)	0.006 %	0.100	0.061			
III Increased risk of blackout	0.02371551 day/y	0.100	0.001			
IV Adjustment (day to hour)	24 h					
V Cost of Energy Not Served	0.74 US\$/kW	h				
Annual Cost of ENS : I*III*IV*V	1,221,444 US\$			=	1,221	US\$1,00
2013I Peak demand in2013	3,131 MW	without	with			
I Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)	0.009 %	0.146	0.093			
III Increased risk of blackout	0.03222877 day/y	0.140	0.075			
IV Adjustment (day to hour)	24 h					
V Cost of Energy Not Served	0.74 US\$/kW	h				
Annual Cost of ENS : I*III*IV*V	1,792,131 US\$			=	1.792	US\$1,00
	1,792,101 000				1,002	0.501,000
< <condition 2014="" :="" crash="" occurs="">></condition>						
I Peak demand in 2014	3,380 MW	without	with			
II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)	0.007 %	0.125	0.080			
III Increased risk of blackout	0.02736405 day/y					
IV Adjustment (day to hour)	24 h					
V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V	0.74 US\$/kW 1,642,631 US\$	n		=	1 643	US\$1,00
	1,012,001 0000				1,010	0.501,000
< <condition 2015="" :="" crash="" occurs="">>></condition>						
I Peak demand in 2015	3,647 MW	without	with			
II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)	0.035 %	0.719	0.509			
III Increased risk of blackout	0.1276989 day/y					
IV Adjustment (day to hour)	24 h					
V Cost of Energy Not Served	0.74 US\$/kW	h			0.0=1	1004 00
Annual Cost of ENS : I*III*IV*V	8,271,150 US\$			=	8,271	US\$1,00
< <condition 2016="" :="" crash="" occurs="">></condition>						
I Peak demand in 2016	3,933 MW	without	with			
II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)	0.035 %	0.757	0.545			
III Increased risk of blackout	0.12891508 day/y					
IV Adjustment (day to hour)	24 h					
V Cost of Energy Not Served						
	0.74 US\$/kW	h				US\$1 00
Annual Cost of ENS : I*III*IV*V	0.74 US\$/kW 9,004,729 US\$	h		=	9,005	0331,00
Annual Cost of ENS : I*III*IV*V		h		=	9,005	0331,00
Annual Cost of ENS : 1*III*IV*V < <condition 2017="" :="" crash="" occurs="">></condition>	9,004,729 US\$		with	=	9,005	0331,00
Annual Cost of ENS : I*III*IV*V	9,004,729 US\$ 4,240 MW	without	with 0.660	=	9,005	0331,00
Annual Cost of ENS : I*III*IV*V < <condition 2017="" :="" crash="" occurs="">> I Peak demand in 2017 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)</condition>	9,004,729 US\$ 4,240 MW 0.039 %		with 0.660	=	9,005	0331,000
Annual Cost of ENS : I*III*IV*V < <condition 2017="" :="" crash="" occurs="">> I Peak demand in 2017 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout</condition>	9,004,729 US\$ 4,240 MW 0.039 % 0.14350924 day/y	without		=	9,005	0531,00
Annual Cost of ENS : I*III*IV*V < <condition 2017="" :="" crash="" occurs="">> I Peak demand in 2017 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)</condition>	9,004,729 US\$ 4,240 MW 0.039 %	without 0.896		=	9,005	0331,00
Annual Cost of ENS : I*III*IV*V < <condition 2017="" :="" crash="" occurs="">> I Peak demand in 2017 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour)</condition>	9,004,729 US\$ 4,240 MW 0.039 % 0.14350924 day/y 24 h	without 0.896		=	-	US\$1,000
Annual Cost of ENS : I*III*IV*V <	9,004,729 US\$ 4,240 MW 0.039 % 0.14350924 day/y 24 h 0.74 US\$/kW	without 0.896			-	
Annual Cost of ENS : I*III*IV*V <	9,004,729 US\$ 4,240 MW 0.039 % 0.14350924 day/y 24 h 0.74 US\$/kW 10,806,590 US\$	without 0.896 h	0.660		-	
Annual Cost of ENS : I*III*IV*V <	9,004,729 US\$ 4,240 MW 0.039 % 0.14350924 day/y 24 h 0.74 US\$/kW 10,806,590 US\$ 4,570 MW	without 0.896 h	0.660 with		-	
Annual Cost of ENS : I*III*IV*V <	9,004,729 US\$ 4,240 MW 0.039 % 0.14350924 day/y 24 h 0.74 US\$/kW 10,806,590 US\$ 4,570 MW 0.040 %	without 0.896 h	0.660		-	
Annual Cost of ENS : I*III*IV*V <	9,004,729 US\$ 4,240 MW 0.039 % 0.14350924 day/y 24 h 0.74 US\$/kW 10,806,590 US\$ 4,570 MW 0.040 % 0.14715778 day/y	without 0.896 h	0.660 with		-	
Annual Cost of ENS : I*III*IV*V <	9,004,729 US\$ 4,240 MW 0.039 % 0.14350924 day/y 24 h 0.74 US\$/kW 10,806,590 US\$ 4,570 MW 0.040 % 0.14715778 day/y 24 h	without 0.896 h without 0.959	0.660 with		-	
Annual Cost of ENS : I*III*IV*V <	9,004,729 US\$ 4,240 MW 0.039 % 0.14350924 day/y 24 h 0.74 US\$/kW 10,806,590 US\$ 4,570 MW 0.040 % 0.14715778 day/y	without 0.896 h without 0.959	0.660 with		-	US\$1,00
Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2017>>> I Peak demand in 2017 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V <	9,004,729 US\$ 4,240 MW 0.039 % 0.14350924 day/y 24 h 0.74 US\$/kWI 10,806,590 US\$ 4,570 MW 0.040 % 0.14715778 day/y 24 h 0.74 US\$/kWI	without 0.896 h without 0.959	0.660 with	=	10,807	US\$1,00
Annual Cost of ENS : I*III*IV*V <	9,004,729 US\$ 4,240 MW 0.039 % 0.14350924 day/y 24 h 0.74 US\$/kW 10,806,590 US\$ 4,570 MW 0.040 % 0.14715778 day/y 24 h 0.74 US\$/kW 11,943,796 US\$	without 0.896 h without 0.959 h	0.660 with 0.717	=	10,807	US\$1,00
Annual Cost of ENS : I*III*IV*V <	9,004,729 US\$ 4,240 MW 0.039 % 0.14350924 day/y 24 h 0.74 US\$/kWl 10,806,590 US\$ 4,570 MW 0.040 % 0.14715778 day/y 24 h 0.74 US\$/kWl 11,943,796 US\$ 4,923 MW	without 0.896 h without 0.959 h	0.660 with 0.717 with	=	10,807	US\$1,004
Annual Cost of ENS : I*III*IV*V <	9,004,729 US\$ 4,240 MW 0.039 % 0.14350924 day/y 24 h 0.74 US\$/kW 10,806,590 US\$ 4,570 MW 0.040 % 0.14715778 day/y 24 h 0.74 US\$/kW 11,943,796 US\$ 4,923 MW 0.034 %	without 0.896 h without 0.959 h	0.660 with 0.717	=	10,807	
Annual Cost of ENS : I*III*IV*V <	9,004,729 US\$ 4,240 MW 0.039 % 0.14350924 day/y 24 h 0.74 US\$/kW 10,806,590 US\$ 4,570 MW 0.040 % 0.14715778 day/y 24 h 0.74 US\$/kW 11,943,796 US\$ 4,923 MW 0.034 % 0.12465845 day/y	without 0.896 h without 0.959 h	0.660 with 0.717 with	=	10,807	US\$1,004
Annual Cost of ENS : I*III*IV*V <	9,004,729 US\$ 4,240 MW 0.039 % 0.14350924 day/y 24 h 0.74 US\$/kW 10,806,590 US\$ 4,570 MW 0.040 % 0.14715778 day/y 24 h 0.74 US\$/kW 11,943,796 US\$ 4,923 MW 0.034 %	without 0.896 h without 0.959 h without 0.823	0.660 with 0.717 with	=	10,807	US\$1,004

LOLP was calculated by CEB on the base 2004.

Since the calculation can be done only in case of station outage, change of LOLP is corrected by unit power / station power "Without rehabilitation" means one of the unit can not be operated due to crash.

Table 10.18	Cost of Energy Not Served New Laxapana P/S
-------------	--

< <condition 2010="" :="" crash="" occurs="">> I Peak demand in 2010 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V</condition>		100 MW without 0.356 /h	with 0.124			
II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V << <condition 2011="" :="" crash="" occurs="">> I Peak demand in 2011 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout</condition>	0.116 % 0.4234 day/y 24 h 0.74 US\$/kW 18,678,647 US\$	0.356				
III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V < <condition 2011="" :="" crash="" occurs="">> I Peak demand in 2011 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout</condition>	0.4234 day/y 24 h 0.74 US\$/kW 18,678,647 US\$		0.124			
IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V Condition : Crash occurs 2011>> I Peak demand in 2011 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout	24 h 0.74 US\$/kW 18,678,647 US\$	/h				
V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V < <condition 2011="" :="" crash="" occurs="">> I Peak demand in 2011 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout</condition>	0.74 US\$/kW 18,678,647 US\$	/h				
Annual Cost of ENS : I*III*IV*V < <condition 2011="" :="" crash="" occurs="">> I Peak demand in 2011 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout</condition>	18,678,647 US\$	<u>/h</u>				
< <condition 2011="" :="" crash="" occurs="">> I Peak demand in 2011 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout</condition>						
I Peak demand in 2011 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout	2,684 MW			=	18,679	US\$1,00
I Peak demand in 2011 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout	2,684 MW					
III Increased risk of blackout		without	with			
	0.063 %	0.190	0.064			
	0.22995 day/y					
IV Adjustment (day to hour)	24 h					
V Cost of Energy Not Served	0.74 US\$/kW	/h				
Annual Cost of ENS : I*III*IV*V	10,961,220 US\$			=	10,961	US\$1,00
< <condition 2012="" :="" crash="" occurs="">></condition>						
I Peak demand in 2012	2,900 MW	without	with			
II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)	0.054 %	0.169	0.061			
III Increased risk of blackout	0.1971 day/y					
IV Adjustment (day to hour)	24 h					
V Cost of Energy Not Served	0.74 US\$/kW	/h				
Annual Cost of ENS : I*III*IV*V	10,151,438 US\$			=	10,151	US\$1,00
<< Condition : Crash occurs 2013>>						
I Peak demand in 2013	3,131 MW	without	with			
II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)	0.072 %	0.237	0.093			
III Increased risk of blackout	0.2628 day/y	0.207	0.075			
IV Adjustment (day to hour)	24 h					
V Cost of Energy Not Served	0.74 US\$/kW	/h				
Annual Cost of ENS : I*III*IV*V	14,613,404 US\$			=	14,613	US\$1,00
< <condition 2014="" :="" crash="" occurs="">></condition>	2 200 1 414		14			
I Peak demand in 2014	3,380 MW	without	with			
II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)	0.060 %	0.200	0.080			
III Increased risk of blackout	0.219 day/y					
IV Adjustment (day to hour)	24 h 0.74 US\$/kW	71.				
V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V	13,146,307 US\$	'n		=	13,146	US\$1,000
					· ·	,
< <condition 2015="" :="" crash="" occurs="">></condition>						
I Peak demand in 2015	3,647 MW	without	with			
II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)	0.262 %	1.033	0.509			
III Increased risk of blackout	0.9563 day/y					
IV Adjustment (day to hour)	24 h					
V Cost of Energy Not Served Annual Cost of ENS : 1*III*IV*V	0.74 US\$/kW	/h		=	61,940	11561 000
Annual Cost of ENS : 1*111*1V*V	61,940,240 US\$			-	61,940	US\$1,00
< <condition 2016="" :="" crash="" occurs="">></condition>						
I Peak demand in 2016	3,933 MW	without	with			
II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)	0.262 %	1.069	0.545			
III Increased risk of blackout	0.9563 day/y					
IV Adjustment (day to hour)	24 h					
V Cost of Energy Not Served	0.74 US\$/kW	/h				
Annual Cost of ENS : I*III*IV*V	66,797,632 US\$			=	66,798	US\$1,00
< <condition 2017="" :="" crash="" occurs="">></condition>						
I Peak demand in 2017	4,240 MW	without	with			
II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)	0.287 %	1.234	0.660			
III Increased risk of blackout	1.04755 day/y					
IV Adjustment (day to hour)	24 h					
V Cost of Energy Not Served	0.74 US\$/kW	/h				
Annual Cost of ENS : I*III*IV*V	78,883,029 US\$			=	78,883	US\$1,00
Condition Construction 2018		without	with			
	4 570 MW	without	0.717			
I Peak demand in 2018	4,570 MW	1 207				
I Peak demand in 2018 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P)	0.290 %	1.297	0.717			
I Peak demand in 2018 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout	0.290 % 1.0585 day/y	1.297	0.717			
I Peak demand in 2018 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour)	0.290 % 1.0585 day/y 24 h		0.717			
I Peak demand in 2018 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served	0.290 % 1.0585 day/y 24 h 0.74 US\$/kW		0.717	=	85.911	US\$1.00
I Peak demand in 2018 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour)	0.290 % 1.0585 day/y 24 h		0.717	=	85,911	US\$1,00
I Peak demand in 2018 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : 1*III*IV*V < <condition 2019="" :="" crash="" occurs="">></condition>	0.290 % 1.0585 day/y 24 h 0.74 US\$/kW 85,911,247 US\$	/h		=	85,911	US\$1,00
I Peak demand in 2018 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) <u>V Cost of Energy Not Served</u> Annual Cost of ENS : I*III*IV*V << <condition 2019="" :="" crash="" occurs="">> I Peak demand in 2019</condition>	0.290 % 1.0585 day/y 24 h 0.74 US\$/kW 85,911,247 US\$	/hwithout	with	=	85,911	US\$1,000
I Peak demand in 2018 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Ost of Energy Not Served Annual Cost of ENS : I*III*IV*V <<	0.290 % 1.0585 day/y 24 h 0.74 US\$/kW 85,911,247 US\$ 4,923 MW 0.247 %	/h		=	85,911	US\$1,000
I Peak demand in 2018 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : 1*III*IV*V << <condition 2019="" :="" crash="" occurs="">> I Peak demand in 2019 II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout</condition>	0.290 % 1.0585 day/y 24 h 0.74 USS/kW 85,911,247 USS 4,923 MW 0.247 % 0.90155 day/y	/hwithout	with	=	85,911	US\$1,000
II Change of LOLP ((Without - With rehabilitation)*Unit P/Station P) III Increased risk of blackout IV Adjustment (day to hour) V Cost of Energy Not Served Annual Cost of ENS : I*III*IV*V </td <td>0.290 % 1.0585 day/y 24 h 0.74 US\$/kW 85,911,247 US\$ 4,923 MW 0.247 %</td> <td>/h without 1.112</td> <td>with</td> <td>=</td> <td>85,911</td> <td>US\$1,000</td>	0.290 % 1.0585 day/y 24 h 0.74 US\$/kW 85,911,247 US\$ 4,923 MW 0.247 %	/h without 1.112	with	=	85,911	US\$1,000

LOLP was calculated by CEB on the base 2004. Since the calculation can be done only in case of station outage, change of LOLP is corrected by unit power / station power "Without rehabilitation" means one of the unit can not be operated due to crash.

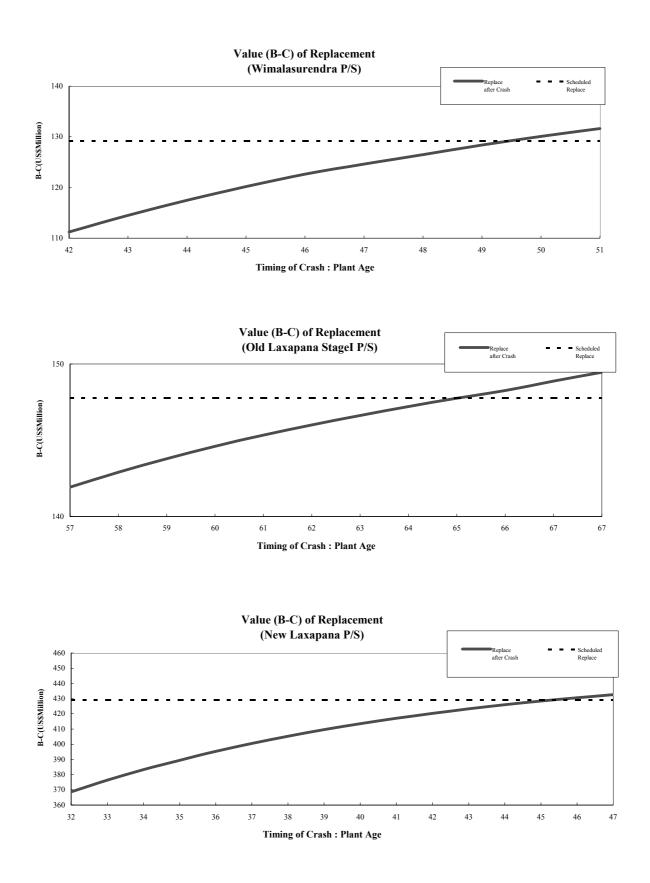


Figure 10.1 Comparison of Scheduled Replace and Replace after Crash

Table10.19.1 Calculation of Economic Evaluation Indices Wimalasurendra P/S Replace after Crash (1)

(1)

128 375

Wimalasurendra P/S **Replacement after Crash**

				Co	ost				Benefit			
Year	Plant Age	Year	Replace	Cost of	Operation		Power	Power	Energy	Energy		Balance
n order				Energy Not Served	& Maintenance	Total	Benefit	Loss	Benefit	Loss	Total	
	42	2006			170	170	4,278		10,687		14,965	14,7
	43	2007			170	170	4,278		10,687		14,965	14,7
	44	2008			170	170	4,278		10,687		14,965	14,7
	45	2009			170	170	4,278		10,687		14,965	14,7
	46	2010			170	170	4,278		10,687		14,965	14,
	47	2011			170	170	4,278		10,687		14,965	14,
	48	2012			170	170	4,278		10,687		14,965	14,
	49	2013		16,756	170	16,926	4,278		10,687		14,965	-1,
	50	2014	5,809	.,	85	5,894	4,278	-2,139	10,687	0	12,826	6,
	51	2015	1,333		85	1,418	4,278	-2,139	10,687	0	12,826	11,
	52	2016	9,615		85	9,700	4,278	-2,139	10,687	0	12,826	3,
	53	2017	5,086		140	5,226	4,278	-1,781	10,687	0	13,183	7,
1	54	2018	441		150	591	4,278	-,,	10,687	-	14,965	14,
2	55	2019			150	150	4,278		10,687		14,965	14,
3	56	2020			150	150	4,278		10,687		14,965	14,
4	57	2020			150	150	4,278		10,687		14,965	14,
5	58	2021			150	150	4,278		10,687		14,965	14,
6	59	2022			150	150	4,278		10,687		14,965	14,
7	60	2023			150	150	4,278		10,687		14,965	14,
8		2024			150				10,687		14,965	14,
8 9	61					150	4,278					
	62	2026			150	150	4,278		10,687		14,965	14,
10	63	2027			150	150	4,278		10,687		14,965	14,
11	64	2028			150	150	4,278		10,687		14,965	14,
12	65	2029			150	150	4,278		10,687		14,965	14
13	66	2030			150	150	4,278		10,687		14,965	14
14	67	2031			150	150	4,278		10,687		14,965	14
15	68	2032			150	150	4,278		10,687		14,965	14
16	69	2033			150	150	4,278		10,687		14,965	14
17	70	2034			150	150	4,278		10,687		14,965	14
18	71	2035			150	150	4,278		10,687		14,965	14
19	72	2036			150	150	4,278		10,687		14,965	14,
20	73	2037			150	150	4,278		10,687		14,965	14,
21	74	2038			150	150	4,278		10,687		14,965	14,
22	75	2039			150	150	4,278		10,687		14,965	14
23	76	2040			150	150	4,278		10,687		14,965	14
24	77	2041			150	150	4,278		10,687		14,965	14
25	78	2042			150	150	4,278		10,687		14,965	14
26	79	2043			150	150	4,278		10,687		14,965	14
27	80	2044			150	150	4,278		10,687		14,965	14
28	81	2045			150	150	4,278		10,687		14,965	14
29	82	2046			150	150	4,278		10,687		14,965	14
30	83	2047			150	150	4,278		10,687		14,965	14
31	84	2048			150	150	4,278		10,687		14,965	14
32	85	2049			150	150	4,278		10,687		14,965	14
33	86	2050			150	150	4,278		10,687		14,965	14
34	87	2051			150	150	4,278		10,687		14,965	14
35	88	2052			150	150	4,278		10,687		14,965	14
36	89	2053			150	150	4,278		10,687		14,965	14
37	90	2054			150	150	4,278		10,687		14,965	14
38	91	2055			150	150	4,278		10,687		14,965	14
39	92	2056			150	150	4,278		10,687		14,965	14
40	93	2057			150	150	4,278		10,687		14,965	14,
41	94	2058			150	150	4,278		10,687		14,965	14
42	95	2058			150	150	4,278		10,687		14,965	14,
42	95 96	2059			150	150	4,278		10,687		14,965	14,
1.2	Total	2000	22,284		8,205	47,244	235,281	-8,198	587,785	0	814,867	767

Scheduled Replace Balance

129,212 -837

Table10.19.2Calculation of Economic Evaluation IndicesWimalasurendra P/S Replace after Crash (2)

	rs in 2014			Cos	t				Benefit			
Year order	Plant Age	Year	Replace		Operation &	Total	Power Benefit	Power Loss	Energy Benefit	Energy Loss	Total	Balanc
				Served N	laintenance							
	42	2006			170	170	4,278		10,687		14,965	14,
	43	2007			170	170	4,278		10,687		14,965	14
	44	2008			170	170	4,278		10,687		14,965	14
	45	2009			170	170	4,278		10,687		14,965	14
	46	2010			170	170	4,278		10,687		14,965	14
	47	2011			170	170	4,278		10,687		14,965	14
	48	2012			170	170	4,278		10,687		14,965	14
	49	2013		16 756	170	170 16,926	4,278		10,687		14,965	14
	50 51	2014 2015	5,809	16,756	170 85	5,894	4,278 4,278	-2,139	10,687 10,687	0	14,965 12,826	-1 6
	52	2013	1,333		85	1,418	4,278	-2,139	10,687	0	12,820	11
	53	2010	9,615		85	9,700	4,278	-2,139	10,687	0	12,820	3
	55	2017	5,086		140	5,226	4,278	-1,781	10,687	0	12,820	7
1	55	2013	441		140	591	4,278	-1,701	10,687	0	14,965	14
2	56	2019			150	150	4,278		10,687		14,965	14
3	57	2020			150	150	4,278		10,687		14,965	14
4	58	2022			150	150	4,278		10,687		14,965	14
5	59	2023			150	150	4,278		10,687		14,965	14
6	60	2024			150	150	4,278		10,687		14,965	14
7	61	2025			150	150	4,278		10,687		14,965	14
8	62	2026			150	150	4,278		10,687		14,965	14
9	63	2027			150	150	4,278		10,687		14,965	14
10	64	2028			150	150	4,278		10,687		14,965	14
11	65	2029			150	150	4,278		10,687		14,965	14
12	66	2030			150	150	4,278		10,687		14,965	14
13	67	2031			150	150	4,278		10,687		14,965	14
14	68	2032			150	150	4,278		10,687		14,965	14
15	69	2033			150	150	4,278		10,687		14,965	14
16	70	2034			150	150	4,278		10,687		14,965	14
17	71	2035			150	150	4,278		10,687		14,965	14
18	72	2036			150	150	4,278		10,687		14,965	14
19	73	2037			150	150	4,278		10,687		14,965	14
20	74	2038			150	150	4,278		10,687		14,965	14
21	75	2039			150	150	4,278		10,687		14,965	14
22	76	2040			150	150	4,278		10,687		14,965	14
23	77	2041			150	150	4,278		10,687		14,965	14
24	78	2042			150	150	4,278		10,687		14,965	14
25	79	2043			150	150	4,278		10,687		14,965	14
26	80	2044			150	150	4,278		10,687		14,965	14
27 28	81 82	2045 2046			150 150	150	4,278		10,687 10,687		14,965 14,965	14 14
28 29	82 83	2046 2047			150	150 150	4,278 4,278		10,687		14,965 14,965	14 14
29 30	83 84	2047			150	150	4,278		10,687		14,965	14
31	84 85	2048			150	150	4,278		10,687		14,965	14
32	85 86	2049			150	150	4,278		10,687		14,965	14
32 33	87	2030			150	150	4,278		10,687		14,965	14
34	88	2051			150	150	4,278		10,687		14,965	14
35	89	2052			150	150	4,278		10,687		14,965	14
36	90	2055			150	150	4,278		10,687		14,965	14
37	91	2054			150	150	4,278		10,687		14,965	14
38	92	2055			150	150	4,278		10,687		14,965	14
39	93	2050			150	150	4,278		10,687		14,965	14
40	94	2058			150	150	4,278		10,687		14,965	14
41	95	2059			150	150	4,278		10,687		14,965	14
42	96	2060			150	150	4,278		10,687		14,965	14
	Total		22,284		8,225	47,264	235,281	-8,198	587,785	0	814,867	767

Wimalasurendra P/S Replacement after Crash (2)

Scheduled Replace

Balance

129,212

871

Table 10.20.1Calculation of Economic Evaluation IndicesOld Laxapana Stage I P/SReplace after Crash (1)

Replacement after Crash

(1)

147,757 Old Laxapana Stage I P/S

				Co	ost				Benefit			
Year	Plant Age	Year	Replace	Cost of	Operation		Power	Power	Energy	Energy		Balanc
n order				Enegy Not	&	Total	Benefit	Loss	Benefit	Loss	Total	
				Served	Maintenance							
	56	2006			280	280	2,139		13,645		15,784	15,5
	57	2007			280	280	2,139		13,645		15,784	15,5
	58	2008			280	280	2,139		13,645		15,784	15,
	59	2009			280	280	2,139		13,645		15,784	15,
	60	2010			280	280	2,139		13,645		15,784	15,
	61	2011			280	280	2,139		13,645		15,784	15,
	62	2012			280	280	2,139		13,645		15,784	15,
	63	2013			280	280	2,139		13,645		15,784	15,
	64	2014			280	280	2,139		13,645		15,784	15,
	65	2015		5,917	280	6,197	2,139	0	13,645	0	15,784	9,
	66	2016	4,247		187	4,433	2,139	-713	13,645	-774	14,297	9,
	67	2017	210		187	397	2,139	-713	13,645	-774	14,297	13,
	68	2018	8,091		187	8,277	2,310	-713	13,645	-774	14,468	6,
	69	2019	2,719		206	2,925	2,310	-713	14,062	-774	14,885	11,
1	70	2020	1,922		241	2,163	2,310	-295	14,820	-372	16,463	14,
2	71	2021			250	250	2,310		15,009		17,320	17,
3	72	2022			250	250	2,310		15,009		17,320	17,
4	73	2023			250	250	2,310		15,009		17,320	17,
5	74	2024			250	250	2,310		15,009		17,320	17.
6	75	2025			250	250	2,310		15,009		17,320	17.
7	76	2026			250	250	2,310		15,009		17,320	17
8	77	2027			250	250	2,310		15,009		17,320	17
9	78	2028			250	250	2,310		15,009		17,320	17.
10	79	2029			250	250	2,310		15,009		17,320	17.
11	80	2030			250	250	2,310		15,009		17,320	17
12	81	2031			250	250	2,310		15,009		17,320	17
13	82	2031			250	250	2,310		15,009		17,320	17.
14	83	2032			250	250	2,310		15,009		17,320	17.
15	84	2035			250	250	2,310		15,009		17,320	17.
16	85	2034			250 250	250	2,310		15,009		17,320	17,
17	85	2035			250 250	250 250	2,310		15,009		17,320	17,
18					250 250	250	2,310		-			17,
18	87	2037 2038			230 250				15,009		17,320	17,
	88					250	2,310		15,009		17,320	
20	89	2039			250	250	2,310		15,009		17,320	17,
21	90	2040			250	250	2,310		15,009		17,320	17,
22	91	2041			250	250	2,310		15,009		17,320	17,
23	92	2042			250	250	2,310		15,009		17,320	17,
24	93	2043			250	250	2,310		15,009		17,320	17,
25	94	2044			250	250	2,310		15,009		17,320	17,
26	95	2045			250	250	2,310		15,009		17,320	17,
27	96	2046			250	250	2,310		15,009		17,320	17,
28	97	2047			250	250	2,310		15,009		17,320	17,
29	98	2048			250	250	2,310		15,009		17,320	17,
30	99	2049			250	250	2,310		15,009		17,320	17,
31	100	2050			250	250	2,310		15,009		17,320	17,
	Total		17,188		11,307	34,412	101,898		656,552		751,834	717,

Scheduled Replace

Balance

147,774

-17

Table 10.20.2Calculation of Economic Evaluation IndicesOld Laxapana Stage I P/SReplace after Crash (2)

148,255	
Crash in 2016	

Old Laxapana Stage I P/S Replacement after Crash (2)

					ost				Benefit			
Year	Plant Age	Year	Replace	Cost of	Operation		Power	Power	Energy	Energy		Balance
n order				Enegy Not		Total	Benefit	Loss	Benefit	Loss	Total	
				Served	Maintenance							
	56	2006			280	280	2,139		13,645		15,784	15,5
	57	2007			280	280	2,139		13,645		15,784	15,5
	58	2008			280	280	2,139		13,645		15,784	15,5
	59	2009			280	280	2,139		13,645		15,784	15,5
	60	2010			280	280	2,139		13,645		15,784	15,5
	61	2011			280	280	2,139		13,645		15,784	15,
	62	2012			280	280	2,139		13,645		15,784	15,
	63	2013			280	280	2,139		13,645		15,784	15,
	64	2014			280	280	2,139		13,645		15,784	15,
	65	2015			280	280	2,139		13,645		15,784	15,
	66	2016		5,917		6,197	2,139	0	13,645	0	15,784	9,5
	67	2017	4,247		187	4,433	2,139	-713	13,645	-774	14,297	9,8
	68	2018	210		187	397	2,310	-713	13,645	-774	14,468	14,
	69	2019	8,091		187	8,277	2,310	-713	13,645	-774	14,468	6,
	70	2020	2,719		206	2,925	2,310	-713	14,062	-774	14,885	11,
1	71	2021	1,922		241	2,163	2,310	-295	14,820	-372	16,463	14,
2	72	2022			250	250	2,310		15,009		17,320	17,
3	73	2023			250	250	2,310		15,009		17,320	17,
4	74	2024			250	250	2,310		15,009		17,320	17,
5	75	2025			250	250	2,310		15,009		17,320	17,
6	76	2026			250	250	2,310		15,009		17,320	17,
7	77	2027			250	250	2,310		15,009		17,320	17,
8	78	2028			250	250	2,310		15,009		17,320	17,
9	79	2029			250	250	2,310		15,009		17,320	17,
10	80	2030			250	250	2,310		15,009		17,320	17,
11	81	2031			250	250	2,310		15,009		17,320	17,
12	82	2032			250	250	2,310		15,009		17,320	17,
13	83	2033			250	250	2,310		15,009		17,320	17,
14	84	2034			250	250	2,310		15,009		17,320	17,
15	85	2035			250	250	2,310		15,009		17,320	17,
16	86	2036			250	250	2,310		15,009		17,320	17,
17	87	2037			250	250	2,310		15,009		17,320	17,
18	88	2038			250	250	2,310		15,009		17,320	17,
19	89	2039			250	250	2,310		15,009		17,320	17,
20	90	2040			250	250	2,310		15,009		17,320	17,
21	91	2041			250	250	2,310		15,009		17,320	17,
22	92	2042			250	250	2,310		15,009		17,320	17,
23	93	2043			250	250	2,310		15,009		17,320	17,
24	94	2044			250	250	2,310		15,009		17,320	17,
25	95	2045			250	250	2,310		15,009		17,320	17,
26	96	2046			250	250	2,310		15,009		17,320	17,
27	97	2047			250	250	2,310		15,009		17,320	17,
28	98	2048			250	250	2,310		15,009		17,320	17,
29	99	2049			250	250	2,310		15,009		17,320	17,
30	100	2050			250	250	2,310		15,009		17,320	17,
20	Total	2000	17,188		11,337	34,442	101,898		655,187		750,469	716,
			e of 10 %:		,00 ,	,	,070		,		,	/10,

Scheduled Replace

Balance

147,774

481

Table 10.21.1 Calculation of Economic Evaluation Indices New Laxapana P/S Replace after Crash (1)

New Laxapana P/S Replacement after Crash

(1)

				U	ost				Benefit			
Year	Plant Age	Year	Replace	Cost of	Operation		Power	Power	Energy	Energy		Balanc
n order				Enegy Not	&	Total	Benefit	Loss	Benefit	Loss	Total	
	22	2006		Served	Maintenance	120	5 972		39,751		15 (00	15
	32	2006			130	130	5,872		,		45,623	45,4
	33	2007			130	130	5,872		39,751		45,623	45,4
	34	2008			130	130	5,872		39,751		45,623	45,4
	35	2009			130	130	5,872		39,751		45,623	45,4
	36	2010			130	130	5,872		39,751		45,623	45,4
	37	2011			130	130	5,872		39,751		45,623	45,4
	38	2012			130	130	5,872		39,751		45,623	45,4
	39	2013			130	130	5,872		39,751		45,623	45,
	40	2014			130	130	5,872		39,751		45,623	45,
	41	2015			130	130	5,872		39,751		45,623	45,
	42	2016			130	130	5,872		39,751		45,623	45,
	43	2017			130	130	5,872		39,751		45,623	45,
	44	2018		42.001	130	130	5,872		39,751		45,623	45,
	45	2019	5 100	43,991	130	44,121	5,872	2 4 (1	39,751	((77	45,623	1,
	46	2020	5,199		65	5,264	5,872	-2,461	39,751	-6,677	36,485	31,
	47	2021	275		65	340	5,872	-2,936	39,751	-6,677	36,010	35,
	48	2022	397		65	462	5,872	-2,936	39,751	-6,677	36,010	35,
	49	2023	9,974		65	10,039	5,872	-2,936	39,751	-6,677	36,010	25,
	50	2024	5,213		65	5,278	5,872	-2,936	39,867	-6,677	36,126	30,
1	51	2025	0		110	110	5,872		40,148		46,020	45
2	52	2026			110	110	5,872		40,148		46,020	45
3	53	2027			110	110	5,872		40,148		46,020	45
4	54	2028			110	110	5,872		40,148		46,020	45,
5	55	2029			110	110	5,872		40,148		46,020	45,
6	56	2030			110	110	5,872		40,148		46,020	45
7	57	2031			110	110	5,872		40,148		46,020	45
8	58	2032			110	110	5,872		40,148		46,020	45,
9	59	2033			110	110	5,872		40,148		46,020	45
10	60	2034			110	110	5,872		40,148		46,020	45
11	61	2035			110	110	5,872		40,148		46,020	45
12	62	2036			110	110	5,872		40,148		46,020	45,
13	63	2037			110	110	5,872		40,148		46,020	45,
14	64	2038			110	110	5,872		40,148		46,020	45,
15	65	2039			110	110	5,872		40,148		46,020	45,
16	66	2040			110	110	5,872		40,148		46,020	45,
17	67	2041			110	110	5,872		40,148		46,020	45,
18	68	2042			110	110	5,872		40,148		46,020	45
19	69	2043			110	110	5,872		40,148		46,020	45,
20	70	2044			110	110	5,872		40,148		46,020	45
21	71	2045			110	110	5,872		40,148		46,020	45,
22	72	2046			110	110	5,872		40,148		46,020	45,
23	73	2047			110	110	5,872		40,148		46,020	45,
24	74	2048			110	110	5,872		40,148		46,020	45,
25	75	2049			110	110	5,872		40,148		46,020	45,
26	76	2050			110	110	5,872		40,148		46,020	45,
27	77	2051			110	110	5,872		40,148		46,020	45,
28	78	2052			110	110	5,872		40,148		46,020	45
29	79	2053			110	110	5,872		40,148		46,020	45,
30	80	2054			110	110	5,872		40,148		46,020	45,
31	81	2055			110	110	5,872		40,148		46,020	45,
32	82	2056			110	110	5,872		40,148		46,020	45,
33	83	2057			110	110	5,872		40,148		46,020	45,
34	84	2058			110	110	5,872		40,148		46,020	45,
35	85	2059			110	110	5,872		40,148		46,020	45,
36	86	2060			110	110	5,872		40,148		46,020	45,
37	87	2061			110	110	5,872		40,148		46,020	45,
	Total		21,057		6,215	71,263	328,843	-14,206	2,240,863	-33,383	2,522,117	
the con	dition of a	liscount re	ate of 10 %:									

Scheduled Replace Balance

429,101 -709

Table 10.21.2 Calculation of Economic Evaluation Indices New Laxapana P/S Replace after Crash (2)

(2)

New Laxapana P/S Replacement after Crash

					ost				Benefit			
Year	Plant Age	Year	Replace	Cost of	Operation		Power	Power	Energy	Energy		Balance
n order				Enegy Not	&	Total	Benefit	Loss	Benefit	Loss	Total	
	32	2006		Served	Maintenance 130	130	5,872		39,751		45,623	45,4
	33	2007			130	130	5,872		39,751		45,623	45,4
	34	2008			130	130	5,872		39,751		45,623	45,4
	35	2009			130	130	5,872		39,751		45,623	45,4
	36	2010			130	130	5,872		39,751		45,623	45,4
	37	2011			130	130	5,872		39,751		45,623	45,4
	38	2012			130	130	5,872		39,751		45,623	45,4
	39	2013			130	130	5,872		39,751		45,623	45,4
	40	2014			130	130	5,872		39,751		45,623	45,4
	41	2015			130	130	5,872		39,751		45,623	45,4
	42	2016			130	130	5,872		39,751		45,623	45,4
	43	2017			130	130	5,872		39,751		45,623	45,4
	44	2018			130	130	5,872		39,751		45,623	45,4
	45	2019			130	130	5,872		39,751		45,623	45,4
	46	2020		43,991	130	44,121	5,872		39,751		45,623	1,5
	47	2021	5,199	ŕ	65	5,264	5,872	-2,461	39,751	-6,677	36,485	31,2
	48	2022	275		65	340	5,872	-2,936	39,751	-6,677	36,010	35.6
	49	2023	397		65	462	5,872	-2,936	39,751	-6,677	36,010	35,5
	50	2024	9,974		65	10,039	5,872	-2,936	39,751	-6,677	36,010	25,9
	51	2025	5,213		97	5,310	5,872	-2,936	39,867	-6,677	36,126	30,8
1	52	2026	0		110	110	5,872	_,	40,148	-,-,	46,020	45,9
2	53	2027	-		110	110	5,872		40,148		46,020	45,9
3	54	2028			110	110	5,872		40,148		46,020	45,9
4	55	2029			110	110	5,872		40,148		46,020	45,9
5	56	2030			110	110	5,872		40,148		46,020	45,9
6	57	2031			110	110	5,872		40,148		46,020	45,9
7	58	2032			110	110	5,872		40,148		46,020	45,
8	59	2032			110	110	5,872		40,148		46,020	45,9
9	60	2033			110	110	5,872		40,148		46,020	45,9
10	61	2035			110	110	5,872		40,148		46,020	45,9
11	62	2035			110	110	5,872		40,148		46,020	45,9
12	63	2030			110	110	5,872		40,148		46,020	45,9
12	64	2038			110	110	5,872		40,148		46,020	45,9
14	65	2030			110	110	5,872		40,148		46,020	45,9
15	66	2039			110	110	5,872		40,148		46,020	45,9
16	67	2041			110	110	5,872		40,148		46,020	45,9
17	68	2042			110	110	5,872		40,148		46,020	45,
18	69	2043			110	110	5,872		40,148		46,020	45,9
19	70	2044			110	110	5,872		40,148		46,020	45,9
20	70	2045			110	110	5,872		40,148		46,020	45,
21	72	2046			110	110	5,872		40,148		46,020	45,9
22	73	2047			110	110	5,872		40,148		46,020	45,9
23	74	2048			110	110	5,872		40,148		46.020	45.
24	75	2049			110	110	5,872		40,148		46,020	45,9
25	76	2050			110	110	5,872		40,148		46,020	45,
26	77	2051			110	110	5,872		40,148		46,020	45,9
27	78	2051			110	110	5,872		40,148		46,020	45,
28	79	2053			110	110	5,872		40,148		46,020	45,9
29	80	2055			110	110	5,872		40,148		46,020	45,9
30	81	2054			110	110	5,872		40,148		46,020	45,9
31	82	2055			110	110	5,872		40,148		46,020	45,9
32	82	2050			110	110	5,872		40,148		46,020	45,
32 33	83 84	2057			110	110	5,872		40,148		46,020	45,9
33 34	84 85	2058			110	110	5,872		40,148		46,020	45,9
34 35	85 86	2059			110	110	5,872 5,872		40,148		46,020	45,9
35 36	80 87	2060			110	110	5,872		40,148		46,020	45,9
50	87 Total	2001	21,057		6,267	71,315	328,843	-14 206	40,148 2,240,466	_33 383	2,521,720	
he con		liscount r	rate of 10 %:		0,207	11,313	520,045	-17,200	2,270,400	-33,363	2,321,720	2,730,
	lue: (B-C)					15,405					446,004	430,
Join va						10,400					1 10,004	чэо,

Scheduled Replace Balance

429,101

1,498

Foreign portion is estimated to be

					(Un	it: US\$1,00
Item	Pure	Construction C	Cost	F	inancial Cost	
	Total	Foreign Portion	Local Portion	Total	Foreign Portion	Local Portion
1. Total Cost	19,066	17,159	1,907	24,550	22,358	2,1
2. Annual Disbursement						
2006	1,157	1,041	116	1,490	1,357	1
2007	4,724	4,251	472	6,082	5,539	5
2008	1,053	947	105	1,355	1,234	1
2009	7,630	6,867	763	9,825	8,948	8
2010	4,058	3,653	406	5,226	4,759	4
2011	349	314	35	450	410	
2012	94	85	9	122	111	
			As repair	r cost 1,000 (US	5\$1,000) in eve	ry 5years
Case 2(Scheduled replace)					(Un	it: US\$1,00
Item	Pure	Construction C	Cost	F	inancial Cost	
	Total	Foreign Portion	Local Portion	Total	Foreign Portion	Local Portion
1. Total Cost	23,766	21,389	2,377	30,602	27,869	2,7
Annual Disbursement	1 257	1,131	126	1,619	1,474	1
2. Annual Disbursement 2006	1,257		587	7,556	6,881	6
	5,868	5,281	387			1
2006	5,868 1,346	5,281 1,212	135	1,733	1,579	1
2006 2007	5,868	· · · ·		1,733 12,506	1,579 11,389	1,1
2006 2007 2008	5,868 1,346	1,212	135	· · · · · · · · · · · · · · · · · · ·	· · · ·	
2006 2007 2008 2009	5,868 1,346 9,712	1,212 8,741	135 971	12,506	11,389	1,1

Table 10.22 Pure Construction Cost & Financial Cost

of total cost

90%

Old Laxapana P/S Stage I

Item	Pure	Construction	Cost		Financial Cost	
	Total	Foreign	Local	Total	Foreign	Local
	Total	Portion	Portion	Total	Portion	Portion
1. Total Cost	17,990	16,191	1,799	23,165	21,096	2,069
Annual Disbursement						
2006	716	645	72	923	840	82
2007	4,323	3,891	432	5,567	5,070	497
2008	176	159	18	227	207	20
2009	8,077	7,270	808	10,401	9,472	929
2010	2,699	2,429	270	3,475	3,164	310
2011	1,907	1,717	191	2,456	2,237	219
2012	90	81	9	116	106	10

New Laxapana P/S

Item	Pure	Construction	Cost		Financial Cost	
	Total	Foreign	Local	Total	Foreign	Local
	Total	Portion	Portion	Total	Portion	Portion
1. Total Cost	22,090	19,881	2,209	28,444	25,904	2,540
2. Annual Disbursement						
2006	935	842	94	1,204	1,097	108
2007	5,295	4,766	530	6,819	6,210	609
2008	230	207	23	296	270	26
2009	277	250	28	357	325	32
2010	10,013	9,011	1,001	12,893	11,741	1,151
2011	5,222	4,699	522	6,724	6,123	600
2012	118	106	12	152	138	14

Table 10.23.1 Calculation of Financial Evaluation Indices

				Cost				Benefit			
Year n order	Plant Age	Year	Replace	Operation & Maintenance	Total	Energy Generation (MWh)	Loss due to Outage	Energy Sales (MWh)	Energy Revenue	Total	Balanc
	42	2006	1,490	0	1,490	0		0	0	0	-1,4
	43	2007	6,082	0	6,082	0	0	0	0	0	-6,0
	44	2008	1,355	0	1,355	0	0	0	0	0	-1,
	45	2009	9,825	0	9,825	0	0	0	0	0	-9,
	46	2010	5,226	0	5,226	0	0	0	0	0	-5,
1	47	2011	450	0	450	0	0	0	0	0	-
2	48	2012	122	0	122	0		0	0	0	-
3	49	2013		0	0	0		0	0	0	
4	50	2014		0	0	0		0	0	0	
5	51	2015	1,000	170	1,170	112,000		90,496	7,715	7,715	6,
6	52	2016		170	170	112,000		90,496	7,715	7,715	7,
7	53	2017		170	170	112,000		90,496	7,715	7,715	7,
8	54	2018		170	170	112,000		90,496	7,715	7,715	7,
9	55	2019		170	170	112,000		90,496	7,715	7,715	7,
10	56	2020	1,000	170	1,170	112,000		90,496	7,715	7,715	6,
11	57	2020	1,000	170	1,170	112,000		90,496	7,715	7,715	7,
12	58	2021		170	170	112,000		90,490 90,496	7,715	7,715	,, 7,
12	59	2022		170	170			90,490 90,496			7, 7,
						112,000			7,715	7,715	
14	60	2024		170	170	112,000		90,496	7,715	7,715	7,
15	61	2025	1,000	170	1,170	112,000		90,496	7,715	7,715	6,
16	62	2026		170	170	112,000		90,496	7,715	7,715	7,
17	63	2027		170	170	112,000		90,496	7,715	7,715	7,
18	64	2028		170	170	112,000		90,496	7,715	7,715	7,
19	65	2029		170	170	112,000		90,496	7,715	7,715	7,
20	66	2030	1,000	170	1,170	112,000		90,496	7,715	7,715	6,
21	67	2031		170	170	112,000		90,496	7,715	7,715	7,
22	68	2032		170	170	112,000		90,496	7,715	7,715	7,
23	69	2033		170	170	112,000		90,496	7,715	7,715	7,
24	70	2034		170	170	112,000		90,496	7,715	7,715	7,
25	71	2035	1,000	170	1,170	112,000		90,496	7,715	7,715	6,
26	72	2036		170	170	112,000		90,496	7,715	7,715	7,
27	73	2037		170	170	112,000		90,496	7,715	7,715	7,
28	74	2038		170	170	112,000		90,496	7,715	7,715	7.
29	75	2039		170	170	112,000		90,496	7,715	7,715	7,
30	76	2040	1,000	170	1,170	112,000		90,496	7,715	7,715	6
31	77	2041		170	170	112,000		90,496	7,715	7,715	7,
32	78	2042		170	170	112,000		90,496	7,715	7,715	7,
33	79	2043		170	170	112,000		90,496	7,715	7,715	7
34	80	2044		170	170	112,000		90,496	7,715	7,715	7,
35	81	2045	1,000	170	1,170	112,000		90,496	7,715	7,715	6
36	82	2045	1,000	170	1,170	112,000		90,490 90,496	7,715	7,715	7,
37	82	2040 2047		170	170	112,000		90,490 90,496	7,715	7,715	7, 7,
37	83 84	2047 2048		170	170	112,000		90,496 90,496	7,715	7,715	7.
39	85	2049	1.000	170	170	112,000		90,496	7,715	7,715	7,
40	86	2050	1,000	170	1,170	112,000		90,496	7,715	7,715	6,
41	87	2051		170	170	112,000		90,496	7,715	7,715	7,
42	88	2052		170	170	112,000		90,496	7,715	7,715	7
43	89	2053		170	170	112,000		90,496	7,715	7,715	7,
44	90	2054		170	170	112,000		90,496	7,715	7,715	7,
45	91	2055	1,000	170	1,170	112,000		90,496	7,715	7,715	6,
46	92	2056		170	170	112,000		90,496	7,715	7,715	7,
47	93	2057		170	170	112,000		90,496	7,715	7,715	7,
48	94	2058		170	170	112,000		90,496	7,715	7,715	7,
49	95	2059		170	170	112,000		90,496	7,715	7,715	7,
50	96	2060	1,000	170	1,170	112,000		90,496	7,715	7,715	6,
	Total		34,550	7,820	42,370	5,152,000	0	4,162,816	354,902	354,902	312

Wimalasurendra P/S Case 1 (Repair as Required)

B/C

Table10.23.2 Calculation of Financial Evaluation Indices

Year Pla in order Pla in order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	42 43 44 45 46 47 48 49 50 51 52 53 54 55	Year 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015	Replace 1,619 7,556 1,733 12,506 6,615 573 0	Operation & Maintenance 0 0 0 0 0 0	Total 1,619 7,556 1,733	Energy Generation (MWh) 0 0	Loss due to Outage 0 0	Energy Sales (MWh) 0	Energy Revenue 0	Total 0	Balance
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	43 44 45 46 47 48 49 50 51 52 53 54	2007 2008 2009 2010 2011 2012 2013 2014	7,556 1,733 12,506 6,615 573	Maintenance 0 0 0 0 0	1,619 7,556 1,733	(MWh) 0 0	Outage 0	(MWh) 0	0	0	-1,6
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	43 44 45 46 47 48 49 50 51 52 53 54	2007 2008 2009 2010 2011 2012 2013 2014	7,556 1,733 12,506 6,615 573	0 0 0	7,556 1,733	0 0	0	0			-1,6
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	43 44 45 46 47 48 49 50 51 52 53 54	2007 2008 2009 2010 2011 2012 2013 2014	7,556 1,733 12,506 6,615 573	0 0 0	7,556 1,733	0					-1,6
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	44 45 46 47 48 49 50 51 52 53 54	2008 2009 2010 2011 2012 2013 2014	1,733 12,506 6,615 573	0 0	1,733		0				
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	45 46 47 48 49 50 51 52 53 54	2009 2010 2011 2012 2013 2014	12,506 6,615 573	0				0	0	0	-7,5
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	46 47 48 49 50 51 52 53 54	2010 2011 2012 2013 2014	6,615 573			0	0	0	0	0	-1,7
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	47 48 49 50 51 52 53 54	2011 2012 2013 2014	573	0	12,506	0	0	0	0	0	-12,5
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	48 49 50 51 52 53 54	2012 2013 2014			6,615	513	0	415	35	35	-6,5
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	49 50 51 52 53 54	2013 2014	0	0	573	1,120	0	905	77	77	-4
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	50 51 52 53 54	2014	0	0	0	1,120	0	905	77	77	
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	51 52 53 54			0	0	1,120		905	77	77	
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	52 53 54			0	0	1,120		905	77	77	
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	53 54			150	150	113,120		91,401	7,790	7,790	7,6
8 9 10 11 12 13 14 15 16 17 18 19 20 21	54	2016		150	150	113,120		91,401	7,790	7,790	7,6
9 10 11 12 13 14 15 16 17 18 19 20 21		2017		150	150	113,120		91,401	7,790	7,790	7,6
10 11 12 13 14 15 16 17 18 19 20 21	55	2018 2019		150 150	150 150	113,120 113,120		91,401 91,401	7,790 7,790	7,790 7,790	7,6 7,6
11 12 13 14 15 16 17 18 19 20 21	56	2019		150	150	113,120		91,401 91,401	7,790	7,790	7,6
12 13 14 15 16 17 18 19 20 21	57	2020		150	150	113,120		91,401 91,401	7,790	7,790	7,0
13 14 15 16 17 18 19 20 21	58	2021		150	150	113,120		91,401 91,401	7,790	7,790	7,0
14 15 16 17 18 19 20 21	59	2022		150	150	113,120		91,401 91,401	7,790	7,790	7,0
15 16 17 18 19 20 21	60	2023		150	150	113,120		91,401 91,401	7,790	7,790	7,0
16 17 18 19 20 21	61	2024		150	150	113,120		91,401	7,790	7,790	7,6
17 18 19 20 21	62	2025		150	150	113,120		91,401	7,790	7,790	7,0
18 19 20 21	63	2020		150	150	113,120		91,401	7,790	7,790	7,0
19 20 21	64	2028		150	150	113,120		91,401	7,790	7,790	7,0
20 21	65	2029		150	150	113,120		91,401	7,790	7,790	7,6
21	66	2030		150	150	113,120		91,401	7,790	7,790	7,0
	67	2031		150	150	113,120		91,401	7,790	7,790	7,0
	68	2032		150	150	113,120		91,401	7,790	7,790	7,0
23	69	2033		150	150	113,120		91,401	7,790	7,790	7,0
24	70	2034		150	150	113,120		91,401	7,790	7,790	7,6
25	71	2035		150	150	113,120		91,401	7,790	7,790	7,0
26	72	2036		150	150	113,120		91,401	7,790	7,790	7,0
27	73	2037		150	150	113,120		91,401	7,790	7,790	7,0
28	74	2038		150	150	113,120		91,401	7,790	7,790	7,0
29	75	2039		150	150	113,120		91,401	7,790	7,790	7,6
30	76	2040		150	150	113,120		91,401	7,790	7,790	7,0
31	77	2041		150	150	113,120		91,401	7,790	7,790	7,0
32	78	2042		150	150	113,120		91,401	7,790	7,790	7,0
33	79	2043		150	150	113,120		91,401	7,790	7,790	7,
34	80	2044		150	150	113,120		91,401	7,790	7,790	7,
35	81	2045		150	150	113,120		91,401	7,790	7,790	7,0
36	82	2046		150	150	113,120		91,401	7,790	7,790	7,
37	83	2047		150	150	113,120		91,401	7,790	7,790	7,0
38	84	2048		150	150	113,120		91,401	7,790	7,790	7,
39	85	2049		150	150	113,120		91,401	7,790	7,790	7,0
40	86	2050		150	150	113,120		91,401	7,790	7,790	7,
41	87	2051		150	150	113,120		91,401	7,790	7,790	7,0
42	88	2052		150	150	113,120		91,401	7,790	7,790	7,0
43	89	2053		150	150	113,120		91,401	7,790	7,790	7,0
44	90	2054		150	150	113,120		91,401	7,790	7,790	7,0
45	91	2055		150	150	113,120		91,401	7,790	7,790	7,0
46	92	2056		150	150	113,120		91,401	7,790	7,790	7,0
47	93	2057		150	150	113,120		91,401	7,790	7,790	7,0
48	94	2058		150	150	113,120		91,401	7,790	7,790	7,0
49	95 96	2059		150	150	113,120		91,401	7,790	7,790	7,0
50	96	2060	30,602	150 6,900	150 37,502	113,120 5,208,513	0	91,401 4,208,479	7,790 358,684	7,790	7,0
he condition	Total									358,684	321,

Wimalasurendra P/S Case 2 (Scheduled Replace)

B/C

Table 10.24 Calculation of Financial Evaluation Indices

Old Laxapana Stage I P/S

			Cost								
Year 1 order	Plant Age	Year	Replace	Operation & Maintenance	Total	Energy Generation (MWh)	Loss due to Outage	Energy Sales (MWh)	Energy Revenue	Total	Balanc
	56	2006	923	0	923	0	0	0	0	0	-9
	57	2007	5,567	0	5,567	0	0	0	0	0	-5,5
	58	2008	227	0	227	0	0	0	0	0	-2
	59	2009	10,401	0	10,401	0	0	0	0	0	-10,4
	60	2010	3,475	28	3,503	17,478	-9,825	6,183	527	527	-2,
1	61	2011	2,456	160	2,616	100,497	-9,825	73,263	6,246	6,246	3,
2	62	2012	116	250	366	157,300	0	127,098	10,836	10,836	10,
3	63	2013		250	250	157,300		127,098	10,836	10,836	10,
4	64	2014		250	250	157,300		127,098	10,836	10,836	10,
5	65	2015		250	250	157,300		127,098	10,836	10,836	10,
6	66	2016		250	250	157,300		127,098	10,836	10,836	10,
7	67	2017		250	250	157,300		127,098	10,836	10,836	10,
8	68	2018		250	250	157,300		127,098	10,836	10,836	10,
9	69	2019		250	250	157,300		127,098	10,836	10,836	10,
10	70	2019		250	250	157,300		127,098	10,836	10,836	10.
11	70	2020		250	250	157,300		127,098	10,836	10,836	10,
12	72	2021		250	250	157,300		127,098	10,836	10,836	10
13	73	2022		250	250	157,300		127,098	10,836	10,836	10
13	74	2023							10,836		
				250	250	157,300		127,098		10,836	10
15	75	2025		250	250	157,300		127,098	10,836	10,836	10
16	76	2026		250	250	157,300		127,098	10,836	10,836	10
17	77	2027		250	250	157,300		127,098	10,836	10,836	10
18	78	2028		250	250	157,300		127,098	10,836	10,836	10
19	79	2029		250	250	157,300		127,098	10,836	10,836	10
20	80	2030		250	250	157,300		127,098	10,836	10,836	10
21	81	2031		250	250	157,300		127,098	10,836	10,836	10
22	82	2032		250	250	157,300		127,098	10,836	10,836	10
23	83	2033		250	250	157,300		127,098	10,836	10,836	10
24	84	2034		250	250	157,300		127,098	10,836	10,836	10
25	85	2035		250	250	157,300		127,098	10,836	10,836	10
26	86	2036		250	250	157,300		127,098	10,836	10,836	10
27	87	2037		250	250	157,300		127,098	10,836	10,836	10
28	88	2038		250	250	157,300		127,098	10,836	10,836	10
29	89	2039		250	250	157,300		127,098	10,836	10,836	10
30	90	2040		250	250	157,300		127,098	10,836	10,836	10
31	91	2041		250	250	157,300		127,098	10,836	10,836	10
32	92	2042		250	250	157,300		127,098	10,836	10,836	10
33	93	2043		250	250	157,300		127,098	10,836	10,836	10
34	94	2044		250	250	157,300		127,098	10,836	10,836	10
35	95	2045		250	250	157,300		127,098	10,836	10,836	10
36	96	2046		250	250	157,300		127,098	10,836	10,836	10
37	97	2047		250	250	157,300		127,098	10,836	10,836	10
38	98	2048		250	250	157,300		127,098	10,836	10,836	10
39	99	2049		250	250	157,300		127,098	10,836	10,836	10
40	100	2050		250	250	157,300		127,098	10,836	10,836	10
	Total		23,165	9.938	33,102	6,252,675	-19,651	5,036,283	429,370	429,370	396

Present value: (B-C) Internal rate of return (FIRR):

B/C

28.86%

Table 10.25 Calculation of Financial Evaluation Indices

New Laxapana P/S

				Cost				Benefit			
Year n order	Plant Age	Year	Replace	Operation &	Total	Energy Generation	Loss due to	Energy Sales	Energy Revenue	Total	Balanc
				Maintenance		(MWh)	Outage	(MWh)			
	32	2006	1,204	0	1,204	0	0	0	0	0	-1,2
	33	2007	6,819	0	6,819	0	0	0	0	0	-6,8
	34	2008	296	0	296	0	-20,384	-16,471	-1,404	-1,404	-1,7
	35	2009	357	0	357	0	0	0	0	0	-1
	36	2010	12,893	0	12,893	0	0	0	0	0	-12,
	37	2011	6,724	-3	6,721	690	-162,468	-130,717	-11,144	-11,144	-17,
1	38	2012	152	-17	135	4,600	0	3,717	317	317	
2	39	2013		-20	-20	5,520		4,460	380	380	
3	40	2014		-20	-20	5,520		4,460	380	380	
4	41	2015		-20	-20	5,520		4,460	380	380	
5	42	2016		-20	-20	5,520		4,460	380	380	
6	43	2017		-20	-20	5,520		4,460	380	380	
7	44	2018		-20	-20	5,520		4,460	380	380	
8	45	2019		-20	-20	5,520		4,460	380	380	
9	46	2020		-20	-20	5,520		4,460	380	380	
10	47	2021		-20	-20	5,520		4,460	380	380	
11	48	2022		-20	-20	5,520		4,460	380	380	
12	49	2023		-20	-20	5,520		4,460	380	380	
13	50	2024		-20	-20	5,520		4,460	380	380	
14	51	2025		110	110	557,520		450,476	38,405	38,405	38,
15	52	2025		110	110	557,520		450,476	38,405	38,405	38,
16	53	2020		110	110	557,520		450,476	38,405	38,405	38,
17	54	2028		110	110	557,520		450,476	38,405	38,405	38,
18	55	2029		110	110	557,520		450,476	38,405	38,405	38
18	56	2029		110	110			450,476		38,405	38,
20				110		557,520			38,405		
20	57	2031 2032		110	110	557,520		450,476	38,405	38,405	38,
	58				110	557,520		450,476	38,405	38,405	38,
22	59	2033		110	110	557,520		450,476	38,405	38,405	38,
23	60	2034		110	110	557,520		450,476	38,405	38,405	38,
24	61	2035		110	110	557,520		450,476	38,405	38,405	38,
25	62	2036		110	110	557,520		450,476	38,405	38,405	38,
26	63	2037		110	110	557,520		450,476	38,405	38,405	38,
27	64	2038		110	110	557,520		450,476	38,405	38,405	38,
28	65	2039		110	110	557,520		450,476	38,405	38,405	38
29	66	2040		110	110	557,520		450,476	38,405	38,405	38
30	67	2041		110	110	557,520		450,476	38,405	38,405	38,
31	68	2042		110	110	557,520		450,476	38,405	38,405	38,
32	69	2043		110	110	557,520		450,476	38,405	38,405	38
33	70	2044		110	110	557,520		450,476	38,405	38,405	38
34	71	2045		110	110	557,520		450,476	38,405	38,405	38,
35	72	2046		110	110	557,520		450,476	38,405	38,405	38,
36	73	2047		110	110	557,520		450,476	38,405	38,405	38
37	74	2048		110	110	557,520		450,476	38,405	38,405	38
38	75	2049		110	110	557,520		450,476	38,405	38,405	38
39	76	2050		110	110	557,520		450,476	38,405	38,405	38
40	77	2051		110	110	557,520		450,476	38,405	38,405	38,
41	78	2052		110	110	557,520		450,476	38,405	38,405	38
42	79	2053		110	110	557,520		450,476	38,405	38,405	38
43	80	2054		110	110	557,520		450,476	38,405	38,405	38
44	81	2055		110	110	557,520		450,476	38,405	38,405	38
45	82	2056		110	110	557,520		450,476	38,405	38,405	38
46	83	2057		110	110	557,520		450,476	38,405	38,405	38
47	84	2058		110	110	557,520		450,476	38,405	38,405	38
48	85	2059		110	110	557,520		450,476	38,405	38,405	38
49	86	2060		110	110	557,520		450,476	38,405	38,405	38
50	87	2061		110	110	557,520		450,476	38,405	38,405	38
50	Total	2001	28,444	3,811	32,255	20,699,770	-182,852	16,577,669		1,413,334	
	i Otai		20,744	5,011	24,433	20,077,110	102,002	10,277,009	1,110,004	4,110,004	1,501,

B/C

2.87

	Co	onst.	Evaluation Indices
	C	Cost	FIRR
	C 1	<u>(p)</u>	
Wimalasurendra P/S	Case 1	(Repair as 1 50%	-
Case-A		50% 25%	
Case-B			12.25%
Base Case		0%	14.15%
Case-C		-25%	16.80%
Case-D		-50%	20.92%
Trial Case		66%	10.03%
Wimalasurendra P/S	Case2 (S	Scheduled Re	-
Case-A		50%	16.34%
Case-B		20%	14.34%
Base Case		0%	12.82%
Case-C		-20%	11.08%
Case-D		-50%	7.85%
Trial Case		45%	10.00%
Old Laxapana Stage I P	P/S		
Case-A		50%	21.37%
Case-B		20%	25.30%
Base Case		0%	28.86%
Case-C		-20%	33.65%
Case-D		-50%	45.34%
Trial Case		257%	10.00%
New Laxapana P/S			
Case-A		50%	12.63%
Case-B		20%	13.51%
Base Case		0%	14.23%
Case-C		-20%	15.07%
		-20%	16.75%
Case-D			10.73/0

Table 10.26 Financial Sensitivity of Hydro Power Construction Cost

		F :00	
	E.1	Fariff	Evaluation Indices
			FIRR
Wimalasurendra P/S	Case 1	(Repair as R	Required)
Case-A		50%	17.95%
Case-B		20%	15.80%
Base Case		0%	14.15%
Case-C		-20%	12.25%
Case-D		-50%	8.67%
Trial Case		-40%	10.00%
Wimalasurendra P/S	Case? (S	 Scheduled Rep	nlace)
Case-A	Case2 (C	50%	9.76%
Case-R Case-B		25%	11.08%
Base Case		0%	12.82%
Case-C		-25%	15.27%
Case-D		-50%	19.14%
Trial Case		-31%	10.00%
Old Laxapana Stage I 1	P/S		
Case-A	175	50%	37.92%
Case-R Case-B		20%	32.74%
Base Case		0%	28.86%
Case-C		-20%	24.55%
Case-D		-50%	16.96%
Trial Case		-71%	10.35%
New Laxapana P/S			
Case-A		50%	15.74%
Case-B		20%	14.92%
Base Case		0%	14.23%
Case-C		-20%	13.35%
Case-D		-50%	11.47%
Trial Case		-65%	10.02%

Table 10.27 Financial Sensitivity of Electricity Tariff

	Item	Number of Loans	Principal Am	iount	Balance at December 3	
			(Rs. Million)	(%)	(Rs. Million)	(%
Destination	1					
	Generation	27	46,829	75.2	19,225	64.0
	Transmission	25	13,221	21.2	8,318	27.7
	Distribution	4	1,863	3.0	1,024	3.4
	Corporate	2	366	0.6	263	0.9
	Distribution of LECO*1	3	2	0.0	1,192	4.0
	Total	61	62,281	100.0	30,022	100.0
Sources						
	JBIC (OECF)		31,724	50.9	8,843	29.5
	JBIC (OECF)		9,609	15.4	7,857	26.2
	IDA		6,500	10.4	3,577	11.9
	ADB		5,695	9.1	3,735	12.4
	Others		5,418	8.7	4,210	14.0
	MDB		2,000	3.2	800	2.7
	DST		1,335	2.1	1,000	3.3
	Total		62,281	100.0	30,022	100.0

Table 10.28Consolidated Loans and Sources to CEB at End of 1999

Source: Sri Lanka Power Sector Restructuring Project, Financial-Volume 1- Main Report, April 2001, Ministry of Power and Energy

Note: *1 Lanka Electricity Company

Remark: Terms of loans range as follows.

Interest rate: 0.0 to 13.5 % per annum Repayment period: 3 to 40 years (20 years on average)

Table 10.29.1 Cash Flow Statement: Case of ODA Finance

Wimalasurendra PS

Case1																			(Unit:	US\$1000)
			Fin	ancial Flov	W				Profit a	& Loss Flov	N					Cash	n Flow			Debt
Year in	Year	Capital	Foreign	Fund	Local I	Fund	Sales		Expense		Income	Income	Income	Revenue	Expe	ise	Debt Se	ervice	Net	Service
order		Investment	Principal	Interest	Principal	Interest	Revenue*2	O&M	Depre-	Interest	before	Tax* ⁴	after		O&M	Tax	Principal	Interest	Cash	Coverage
		Fund	Payment		Payment		Revenue		ciation*3		Tax	1 dx	Tax						Flow	Ratio
1	2006	1,490		20		19	0	0		39				0	0	0		39	-39	
2	2007	6,082		102		98	0	0		201				0	0	0		201	-201	
3	2008	1,355		121		116	0	0		237				0	0	0		237	-237	
4	2009	9,825		253		244	0	0		497				0	0	0		497	-497	
5	2010	5,226		324	153	292	0	0		616	-616	0	-616	0	0	0	153	616	-768	0.000
6	2011	450		330	153	278	0	0		608	-608	0	-608	0	0	0	153	608	-760	0.000
7 1	2012			330	153	258	0	0	928	588	-1,516	0	-1,516	0	0	0	153	588	-740	0.000
8 2	2013			330	153	238	0	0	928	568	-1,496	0	-1,496	0	0	0	153	568	-721	0.000
9 3	2014			330	153	218	0	0	928	548	-1,476	0	-1,476	0	0	0	153	548	-701	0.000
10 4	2015			330	153	198	7,715	170	928	528	6,089	132	5,957	7,715	170	132	153	528	6,732	10.886
11 5	2016		1,099	313	153	179	7,715	170	928	492	6,125	2,144	3,982	7,715	170	2,144	1,252	492	3,657	3.097
12 6	2017		1,099	297	153	159	7,715	170	489	456	6,601	2,310	4,291	7,715	170	2,310	1,252	456	3,527	3.066
13 7	2018		1,099	280	153	139	7,715	170	489	419	6,637	2,323	4,314	7,715	170	2,323	1,252	419	3,551	3.125
14 8	2019		1,099	264	153	119	7,715	170	489	383	6,674	2,336	4,338	7,715	170	2,336	1,252	383	3,575	3.186
15 9	2020		1,099	247	153	99	7,715	170	489	347	6,710	2,349	4,362	7,715	170	2,349	1,252	347	3,598	3.251
16 10			1,099	231	153	79	7,715	170	489	310	6,746	2,361	4,385	7,715	170	2,361	1,252	310	3,622	3.318
17 11	2022		1,099	214	153	60	7,715	170	489	274	6,783	2,374	4,409	7,715	170	2,374	1,252	274	3,645	3.389
18 12			1,099	198	153	40	7,715	170	489	238	6,819	2,387	4,432	7,715	170	2,387	1,252	238	3,669	3.463
19 13			1,099	181	153	20	7,715	170	489	201	6,855	2,399	4,456	7,715	170	2,399	1,252	201	3,693	3.541
20 14			1,099	165 148	153	0	7,715 7,715	170 170	489	165	6,892	2,412	4,480 4,490	7,715	170 170	2,412	1,252	165	3,716	3.623 4.109
21 15			1,099			•	,		489	148	6,908	2,418	,	7,715		2,418	1,099	148	3,880	
22 16			1,099	132 115		0	7,715 7,715	170 170	489	132	6,925	2,424 2,429	4,501 4,512	7,715	170 170	2,424 2,429	1,099	132	3,890	4.160
23 17			1,099 1,099	99		0	7,715	170	489	115 99	6,941	,	,	7,715 7,715	170	,	1,099 1,099	115	3,901	4.212 4.265
24 18			1,099	82		0	7,715	170	489 489	99 82	6,958 6,974	2,435 2,441	4,523 4,533	7,715	170	2,435 2,441	1,099	99 82	3,912 3,923	4.265
25 19 26 20			1,099			0	7,715	170			,	,	,	7,715	170		1,099	82	· ·	4.319
26 20 27 21			1,099	66 49		0	7,715	170	489 489	66 49	6,991 7,007	2,447 2,453	4,544 4,555	7,715	170	2,447 2,453	1,099	66 49	3,933 3,944	4.370
			1,099	33		0	7,715	170	489	33	7,007	2,433	4,555	7,715	170	2,433	1,099	33	3,944	4.433
28 22 29 23			1,099	33 16		0	7,715	170	489	33 16	7,024	2,458	4,565	7,715	170	2,458	1,099	33 16	3,955	4.493
29 23 30 24			1,099	10		0	7,715	170	489	0	7,040	2,404	4,570	7,715	170	2,404	1,099	0	3,903	4.534
50 24	2033		1,099	0		0	7,715	170	489	0	7,037	2,470	4,307	/,/13	170	2,470	1,099	0	3,970	4.01/
															Ave	rage DSCI	R (Debt Servi	ice Coverag	e Ratio):	3.365
	Total	24,428	21,986	5,602	2,443	2,854	162,021	3,570		Return or	n Investme	ent (ROI):	8.3%		Loan Li	fe Debt Se	ervice Covera	age Ratio (L	LCR)* ¹ :	2.996

Note: *1 Discounted at 2.65% of weighted average interest rate.

*2 Net sales revenue including VAT (value added tax)

*3 Interest during construction was capitalized in deferred assets and amortized it during five years after inauguration.

*4 Imposed 35% of income tax on net profit which subtracted net deficits if the project entity had net deficits during the nearest past five years.

Table 10.29.2	Cash Flow Statement:	Case of ODA Finance
1 4010 10.47.4	Cush i low Statements	Cuse of ODIA I manee

Wimalasurendra PS

			Fin	ancial Flov	v				Profit &	& Loss Flov	V					Cash	ı Flow			De
ear in	Year	Capital	Foreign	Fund	Local I	Fund	Sales		Expense		Income	Income	Income	Revenue	Exper	ıse	Debt Se	ervice	Net	Servi
rder		Investment	Principal	Interest	Principal	Interest	Revenue*2	O&M	Depre-	Interest	before	Tax* ⁴	after		O&M	Tax	Principal	Interest	Cash	
		Fund	Payment		Payment				ciation*3		Tax		Tax						Flow	
1	2006	1,619		22		21	0	0		43				0	0	0		43	-43	
2	2007	7,556		124		119	0	0		243				0	0	0		243	-243	
3	2008	1,733		147		142	0	0		289				0	0	0		289	-289	
4	2009	12,506		316		304	0	0		620				0	0	0		620	-620	
5	2010	6,615		405	191	366	35	0		771	-736	0	-736	35	0	0	191	771	-927	0.
6	2011	573		413	191	348	77	0		761	-684	0	-684	77	0	0	191	761	-875	0.
7 1	2012			413	191	323	77	0	1,158	736	-1,817	0	-1,817	77	0	0	191	736	-851	0.
8 2	2013			413	191	298	77	0	1,158	712	-1,792	0	-1,792	77	0	0	191	712	-826	0.
9 3	2014			413	191	274	77	0	1,158	687	-1,767	0	-1,767	77	0	0	191	687	-801	0.
10 4	2015			413	191	249	7,790	150	1,158	662	5,821	0	5,821	7,790	150	0	191	662	6,787	8.
11 5	2016		1,377	392	191	224	7,790	150	1,158	616	5,866	1,712	4,154	7,790	150	1,712	1,568	616	3,743	2
12 6	2017		1,377	372	191	199	7,790	150	612	571	6,457	2,260	4,197	7,790	150	2,260	1,568	571	3,241	2
13 7	2018		1,377	351	191	174	7,790	150	612	525	6,503	2,276	4,227	7,790	150	2,276	1,568	525	3,270	2
14 8	2019		1,377	331	191	149	7,790	150	612	480	6,548	2,292	4,256	7,790	150	2,292	1,568	480	3,300	2
15 9	2020		1,377	310	191	124	7,790	150	612	434	6,594	2,308	4,286	7,790	150	2,308	1,568	434	3,330	2
16 1	0 2021		1,377	289	191	99	7,790	150	612	389	6,639	2,324	4,316	7,790	150	2,324	1,568	389	3,359	2
17 1	1 2022		1,377	269	191	75	7,790	150	612	343	6,685	2,340	4,345	7,790	150	2,340	1,568	343	3,389	2
18 1	2 2023		1,377	248	191	50	7,790	150	612	298	6,730	2,356	4,375	7,790	150	2,356	1,568	298	3,418	2
19 1	3 2024		1,377	227	191	25	7,790	150	612	252	6,776	2,372	4,404	7,790	150	2,372	1,568	252	3,448	2
20 1	4 2025		1,377	207	191	-0	7,790	150	612	207	6,821	2,387	4,434	7,790	150	2,387	1,568	207	3,478	2
21 1	5 2026		1,377	186		-0	7,790	150	612	186	6,842	2,395	4,447	7,790	150	2,395	1,377	186	3,682	3
22 1	6 2027		1,377	165		-0	7,790	150	612	165	6,863	2,402	4,461	7,790	150	2,402	1,377	165	3,696	3.
23 1	7 2028		1,377	145		-0	7,790	150	612	145	6,883	2,409	4,474	7,790	150	2,409	1,377	145	3,709	3.
24 1	8 2029		1,377	124		-0	7,790	150	612	124	6,904	2,416	4,488	7,790	150	2,416	1,377	124	3,723	3.
25 1	9 2030		1,377	103		-0	7,790	150	612	103	6,925	2,424	4,501	7,790	150	2,424	1,377	103	3,736	3.
26 2	0 2031		1,377	83		-0	7,790	150	612	83	6,945	2,431	4,514	7,790	150	2,431	1,377	83	3,749	3
27 2	1 2032		1,377	62		-0	7,790	150	612	62	6,966	2,438	4,528	7,790	150	2,438	1,377	62	3,763	3
28 2	2 2033		1,377	41		-0	7,790	150	612	41	6,987	2,445	4,541	7,790	150	2,445	1,377	41	3,776	3
29 2	3 2034		1,377	21		-0	7,790	150	612	21	7,007	2,453	4,555	7,790	150	2,453	1,377	21	3,790	
30 2	4 2035		1,377	-0		-0	7,790	150	612	-0	7,028	2,460	4,568	7,790	150	2,460	1,377	-0	3,803	3.
															Ave	rage DSCI	R (Debt Servi	ce Coverage	e Ratio).	2.
	Total	30,602	27,542	7,005	3,060	3,563	163,934	3,150		Baturn on	Investme	nt (DOD)	8.3%			0	ervice Covera	0		2.4

*2 Net sales revenue including VAT (value added tax)

*3 Interest during construction was capitalised in deferred assets and amortised it during five years after inauguration. *4 Imposed 35% of income tax on net profit which subtracted net deficits if the project entity had net deficits during the nearest past five years.

Old Laxapana StageI P/S

			Fin	ancial Flov	v				Profit d	& Loss Flo	W					Cash	I Flow			De
'ear in	Year	Capital	Foreign	Fund	Local I	Fund	Sales		Expense		Income	Income	Income	Revenue	Exper	nse	Debt Se	ervice	Net	Servi
rder		Investment	Principal	Interest	Principal	Interest	Revenue*2	O&M	Depre-	Interest	before	Tax* ⁴	after		O&M	Tax	Principal	Interest	Cash	
_		Fund	Payment	1.0	Payment	10		0	ciation*3		Tax		Tax			0			Flow	Ra
1	2006	923		12		12	0	0		24				0	0	0		24	-24	
2 3	2007	5,567		88		84	0	0		172				0	0	0		172	-172	
,	2008	227		91		87	0	0		178				0	0	0		178	-178	
ŀ	2009	10,401		231	1.45	223	0	0		454	20	0	20	0	0	0	1.45	454	-454	0.7
5	2010	3,475		278	145	249	527	28		527	-28	0	-28	527	28	0	145	527	-172	0.7
	2011	2,456		311	145	262	6,246	160	0.40	573	5,513	1,920	3,593	6,246	160	1,920	145	573	3,448	5.8
	2012	116		313	145	245	10,836	250	849	557	9,179	3,213	5,967	10,836	250	3,213	145	557	6,671	10.5
3 2	2010			313	145	226	10,836	250	849	539	9,198	3,219	5,979	10,836	250	3,219	145	539	6,683	10.7
) 3	2014			313	145	207	10,836	250	849	520	9,217	3,226	5,991	10,836	250	3,226	145	520	6,695	11.0
0 4	2015		1.0.10	313	145	188	10,836	250	849	501	9,236	3,233	6,003	10,836	250	3,233	145	501	6,708	11.
1 5	2010		1,042	297	145	169	10,836	250	849	466	9,270	3,245	6,026	10,836	250	3,245	1,187	466	5,687	4.4
26	2017		1,042	281	145	151	10,836	250	463	432	9,690	3,392	6,299	10,836	250	3,392	1,187	432	5,575	4.
37	2018		1,042	266	145	132	10,836	250	463	398	9,725	3,404	6,321	10,836	250	3,404	1,187	398	5,597	4.
4 8			1,042	250	145	113	10,836	250	463	363	9,759	3,416	6,344	10,836	250	3,416	1,187	363	5,620	4.
59	2020		1,042	235	145	94	10,836	250	463	329	9,794	3,428	6,366	10,836	250	3,428	1,187	329	5,642	4.
6 10	. 2021		1,042	219	145	75	10,836	250	463	294	9,828	3,440	6,388	10,836	250	3,440	1,187	294	5,665	4.
7 1	1 2022		1,042	203	145	56	10,836	250	463	260	9,863	3,452	6,411	10,836	250	3,452	1,187	260	5,687	4.
8 1			1,042	188	145	38	10,836	250	463	225	9,897	3,464	6,433	10,836	250	3,464	1,187	225	5,709	5.
9 1			1,042	172	145	19	10,836	250	463	191	9,932	3,476	6,456	10,836	250	3,476	1,187	191	5,732	5.
0 1			1,042	156	145	0	10,836	250	463	156	9,966	3,488	6,478	10,836	250	3,488	1,187	156	5,754	5.
1 1:			1,042	141		0	10,836	250	463	141	9,982	3,494	6,488	10,836	250	3,494	1,042	141	5,909	5.
2 1			1,042	125		0	10,836	250	463	125	9,997	3,499	6,498	10,836	250	3,499	1,042	125	5,919	6.
3 1			1,042	109		0	10,836	250	463	109	10,013	3,505	6,508	10,836	250	3,505	1,042	109	5,929	6.
4 1			1,042	94		0	10,836	250	463	94	10,029	3,510	6,519	10,836	250	3,510	1,042	94	5,940	6.
5 1			1,042	78		0	10,836	250	463	78	10,044	3,516	6,529	10,836	250	3,516	1,042	78	5,950	6.
6 2			1,042	63		0	10,836	250	463	63	10,060	3,521	6,539	10,836	250	3,521	1,042	63	5,960	6.
7 2			1,042	47		0	10,836	250	463	47	10,076	3,526	6,549	10,836	250	3,526	1,042	47	5,970	6.
8 2			1,042	31		0	10,836	250	463	31	10,091	3,532	6,559	10,836	250	3,532	1,042	31	5,980	6.:
9 2			1,042	16		0	10,836	250	463	16	10,107	3,537	6,569	10,836	250	3,537	1,042	16	5,990	6.
0 24	4 2035		1,042	0		0	10,836	250	463	0	10,123	3,543	6,580	10,836	250	3,543	1,042	0	6,001	6.7
															Ave	rage DSCI	R (Debt Servi	ce Coverage	e Ratio):	6.2
	Total	23,165	20,848	5,233	2,316	2,630	266,833	6,188		Return of	n Investme	nt (ROI).	8.4%		Loan Li	- ife Deht Se	ervice Covera	ge Ratio (L	$LCR)*^{1}$	5.3

*2 Net sales revenue including VAT (value added tax)

*3 Interest during construction was capitalized in deferred assets and amortized it during five years after inauguration. *4 Imposed 35% of income tax on net profit which subtracted net deficits if the project entity had net deficits during the nearest past five years.

Table 10.31 Cash Flow Statement: Case of ODA Finance

New Laxapana P/S

			Fina	ancial Flov	V				Profit d	& Loss Flo	W					Cash	1 Flow			De
ear in	Year	Capital	Foreign	Fund	Local I	und	Sales		Expense		Income	Incomo	Income	Revenue	Expe	ense	Debt Se	ervice	Net	Serv
rder		Investment Fund	Principal Payment	Interest	Principal Payment	Interest	Revenue*2	O&M	Depre- ciation* ³	Interest	before Tax	Income Tax* ⁴	after Tax	_	O&M	Tax	Principal	Interest	Cash Flow	Covera Ra
1	2006	1,204		16		16	0	0		32				0	0	0		32	-32	
2	2007	6,819		108		104	0	0		213				0	0	0		213	-213	
3	2008	296		112		108	-1,404	0		220				-1,404	0	0		220	-1,625	
4	2009	357		117		113	0	0		230				0	0	0		230	-230	
5	2010	12,893		291	178	257	0	0		548	-548	0	-548	0	0	0	178	548	-726	0.0
5	2011	6,724		382	178	322	-11,144	-3		704	-11,845	0	-11,845	-11,144	-3	0	178	704	-12,023	-12.0
7 1	2012	152		384	178	300	317	-17	958	684	-1,309	0	-1,309	317	-17	0	178	684	-529	0.
8 2	2013			384	178	277	380	-20	958	661	-1,219	0	-1,219	380	-20	0	178	661	-439	0.
9 3	2014			384	178	254	380	-20	958	638	-1,196	0	-1,196	380	-20	0	178	638	-416	0.
0 4	2015 2016		1,280	384 365	178 178	231 208	380 380	-20 -20	958 958	615 573	-1,173 -1,131	0	-1,173 -1,131	380 380	-20 -20	0	178 1,458	615 573	-393 -1,630	0. 0.
1 5 2 6	2010		1,280	303	178	185	380	-20	569	530	-1,131	0	-699	380	-20	0	1,458	530	-1,588	0. 0.
20 37	2017		1,280	326	178	162	380	-20	569	488	-657	0	-657	380	-20	0	1,458	488	-1,586	0.
4 8	2010		1,280	307	178	139	380	-20	569	446	-614	0	-614	380	-20	0	1,458	446	-1,503	0
59	2020		1,280	288	178	116	380	-20	569	404	-572	0	-572	380	-20	0	1,458	404	-1,461	0
6 10			1,280	269	178	92	380	-20	569	361	-530	0	-530	380	-20	0	1,458	361	-1,419	0
7 11	2022		1,280	250	178	69	380	-20	569	319	-488	0	-488	380	-20	0	1,458	319	-1,376	0.
8 12	2023		1,280	230	178	46	380	-20	569	277	-445	0	-445	380	-20	0	1,458	277	-1,334	0
9 13			1,280	211	178	23	380	-20	569	234	-403	0	-403	380	-20	0	1,458	234	-1,292	0.
0 14	2025		1,280	192	178	0	38,405	110	569	192	37,535	5,146	32,388	38,405	110	5,146	1,458	192	31,499	20.
1 15			1,280	173		0	38,405	110	569	173	37,554	13,144	24,410	38,405	110	13,144	1,280	173	23,699	17.
16	2027		1,280	154		0	38,405	110	569	154	37,573	13,151	24,422	38,405	110	13,151	1,280	154	23,711	17.
3 17	2028		1,280	134		0	38,405	110	569	134	37,592	13,157	24,435	38,405	110	13,157	1,280	134	23,724	17.
24 18	2029		1,280	115		0	38,405	110	569	115	37,611	13,164	24,447	38,405	110	13,164	1,280	115	23,736	18.
25 19	2030		1,280	96		0	38,405	110	569	96	37,631	13,171	24,460	38,405	110	13,171	1,280	96	23,749	18.
26 20	2031		1,280	77		0	38,405	110	569	77	37,650	13,177	24,472	38,405	110	13,177	1,280	77	23,761	18.
7 21			1,280	58		ů 0	38,405	110	569	58	37,669	13,184	24,485	38,405	110	13,184	1,280	58	23,774	18.
8 22			1,280	38		0	38,405	110	569	38	37,688	13,191	24,497	38,405	110	13,191	1,280	38	23,786	19.
			,				,		569		-	· ·	,	,		,	,		· · ·	
			1,280	19		0	38,405	110		19	37,707	13,198	24,510	38,405	110	13,198	1,280	19	23,799	19.
30 24	2035		1,280	0		0	38,405	110	569	0	37,727	13,204	24,522	38,405	110	13,204	1,280	0	23,811	19.

 Total
 28,444
 25,600
 6,211
 2,844
 3,023

 Note:
 *1 Discounted at 2.65% of weighted average interest rate.

*2 Net sales revenue including VAT (value added tax)

*3 Interest during construction was capitalized in deferred assets and amortized it during five years after inauguration.

*4 Imposed 35% of income tax on net profit which subtracted net deficits if the project entity had net deficits during the nearest past five years.

414,792

951

5.577

Loan Life Debt Service Coverage Ratio (LLCR)*1:

Return on Investment (ROI):

8.6%

		DSCR	LLRC
Wimalasurendra P/S	Case 1 (Re	epair as Required)	
Case-A	50%	4.830	4.311
Case-B	25%	3.906	3.481
Base Case	0%	3.291	2.928
Case-C	-25%	2.659	2.375
Case-D	-50%	1.708	1.544
Trial Case	-70%	1.097	1.008
Wimalasurendra P/S	Case2 (Sc	heduled Replace)	
Case-A	50%		3.521
Case-B	20%		2.853
Base Case	0%	2.698	2.408
Case-C	-20%	2.187	1.962
Case-D	-50%	1.421	1.292
Trial Case	-64%	1.091	1.001
Old Laxapana Stage 1	[P/S		
Case-A	50%	9.229	7.896
Case-B	20%	7.409	6.338
Base Case	0%	6.195	5.300
Case-C	-20%		4.261
Case-D	-50%		2.703
Trial Case	-82%	1.224	1.046
New Laxapana P/S			
Case-A	50%	11.189	8.284
Case-B	20%	8.989	6.663
Base Case	0%	7.523	5.582
Case-C	-20%		4.502
Case-D	-50%		2.880
Trial Case	-84%	1.378	1.039

Table 10.32 Loan Finance Sensitivity of Electricity Tariff

		ROI	DSCR	LLRC
Wimalasurendra P/S	Case 1	(Repair as Required)		
Case-A	1.0%	7.8%	3.435	3.109
Base Case	1.5%	8.3%	3.291	2.928
Case-B	5.0%	11.6%	2.651	1.992
Case-C	10.0%	16.3%	2.205	1.244
Case-D	15.0%	21.1%	1.946	0.816
Trial Case	12.0%	18.2%	2.130	1.070
Wimalasurendra P/S	Case2	(Scheduled Replace)		
Case-A	1.0%	7.9%	2.828	2.550
Base Case	1.5%	8.3%	2.698	2.408
Case-B	5.0%	11.6%	2.185	1.664
Case-C	10.0%	16.4%	1.835	1.054
Case-D	15.0%	21.1%	1.639	0.689
Trial Case	10.0%	16.4%	1.880	1.080
Old Laxapana Stage	[P/S			
Case-A	1.0%	7.9%	6.659	5.590
Base Case	1.5%	8.4%	6.195	5.300
Case-B	5.0%	11.7%	4.553	3.780
Case-C	10.0%	16.4%	3.578	2.565
Case-D	15.0%	21.2%	3.047	1.897
Trial Case	29.0%	34.4%	2.300	1.036
New Laxapana P/S				
Case-A	1.0%	8.1%	7.616	6.114
Base Case	1.5%	8.6%	7.523	5.582
Case-B	5.0%	11.9%	6.817	2.966
Case-C	10.0%	16.7%	6.028	1.176
Case-D	15.0%	21.4%	5.453	0.403
Trial Case	10.0%	16.7%	6.022	1.175

Table 10.33 Loan Finance Sensitivity of Foreign Loan Condition

11. ENVIRONMENTAL IMPACT ASSESSMENT

11. ENVIRONMENTAL IMPACT ASSESSMENT

11.1 Awareness of Environmental and Social Issues in Sri Lanka

There are some development projects that have not been promoted smoothly because of citizens' objections. Probable environmental and/or social issues have been raised as reasons to object. Those projects include not only electric power generation projects, which are vulnerable to criticism, such as the Upper Kotmale Hydropower Project and Coal Fired Thermal Development Project, West Coast, but also other various kinds of projects such as road construction, mine development, shrimp cultivation, etc.

Views raised by the projects opponents can be summarized after studying some cases.

- The project has problems regarding the natural environment.
- The project has problems regarding the social environment (especially resettlement plan, compensation, etc.).
- An alternative plan has not been studied though it seems a better option.
- Communication with the residents has not been sufficient.

The lessons that have been learned from the above are: An EIA report should have clear description based on scientific grounds regarding the natural environment. Regarding the social environment, it should include an appropriate resettlement plan (if necessary) and concrete plans for compensation for the loss of residents' livelihood. The procedure through by the priority option has been selected because of its advantages in view of the natural and social environment should be explained. In addition, it is necessary to carry out consultations with the stakeholders from an early stage to obtain their trust and understanding.

However, the rehabilitation of hydropower stations in the Kelani River basin does not aim to install additional structures or facilities but rather to maintain or replace the existing facilities. Additionally, an alternative study may not be required because of the characteristics of the rehabilitation work.

It is tenuous that the Environmental Impact Assessment (EIA) is necessary for the implementation of this rehabilitation project according to the institutional framework in Sri Lanka.

11.2 Institutional and Legal Framework in Sri Lanka

11.2.1 Governmental Institutions

The Ministry of Environment and Natural Resources handles environmental issues in Sri Lanka, and there are six agencies under the Ministry:

- Central Environmental Authority (CEA)
- State Timber Corporation
- Geological Survey & Mines Bureau
- Forest Department
- Department of Wildlife Conservation
- Department of National Zoological Gardens

11.2.2 Environmental Laws and Regulations

National Environmental Act No. 47 of 1980 (NEA) is Sri Lanka's basic national charter for protection and management of the environment. Regulation on tolerance limits for effluents, regulation on noise control and other regulations are issued under the Act. The framework of the Environmental Impact Assessment (EIA) procedure is also stipulated in the Act.

Other main acts related to the environment are these:

- Agrarian Development Act
- Fauna and Flora Protection Ordinance
- Forest Ordinance
- Mines and Minerals Act
- National Heritage Wildness Areas Act
- Coast Conservation Act
- Marine Pollution Prevention Act
- Fisheries and Aquatic Resources Act

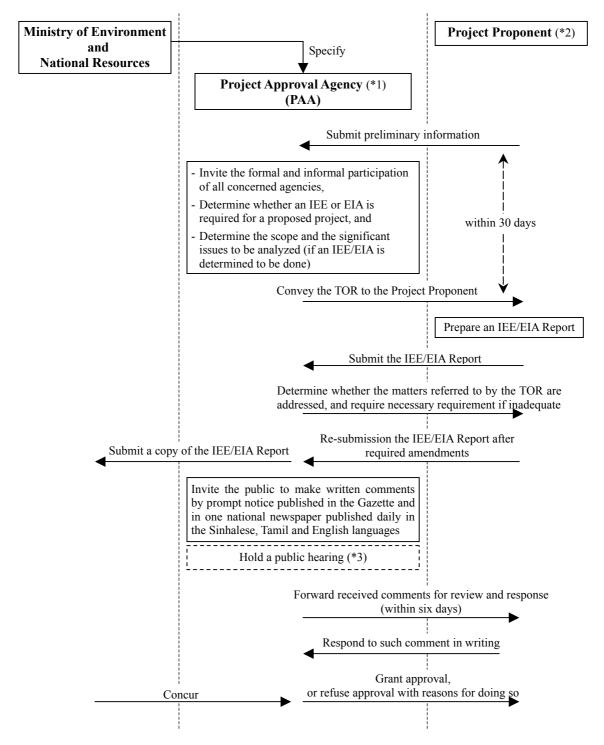
11.3 Procedure of Environmental Impact Assessment

The NEA was amended by Act No. 56 of 1988 to include a provision relating to environmental impact assessment (EIA) contained in Part IV C of the statute entitled 'Approval of Projects'. The details are stipulated in the National Environmental Regulations (Procedure for Approval of Projects). The EIA procedure is specified by an Act and the Regulations as follows:

- The Minister may specify the state agency which shall be the Project Approving Agency (PAA).
- A project proponent of any proposed project shall submit to the PAA preliminary information on the project requested by the appropriate PAA.
- The PAA shall convey in writing to the project proponent the Terms of Reference within 30 days in the case of an Environmental Impact Assessment Report from the date of acknowledging receipt of the preliminary information.
- Upon receipt of an Environmental Impact Assessment Report, the PAA shall, within 14 days, determine whether the matters referred to by the Terms of Reference are addressed and, if the Report is determined to be inadequate, the PAA shall require the project proponent to make necessary amendments and re-submit the report, together with the required number of copies.
- Upon receipt of the Report, the PAA shall submit a copy thereof to the Authority and by prompt notice published in the Gazette and in one national newspaper published daily in the Shinhala, Tamil and English languages invite the public to make written comments, if any, thereon to the PAA within 30 days from the date of the first appearance of the notice, either in the Gazette or in the newspaper.
- It shall be the duty of the PAA, upon completion of the period of public inspection or public hearing, if held, to forward to the project proponent comments received for review and response, within six days. The project proponent shall respond to such comments in writing to the PAA.

- Upon receipt of such responses, the PAA shall with the concurrence of the Authority within 30 days either
 - (i) grant approval for the implementation of the proposed project to specified conditions; or
 - (ii) refuse approval for the implementation of the proposed project, with reasons for doing so.

The following guidelines are issued by the CEA for the good practice of the EIA:


- Guidance for Implementing the Environmental Impact Assessment (EIA) Process
 - No.1: A General Guide for Project Approving Agency (PAA)
 - No.2: A General Guide for Conducting Environmental Scoping

The statement on public hearings in the guideline is as follows:

A public hearing may be held at the discretion of the PAA when it thinks that it would be in the public interest to do so. A variety of situations may fall within the meaning of "public interest," and these cannot be exhaustively defined. Factors for the PAA to consider are:

- whether a proposed prescribed project is highly controversial, whether more expressions of public views are essential to make decision;
- whether the proposed prescribed project might cause unusual national regional impacts;
- whether it might threaten a nationally important environmentally sensitive area;
- whether a formal request for a public hearing has been requested by an interested party.

*1: It is Central Environmental Authority (CEA) in this study

- *2: It is CEB in this study
- *3: In case of being judged by the PAA to be necessary

11.4 Environmental Impact Assessment for the Rehabilitation of Hydropower Stations in the Kelani River Basin

At this time, it is difficult to judge whether an Initial Environmental Examination (IEE) or EIA is required for the rehabilitation of hydropower stations in the Kelani River basin to obtain approval for the project implementation. The Study Team unofficially consulted with a CEA officer who is in charge of the Upper Kotmale Hydropower Project about the necessity of an IEE or EIA for the rehabilitation during the first study period in Sri Lanka of this study. Then the Study Team obtained an unofficial comment that an IEE or EIA might not be required. Anyway, the necessity of an IEE or EIA should be reconfirmed according to "10.3 Procedure of Environmental Impact Assessment" prior to implementing the rehabilitation.

According to the government notifications in June 24 1993, development work in an area within 100m of an existing reservoir is classified as a project that is required to be approved by the Project Approving Agency (PAA), based on the National Environmental Act. That is to say, the rehabilitation of hydropower stations in the Kelani River basin corresponds to a project which is required to receive approval by the PAA. Part of the government notification is as follows.

- Gazette Extraordinary of the Democratic Socialist Republic of Sri Lanka 1993.06.24 --- omission ---
- Part II, All projects and undertakings listed in Part I irrespective of their magnitudes and irrespective of whether they are located in the coastal zone or not, if located wholly or partly with in the areas specified in Part III of the Schedule.
- Part III, --- omission ---, 2. Within the following areas whether or not the areas are wholly or partly within the Coastal Zone: --- omission ---
- any reservation beyond the full supply level of a reservoir. --- omission ----
- "reservoir" means an expanse of water resulting from man made constructions across a river or a stream to store or regulate water. Its environs will include that area extending up to a distance of 100 meters from full supply level of the reservoir inclusive of all islands falling within the reservoir.