F. PRELIMINARY DESIGN

TABLE OF CONTENTS

Page

F.1	GENRAL					
F.2	OBECTIVE PRIORITY PROECTS F - 1					
F.2.1	Drainage Channel Facilities F - 1					
F.2.2	Drainage Pumping Stations					
F.2.3	Nh-Structural and Supporting Measures F - 3					
F.3	PREIMINRY DESIGNOF DRAINGE CHANL FACILITIES F-4					
F.3.1	General F - 4					
F.3.2	Inventory Survey of Underground and Related Facilities F - 4					
F.3.3	Design Criteria for Drainage Facilities F - 5					
F.3.4	Preliminary Design of Drainage Channel Facilities in Mrth Manila F - 10					
F.3.5	Preliminary Design of Drainage Channel Facilities in South Manila F - 18					
F.3.6	Further Issues for Akt Stage of Detailed Design F - 28					
F.4	REHABILITATIONOF DRAINIGE PUMPINI STATION F-29					
F.4.1	General					
F.4.2	Rehabilitation Criteria for Drainage Pumping stations F - 29					
F.4.3	Rehabilitation of Drainage Pumping Stations F - 31					
F.5	NON-STRUCTURAIAN SUPPORTIN MEASURES					
Anx	F.1 BUMENRITT INERCEPTOR					
Anx	F.2 BUENIA OUTFAL					

- ANX F.3 ZOBEL ROXS DRAINGE MAIN
- ANX F.4 FARADAY DRAINGE MAIN
- ANX F.5 STRUCTURAL STUDY

LIST OF TABLES

Table F.3.1	Existing Depths of Earth Covering at Questioned Intersections	F - 4
Table F.3.2	Present Conditions of Maintenance Holes	F - 5
Table F.3.3	Design Scale for Additional Works	F - 6
Table F.3.4	Mapr Soil Data in Pr iority Projects Areas	F - 7
Table F.3.5	Dimensions of bngitudinal Pr ofile of Estero de Sunog Apog	F - 12
Table F.3.6	Dimensions of Additional Box Culvert	F - 15
Table F.3.7	Dimensions of Additional Box Culvert	F - 24
Table F.3.8	Dimensions of Additional Box Culvert	F - 26
Table F.4.1	Drainage Capacity of Pumping Stations	F - 29
Table F.4.2	Present Pump Start/Stop Levels for Drainage Pumping Station	F - 30
Table F.4.3	Working Ife of Pump Equi pment and Appurtenant Facilities	F - 31
Table F.4.4	Tentative Detailed Work Items to be Taken Up in Rehabilitation	F - 33
Table F.5.1	Increase of Run-off Ratio by Basins of Drainage Pumping Stations	F - 36
Table F.5.2	Work Quantity of Observation & work	F - 40

LIST OF FIGURES

<u>Page</u>

Figure F.2.1	bcations of Priority Projects F - 2
Figure F.3.1	Image of Rehabilitation of Open Drainage Channels
	(Estero/Creek/Canal) F - 8
Figure F.3.2	Ideal Typical Section of Open Channel and Its Easement F - 9
Figure F.3.3	beation Map of Priority Projects in orth Manila F - 10
Figure F.3.4	Schematic bcation of Estero de Sunog Apog F - 11
Figure F.3.5	Route of Existing Blumentritt Interceptors F - 12
Figure F.3.6	Image of Modification of Closed Maintenance Hole F - 13
Figure F.3.7	Cross Section of Stop Log Gate to be Installed F - 13
Figure F.3.8	Proposed Route of Additional Blumentritt Interceptor F - 14
Figure F.3.9	Design Discharge of Additional Blumentritt Interceptor F - 15
Figure F.3.10	Image of Additional Box Culvert at Section of Rial Avenue F - 16
Figure F.3.11	Image of Inlet for Road Surface Flow F - 16
Figure F.3.12	bcations of Arrow sect ion of Existing Box Culvert F - 17
Figure F.3.13	bcation Map of Priority Projects in South Manila F - 18
Figure F.3.14	Schematic bcations of Objectiv e Channels to be Dredged/Cleaned F - 19
Figure F.3.15	Schematic Route of Buendia Outfall F - 21
Figure F.3.16	Present Condition of Outlet of Buendia Outfall F - 21
Figure F.3.17	Existing and Proposed Routes of Zbel Roxas Drainage Main F - 22
Figure F.3.18	Design Discharge of Zobel Roxas Drainage Main F - 23
Figure F.3.19	Schematic Lation Map of Pasong Tamo Drainage Main F - 24
Figure F.3.20	Existing and Additional Proposed Route of Faraday Drainage Main F - 25
Figure F.3.21	Design Discharge of Faraday Drainage Main F - 26
Figure F.5.1	Sample of Storm Water Retention Facility (Park) F - 36
Figure F.5.2	Sample of Storm Water Retention Facility (Ground in School/University) F - 37
Figure F.5.3	Sample of Storm Water Retention by Permeable Pavement (Parking Area) F - 37

Figure F.5.4	Sample of Storm Water Retention Facility (Apartment Building)	F - 37
Figure F.5.5	Sample of Storm Water Retention Facility (Tennis Court)	F - 38
Figure F.5.6	Sample of Various Storm Water Retention Facilities	F - 38
Figure F.5.7	bcations of Additional Hydrological Equipment 1	- 40

F.1 GENERAL

The priority projects subject to a feasibility study were selected within the scope of the formulated drainage master plan. The scope of works of the priority projects consist of 1) rehabilitation and additional works for the drainage facilities and 2) rehabilitation and additional works for the drainage pumping stations. A preliminary design for the drainage facilities is made in this stage. Subsequently, a more detailed rehabilitation plan of the drainage pumping stations is examined with identification of rehabilitation work items by stations for the 12 stations. The result of the above design/study is described in the following.

F.2 OBJECTIVE PRIORITY PROJECTS

F.2.1 DRAINAGE CHANNEL FACILITIES

The priority projects for the drainage channel f acilities identified in the master plan consist of rehabilitation and additional works for drainage channel facilities of estero/creek/canal/drainage main. Lacations of objective drainage facilities and drainage pumping stations are presented in *Figure F. 2.1*. The following are the objective drainage facilities.

(1) Rehabilitation and Additional Works of Drainage Channel Facilities in North Manila

Estero de Sunog Apog

- Dredging (Clearing)

Blumentritt Interceptor

- Declogging of existing interceptor and related works
- Construction of additional interceptor by box culvert and remedial works
- (2) Rehabilitation and Additional Works of Drainage Channel Facilities in South Manila

Estero de Tripa de Gallina, PNR Canal and Calatagan Creek I

Dredging (Clearing)

Buendia Outfall

- Declogging and related works
- Zbel Roxas Drainage Main
- Declogging and construction of additional box culvert
- Pasong Tamo Drainage Main
- Declogging

Faraday Drainage Main

- Declogging and construction of additional box culvert

Figure F.2.1 Locations of Priority Projects

F.2.2 DRAINAGE PUMPING STATIONS

Presently there are 15 major drainage pumping stations in the core area. For the objective 12 aged drainage pumping stations identified in the master plan, a further detailed rehabilitation work items of repair and replacement of pump equipment and apparatus by stations will be examined in this stage. Those locations of aged pumping stations are shown in *Figure F.2.1*. The objective pumping stations will be as follows.

- Aviles,

At Aviles station, increase of pump capacity of $3m^3/s$ is proposed in connection with the rehabilitation works as an additional work.

- Qiapo,
- Valencia,
- Pandacan,
- Paco,
- Sta. Clara,
- Tripa de Gallina,
- Ibertad,
- Makati,
- Binondo,
- Escolta and Balete

F.2.3 NON-STRUCTURAL AND SUPPORTING MEASURES

The following non-structural and supporting measures are incorporated with the priority projects in the drainage improvement. In this preliminary design, further description will be made in the later section for 1) recommendation of countermeasures for rapid urbaniztion, 2) recommendation of application of existing floodplain management system, and 3) proposed additional hydrological equipment in connection with improvement of operation and maintenance activities, respectively. Others are explained in the respective sector reports.

<u>bh-Structural Measures</u>

- 1) Recommendation of countermeasures for rapid urbaniation
- 2) Recommendation of application of existing floodplain management systems

Supporting Measures

- 1) Improvement of Operation and Maintenance Organization and Activities and Promotion of Community-Involved Activities
 - Improvement of the existing O&M organiz tion and activities including establishment of community-involved O&M
 - Community-Involved Solid Waste Management
- 2) Installation of Additional Hydrological Equipment
- 3) Introduction of Emergency Operation and Maintenance Equipment
- 4) Preparation of Guideline for Resettlement

F.3 PRELIMINARY DESIGN OF DRAINAGE CHANNEL FACILITIES

F.3.1 GENERAL

A preliminary design is conducted for the objective drainage channel facilities such as estero, creek and drainage main. The preliminary design results for the drainage channel facilities are described in this section covering inventory survey result of underground and related facilities, rehabilitation and design criteria, result of preliminary design of drainage channel facilities and proposed work quantities, as follows.

F.3.2 INVENTORY SURVEY OF UNDERGROUND AND RELATED FACILITIES

Prior to planning and designing of the additional works of the priority projects, an inventory survey on underground facilities and maintenance holes, etc., was conducted mainly by collection of related documents/drawings, site reconnaissance and interview with persons in charge.

(1) Water Supply Pipe

There exist various underground facilities such as drainage pipes, water supply pipes, sewerage pipes, etc. Such underground facilities are mostly placed within 1 m depth from the ground surface. These facilities would not be obstacle to construct additional box culverts. However, a main obstacle will be a water supply steel pipe installed under the main streets in the core area from north to south. The pipe having an outer diameter of 2.2 m (850, 000 m³/day) was placed by MWSS in 1987. A special attention should be paid to depth of earth cover above the placed steel pipe at crossing points of additional culverts. Those existing conditions are summarized in the following *Table F.3.1*. As seen in the Table, some modification works such as partial replacement is needed at 2 crossing points of additional Blumentritt Interceptor and Faraday box culvert.

Objective Drainage Facilities	Location	Elevation of Road Surface (EL.m)	Top Elevation of Steel Pipe(EL.m)	Earth Covering (m)
Additional Blumentritt Interceptor	IntersectionofHermosastreetandJuan Lunastreet	12.47	10.75	1.72
Additional Zobel Roxas Box Culvert	Intersection of Zobel Roxas ave. and South Super Highway	13.10	8.50	4.50
Calatagan Creek I	South Super Highway	15.00	9.70	5.30
Additional Faraday Box Culvert	Intersection of Faraday street and South Super Highway	13.00	10.70	2.30

 Table F.3.1
 Existing Depths of Earth Covering at Questioned Intersections

Note: The dimensions of steel pipe are as shown below.

(2) Foundation of Light Rail Transit (LRT) in Rizal Avenue

A Ight Rail Transit (**R**T) is running on the medi an (strip) of Ri**z**l Avenue in north Manila which is partially to be the proposed route of additional Blumentritt Interceptor. The additional interceptor is to place in the underground of seaside lane of the Ri**z**l Avenue whereas existing interceptor runs in the opposite lane. For construction of additional interceptor, it was confirmed that required space for box culvert is available in the underground of the seaside lane.

(3) Maintenance Hole

Maintenance holes have been constructed on the box culvert for maintenance activities of cleaning/declogging of culvert. Principally, maintenance holes have been installed at an interval of 50 m. However, some maintenance holes are not functioning due to artificial covering by asphalting or earth embankment. Considering proper and effective maintenance works of the culvert, modification works will be made to the covered maintenance holes.

An inventory survey was conducted throughout site inspection and using available drawings in order to clarify the present conditions of maintenance holes for the objective 5 drainage box culverts for Blumentritt Interceptor, Buendia Outfall, Zobel Roxas Drainage Main, Pasong Tamo Drainage Main and Faraday Drainage Main to be declogged in the priority projects. *Table F.3.2* is the results of inventory survey and those locations are indicated in *Databook II (Drawings)*.

Channel	Total Mer of Maintenance Hole	Number of Covered Maintenance Holes
Blumentritt Interceptor	91	20
Buendia Outfall	47	29
Zbel Roxas Drainage Main	17	3
Pasomg Tamo Drainage Main	13	0
Faraday Drainage Main	43	0

Table F.3.2 Present Conditions of Maintenance Holes

F.3.3 DESIGN CRITERIA FOR DRAINAGE FACILITIES

(1) Target of Rehabilitation Works and Design Scale for Additional Works

The menus for preliminary design are rehabilitation of drainage channels by dredging/declogging and additional and/or remedial works for the interceptors (or box culverts).

The rehabilitation works for the existing drainage channels are designed to recover the original flow area (or cross-sectional area) of channels and box culverts so as to convey storm water properly. Accordingly, the rehabilitation work is to dredge or declog the bottom deposits in the channels and culverts, including related works like installation of stop logs and improvement of maintenance holes (or manholes) for enabling proper maintenance activities.

Aside from the above, that of <u>the additional works is to construct new box culverts and remedial</u> <u>works for improvement of the existing drainage conditions.</u> For Blumentritt Interceptor, preliminary design of additional box culvert and remedial works for road surface flow inlets and widening of narrow sections are conducted. The design scale of drainage main shown in *Table F.3.3* is applied for additional works.

Objective Channel	Design Scale
Secondary Channels	3-year return period
(Blumentritt Interceptor, Zbel Roxa D.M., Faraday D.M.)	(60 mm/hour)

Table F.3.3 Design Scale for Additional Works

(2) Basic Data to be used

Basic topographic maps and other data to be used in the preliminary design will be as follows.

Topographic Maps

- The most recent available topographic information based on 15,000 topographic map prepared in 2004, with low-lying areas modified using the result of manhole survey in 2000, is utilized for preliminary design.
- Primary benchmark is BM-MB located in Qeon City.
- Elevation above DPWH datum of 10.475 m is equivalent to Mean Sea Evel (MSL

Channel Cross-Sections and Profiles

- For rehabilitation works, cross-sections and longitudinal profiles of the channels surveyed in the master plan stage and in SEDMM (2000) are used as basis to retrieve original channel section.
- For additional works, cross-sections (ground elevation) at major points (100m interval) and longitudinal profiles (ground elevation) were surveyed in the feasibility stage of 2004 is used as basis to design of box culvert channel.

Design High Water Evels at Surroundings

- Mean Spring High Tide Level (El. 11.34 m) is applied for design high tide level on Manila Bay.
- Completion of on-going Pasig-Marikina River Improvement Project is assumed. The design high water level along the Pasig River determined by the on-going Pasig-Marikina River Improvement Project is applied.

Soil Conditions

- Soil investigation by boring and soil analysis was conducted in the feasibility stage. Major soil data obtained from the above is u tilized in the design of additional works and construction method, etc., and summarized in *Table F.3.4*.

Feature		Blumentritt Interceptor					øbel Roxas DM		Faraday DM
	1	2	3	4	5	5A	6	7	8
1.Nalue									
0-1 m	10	7	0	4	7	4	-	2	3
1-3 m	5	22	3	26	29	8	23	5	7
3-5 m	5	47	14	58	55	21	8	20	29
5-7 m	25	50	11	57	42	42	6	37	tuff
7-10 m	60	55	24	tuff	60	51	10	tuff	
2.Specific gravity	2.57	2.48	2.41	2.58	2.46	2.47	2.63	2.41	2.48
3.Unit weight(g/cu.cm)				1.67	1.73			1.81	1.72
4.Unconfined compression test, qu (kg/sq.cm)				47.04	12.29			41.25	15.48
5.Water table (m)	1.50	1.00	1.60	1.85	2.90	1.90	2.50	1.00	1.00
6.Workability									
Depth of sample taken (m)	14		6		2		12	8	
Iquid limit (JL	49		70		62		61	48	
Plastic limit (P)	27		29		26		26	25	

Table F.3.4 Major Soil Data in Priority Projects Areas

Referred Guidelines and References

- Design Guidelines, Criteria and Standards for Public Works and Highways, Volume-II (Orange Book) DPWH
- Technical Standards and Guidelines for Planning and Design, Volume-II, Urban Drainage, DPWH
- Technical Standard for River and Sabo Works, River Association of Japan, Ministry of Jand, Infrastructure and Transport (MIT)

(3) Hydraulic Analysis

Discharge capacities of the drainage channels and box culverts are estimated respectively as follows.

Discharge capacities after dredging of open channels are estimated with the following conditions.

- Uniform flow
- Bankfull flow
- Resistance law:Manning formula
- Mannings coefficient:0.025 for open channels
- Surface water slope: Average bed slope or planned bed slope

Discharge capacity (estimation of required cross-sectional area) for a box culvert is determined as the discharge without overflow at any manholes along the questioned culvert. For box culvert, the design discharge estimated in the master plan is applied to design. Applied design discharges will be explained in the following respective sections of designing of additional box culvert. To estimate it, pressure flow is assumed because when large flood comes, the water level becomes almost equal to bank elevation in esteros/creeks. In such situation, pressure flow in the box culvert would occur. The water level at the following downstream ends is assumed as follows.

- Esteros/creeks:Top level of drainage main (culvert)
- Drainage mains:Top level of drainage main (culvert)
- Pumping stations:Pump start level

Other conditions are as follows.

- Resistance law:Manning formula
- Mannings coefficient:0.015 for box culvert

After necessary or recovered dimension of the drainage channels is determined, a more sophisticated unsteady, hydrodynamic simulation by MOUSE is executed to confirm its validity.

(4) Basic Line for Dredging and Declogging of Drainage Channels and Related Works

The following are the basic lines for dredging (clearing) and declogging of drainage channels including related works.

- Bottom deposits accumulated in the esteros/creeks is to be removed by dredging/clearing. The channel bed elevation to be dredged is set either by modifying original bed elevation in the previous construction stage or by estimating the original bed level based on the existing observed cross-sectional shape and connections between channels.
- Informal settlers residing within the objective channels are to be relocated by resettlement.
- Bottom deposits accumulated in the box culverts are to be cleaned by declogging. In declogging, maintenance holes which are improper conditions for practical maintenance activities are repaired, if needed.
- Stop log gate is installed at some sections for a purpose of that maintenance works of the culvert will be made in dry or no water condition, especially in Blumentritt Interceptor and Buendia Outfall. These two channels are always occupied by water because of high water level at outlet. The respective channel bed elevations are around E.I8.5 m to 8.0 m whereas mean tide level is E.I10.475 m.

Image of rehabilitation works for esteros is illustrated in *Figure F.3.1*. However, as reference, the river channel and its easement may be recovered eventually in the future with the image shown in *Figure F.3.2*, according as progress of resettlement of informal settlers residing within the channels.

Accumulated bottom deposits to be dredged

Figure F.3.1 Image of Rehabilitation of Open Drainage Channels (Estero/Creek/Canal)

Figure F.3.2 Ideal Typical Section of Open Channel and Its Easement

(5) Basic Line for Construction of Additional Culverts and Remedial Works

The following are the basic lines for construction of additional box culverts and remedial works.

- Additional box culvert is to be constructed along the questioned existing culvert in principle. When there is no space for installation of box culvert, it is aligned in the adjacent street.
- **b**ngitudinal bed slope is set from gentle to steep towards upper end.
- Required box culvert cross-sectional area is estimated as pressure one under the condition that storm water in the box culvert does not spout from maintenance hole or manhole as mentioned in the above (3).
- Box culvert is constructed by concreting in site in principle.
- A 1.0 m is adapted to minimum earth cover in roadway and railway.
- Minimum inner height of box culvert will be 1.2 m considering easy maintenance activities.
- Direct foundation is applied as the foundation structure of box culvert considering soil and geological conditions.
- Street inlet with steel grating is installed at intersection depending on site condition, especially along the proposed Blumentritt Interceptor.
- Maintenance hole is installed at interval of around 50 m or mapr intersections, points of changing slopes, depressions, etc., and closed maintenance holes due to road pavement/embankment are to be recovered by modification of original holes.
- Stop log gate is to be installed depending on water level at outlet of box culvert. The criteria of installation of stop log gate are as follows.
 - For box culvert discharging through pumping stations: culvert with more than 50 cm water depth of box culvert when water level of outlet is pump operation stop level
 - For box culvert discharging directly to Manila bay:all culverts

In priority projects, the objective culverts will be Blumentritt Interceptor and Buendia Outfall.

- For construction works of box culvert, some affected house buildings are to be relocated temporarily or permanently depending site conditions

F.3.4 PRELIMINARY DESIGN OF DRAINAGE CHANNEL FACILITIES IN NORTH MANILA

Maypap-Blumentritt-Balut Drainage Block'is the objective drainage channel facilities subject to preliminary design in Nrth Manila as shown in *Figure F.3.3*. The results of the preliminary design in line with the design criteria already explained in *Chapter F.3.3* are described in the following.

Figure F.3.3 Location Map of Priority Projects in North Manila

(1) Objective Drainage Facilities in North Manila

The following are the objective drai nage facilities in Nrth Manila.

Estero de Sunog Apog

- Dredging (Clearing)

Blumentritt Interceptor

- Declogging of existing interceptor and related works
- Construction of additional interceptor by box culvert and remedial works

(2) Dredging (Clearing) of Estero de Sunog Apog

Estero de Sunog Apog is discharging storm water collected in the upper catchments of Casili Creek and Estero de Maypajo including Blumentritt Interceptor to Estero de Vitas as shown in *Figure F.3.4*.

Figure F.3.4 Schematic Location of Estero de Sunog Apog

The accumulated bottom deposits in Estero de Sunog Apog is cleared so as to recover original cross-sectional area assigned in the previous construction stage. Recovering is made as follows.

- Stretch: Confluence with Estero de Vitas to confluence with Estero de Maypajo (total length:1,841 m)
- Channel width: within the existing channels bed width (70 m to 7 m)
- Channel bed elevation: Engitudinal profile proposed in the construction stage of Vitas drainage pumping station in 1997 is modified partially. At the confluence with Estero de Vitas, channel bed elevation is set above the lowest bed elevation of the existing Estero de Vitas. The dimensions of longitudinal profiles are as summarized in *Table F.3.5*.
- Riverbed bed at the upper end of stretch to be dredged is excavated with a slope of 110 to prevent washing away of riverbed materials
- Clearing volume: 91,600 m³ in total
- Estimated discharge capacity after dredging: 20090 m⁻³/s
- Relocation of informal settlers: Based on fi eld observation during the feasibility study, it is judged that the existing informal structures in the stretch will not be obstacle for the dredging work. At the feasibility study stage, it is assumed that there is no family who will be resettled.

For the above Estero de Sunog Apog, outline of plan, profile and cross-sections for clearing works is shown in *Databook II (Drawings)*.

	Dimensions at mapr sections				
	bwer end (Sta. 0 0 00)	Balut bridge (Sta. 0 1 60)	Confluence with new Blumentritt Interceptor (Sta. 1 5 00)	Upper end (Sta. 1 8 41)	
Length (m)	0	160	1340	341	
Existing River bank elevation					
- right (sea side)	12.2	12.4	12.5	11.4	
- left (land side)	12.1	12.4	12.5	11.8	
Existing lowest bed elevation	7.3	8.5	9.2	10.0	
Bed elevation after dredging	7.6	7.6	7.7	8.0	

 Table F.3.5
 Dimensions of Longitudinal Profile of Estero de Sunog Apog

Source:cross-sections and longitudinal profiles surveyed in SEDMM (2000)

Unit:ELm

(3) Declogging of Existing Blumentritt Interceptor and Related Works

Figure F.3.5 shows a schematic route map of the existing Blumentritt Interceptor to be rehabilitated.

Figure F.3.5 Route of Existing Blumentritt Interceptors

The existing Blumentritt Interceptor is presently not discharging storm water smoothly because of accumulated bottom deposits in culvert, clogging in Estero de Maypajo and partial structural detects with narrow sections. Several existing maintenance holes are not being functioned due to covering by road pavement. To improve the above problems, the required works will be 1) related works of modification of maintenance holes and installation of stop log gates for easy operation and maintenance and 2) declogging of existing culvert. The required works will be explained as follows.

1) Related Works

The related works consist mainly of modification of maintenance holes covered by road pavement and installation of stop log gates. Those are explained in the following.

Modification/raising of maintenance hole

- Closed maintenance holes by road pavement are modified for easy maintenance activities.
- 20 units of maintenance hole out of 91 holes will be modified by raising of hole cover with images as shown in *Figure F.3.6*.
- The locations of maintenance hole modified are indicated in *Databook II (Drawings)*.

Figure F.3.6 Image of Modification of Closed Maintenance Hole

Installation of stop log gate for easy maintenance activity

- The existing box culvert/additional new culvert is to always submerge due to back water from outlet, resulting in difficulty of periodical maintenance activities.
- In view of effective maintenance works in the dry condition of the culvert, the stop log gate is additionally installed at 8 sections jointly (same sections) for the existing and additional culverts with images shown in *Figure F.3.7*.

Figure F.3.7 Cross Section of Stop Log Gate to be Installed

2) Declogging of Existing Blumentritt Interceptor

In parallel with related works of the existing interceptor, declogging for a total length of 2,655 m from the closing section at Hermosa Street to the upper end of the intersection of Dapitan Street will be made as described below.

- Stretch: Section to be closed at Hermosa Street to upper end of the intersection of Dapitan street (total length:2,655 m)
- The dimensions of longitudinal profiles of the interceptor are as presented in *Databook II (Drawings)*.
- Declogging volume: 9,800 m³ in total
- Estimated discharge capacity after declogging: 8 m ³/s

For the above the existing Blumentritt Interceptor, plan, profile and cross-sections for remedial works and declogging are presented in *Databook II (Drawings)*.

(4) Construction of Additional Blumentritt Interceptor and Remedial Works

The additional Blumentritt Interceptor with a total length of 2,570 m is newly constructed along the existing interceptor. Also widening of existing box culvert at narrow sections and construction of inlets for road surface flow will be additionally made as remedial works. The results are as follows and the details are presented in *Annex F.1* and *F.5* and in *Databook II (Drawings)*.

1) Proposed Route of Additional Interceptor

The proposed route of the additional interceptor will be as follows.

- A proposed route of the additional interceptor will be, as shown in *Figure F.3.8*, mostly along the existing culvert. Total length of new culvert is around 2,570 m.
- As already explained in the master plan stage (refer to *Annex F.1*), the lowermost of existing culvert including outlet is shifted to the Estero de Sunog Apog in connection with construction of new culvert as shown in *Figure F.3.8*.

Figure F.3.8 Proposed Route of Additional Blumentritt Interceptor

2) Design Discharge of Additional Interceptor

The estimated design discharge for additional culvert with a 3-year return period of design scale is presented in *Figure F.3.9*.

3) Preliminary Design of Additional Box Culvert

In accordance with the above section of Rehabilitation and Design Criteria for Drainage Facilities, additional box culvert was designed and summarized as follows. The details are presented in *Annex F.1* and *F.5* and in *Databook II (Drawings)*.

Additional box culvert

- The proposed additional box culvert consists of concrete box culvert with a total length of 2,570 m.
- The dimensions of additional box culvert are divided into 3 sections or 3 types as indicated in *Table F.3.6*. An image at section of Rial Avenue will be as shown in *Figure F.3.10*.
- There are some house buildings that will be affected by the construction of the additional box culvert. It is possible that the house buildings around the new outlet and the corner near Chinese cemetery will be required to be tentatively relocated during the construction.

Stretch	ength	Culvert Dimension
Outlet - Intersection of Abucay Street	564 m	Width 3.4 m×height 2.6 m×2 lanes
Intersection of Abucay St Intersection of Chinese cemetry	1,567 m	W 3.6 m×h 2.7 m×1 lane
Intersection of Chinese cemetry - Intersection of Calamba St.	439 m	W 2.3 m×h 2.4 m×I lane

Table F.3.6 Dimensions of Additional Box Culvert

Figure F.3.10 Image of Additional Box Culvert at Section of Rizal Avenue

Inlet for road surface flow

- In order to drain road surface flow into the box culvert smoothly and effectively, inlets are newly installed at 10 sections which shall be located at intersections in the upper Blumentritt street from intersection of Chinese cemetery to Dapitan Street.
- Inlet ditch is installed on the whole carriageway width as imaged in *Figure F.3.11* and covered by steel grating.

Figure F.3.11 Image of Inlet for Road Surface Flow

Maintenance hole

- In order to operate and maintain the new box culvert smoothly and effectively, maintenance holes are installed at an interval of 50 m. The number of maintenance holes will be 51 places.
- As mentioned in the above, stop log gate will be jointly installed at 8 sections of the proposed maintenance holes.

Widening of existing box culvert at narrow sections

- There exist 2 places of extremely narrow sections in the stretches of Rial Avenue and Aurora Boulevard with a total 200 m in length, of which locations are shown in *Figure F.3.12*.
- The narrow sections are to be modified/reconstructed with the same section of upper and lower reaches as shown in *Databook II (Drawings)*.

Figure F.3.12 Locations of Narrow section of Existing Box Culvert

(5) Summary of Rehabilitation and Additional Works for Drainage Channel Facilities in North Manila

The major proposed works in Nrth Manila are outlined below and detailed work quantities are described in *Supporting Report G.*

Estero de Sunog Apog

- Dredging (Clearing): 91,600 m³ (for a total length 1,841 m)

Blumentritt Interceptor

- Raising/modification of cover of maintenance holes: 20 holes
- Installation of stop log gate: 8 sections
- Declogging: $9,800 \text{ m}^3$ (for a total length 2,655 m)
- Construction of additional interceptor by box culvert: 2,570 m in length
- Installation of maintenance hole: 51 places
- Widening of narrow sections of existing box culvert: 2 sections with a total length 200 m
- Installation of inlet for road surface flow: 10 sections
- Affected buildings by the construction of additional interceptor: Some house buildings

F.3.5 PRELIMINARY DESIGN OF DRAINAGE CHANNEL FACILITIES IN SOUTH MANILA

Objective drainage facilities subject to prelim inary design locate in the South Manila is Ibertad-Tripa de Gallina Drainage Block" as shown in *Figure F.3.13*. The results of the preliminary design in line with the design criteria already explained in *Chapter F.3.3* are described in the following.

(1) Objective Drainage Facilities in South Manila

The following are the objective drainage facilities s ubject to preliminary design in south Manila.

Estero de Tripa de Gallina, PNR Canal and Calatagan Creek I

- Dredging (Clearing)
- Buendia Outfall
- Declogging and related works
- Zbel Roxas Drainage Main
- Declogging
- Construction of additional box culvert
- Pasong Tamo Drainage Main
- Declogging

Faraday Drainage Main

- Declogging
- Construction of additional box culvert

Figure F.3.13 Location Map of Priority Projects in South Manila

(2) Dredging (Clearing) of Estero de Tripa de Gallina, PNR Canal and Calatagan Creek I

The recovering of cross-sectional areas of Estero de Tripa de Gallina (partial stretch), PN canal and Calatagan Creek I is made so as to convey storm water collected in San Isidro, San Antonio and Pio del Pilar area towards Ibert ad drainage pumping station through Buendia Outfall. *Figure F.3.14* schematically shows locations of the above objective 3 channels.

Figure F.3.14 Schematic Locations of Objective Channels to be Dredged/Cleaned

The recovering by dredging/clearing will be made as follows.

Tripa de Gallina

- Stretch: Confluence with Faraday Draina ge Main to confluence with Zbel Roxas Drainage Main (total length:1,190 m)
- Channel width: within the existing channels bed width (12 m to 6 m)
- Channel bed elevation: **b**ngitudinal profile proposed in the previous construction stage of Estero de Tripa de Gallina is modified. The dimensions of longitudinal profiles are presented in *Databook II (Drawings)*.
- At confluence with Calatagan Creek I, a corner of the left bank or Makati city side will be widened with more gentle angle in view of smooth joint with Estero de Tripa de Gallina. Accordingly resettlement or compensation is required.
- Riverbed bed at both the ends of stretch to be dredged is excavated with a slope of 110 to prevent washing away of riverbed materials
- Clearing volume: 28,900 m³ in total
- Estimated discharge capacity after dredging: 5030 m⁻³/s
- Relocation of informal settlers: Based on the survey during EIA study, about 700 families are required to resettle prior to the dredging works.

PN Canal

- Stretch: Confluence with Zbel Roxas Draina ge Main to the bridge across Pasay Road (total length:1,862 m)
- Channel width: within the existing channels bed width (12 m to 2 m)

- Channel bed elevation: Bed elevation is set by estimating the original bed level based on the existing observed cross-sectional shape and connections between channels. The dimensions of longitudinal profiles are as presented in *Databook II (Drawings)*.
- Clearing volume: 5,000 m³ in total
- Estimated discharge capacity after declogging: 104 m ³/s
- Relocation of informal settlers: Based on fi eld observation during the feasibility study, it is judged that the existing informal structures in the stretch will not be obstacle for the dredging work. At the feasibility study stage, it is assumed that there is no family who will be resettled.

Calatagan Creek I

- Stretch: Confluence with Estero de Tripa de Gallina to the upper end (total length:1,686 m)
- Channel width: within the existing channels bed width (8 m to 3 m)
- Channel bed elevation: Bed elevation is set by estimating the original bed level based on the existing observed cross-sectional shape and connections between channels. The dimensions of longitudinal profiles are as presented in *Databook II (Drawings)*.
- Clearing volume: 13,200 m³ in total
- Estimated discharge capacity after dredging: $2045 \text{ m}^{-3}/\text{s}$
- Relocation of informal settlers: Based on fi eld observation during the feasibility study, it is judged that the existing informal structures in the stretch will not be obstacle for the dredging work. At the feasibility study stage, it is assumed that there is no family who will be resettled.

For the above 3 drainage channels, the drawings are shown in Databook II (Drawings).

(3) Declogging of Buendia Outfall and Related Works

Storm water collected in Estero de Tripa de Gallina in the stretch selected in the priority projects is discharged through 2 box culverts of Buendia Outfall into Ibertad drainage pumping station as shown in *Figure F.3.15*. The total length of the existing culvert will be around 1,960 m.

In the existing Buendia Outfall, there are sufficient numbers of maintenance holes for periodical maintenance activities installed with a 50 m interval, however, such maintenance holes are mostly not functioning due to covering by asphalt pavement and botanical gardens developed upward of the box culvert of Buendia Outfall. Also the existing box culverts are always submerged due to back water from outlet resulting in difficulty of periodical maintenance activities.

The required works for Buendia Outfall consist of 1) related works of modification of covered maintenance holes and installation of stop log gates for maintenance activities and 2) declogging of the accumulated bottom deposits in the box culvert. For the above, the following related and declogging works will be proposed.

Figure F.3.15 Schematic Route of Buendia Outfall

1) Related Works

The related works are modification of maintenance holes and installation of stop log gate for easy maintenance activities. Those are outlined below.

Modification of maintenance holes closed by road pavement/embankment

- 22 maintenance holes out of the total 47 holes are presently not functioning due to covering by road pavement/embankment.
- These closed maintenance holes are to be modified for easy maintenance activities in line with an image as shown in *Figure F.3.6*.

Installation of stop log gate

- The existing box culvert is always submerged due to back water from outlet as shown in *Figure F.3.16*, resulting in difficulty of periodical maintenance activities.

Figure F.3.16 Present Condition of Outlet of Buendia Outfall

- For this problem, stop log gates are to be installed at 6 sections for the existing 2 culverts with an image indicated in *Figure F.3.7*. Those sections are outlet of culvert at Roxas Boulevard, bending section at Buendia street and inlet of culvert at confluence with Estero de Tripa de Gallina as shown in *Figure F.3.15*.

2) Declogging Works

The declogging of the existing drainage main is made as follows.

- Stretch: Outlet to upper end of the conflu ence with Estero de Tripa de Gallina (total length:1,960 m)
- The dimensions of longitudinal profiles of the interceptor are as shown in *Databook II* (*Drawings*).
- Declogging volume: 7,200 m³ in total
- Estimated discharge capacity after declogging: 55 m ³/s

Related structural figures of the above remedial works and declogging are presented in *Annex F.2* and in *Databook II (Drawings)*.

(4) Declogging of Zobel Roxas Drainage Main and Construction of Additional Box Culvert

Zbel Roxas Drainage Main is discharging st orm water collected along Zbel Roxas Avenue and PN canal into Estero de Tripa de Gallina. The drainage main exists under the present Roxas Avenue, which crosses South Super Highway and PN. The existing box culvert has been clogged by accumulated bottom deposits. An upper part of the existing culvert does not have sufficient flow area against design discharge to be allocated. For Zbel Roxas Drainage Main, majr proposed works will be 1) declogging of existing box culvert with related works for modification of covered maintenance holes due to road pavement and 2) construction of additional culvert as shown in *Figure F.3.17*.

Figure F.3.17 Existing and Proposed Routes of Zobel Roxas Drainage Main

1) Declogging Works of Existing Zobel Roxas Drainage Main

The declogging and related works of the existing drainage main for a total length of 864 m is made as follows.

Declogging

- Stretch: Outlet of Zbel Roxas Drainage Main to 160 m point ahead of PN canal (total length:864 m)
- Declogging volume: 2,200 m³ in total
- Estimated discharge capacity after declogging: 14 m ³/s

Modification of maintenance holes covered by road pavement/embankment

- 3 maintenance holes out of the total 17 holes are presently not functioning due to covering by road pavement.
- These closed maintenance holes are to modify for easy maintenance activities in line with an image as shown in *Figure F.3.6*.

For the above Zbel Roxas Drainage Main, plan , profile and cross-sections for declogging works are outlined in *Databook II (Drawings)*.

2) Construction of Additional Zobel Roxas Drainage Main

In accordance with the above section of Rehabilitation and Design Criteria for Drainage Facilities, additional box culvert was designed and summarized as follows. The details are presented in *Annex F.3* and *F.5* and in *Databook II (Drawings)*.

Proposed route of additional culvert

- The additional culvert is to be aligned in parallel with the existing one as shown in *Figure F.3.17*. The total additional culvert length is 495 m.

Design discharge for additional culvert

- The estimated design discharges for additional culvert with a 3-year return period of design scale is shown in *Figure F.3.18*

Estero de Tripa de Gallina	lOutlet 0	<u>Sout</u> <u>High</u> Dutlet+369m	<u>h Super Pl</u> way	<u>NR</u>
Flow	Culvert length: L-ଶ69 m	L-⊉70 m	L = 65 m	L = 160 m
Total design discharge	13.5 m3 s	13.5 m3ś	12.5 m3 s	11.5 m3¢
Existing discharge capacity of the culvert	13.5 m3ś	8.5 m3s	5.0 m3 s	2.0 m3ś
Design discharge for addtional culvert	-	5.0 m3/s	7.5 m3/s	9.5 m3/s
	Zobel Roxas A	venue		
	Outlet of Zobel Roxas Dainage Main			PNR cana

Figure F.3.18 Design Discharge of Zobel Roxas Drainage Main

Dimensions of additional culvert

- The proposed additional box culvert consists of concrete box culvert with a total length of 495 m.
- The additional box culvert is divided into 3 sections or 3 types as indicated in *Table F.3.7*.

Stretch	ength	Culvert Dimension
Outlet 3 69 m - South super highway	270 m	Width 1.7 m×height 1.6 m×2 lanes
South super highway - PN	65 m	W 1.8 m×h 1.5 m×2 lanes
PN - upperend	160 m	W 2.3 m×h 1.5 m×2 lanes

Table F.3.7 Dimensions of Additional Box Culvert

Maintenance hole

- In order to operate and maintain the box culvert smoothly and effectively, maintenance holes are installed at an interval of 50 m. The number of maintenance holes will be 10 places.

For the above additional culvert of Zbel Roxas Drainage Main, plan, profile and cross-sections are outlined in *Annex F.3* and *F.5* and in *Databook II (Drawings)*.

(5) Declogging of Pasong Tamo Drainage Main

Pasong Tamo Drainage Main with a total length of 550 m is joined by Calatagan Creek I, as shown in *Figure F.3.19*.

There exist maintenance holes installed with a 50 m pitching for the whole stretch. Declogging of the Pasong Tamo box culvert will be made through these maintenance holes with following conditions.

- Stretch: Confluence with Calatagan cr eek I to intersection of Pablo Ocampo SR. Extension with a total length of 550 m
- The dimensions of longitudinal profiles of the drainage main are as presented in *Databook II (Drawings)*.
- Declogging volume: 900 m³ in total
- Estimated discharge capacity after declogging: 12 m ³/s

For the above Pasong Tamo Drainage Main, plan, profile and cross-sections for declogging works are outlined in *Databook II (Drawings)*.

(6) Declogging of Faraday Drainage Main and Construction of Additional Box Culvert

The Faraday Drainage Main is running under the Faraday street connecting with PN canal and Estero de Tripa de Gallina as shown in *Figure F.3.20*. The carrying capacity of existing drainage main is of shortage compared with its design discharge assigned. Majr works in the Faraday Drainage Main will be 1) declogging of the existing box culvert and 2) construction of additional box culvert as indicated in *Figure F.3.20*.

Figure F.3.20 Existing and Additional Proposed Route of Faraday Drainage Main

1) Declogging Works

The declogging of the existing drainage main is made as follows.

- Stretch: Confluence with Estero de Trip a de Gallina to proposed diversion point with a total length of 713 m
- The dimensions of longitudinal profiles of the drainage main are as presented in *Databook II (Drawings)*.
- Declogging volume: 100 m³ in total
- Estimated discharge capacity after dredging: $53.5 \text{ m}^{-3}/\text{s}$

For the above Faraday Drainage Main, plan, profile and cross-sections for clearing works are outlined in *Databook II (Drawings)*.

2) Construction of Additional Faraday Drainage Main

In accordance with the above section of Rehabilitation and Design Criteria for Drainage

Facilities, additional box culvert was designed and summarized as follows. The details are presented in *Annex F.4 and F.5* and in *Databook II (Drawings)*.

Proposed route of additional culvert

- An additional box culvert is basically to be constructed along the existing culvert. However, in the lower reach, there is no space for construction of additional one. Accordingly, the additional culvert is also to be constructed under the Finlandia and Arthur streets as shown in *Figure F.3.20*.

Design discharge for additional culvert

- The estimated design discharge for additional culvert with a 3-year return period of design scale is shown in *Figure F.3.21*.

Figure F.3.21 Design Discharge of Faraday Drainage Main

Dimensions of additional culvert

- The proposed additional box culvert consists of concrete box culvert with a total length of 1,314 m.
- The additional box culvert is divided into 4 types as indicated in *Table F.3.8*.

Table F.3.8	Dimensions	of Additional	Box Culvert
able r.3.0	Dimensions	of Additional	Dox Cuivert

Stretch	e ngth	Culvert Dimension
Existing Faraday DM route		
Intersection of Dian st Intersection of Arthur st. (diversion point)	228 m	Width 1.8 m×h 1.4 m×1 lane
Intersection of Arhtur st. (diversion point) - South super highway	100 m	W 2.2 m×h 1.7 m×2 lanes
South super highway - PN canal	72 m	W 1.8 m×h 1.4 m×2 lanes
Finlandia and Arthur streets route		
Outlet in Finlandia st diversion point	914 m	W 3.5 m×h 1.7 m×1 lane

Maintenance hole

- In order to operate and maintain the box culvert smoothly and effectively, maintenance holes are installed at an interval of 50 m. The number of maintenance holes will be 26 places.
- Affected House Buildings
- There are some house buildings that will be affected by the construction of the additional box culvert. It is possible that the house buildings around the inlet of Faraday Drainage Main on PN canal will be required to tentatively relocate during the construction.

For the above Faraday additional culvert, plan, profile and cross-sections are presented in *Annex F.4* and *F.5* and in *Databook II (Drawings)*.

(7) Summary of Quantity for Rehabilitation and Additional Works for Drainage Facilities in South Manila

The proposed works in north Manila are outlined below and detailed work quantities are described in *Supporting Report G*.

Estero de Tripa de Gallina, PNR Canal and Calatagan Creek I

- Dredging (Clearing) of Tripa de Gallina: 28,900 m³ (for a total length of 1,190 m)
- Dredging (Clearing) of PN canal: $5,000 \text{ m}^{-3}$ (for a total length of 1,862 m)
- Dredging (Clearing) of Calatagan creek I: 13,200 m³ (for a total length of 1,686 m)
- Resettlement prior to the dredging works: About 700 families

Buendia Outfall

- Raising/modification of cover of maintenance hole: 22 holes
- Installation of stop log gate: 6 sections
- Declogging: $7,200 \text{ m}^3$ (for a total length of 1,960 m)

Zbel Roxas Drainage Main

- Raising/modification of maintenance hole: 3 holes
- Declogging: 2,200 m³ (for a total length of 864 m)
- Construction of additional box culvert: 495 m
- Installation of maintenance hole:10 places

Pasong Tamo Drainage Main

- Declogging: 900 m³ (for a total length of 550 m)

Faraday Drainage Main

- Declogging: 100 m³ (for a total length of 713 m)
- Construction of additional box culvert: 1,314 m
- Installation of maintenance hole: 26 places
- Affected buildings by the construction of additional box culvert: Some house buildings

F.3.6 FURTHER ISSUES FOR NEXT STAGE OF DETAILED DESIGN

Subsequent works for the priority projects will be a detailed design for rehabilitation and additional works of drainage facilities and pumping stations. In order to conduct the detailed design especially for rehabilitation and additional works of drainage channels, a cross-sectional survey of drainage channels is firstly required. It is necessary to clarify the detail of original cross-sectional area of drainage channels. An interval of cross-sections to be surveyed will be minimum 20 m including partial narrow points and sections.

Subsequently, based on the results of surveyed cross-sections and detailed site reconnaissance, the following considerations will be widely made in the coming detailed design stage.

- Clarification of original boundary line of drainage channels
- Clarification of original boundary of easement as maintenance road, if planned
- Clarification of locations of local narrow points/ sections

In line with the above clarification results, required works will be studied to secure original cross-sectional area of drainage channels with considering stability of concerned riverbank structures.

F.4 REHABILITATION OF DRAINAGE PUMPING STATIONS

F.4.1 GENERAL

The rehabilitation works consist of 2 categories of repair and replacement of pump equipment and appurtenants facilities for the 12 pumping stations. Prior to execution of the rehabilitation works, it is proposed to conduct a careful and thorough technical investigation and analysis including overhauling at 12 pumping stations. Based on the above investigation and analysis results, a detailed rehabilitation program is to be prepared. In this stage, detailed rehabilitation work items are clarified for the 12 drainage pumping stations based on the diagnosis results conducted in the master plan stage of this study and previous reports on Metro Manila Drainage System Rehabilitation Project (Phase II), **a**pan Consulting Institute, Sept. 1999 and Follow-Up Service Report on Metro Manila Drainage System Rehabilitation Project (Phase II), **a**pan Plant Association, Feb. 2002.

F.4.2 REHABILITATION CRITERIA FOR DRAINAGE PUMPING STATIONS

(1) Rehabilitation Target of Discharge Capacities

The capacities of the 12 pumping stations are principally kept by means of repair and/or replacement of pump equipment and appurtenant facilities complying with the extent of mechanical and electrical aging. It should be noted that the capacity should be increased at Aviles station. The existing and proposed drainage capacities of the 12 stations with the respective target scales of 10-year return period applied in the original design are shown in *Table F.4.1*.

Pumping station	Construction & and (Operation Hours as of Ine 2004)	Existing discharge capacity (m ³ /s)	Proposed discharge capacity(m ³ /s)	Remarks
Aviles	1976 (14,650)	15.6	18.6	$-\beta$ m $^{3}/s$
Qiapo	.976 (15,830)	10.8	10.8	Nchange
Valencia	1976 (10,790)	11.8	11.8	Nchange
Pandacan	1976 (10,890)	4.4	4.4	Nchange
Paco	1977 (16,630)	7.6	7.6	Nchange
Sta. Clara	1977 (7,420)	5.3	5.3	Nchange
Tripa de Gallina*1	1977 (8,010)	57.0	57.0	Nchange
Ibertad*1	1977 (12,880)	42.0	42.0	Nchange
Makati	1984 (4,030)	7.0	7.0	Nchange
Binondo	1985 (8,220)	11.6	11.6	Nchange
Balete	1988 (140)	3.0	3.0	Nchange
Escolta	1982 (360)	1.5	1.5	Nchange

 Table F.4.1
 Drainage Capacity of Pumping Stations

Me:*1 indicates insta lled pump is horiøntal one and others, vertical one.

(2) Basic Lines for Rehabilitation of Drainage Pumping Stations

In rehabilitation works of the drainage pumping stations, the basic lines to be considered are as follows:

- In the implementation stage, a further careful and thorough technical investigation and analysis through overhauling at the12 drainage pumping stations is to be conducted for formulation of a detailed rehabilitation program. The rehabilitation works are to be made based on the above detailed rehabilitation program consisting of 2 categories of repair and replacement works.
- In principle, no action is considered to the pump houses and other civil works.
- Detailed work items by the above categories for the 12 stations are to be clarified.
- Based on the diagnosis results conducted in the master plan stage, the categorization of detailed work items for repair and replacement of pump equipment and appurtenant facilities is to be made.
- Mean spring high tide level (El. 11.34 m) is applied for design high tide level on Manila Bay.
- On-going Pasig-Marikina River Improvement Project is assumed to be completed. The design high water level along the Pasig River determined by the on-going Pasig-Marikina River Improvement Project is applied.
- Change of present (original) start/stop levels of pump operation as shown in *F.4.2* including other minor adjustment of total working head will be made in the next stage of detailed investigation. The minor adjustments of dr ainage capacity due to changing of the total working head or increase of drainage capacity ($3 \text{ m}^3/\text{s}$) at Aviles station can be made by means of changing the angle of impeller without installation of additional pump equipment.

•	•	• •	•
Pumping station	Pump Start level (EIm)	Pump Stop Level (Elm)	Remarks
Aviles	10.5	10.3	-в m ³ /s
Qiapo	10.5	10.2	
Valencia	10.5	10.3	
Pandacan	10.5	10.2	
Paco	10.5	10.2	
Sta. Clara	11.2	11.0	
Tripa de Gallina	9.9	9.6	
Ibertad	9.9	9.6	
Makati	11.3	10.9	
Binondo	10.0	9.8	
Balete	10.6	10.5	Pump gate
Escolta	10.0	9.8	Pump gate

 Table F.4.2
 Present Pump Start/Stop Levels for Drainage Pumping Station

- Manual of Rehabilitation of Pump Equipment and Appurtenant Facilities, Ministry of **I**and, Infrastructure and Transport (MIT), **I**apan will be referred to in the rehabilitation works.
- As reference, average working life of pump equipment and electrical parts is summarized from both the aspects of physical and functional in *Table 5.3.3*, quoting from the above manual by MIT, **ā**pan.

System/Part	Equipment/Facilities	Physical Working Ife (year) *1	Functional Working Ife (year)*2
Main pump equipment	Main pump	40	30
	Main discharge pipe	40	40
	Valve	40	25
Engine	Prime mover for diesel	40	27
	Reduction gear	40	30
Fuel system	Fuel transfer pump	20	20
	Storage tank	30	30
Cooling system	Cooling water pump (vertical/horiøntal)	20	18
	Cooling water pump (submergible)	10	10
Air supply system	Air compressor	20	17
Electrical	Panel	20	18
system	Generator	40	18
Trash rake	Trash rake/conveyor/ screen	20	20
Crane	Overhead crane	40	40
Flood gate	Sluice gate	40	40

 Table F.4.3
 Working Life of Pump Equipment and Appurtenant Facilities

Me;*1:Working life based on life cycle cost(physical life), *2;Working life to be replaced by working reliability (functional life)

F.4.3 REHABILITATION OF DRAINAGE PUMPING STATIONS

As summarized in *Table F.4.3*, 8 stations out of 12 objective st ations were constructed in 1970s and other 4 stations, in 1980s, respectively. Approximate 30 to 20 years have been passed since their installations. These pumping stations have been operating not only for draining of storm water but also for removal of flowing solid waste in daily basis so far and as the results, annual operation hours exceed 500 hours at some stations. Consequently mechanical and electrical superannuation at 12 stations are being considerably progressed. According to the average working life indicated in *Table F.4.3*, it can be said that some pump equipment and electrical apparatus have already exceeded their functional working lives. Above all, the pump equipment and apparatus at the 4 stations of Aviles, Qapo, Valencia and Tripa de Gallina are in serious conditions and require urgent rehabilitation. Meantime, existing installed pump type at the 2 stations of Escolta and Balete is a submergible pump, and was proposed in the master plan to convert the existing type to gate pump type by using the existing drainage gate.

The proposed rehabilitation works intend to partially improve the system by repairing/renewing it with application of new technology, and to finally recover the capacity of pump facilities to its original condition in line with the results of technical investigation and analysis of pumping

stations scheduled ahead of the actual rehabilitation works. In this section, rehabilitation works are discussed, by dividing the 12 pumping stations into 3 groups of:1) 4 stations of very old and serious conditions, 2) 6 stations of old and marginal service life, and 3) 2 stations with submergible pumps of outdoor type. The detailed work items taken up in the rehabilitation are summarized in *Table F.4.4* and major work items are discussed below.

(1) Technical Investigation and Analysis of Pumping Station

As already explained, a further careful and thorough technical investigation and analysis through overhauling at the 12 drainage pumping stations are to be conducted for formulation of a detailed rehabilitation program in the next implementation stage. Accordingly, the detailed rehabilitation work items is to be finalized based on the results of the above technical investigation and analysis.

The rehabilitation works of drainage pumping stations consist of 1) repair and replacement works of pump equipment and appurtenant facilities, and 2) supply of spare parts and consumables.

(2) 4 Stations of Aviles, Quiapo, Valencia and Tripa de Gallina

The contents of rehabilitation works for the aged four stations required for urgent rehabilitation are summarized as follows.

Main pump and discharge valve

- For vertical pumps of Q apo, Aviles and Valenc ia, vertical pumps including main pipe are to be repaired based on the results by the prior investigation and analysis.
- For horiøntal pumps of Tripa de Gallina, horiz ontal pumps are to be repaired based on the results by the prior investigation and analysis.
- Discharge valve, shaft, shaft seal, prime detector, submerged bearing and radial/thrust bearing are to be replaced with new ones.

Gear box and engine

- Gear box and diesel engine for the main pump and auxiliary equipment are to be replaced.
- All the existing engines including air starting system, cooling water system, lubrication system, etc., are to be replaced.

Electrical system and generator

- All the existing electrical systems including main electrical panels, local panels, cable/wires trays, etc., are to be replaced.
- Generator equipment including panels is to be repaired.

Automatic trash removal equipment

- Automatic trash rake and screen and horiønta l/inclined conveyor are to be repaired. Replacement of some minor parts is to be included.

Water level gauging

- The existing water level gauging facilities are to be replaced by new one of ultrasonic type.

Table F.4.4 summarizes rehabilitation work items by each part of the 4 stations.
d 1	ump Equipment/Appurtenant Facilities	Aviles	Qiapo Va	lencia Pa	ndacan	Paco Sta	Clara	Tripa de Gallina	ibertad	Makati	Binondo	Balete	Escolta
1	Main Pump	▲ /〇	▲/○	▲ /〇	▲ /〇	▲/○	▲ /O	▲ /〇	▲ /〇	▲/○	▲ /O	•	•
2	Reduction Gear	•	•	•	•	•	•	•	•	•	•	N.	<i>I</i> M.
3	Butterfly Valve (inclu. replace of actuato	□ □/●	$\Box / igodot$			$\Box / igodot$		$\Box/ igodoldsymbol{ imes}$		$\Box/ igodot$		N.	M
4	Flap Valve	0	0	0	0	0	0	0	0	0	0	•	•
5	Diesel Engine for Main Pump	•	•	•	•	•	•	•	•	•	•	N.	<i>I</i> M.
6	Generator Panel	•	•	•	•	•	•	•	•	•	•	0	0
7	Diesel Engine for Generator	▲/〇	▲/○	▲ /O	▲/○	▲/○	▲ /O	▲/○	▲ /〇	▲/○	▲/○	▲/○	▲ /O
8	Vacuum Pump (for priming)	۸.	.M.	M	A N	N.		•	•	N.	λ N .	M	M.
10	Clear Water Pump	•	•	•	•	•	•	•	•	•	•	M	N.
11	Cooling & Sealing Water Pump	M	M.	M	A N	M		•	•	N.	NA.	M	A
12	Cooling Water Pump for Gen.	•	•	•	•	•	•	•	•	•	•	M	M
13	Fuel Transfer Pump	•	•	•	•	•	•	•	•	•	•	M	M
14	Cooling Tower	•	•	•	•	•	•	•	•	•	•	M	M
15	Air Compressor	•	•	•	•	•	•	•	•	•	•	M	M
16	Air Reservoir Tank											M	M
17	Ventilating Fan	•	•	•	•	•	•	•	•	•	•	M	N.
18	Fuel Storage Tank											M	λ X
19	Fuel Service Tank											M	NA.
20	Cooling Water Tank											M	M
21	W. IGauge at Inlet (ultrasonic type)	•	•	•	•	•	•	•	•	•	•	•	•
22	W. LGauge at Outlet (ultrasonic type)	•	•	•	•	•	•	•	•	•	•	•	•
23	Automatic Trash Rake and Screens	▲ /〇	▲/○	▲ /〇	▲/○	▲/○	▲ /O	▲ /〇	▲ /〇	▲/○	▲ /〇	M	M
24	Horiantal Conveyo r	▲ /〇	▲ /O	▲ /〇	▲ /〇	▲ /〇	▲ /〇	▲/〇	▲ /〇	▲/○	▲ /〇	M	M
25	Inclined Conveyor	▲/〇	▲ /O	▲/〇	▲ /〇	▲/○	▲ /〇	▲ /〇	▲/〇	▲/○	▲ /〇	M	NA.
26	Hopper	▲/〇	▲/○	▲/〇	▲/〇	▲/〇	▲/〇	▲/○	▲ /〇	▲/〇	▲/○	M	M
27	Conveyor Pit Drain Pump	•	•	•	•	•	•	•	•	•	•	M	λ N .
28	Pump Room Drain Pump	•	•	•	•	•	•	•	•	•	•	M	M
29	Overhead Crane	□/0	□/0	□/0	□/0	□ /O	□/0	□/0	□/0	0/0	□/0	M	<i>M</i>
30	Flood Gate/Control Panel	-/●	-/●	-/●	-/●	-/●	-/●	-/●	-/●	-/●	-/●		
31	Electric Panel	•	•	•	•	•	•	•	•	•	•	•	•

Table F.4.4 Tentative Detailed Work Items to be Taken Up in Rehabilitation

Me;Definition of marks is as follows.

□:Inspection

- ▲:Overhaul
- ⊖:Repair
- •:Replacement
- :Naction
- M:M applicable

(3) 6 Stations of Pandacan, Paco, Sta. Clara, Libertad, Makati and Binondo

The contents of rehabilitation works for the above 6 stations will be mostly the same as that of the above four stations.

Main pump and discharge valve

- For vertical pumps of Pandacan, Paco, Sta. Clara, Makati and Binondo, vertical pumps are to be repaired based on the results by the prior investigation and analysis.
- For horiøntal pumps of Ibertad, it is to be repaired based on the results of the prior investigation and analysis.
- Discharge valve, shaft, shaft seal, prime detector, submerged bearing and radial/thrust bearing are to be replaced with new ones.

Gear box and engine

- Gear box and diesel engine for the main pump and auxiliary equipment are to be replaced.
- All the existing engines including air starting system, cooling water system, lubrication system, etc., will be replaced.

Electrical system and generator

- All the existing electrical systems including main electrical panels, local panels, cable/wires trays, etc., are to be replaced.
- Generator equipment including panels is to be repaired.

Automatic trash removal equipment

- Automatic trash rake and screen and horiønta l/inclined conveyor are to be repaired. Replacement of some minor parts is to be included.

Water level gauging

- The existing water level gauging is to be replaced by new one of ultrasonic type.

The rehabilitation work items by each part are summarized in Table F.4.4.

(4) 2 Stations of Escolta and Balete

The contents of rehabilitation works for the above 2 stations are outlined as follows.

Main pump

- The existing submergible pumps at the 2 stations are to be converted into a gate pump type.
- The gate pumps are to be installed in the existing floodgates with due investigation of their mechanical durability.

Electrical system and generator

- All the existing electrical systems including main electrical panels, local panels, cable/wires trays, etc., are to be replaced.
- Generator equipment including panels is to be repaired.

Automatic trash removal equipment

- A small type automatic trash rake and screen and horiøntal/inclined conveyor are to be additionally installed, if necessary, based on the technical investigation and analysis in due time.

Water level gauging

- The existing water level gauging facilities are to be replaced by a new one of ultrasonic type.

The rehabilitation work items by each part are summarized in Table F.4.4.

(5) Other Countermeasures for Environmental Preservation and O/M Activities of Drainage Pumping Stations

At present, solid waste flowing in the drainage channels are mostly collecting at automatic trash rakes installed at pumping stations and accumulated in the stock yard for several days, then transported into disposal sites. Meantime, engine exhausts fume and noise are generating during pump operation. To improve such negative environmental impacts and to operate pump and auxiliary equipment properly, the following countermeasures are proposed through the rehabilitation works.

- A detailed management of accumulated bottom deposits will be considered in combination with the proposed solid waste management, and improvement of O/M organization and activities for the drainage channels and pumping stations.
- Amount of engine exhaust fume and noise to be generated by pump operation will be mitigated within the allowable levels in Metropolitan Manila by using modern technology.
- In line with the above improvement of operation and maintenance organization and activities for drainage system, an effective and appropriate management system will be taken into the daily operation and maintenance for the 15 drainage pumping stations.

(6) Summary of Quantity for Rehabilitation Works of Drainage Pumping Stations

Work categories and quantities of drainage pumping stations for rehabilitation works are summarized as follows.

- Technical investigation and analysis including overhaul:12 stations
- Supply of spare part and consumable:12 stations
- Rehabilitation works of pump equipment and appurtenant facilities:12 stations

F.5 NON-STRUCTURAL AND SUPPORTING MEASURES

Objectives of the non-structural and supporting measures are to support and sustain the original functions of structural measures assigned in the rehabilitated drainage facilities by means of reducing damageable objects or lowering vulnerability against repeating disasters. In this study, the following measures are taken up.

bh-Structural Measures

- Recommendation of countermeasures for rapid urbaniztion
- Recommendation of application of existing floodplain management systems

Supporting Measures

- Establishment of community-involved operation and maintenance
- Installation of additional hydrological equipment
- Introduction of emergency operation and maintenance equipment
- Preparation of guideline for resettlement

Out of the above, 1) Recommendation of countermeasures for rapid urbaniation, 2) Recommendation of application of existing floodplain management system and 3) Installation of additional hydrological equipment in connection with improvement of O/M activities are described.

(1) Recommendation of Countermeasures for Rapid Urbanization

Urbaniztion has been highly progressing in the core area of Metropolitan Manila and thereby open and green spaces, ponds, forest, etc., are decreasing year by year. Consequently, both the capacities of storm water retention and infiltration into underground are lowered. Eventually, run-off volumes towards drainage channels are significantly increased especially in the case of unexpected urbaniztion.

The extent of increase of runoff coefficient by land use conditions in the past 35 years was studied in the master plan stage. It reveals that 15 to 20% by drainage basins increased in the period from 1970s to 2004 in Nrth Manila and 10 to 23% in South Manila, respectively as summarized in *Table F.5.1*.

For such situation, <u>only improvement of drainage facilities can not be coped with remarkable</u> increase of runoff coefficient resulting in frequent inundations. An implementation of special countermeasures is required to compulsively reduce runoff volumes and to sustain capability/function of the present drainage system. As one of options, construction of storm water retention facilities is recommended in combination with urban development plans under the related GUs. The following samples are appli cable ones in the core area of Metropolitan Manila, which is from The Guideline of Urban Drainage Improvement, MIT, **å**pan.

Drainage	Pump	1970s	1970s 19		980s-1990s		% Increase from
Area	Drainage	Runoff		Runoff		Runoff	Original Runoff
	Basin	Coefficient		Coefficient		Coefficient	Coefficient
	Vitas		\rightarrow	0.75	\rightarrow	0.74	
	Binondo-Escolta	0.64	\rightarrow	0.64	\rightarrow	0.77	20
Neth	Qiapo	0.63	\rightarrow	0.63	\rightarrow	0.73	16
ortii	Aviles	0.60	\rightarrow	0.60	\rightarrow	0.70	17
	Valencia	0.59	\rightarrow	0.59	\rightarrow	0.68	15
	Balut		\rightarrow	0.65	\rightarrow	0.79	
	Tripa de Gallina	0.56	\rightarrow	0.60	\rightarrow	0.62	11
	Ibertad	0.64	\rightarrow	0.64	\rightarrow	0.75	17
	Balete	0.52	\rightarrow		\rightarrow	0.64	23
South	Расо	0.64	\rightarrow	0.64	\rightarrow	0.71	10
South	Pandacan	0.68	\rightarrow	0.68	\rightarrow	0.63	
	San Andres		\rightarrow	0.72	\rightarrow	0.72	0
	Sta. Clara	0.56	\rightarrow	0.56	\rightarrow	0.63	13
	Makati	0.62	\rightarrow	0.62	\rightarrow	0.68	10

Table F.5.1 Increase of Run-off Ratio by Basins of Drainage Pumping Stations

Ordinary Time

Rain Time

Figure F.5.1 Sample of Storm Water Retention Facility (Park)

Ordinary Time

Figure F.5.2 Sample of Storm Water Retention Facility (Ground in School/University)

Figure F.5.3 Sample of Storm Water Retention by Permeable Pavement (Parking Area)

Figure F.5.4 Sample of Storm Water Retention Facility (Apartment Building)

Overview of the Facility

Ordinary Time

<u>Rain Time</u>

Figure F.5.5 Sample of Storm Water Retention Facility (Tennis Court)

Figure F.5.6 Sample of Various Storm Water Retention Facilities

(2) Application of Existing Various Disaster Preparedness Systems

In the Metropolitan Manila, existing systems of EFCOS, Inter-Agencies Floodplain Management, Disaster Management System, etc., are available for emergency countermeasures for disasters preparedness. Especially in the disaster management system, it is being developing by a disaster coordination committee consisting of national and regional levels including barangay level and a special fund allotment is available for emergency times.

The core area of Metropolitan Manila is a center of the capital of the Philippines. In a case of severe inundation, a tremendous loss of casualty, properties, and stagnation of social and economic activities resulting from traffic interruption will be brought about into the core area. To prevent such emergency cases, it is recommended to put in practice positively the above various existing systems in the core area of Metropolitan Manila.

(3) Installation of additional hydrological equipment

1) Observatory Network

Within the core area of Metropolitan Manila, available data on rainfall and water level is quite limited to conducting hydrological analysis. Only one station of Port Area is available for rainfall data, while water level data recorded are available at respective 15 drainage pumping stations. However, there exists no water level data in the major esteros. It is considerably important to observe and accumulate such rainfall and water level data for hydrological and hydraulic analysis such as rainfall patterns, total amounts, intensities, flow conditions of channels, etc., in view of further future procedure for drainage improvement in the core area of Metropolitan Manila. In order to supplement such limited data, rainfall stations and water level gauges are to be newly installed, and those proposed sites are considered in the following. Such accumulated rainfall and water level data shall highly contribute to the necessary procedure for future drainage improvement including effective operation of the present drainage channels and drainage pumping stations.

From this aspect, additional rainfall observation stations are to be proposed at appropriate locations. Taking into consideration of aerial distribution of rainfall in the core area, the 3 stations are proposed at the respective drainage pumping stations of Vitas, Paco and Ibertad as shown in *Figure F.5.7*. The rainfall observatory equipment will be an automatic rain gauge.

On the other hand, at 15 drainage pumping stations, water levels are recorded at 2 sides; inlet and outlet of the stations. However, no water level data is presently available in the esteros in the core area of Metropolitan Manila. In order to supplement water level data in the esteros, installation of staff gauge is proposed. The proposed sites of staff gauge will be 15 sites in the major esteros joining to the drainage pumping stations as shown in *Figure F.5.7*.

Figure F.5.7 Locations of Additional Hydrological Equipment

2) Work Quantity of Rainfall and Water Level Observation Network

The work quantities of the observation network are summarized in Table F.5.2.

Item	Work Quntity	Remarks				
Rainfall station	3 sets	Automatic rain gauge				
Water level gauge	15 sets	Staff gauge				

 Table F.5.2
 Work Quantity of Observation Network

ANNEX F.1

BLUMENTRITT INTERCEPTOR

ANNEX F.1: BLUMENTRITT INTERCEPTOR

A.F.1.1 SITE CONDITION

(1) At outlet Sunog Apog NE02 1+500 (Elev. +11.34m at sea)

HWL	Elev. +11.54 m
Proposed river bed	Elev. 4 7.74 m (4 7.50 m
Existing river bed	Elev9.16m
A rmal water level	Elev. +10.5 m

(2) Existing Culvert

Invert level at outlet Dimensions of culvert

-05 , - 08 : Narrow part

at sea)

Elev.7.8 m width 1.2 to 2.15m (average 1.8m, 2 cells) height 1.7 to 2.63m (average 2.2m)

beations of Culverts Surveyed

			libielle ei ille	ereepter		
Mmber	Distance	Cell	Width	ı (m)	Heigh	t (m)
of manhole	(m)		Survey	urvey MMDA		MMDA
01	0	2	(2.1)	2.57	(2.5)	2.57
02		2				
03	173	2	2.1		2.58	
04	392	2	1.8		2.28	
05	561	2	<u>1.35</u>		2.0	
06	766	2	1.7		2.63	
07	923	2	1.72		2.12	
08	1031	2	1.2	•	2.4	•
09	1186	2	2.03	2.46	2	2.46
10	1345	2	2		2.5	
11	1453	2	1.85	•	2.54	•
**	1713	2	1.85	2.38	2.54	2.38
12	2265	2	2.15	2.2	2.08	2.2
13	2438	2	2.15		1.71	
14	2505	2	1.7	•	2.4	•
15	2602	2	1.8	1.69	2.16	1.69
16	2763	2	1.4		2.25	
17	2828	2	1.75	*	1.56	•

Dimensions of Interceptor

Note :Survey was made in 2000. MMDA data are gotten from MMDA. In this study, the smaller data are adopted because of no As Built Drawings.

(3) Ground Elevation

- Hermosa Street
- Rizl Ave.
- Philippine Mional Railway

(4) Water Supply Pipe

Diameter of pipe

Elev.+3.91m to +2.5 m

Elev.+2.2 m to +3.66m

2200mm steel pipe Hermosa St. Road Elev. +12.47m Elev. +10.75m

(5) Light Rail Transit

-	Super structure	
	Vertical clearance	h =4 .3 m
	Width of railway	w=8.3 m
-	Substructure	
	Dimensions of foundation	5.9m x 5.9m
	Soil cover of footing	D = 1.0m to $1.3m$
	Pile of foundation	ϕ 1000mm x 4 piles / Pier
	Pier	2m x 2m, ctc . 25m

(6) Road Width

A.F.1.2 DESIGN

The discharge capacity of existing culvert is $\mathfrak{E}m^{3/s}$ at Exit. The design discharge will be as follows:

A point :Intersection of Hermosa St. and Abucay St. B point :Intersection of Hermosa St. and Ri**z**l Ave. C point :Intersection of Blumentritt and Calamba St.

A.F.1.3 ROUTE OF ADDITIONAL CULVERT

The route of additional interceptor is finally determined mostly along the existing route. In the lowermost part, outlet is moved to the Estero de Sunog Apog based on the comparison study as shown below.

- bwer part (outlet) Sunog Apog to Hermosa St. ₱64m
- Under RT Rizl Ave. and Aurora Blvd. **±**567m
- Bending part Blumentritt St. **#**00m

(1) Lower part / Hermosa Street (L=564m)

Changing of outlet from the present with estero de Maypap to estero de Sunog Apog

- The lower part of the present box culvert from the present outlet to Hermosa Street (a part of Abucay street: 175 m in length) is closed at the bending section of Hermosa Street to stop backwater from Estero de Maypajo and stor m water collected within its catchment is drained through the present outlet.
- In the Abucay Street, there is no space for additional culvert. Accordingly, additional culvert will be aligned along the Hermosa Street as shown in the following Figure. The remained existing box culvert in the upper reaches is connected with additional new interceptor and directly joined with the Es tero de Sunog Apog as indicated in the below Figure based on the following preliminary comparison study.

New Outlet of Additional Blumentritt Interceptor

For the above changing of outlet location, the comparison results of 2 routes are summarized in the following Table.

Item	Existing	Route	New	New Route		
Proposed plan	To drain by existing c culvert to Estero de May	ulvert and additional pajo	To drain all by new culvert to Estero de Sunog Apog			
Design discharge	For additional : 11.5 m3	/s	Total incl. existing	: 20.0 m3/s		
Culvert to be constructed	Additional culvert	w3.6m x h2.7m x 11ane x 175 m	New culvert	w3.4m x h2.6m x 2lanes x 564 m		
Related works	 Dredging of Estero de Maypajo Bank protection 	18,000 m3 3,000 m2	- Replacement of water supply pipe	Lump sum (for partially:30m)		
Land acquisition	 Abucay street/Estero de Maypajo 	4,500 m2	- Outlet site	450 m2		
House compensation	- Abucay street - Estero de Maypajo	30 houses(formal) 250 houses(informal)	- Outlet site	3 houses (Barangay office)		
Direct construction	- Culvert	20,200,000 pesos	- Culvert	93,100,000 pesos		
cost	- Related works	66,000,000 pesos	- Related works	50,000,000 pesos		
	- Land/house compensation	79,800,000 pesos	- Land/house compensation	2,500,000 pesos		
	<u>Total</u>	<u>166,000,000 pesos</u>	Total	<u>145,600,000 pesos</u>		
Technical and construction aspects	Conventional works, sin	nple and easy	Conventional works	s, simple and easy		
Operation and maintenance aspect	Almost same as new rou	ite	Almost same as exi	sting route		
Social impacts - Large scale resettlement: 280 houses			- Small resettlement: 3 houses			
	- Trafic congestion durin	ng construction	- Traffic congestion during construction			
	- Serious social impact		- Less social impact			
Economical aspect	Costly		Less cost than that of existing route			
Overall evaluation	Not recommendable		Recommendable			

Comparison of Existing and New Routes

(2) Rizal Ave. / Aurora Blvd. (L=1,567m)

The design discharge for additional culvert is $\mathfrak{Q}m$ ³/s.

	1	
Items	Alt.1 :Sea side	Alt.2 : Hill side
Construction	Construction of Additional culvert	Demolishing of Existing one cell
Work		and Additional culvert
Cost		
Cost	Economically	Costly
Conclusion	0	×

A.F.1.4 DIMENSION OF ADDITIONAL CULVERT

(1) Assumed Dimension of Additional Culvert

The dimensions of the additional culvert to be added are assumed considering the design discharge and the road width. The dimensions of additional culverts are shown as follows.

(2) Head Loss

The head loss due to friction loss of culvert is calculated using the following formula.

discharge	Q A ∙ v
velocity	$v \neq 1/n$) x I $^{1/2}$ x R $^{2/3}$
friction loss	$\bigtriangleup h \notin Q \cdot n) / (A \cdot R^{2/3}) \}^2 x L$

	Unit :m					
Items	Sunog Apog	Point A to		Point B to		Point C to
	to Point A	Po	oint B	Poi	nt C	Dapitan St.
Mark of Culvert	B1-1	(Existing) B1-2		(Existing)	B1-3	(Existing)
Roughness			n 0 .015 (cor	icrete)		
Gradient						
Discharge	20.0	19.5		14.0		8.0
		7.1	12.4	7.7	5.6	-
Distance	564	1567	1567	439	439	648
Width	3.40	1.8	3.6	2.1	2.3	1.7
Depth	2.60	2.2	2.7	2.1	2.4	2.1
ðs. of cell	2	2	1	2	1	2
w x h	8.84 x 2	3.96 x 2	9.72	7.56	5.52	7.14
Friction b ss	0.24	0.78	0.78	0.18	0.18	0.50
⊿h	0.24	0.78		0.18		0.50
Total loss		Σ(<i>Δ</i> h)=0.24 -0.78 -0.18 -0.50 =1.71m				

Friction bss

(3) Check of Water Level

At two points it was checked that the water level through the culverts was lower than the ground elevation.

At Dapitan St. (edge of interceptor)

 Water level at Exit
 Elev. +1.54m
 Total friction loss
 1.71m
 Total water level at intersection of Dapitan St. Elev. +3.25m
 Ground Elev. +4.47m
 Ok

 At point C

 Water level at Exit
 Elev. +1.54m

Water level at ExitElev. ±1.54mTotal friction loss1.21mTotalElev. ±2.75mOk

A.F.1.5 LONGITUDINAL PROFILE

(1) Assumed Longitudinal Profile

The longitudinal profile is assumed as follows, considering related elevations of ground, riverbed of Sunog Apog, existing culvert and depth of cover.

(2) Check of Covering under Railway

Top Elev. of Upper Slab	
Invert Elev. at Exit of interceptor	-#.75m
Height of culvert	2.60m
Incline of slop 346 / 3000	0.12m
Thickness of slab	0.50m
Total	1 0.97m
Cover under Railway D	
D =Top of Railway (Elev.+2.47m) - Top	Elev. of Upper Slab(+0.9

D = Top of Railway (Elev. $\pm 2.47m$) - Top Elev. of Upper Slab($\pm 0.97m$) = $\pm .5 m > D_{min}$. ($\pm .0m$) $\pm ail$ with mound (0.5m)

ok

A.F.1.6 STOP LOG GATE TO BE INSTALLED

(1) Maintenance Work

Sequence of cleaning work for the culvert : <u>Dewatering</u> \rightarrow <u>Dry-up</u> \rightarrow <u>Declogging</u>

Equipment to be applied :

The following equipments will be applied.

Equipment of Dewatering work			
Work	Equipment		
Installation of Stop-bg	Craw ler Crane, stop-log 1ton/piece		
Discharge	Pump Truck 0.6m3/min.		

(2) Interval of Stop Log Gate

Ength between stop log gates #00m (assumed)
Required time to drain by pump: T
T =water volume (A x J∠/ pump capacity (Q
9.2m2 x 400m / 6m3/min.
=613 min. (10 Hours) ------ 1day

(3) Numbers of Stop Log Gate

- $n \neq n \neq n$ Buendia outfall(L/interval (1))
 - = 3220 m / 400 m
 - = 8 ----- 8 places

(4) Maintenance Hole to be Modified

Some manholes are presently covered by the road pavement. These are modified by heightening of the top in order to keep the function.

Monthead by Market Andrew Mark

(5) Inlet for Road Surface Flow

The inlet is made at road intersection in order to intake the road surface flow coming from hilly areas. The profile of the inlet is imaged as shown below. The required inlet is proposed at 9 places.

A.F.1.7 ALTERNATIVE STUDY: IMPROVEMENT OF ESTERO DE MAYPAJO

(1) Profile of Estero de Maypajo

- Channel width, longitudinal profileChannel widthw₹.1m to 12 mlongitudinal profile1/ 5000 to 1/500
- Proposed Discharge
 ⊕5m ³/s

(2) Proposed Cross-section

- Design value
 - Gradient1/3000Roughnessn = 0.025Slope numb.1:0.5

Hydraulic value of Proposed Cross-section

Area m ²	R 1/m	v m/s	Capacity m ³ /s	Proposed
31.2	2.0	1.15	36	35

(3) Required Work

The work quantities to be widened are shown in table.

Items	Unit	Description	Remarks
Dredging	M ³	b3.6m x h3.9m x 270m ⊰ ,800	Dredging of Maypap 14,200 m ³
Bank Protection	M^2	5.5m x 270m x 2 ∃ ,000	

Ength to be widened: ≌70m From bridge to outlet of interceptor

(4) Land and House

bcation	and	House
Маурар	W11.5m x 270m $=$ 230m ²	200 (informal settler)
Abucay St.	W7.0m x 175m \Rightarrow 100m ²	20 (formal)

ANNEX F.2

BUENDIA OUTFALL

ANNEX F.2: BUENDIA OUTFALL

A.F.2.1 SITE CONDITION

(1) Outlet to Libertad DM

Normal water level: Pump stop level: Riverbed:

(2) Profile of Culvert

Invert level: Dimensions:

length:

Elev.10.45m Elev.10.45m Elev.7.5 m

Elev.-8.29m Width ⇒.0 to 4.8m x 2 cell (average 4.0m) Height =2.6 to 3.2m (average 3.0m) ₩960m

(3) Locations of Culverts Surveyed

Typical Cross-Section

Surveyed Data of Existing Culvert

		ר	Ø	Estimated	Wid	lth(m)	Heig	ght(m)
		戸本		Distance				
		.0I		(m)	A line	B line	A line	B line
A line	B line	h=3	01	0	3.6	4.8	2.5	3.13
			02	299	3.6	4.7	3.0	3.27
← w=4m			03	803	3.7	3.0	3.26	2.35
<	(9.4m)	*	04	1071	3.8	4.0	3.25	2.6
-		I	05	1956	3.5	3.5	3.0	3.0

A.F.2.2 STOP LOG GATE TO BE INSTALLED

(1) Maintenance Work

Sequence of cleaning work for the culvert :

 $\underline{\text{Dewatering}} \quad \rightarrow \quad \underline{\text{Dry-up}} \quad \rightarrow \quad$

 \rightarrow <u>Declogging</u>

Equipment to be applied :

The following equipments will be applied.

Equipment of Dewatering work			
Work Equipment			
Installation of Stop-bg	Craw ler Crane, stop-log 1ton/piece		
Discharge	Pump Truck 0.6m3/min.		

(2) Interval of Stop Log Gate

Ength between Maintenance Holes	₽ 00m (assumed)
Required time to discharge :T	
T =water volume (A x L/ pump cap	acity (Q
=8.8m2 x 400m / 6m3/min.	
=587 min. (10Hours)	1day

The Stop-log will be stored at near Pumping Station.

(3) Numbers of Stop Log Gate

- n #ength of Buendia outfall()_/ interval (1) + =1960m / 400m +1
 - ⇒ +1 ----- 6 places

bcations of Maintenance Hole with Stop bg Gate

A.F.2.3 MAINTENANCE HOLE TO BE MODIFIED

Some manholes are presently covered by the road pavement. These are modified by heightening of the top in order to keep the function.

Number of Manholes to be modified = 60 (by site survey)

ANNEX F.3

ZOBEL ROXAS DRAINAGE MAIN

ANNEX F.3: ZOBEL ROXAS DRAINAGE MAIN

A.F.3.1 SITE CONDITION

(1) At Outlet to Tripa de Gallina No. 4+ 670m

Proposed channel bed of Tripa:	Elev. +8.27m
Armal water level:	Elev. +0.4 m
Existing channel bed:	Elev. +0.0 m

(2) PNR Canal No. 0+ 10m

Proposed canal bed:	Elev.	1 0.75 m
Right bank elevation:	Elev.	1 3.3 m

(3) Ground Elevation

At outlet:	Elev. 1 2 .95 m
SSH:	Elev. +3 .1 m to +3.2 m
Top of P R :	Elev. 1 3 .55 m
Upper part (£ 60m):	Elev. +3.2 m

(4) Existing Culvert Box

Invert elev. at outlet: Bottom elev. of top slab at outlet: Dimensions: Elev. +0.0 m (+0.35 m) Elev. +2.36m width 1.2m to 4.4m x 1 cell height 1.2m to 2.5m

Dimensions of Box Culvert Surveyed

Mark of	Distance	Widt	h (m)	Heig	ght (m)
Manhole	(m)	Survey data	MMDA	Survey data	MMDA data
		-	data		
01	0	4.4	3.6	2.02	2.25
02	95	4.4	1	2.52	1
03	369	4.3		2.48	
04	413	2.84		2.33	
05	639	2.9		2.26	
06	723	2.8		1.22	
07	762	1.22		1.22	
08	862	1.22	•	1.22	•

Me: Survey Data made in 2000 was checked at site.

(5) Water Supply Pipe along SSH

Diameter of steel pipe: Top of pipe: ϕ 2,200mm (under side walk) Elev. \$.5 m (D = 0.8 m)

Cross Section of Culvert and Water Supply Pipe

The cover for the pipe is big enough.

(6) Road Width

Tripa to P R :	w ∃ 4.8m
PN to Kmagong St.:	w ∃ 4.8m

A.F.3.2 DISCHARGE

(1) Discharge Capacity and Proposed Discharge

The discharge capacity of existing culvert are $\bigcirc 3.5 \text{ m}$ ³/s at Exit.

The proposed discharge are $\bigcirc 3.5 \text{ m}$ ³/s at Exit (Catchments Area $\pm .01 \text{km}2 / 0.79 \text{km}2$).

(2) Additional discharge

The discharge to be added are known by the discharge mention above, and are shown below.

A.F.3.3 DIMENSIONS OF ADDITIONAL CULVERT

(1) Assumed Dimensions of Additional Culvert

The dimensions of the culvert to be added are assumed depending on the discharge to be added as shown below.

(2) Head Loss

The head loss is obtained by the estimation of the friction loss of the culvert using following formula.

				n (pressur	<u>c nowj</u>			
Items	Tripa to SSH		Under SSH and PN		P N to			
Alme of	1	2	Z -1	3	ø -2	4	Ø- 3	
culvert								
Roughness	n=0.015 (concrete)							
Gradient		h/⊟/1	100 (a ver	rage) (1 3.2m))-(12.36m)	860		
Discharge		13.5		12.5		1	11.5	
m³/s	13.5	8.2	5.3	4.8	7.7	2.1	9.4	
Distance m	369	270	270	65	65	160	160	
Width m	4.40	2.80	1.70	2.80	1.80	1.20	2.30	
Depth m	2.00	2.30	1.60	1.20	1.50	1.20	1.50	
A ∓w x h	9.02	6.44	2.72 x2	3.36	2.7x2	1.44	3.45x2	
ðs. of Cell	1	1	2	1	2	1	2	
Friction loss m	0.32	0.18	0.19	0.10	0.10	0.18	0.19	
∕_h	0.32	0	0.19 0.10		0.19			
Total loss		$\Sigma(/h) = 0.320, 190, 100, 19 = 0.80 \text{ m}$						

Friction bss of Culvert (pressure flow)

(3) Checking of Water Level at Upper Part

Water level at Exit:	Elev.	1 2.36 m	
Total friction loss:		0.80 m	
Total	Elev.	1 3.16 m	< Ground Elev. 13 .2m
			ok

It is known that the assumed dimensions are acceptable.

A.F.3.4 DIMENSIONS OF ADDITIONAL CULVERT

(1) Longitudinal Profile and Water Level

The <u>b</u>ngitudinal Profile of the drainage is assumed considering the ground elevation of *Z*bel Roxas St., elevation of the existing culvert and Philippine Mional Railway Elev.

(2) Checking of Covering

-	Covering under P N		
	Top Elev. of Upper Slab		
	Invert Elev. of culvert	Elev. 1 0.25m	
	Height of culvert	1.50m	
	Thickness of slab	0.30m	
	Total	Elev. 1 2.05m	
	Cover under Railway:D		
	D =Top of Railway (Elev.+3	3.56m) - Top Elev. of Upper Slab((1 2.05m)
	=1.51 m > D _{min} . ($=$.0m) +thick of plinth (0.50m)	ok
-	Covering under SSH		
	Top Elev. of Upper Slab		
	Invert Elev. of culvert	Elev.+0.20m	
	Height of culvert	1.50m	
	Thickness of slab	0.30m	
	Total	Elev. 1 2.00m	
	Cover under South Super Hig	hway:D	
	D Top of Road surface (El	ev.+3.1m) - Top Elev. of Upper S	lab(+2.00m)
	=1.10 m > D min. (=	.0m)	ok

A.F.3.5 CASE STUDY OF PRE-CAST CULVERT

(1) Dimension and Weight of Culvert

South Super Highway has always dense traffic. Therefore, a short construction period is required. Regarding the construction method of the culvert under S.S.H., pre-cast culvert may be applicable in order to shorten the construction period. The piece of pre-cast culvert will be less than 5 tons weight considering transportation and installation of the piece of pre-cast culvert. The dimensions of the piece of culvert are obtained considering discharge capacity and structural stability. The required dimensions for the additional discharge (Q8m 3 /s) are as follows.

Cross-Section of Box Culvert

(2) Length of Piece L

weight of culvert per unit meter w γ_c unit weight of RC 25kMn 3 $w = \gamma_c \cdot section area$ *€*.5 x (2.1 x 1.85 *−*1.2 x 1.4) = 5.1 ton/m15.0 / w ⇒ / 5.1 €.98m **∃**.0m Therefore the required dimension of additional culvert is w 1.4m, h1.2m x **E**.0m, x 3 lines

ANNEX F.4

FARADAY DRAINAGE MAIN

ANNEX F.4: FARADAY DRAINAGE MAIN

A.F.4.1 SITE CONDITION

(1) Outlet to Tripa de Gallina No. 3+ 490m

Proposed channel bed:	Elev.	+ 8.15m
Ground level (sea side):	Elev.	+13.1 m
Normal water level:	Elev.	+10.45 m
(Water level in rain time):	Elev.	+11.5 m

(2) Existing Culvert

Invert level at outlet:
Dimensions of culvert:

Elevation +10.3 m Width 1.6m x 2 cells to ϕ 42" x 1 Height 1.2m to ϕ 42"

The dimensions of Existing Culvert are obtained from As-Built Drawings and the site investigation.

(3) Ground Elevation

On Faraday Street:	Elev. $+12.7 \text{ m to } +13.6 \text{ m}$
At South Super Highway:	Elev. $+13.0 \text{ m to } +13.1 \text{ m}$
Top of Philippine National Railway:	Elev. +13.6 m
(4) PNR Canal at No. 1+ 340m	
Proposed canal bed:	Elev. +10.5 m
Ground elevation:	Elev. +13.2 m
(5) Water Supply Pipe	
Diameter of steel pipe:	ϕ 2,200mm (under side walk)
Top of pipe:	Elev. $\pm 10.7 \text{ m}$ (depth of cover = 2.3 m)

Cross Section of Water Pipe

(6) Road Width

A.F.4.2 DESIGN DISCHARGE

The design discharge of Faraday drainage main will be as follows:

-	Lower part:	$13.5 \text{ m}^{3}/\text{s}$
-	Middle part:	$13.0 \text{ m}^3/\text{s}$
-	Upper part (under SSH):	$9.5 \text{ m}^{3}/\text{s}$

From the above, design discharge for additional culvert will be estimated as shown below.

A.F.4.3 DIMENSIONS OF ADDITIONAL CULVERT

(1) Dimensions of Additional Culvert

The dimensions of the additional culvert to be added are assumed as shown below based on the design discharge and width of roads.

(2) Head Loss

The head loss due to friction loss of culvert is calculated by using the following formula.

discharge	$Q = A \cdot v$
velocity	$v = (1/n) x I^{1/2} x R^{2/3}$
friction loss	

Items	Outlet to P.Binay			P.Binay	SSH to	
	Faraday	Middle Fa	raday St.	Finlandia St.	to SSH	PNR canal
	St.					
Roughness n				0.015 (concre	te)	
Gradient			$\Delta h/L={$	(+13.1m)-(+12.3)}/890=1/1100)
Mark of culvert	Existing	Existing	Fa-1	Fa-4	Fa-2	Fa-3
Discharge m ³ /s			13.5		6.5 x2	9.5
	2.6 x 2	2.15	3.05	8.3	=13.0	
Distance m	485	22	8	914	100	
Width m	1.6	2.0	1.8	3.5	2.2	1.8
Depth m	1.4	1.0	1.4	1.7	1.7	1.4
Nos. of Cell	2	1	1	1	2	2
Section Area of	2.24 x 2	2.00	2.52	5.95	3.74 x 2	
culvert						
Friction loss	0.55	0.26	0.26	0.85	0.19	0.20
∐∠h		0.85			0.19	0.20
Total loss	$\Sigma (/h) = 0.85 + 0.19 + 0.20 = 1.25 \text{ m}$					

Calculation of Head loss

(3) Water level at Upper End

Water Level at Outlet:	Elev.+11.5 m			
Total Friction Loss:	1.25m			
Water Level at Upper End:	Elev.+12.75m	<	ground Elev.+12.9m	Ok
A.F.4.4 LONGITUDINAL PROFILE

(1) Assumed Longitudinal Profile

The longitudinal profile of Faraday drainage main are assumed as shown below.

Covering under South Super Highway: D D = Top of Railway (Elev.+13.6m) - Top Elev. of Upper Slab(+12.00m)ok

 $= 1.6 \text{ m} > D_{\text{min}}.$ (=1.0m) + thick of plinth (0.50m)

ANNEX F.5

STRUCTURAL STUDY

ANNEX F.5: STRUCTURAL STUDY

A.F.5.1 DESIGN CONDITION

(1) Load , Strength and so on

The loads acting to the culvert made under the road consist of the dead load and the live load. The dead loads consist of soil weight, pavement weight, weight of slab and wall, earth pressure and water pressure. The live loads consist of wheel load, spread load and so on.

The design value such as unit weight of the material is adopted following the design manual and AASHTO.

Reinforcement concrete	24.5	kN/m ³
Back-fill soil	18.0	kN/m ³
Wheel load (18 Truck Load)	72	kN
The strength of concrete and steel bar is as	follo	ws:
Concrete compressive strength	21	MPa
Shearing strength	31.5	kN
The diameter of reinforcement Bar is more	than	16 mm.

(2) Soil condition

The subject area is covered by the alluvial stratum. The thickness of the alluvial stratum is 4m to 24m. The alluvial stratum consists of sandy soil and silt soil. The tuff stratum exists under the alluvial stratum.

The outline of soil test is shown in the table below.

		Outline of So	oil Test	
Stratum	N-value	consistency	qu	Remarks
			kN/m ²	
Silty sand	3 to 6	Loose		BH-1,3,6
Sand	2 to 46	loose to dense		BH-1,2,3,4,5A,6,7,8
Sandy silt	2 to 10	soft to stiff		BH-2,5A,7,8
Clayey silt	8 to 22	firm to stiff		BH-5
Tuff			BH-4: > 238	The strength of Tuff
			BH-5: > 38	on BH-5 and 8 is too
			BH-8: > 100	weak.

The geological profile of Blumentritt Interceptor, Zobel Roxas DM and Faraday DM are shown in the next figures.

(3) Water table

The water table measured was 1.0m to 2.9m under the ground surface. From the geological profiles, it was known that the top of additional culvert is almost same level as the water table.

Borehole Location Map (North Manila)

Borehole Location Map (South Manila)

SOIL PROFILE OF BLUMENTRITT INTERCEPTOR (1/2)

SOIL PROFILE OF BLUMENTRITT INTERCEPTOR (2/2)

2

90/25 50/10

46

67

A.F.5.2 STRUCTURAL STUDY

(1) Dimensioning

The additional culverts consist of 1 cell box and 2 cells box made by the reinforcement concrete. These culverts are made under the road with about 1.2m covering.

The dimensions of culvert are decided depending on the site condition as follows.

	1 cell box	2 cells box
Inner width	1.8m to 3.6m	1.7m to 3.4m
Inner height	1.4m to 2.7m	1.4m to 2.6m

(2) Foundation

The additional culvert will be made under the road. The loads acting to footing of the culvert are weight of the culvert itself and the soil above the culvert. Regarding to the type of Foundation, tow case of small size culvert and big size culvert were tried.

(1) Case of Culvert w=1.5m, h=1.2m

This culvert is narrow width with thin covering and is made on the poor foundation (N=6). (see Geological Profiles)

Weight of Culvert and Covering Soil : w=A \cdot (γ c- γ w) +D $\cdot \gamma$ s w_b = (2.1 x 1.85-1.2 x 1.5) \cdot (25-10) +1.0 \cdot 18 \cdot 2.1 = 69.1 kN/m \rightarrow = 32.9 kN/m2 where

γ c sumt weight of concrete	23KIN/III3
γ w :unit weight of water	10kN/m3
γ s : unit weight of soil	18kN/m3

Allowable soil bearing capacity

The allowable soil bearing capacity (Qa) is derived from the ultimate soil bearing capacity (Qu) using the safety factor as follows:

$$Qa = \frac{Qu}{SF}$$

SF = 3 under the normal condition

SF = 2 under the seismic condition

The ultimate bearing capacity of a foundation ground is calculated by the following formula:

$$Qu = A' \left\{ \alpha \, k \, c \, N_c + k \, q \, N_q + \frac{1}{2} \gamma_1 \, \beta \, B' N_r \right\}$$

Where,

Qu=ultimate bearing capacity (kN)

A' =effective loading area on footing (m^2) (refer to following figure)

 α , β = coefficient depending on shape of footing as shown in the following table:

Shape of Footing	α	β
Excessively long rectangle	1.0	1.0
Circle or Square	1.3	0.6
Rectangle or ellipse	1+0.3B'/L'	1-0.4B'L'

C=cohesion of foundation ground (kN/m²)

q=ground surface surcharge (kN/m²)

 $=\gamma_2 \cdot Df$

 γ_1 , γ_2 =unit weight of soil of ground foundation (kN/m³)

B',L' =width and length of effective loading areas as shown in following figure (m)

 $B' = B - 2e_H; L' = L - 2e_L$

e = distance from center of footing to acting of resultant force on footing as illustrated in following figure (m)

Df = depth from ground surface to bottom of footing (m)

K = coefficient (1+0.3 x Df'/B)

Df' = structure embedded depth into base (m)

Nc, Nq and Nr = bearing capacity factors (refer to following graphs)

3 Design of Civil Works

Graph for Bearing Capacity Factor Nr

Graphs for Bearing Capacity

adopting the value to Ultimate Bearing Capacity Formula depending on the site, Internal friction angle $t_{i} = 15 + (15N)^{1/2}$

Internal friction angle : $\phi = 15 + (15N)^{1/2}$

Case of minimum N-value = 6 see BH-06.07 $\phi = 15 + (15 \times 6)^{1/2}$ = 24 =20Area $A' = w \times 1$ = 2.1 x 1.0= 2.1 m2 α, β -value = 1.0long rectangle Cohesion c c = 1 kN/m2 \leftarrow assumption =2.85m Embedded depth Df=D+H = 1.0+1.85Surcharge $q = \gamma$ s · Df = 18.0x1.0+9.0x1.85 = 34.6 kN/m2 Coefficient k = 1+0.3Df/W = 1+0.3x2.85/2.1 k=1.4 Bearing capacity factor Nc = 20, Nq = 6.1 and Nr = 3.1From these value, bearing capacity is Qu = A' { α kc Nc+kqNq+ γ s β WNr} = 2.1(1.0x1.4x1.0x20 + 1.4x34.6x6.1 + 9x1.0x2.1x3.1)= 802 kN/m $> w_b = 32.9 \text{ kN/m2}$ Qa = Qu/SF(=3) = 267 kN/m = 127 kN/m2ok

(2)Case of culvert w3.4m, h2.6m x 2cells (Blumentritt Interceptor)

The dimension and figure of this culvert are shown in next paragraph. Load Weight of Culvert and Covering Soil : w=A \cdot (γ c- γ w) +D $\cdot \gamma$ s $w_b = (8.2 \times 3.65 - 3.4 \times 2.6 \times 2) \cdot (25 - 10) + 1.5 \cdot 18 \cdot 8.2$ = 184 + 221 $= 405 \text{ kN/m} \rightarrow = 49.4 \text{ kN/m2}$ Allowable soil bearing capacity Adopting the value to Ultimate Bearing Capacity Formula depending on the site, Internal friction angle : $\phi = 15 + (15N)^{1/2}$ Case of minimum N-value = 6 see BH-01 $\phi = 15 + (15 \text{ x } 6)^{1/2}$ = 24 =20Area $A' = w \times 1$ = 8.2 x 1.0= 8.2 m2 α, β -value = 1.0long rectangle Cohesion c c = 1 kN/m2assumption Embedded depth Df=D+H = 1.5+3.65=5.15m Surcharge $q = \gamma s \cdot Df = 18.0x1.5 + 9.0x3.65 = 59.8 \text{ kN/m2}$ Coefficient k = 1+0.3Df/W = 1+0.3x5.15/8.2 k=1.2 Bearing capacity factor Nc = 20, Nq = 6.1 and Nr = 3.1From these value, bearing capacity is $Qu = A' \{ \alpha \text{ kc } Nc + kqNq + \gamma \text{ s } \beta \text{ WNr} \}$ = 8.2(1.0x1.2x1.0x20 + 1.2x59.8x6.1 + 9x1.0x8.2x3.1)= 5658 kN/m Qa = Qu/SF(=3) = 1886 kN/m = 230 kN/m2 $> w_{\rm b} = 49.4 \text{ kN/m2}$ ok

Therefore, the spread foundation will be applied for the culvert.

(3) Thickness of Member

The thickness of the member of the culvert was decided by the structural calculation. As sample, tow cases were shown.

(1)Case of Blumentritt Interceptor Culvert Bl-1 (w3.4m, h2.6m x 2cells)

The assumed dimension and loading diagram of the culvert are as follows.

Based on the structural calculation of above frame work, required bar are obtained as shown below.

Bar Arrangement / Bar schedule

(2)Case of Blumentritt Interceptor Culvert Bl –2 (w3.6m, h2.7m)

The assumed dimension and loading diagram of the culvert are as follows.

Based on the structural calculation of above frame work, required bar are obtained as shown below.

Bar Arrangement / Bar Schedule

Bar spacing: <u>Type A</u>-100mm – <u>Type B</u>-100mm – <u>Type A</u>-100mm · · ·

A.F.5 - 11

G. COST ESTIMATE

TABLE OF CONTENTS

Page

G.1	GENERAL	G - 1
G.2	COST ESTIMATE FOR MASTER PLAN PROJECTS	G - 1
G.2.1	Major Works and Phasing of Master Plan projects	G - 1
G.2.2	Cost Estimate for Master Plan Projects	G - 3
G.3	COST ESTIMATE FOR PRIORITY PROJECTS	G - 15
G.3.1	Objective Works of Priority Projects	G - 15
G.3.2	Packaging and Construction Schedule of Objective Works	G - 16
G.3.3	Cost Estimate for Priority Projects	G - 18
Annex (.1 COST ESTIMATE FOR WORKS PROPOSED IN MASTER PLAN	
Annex (.2 UNIT PRICE FOR MAJOR WORKS OF PRIORITY PROJECTS	
Annex (.3 COST ESTIMATE FOR RESPECTIVE REHABILITATION AND ADDITI PRIORITY PROJECTS	ONAL WORKS OF

LIST OF TABLES

Page

Table G.2.1	Unit Price for Major Works G - 6
Table G.2.2	Direct Construction Cost by Phases G - 7
Table G.2.3	Land Acquisition Cost for Resettlement Site G - 8
Table G.2.4	Unit Cost for Acquisition for Resettlement Site G - 9
Table G.2.5	Resettlement Cost
Table G.2.6	Compensation Cost for Additional Works (1 st Phase) G - 10
Table G.2.7	Cost for BEM and Team ESTERO Activities and IEC Campaign G - 10
Table G.2.8	Cost for BEM and Team ESTERO ActivitiesG - 11
Table G.2.9	Cost for Information, Education and Communication Campaign G - 12
Table G.2.10	Cost for Equipment and Facilities for Effective Operation
	and Maintenance G - 13
Table G.2.11	Detailed Cost for Equipment and FacilitiesG - 14
Table G.2.12	Project Cost for Master Plan ProjectsG - 15
Table G.3.1	Unit Price of Major Works G - 20
Table G.3.2	Civil Works Costs of Respective Works G - 21
Table G.3.3	Compensation Cost for Additional Works G - 22
Table G.3.4	Project Cost for Priority Projects

LIST OF FIGURES

Page

Figure G.2.1	Preliminary Construction Schedule of Master Plan	G	- 4	4
Figure G.3.1	Construction Time Schedule	G -	1	8
Figure G.3.2	Location of Dumping Site	G -	1	9

G.1 GENERAL

This supporting report explains mainly cost estimate for the main civil works of projects identified in the master plan and priority projects for urgent implementation through the feasibility study. Firstly, preliminary cost estimate for the projects identified in the master plan is explained including objective works, construction plan and schedule as a premise condition. Subsequently, explanation on those of the priority projects for urgent implementation will be similarly made.

G.2 COST ESTIMATE FOR MASTER PLAN PROJECTS

G.2.1 MAJOR WORKS AND PHASING OF MASTER PLAN PROJECTS

Major construction works required for drainage improvement are 1) rehabilitation works of drainage channels, 2) rehabilitation works of 12 drainage pumping stations and 3) additional works in Aviles-Sampaloc area in North Manila and San Isidro-San Antonio-Pio del Pilar area in South Manila, as mentioned in section of proposed plan.

Drainage improvement works are planned to be implemented in 3 phases aiming at the target year of 2020 commencing in the year 2006. Major work items by the respective phases are divided considering effective work priority and cost balance by phases.

(1) 1st Phase for Short- Term Projects

1) Rehabilitation works of drainage channels

- Dredging: 139,000 m³
- Dredging: 20,000 m³

2) Rehabilitation works of drainage pumping stations (12 stations)

North Manila

- Quiapo
- Aviles (increase of pump capacity $3 \text{ m}^3/\text{s}$)
- Valencia
- Binondo
- Escolta

South Manila

- Tripa de Gallina
- Pandacan
- Paco
- Sta.Clara
- Libertad
- Makati
- Balete

3) Additional works

North Manila

Maypajo-Blumentritt- Balut Drainage Block

- Additional works of Blumentritt Interceptor

South Manila

Libertad-Tripa de Gallina Drainage Block

- Additional works for severe inundation area in South Manila
 - Additional B.C. along Zobel Roxas D.M.
 - Additional B.C. along Faraday D.M.

4) Other required works

- Installation of additional hydrological equipment
- Introduction of emergency operation and maintenance equipment

(2) 2nd Phase for Medium-Term Projects

1) Rehabilitation works of drainage channels

- Dredging: 360,000 m³
- Dredging: 50,000 m³

2) Rehabilitation works of drainage pumping stations (3 stations)

- North Manila
- Vitas
- Balut

South Manila

- San Andres

3) Additional works

North Manila

Vitas-Binondo-Escolta Drainage Block

- Additional works of south Antipolo canal area
 - Replacement of existing Kabulusan Sub Outfall
 - Additional B.C. along South Antipolo Open Canal

Quiapo-Aviles Drainage Block

- Additional works of channel to Quiapo Pumping Station
- Additional works for Aviles drainage area
- Installation of pump gate (2 m³/s) at the existing Uli-Uli floodgate

South Manila

Libertad-Tripa de Gallina Drainage Block

- Additional works of Libertad pond
- Additional works for severe inundation area in South Manila
- Additional B.C. along Makati Diversion Channel

Paco-Pandacan-San Andres Drainage Block

- Installation of pump gate on Perlita Creek

Sta. Clara Drainage Block

- Installation of pump gates in Sta.Clara drainage basin

4) Other required works

- Various management systems for O&M

(3) 3rd Phase for Long-Term Projects

1) Rehabilitation works of drainage channels

- Dredging: 340,000 m³
- Dredging: $11,000 \text{ m}^3$

2) Additional works

<u>North Manila</u>

Maypajo-Blumentritt-Balut Drainage Block

- Additional works of Estero de Vitas

Vitas-Binondo-Escolta Drainage Block

- Additional works of South Antipolo canal area
 - Additional B.C. along Solis Tescon D.M.

South Manila

Libertad-Tripa de Gallina Drainage Block

- Additional works of Dilain/Maricaban Creek area

Balete Drainage Block

Additional works in Estero de Balete

G.2.2 COST ESTIMATE FOR MASTER PLAN PROJECTS

(1) Basic Conditions for Construction Plan

The following are the basic conditions/assumptions of construction plan.

- Detailed design is to be conducted ahead of construction works.
- Construction works are to be carried out by selected contractors throughout international competitive bidding with prequalification procedure.
- PMO for implementation of the project is established in the DPWH under coordination committee as already explained in Implementation Organization.
- Annual working days of 260 for construction works are assumed.
- Bidding including prequalification is to be completed within 1 year immediately after finishing detailed design.
- Construction period by phases is proposed to be basically 3 years including maintenance period from 6 month (drainage channel) to 1 year(drainage pumping station).
- Informal settlers in the objective channels are to be removed ahead of construction works,
- Resettlement is to be carried out basically by an implementation body in collaboration with the respective LGUs.
- Proposed interceptor is to be constructed in the underground by open excavation method and prefabricated culvert box is to be applied to shorten the construction period not so as to disturb traffic flow in longer duration.
- Average distance to disposal area of dredged materials is assumed to be 10 km.
- Cleaning of laterals are to be conducted throughout daily maintenance activities by the respective agencies of MMDA and LGUs separately from contracting system.
- The project cost finance is to be shared between national government and LGUs under the condition that main works be made by the national government and resettlement, national government and LGUs under the direction of implementing body, respectively.

In line with the above condition and assumption, construction works by phasing are preliminary scheduled as shown in *Figure G2.1*.

					1st Phase				2 ¹	d Phase				ę	rd Phase		
	Work Items	2004	2005 2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
ö	¹ Master Plan and Feasibility Study (Plan Formulation and Fund Arrangement)	M/P, F/S	Fund Arrangen	nent			Fund Arr	angement				Fund Arra	angement				
0,0	2. Detailed Design by Phase/Tender/Contract Award		D/D	Tender	Contract /	Award			Contra	act Award				Contr	ract Award		
ö	3. Resettlement																
_ <u> </u>	st Phase . Preparatory Works																
2	Rehabilitation Works of Drainage Channels																
e	Rehabilitation Works of Aged 12 Pumping Stations																
4	l. Additional Works in North Manila Maypajo-Bluementritt-Balut Drainage Blocks																
5	Additional Works in South Manila Libertad-Tripe de Gallina Drainage Block																
- 6	nd Phase . Preparatory Works																
2	Rehabilitation Works of Drainage Channels																
с С	1. Rehabilitation Works of Remained 3 Pumping Station																
4	Additional Works in North Manila I. Vitas-Binondo-Escolta and Quiapo-Aviles Drainage Blocks																
5	Additional Works in South Manila ; Libertad-Tripe de Gallina, Paco-Pandacan-San Andres, Sta. Clara Drainage Blocks																
ē −	rd Phase . Preparatory Works																
2	. Rehabilitation Works of Drainage Channels																
e	Additional Works in North Manila Vitas-Binondo-Escolta Drainage Blocks																
4	Additional Works in South Manila Libertad-Tripe de Gallina and Balete Drainage Block																
	Improvement of Operation and Maintenance																
	and Community-Involved Solid Waste Management																

Figure G.2.1 Preliminary Construction Schedule of Master Plan

(2) Basic Conditions for Cost Estimate

The project cost consists of costs of main works, compensation, engineering services, administration by government staff, and contingency. The following are the basic conditions of cost estimate.

- Unit cost is estimated referring to the recent unit prices obtained from DPWH and similar projects in Metropolitan Manila.
- Price level is July 2004 with exchange rate of US1\$=Pesos 55 = JY 110.
- Classification of local and foreign currencies is assumed as follows. Local currency portion (L/C)
 - Labor cost
 - Cost locally available materials
 - Inland transportation cost for materials to be imported
 - Value added tax
 - Government administration cost
 - Resettlement cost
 - Local portion of engineering services cost
 - Contingency for local portion

Foreign currency portion (F/C)

- Cost of materials and facilities to be imported
- Depreciation cost of construction equipment
- Foreign portion of engineering services cost
- Contingency for foreign portion
- The following ratio of F/C and L/C are assumed considering actual ratios adopted in the similar drainage projects in Metropolitan Manila.
 - Rehabilitation and additional works for drainage channels:
 F/C (65 %) : L/C (35 %)
 - Rehabilitation and additional works of drainage pumping stations:
 F/C (70 %) : L/C (30 %)

(3) Applied Unit Cost

As already explained, the unit price for works is estimated referring to the recent unit prices obtained from DPWH and similar ongoing projects in Metropolitan Manila. The major applied unit prices are summarized in *Table G.2.1*.

Work Item	Unit	Unit Price (peso)
Dredging of open channel	m^3	1,200
Declogging of closed channel(box	m ³	1,650
culvert)		
Excavation (exclude wall by steel sheet	m^3	572
piling)		
Backfill	m^3	514
Steel sheet piling for excavation works	m^2	3,200
Concrete	m^3	5,140
Reinforced bar	ton	29,500
Repair/replace of pump equipment and	IS	
appurtenant facilities	LS	-
Improvement of bridge	m^2	60,000
Pump gate	m ³ /s	80,000,000

Table G.2.1 Unit Price for Major Works

(4) Direct Construction Cost

Table G.2.2 shows work quantity, unit price and direct construction cost of master plan projects by phases. The detailed cost estimate is shown in *Annex G.1*. The total direct construction cost is estimated at Php 8.2 billion and broken down into the following respective phases.

- 1st phase: Php 3,258.8 million
- 2nd phase: Php 2,839.5 million
- 3rd phase: Php 2,134.1 million
- Total direct cost: Php 8,232.4 million

Table G.2.2	Main	Works	Cost
-------------	------	-------	------

Dra	inage Block		Item		Unit	Quantity	Unit Price (Peso)	Amount (Million Peso)						
			1				(,	Phase 1	Phase 2	Phase 3	Total			
		1	Rehabilitation works of drainage channel	s							1,140.5			
				Phase 1	m	139,000	1,200	166.8			166.8			
		1-1	Dredging of Esteros/Creeks	Phase 2	m	360,000	1,200		432.0		432.0			
				Phase 3	m	340,000	1,200			408.0	408.0			
				Phase 1	m	20,000	1,650	33.0			33.0			
		1-2	Declogging of Drainage Mains	Phase 2	m	50,000	1,650		82.5		82.5			
		-		Phase 3	m	11,000	1,650			18.2	18.2			
		2	Rehabilitation works of drainage pumpin	g stations	T.C.			2 005 0			2,129.0			
			Rehabilitation works of drainage pumping	Phase 1 ⁽¹⁾	L.S.			2,005.0			2,005.0			
		2-1	stations	Phase 2	L.S.				124.0	0.0	124.0			
				Phase 3	L.S.					0.0	0.0			
		3	Additional works of South Antipolo area		-						503.0			
	Vitas-	3-1	Replacement of existing Kabulusan Sub Outfall	B.C.(W3.8mxH2.7m)	m	140	250,000		35.0		35.0			
N01	Binondo- Escolta		Additional B.C. along South Antipolo Open	B.C.(W3.3mxH2.7m)	m	400	220,000		88.0		88.0			
	Escona	3-2	Canal	B.C.(W2.6mxH2.7m)	m	500	200,000		100.0		100.0			
		3-3	Additional B.C. along Solis Tescon D.M.	B.C.(W3.0mxH1.5m)	m	1,400	200,000			280.0	280.0			
		4	Additional works of channel to Quiapo Pu	Imping Station							307.5			
		4-1	Additional B.C. of Severino Reyes D.M.	B.C.(W2.8mxH2.5m)	m	700	205,000		143.5		143.5			
	Quiapo- Aviles	4-2	Extension of B.C. along España Street	B.C.(W2.8mxH2.5m)	m	800	205.000		164.0		164.0			
		5	Additional works for Aviles drainage area	1			,				699.2			
N02		Quiapo- Aviles	Quiapo- Aviles	Quiapo-	-		B.C.(W3.8mxH2.1m)	m	630	200.000		126.0		126.0
				5-1	Additional B.C. along Margal	B C (W3 8mxH2 1m)	m	700	200,000		140.0		140.0	
			5-2	Improvement of a Bridge along Estero de Sa	impaloc I	m ²	170	60,000		10.2		10.2		
		5-3	Improvement of Est. de Sampaloc II and Lei	nanto-Gov.Forbes D.M.	LS	170	00,000		263.0		263.0			
		5-4	Installation of Pump Gates at Uli-Uli floodg	ate	m ³ /a	2	80.000.000		160.0		160.0			
		6	Additional works of Estero de Vitas		III /S		00,000,000		100.0		18.0			
		0	Auditonal works of Estero de Vitas	Est de Vites							10.0			
			Heightenning of river well in the lower	L 900m, R 700m										
		6-1	Estero de Vitas	Est de Sunog Anog	m	3,600	5,000			18.0	18.0			
NOA	Maypajo-			L1200m, R 800m										
1904	Bumentrut- Balut	7	Additional works of Blumentritt Intercep	tor							723.2			
		7-1	Remedial works of existing Blumentritt Inte	rceptor	L.S.			50.0			50.0			
				B.C.(2xW2.5mxH3.3m)	m	560	245,000	137.2			137.2			
		7-2	Construction of Additional Interceptor	B.C.(W3.2mxH3.3m)	m	1,100	240,000	264.0			264.0			
		0		B.C.(W2.3mxH2.4m)	m	1,600	170,000	272.0			272.0			
		8	Additional works for severe inundation a	Rea in South Manila		650	200.000	120.0			460.1			
		8-1	Additional B.C. along Zobel Roxas D.M.	B.C.(2xW1.5mxH1.4m) B.C.(3xW1.5mxH1.4m)	m	65	210,000	130.0			13 7			
				B.C.(2xW2.2mxH1.7m)	m	800	220,000	176.0			176.0			
		8-2	Additional B.C. along Faraday D.M.	B.C.(2xW1.5mxH1.4m)	m	65	170,000	11.1			11.1			
		8-3	Additional B.C. along Makati Diversion	B.C.(2xW2.2mxH2.1m)	m	550	235 000		129 3		1293			
		0-5	Channel			550	255,000		.27.5					
S01	Libertad-	9	Additional works of Libertad pond	1	<u> </u>						522.0			
	i ripa de Gallina	9-1	Expansion of the existing Libertad pond	100mx1700m or	m ³	900,000	580		522.0		522.0			
		10		equivalent							1 200 0			
		10	Additional works of Dilain/Maricaban Ci	P C (2xW2 5mxH2 2m)		460	245.000			159.7	1,380.8			
		10-1	Construction of Maricaban Intercentor	B.C.(W3 7mrH3 3m)	m	2 550	245,000			624.8	624.8			
			· · · · · · · · · · · · · · · · · · ·	B.C.(W4.0mxH4.0m)	m	1.600	370,000			592.0	592.0			
		10-2	Improvement of Dilain Pond	, , , , ,	m	350	15,000			5.3	5.3			
		11	Additional works in Estero de Balete								29.1			
S02	Balete	11-1	Improvement of Padre Burgos B.C.		m	50	150,000			7.5	7.5			
		11-2	Improvement of bridge cross San Marcelino	St.	m ²	360	60,000			21.6	21.6			
602	Paco-	12	Additional works on Perlita Creek								160.0			
503	randacan- San Andres	12-1	Installation of Pump Gates on Perlita Creek		m ³ /s	2	80,000,000		160.0		160.0			
		13	Additional works in Sta.Clara drainage b	asin	1						160.0			
S04	Sta.Clara	13-1	Installation of Pump Gates in Sta.Clara drain	nage basin	m ³ /e	2	80,000.000		160.0		160.0			
			T. (.)	<u> </u>		-	,500,000	2 250 0	2 920 5	2 1 2 4 1	0 222 4			
			1 otal					2.220.0	2.037.3	2.134.1	0.434.4			

Note: (*1) This includes the cost for additional work at Aviles P.S.

(5) Resettlement Cost

The following items should be included in a resettlement cost.

Land acquisition and site development Construction of house Pre-relocation activities Relocation (actual moving of the settlers) Assistance coverage (financial/food assistance) Livelihood assistance (pre /post relocation) Project management Site management and monitoring External monitoring and evaluation

Resettlement cost required in "Pasig River Environmental Management and Rehabilitation Sector Development Program (March 2000)" is applied in the present study. The resettlement cost includes a parcel of lot and a completed house, plus all other necessary costs of entire relocation operation of a family, such as, pre-relocation activities, actual relocation, disturbance fees when applicable, assistance coverage, pre- or post relocation livelihood and skill trainings, project management and monitoring. The total amount is estimated at Php 212,000/family. It should be noted that the cost for land acquisition is not included.

Considering price increase during 2000 to 2004 (price escalation is 110.6%), unit price of the cost for resettlement excluding land acquisition cost is calculated as follows.

Php 212,000 / family x 1.106 = Php 234,472 / family

Land Acquisition cost for relocation site is calculated as shown in Table G.2.3.

Informal Sett	ler (Rec	eiving Site)		
Residential A	Area			
Average hou	ising lot	Number of		
(m ²)		Affected Household		
A-type	40	3,000	120,000 m ²	
B-type	20	2,500	50,000 m ²	
Sub Total			170,000 m ²	
Roads & Pub	olic Area			
30 % of Residential Area 51,000 m ²			51,000 m ²	
Total Land - Required			221,000 m ²	
			22.1 ha	
Unit Cost for A	Acquisitic	on	Php 1,000 /m ²	
Subtotal			Php 221,000,000	

 Table G.2.3
 Land Acquisition Cost for Resettlement Site

In the table, unit cost for acquisition based on DPWH policy framework (Aug. 2001) shown in *Table G.2.4* is applied in the present study.

DPWH policy framework Aug 2001		
Acquisition Cost		
Project Site(Sending Site)	8,250 /m ²	North Caloocan, (Zonal Vlalue 7,500 +10%, based on Administrative Order No. 50)
	12,000 /m ²	North Caloocan, Asking Price of Owner
Relocation Site(Receiving Site)	817 /m ²	San Jose Del Monte, Bulacan, 45km form Metro Manila (KAMANAVA Project)
	1,000 /m ²	Paran, Marikina Bridge Project
	750 /m ²	Baludad, Marikina Bridge Project
Livelihood Program	1 day	Meat Processing and food preservation
	1 day	Food trade and Novelty Items
	17 days	Isan gunting, Isan Suklay
	1 day	Food processing training
	1 day	Cooperative Development Orientation
Material Assistance	3 weeks	until their houses were constructed at the new relocation sites.
Food Assistance	1 week a	fter relocation
Pasay City Interview, July 2004		
Acquisition Cost		
Relocation Site(Receiving Site)	500 /m ²	Silan Cavite Resettlement Site, Cavite Province, 35km from Manila
NHA Interview, July 2004		
Acquisition Cost		
Relocation Site(Receiving Site)	240 /m ²	Caluan Resettlement Area, Laguna Province

Table G.2.4	Unit Cost for Aca	usition for Resettlement Sit	te
	01111 0001 101 / 109		

Unit : Php

The total number to be relocated is around 1,900 structures (5,500 families) estimated as of July 2004. The required resettlement cost including land acquisition is as follows.

-	Total	resettlement	cost:
---	-------	--------------	-------

- Resettlement cost excluding land acquisition cost:
- Land acquisition cost for relocation site:

Table G.2.5 Resettlement Cost

Php1,510.6 million

Php1,289.6 million

Php221.0 million

				Unit : Php million
Phase	Percent of Resettles	Resettlement (excl. land acquisition)	Land Acquisition	Total
1 st phase	15%	193.4	33.1	226.5
2 nd phase	35%	451.4	77.4	528.8
3 rd phase	50%	644.8	110.5	755.3
All Phase	100%	1,289.6	221.0	1,510.6

(6) Compensation Cost

The cost of land acquisition and house compensation for additional works of the existing Blumentritt interceptor (North Manila) and Faraday drainage main (South Manila) are required. The amounts for these, which are allocated in the 1st phase projects, are as follows.

Php3.8 million

Php0.8 million

Php3.0 million

- Total compensation cost for additional works:

- Land acquisition:
- House compensation:

The details are shown in Table G.2.6.

Items	Unit	Quantity	Unit Price (Php)	Amount (Php million)
1.Land acquisition	L.S	1		0.8
1.1 Blumentritt drainage main	m ²	250	2,000	0.5
1.2 Faraday drainage main	m ²	160	1,650	0.3
2.House compensation	nos	10	300,000	3.0
Total				3.8

Table G.2.6 Compensation Cost for Additional Works (1st Phase)

(7) Supporting Measures Cost

The cost for BEM and Team ESTERO activities and IEC campaign are estimated as follows.

Total cost for BEM and Team ESTERO activities: Php 417.8 million
 Total cost for IEC campaign: Php 71.1 million

Table G.2.7 Cost for BEM and Team ESTERO Activities and IEC Campaign

			Unit : Php million
Phase	BEM and Team ESTERO	IEC	Total
1 st phase	63.3	23.9	87.2
2 nd phase	141.5	23.6	165.1
3 rd phase	213.0	23.6	236.6
All Phase	417.8	71.1	488.9

The detailed cost estimation is presented in Tables G.2.8 and G.2.9.

		2005	2006	2007	2008	2009	2010	ShotTerm	
Establishment of BEM		40,000	40.000	44,000	50,000	50,000	50,000	274,000	
Establishment of Team ESTERO		280,000	280,000	308,000	350,000	350,000	350,000	1,918,000	
Training	P 30,000/Brgy	600,000	600,000	660,000	750,000	750,000	750,000	4,110,000	
Allowance									
	P 1,000 x 1person	20,000	40,000 140 000	62,000 217 000	87,000 304 500	112,000 392,000	137,000	458,000 1 603 000	
		000.0		000, 11 2		000,100		0000	
Implementation Cost	P 12000/Bargy	2,400,000	4,800,000	7,440,000	10,440,000	13,440,000	16,440,000	54,960,000	
Total		3,410,000	5,900,000	8,731,000	11,981,500	15,094,000	18,206,500	63,323,000	
			2011	2012	2013	2014	2015	Mid Term	
Establishment of BEM			56,000	56,000	56,000	56,000	56,000	280,000	
Establishment of Team ESTERO			392,000	392,000	392,000	392,000	392,000	1,960,000	
Training	P 30,000/Brgy		840,000	840,000	840,000	840,000	840,000	4,200,000	
Allowance									
	P 1,000 x 1person		161,000	189,000	217,000	245,000	273,000	1,085,000	
	P 500 x 7persons		563,500	661,500	759,500	857,500	955,500	3,797,500	
Implementation Cost	P 12000/Bargy		19,320,000	22,680,000	26,040,000	29,400,000	32,760,000	130,200,000	
T-4-1			01 222 E00	24 040 EDD	70 204 E00	31 700 E00	2E 27E E00	4 44 535 500	
I Otal			Z1,33Z,DUU	24,818,500	28,304,200	31,790,5UU	30,2/0,000	141,322,300	
			2016	2017	2018	2019	2020	Long Term	Total
Establishment of BEM			40,000	40,000	40,000	40,000	38,000	198,000	752,000 E 264 000
	P 30.000/Brav		600.000	600,000	600,000	600,000	570.000	2.970.000	11.280.000
)	3								
Allowance			205 000	345 000	336 000	366 000	374 000	1 671 000	200700
	P 500 x 7persons		1 032 500	1 102 500	1 172 500	1 242 500	1 309 000	5,859,000	3,211,000 11 259 500
Implementation Cost	P 12000/Bargy		35,400,000	37,800,000	40,200,000	42,600,000	44,880,000	200,880,000	386,040,000
Total			37,647,500	40,137,500	42,627,500	45,117,500	47,437,000	212,967,000	417,812,500

Activities
ESTERO
and Team
Cost for BEM
Table G.2.8 C

		2005	2006	2007	2008	2009	2010	Shot Term	
 Development of training kit Produce of Program Copy of DVD (600 copies) 		1,000,000 90,000			1,000,000 90,000			2,000,000 180,000	
2. Extra Curriculum (560 schools/5	P 35,000/school	3,325,000	3,325,000	3,325,000	3,325,000	3,150,000	3,150,000	19,600,000	
 Preparation and printing of prime 	P 50,000/primer	50,000	50,000	50,000	50,000	50,000	50,000	300,000	
4. Preparation and Printing of Com	iP 70,000/poster	70,000	70,000	70,000	70,000	70,000	70,000	420,000	
3. Poster design and printing	P 120,000/poster X 2 times	240,000	240,000	240,000	240,000	240,000	240,000	1,440,000	
Total		4,775,000	3,685,000	3,685,000	4,775,000	3,510,000	3,510,000	23,940,000	
			2011	2012	2013	2014	2015	Mid Term	
 Development of training kit Produce of Program Copy of DVD (600 copies) 			1,000,000 90,000			1,000,000 90,000		2,000,000 180,000	
2. Extra Curriculum (560 schools/5	P 35,000/school		3,920,000	3,920,000	3,920,000	3,920,000	3,920,000	0 19,600,000	
 Preparation and printing of prime 	P 50,000/primer		50,000	50,000	50,000	50,000	50,000	0 250,000	
4. Preparation and Printing of Com	iP 70,000/poster		70,000	70,000	70,000	70,000	70,000	350,000	
3. Poster design and printing	P 120,000/poster X 2 times		240,000	240,000	240,000	240,000	240,000	1,200,000 0	
Total			5,370,000	4,280,000	4,280,000	5,370,000	4,280,000	23,580,000	
			2016	2017	2018	2019	2020	Long Term	Total
 Development of training kit Produce of Program Copy of DVD (600 copies) 				1,000,000 90,000			1,000,000 90,000	2,000,000 180,000	6,000,000 540,000
2. Extra Curriculum (560 schools/5	P 35,000/school		3,920,000	3,920,000	3,920,000	3,920,000	3,920,000	19,600,000	58,800,000
 Preparation and printing of prime 	P 50,000/primer		50,000	50,000	50,000	50,000	50,000	250,000	800,000
4. Preparation and Printing of Com	iP 70,000/poster		70,000	70,000	70,000	70,000	70,000	350,000	1,120,000
3. Poster design and printing	P 120,000/poster X 2 times		240,000	240,000	240,000	240,000	240,000	1,200,000	3,840,000
Total			4,280,000	5,370,000	4,280,000	4,280,000	5,370,000	23,580,000	71,100,000

Table G.2.9 Cost for Information, Education and Communication Campaign

(8) Other Supporting Measures Cost

To support and sustain structural measures to be recovered and newly constructed, various supporting measures are taken up.

-	Total other supporting measures cost:	Php 177.6 million
-	Various management systems:	Php 138.5 million
-	Additional hydrological equipment:	Php 1.5 million
-	Emergency operation and maintenance equipment:	Php 37.6 million

The above supporting measures cost is allocated as follows.

1 st phase:	Php 39.1 million
	(additional hydrological equipment: Php 1.5 million and emergency
	operation and maintenance equipment: Php 37.6 million)
2 nd phase:	Php 138.5 million
	(various management systems: Php138.5 million)

Table G.2.10Cost for Equipment and Facilities for Effective Operation and
Maintenance

Countermeasures		Cost (Php million)
	 Document Management System Server, Software, PC, Printer, Scanner, Ethernet etc. 	6.2
Other Countermeasures for Effective Operation and Maintenance	 Pumping Stations Management System Server, Software, Scanner, Video, Interface, Ethernet 	116.1
	(2) Solid Waste Transportation Supporting System Server, Software, PDA (with GPS), Ethernet etc.	7.8
	 (3) Empowerment of Diagnostic System Diagnostic Machine, Notebook Computer, Sensor, Amplifier etc 	4.1
	(4) Manpower Resources Development Workshop, Site Training etc	4.3
	(5) Installation of Additional Hydrological Equipment Rain Gauge, O&M Equipment	1.5
	(6) Introduction of Emergency Operation and Maintenance Equipment Trailer Type Mobile Pump, O&M Equipment	37.6
	(7) Total	177.6

The detailed cost is shown in *Table G.2.11*. For the required specification of each equipment and facility, please refer to *Chapter 4.5 of Main Report*.

(9) Operation and Maintenance Cost

Aside from the above, annual operation and maintenance cost of drainage system is estimated as follows and the details are explained in *Chapter 4.5 of Main Report*.

- Total O&M cost:

Php 241.0 million per annum

				bit (\$	0	Cost
					5 8	Php
(1)	Description of Management Secretary and					
(1)	Server MMDA	Set	2	10.000	20.000	1 100 000
	Software	Set	1	10,000	10,000	550,000
	PC with software	Set	15	4,000	60,000	3,300,000
	Ethernet	Set	13	1,000	17.000	935.000
	Setting of Equipment (5% of Total)	Set	1	5,350	107,000	294,250
	Total				112,350	696
(2)	Puming Stations Magement Syste m		1	20.000	20.000	1 100 000
	Base Computer	Sat	1	20,000	20,000	1,100,000
	Management Software	Set	5	1 500 000	1 500 000	82 500 000
	Scaner Printer MMDA PS	Set	16	1,500,000	1,500,000	82,500,000
	Firewall OP Console UPS	500	10	20,000	20,000	1,100,000
	PC at PS MMDA, PS	Set	30	5,000	150.000	8.250.000
	Server at PS	Set	15	3,000	45,000	2,475,000
	Video PS	Set	15	1,000	15,000	825,000
	Ethernet	Set	15	1,000	15,000	825,000
	Interface	Set	15	20,000	300,000	16,500,000
	Setting of Equipment (5% of Total)	Set	1	104,550	2,091,000	5750250
	Total				2,195,550	1160
(2)	Salid Wards Turner to the Suration Suration					
(3)	Sond waste Transpitation Supring System	Set	6	10000	60000	3 300 000
	Software	Set	1	50,000	50000	2 750 000
	PDA(with GPS)	Set	50	500	25000	1 375 000
	Setting of Equipment (5% of Total)	Set	50	6.750	135000	371250
	Total	~		.,	141,750	9 6
(4)	Empwerment of PumpDiagnostic System	Set				
	Diagnostic Machine with PC	Set	2	10000	20,000	1,100,000
	Software	Set	1	30000	30,000	1,650,000
	AC Sensor and Amplifier	Set	2	3000	6,000	330,000
	Polling Sensor	Set	2	1000	10,000	110,000
	Case Goods	Set	2	3000	2,000	330,000
	Total	Set	2	5000	0,000	550,000
					, ,	
(5)	Mpwer Resources Development					
	Workshop 4 time/year	Set				
	Expert (F) $4P*4$	Set	16	2000	32,000	1,760,000
	Material 80*4	Set	320	20	6,400	352,000
	Confreatance 60*4	set	240	20	4,800	264,000
	Site framing 4 time/year Expert (E) ΔD^*A	Dorg	16	2000	32 000	1 760 000
	Hardware Material	set	10	1000	1000	55 000
	Consumption	set	1	1000	1000	55,000
	Total	500	-	1000	7 0	1 9
(6)	Installation of Additional Hydrological Eqiment					
	Tipping Bucket Rain Gauge	Set	4	6000	24000	1,320,000
	Setting of Equipment (5% of Total)	Set		1200	1200	66,000
	O&M Equipment				1200	66,000
——	10(8)	+			29	L PV
(7)	Introduction of Emergency Opration					
	and Mintenance Eqiption t					
	Trailer Type Mobile Pump	Set	10	65000	650,000	35,750,000
	O&M Equipment 5%				32,500	1,787,500
1	Total				86 9	

Table G.2.11 Detailed Cost for Equipment and Facilities

(10) Project Cost

The total project cost is Php 15.4 billion as summarized in *Table G.2.12*. It should be noted that the total project cost shown here does not include the operation and maintenance cost (*Php 241.0 million per annum*).

Item	Amount (Php million)	Remarks	
1. Civil Work	9,703.8		
1.1 Preparatory	411.6	5 % of (1.2)	
1.2 Main	8,232.4		
1.3 Other supporting measures	177.6		
1.4 Miscellaneous	882.2	10 % of (1.1+1.2+1.3)	
2. VAT	970.4	10 % of (1)	
3. Resettlement and Compensation Cost	1,590.1		
3.1 Resettlement cost	1,510.6		
3.2 Compensation cost for additional works	3.8		
3.3 Miscellaneous	75.7	5 % of (3.1+3.2)	
4. Government Administration Cost	291.1	3 % of (1)	
5. Engineering Services	970.4	10 % of (1)	
6. Physical Contingency	1,352.6	10 % of (1+2+3+4+5)	
7. Supporting Measure Cost			
7.1 BEM and Team ESTERO	417.8		
7.2 IEC	71.1		
Total	15,367.3		

Table G.2.12 Project Cost for Master Plan Projects

Total project cost is approximately broken down into the respective 3 phases as follows.

1 st phase projects:	Php 5,503.9 million
2 nd phase projects:	Php 5,419.4 million
3 rd phase projects:	Php 4,444.0 million

G.3 COST ESTIMATE FOR PRIORITY PROJECTS

G.3.1 OBJECTIVE WORKS OF PRIORITY PROJECTS

(1) Rehabilitation and Additional Works of Drainage Channel Facilities in North Manila

The priority projects in north Manila are summarized below.

Estero de Sunog Apog

- Dredging (Clearing): 91,600 m³

Blumentritt Interceptor

- Declogging of existing interceptor and related works: 9,800 m³
- Construction of additional interceptor by box culvert and remedial works: 2,570 m in length
- (2) Rehabilitation and Additional Works of Drainage Channel Facilities in South Manila

The priority projects in south Manila are summarized below.

Estero de Tripa de Gallina, PNR Canal and Calatagan Creek I

- Dredging (Clearing): 47,000 m³
- Buendia Outfall
- Declogging and related works: 7,200 m³

Zobel Roxas Drainage Main

- Declogging: 2,200 m³
- Construction of additional box culvert: 495 m in length
- Pasong Tamo Drainage Main

Declogging: 900 m³

Faraday Drainage Main

- Declogging: 100 m³
- Construction of additional box culvert: 1,314 m in length

(3) Rehabilitation and Additional Works of Drainage Pumping Stations

The priority projects for the drainage pumping stations in the core area of Metropolitan Manila are summarized below.

Drainage Pumping Station in North Manila

- Repair/replacement of pump equipment and appurtenant facilities: 5 drainage pumping stations

Drainage Pumping Station in South Manila

- Repair/replacement of pump equipment and appurtenant facilities: 7 drainage pumping stations

G.3.2 PACKAGING AND CONSTRUCTION SCHEDULE OF OBJECTIVE WORKS

(1) Packaging of Project

With due consideration of the respective work natures of the priority projects, the project works are divided into 3 lots with 11 packages carried out by contractors selected through local (LCB) and/or international (ICB) competitive biddings. Those are as follows.

- 1) Rehabilitation and Additional Works of Drainage Channel Facilities in North Manila (Lot I)
 - Estero de Sunog Apog I (lower part): LCB
 - Ester de Sunog Apog II (remained): LCB
 - Blumentritt interceptor: ICB
- 2) Rehabilitation and Additional Works of Drainage Channel Facilities in South Manila (Lot II)
 - Estero de Tripa de Gallina, PNR canal and Calatagan creek I: LCB
 - Buendia outfall: ICB
 - Zobel Roxas drainage main: ICB
 - Pasong Tamo drainage main: LCB
 - Faraday drainage main: ICB

3) Rehabilitation and Additional Works of Drainage Pumping Stations (Lot III)

- First group (Aviles, Quiapo, Valencia and Tripa de Gallina): ICB
- Second group (Pandacan, Paco, Sta. Clara, Libertad, Makati and Binondo): ICB
- Third group (Balete, Escolta): ICB

(2) Construction Schedule

For implementation of the priority projects in the core area of Metropolitan Manila, the fund arrangement including loan procedure and establishment of implementation organization of PMOs are firstly needed in the pre-construction stage. Subsequently, a selection of consultant is to be made for conducting detailed design for preparation of tender document and then, contractors are to select for carrying out construction works through local and/or international competitive biddings.

Considering such preparatory works, the construction time schedule is proposed as shown in *Figure G.3.1*. The preparatory works are to be started in early 2005 immediately after finishing of the feasibility study. The total construction period including the detailed design, procurement of contractors and maintenance period after completion of the respective projects is proposed at 5 years from 2006 to 2010.

As already mentioned, the rehabilitation works of the open channel of estero, especially in the dredging of estero de Sunog Apog is of simple and conventional works and that no resettlement of the formal and informal settlers is required in carrying out the object dredging works. In order to mobilize the project smoothly while waiting fund arrangement including loan procedure, it is proposed to commence the works in early 2005 immediately after finishing the feasibility study through a selection of local contractor or by means of force account system by MMDA. The drawings for dredging works prepared by the feasibility study are available and enough for carrying out the dredging works. However, the resettlement of informal settlers is needed for the same nature works of dredging of estero de Tripa de Gallina and other canal/creek I, prior to the commencement of the dredging works.

Item	2005 2006 2007 2008 200	09 2010
Lot I: Rehabilitation and Additional Works of Drainage Channel Facilities in North Manila		
1) Estero de Sunog Apog I (LCB)		
-Feasibility Study		
-Listing up and Securing Budget		
-Construction		
2) Estero de Sunog Apog II (LCB)	Loan procedure	
-Loan Procedure (Securing Budget)	Detailed design	
-Detailed Design		
-Tendering (Contractor Selection)	30 months	
-Construction		
3) Blimentritt Intercentor /ICB)		
-Detailed Design		
-Tendering (Contractor Selection)	Construction: 3	36 months
-Construction		
Lot II: Rehabilitation and Additional Works of Drainage Channel Facilities in South Manila		
1) Estero de Trina de Gallina PNR Canal & Calatacian Creek I (I CB)		
2) Pasona Tamo Drainade Main (LCB)	Loan procedure	
- Loan Procedure (Securina Budget)		
-Detailed Design		
-Tendering (Contractor Selection)	30 months	
-Construction		
3) Buendia Outfall (ICB)		
4) Zobel Roxas Drainage Main (ICB)		
5) Faraday Drainage Main (ICB)	Loan procedure	
-Loan Procedure (Securing Budget)	Detailed design	
-Detailed Design		
- Tendering (Contractor Selection)	36 months	
-Construction		
· · · · · · · · · · · · · · · · · · ·		
Lot III: Rehabilitation and Additional Works of Drainage Pumping Stations		
1) First aroun (Aviles: Quiano: Valencia: Trina de Gallina) (ICB)		
2) Second group (Pandacan, Paco, Sta, Clara, Libertad, Makati, Binondo) (ICB)		
3) Third amin (Balete Escolta) (ICB)		
-Loan Procedure (Securing Budget)		
-Detailed Design		
-Tendering (Contractor Selection)	30 month	
-Construction		

Figure G.3.1 Construction Time Schedule

G.3.3 COST ESTIMATE FOR PRIORITY PROJECTS

(1) Basic Conditions for Cost Estimate

Construction cost is estimated for the priority projects and the basic conditions of cost estimate applied in the master plan are used as they are in principle.

A dumping site designated in the ongoing KAMANAVA Project is available for the priority projects. The dumping area is approximately 5 hectare having around volume of 150,000 m³. The dumping site is located 15 to 20 km from the project area in the core area. *Figure G.3.2* shows the location of proposed dumping site.

Figure G.3.2 Location of Dumping Site

Further, the composition of main civil works cost is as summarized below in the priority projects.

- Main works cost including temporary works with $3 \sim 10\%$ of the total cost of civil works depending on work natures and site conditions
- Installation cost for equipment and facilities for effective O&M activities
- Miscellaneous cost with 5% of the total costs of main works cost and installation cost

(2) Unit Price

Unit price for major works are estimated on the basis of required equipment cost, labor cost and material cost considering transport distance to the designated dumping site in KAMANAVA area and the respective site conditions. The estimated unit price is summarized in *Table G.3.1*. The detail is shown in *Annex G.2*.

Words Home	Unit	Unit Price (pesos)		
work Item		Foreign	Local	Total
Unit Price for Works in North Manila				
Dredging of estero	m ³	1,484	499	1,983
Declogging of box culvert channel	m ³	1,614	650	2,264
Excavation works	m ³	1,128	316	1,444
Backfill	m ³	38	689	727
Unit Price for Works in South Manila				
Dredging of small estero	m ³	1,286	517	1,803
Declogging of box culvert channel	m ³	2,213	834	3,047
Excavation	m ³	1,350	373	1,723
Backfill		38	689	727
Other Unit Prices				
Concrete	m ³	66	4,718	4,784
Reinforced bar	ton	20,746	12,813	33,559
Reinforced concrete	m ³	1,726	5,742	7,468
Demolishing of pavement	m ³	137	50	187
Pavement	m ²	450	150	600
Repair/replace of pump equipment and appurtenants facilities	LS	-	-	-

Table G.3.1 Unit Price of Major Works
(3) Direct Construction Cost

By using estimated unit prices, the total direct construction cost for the priority projects is estimated at Php 3.25 billion as shown in *Table G.3.2*. The detail is shown in *Annex G.3*.

	Sub Project	Civil Works Cost (million Pesos)	Procurement of Contractor /Equipment
Lot	t I: Rehabilitation and Additional Works for Drainage Channel		
Fac	cilities in North Manila		
1.	Estero de Sunog Apog I	<u>20.4</u>	LCB
	- Dredging	20.4	
2.	Estero de Sunog Apog II	<u>166.7</u>	LCB
	- Dredging	166.7	
3.	Blumentritt Interceptor	<u>563.2</u>	ICB
	- Declogging of existing Blumentritt Interceptor	43.6	
	- Construction of additional Blumentritt Interceptor	519.6	
4.	Sub total	750.3	
Lot Fac	t II: Rehabilitation and Additional Works for Drainage Channel cilities in South Manila		
1.	Estero de Tripa de Gallina, PNR canal and Calatagan creek I	<u>87.5</u>	LCB
	- Dredging	87.5	
2.	Buendia outfall	<u>43.5</u>	ICB
	- Declogging	43.5	
3.	Zobel Roxas drainage main	<u>54.9</u>	ICB
	- Declogging	7.5	
	- Construction of additional box culvert	47.4	
4.	Pasong Tamo drainage main	<u>2.9</u>	LCB
	- Declogging	2.9	
5.	Faraday drainage main	<u>269.3</u>	ICB
	- Declogging	0.3	
	- Construction of additional box culvert	269.0	
6.	Sub total	458.1	
Lot	t III: Rehabilitation and Additional Works of Pumping Stations		
1.	Rehabilitation of 12 pumping stations	<u>2,005.0</u>	ICB
	- Group 1 (Aviles, Quiapo, Valencia, Tripa de Gallina)	1,057.0	
	- Group 2 (Pandacan, Paco, Sta. Clara, Libertad, Makati, Binondo)	880.0	
	- Group 3 (Escolta and Balete)	68.0	
2.	Sub total	2,005.0	
Ins	tallation of Equipment and Facilities for Effective O&M		
Act	tivities	<u>39.1</u>	ICB
1.	Emergency O&M equipment	37.6	
2.	Rainfall and water level observation facilities	1.5	
3.	Sub total	39.1	
Gr	and Total	3,252.5	

Table G.3.2 Civil Works Costs of Respective Works

(4) Resettlement Cost

The same unit cost estimated in Master Plan stage is applied.

The required direct cost for the resettlement of the informal settlers residing in the objective channels is estimated at Php192.2 million, assuming that the number of families to be resettled is 700.

Total resettlement cost:

- Resettlement cost excluding land acquisition cost:
- Land acquisition cost for relocation site: _

(5) Compensation Cost

Compensation cost during the construction stage of the additional works is estimated at Php 19.1 million and broken down as follows.

-	Total compensation cost for additional works:	Php19.1 million
-	Land acquisition:	Php2.3 million
-	House compensation:	Php16.8 million

The details are shown in *Table G.3.3*.

Itam	Unit Price	Quantity		Amount	Amount
Item	(Php)	Quantity		(Php)	(Php mil.)
Total Cost				19,057,560	19
1.Land acquisition				2,268,000	2
1.1 Bluementritt drainage main	3,240	500 m2		1,620,000	1.6
1.2 Barangay Hall	3,240	200 m2		648,000	0.6
2.House compensation				16,789,560	17
2.1 Bluementritt					
(buildings at the corner,					
oppposite of Manila North Cemetery)					
2.1.1 Demolition & Disposal Cost	1,270	300 m2 x	2 floors	762,000	0.8
2.1.2 Construction of New Buildings	12,000	300 m2 x	2 floors	7,200,000	7.2
2.1.3 Disturbance Fee &					
Temporary Relocation Fee					
- House Rent	8,000	5 H.H. x	36 months	1,440,000	1.4
 Cost for Relocation (Rental Truck) 	2,000	2 cars x	5 trips	20,000	0.0
- Lost Income	10,000	5 H.H. x	36 months	1,800,000	1.8
2.2 Barangay Hall (Brgy 183, 18m x 7m)					
2.2.1 Demolition & Disposal Cost	1,270	126 m2 x	2 floors	320,040	0.3
2.2.2 Construction of New Buildings	12,000	126 m2 x	2 floors	3,024,000	3.0
2.2.3 Disturbance Fee &					
Temporary Relocation Fee					
- House Rent	6,000	3 units x	6 months	108,000	0.1
- Cost for Relocation (Rental Truck)	2,000	1 cars x	10 trips	20,000	0.0
2.3 DPWH Temporary Office & 5 Houses					
along PNR canal					
2.3.1 Demolition & Disposal Cost					
- DPWH Temporary Office(7m x 4m)	1,270	28 m2 x	2 floors	71,120	0.1
- 5 houses	280	3 labors x	5 houses x 2days	8,400	0.0
2.3.2 Construction of New Buildings	12 000	28 m2 v	-	226.000	0.2
for DPWH office	12,000	20 1112 X		330,000	0.3
2.3.3 Compensation for informal settlers	210,000	8 H.H.		1,680,000	1.7

Table G.3.3 Compensation Cost for Additional Works

Php192.2 million

Php28.1 million

Php164.1 million

(6) Cost for Community-Involved Solid Waste Management

For the sustainability of the drainage system in view of daily operation and maintenance activities, community-involved solid waste management including IEC has been proposed in the Priority Projects. The cost estimated in Master Plan stage is applied. The required cost for this item is Php 87.4 million and broken down as follows.

-	Total cost for community-involved SWM:	Php87.2 million
-	Cost for BEM and Team ESTERO activities:	Php63.3 million
-	Cost for IEC:	Php23.9 million

(7) Cost for Installation of Equipment and Facilities for Effective O&M Activities

The break down of this item is given below.

-	Total cost for installation of equipment and facilities:	Php39.1 million
-	Cost for emergency O&M equipment:	Php37.6 million
-	Cost for additional hydrological equipment:	Php1.5 million

(8) Annual O&M Cost

The same annual cost for O&M estimated in Master Plan stage is applied.

- Annual cost for operation and maintenance activities: Php241.0 million

(9) Project Cost

The project cost of the priority projects except price contingency is estimated at Php 4,952.0 million as shown in *Table G.3.4*. It should be noted that the above total cost does not include annual costs for annual operation and maintenance. Furthermore, the ratio of preparatory works/temporary works cost for the main works which was estimated multiplying the main works cost by 5% in the master plan stage, was, in this stage, counted in the main works cost with 3% to 10%, considering site conditions and natures of objective works, while the ratio of miscellaneous for the civil works cost was decreased to 5%, considering further study depth in this stage from 10% applied in the master plan stage.

Item	Amount (million Pesos)	Remarks
1. Civil Works cost	3,415.1	
1.1 Main works	3,252.5	incl. preparatory/temporary cost
1.2 Miscellaneous	162.6	5 % of (1.1)
2. VAT	341.5	10 % of (1)
3. Resettlement and Compensation Cost	221.9	
3.1 Resettlement cost	192.2	
3.2 Compensation cost for additional works	19.1	
3.3 Miscellaneous	10.6	5 % of (3.1+3.2)
4. Government administration cost	102.5	3 % of (1)
5. Engineering services cost	341.5	10 % of (1)
6. Physical contingency	442.3	10 % of (1+2+3+4+5)
7. Supporting measures cost	87.2	
7.1 BEM and Team ESTERO	63.3	
7.2 IEC	23.9	
8. Total project cost	4,952.0	

Table G.3.4 Project Cost for Priority Projects

Note: US\$1.0=Php55=JY110 (July 2004)

ANNEX G.1

COST ESTIMATE FOR WORKS PROPOSED IN MASTER PLAN

Annex G.1.1 : Cost Estimate for Additional Box Culvert and River Wall Proposed in Master Plan

3. Additional works of South Antipolo area

- 3-1 Replacement of existing Koulusan Sub Outfal 1
- 3-2 Additional B.C. along South Antipolo Open Canal
- 3-3 Additional B.C. along Solis Tescon D.M.

									unit:	peso/m
		Unit Price	3-1		3.	-2	3.	-2	3-	.3
Items	Unit	l I	Box C	ulvert	Box Cu	lvert (1)	Box Cu	lvert (2)	Box C	ulvert
			Qantity	Amount	Qantity A	mount Q	intity An	iount Qan	tity Amo	unt
Concrete	m ³	5,140	8.00	41,120	7.00	35,980	6.00	30,840	5.90	30,326
Bar	ton	29,500	0.64	18,880	0.56	16,520	0.48	14,160	0.48	14,160
Excavation	m ³	572	34.00	19,448	30.00	17,160	26.00	14,872	30.00	17,160
Back Fill	m ³	514	16.00	8,224	14.00	7,196	13.00	6,682	14.00	7,196
S. Sheet Pile	m ²	3,200	18.00	57,600	16.00	51,200	16.00	51,200	15.00	48,000
Deck	m ²	5,950	6.80	40,460	6.00	35,700	5.30	31,535	5.20	30,940
Pavement	m ²	2,000	6.80	13,600	6.00	12,000	5.30	10,600	5.20	10,400
Demolish	m ³	1,020	0.00	0	0.00	0	0.00	0	2.00	0
Sub-total				199,332		175,756		159,889		158,182
Other %	0.25			49,833		43,939		39,972		39,546
Total (peso)				249,165		219,695		199,861		197,728
Round				250,000		220,000		200,000		200,000
Dimensions			w3.8m x h2	7m	w3.3m x h2	2.7m	w2.6m x h2	.7m	w3.0m x h1	.5m

4. Additional works of channels to Quiapo Pumping Station

- 4-1 Extension of B.C.along Españ Stree 1
- 4-2 Extension of B.C.along Españ Stree 1

			0 1	•				
							unit:	peso/m
		Unit Price	it Price 4-1 Box Culvert		4-	-2		
Items	Unit				Box C	ulvert		
			Qantit y	Amount	Qantit y	Amount		
Concrete	m ³	5,140	6.00	30,840	6.00	30,840		
Bar	ton	29,500	0.48	14,160	0.48	14,160		
Excavation	m ³	572	25.00	14,300	25.00	14,300		
Back Fill	m ³	514	12.00	6,168	12.00	6,168		
S. Sheet Pile	m ²	3,200	17.00	54,400	17.00	54,400		
Deck	m ²	5,950	5.60	33,320	5.60	33,320		
Pavement	m ²	2,000	5.60	11,200	5.60	11,200		
Demolish	m ³	1,020	0.00	0	0.00	0		
Sub-total				164,388		164,388		
Other %	0.25			41,097		41,097		
Total (peso)				205,485		205,485		
Round				205,000		205,000		
Dimensions		-	w2.8m x h2	2.5m	w2.8m x h2	.5m		

5. Additional works for Aviles drainage area 5-1 Additional B.C. along Margal

Improvement of Est. de Sampaloc II and Epanto-Gov.Forbes D.M (5-3)

	•			-	-			unit:	peso/m
		Unit Price	5	-1		(5	-3)		
Items	Unit		Box C	Culvert		Box C	ulvert*		
			Qantity	Amount		Qantity A	mount		
Concrete	m ³	5,140	6.00	30,840		8.00	41,120		
Bar	ton	29,500	0.45	13,275		0.64	18,880		
Excavation	m ³	572	26.00	14,872		34.00	19,448		
Back Fill	m ³	514	13.00	6,682		16.00	8,224		
S. Sheet Pile	m ²	3,200	15.00	48,000		18.00	57,600		
Deck	m ²	5,950	5.80	34,510		6.80	40,460		
Pavement	m ²	2,000	5.80	11,600		6.80	13,600		
Demolish	m ³	1,020	0.00	0		0.00	0		
Sub-total				159,779			199,332		
Other %	0.25			39,945			49,833		
Total (peso)				199,724			249,165		
Round				200,000			250,000		
Dimensions			w3.8m x h2	2.1m		w3.8m x h2	2.7m		

Note: * For the cost estimation, equivalent box culvert for neccesary additional discharge capacity is considered for 1,050m, considering the case that Estero de Sampaloc II is not available to be utilized. This is costly, which gives safer estimation.

6. Additional work for Estero de Vitas

Heightenning of river wall in the lower estro de Vitas 6-1

								unit:	peso/m
		Unit Price	6	-1					
Items	Unit		River	River Wall					
			Qantit y	Amount					
Concrete	m ³	5,140	0.80	4,112					
Bar	ton	29,500		0					
Excavation	m ³	572		0					
Back Fill	m ³	514		0					
S. Sheet Pile	m ²	3,200		0					
Deck	m ²	5,950		0					
Pavement	m ²	2,000		0					
Demolish	m ³	1,020	0.00	0					
Sub-total				4,112					
Other %	0.25			1,028					
Total (peso)				5,140					
Round				5,000					
Dimensions			h=0 to	51 m			-		

7. Additional works of Blumentritt interceptor

7-2 Construction of Additional Interceptor

							unit:	peso/m	
		Unit Price	7-	7-2		7-2		7-2	
Items	Unit		Box Culvert (1)		Box Culvert (2)		Box Culvert (3)		
			Qantit y	Amount	Qantit y	Amount	Qantit y	Amount	
Concrete	m ³	5,140	10.00	51,400	7.50	38,550	4.00	20,560	
Bar	ton	29,500	0.80	23,600	0.60	17,700	0.30	8,850	
Excavation	m ³	572	40.00	22,880	33.00	18,876	21.00	12,012	
Back Fill	m ³	514	17.00	8,738	16.00	8,224	13.00	6,682	
S. Sheet Pile	m ²	3,200	18.00	57,600	18.00	57,600	15.00	48,000	
Deck	m ²	5,950	4.00	23,800	6.00	35,700	5.00	29,750	
Pavement	m ²	2,000	4.00	8,000	6.00	12,000	5.00	10,000	
Demolish	m ³	1,020	0.00	0	3.00	3,060	0.00	0	
Sub-total				196,018		191,710		135,854	
Other %	0.25			49,005		47,928		33,964	
Total (peso)				245,023		239,638		169,818	
Round				245,000		240,000		170,000	
Dimensions			w2.5m x h3	.3m x 2	w3.2m x h3	.3m	w2.3m x h2.4m		

8. Additional works for severe inundation area in South Manila

8-1

- 8-2
- Additional B.C. along Zbel Roxas D.M . Additional B.C. along Faraday D.M. Additional B.C. along Makati Diversion Channel 8-3

									unit:	peso/m
		Unit Price	8-	-1	8-	-1	8-	-2	8-	-2
Items	Unit		Box Cu	lvert (1)	Box Cu	Box Culvert (2)		lvert (1)	Box Culvert (2)	
			Qantit y	Amount	Qantit y	Amount	Qantit y	Amount	Qantit y	Amount
Concrete	m ³	5,140	5.50	28,270	8.00	41,120	6.00	30,840	5.20	26,728
Bar	ton	29,500	0.44	12,980	0.64	18,880	0.48	14,160	0.42	12,272
Excavation	m ³	572	22.00	12,584	36.00	20,592	26.00	14,872	23.00	13,156
Back Fill	m ³	514	11.50	5,911	15.00	7,710	13.00	6,682	14.00	7,196
S. Sheet Pile	m ²	3,200	14.00	44,800	15.00	48,000	15.00	48,000	14.00	44,800
Deck	m ²	5,950	6.80	40,460	0.00	0	7.40	44,030	4.00	23,800
Pavement	m ²	2,000	6.80	13,600	14.00	28,000	7.40	14,800	4.00	8,000
Demolish	m ³	1,020	0.00	0	3.00	3,060	2.00	2,040	0.00	0
Sub-total				158,605		167,362		175,424		135,952
Other %	0.25			39,651		41,841		43,856		33,988
Total (peso)				198,256		209,203		219,280		169,940
Round				200,000		210,000		220,000		170,000
Dimensions			w1.8m x h1	.4m x2	w1.5m x h1	.4m x 3	w2.2m x h1.7m x2		w1.5m x h1	.4m x2

unit: peso/m

							,,	Process
		Unit Price	8	-3				
Items	Unit		Box C	ulvert				
			Qantit y	Amount				
Concrete	m	5,140	6.50	33,410				
Bar	ton	29,500	0.52	15,340				
Excavation	m ³	572	30.00	17,160				
Back Fill	m ³	514	15.00	7,710				
S. Sheet Pile	m ²	3,200	17.00	54,400				
Deck	m ²	5,950	7.50	44,625				
Pavement	m ²	2,000	7.50	15,000				
Demolish	m ³	1,020	0.00	0				
Sub-total				187,645				
Other %	0.25			46,911				
Total (peso)				234,556				
Round				235,000				
Dimensions			w2.2m x h2	.1m x2	-			

10. Additional Works of Dilain/Maricaban Creek area

Construction of Maricaban Interceptor 10-1

10-2 Improvement of Dilain Pond

	P								unit:	peso/m
		Unit Price	10)-1	10)-1	10	-1	10	-2
Items	Unit		Box Cu	lvert (1)	Box Cu	lvert (2)	Tur	nnel	W	all
			Qantit y	Amount	Qantit y	Amount	Qantit y	Amount	Qantit y	Amount
Concrete	m ³	5,140	14.00	71,960	8.50	43,690		0	1.80	9,252
Bar	ton	29,500	0.19	5,605	0.09	2,508		0		0
Excavation	m ³	572	61.00	34,892	37.00	21,164		0	3.00	1,716
Back Fill	m ³	514	21.00	10,794	17.00	8,738		0	2.00	1,028
S. Sheet Pile	m ²	3,200	22.00	70,400	21.00	67,200		0		0
Deck	m ²	5,950	10.40	61,880	6.60	39,270		0		0
Pavement	m ²	2,000	10.40	20,800	6.60	13,200		0		0
Demolish	m ³	1,020	0.00	0	0.00	0	0.00	0	0.00	0
Sub-total				276,331		195,770		0		11,996
Other %	0.25			69,083		48,942		0		2,999
Total (peso)				345,414		244,712		0		14,995
Round Up				345,000		245,000		370,000		15,000
Dimensions			w3.5m x h3	.3m x2	w3.7m x h3	.3m	w4.0m x h4	.0m		

Alternative Study

a. Additional works of Aviles drainage area Alternative-2 (Construction of Sampaloc Interceptor)

			_						unit:	peso/m
Items	Unit	Unit Price	Culvert 1		Culv	Culvert 2		Culvert 3		
			Qantity	Amount	Qantity A	mount Q	antity An	ount		
Concrete	m ³	5,140	10.00	51,400	9.00	46,260	7.00	35,980		
Bar	ton	29,500	0.80	23,600	0.72	21,240	0.56	16,520		
Excavation	m ³	572	58.00	33,176	55.00	31,460	38.00	21,736		
Back Fill	m ³	514	34.00	17,476	32.00	16,448	23.00	11,822		
S. Sheet Pile	m ²	3,200	25.00	80,000	23.00	73,600	21.00	67,200		
Deck	m ²	5,950	8.60	51,170	8.50	50,575	6.10	36,295		
Pavement	m ²	2,000	8.60	17,200	8.50	17,000	6.10	12,200		
Demolish	m ³	1,020	0.00	0	0.00	0	0.00	0		
Sub-total				274,022		256,583		201,753		
Underpin %	0.15			41,103		38,487		30,263		
Other %	0.25			68,506		64,146		50,438		
Total (peso)				383,631		359,216		282,454		
Round Up				385,000		360,000		284,000		
Dimensions			w2.8m x h2	2.7m x2	w2.7m x h2	2.6m x2	w3.2m x h2	.7m		

b. Improvement of Dilain/Maricaban Creek area Alternative-1 (Improvemnet of Dilain Creek and Increase of Pump Capacity)

` I					 • /		unit:	peso/m
Items	Unit	Unit Price	Improv Dillain Parap	ement of 1 Creek et Wall				
			Qantity	Amount				
Concrete	m	5,140	3.30	16,962				
Bar	ton	29,500	0.30	8,850				
Excavation	m ³	572	5.00	2,860				
Back Fill	m ³	514	3.00	1,542				
S. Sheet Pile	m ²	3,200		0				
Deck	m ²	5,950		0				
Pavement	m ²	2,000		0				
Demolish	m ³	1,020	1.00	1,020				
Sub-total				31,234				
Other %	0.25			7,809				
Total (peso)				39,043				
Round Up		1,000		40,000				
Dimensions			h=2	.6 m		-		

			Unit:Peso
Description	Drainage Capa	ncity	Total
1. Group 1 Rehabilitat	tion Works		
1.1 Aviles (*1)	18.6	m ³ /s	330,000,000
1.2 Qiapo	10.8	m $^{3}/s$	169,000,000
1.3 Valencia	11.8	m ³ /s	172,000,000
1.4 Tripa de Gallina	57	m ³ /s	386,000,000
Sub total			1,057,000,000
2. Group 2 Rehabilitat	tion Works		
2.1 Pandacan	4.4	m ³ /s	87,000,000
2.2 Paco	7.6	m ³ /s	138,000,000
2.3 Sta. Clara	5.3	m ³ /s	90,000,000
2.4 Ibertad	42	m ³ /s	298,000,000
2.5 Makati	7	m ³ /s	102,000,000
2.6 Binondo	11.6	m ³ /s	165,000,000
Sub total			880,000,000
3. Group 3 Rehabilitat	tion Works		
3.1 Balete	3	m ³ /s	34,000,000
3.2 Escolta	1.5	m ³ /s	34,000,000
Sub total			68,000,000
4. Group 4 Rehabilitat	tion Works		
4.1 Vitas	32	m ³ /s	52,000,000
4.2 Balut	2	m ³ /s	20,000,000
4.3 San Andres	19	m ³ /s	52,000,000
Sub total			124,000,000
Total			2,129,000,000

Annex G.1.2 Cost Estimate for Rehabilitation Works of Drainage Pumping Stations in North and South Manila

Me:(*1) Cost for increase of pump capacity $(3m^{-3}/s)$ is included.

ANNEX G.2

UNIT PRICE FOR MAJOR WORKS OF PRIORITY PROJECTS

Annex G.2 : Unit Price for Major Works of Priority Projects

Dredging (Clearing) for Estero in North Manila

		Amount		Port	tion
	nos•h	Peso/h	Peso	Foreign	bcal
I. Equipment					
Clamshell	1	900	900	720	180
Barge	1	400	400	280	120
Bottom door type hopper	1	250	250	150	100
Tugboat	1	300	300	210	90
Truck crane 25t	1	1,800	1,800	1,440	360
Dumptruck 8t	3	1,700	5,100	4,080	1,020
Sub-total			8,750	6,880	1,870
II. åbor					
Foreman	1	52	52		52
Operator	7	38	266		266
aborer	5	30	150		150
Sub-total			468		468
III. Material					
Fuel			300	240	60
Sub-total			300	240	60
Dewatering of dumping area	15%		1,428	1,071	357
Mark- etc	10%		952	712	240
Total			11,898	8,903	2,995
Output	6 m ³ /h	•	· ·		
	Direct unit cost		1,983	1,484	499

Direct unit cost 1,983 1,484 499

Declogging (Clearing) for Box Culvert in North Manila

			Amount	Port	ion
	nos•h	Peso/h	Peso	Foreign	b cal
I. Equipment					
Clamshell	1	900	900	720	180
Submersible pump	1	150	150	105	45
Air compressor	0.3	1,800	400	320	80
Fan	1	300	300	240	60
Dumptruck 8t	3	1,700	5,100	4,080	1,020
Truck crane 25t	0.8	1,800	1,440	1,152	288
Generator	1	400	400	320	80
Sub-total			8,690	6,937	1,753
II Abor					
Foreman	1	52	52		52
Operator	4	38	152		152
Aborer	30	30	900		900
Sub-total	50	50	1,104		1,104
UI Matarial					
Fuel			500	400	100
Sub-total			500	400	100
Dewatering of dumping area	15%		1,544	1,158	386
Mark- etc	10%		1,029	734	295
Total			11,323	8,071	3,252
Output	5 m ³ /h				
	Direct unit cost		2,264	1,614	650

Excavation for Be	ox Culvert in	North Manila

			Amount	Por	ion
	nos•h	Peso/h	Peso	Foreign	bcal
I. Equipment					
Backhoe	1	1,700	1,700	1,360	340
Bulldozr	0.5	2,000	1,000	800	200
Pile driving hammer	0.5	1,500	400	320	80
Dump truck	3	1,700	5,100	4,080	1,020
Sub-total			8,200	6,560	1,640
II. abor					
Foreman	1	52	52		52
Operator	5	38	190		190
aborer	10	30	300		300
Sub-total			542		542
III. Material					
Fuel			500	400	100
Sheet pile & deck plate	150%		13,863	11,090	2,773
Sub-total			14,363	11,490	2,873
			23,105		
Dewatering of dumping area	15%		3,466	2,708	758
Mark- etc	10%		2,311	1,805	506
Total			28,881	22,563	6,319
Output	€0m ³ /h				
	Direct unit cost		1,444	1,128	316

Backfill in North Manila

			Amount	Por	ortion	
	nos•h	Peso/h	Peso	Foreign	b cal	
I. Equipment						
Plate compactor	1	130	130	104	26	
II. abor						
Foreman	1	52	52		52	
aborer	10	30	300		300	
Sub-total			352		352	
III Material						
Sand	3	500	1,500		1,500	
Mark- etc	10%		198	10	188	
Total			2,180	114	2,066	
Output	3 m ³ /h					
	Direct unit cost		727	38	689	

			Amount	Portion	l
	nos•h	Peso/h	Peso	Foreign	bcal
I. Equipment					
Concrete vibrator	10	750	7,500	6,000	1,500
II. a bor					
Foreman	30	416	12,480		12,480
Carpenter	60	300	18,000		18,000
Plaster	4	300	1,200		1,200
abour	180	240	43,200		43,200
Sub-total			74,880		74,880
III. Material					
Concrete, 5000psi	100	2,700	270,000		270,000
Form-lumber	2,500	30	75,000		75,000
Mil etc.			7,500		7,500
Sub-total			352,500		352,500
Mark- etc	10%		43,488	600	42,888
Total			478,368	6,600	471,768
Output	±00m ³ /h				
	Direct unit cost		4,784	66	4,718

Reir	ıforciı	ng Bar	

				Amount	Por	tion
		nos•h	Peso/h	Peso	Foreign	bcal
I. E	lquipment					
	Bar cutter	1	1,150	1,150	230	920
	Bar bender	1	1,150	1,150	230	920
	Sub-total			2,300	460	1,840
п	hor					
11. 4	Foreman	3	416	1 248		1 248
	Re-bar worker	6	300	1,240		1,248
	abour	9	240	2,160		2,160
	Sub-total			5,208		5,208
III.	Material					
	Re-bar	1	23,000	23,000	18,400	4,600
	Mark- etc	10%		3 051	1 886	1 165
	mark- cic	1076		5,051	1,000	1,105
	Total			33,559	20,746	12,813
	Output	+ton				

Direct unit cost 33,559 20,746 12,813

Dredging (Clearing) for Small Estero in South Manila

				Amount	Por	tion
		nos•h	Peso/h	Peso	Foreign	b cal
I. E	quipment					
	Bottom door type hopper	1	250	250	150	100
	Submersible pump	1	150	150	105	45
	Truck crane 25t	1	1,800	1,800	1,440	360
	Dumptruck 8t	3	1,700	5,100	4,080	1,020
	Generator	1	400	400	320	80
	Sub-total			7,700	6,095	1,605
II. å	bor					
	Foreman	1	52	52		52
	Operator	4	38	152		152
	aborer	15	30	450		450
	Sub-total			654		654
III.	Material					
	Fuel			100	80	20
	Sandbag			200		200
	Sub-total			300	80	220
	Dewatering of dumping area	15%		1,298	926	372
	Mark- etc	10%		865	617	248
	Total			10,817	7,718	3,099
	Output	6 m ³ /h				
		Direct unit cost		1,803	1,286	517

Declogging (Clearing) for Box Culvert in South Mlanila

			Amount	Portion	n
	nos•h	Peso/h	Peso	Foreign	b cal
I. Equipment					
Clamshell	1	900	900	720	180
Submersible pump	1	150	150	105	45
Air compressor	0.3	1,800	500	400	100
Fan	1	300	300	240	60
Dumptruck 8t	4	1,700	6,800	5,440	1,360
Truck crane 25t	0.8	1,800	1,480	1,184	296
Generator	1	400	400	320	80
Sub-total			10,530	8,409	2,121
II abor					
Foreman	1	52	52		52
Operator	5	38	190		190
aborer	30	30	900		900
Sub-total			1,104		1,104
III Material					
Fuel			550	440	110
Dewatering of dumping area	15%		1 828	1 327	500
Mark- etc	10%		1,218	885	333
Total			15,231	11,062	4,169
Output	5 m ³ /h				
	Direct unit cost		3,047	2,213	834

Excavation	for	Box	Culvert	in	South	Manila

			Amount	Porti	ion
	nos•h	Peso/h	Peso	Foreign	b cal
I. Equipment					
Backhoe	1	1,700	1,700	1,360	340
Bulldozr	0.5	2,000	1,000	800	200
Pile driving hammer	0.5	1,500	400	320	80
Dump truck	4	1,700	6,800	5,440	1,360
Sub-total			9,900	7,920	1,980
II. ábor					
Foreman	1	52	52		52
Operator	6	38	228		228
aborer	10	30	300		300
Sub-total			580		580
III. Material					
Fuel			550	440	110
Sheet pile & deck plate	150%		16,545	13,236	3,309
Sub-total			17,095	13,676	3,419
			27,575		
Dewatering of dumping area	15%		4,136	3,239	897
Mark- etc	10%		2,758	2,160	598
Total			34,469	26,995	7,474
Output	∌ 0m ³ /h				
	Direct unit cost		1,723	1,350	373

Reinforced Concrete for Box Culvert

	Amount	Por	tion
	Peso	Foreign	bcal
Concrete (Peso/cu*m)	4,784	66	4,718
Reinforcing bar (Peso/ton)	33,559	20,746	12,813
Reinforcing bar (80kg) (Peso/cu·m)	2,685	1,660	1,025
Reinforced concrete	7,468	1,726	5,742

Demolishing for Pavement

				Amount	Por	tion
		nos•h	Peso/h	Peso	Foreign	bcal
I.E	quipment					
	Concrete braker	0.5	2,700	1,350	1,080	270
	Payloader	0.2	1,250	250	200	50
	Dump truck	0.2	1,700	340	272	68
	Sub-total			1,940	1,552	388
II. I	ibor					
	Operator	0.7	38	27		27
	Foreman	1	52	52		52
	abour	3	30	90		90
	Sub-total			169		169
	Mark- etc	15%		316	233	83
	Total			2,425	1,785	640
	Output	‡ 3m ³ /h				
		Direct unit cost		187	137	50

ANNEX G.3

COST ESTIMATE FOR RESPECTIVE REHABILITATION AND

ADDITIONAL WORKS OF PRIORITY PROJECTS

1. Rehabilitation and Additional Works of Drainage Channels in North Manil:

Annex G.3 : Cost Estimate for Respective Rehabilitation and Additional Works of Priority Project

1. Rehabilitation and Additional Works of Drain	age Channels in North M	[anil:						UnitPeso
			:	Unit]	Price	Am	ount	Ē
Description	Dimension	Unit	uantity -	Foreign	bcal	Foreign	bcal	l otal
1. Estero de Sunog Apog I (LCB)								
1.1 Temporary Works		%	3			445,200	149,700	594,900
1.2 Dredging (Clearing) of Sunog Apog		em ³	10,000	1,484	499	14,840,000	4,990,000	19,830,000
					Total C	Cost		20,424,900
2. Estero de Sunog Apog II (LCB)								
2.1 Temporary Works		%	3			3,632,832	1,221,552	4,854,384
2.2 Dredging (Clearing) of Sunog Apog		m ³	81,600	1,484	499	121,094,400	40,718,400	161,812,800
					Total C	Cost		166,667,184
3. Blumentritt Interceptor (ICB)								
3.1 Temporary works (office, diverting sewer water incl	luding relocation of supply pi	%	10			26,023,059	23,597,959	49,621,018
3.2 Related Works of Existing Blumentritt Interceptor								
1) Raising maintenance hole cover plate		sou	18	135,400	46,000	2,437,200	828,000	3,265,200
2) Demolishing and modification of maintenance hole	e including paving around fla	sou	8	135,400	46,000	1,083,200	368,000	1,451,200
3) Stoplog		ton	25	400,000	100,000	10,000,000	2,500,000	12,500,000
3.3 Declogging of Existing Blumentritt Interceptor								
1) Declogging of interceptor		em ³	6,800	1,614	650	15,817,200	6,370,000	22,187,200
3.4 Remedial Works of Existing Blumentritt Interceptor								
1) Inlet for road surface flow (9 nos)								
i)Excavation		m ³	312	1,128	316	351,936	98,592	450,528
ii)Reinforced concrete		em3	66	1,726	5,742	170,874	568,458	739,332
iii)Backfill		em3	213	38	689	8,094	146,757	154,851
2) We box culvert for widening,	1.8m(w)x2.1m(h)x1cell	m	200					
i)Re-Concrete		еш	696	1,726	5,742	1,662,138	5,529,546	7,191,684
ii)Backfill		em ³	3.390	38	689	128.820	2.335.710	2.464.530

2. Rehabilitation and Additional Works of Draina	age Channels in South N	Ianil						UnitPeso
Description	Dimension	Ilnit	Quntity	Unit	Price	Amc	ount	Total
TCSATIPULAT			אמוווווא	Foreign	bca 1	Foreign	bca 1	10(41
1. Esteros de Tripa de Gallina, PNR Canal and Calata	gan Creek I (LCB)							
1.1 Temporary works		%	3			1,817,118	730,521	2,547,639
1.2 Dredging (Clearing) of Estero deTripa de Gallina		m^3	28,900	1,286	517	37,165,400	14,941,300	52,106,700
1.3 Dredging (Clearing) of Calatagan creek I		m ³	13,200	1,286	517	16,975,200	6,824,400	23,799,600
1.4 Dredging (Clearing) of PR canal		m ³	5,000	1,286	517	6,430,000	2,585,000	9,015,000
					Total C	ost		87,468,939
2. Buendia Outfall (ICB)								
2.1 Temporary works		%	10			2,972,480	979,280	3,951,760
2.2 Related Works of Buendia Outfall								
1) Raising of maintenance manhole		sou	22	135,400	46,000	2,978,800	1,012,000	3,990,800
2) Demorishing and modification of maintenance hole		sou	9	135,400	46,000	812,400	276,000	1,088,400
3) Stoplog		ton	25	400,000	100,000	10,000,000	2,500,000	12,500,000
2.3 Declogging of Buendia Outfall								
1) Declogging of Buendia outfall		m ³	7,200	2,213	834	15,933,600	6,004,800	21,938,400
					Total C	ost		43,469,360
3. Pasong Tamo Drainage Main (LCB)								
3.1 Temporary works		%	3			59,670	22,599	82,269
3.2 Declogging of Pasong Tamo drainage main		m ³	900	2,210	837	1,989,000	753,300	2,742,300
					Total C	ost		2,824,569

4. Zobel Roxas Drainage Main (ICB)								
4.1 Temporary works		%	10			2,592,159	2,392,267	4,984,426
4.2 Declogging of Boel Roxas Drainage Main		m ³	2,200	2,213	834	4,868,600	1,834,800	6,703,400
4.3 Construction of Box Culvert								
1) Excavation		m³	11,158	1,350	373	15,063,300	4,161,934	19,225,234
2) Nv Box Culvert	1/7m(w)x1.6m(h)x2cells	m	270					
i)Reinforced concrete		m ³	1,144	1,726	5,742	1,974,544	6,568,848	8,543,392
ii)Backfill		m ³	3,092	38	689	117,496	2,130,388	2,247,884
3) Nv Box Culvert	$1 \frac{8m(w) \times 1.5m(h) \times 2cells}{2}$	m	65					
i)Reinforced concrete		m ³	239	1,726	5,742	412,514	1,372,338	1,784,852
ii)Backfill		m ³	743	38	689	28,234	511,927	540,161
4) b w Box Culvert	2 3m(w)x1.5m(h)x2cells	ш	160					
i)Reinforced concrete		m ³	930	1,726	5,742	1,605,180	5,340,060	6,945,240
ii)Backfill		m ³	2,048	38	689	77,824	1,411,072	1,488,896
4.4 Pavement								
i)Paving		m ²	3,942	450	150	1,773,900	591,300	2,365,200
					Total Co	ost		54,828,685

5. Faraday Drainage Main (ICB)								
5.1 Temporary works		%	10			10,011,970	7,651,744	17,663,714
5.2 Declogging of Faraday Drainage Main		m ³	100	2,213	834	221,300	83,400	304,700
5.3 Construction of Box Culvert								
1) Excavation		m ³	61,543	1,350	373	83,083,050	22,955,539	106,038,589
2) Wiv Box Culvert	1.8m(w)x1.4m(h)x1cell	m	228					
i)Reinforced concrete		m ³	548	1,726	5,742	945,848	3,146,616	4,092,464
ii)Backfill		m ³	2,182	38	689	82,916	1,503,398	1,586,314
3) Wy Box Culvert	2/2m(w)x1.7m(h)x2cells	m	100					
i)Reinforced concrete		m ³	575	1,726	5,742	992,450	3,301,650	4,294,100
ii)Backfill		m ³	1,758	38	689	66,804	1,211,262	1,278,066
4) biv Box Culvert	1.8m(w)x1.4m(h)x2cells	ш	72					
i)Reinforced concrete		m ³	302	1,726	5,742	521,252	1,734,084	2,255,336
ii)Backfill		m ³	951	38	689	36,138	655,239	691,377
5) Wy Box Culvert	3.5 m(w) x 1.7 m(h) x 1 cell	m	914					
i)Reinforced concrete		m ³	5,219	1,726	5,742	9,007,994	29,967,498	38,975,492
ii)Backfill		m ³	15,136	38	689	575,168	10,428,704	11,003,872
5.4 Pavement								
i)Demolishing		m ³	259	137	50	35,483	12,950	48,433
ii)Paving		m^2	10,114	450	150	4,551,300	1,517,100	6,068,400
5.5 Water supply pipe including relocation		m	25	2,400,000	600,000	60,000,000	15,000,000	75,000,000
					Total C	ost		269,300,857

3. Rehabilitation Works of Drainage Pu	imping Stations in North and S	outh Manila			UnitPeso
Description	Drainage Capacity		Foreign	bca 1	Total
1. Group 1 Rehabilitation Works (ICB)					
1.1 Aviles (*1)	18.6 m ³	S/	231,000,000	99,000,000	330,000,000
1.2 Qiapo	10.8 m ³	S/	118,300,000	50,700,000	169,000,000
1.3 Valencia	11.8 m ³	/s	120,400,000	51,600,000	172,000,000
1.4 Tripa de Gallina	57 m ³	/s/	270,200,000	115,800,000	386,000,000
Sub total					1,057,000,000
2. Group 2 Rehabilitation Works (ICB)					
2.1 Pandacan	4.4 m ³	/s/	60,900,000	26,100,000	87,000,000
2.2 Paco	7.6 m ³	/s/	96,600,000	41,400,000	138,000,000
2.3 Sta. Clara	5.3 m ³	/s	63,000,000	27,000,000	90,000,000
2.4 Ibertad	42 m ³	/s	208,600,000	89,400,000	298,000,000
2.5 Makati	7 m ³	/s	71,400,000	30,600,000	102,000,000
2.6 Binondo	11.6 m ³	/s	115,500,000	49,500,000	165,000,000
Sub total					880,000,000
3. Group 3 Rehabilitation Works (ICB)					
3.1 Balete	3 m ³	/s/	23,800,000	10,200,000	34,000,000
3.2 Escolta	1.5 m ³	/s/	23,800,000	10,200,000	34,000,000
Sub total					68,000,000
			Total Cost		2,005,000,000

Me:(*1) Cost for increase of pump capacity ($3m^{-3}/s$) is included.

H. ECONOMIC EVALUATION

TABLE OF CONTENTS

Page

H.1	Economic Evaluation for Master Plan	. H - 1
H.1.1	Background of Economic Evaluation	. H - 1
H.1.2	Benefit of the Project	. Н-3
H.1.3	Cost of the Project	Н - 32
H.1.4	Economic Evaluation	Н - 35
H.1.4		Н - 42
H.2	Economic Evaluation for Feasibility Study	H - 48
H.2 H.2.1	Economic Evaluation for Feasibility Study Background of Economic Evaluation	H - 48 H - 48
H.2 H.2.1 H.2.2	Economic Evaluation for Feasibility Study Background of Economic Evaluation Benefit of the Priority Projects	H - 48 H - 48 H - 48
H.2 H.2.1 H.2.2 H.2.3	Economic Evaluation for Feasibility Study Background of Economic Evaluation Benefit of the Priority Projects Cost of the Priority Projects	H - 48 H - 48 H - 48 H - 52
H.2 H.2.1 H.2.2 H.2.3 H.2.4	Economic Evaluation for Feasibility Study Background of Economic Evaluation Benefit of the Priority Projects Cost of the Priority Projects Economic Evaluation	H - 48 H - 48 H - 48 H - 52 H - 57
H.2 H.2.1 H.2.2 H.2.3 H.2.4 H.2.5	Economic Evaluation for Feasibility Study Background of Economic Evaluation Benefit of the Priority Projects Cost of the Priority Projects Economic Evaluation Priority Projects	H - 48 H - 48 H - 48 H - 52 H - 57 H - 71

LIST OF TABLES

<u>Page</u>

Table H.1.1	Classification of Flood Damage	. Н-5
Table H.1.2	Samples of Methods and Elements included as Flood Control Benefit	
	in the Past Reports and Guidelines	Н-6
Table H.1.3	Unit Construction Cost and Unit Value of House	. H - 8
Table H.1.4	Share of Number of Buildings by Type of Building, by City/Municipality,	
	by Use	. Н-9
Table H.1.5	Construction Year of Buildings in the 5 Cities /Municipality	
	of the Study Area	Н - 10
Table H.1.6	Depreciation Table by Type of Building	H - 11
Table H.1.7	Value of Assets per Establishment	H - 11
Table H.1.8	Price Indices in NCR (1991 – 2003)	Н - 12
Table H.1.9	Damage Rate of Inundation by Depth (Example 1)	Н - 12
Table H.1.10	Damage Rate of Inundation by Depth (Example 2)	Н - 13
Table H.1.11	Damage Rate of Inundation Applied in the Analysis	.H - 13
Table H.1.12	Vehicle Operating Cost in Metropolitan Manila	H - 18
Table H.1.13	Result of Vehicle Operating Cost (VOC) in Metropolitan Manila	H - 19
Table H.1.14	Flood Damage by Return Period (Without Project)	Н - 20
Table H.1.15		Н - 20
Table H.1.16)	Н - 21
Table H.1.17	Flood Damage by Return Period (With Master Plan)	Н - 21
Table H.1.18	Flood Damage by Return Period (With Master Plan, South Manila)	Н - 22
Table H.1.19	Flood Damage by Return Period (With Master Plan, All Study Area)	Н - 22
Table H.1.20)	Н - 23
Table H.1.21	Breakdown of Annual Average Benefit	
	(With Master Plan, in Present Condition)	Н - 24
Table H.1.22		
	With Master Plan,	Н - 24

Tabl	e H	.1.23

	With Master Plan,	Н - 25
Table H.1.24	Economic Growth Rate Framework	Н - 26
Table H.1.25	Population Framework	Н - 26
Table H.1.26	Future Framework for Economic Analysis	Н - 27
Table H.1.27	Major Damage by Typhoon and Flood attacked Metropolitan Manila	Н - 29
Table H.1.28	Project Cost (Master Plan)	Н - 33
Table H.1.29	Disbursement Schedule for Economic Analysis	
	(Master Plan Project, Financial Price)	Н - 34
Table H.1.30	Disbursement Schedule for Economic Analysis	
	(Master Plan Project, Economic Price)	Н - 34
Table H.1.31	Results of Economic Analysis (Future Condition)	Н - 36
Table H.1.32		Н - 37
Table H.1.33	Results of the Sensitivity Analysis 1	
	(NPV, Future Condition)	Н - 38
Table H.1.34	Results of the Sensitivity Analysis 2	
	(B/C, Future Condition)	Н - 38
Table H.1.35	Results of the Sensitivity Analysis 3	
	(EIRR, Future Condition)	Н - 38
Table H.1.36	Results of the Sensitivity Analysis 4	
	(NPV, Present Condition)	Н - 39
Table H.1.37	Results of the Sensitivity Analysis 5	
	(B/C, Present Condition)	Н - 39
Table H.1.38	Results of the Sensitivity Analysis 6	
	(EIRR, Present Condition, M/P Projects)	Н - 40
Table H.1.39	Annual Cash Flow of Master Plan 2 (Present Condition)	Н - 40
Table H.1.40	·	Н - 42
Table H.1.41		Н - 43
Table H.1.42	,	Н - 45
Table H.1.43		Н - 45
Table H.1.44		Н - 46
Table H.2.1	Flood Damage by Return Period (With Priority Projects : North Manila)	H - 48
Table H.2.2	Flood Damage by Return Period (With Priority Projects : South Manila)	Н - 49
Table H.2.3	Flood Damage by Return Period (With Priority Projects : All Study Area).	Н - 49
Table H.2.4	Breakdown of Annual Average Benefit	
	(Present Condition, Priority Projects, North Manila)	Н - 50
Table H.2.5	Breakdown of Annual Average Benefit	
	(Present Condition, Priority Projects, South Manila)	Н - 50
Table H.2.6	Breakdown of Annual Average Benefit	
	(Present Condition, Priority Projects, All Study Area)	Н - 51
Table H.2.7	Project Cost (Priority Projects)	Н - 53
Table H.2.8	Project Cost (Priority Projects, South Manila)	Н - 53
Table H.2.9	Priority Projects	Н - 53
Table H.2.10	Disbursement Schedule for Economic Analysis	
	(Priority Projects, Financial Price)	Н - 54
Table H.2.11	Disbursement Schedule for Economic Analysis	
	(Priority Projects, Economic Price)	Н - 55
Table H.2.12	Results of Economic Analysis (Future Condition, Priority Projects)	Н - 58
Table H.2.13	Priority Projects 1, North Manila	Н - 59
Table H.2.14	Priority Projects 2, South Manila	Н - 60

Table H.2.15 Priority Projects 3	
, All Study Area	H - 61
Table H.2.16 Results of the Sensitivity Analysis 1	
(NPV, Future Condition, Priority Projects, North Manila)	Н - 62
Table H.2.17 Results of the Sensitivity Analysis 2	
(B/C, Future Condition, Priority Projects, North Manila)	Н - 63
Table H.2.18 Results of the Sensitivity Analysis 3	
(EIRR, Future Condition, Priority Projects, North Manila)	Н - 63
Table H.2.19 Results of the Sensitivity Analysis 4	
(NPV, Future Condition, Priority Projects, South Manila)	Н - 63
Table H.2.20 Results of the Sensitivity Analysis 5	
(B/C, Future Condition, Priority Projects, South Manila)	Н - 63
Table H.2.21 Results of the Sensitivity Analysis 6	
(EIRR, Future Condition, Priority Projects, South Manila)	Н - 63
Table H.2.22 Results of the Sensitivity Analysis 7	
(NPV Future Condition Priority Projects All Study Area)	H - 64
Table H 2 23 Results of the Sensitivity Analysis 8	
(B/C Future Condition Priority Projects All Study Area)	H - 64
Table H 2 24 Results of the Sensitivity Analysis 9	
(EIRR Future Condition Priority Projects All Study Area)	H - 64
Table H 2 25 Results of the Sensitivity Analysis 10	11 01
(Delay of Project Commencement Future Condition	
Priority Projects All Study Area)	Н - 65
Table H 2 26 Priority Projects 4	11 05
Present North Manila	H - 66
Table H 2 27 Priority Projects 5	11 - 00
Present South Manila	Н 67
Table H 2 28 Priority Projects 6	11 - 07
Procent All Study Area	Ц 68
Table H 2 20 Posults of the Sonsitivity Analysis 4	11 - 08
(NDV Present Condition Priority Projects)	Ц 60
Table H 2 20 Begulte of the Sensitivity Analysis 5	п - 09
(P/C Present Condition Drivity Projects)	Ц 60
(B/C, Flesent Condition, Fliolity Flojects)	п - 09
(EIDD, Present Condition, Priority Projects)	11 60
(EIRR, Flesent Condition, Phority Projects)	п - 09
Table H.2.32	II (0
Table H 2 22	H - 69
Table H.2.33	11 (0
The Hold And A	H - 69
Table H.2.34 4	11 70
Priority Projects	H - 70
1 able H.2.35 5	11 70
Priority Projects	H - 70
1 able H.2.36	TT = ^
Priority Projects	н - 70
Table H.2.3/	••
Priority Projects	H - 70
Table H.2.38	H - 71

LIST OF FIGURES

Page

Figure H.1.1	Flow of Analysis of Economic Evaluation	Н-2
Figure H.1.2	Project Benefit	Н-3
Figure H.1.3	Work Flow of Annual Average Benefit	Н-4
Figure H.1.4	Number of Buildings by Type of Building, by Use	Н-9
Figure H.1.5	Method and Formula (Damage of Buildings & Assets)	Н - 14
Figure H.1.6	Method and Formula (Damage of Infrastructure)	Н - 15
Figure H.1.7	Method and Formula (Indirect Damage : Trade Loss)	Н - 16
Figure H.1.8	Unit Cost of Trade Loss & Alternative Activities	Н - 16
Figure H.1.9	Major Vehicle Operating Cost of Vehicle in Metropolitan Manila	Н - 18
Figure H.1.10	Conceptual Diagram of Traffic Simulation Model	H - 19
Figure H.1.11	Elements of Annual Average Benefit	Н - 24
Figure H.1.12	Annual Average Benefit and Timing of Accruing Benefits	
	(With Master Plan, in Future Condition)	Н - 28
Figure H.1.13	Diarrhea Cases, Nov 13-Dec.13, 1989 & 1990	Н - 31
Figure H.1.14	Results of Sensitivity Analysis	
	(EIRR, Future Condition)	Н - 39
Figure H.2.1	Elements of Annual Average Benefit (Priority Projects, All Study Area)	Н - 51
Figure H.2.2	Annual Average Benefit & Timing of Accruing Benefits	
	(Future Condition, Priority Projects, All Study Area)	Н - 51
Figure H.2.3	Results of Sensitivity Analysis	
	(EIRR, Future Condition, Priority Projects, All Study Area)	H - 64

H.1 ECONOMIC EVALUATION FOR MASTER PLAN

H.1.1 BACKGROUND OF ECONOMIC EVALUATION

The economic analysis focused on the study areas serviced by the proposed programs/projects in the master plan.

Estimation of the benefit derived from the proposed programs/projects is worked out by the equation,

```
Net Benefit of the Programs/ Projects = Benefit - Cost
```

or follows the flow as shown in Figure H.1.1.

Explanations of "benefit" and "cost" are found in *Chapter H.1.2* and *H.1.3*, respectively and then, economic viability derived from "net benefit" is analyzed in *Chapter H.1.4*. In *Chapter H.1.5*, financial investment plans are considered.

Source: The Study Team

Figure H.1.1 Flow of Analysis of Economic Evaluation

H.1.2 BENEFIT OF THE M/P PROJECT

(1) Structure of Project Benefits

Flood control benefit is generally defined as the reduction of potential flood damage attributed to the proposed and designed works/projects/programs. The flood damages, i.e. the project benefit, are different from the area and depth of inundation. Since it is impossible to predict the timing and magnitude of future floods, analysis of the flood control benefit is undertaken based on deriving and expected annual damage under present socio-economic conditions and indexing this value by way of analyzing the growth rate of annual flood damage to reflect expected future socio-economic change. In this analysis, the prediction of future flood was made to access the flood risk using the hydrodynamic simulation model. (See details in *Chapter 3.2*) This model generated the expedient inundation area and depth in the study area by floods of 2-year, 3-year, 5-year, 10-year, 20-year, and 30-year return periods, thereby eventually making it possible to draw a risk curve associating probability with damages. Damage rates as numerically defined in correspondence with inundation area, depth, ground slope, etc. in the past reports and guidelines in the Philippines and abroad had been applied in this analysis.

The value of flood control benefit is obtained as the difference between the estimated flood damages under the "with" project and "without" project situations.

Source: The Study Team

Figure H.1.2 Project Benefit

Correspondingly, the average or expected project benefit would be calculated from the difference between "with" project and "without" project, while considering the expected degree of flood protection from the project.

In addition to these tangible damages, it is apparent that there are other intangible damages both economic and social (effects) associated with those floods. Therefore, the result of this analysis is regarded in a lower, or conservative tier of benefits for the project.

An analysis on annual average benefit is actually carried out following the work flow shown below.

Source: The Study Team

Figure H.1.3 Work Flow of Annual Average Benefit

The next item to identify is what kind of flood damage should be adopted for the analysis. In general, flood damage is classified as shown in the following table.

Category of L	Damageable	Assets and Ai	ctivities	1	Damages Mitigated by Flood Control Project
				Building Unit	Damage to residential and business sites and
					buildings due to inundation
				Household Effects	Damage to Furniture and movables such as
					automobile, electric appliance
				Depreciable Assets of	Damage to depreciable assets of Business
				Business Establishments	establishments except their sites and buildings
			Conoral Accote	Inventory Stocks of Business	Damage to inventory stocks of business
			General Asses	Establishments	establishments due to inundation
				Dennesishle Assets for	Damage to depreciable assets for farming or
				Depreciable Assets for	fishery or business establishments except their
	Direct	Brimony		Farming and Fishery	sites and buildings
	Direct	Domogra		Inventory Otople for Correins	Damage to inventory stocks for farming or fishery
	Damayes	Damayes		Inventory Stocks for Farming	or business establishments except their sites and
				and Fishery	buildings
			Agricultural Proc	duction	Damage to crop production due to inundation
				Road, Bridge, Railway, River	
Benefit of				Facility, Sewerage, Water	
			Public	Supply, Electric Power, Gas,	Damage to infrastructures supporting livelihood,
			Infrastructures	Telephone, Irrigation Facility,	business activities and Pulic Service Facilities
				Medical Facilit, Educational	
				Facility. etc.	
					Damage to living space, causing death, injury or
			Human Lives		illness
		Secondary D)amages		Weed growth, etc.
					Damage to daily housekeeping tasks and
Flood /	Indirect	Primary Damages	Trade Loss (Daily Maintenance	Household Economy	community activities due to inundation
Inundation					Stonnage or decrease of business and
Mitigating				Industrial Production	production activities decrease of tourists due to
gutting			and Business		inundation
			Activities)	Public Services	Stoppage or decrease of public services
					After inundation, cleaning and renairing houses
			Expenses for	Household Economy	damaged by flood/inundation_and extra
				Control Control Control Ny	evnences for state of emergency
					After injundation, cleaning and renairing buildings
			State of	Industrial Production	and offices demaged by flood/inundation and
			Emergency		and onces damaged by noournandation, and
					Expanses for emergency activities to casualties
				Public Services	in addition to the worke above
	Damanac				Discustion of traffic systems enreading to
	Dunnuges	ges	Traffic Disruptio	n	currounding areas
			Lifeline		
		Demagaa	Contine	Water supply, Electric Power,	Dispution of public utility convision
		Damayes	Diamontian	Gas, Telephone, etc.	Disruption of public utility services
			Disruption		Desures of words at an due to be leads of your and
			Spreading Effec	t of Stagnation and Decrease of	Decrease of production due to lack of raw and
			Daily Activities		semi finished materials, Stoppage of public
					services and utilities.
			N 4		Mental Influence due to damages to general
			IVIental shock ar	nd inconvenience	assets, business losses, casualties, attereffects
					and influence over surrounding areas
			Environmental C	Juality	
			Aesthetic Value	Planting, Historical Building	Decrease of value of Historical buildings/assets,
				J	Damage to townscape
Benefit of La	nduse Develo	opment			Land appreciation owing to improvement of flood
					control

Source: Various sources compiled by the Study Team

Unfortunately, there is no standard method for estimation of flood damages because characteristics of damages depend on geopolitical, socio-economic, and demographical conditions of each country, city and area. In the past studies on flood damage, examples and manuals/guidelines of some agencies are summarized as shown in the table below.

				Japan		Philippine	S		The Study
				Ref.1	Ref.2	Ref.3	Ref.4	Ref.5	Olddy
Benefit of Flood /	Direct Damages	Primary Damages	General Assets	\odot	\odot	\odot	\odot	\odot	\odot
Inundation Mitigating	2 annagee	20	Agricultural Production	\odot	\odot	\odot	\odot		No
0 0			Public Infrastructures	\bigcirc_{R}	\odot	⊙ _R	$\bigcirc_{\mathbb{R}}$		\odot
			Human Lives	€	Ð	•	•	€	•
		Secondary Damages	Weed growth etc.						Θ
	Indirect Damages	Primary Damages	Trade Loss	\odot	•	⊙ _R	⊙ _R	\bigcirc_{R}	\odot
		Secondary Damages	Emergency Assistance		€	© _R	© _R	$\bigcirc_{\mathbb{R}}$	•
			Cleaning	\odot	€				\odot
			Traffic Disruption	•	€	•	₿	\odot	\odot
			Lifeline Services Disruption				8	$\bigcirc_{\mathbb{R}}$	© _R
			Environmental Quality		€		₿	€	•
			Aesthetic Value					€	Θ
Benefit of Lar	nd Use Develo	opment		€	NG	\odot	Ð	\odot	€

Table H.1.2Samples of Methods and Elements included as Flood Control Benefitin the Past Reports and Guidelines

Source: The Study Team

Note : 😳 Quantified based on survey and/or inventory/statistical data

- $\bigcirc_{\mathbb{R}}$ Quantified as ratio to other index
- Defined as intangible benefit
- NG : exclusion recommended because of double counting or method unestablished
- Ref.1 : "Manual for Economic Study on Flood Control", May 2000, Ministry of Construction of the Japanese Government
- Ref.2 : "Economic Analysis for Social Development Study, 13 Flood Control & Sabo", 2002, JICA
- Ref.3 : "Technical Standards and Guidelines for Planning and Design (Draft), Volume I Flood Control", March 2002, DPWH & JICA
- Ref.4 : "Detailed Engineering Design of Pasig-Marikina River Channel Improvement Project", March 2002, DPWH & JBIC
- Ref.5 : Metro Manila Drainage System Rehabilitation Project", August 1986, MPWH & OECF

The components of benefit in this analysis were selected considering inventories of existing facilities and data availability in Metropolitan Manila. They are as follows:

Direct Damage

- Building Unit

(Residential Houses and Buildings of Business Establishments, Educational and Health Facilities)

- Assets

(Household Effects, Depreciable Assets of Business Establishments, Inventory Stocks of Business Establishments)

- Public Infrastructure

Indirect Damage

- Trade Loss (Household and Business)
- Public Service Disruption
- Traffic Disruption
- Cleaning at Household & Business

(2) Direct Damage to Buildings and Assets

In terms of building property such as residence, industrial facilities including buildings, durable assets and inventory stocks, the flood damage is calculated using the following formula:

Flood Damage = Unit property value x Inundated area x Damage rate

Detail is provided in the following:

$$DD_{BA} = \sum_{i} (Vh_{i} \bullet R_{b} + Vm_{i} \bullet R_{m}) + \sum_{j} (Vb_{j} \bullet R_{b} + Va_{j} \bullet Ra + Vs_{j} \bullet R_{s})$$

Where, DD_{BA} : Direct Damage to Building & Assets

Vh	:	Value of Housing Unit
Vm	:	Value of household effects
Vb	:	Value of business establishments' buildings including public service such as educational and health facilities
Va	:	Value of depreciable assets such as equipment and machinery in the respective buildings
Vs	:	Value of inventory stocks such as raw materials, products and semi-products in the respective buildings or premises
R_b	:	Damage rate of buildings
R_m	:	Damage rate of residential indoor movables (household effects)
R_a	:	Damage rate of depreciable assets
R_s	:	Damage rate of inventory Stocks
i	:	Floor area in inundated area by city/municipality, by type of construction material, by construction year, by ground slope
j	:	Number of business establishments' buildings in inundated area by industrial sector, by city/municipality, by type of construction material, by construction year, by ground slope

Value of Housing Unit

Properties which are vulnerable to flood damage consist of house, household effects, building for business purpose, and its assets including indoor/outdoor movables. In general, values of buildings are measured using construction cost in this analysis. The following table is being used for evaluating real property tax by Assessors' Office of LGUs. Incidentally, the values show basic unit cost of structure with simple finishing. An actual house or building unit generally installs finishes on floors, walls, and ceilings for setting up living conditions and decoration purpose. These costs are said to be about 20% to 30% of the basic unit cost in general. In this analysis, 25% was adopted after the example of DPWH report.¹ Thus, the unit value of new house is set at Php 813/m² to Php 9,938/m² by type of construction materials.

Table H.1.3	Unit Construction Cost and Unit Value of House
-------------	--

								U	nit : Php/m ²
-	Basic Constructio	Finishing Cost	Base Cost						
	Residential	Commercial	Apartment	One-Family	Duplex	Boarding	Median		+
Type of Building	Condominium	Condominium	-	Dwelling	Dwelling /	House			Finishing Cost
Type I-A	10,700 - 11,000	10,200 - 10,500	9,400 - 9,700	7,600 - 7,900	7,300 - 7,600	6,600 - 6,900		25%	
Type I-B	10,000 - 10,300	9,500 - 9,800	8,700 - 9,000	6,900 - 7,200	6,600 - 6,900	5,900 - 6,200	7,950		9,938
Type I-C	9,300 - 9,600	8,900 - 9,100	8,000 - 8,300	5,200 - 5,500	5,900 - 6,200	5,200 - 5,500			
Type II-A	8,400 - 8,700	7,900 - 8,200	7,100 - 7,400	5,300 - 5,600	5,100 - 5,400	4,400 - 4,700			
Type II-B	7,700 - 8,000	7,200 - 7,500	6,400 - 6,700	4,600 - 4,900	4,400 - 4,700	3,700 - 4,000	5,650		7,063
Type II-C	7,000 - 7,300	6,500 - 6,800	5,700 - 6,000	3,900 - 4,200	3,700 - 4,000	3,000 - 3,300			
Type III-A	-	-	-	3,200 - 3,500	3,100 - 3,400	2,500 - 2,700			
Type III-B	-	-	-	2,500 - 2,800	2,400 - 2,700	2,100 - 2,300	2,350		2,938
Type III-C	-	-	-	1,800 - 2,100	1,700 - 2,000	1,700 - 1,900			
Type III-D	-	-	-	1,100 - 1,400	-	-			
Tyep IV				650			650		813

Sources : - Manila City²

- Detailed Engineering Design of Pasig-Marikina River Channel Improvement Project,

Main Report Volume II, March 2002, DPWH

- Study on the Flood Control for Rivers in the Selected Urban Centers, February 1995, DPWH

Building Types are as follows. Type I Reinforced

- A Structural steel and reinforced concrete columuns, beams, the rest same as I-B
- B Columuns, beams, wall, floors and roofs all reinforced concrete
- C Same as "B" but walls are hollow blocks reinforced concrete or tile roofing
- Type II Mixed Concrete
 - A Concrete columuns, beams and walls but wooden floor joists, flooring and roof framing and G.I.(Galvanized Iron) roofing even if walls are in concrete hollow blocks. Kitchen, toilet and bathroom are in reinforced concrete slabs.
 - B Concrete columuns and beams but hollow block walls, wooden floor joist, floor and roof framing and G.I. Roofing and second floor

Type III Strong Materials

- A First grade wooden structural framings, flooring, walls, and G.I. Roofing
- B First grade wooden structural framings, flooring, walls on the first floor and tanguile walls on the second floor and G.I. Roofing
- C First grade wooden posts, girders, girders, window sills and heads, apitong floor joists and roof framing tanguile floor and sliding and G.I. Roofing
- D Third grade wooden structural framing, floorings and sidings, and G.I. Roofing.

Type IV Temporary makeshift structure

Sources : Pasig Marikina Report 2002, Study on the Flood Control for Rivers in the Selected Urban Centers

Floor Area of Inundated Housing Units and Type of Construction Materials

In order to calculate damaged value of housing units in inundated area using the above mentioned unit construction cost, the data on floor area or number of housing units by type of construction materials is necessary. The building inventory data in the GIS developed by the Study Team are neither categorized by type of construction material nor by use of building such as residential, commercial, and industrial because of limitation of study scope and time. In this analysis, enumeration of the floor area of residential houses in inundation area was estimated based on the average figures in the respective LGUs and average floor area of houses in the area $(49 \text{ m}^2/\text{house})^3$. In accordance with the year 2000 census conducted by National Statistics Office (NSO), the shares are as follows.

Assessors Office Category	Share by City/Municipality								
	Caloocan Manila Quezon Pasay Makati Taguig								
Туре I	51.6%	28.8%	45.9%	34.3%	46.9%	55.4%			
Type II	29.8%	42.1%	32.5%	40.5%	32.7%	23.6%			
Type III	14.0%	25.5%	16.3%	21.8%	15.5%	16.9%			
Type IV	4.6%	3.6%	5.3%	3.4%	4.9%	4.1%			
Total	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%			

Table H.1.4Share of Number of Buildings
by Type of Building, by City/Municipality, by Use

	No of Buildings					No. of Building in Study Area			
	i i	n 6 Cities of Stu	dy Area		(Estimated Assumpti			Study Team)	
Single House		740,944	54.9%		107,497	191,184	97.7%	Residential	
Duplex		113,336	8.4%		16,443				
Multi Unit Residential		456,534	33.9%		66,235	•			
Institutional / Living Quarters		1,070	0.1%		155				
Other Housing Unit		5,887	0.4%		854				
Commercial / Industrial / Agricultural		9,536	0.7%		1,383	1,383	0.7%	Business	
Not Reported		21,315	1.6%		3,092	3,092	1.6%	Not Reported	
Total		1,348,622	100.0%		195,660	195,660	100.0%		
Source :					$\overline{1}$	Distribute	d		
Public Use File,			Total	195,660	(Source :	JICA Stud	dy Team GIS I	Database)	
Population and Housing Census 2000, NS									
			No. of Es	tablishment in Study Area					
			Total	Caloocan	Manila	Quezon	Pasay	Makati	Taguig
	115,639	16,435	32,845	38,301	7,809	16,083	4,166		
Coefficient of No. of Establishment in relation to No. of Building									
				(Coefficient	↓	¥		
						12	.1	establishmer	nts / building

Figure H.1.4 Number of Buildings by Type & by Use of Building

Note: Classification of type of buildings by City Assessor's Office and NSO are different. Re-categorization for consistency was made by the Study Team.

For the economic analysis, the values of buildings must be depreciated depending on the construction year in order to valuate residual value at present. In accordance with the year 2000 census, construction years of the buildings in the study area are as follows.

	loocan				Unit : Numbe	r of Building	Pasay					
Applied The Applied	Year Building/House was Built	Total	Туре I	Type II	Type III	Type IV	Year Building/House was Built	Total	Type I	Type II	Type III	Type IV
Number 100 20:00 10:00 20:00	Total	249,567	128,716	74,381	34,957	11,513	Total	78,180	26,816	31,633	17,053	2,678
Dot 1004 0.57 0.68 0.66 0.64 0.53 Dot 10044 0.57 2.45 1.48 4.66 4.6	Adjusted Total	269,398	145,492	77,554	37,740	8,613	Adjusted Total	74,104	26,021	30,244	16,099	1,740
visit visit <th< td=""><td>2004</td><td>10,645</td><td>6,274</td><td>2,457</td><td>1,469</td><td>446</td><td>2004</td><td>1,579</td><td>650</td><td>554</td><td>338</td><td>38</td></th<>	2004	10,645	6,274	2,457	1,469	446	2004	1,579	650	554	338	38
Doc 10046 0.274 0.276 1.486 402 Doc 1204 1100 6.00 2.67 1.68 4.63 3.6 100 1.00 6.00 1.00 6.00 1.0	2003	10,645	6,274	2,457	1,469	446	2003	1,579	650	554	338	38
001 0.046 0.27 0.087 0.087 0.097 0.088 0.097 0.	2002	10,645	6,274	2,457	1,469	446	2002	1,579	650	554	338	38
0.00 2.84 17.00 88 386 395 161 171<	2001	10,645	6,274	2,457	1,469	446	2001	1,579	650	554	338	38
1000 1000 1000 1000 1000 1000 1100 10000 1000 1000 1	2000	2,541	1,509	468	386	1/8	2,000	1 457	621	529	06 264	21
1987 1988 1.06 106 1987 1988 1.98 1.06 106 1987 1.98 <td>1999</td> <td>0 126</td> <td>4,627</td> <td>1,397</td> <td>1,128</td> <td>421</td> <td>1,996</td> <td>1,407</td> <td>624</td> <td>323</td> <td>204</td> <td>30</td>	1999	0 126	4,627	1,397	1,128	421	1,996	1,407	624	323	204	30
1 1	1990	0,130	4,567	1,026	1,150	573	1,900	7 1,527	572	271	332	77
Bit 1980 Bit 1980 Direct 1980 <thdirect 1980<="" th=""> <thd< td=""><td>1996</td><td>11 978</td><td>6.740</td><td>2 739</td><td>1,425</td><td>540</td><td>1,996</td><td>1,202</td><td>691</td><td>621</td><td>360</td><td>47</td></thd<></thdirect>	1996	11 978	6.740	2 739	1,425	540	1,996	1,202	691	621	360	47
Image: 1000 17.92 13.02 19.02 1971-1900 10.02 19.02	1991-1995	58 870	35 276	13,982	7 556	2 056	1991-1995	8,254	3,328	3,068	1,707	151
sp:1-1890 2.274 11.000 8.296 7.284 4.275 1961-1970 65.96 7.584 3.627 176 1961-1970 65.96 7.584 3.627 176 1961-1970 65.96 7.584 3.627 176 1981-1970 65.96 7.284 3.627 176 1981-1970 155.20 7.191 588 2.784 4.74 1981-1970 155.20 7.191 588 4.47 2.88 1981-1980 10.287 3.84 4.28 3.81 2.88 1.8	1981-1990	72,784	41.343	20.957	8,662	1.822	1981-1990	19,048	7,739	7,423	3,656	230
1981 1070 10518 5081 7234 2.531 118 1980 0 cardier 10502 2081 302 171 Dentitioner 10502 2081 302 171 Dentitioner 10502 2081 411 2386 411 2376 Neil Reported 0.552 1.181 0881 2708 4.377 2370 4.881 380 2708 4.377 2370 4.881 380 2708 4.877 3142 3442 2.188 080 2080 2380 2280 1580	1971-1980	23,774	11,090	8,764	3,447	473	1971-1980	14,073	4,347	6,260	2,823	643
Biology cardiar T(5):20 4,70; 3,62; 175 Neid Repurched 256 30; 21: 175 Neid Repurched 256 254 244 Neid Repurched 150; 7,107 5,588 2,584 2,484 Neid Repurched 150; 7,107 5,588 2,584 2,483 Neid Repurched Tatal Type I Type II Type II Type II Type II Tatal 200,54 66,663 120,275 66,663 120,275 200,6 6,89 2,288 168,81 129,77 62,204 6,662 2,002 200,6 6,89 2,288 168,41 1391 223 168,61 2,012 168,01 2,002 1,680 62,62 467 2,000 1,680 62,647 2,000 1,680 62,647 2,000 1,680 62,647 2,000 1,680 62,647 2,000 1,680 64,647 2,000 1,680 62,647 2,000	1961-1970	15,916	5,683	7,534	2,531	168	1961-1970	9,689	2,750	4,516	2,170	253
No. No. <td>1960 or earlier</td> <td>15,992</td> <td>4,302</td> <td>7,894</td> <td>3,621</td> <td>175</td> <td>1960 or earlier</td> <td>10,418</td> <td>2,606</td> <td>4,737</td> <td>2,973</td> <td>102</td>	1960 or earlier	15,992	4,302	7,894	3,621	175	1960 or earlier	10,418	2,606	4,737	2,973	102
Destroam 15.02 7.10 5.868 2.584 2.84 Not Reported 5.50 1.181 665 4.47 2.68 Not Reported 1.381 665 4.47 2.68 Not Reported 1.381 685 1.4051 7.99 Type II Type II Type II Type II Type III Type IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Not Applicable	286	33	21	61	171	Not Applicable	284	6	19	78	181
Nar Reported 6,542 1,181 0.665 447 4,249 Nar Reported 1,331 245 138 89 Initia Nar Reported 1,331 245 138 89 Nar Reported 1,331 245 138 149 Nar Reported 1,331 245 138 149 138 Oto 6,538 2,336 188 1391 231 149 245 140 246 138 223 138 1497 140 231 246 140 223 141 141 231 246 140 233 245 140 233 245 246 246 247 233 246 233 2	Don't Know	15,923	7,107	5,968	2,584	264	Don't Know	8,776	3,142	3,402	2,138	94
Year we Built builting+Guose we Built 12004 Task Task 12005 Task 12007 Task 12007 <thtask 12007 Task 12007 <t< td=""><td>Not Reported</td><td>6,542</td><td>1,181</td><td>665</td><td>447</td><td>4,249</td><td>Not Reported</td><td>1,331</td><td>245</td><td>183</td><td>89</td><td>814</td></t<></thtask 	Not Reported	6,542	1,181	665	447	4,249	Not Reported	1,331	245	183	89	814
Year web Built Total Type II Type III Type IIII Type III Type III Type III Type III Type III Type III Type IIII Type IIII Type IIIIIII Type IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	nila						Makati					
Total 303:647 95:66 140:512 66:068 12:008 Adjurder Total 01:028 14:078 12:078 82:040 6:658 2004 0:289 2:308 1:884 1:919 2:31 2001 0:6388 2:308 1:884 1:919 2:31 2001 0:6388 2:308 1:884 1:919 2:31 2002 0:88 4:44 5:87 1:50 1:398 0:88 4:43 5:87 1:50 1:398 0:81 1:52 1:152 1:52 1:50 1:398 0:82 2:37 1:372 1:471 1:387 1:397 1:484 1:397 1:471 1:386 5:20 1:398 0:822 2:62 1:392 1:392 1:392 1:397 1:398 2:326 1:391 1:396 2:341 1:391 1:391 1:392 2:326 1:311 1:392 2:326 1:111 <	Year Building/House was Built	Total	Type I	Type II	Type III	Type IV	Year Building/House was Built	Total	Туре І	Type II	Type III	Type IV
Majused Tual 910/264 910/264 910/264 910/264 920/46 920/26 2004 6.383 2.336 1,584 1,919 231 1,380 652 457 2005 6.388 2.336 1,584 1,919 231 200 2,534 1,380 652 457 2000 6.388 2.336 1,584 1,919 231 202 2,534 1,380 652 457 2000 1,580 6,622 2,337 1,527 1,147 1365 1,590 1,980 494 597 1,990 1,930 447 447 1,986 6,622 2,021 1,322 1,820 1,381 1,180 1,580 1,997 2,114 1,880 1,833 1,180 7,52 1,220 457 462 1,990 1,931 1,997 2,114 1,997 1,997 1,911 47 44 1,917 7,740 5,758 5,84 1,917 1,918 1,9	Total	333,547	95,951	140,512	85,058	12,026	Total	103,981	48,795	34,050	16,075	5,061
2004 6.388 2.386 1.984 1.918 231 2005 6.388 2.336 1.984 1.919 231 2010 6.388 2.336 1.984 1.919 231 2010 6.388 2.336 1.984 1.919 231 1.986 6.581 2.337 1.137 1.937 6.528 4.97 1.986 6.581 2.337 1.137 1.937 6.528 4.97 4.97 1.986 6.521 2.337 1.137 1.937 1.937 4.586 1.188 316 367 1.986 6.582 2.267 1.327 1.937 1.937 3.141 1.771 4.565 1.914 40.940 1.478 2.484 1.938 2.341 1.939 2.234 1.930 2.234 1.930 2.234 1.930 2.234 1.930 2.234 1.930 2.234 1.930 2.234 1.930 2.234 1.930 1.936 2.2	Adjusted Total	310,264	91,863	129,778	82,040	6,583	Adjusted Total	100,252	48,176	32,123	16,081	3,872
Pool 6.388 2.385 1.884 1.916 231 2002 6.588 2.389 1.884 1.910 231 2001 6.568 2.383 1.884 1.910 231 2001 6.568 2.383 1.884 1.910 231 1.989 4.614 2.355 1.580 522 447 2001 2.554 1.380 522 447 1.989 6.561 2.253 1.380 522 447 1.986 5.652 2.270 1.881 1.911 316 557 1.997 5.505 2.201 1.926 1.660 1.927 723 1.986 1.980 0.862 2.234 1.921 7.550 3.226 1.997 4.725 1.928 9.444 5.03 9.244 455 1980 0.638 9.444 5.03 9.244 5.03 2.265 1.711 9.856 2.2347 1.201 7.556	2004	6,369	2,336	1,884	1,919	231	2004	2,534	1,380	522	457	175
DO2 6.383 2.381 1.984 1.919 231 2001 6.383 2.381 1.984 1.919 231 1.380 522 477 2000 1.600 688 4.44 357 1.02 1.380 523 4.71 1.62 1.586 1.380 522 447 1.998 5.208 2.271 1.372 1.187 1.147 1.986 2.847 744 1.997 5.208 2.221 1.988 1.986 2.324 1.987 2.120 467 322 1981 1.997 3.141 1.711 4.65 3.202 1.742 742 1.986 2.2347 1.180 1.68 3.62 1.824 1.997 1.986 2.2347 1.180 1.68 3.62 1.824 1.991 740 1.56 3.226 1.714 1.56 3.226 1.714 1.56 3.226 1.714 1.56 1.228 1.511 7.740 5.566 2.004	2003	6,369	2,336	1,884	1,919	231	2003	2,534	1,380	522	457	175
2001 6.389 2.381 1.884 1.919 2.381 2.000 1600 689 444 557 2.00 689 400 90 155 1.988 6.081 2.273 1.578 1.147 188 316 2.67 1.789 4.77 4.74 1.998 6.502 2.270 1.972 1.381 1.147 1.148 316 2.67 1.998 6.502 2.270 1.058 1.1475 1.148 316 2.67 7.72 1.381 1.146 1.148 316 2.67 7.72 1.381 1.989 2.234 1.150 4.52 2.01 1.989 2.233 1.320 4.67 3.226 1.171 1.466 1.997 3.141 7.74 4.568 2.204 1.991 3.226 1.161 1.1258 2.004 1.711 1.890 2.234 1.160 7.554 5.584 1.900 1.990 1.990 1.990 1.990 1.990 1.990 </td <td>2002</td> <td>6,369</td> <td>2,336</td> <td>1,884</td> <td>1,919</td> <td>231</td> <td>2002</td> <td>2,534</td> <td>1,380</td> <td>522</td> <td>457</td> <td>175</td>	2002	6,369	2,336	1,884	1,919	231	2002	2,534	1,380	522	457	175
2000 1600 688 434 557 120 1 1989 4344 2265 1162	2001	6,369	2,336	1,884	1,919	231	2001	2,534	1,380	522	457	175
1988 4,814 2.285 1,152 1,152 2.25 1988 5,081 2.372 1,375 1,474 183 1987 5,206 2.270 1,372 1,387 1,474 183 1987 5,206 2.270 1,372 1,387 1,777 1,486 1,888 1,788 0,742 1981 1986 5,208 2,271 1,0387 1,947 1,897 3,141 1,711 436 742 1981 1980 2,884 1,879 6,582 2,274 1,886 3,082 2,174 1981 1980 2,884 1,879 6,586 2,004 1,897 1,898 1,897 1,897 <td>2,000</td> <td>1,600</td> <td>689</td> <td>434</td> <td>357</td> <td>120</td> <td>2,000</td> <td>699</td> <td>400</td> <td>90</td> <td>155</td> <td>54</td>	2,000	1,600	689	434	357	120	2,000	699	400	90	155	54
1988 5,081 2,373 1,177 1,187 5,081 2,373 1,177 1987 5,006 22,07 1,372 1,372 1,371 1,372	1,999	4,814	2,285	1,152	1,152	225	1,999	1,993	1,188	316	357	132
1.387 5.208 1.2270 1.387 1.777 1.986 6.302 2.621 2.068 1.944 312 1891-1836 35.230 11.475 10.938 11.640 1.122 1891-1836 60.337 15.664 24.061 15.717 1.661 1.995 12.238 5.303 2.174 1891-1830 44.272 21.1862 20.843 0.987 7.275 1.996 6.518 3.002 2.174 1891-1930 42.752 11.1662 20.843 9.842 4.655 1.990 0.984 1.996 1.996 7.272 1990 or earlier 72.855 14.912 3.874 8.881 1.990 0.922 4.54 1.007 Dortt Know 33.922 12.582 4.771 1.984 5.864 4.547 6.207 2.722 200 7124 8.178 5.968 4.547 6.207 2.722 1.01 1.027 8.580 4.561 1.071 2000	1,998	5,081	2,373	1,378	1,147	183	1,998	2,849	1,679	45/	4/4	239
1,866 6,852 2,271 2,088 1,341 312 1891-1980 60,837 19,964 24,091 15,717 1,465 1891-1980 60,837 19,964 23,444 10,987 727 1861-1970 42,752 11,662 0,983 9,942 465 1800 or earlier 72,655 14,472 82,742 20,166 813 Not Applicable 2,084 102 114 800 10,083 Dorft Know 39,322 12,556 17,780 5,658 4,031 Dorft Know 39,322 12,556 17,178 9,304 688 Not Reported 6,754 768 967 588 4,431 Pair Mignifusheus Total Type I Type II Type II Year SudingHouse Total Type I Type II Type II Type II Type II 1001 17,212 8,175 5,019 3,127 887 2004 14,258 6	1,997	5,206	2,270	1,372	1,387	1//	1,99/	3,141	1,711	430	742	252
Year Substrate Type II Type III Type II Type II	1,990	0,932	2,021	2,058	1,941	312	1991-1995	12,200	6,518	3.032	2 174	862
Year Type II Type III Type II Type II	1981-1990	60.837	19.564	24.091	15 717	1,102	1981-1990	23.347	11 801	7 550	3 295	701
Year Builting/House Total Yar Type II Type III Type II Type II Type II Type III Type II Type II Type III Type IIII Type III	1971-1980	49.640	14 768	23,148	10,717	727	1971-1980	15.917	7,740	5.656	2.004	517
Isso Isso <th< td=""><td>1961-1970</td><td>42 752</td><td>11,562</td><td>20,893</td><td>9.842</td><td>455</td><td>1961-1970</td><td>13,754</td><td>5,754</td><td>5,834</td><td>1,960</td><td>206</td></th<>	1961-1970	42 752	11,562	20,893	9.842	455	1961-1970	13,754	5,754	5,834	1,960	206
Not Applicable 2.084 102 114 800 1.085 Dort Know 39.922 12.562 17.188 9.304 968 Not Applicable 6.764 768 967 588 4.431 zon Total Type I Type II Type III	1960 or earlier	72.635	14.912	36.724	20,186	813	1960 or earlier	13,599	4,547	6,207	2,732	113
Dort Know 33,822 12,662 17,188 9,004 9683 Not Reported 6,754 768 967 568 4,431 Szon Total Type I Type II Type III Typ	Not Applicable	2.084	102	114	800	1.068	Not Applicable	326	24	51	107	144
Not Reported 6,754 768 967 588 4,431 Vear Total Total Type I Type II Type IV Year Building/House Total Total 480,624 220,431 156,412 78,173 226,608 Adjusted Total 480,624 220,431 156,412 78,173 226,608 Adjusted Total 480,624 220,056 161,401 81,897 19,883 2004 17,212 8,179 5,019 3,127 887 2001 17,212 8,179 5,019 3,127 887 2001 17,212 8,179 5,019 3,127 887 2,000 3,728 1793 888 208 2001 4,780 2,624 988 977 2,000 3,728 1793 888 208 2001 4,780 2,624 988 977 1,996 1,996 2,011 9,391 5,665 4,005 1,027 1,135 11	Don't Know	39,922	12,562	17,188	9,304	868	Don't Know	11,438	5,861	3,803	1,608	166
Year Building/House Total Type II Type III Type IV	Not Reported	6,754	768	967	588	4,431	Not Reported	2,099	252	161	105	1,581
Year Building/House was Built Total Type II Typ	zon						Taguig	1		1		
Total 480,624 220,431 156,412 78,173 25,608 Adjusted Total 493,386 230,205 161,401 81,897 19,883 2004 17,212 8,179 5,019 3,127 887 2003 17,212 8,179 5,019 3,127 887 2002 17,212 8,179 5,019 3,127 887 2001 17,212 8,179 5,019 3,127 887 2001 17,212 8,179 5,019 3,127 887 2001 17,212 8,179 5,019 3,127 887 2001 17,212 8,179 5,019 3,127 887 2001 14,760 2,624 986 977 2001 1,898 16,865 4,035 1,027 1,998 12,663 6,254 3,008 2,652 986 977 1991-1936 9,5978 44,892 3,0097 16,466 4,533 1,999	Year Building/House was Built	Total	Type I	Type II	Type III	Type IV	Year Building/House was Built	Total	Туре І	Type II	Type III	Type IV
Adjusted Total 483,388 230,205 161,401 81,897 19,883 2004 17,212 8,179 5,019 3,127 887 2003 17,212 8,179 5,019 3,127 887 2002 17,212 8,179 5,019 3,127 887 2001 17,212 8,179 5,019 3,127 887 2001 17,212 8,179 5,019 3,127 887 2001 17,212 8,179 5,019 3,127 887 2001 17,212 8,179 5,019 3,127 887 2,000 3,728 1,798 888 808 269 1,989 11,685 5,836 2,674 2,354 821 1,998 3,667 2,135 662 752 1 1,999 14,665 7,242 3,725 2,762 836 1,991 9,391 5,665 4,035 1,027 1991-1995 95,978 44,382 30,037 2,6583 1,0251 1991-1990<	Total	480,624	220,431	156,412	78,173	25,608	Total	102,723	56,904	24,219	17,391	4,209
2004 17,212 8,179 5,019 3,127 887 2003 17,212 8,179 5,019 3,127 887 2002 17,212 8,179 5,019 3,127 887 2001 17,212 8,179 5,019 3,127 887 2001 17,212 8,179 5,019 3,127 887 2001 17,212 8,179 5,019 3,127 887 2,000 3,728 1,798 858 808 269 1,999 11,685 5,836 2,674 2,364 821 1,999 14,565 7,242 3,725 2,762 836 1,997 14,565 7,242 3,725 2,762 836 1,996 2,0118 9,391 5,665 4,035 1,027 1931-1936 95,978 44,882 30,037 16,456 4,533 1931-1930 17,1905 33,033 2,6563 10,271 1931-193	Adjusted Total	493,386	230,205	161,401	81,897	19,883	Adjusted Total	114,253	63,678	26,518	20,267	3,790
2003 17,212 8,179 5,019 3,127 887 2002 17,212 8,179 5,019 3,127 887 2001 17,212 8,179 5,019 3,127 887 2001 17,212 8,179 5,019 3,127 887 2001 17,212 8,179 5,019 3,127 887 2,000 3,728 1,793 858 808 269 1,999 11,685 5,638 2,674 2,354 821 1,998 12,563 6,254 3,008 2,532 769 1,997 14,565 7,242 3,725 2,762 836 1,996 20,118 9,391 5,665 4,035 1,027 1991-1995 25,947 13,648 5,733 5,333 1 1991-1990 12,7603 60,637 4,638 4,898 1971-1890 13,165 7,739 5,333 1 1991-1995 25,947 13,6	2004	17,212	8,179	5,019	3,127	887	2004	4,780	2,624	986	977	193
2002 17,212 8,179 5,019 3,127 887 2001 17,212 8,179 5,019 3,127 887 2,000 3,728 1,793 868 808 269 1,999 11,685 5,836 2,674 2,354 821 1,998 12,563 6,254 3,008 2,532 769 1,997 14,565 7,242 3,725 2,762 836 1,996 20,118 9,391 5,665 4,035 1,027 1991-1995 95,978 44,832 30,097 16,466 4,533 1991-1995 95,978 44,832 30,097 16,456 4,533 1991-1996 12,7603 60,337 41,915 19,953 4,838 1971-1890 71,905 33,033 2,6583 10,251 1,398 7,420 3,596 1,838 1981-1990 13,106 13,202 12,914 4,623 466 1961-1970 4,2451 2,456	2003	17,212	8,179	5,019	3,127	887	2003	4,780	2,624	986	977	193
2001 17,212 8,179 5,019 3,127 887 2,000 3,728 1,798 868 808 269 2,000 1,365 7.62 203 316 1,999 11,685 5,836 2,674 2,354 821 1,999 3,667 2,135 652 7.52 1,999 14,565 7,242 3,725 2,762 836 1,999 3,683 2,150 664 664 865 1,996 20,118 9,391 5,665 4,035 1,027 1,996 5,615 3,227 1,058 1,135 1991-1995 95,978 44,892 30,097 16,456 4,533 1991-1995 25,947 13,648 5,733 5,333 1 1991-1990 127,603 60,837 41,915 19,953 4,898 1971-1980 13,166 7,420 3,596 1,895 1991-1990 71,905 33,033 26,583 10,251 2,038 1971-1980 13,166	2002	17,212	8,179	5,019	3,127	887	2002	4,780	2,624	986	977	193
2,000 3,725 1,735 505 200 200 1,355 752 203 315 1,999 11,655 5,836 2,674 2,354 821 1,999 3,667 2,135 652 752 1,999 14,565 7,242 3,725 2,762 836 1,997 3,689 2,150 709 705 1,996 20,118 9,391 5,665 4,035 1,027 1,986 5,615 3,227 1,058 1,135 1991-1995 95,978 44,892 30,097 16,466 4,533 1991-1996 25,947 13,648 5,793 5,333 1 1981-1990 127,603 60,837 41,915 19,963 4,898 1991-1996 25,947 13,648 5,793 5,333 1 1981-1990 71,905 33,033 26,583 10,251 2,038 1991-1990 31,063 17,833 7,849 4,538 1961-1970 42,819 1,251 510	2001	17,212	8,1/9	5,019	3,127	887	2001	4,/80	2,624	986	977	193
1,988 11,085 5,659 2,074 2,384 821 1,998 12,563 6,254 3,008 2,532 769 1,997 14,565 7,242 3,725 2,762 836 1,996 20,118 9,391 5,665 4,035 1,027 1991-1995 95,978 44,892 30,007 16,456 4,533 1991-1990 127,603 60,337 41,915 19,963 4,898 1971-1980 71,905 33,003 26,583 10,251 2,038 1961-1970 35,198 15,007 13,887 5,617 687 1960 or earlier 31,195 13,202 12,914 4,623 466 Not Applicable 2,228 300 330 433 1,053 Dortt Know 37,395 18,342 11,716 6,574 763 Not Reported 16,455 4,302 2,980 1,715 7,458	2,000	3,728	1,/93	858	808	269	2,000	1,365	/52	203	315	85
1,2900 1,2900 2,000 2,052 709 1,997 14,565 7,242 3,725 2,762 836 1,996 20,118 9,391 5,665 4,035 1,027 1991-1995 95,978 44,892 30,097 16,666 4,633 1991-1996 127,603 60,837 41,915 19,983 4,838 1971-1980 71,905 33,033 26,583 10,251 2,038 1961-1970 35,198 15,007 13,887 5,617 687 1960 or earlier 31,195 13,202 12,914 4,623 456 NotApplicable 2,236 300 330 433 1,053 Dont Know 37,395 18,342 11,716 6,574 763 NotReported 16,656 4,302 2,980 1,715 7,458	1,999	11,685	5,836	2,674	2,354	821	1,999	3,667	2,135	652	/52	128
1,397 14,505 7,442 5,755 2,762 835 1,996 20,118 9,391 5,665 4,035 1,027 1991-1995 95,978 44,892 30,097 16,456 4,533 1991-1996 127,603 60,837 41,915 19,953 4,898 1971-1980 77,905 33,033 26,583 10,251 2,038 1961-1970 35,198 15,007 13,887 5,617 687 1960 or earlier 31,195 13,202 12,914 4,623 456 NotApplicable 2,236 300 330 433 1,053 Dont Know 37,395 18,342 11,716 6,574 763 NotReported 16,655 4,302 2,980 1,715 7,458	1,998	12,563	6,254	3,008	2,532	/69	1,998	4,102	2,456	664	865	117
1.380 20,110 3,331 5,000 4,005 1,027 1991-1995 95,978 44,892 30,097 16,656 4,533 1981-1990 127,603 60,837 41,915 19,953 4,898 1971-1980 71,005 33,033 25,653 10,251 2,038 1971-1970 35,198 15,007 13,887 5,617 687 1960 or earlier 31,195 13,202 12,914 4,623 456 Not Applicable 2,226 300 330 433 1,053 Don't Know 37,395 18,342 11,716 6,574 763 Not Reported 16,657 4,302 2,980 1,715 7,458	1,997	14,565	1,242	3,125 E 00E	2,102	836	1,99/	3,089	2,150	109	/05	125
1391-1390 30,007 44,032 30,007 44,033 1391-1390 13,088 5,783 5,783 5,783 1383 1 1981-1390 127,603 60,837 41,915 19,953 4,898 1 1981-1990 31,053 17,893 7,849 4,538 1 1981-1970 25,518 15,007 13,887 5,617 687 1961-1970 4,263 1,265 1,265 1,265 1,265 1,265 1,265 1,885 1	1,996	20,118	9,391	20007	4,035	1,027	1,996	5,615	3,221	1,058	1,135	195
1301-1330 127,000 00,037 41,210 19,303 4,538 1381-1390 51,003 17,833 7,849 4,538 1971-1380 71,905 33,033 26,583 10,251 2,038 1971-1380 13,106 7,243 7,849 4,538 1961-1370 35,198 15,007 13,887 5,617 687 1961-1970 4,221 2,459 1,251 510 1960 or earlier 31,195 13,202 12,914 4,623 456 1960 or earlier 2,258 1,042 798 312 Not Applicable 2,236 300 390 433 1,053 Don't Know 5,729 3,178 1,496 901 Not Reported 16,655 4,302 2,980 1,715 7,458 Not Reported 1,831 537 147 1	1991-1995	35,978	44,892	30,097	16,456	4,533	1991-1995	25,947	13,648	5,/93	5,333	1,1/3
Information Instruction Instruction <thinstruction< th=""> <thinstruction< th=""></thinstruction<></thinstruction<>	1981-1990	127,003	00,83/	41,915	19,953	4,898	1981-1990	31,053	17,893	1,849	4,538	1/3
Instruction Solution Isolari Solution	1971-1980	006,11	33,033	10,007	10,201	2,038	13/1-1380	13,100	1,420	3,536	1,895	205
Instruct 01,100 13,202 12,211 47,225 460 Not Applicable 2,236 300 390 493 1,053 Don't Know 37,395 18,342 11,716 6,574 763 Not Reported 16,655 4,302 2,980 1,715 7,458	1960 or earlier	20,198 24.405	10,007	12,687	0,017 1,000	001	1001-1070	4,281	2,409	700	010	100
Indicappingane 2,230 300 300 435 1,005 Dont Know 37,395 18,342 11,716 6,574 763 Not Reported 16,655 4,302 2,980 1,715 7,458	Not Applicable	31,135	13,202	12,914	4,023	400	Not Appliaghts	2,258	1,042	138	312	106
Domitimum 37,350 10,572 11,710 0,074 705 Not Reported 16,655 4,302 2,980 1,715 7,458 Duit filliw 5,723 3,175 1,499 301	Dort Know	2,230	300	390	493	1,003	Don't Know	50	2470	1 400	004	14
	Not Deported	31,300 40 MEF	10,342	11,/10	4 745	7 100	Not Deported	0,129	5,118	1,430	301	104
		10,405	4,302	2,980	1,715	/,408		1,831	53/	14/		1,023

Table H.1.5Construction Year of Buildings
in the 5 Cities /Municipality of the Study Area*

Source: Public Use File for NCR, Population and Housing Census 2000, NSC

*: Include buildings outside of the study area.
In accordance with depreciation rates, the following schedule used by City Assessor's office was adopted in this analysis.

								Unit:%
	Тур	e l	Тур	e II	Туре	e III	Тур	e IV
	Mainte	nance	Mainte	nance	Mainte	nance	Mainte	enance
	Good	Poor	Good	Poor	Good	Poor	Good	Poor
Age								
1	2	12	3	13	5	15	8	18
2	4	14	6	16	10	20	16	26
3	6	16	9	19	15	25	24	34
4	8	18	12	22	20	30	32	42
5	10	20	15	25	25	35	40	50
6	12	22	18	28	30	40	48	58
7	14	24	21	31	35	45	56	66
8	16	26	24	34	40	50	64	74
9	18	28	27	37	45	55	72	82
10	20	30	30	40	50	60	80	90
11	22	32	33	43	55	65		
12	24	34	36	46	60	70		
13	26	36	39	49	65	75		
14	28	38	42	52	70	80		
15	30	40	45	55	75	85		
16	32	42	48	58	80	90		
17	34	44	51	61				
18	36	46	54	64				
19	38	48	57	67				
20	40	50	60	70				
21	42	52	63	73				
22	44	54	66	76				
23	46	56	69	79				
24	48	58	72	82				
25	50	60						
26	52	62						
27	54	64						
28	56	66						
29	58	58						
30	60	70						
31	02	12						
3∠ 22	04	74						
33	00	70						
34	00	10						
30	70	80						

Table H.1.6 Depreciation Table by Type of Building

Sources : LGUs' Assessor's Offices, Study on the Flood Control for Rivers in the Selected Urban Centers, 1995, JICA

Note: For conservative evaluation, figures of "poor" maintenance were adopted in this analysis.

Value of Households Effects

Coefficient of an average value of household effects in relation to the value of houses is set at 35%. This figure is based on the result of the socio-economic survey of "KAMANAVA Area Flood Control and Drainage System Improvement Project".

Value of Buildings and Assets of Business Establishments

Values of buildings and assets of business establishments followed the NSO's census data of establishments. The latest data is as follows.

		Unit :	Php/establishment	
	Building	Durable Assets	Stocks	
1 Manufacturing	1,045,000	4,627,000	4,018,000	per establishment at 1995 price
2 Wholesale & Retail Trade	43,000	108,000	1,295,000	per establishment at 1993 price
3 Hotel and Restaurants	1,162,000	1,866,000	90,000	per establishment at 1993 price
4 Financial / Insurance / Real Estate Business	1,242,000	844,000	661,000	per establishment at 1993 price
5 Educational Facilities	15,000,000	3,600,000	450,000	per school at 2001 price
6 Medical Facilities	9,300,000	2,400,000	1,400,000	per school at 2001 price

Table H.1.7	Value of	[:] Assets per	Establishment
-------------	----------	-------------------------	---------------

Source: Pasig-Marikina River Channel Improvement Project, Main Report Volume II, 2002, DPWH

In the Philippines, census of establishment does not cover all sectors at one time. As shown in the above table, since the census is conducted sector by sector, these figures are expressed at the same point of time. In this analysis, these figures were revaluated to the present value (at 2004 price) using official price index of National Capital Region. As is well known, there are slight differences among the major price index such as Consumer Price Index (CPI), Retail Price Index (RPI) and General Wholesale Price Index (GWPI). Since there are almost all sectors except agriculture and fishery and all types of businesses are seen in the study area, the average of these indices was adopted in this analysis.

			CTAL NOR	Simple Average
	CPI, NCK	RFI, NGR	GIN, NCK	Simple Average
	(1994 + 00)	(1978 1 00)	(1985 1 00)	_(1 <u>991</u> + 00)
1991	76	609	166	100
1992	84	640	172	107
1993	92	653	172	111
1994	100	699	187	120
1995	108	751	197	128
1996	117	797	215	138
1997	125	812	216	143
1998	138	884	241	158
1999	145	928	255	166
2000	152	956	260	171
2001	163	997	266	180
2002	169	1,008	275	185
2003	174	1,029	289	189

Table H.1.8 Price Indices in NCR (1991 – 2003)

Source: CPI, RPI, GWPI (1991-2002) - 2003 Philippine Statistical Yearbook, and Website, National Statistical Coordination Board / GWPI(2003) - NSO

Damage Rate

The damage rate is derived from the relation between inundation water depth and flood damage. In Metropolitan Manila, there were some studies identifying flood damage. Examples of these damage rates are as follows.

	Damage Rates				
	Residential/Con	Residential/Commercial *			
	Houses	Indoor			
Inundation Depth		Movables	Movables		
0-25 cm	0.043	0.038	0.025		
26-50 cm	0.046	0.044	0.053		
Above 50 cm	0.054	0.070	0.180		

 Table H.1.9
 Damage Rate of Inundation by Depth (Example 1)

Source: The Study on Flood Control and Drainage Project in Metro Manila, Volume 1 Main Report, 1990, JICA

Note : * Damage rates are against the value of houses.

	Damage Rates			
Inundation Depth	House	Indoor Movables		
0-25 cm	0.0690	0.0608		
26-50 cm	0.0736	0.0704		
51cm -	0.0864	0.1120		

 Table H.1.10 Damage Rate of Inundation by Depth (Example 2)

Source: Supporting Report, The Study on Flood Control and Drainage System Improvement for Kalookan - Malabon - Navotas - Valenzuela (KAMANAVA) Areas, 1998, JBIC

However, because of the limitation of sample size of the survey and the accuracy, the above damage rates are not used in this analysis, but the rate of "Manual for Economic Study on Flood Control" issued by Japan's Ministry of Construction were applied in this analysis. This Japanese manual based on the large sampled survey has been commonly used in many past studies on flood control in Metropolitan Manila.

		Ground Slope	BelowFloo r	Above Floor				
				-50 cm	51-99 cm	100-199 cm	200-299 cm	300 cm -
Res	idence							
	bluse L	ess than 1/1,000	0.0320	0.0920	0.1190	0.2660	0.5800	0.834
		1/1,000 to 1500	0.0440	0.1260	0.1760	0.3430	0.6470	0.870
		Steeper than 1500	0.0500	0.1440	0.2050	0.3820	0.6810	0.888
	blusehold Effects		0.0210	0.1450	0.3260	0.5080	0.9280	0.991
_			Above Floor					
			0-50) cm	51-99 cm	100-199 cm	200-299 cm	300 cm -
Bus	ness Entities							
	Building		0.09	920	0.1190	0.2660	0.3800	
	Fixed AssetsDepreciable Assets		0.2320		0.4530	0.7890	0.9660	
	Inventory Stock		0.12	280	0.2670	0.5860	0.8970	

Table H.1.11 Damage Rate of Inundation Applied in the Analysis

Source: "Manual for Economic Study on Flood Control", May 2000, Ministry of Construction (Ministry of Land, Infrastructure and Transport, at present), Japanese Government

In accordance with the manual, the damage rates are defined by depth and by ground slope. For applying this Japanese manual to Metropolitan Manila, the following assumptions were made. In Japan, inundation depths of residential houses are categorized into two kinds, i.e. inundation below floor or above floor, because the highset floor is commonly seen in Japanese houses. Based on these Japanese cultural setting, the level of distinction in the manual is ranged at 50 cm height. In this analysis, the inundation over 20 cm was regarded as "inundation above floor", because it is commonly seen that floor height of houses in Metropolitan Manila is lower than 20 cm. And three categories of depth (20 cm to 50 cm, 50 cm to 100 cm, and 100 cm or deeper.) were adopted at different damage rates in this analysis. Deepest inundation in the mathematical hydrodynamic simulation model in the study area was 130 cm.

The damage rates for business entities and office buildings are applied to the buildings inundated at 5 cm or deeper from the ground elevation in this analysis. Because, if it starts to count the buildings inundated about 5cm or less, all of buildings are to be included in the mathematical hydrodynamic simulation model as being inundated. For this reason, this analysis regards the buildings inundated at 5 cm or shallower as being in dried area.

As a result of the section of 2), the method of the estimation of the direct damage of the building and assets are summarized as follows:

Figure H.1.5 Method and Formula (Damage of Buildings & Assets)

(3) Infrastructure Damage

In general, infrastructure damage has rarely been recorded, although it is said that the damages to infrastructure are usually larger than the building properties'. In the Philippines, the infrastructure damage affected by major typhoon / tropical storm / tropical depression, have been collected by the Office of Civil Defense (OCD). According to the OCD's records, 31% was the average rate of infrastructure damage against the damage of private property by the major typhoons that hit the National Capital Region during 1982 to 2003. In the Japanese manual, the proposed damage rate of infrastructure is 169% of the direct damage. The rate seems to be too large taking into account the past record in the Philippines. The OCD's 31%, which may look conservative as compared with the rate in the Japanese manual, was applied in this analysis.

Damage to Buiding & Property	х	Damage Rate
(Php)		31%

Figure H.1.6 Method and Formula (Damage of Infrastructure)

(4) Indirect Damage

Trade Loss

(Opportunity Loss of Daily Maintenance Activities and Business Activities)

Trade loss is regarded as an opportunity loss of daily maintenance/Household activities and business activities. When flooding would occur and people would be late (or absent) for work, this causes a decrease in their production and services. In addition, during flood / inundation period and just after the flood, people have to clean rooms and furniture damaged and to repair things damaged in their houses. These activities are done by family members of the household in general. Thus, these activities are considered as loss of time on housekeeping, so their labor cost is also estimated as a part of flood damages.

Damaged business establishments are also closed to clean, fix and repair their workspace, furniture and equipment and to dispose of damaged inventory stock. Even after the floodwaters have receded, their businesses may stagnate for some days before returning to their former state because the equipment and supply of intermediate materials necessary for their products are also affected by flood. These losses are considered as trade loss of business activities.

The stoppage of the activities affects not only household and private businesses but also the public service sector such as public utilities, schools, and medical/health services.

These indirect damages can be considerable and must be taken into account in the assessment of total flood damage, although standard method of measurement of many of the indirect damages has not been defined. In accordance with the damages caused by trade loss, the Japanese manual proposes the following calculation method.

 $ID_{TL} = (HH \bullet Sa \bullet Cl) + (E \bullet Va \bullet (Sp + \frac{1}{2} St))$ Where, ID_{TL} : Indirect damage of trade loss HH Number of affected people in household : Sa : Salary per person \cdot day ClNo. of necessary days for cleaning : Ε Number of affected employees : Va : Value added per person \cdot day No. of stoppage days Sp : St No. of stagnant days :

Meanwhile, the factors used in "Metro-Manila Integrated Urban Drainage and Flood Control Master Plan, March 1984, DPWH" are commonly accepted as indirect damage factors⁴ in relation to direct damages. In this analysis, these damage factors are applied as shown below.⁵

Direct Damage	x	Damage Rate				
		Residential -	15%			
		Commercial -	37%			
		Industrial -	45%			
		Utilities -	10%			
		Public Property -	34%			
		Highways -	25%			
		Railways -	23%			

Figure H.1.7 Method and Formula (Indirect Damage : Trade Loss)

Unit Cost for alternative activities were applied by applying the time value of people in Metropolitan Manila based on their income for household and actual record of expenses based on the Japanese Guideline.

				Inundated House	ehold Number						
Inundated			Inundated Floor	Floor Aw			\	Inundated Household			
Area (m2)		Area (m2)			Area / House						
				20-50	51-99	100-199	(m2/house)	5	20-50	51-99	100-199
				4,191,664	3,250,119	708,982	49		85,544	66,329	14,469
(1990 Census)							Π				
Unit Cost for Alternative Activities at Household (such as purchase of dirinking waterflood, transportation fee)						÷					
Expenses (Japanese Guideline, 2000)			Ave. Income in Japan	Conver to Php			Inundated Household				
(JPY/household)			(2002, JPY)	Exchange Rate	Converted Ave. Income in Japan	Ave. Income in NCR	Ratio				
Under Floor	0-50	51-99	100-199		(JPY/PhP)	(2002, Php)	(2002,Php)		20-50	51-99	100-199
\$2,500	147,600	206,500	275,900	3,346,800	2.2	1,521,273	130,932	0.086	85,544	66,329	14,469
Not Applicab	le				US\$=JPY110=Php	150					
Unit Cost fo	r Alternati	ive Activiti	es at Busi	ness Establishme	nt						
Expenses (Japanese Guideline, 2000)							Ratio	Inundat	ed Establis	shment	
(JPY/househ	old)										
Under Floor	0-50	51-99	100-199						20-50	51-99	100-199

0.086

3,115

2,396

548

Figure H.1.8 Unit Cost of Trade Loss & Alternative Activities

47,000 92,500 1,714,000 3,726,000

Disruption of Traffic

Disruption to transportation system including delay time and increased fuel costs can also be counted as flood damage. One of the most adverse effects of the flood perceived by the society is the disruption to urban transportation. Consequences, however, have not been properly studied in the past. Considering that the impact on traffic in Metropolitan Manila is significant and of major concern to the citizens, the Study tried estimating the level of the benefit based on the best combined information derived from vehicular traffic data and the strength of new hydrodynamic simulation model and geographic information system developed by the Study Team.

Flood will disrupt the traffic in the following manner depending upon the depth and duration of inundation:

- Decrease in travel speed of vehicle
- Detour or cancellation of vehicle operation
- Inconvenience in or obstruction to the access to transport routes
- Inducement of mechanical trouble
- Traffic accident

Of the above, it is considered that the first item is the most significant one, which is quantifiable with certain accuracy. The subsequent benefit can be estimated in terms of "reduction of vehicle operating cost" and "savings in travel time". This is shown more specifically in the following formula:

[Reduction of VOC]
$$B_{VOC} = (VOC_{without} - VOC_{with}) \bullet Q$$

where,

B _{VOC} :	Benefit due to reduction in vehicle operation cost
VOC _{without} :	Vehicle operating cost at an average travel speed for "without" project situation
VOC _{with} :	Vehicle operating cost at an average travel speed for "with" project situation
Q :	Traffic volume in Metropolitan Manila expressed in terms of vehicle-km

[Savings in Travel Time] $B_{TS} = (PH_{without} - PH_{with}) \bullet TV$

where,

B _{TS} :	Benefit due to savings in travel time
PH _{without} :	Passenger – hours in Metropolitan Manila for "without" project situation
PH _{with} :	Passenger – hours in Metropolitan Manila for "with" project situation
TV :	Time value of passengers

It is a well-known fact that vehicle operating cost varies by travel speed and that the cost drastically increases as the travel speed decreases or stop-and-go is more frequently practiced. As is illustrated in the following figure, vehicle operating costs increase sharply particularly at 10 to 5 km/h or less. This is the major reason why many of the urban transport projects which aim at relieving traffic congestions can be economically justified.

						Unit:
	10km/h	20km/h	30km/h	40km/h	50km/h	60km/h
Try-cycle	1,949	1,185	918	789	741	728
Private Car	9,859	6,075	4,623	3,858	3,411	3,145
Jeepney	11,725	6,864	5,109	4,188	3,640	3,293
Hov/Taxi	9,643	5,561	4,079	3,293	2,809	2,480
Bus	34,959	20,528	15,362	12,720	11,362	10,652
Truck	16,481	11,645	9,222	7,793	7,229	7,167

	Table H.1.12	Vehicle O	perating	Cost in	Metro	politan	Manila
--	--------------	-----------	----------	---------	-------	---------	--------

Source : MMUTIS

Source: MMUTIS Report, 1999, JICA and relevant agencies of the Philippines

Figure H.1.9 Major Vehicle Operating Cost of Vehicle in Metropolitan Manila

The study area extends the core part of Metropolitan Manila to where most of the public transport routes pass or relate directly or indirectly (private transport included). When flood occurs in the study area, the inundation affects not only the vehicles in the area but also outside of the study area. In this analysis, the computer traffic model was simulated covering whole Metropolitan Manila area. Assumptions made are as follows.

- Traffic data is considering the latest road network in year 2003.
- Average travel speed will decrease to 5 km/h in the area of inundation.
- Under the inundation condition, because the differences of driving speed among types of vehicles become small, the categories are integrated into two in this analysis,
 - i.e. 1) Private mode (Private Car), and
 - 2) Public mode (Bus + Jeepney + HOV/Taxi).
- All vehicle trips in Metropolitan Manila are re-distributed or detoured to the fastest route

under the flood situation.

- Cancellation of trip or modal shift (e.g. from vehicle to railway) is not considered.
- Inundation for longer than 6 hours affects the average daily traffic for the 1st day, and for longer than 24 hours, affects traffic for the 2nd day.

 Table H.1.13 Result of Vehicle Operating Cost (VOC) in Metropolitan Manila

						Unit : Php
	2 Year Return	3 Year Return	5 Year Return	10 year Return	20 year Return	30 year Return
Without Project	4,950,038	6,965,143	9,020,300	11,880,309	12,016,337	12,881,863
With Project	531,800	748,290	969,083	1,276,344	1,290,958	2,920,947

Source : JICA Study Team

Note : Without Project means ;

= Total VOC in Flood Situation under Without-Project Condition – Total VOC in Normal Situation With Project means ;

= Total VOC in Flood Situation under With-Project Condition – Total VOC in Normal Situation

(5) Calculation of Potential Flood Damage

Inundation and floodwater levels calculated for several probable rainfalls or discharges are applied to the relation between water level and flood damage mentioned above. In this analysis, the flooding cases of 2-, 3-, 5-, 10-, 20- and 30- year return periods were applied.

(6) Flood Damage by Return Period

The results of the estimates are summarized in the following tables:

Table H.1.14 Flood Damage by Return Period (Without Project, North Manila)

							Unit : I	Php Million
				Return Perio	d (Year)			
Item			2	3	5	10	20	30
A.	Direct Dama	ige	6,234	7,602	9,625	12,794	15,210	16,120
	1. Resider	nce - House	950	1,161	1,450	2,033	2,466	2,615
	2. Resider	nce - Household Effects	495	644	807	1,091	1,350	1,445
	3. Busines	ss Establishments	3,311	3,995	5,086	6,636	7,788	8,238
	3-1	Manufacturing	961	1,162	1,474	1,915	2,245	2,375
	3-2	Commerce (Wholesale & Retail Trade)	952	1,171	1,518	2,013	2,396	2,543
	3-3	Hotel and Restaurants	495	591	742	955	1,110	1,171
	3-4	Financial / Insurance / Real Estate Business	422	505	639	831	970	1,024
	3-5	Educational Facilities	117	138	173	222	257	270
	3-6	Medical Facilities	363	428	540	699	810	854
	4. Infrastru	ucture	1,478	1,803	2,282	3,034	3,607	3,822
В.	Indirect Dan	nage	2,988	3,668	4,621	6,148	7,349	7,797
	 Loss of Business Opportunity, Cost for Cleaning Activities, Public Service / Utility Service Disruption 		1,878	2,280	2,893	3,814	4,509	4,774
	6. Traffic Disruption		3	4	5	6	6	6
	7. Cost for	Alternative Activities	1,107	1,384	1,723	2,328	2,834	3,016
C.	Total		9,222	11,270	14,245	18,942	22,559	23,917

Source: The Study Team

Table H.1.15 Flood Damage by Return Period (Without Project, South Manila)

						Unit : I	Php Million
			Return Perio	d (Year)			
Item	_	2	3	5	10	20	30
A. Direct Dan	nage	4,562	6,049	8,541	12,273	14,606	15,932
1. Reside	ence - House	885	1,285	1,855	2,876	3,386	3,722
2. Resid	ence - Household Effects	481	667	979	1,563	1,860	2,043
3. Busine	ess Establishments	2,113	2,663	3,682	4,923	5,896	6,389
3-1	Manufacturing	427	556	825	1,081	1,319	1,440
3-2	Commerce (Wholesale & Retail Trade)	572	727	1,028	1,417	1,728	1,884
3-3	Hotel and Restaurants	368	465	633	831	982	1,060
3-4	Financial / Insurance / Real Estate Business	428	519	665	902	1,050	1,125
3-5	Educational Facilities	73	91	123	158	186	201
3-6	Medical Facilities	246	305	409	535	631	680
4. Infrast	ructure	1,082	1,434	2,025	2,910	3,463	3,778
B. Indirect Da	image	2,091	2,810	3,983	5,839	6,906	7,510
5. Loss o Activit	of Business Opportunity, Cost for Cleaning ies, Public Service / Utility Serivce Disruption	1,295	1,682	2,356	3,295	3,930	4,276
6. Traffic	Disruption	2	3	4	6	6	6
7. Cost f	or Alternative Activities	794	1,125	1,623	2,538	2,970	3,227
C. Total		6,653	8,859	12,524	18,112	21,512	23,442

Table H.1.16	Flood Damage by Re	turn Period (Witho	ut Project, All Study Area)
--------------	--------------------	--------------------	-----------------------------

					Unit : I	Php Million
		Return Peric	od (Year)			
Item	2	3	5	10	20	30
A. Direct Damage	10,796	13,651	18,165	25,067	29,816	32,051
1. Residence - House	1,836	2,446	3,304	4,909	5,852	6,336
2. Residence - Household Effects	976	1,311	1,786	2,654	3,210	3,488
3. Business Establishments	5,424	6,658	8,767	11,559	13,684	14,627
3-1 Manufacturing	1,388	1,718	2,299	2,996	3,564	3,815
3-2 Commerce (Wholesale & Retail Trade)	1,524	1,898	2,546	3,429	4,124	4,427
3-3 Hotel and Restaurants	863	1,056	1,375	1,786	2,091	2,231
3-4 Financial / Insurance / Real Estate Busines	s 850	1,024	1,304	1,733	2,020	2,149
3-5 Educational Facilities	190	228	295	380	443	471
3-6 Medical Facilities	609	734	949	1,234	1,441	1,534
4 Infrastructure	2,560	3,237	4,308	5,944	7,070	7,600
B. Indirect Damage	5,079	6,478	8,604	11,987	14,255	15,307
5 Loss of Business Opportunity, Cost for Cleaning Activities, Public Service / Utility Serivce Disruption	3,173	3,962	5,249	7,108	8,439	9,051
6 Traffic Disruption	5	7	9	12	12	13
7 Assistance and Calamity Fund Extended	0	0	0	0	0	0
8 Cost for Alternative Activities	1,901	2,509	3,346	4,866	5,805	6,244
C. Total	15,875	20,129	26,769	37,053	44,071	47,359

Source: The Study Team

Table H.1.17 Flood Damage by Return Period (With Master Plan, North Manila)

						Unit :	Php Million
			Return Perio	d (Year)			
Item		2	3	5	10	20	30
Α.	Direct Damage	615	641	832	1,710	3,883	4,672
	1. Residence - House	35	39	43	108	520	671
	2. Residence - Household Effects	16	18	21	51	225	296
	3. Business Establishments	418	432	571	1,146	2,217	2,598
	3-1 Manufacturing	120	124	163	328	635	746
	3-2 Commerce (Wholesale & Retail Trade)	118	122	161	321	620	726
	3-3 Hotel and Restaurants	64	66	86	174	337	394
	3-4 Financial / Insurance / Real Estate Business	55	56	74	149	289	337
	3-5 Educational Facilities	15	16	21	43	83	97
	3-6 Medical Facilities	48	49	64	131	255	297
	4. Infrastructure	146	152	197	406	921	1,108
В.	Indirect Damage	253	267	343	709	1,773	2,166
	 Loss of Business Opportunity, Cost for Cleaning Activities, Public Service / Utility Serivce Disruption 	208	216	283	574	1,208	1,436
	6. Traffic Disruption	1	1	1	1	1	2
	7. Cost for Alternative Activities	45	51	60	134	564	729
<u> </u>	Total	869	909	1,175	2,419	5,656	6,838

						Unit :	Php Million
			Return Perio	d (Year)			
Item		2	3	5	10	20	30
Α.	Direct Damage	11	296	600	957	2,617	3,809
	1. Residence - House	0	1	95	198	418	667
	2. Residence - Household Effects	0	0	38	92	200	316
	3. Business Establishments	8	224	325	440	1,378	1,923
	3-1 Manufacturing	2	61	90	108	317	445
	3-2 Commerce (Wholesale & Retail Trade)	2	62	89	119	367	521
	3-3 Hotel and Restaurants	1	35	50	70	238	326
	3-4 Financial / Insurance / Real Estate Business	1	32	45	74	243	339
	3-5 Educational Facilities	0	9	12	17	50	68
	3-6 Medical Facilities	1	26	38	53	162	224
	4. Infrastructure	3	70	142	227	620	903
В.	Indirect Damage	4	108	280	461	1,187	1,753
	 Loss of Business Opportunity, Cost for Cleaning Activities, Public Service / Utility Service Disruption 	4	106	182	271	784	1,121
	6. Traffic Disruption	0	0	0	0	1	1
	7. Cost for Alternative Activities	0	2	98	190	403	631
C.	Total	15	405	880	1,418	3,804	5,561

Table H.1.18 Flood Damage by Return Period (With Master Plan, South Manila)

Source: The Study Team

Table H.1.19 Flood Damage by Return Period (With Master Plan, All Study Area)

						Unit :	Php Million
			Return Perio	d (Year)			
Item		2	3	5	10	20	30
Α.	Direct Damage	626	937	1,432	2,667	6,500	8,481
	1. Residence - House	35	40	138	306	939	1,337
	2. Residence - Household Effects	16	19	60	143	424	612
	3. Business Establishments	427	656	895	1,586	3,595	4,521
	3-1 Manufacturing	122	185	253	436	952	1,191
	3-2 Commerce (Wholesale & Retail Trade)	120	184	251	440	987	1,247
	3-3 Hotel and Restaurants	65	100	136	244	575	721
	3-4 Financial / Insurance / Real Estate Busines	ss 56	88	119	223	532	676
	3-5 Educational Facilities	16	24	33	59	133	165
	3-6 Medical Facilities	49	75	103	184	417	521
	4. Infrastructure	149	222	340	632	1,541	2,011
В.	Indirect Damage	257	376	623	1,170	2,960	3,919
	 Loss of Business Opportunity, Cost for Cleaning Activities, Public Service / Utility Service Disruption 	212	322	465	845	1,991	2,556
	6. Traffic Disruption	1	1	1	1	1	3
	7. Cost for Alternative Activities	45	54	157	324	967	1,360
C.	Total	884	1,313	2,055	3,837	9,459	12,400

Source: The Study Team

(7) Case of without Pumping Station and Gate Operation Service

In order to verify the effectiveness of existing pumping stations and flood control gates, the Study Team tried an additional sensitivity analysis as a case of without pumping station and gate operation services under the flood size of 10-year return period. As shown in the following table, when pumping stations and gate control in metropolitan Manila were stopped, the flood damage would increase at 50% compared to the existing conditions. This flood damage is equivalent to the damage or bigger than the flood of 30-year return period. As seen in the example of this simulation result, it is apparent that the pumping stations and flood control gates have great function to prevent Metropolitan Manila from severe flood / inundation damage.

							Unit : Php Million
		Existin	Ig	Existing +	No Pump	Existing	Existing + No Pump
		Conditi	Condition		Condition		Condition
Item		North Manila So	outh Manila	North Manila	South Manila	All Study Area	All Study Area
Α.	Direct Damage	12,794	12,273	17,012	20,539	25,067	37,551
	1. Residence - House	2,033	2,876	2,805	5,068	4,909	7,874
	2. Residence - Household Effects	1,091	1,563	1,629	2,833	2,654	4,461
	3. Business Establishments	6,636	4,923	8,544	7,768	11,559	16,312
	3-1 Manufacturing	1,915	1,081	2,501	1,884	2,996	4,385
	3-2 Commerce (Wholesale & Retail Trade)	2,013	1,417	2,614	2,343	3,429	4,956
	3-3 Hotel and Restaurants	955	831	1,220	1,263	1,786	2,483
	3-4 Financial / Insurance / Real Estate Business	831	902	1,055	1,237	1,733	2,291
	3-5 Educational Facilities	222	158	279	239	380	518
	3-6 Medical Facilities	699	535	876	801	1,234	1,677
	4 Infrastructure	3,034	2,910	4,034	4,870	5,944	8,904
В.	Indirect Damage	6,148	5,839	8,306	9,816	11,987	18,122
	5 Loss of Business Opportunity	3,814	3,295	5,004	5,398	7,108	10,402
	6 Traffic Disruption	6	6	6	6	12	12
	7 Cost for Alternative Activities	2,328	2,538	3,296	4,412	4,866	7,708
C.	Total	18,941	18,112	25,318	30,355	37,053	55,673
	Increase of Damage(Adverse Effect by Out of Service of Pump & Gate)				1 68%		1 50%

Table H.1.20 Effect of Pumping Station & Gate

Note : Existing Condition = Case of Without Project

Existing Condition + No Pump Condition = Case of without pumping service & without gate operation

(8) Estimation of Annual Average Benefit

Based on the estimated potential flood damages for each probable rainfall or discharge, the annual average damage was calculated by the following formula:

Annual Average Benefit = Annual Average Damage

$$= \sum_{i=1}^{n} \frac{1}{2} \left(D\left(Q_{i-1} \right) + D\left(Q_{i} \right) \right) \bullet \left(P\left(Q_{i-1} \right) + P\left(Q_{i} \right) \right)$$

Where,

$D(Q_{i-1}), D(Q_i)$:	Flood damage caused by the floods with Q_{i-1} and Q_i discharges, respectively
$P(Q_{i-1}), P(Q_i)$:	Probabilities of occurrence of Q_{i-1} and Q_i discharges, respectively
n	:	Number of floods applied

The annual average benefit, defined as the reduction of probable damage under the "with" and "without" project situations was thus estimated for the proposed plan, i.e., Php 14,639 million in total (North Manila: 7,809, South Manil:6,830) as presented in the table below.

					Uni	it : Php million
Flood Return	Flood D)amage	Boduction	Average	Expectation	Benefit by
Preod	Without Project	With Project	Reduction	Average	Rate	Return
			4,177	0.5000	2,088	
2 year	9,222	869	8,353			
				9,357	0.1667	1,560
3 year	11,270	909	10,362			
				11,716	0.1333	1,562
5 year	14,245	1,175	13,071			
				14,797	0.1000	1,480
10 year	18,942	2,419	16,523			
				16,713	0.0500	836
20 year	22,559	5,656	16,903			
				16,991	0.0167	283
30 year	30 year 23,917 6,838		17,079	Total (Annual Av	erage Benefit)	7,809
2 year 3 year 5 year 10 year 20 year 30 year	9,222 11,270 14,245 18,942 22,559 23,917	869 909 1,175 2,419 5,656 6,838	8,353 10,362 13,071 16,523 16,903 17,079	9,357 - 11,716 - 14,797 - 16,713 - 16,991 Total (Annual Av	0.1667 0.1333 0.1000 0.0500 0.0167 erage Benefit)	1,560 1,562 1,480 836 283 7,809

Table H.1.21 Breakdown of Annual Average Benefit(With Master Plan, in Present Condition, North Manila)

Source: The Study Team

Table H.1.22Breakdown of Annual Average Benefit(With Master Plan, in Present Condition, South Manila)

					Uni	t : Php million
Flood Return	Flood D	amage	Boduction	Average	Expectation	Benefit by
Preod	Without Project	With Project	Reduction	Average	Rate	Return
			3,319	0.5000	1,659	
2 year	6,653	15	6,638			
				7,546	0.1667	1,258
3 year	8,859	405	8,454			
				10,049	0.1333	1,340
5 year	12,524	880	11,643			
				14,169	0.1000	1,417
10 year	18,112	1,418	16,694			
				17,201	0.0500	860
20 year	21,512	3,804	17,708			
				17,794	0.0167	297
30 year	23,442	5,561	17,881	Total (Annual Av	erade Benefit)	6 830
					erage Denenit)	0,030

					Uni	t : Php million
Flood Return	Flood D	amage	Boduction	Average	Expectation	Benefit by
Preod	Without Project	With Project	Reduction	Average	Rate	Return
			7,495	0.5000	3,748	
2 year	15,875	884	14,991			
				16,903	0.1667	2,817
3 year	20,129	1,313	18,816			
				21,765	0.1333	2,902
5 year	26,769	2,055	24,714			
	-,	,	,	28.965	0.1000	2.897
10 vear	37 053	3 837	33 216			_,
	01,000	0,001	00,210	33 01/	0.0500	1 696
20 voor	44.071	0.450	24 612	00,014	0.0000	1,000
20 year	44,071	9,409	34,012	24 705	0.0107	500
	/=			34,785	0.0167	280
30 year	47,359	12,400	34,959	Total (Annual Av	erage Benefit)	14,639

Table H.1.23 Breakdown of Annual Average Benefit (With Master Plan, in Present Condition, All Study Area)

Source: The Study Team

Figure H.1.11 Elements of Annual Average Benefit

(9) Socio-Economic Projection

Future Projection on GDP, Population, and Land Use

(GDP Projection)

The long-term projection of GDP is indispensable for formulating the future framework of the socio-economic structure. Annual growth rate of GDPs 2001 - 2006 is estimated at 5.1% (low case) and 5.6 (high case) in the Medium Term Development Plan. The rate in the past year, 2003, was 4.7%. Under these circumstances, GDP is estimated on the following assumptions in this analysis.

- Until 2010, GDP will increase at the same rate in the present situation.
- Between 2010 and 2015, GDP will grow at a half of the above rate.
- Beyond the year 2015, growth of GDP is not considered.

	Actual Performance* ¹	MTPDP Target* ²	Assumption of this Study						
	2003	2004-2010	2005-2010	2010-2015	After 2015				
GDP Annual Groth Rate	4 .7% h	ġh &.0% Low≇.9%	4 .70%	₽.35%	± 0%				

Table H.1.24 Economic Growth Rate Framework

Source: *¹ NSCB website, *² NEDA website

(Demographic Projection and Housing Conditions)

National Statistics Office (NSO) provides national population projections, for subdivisions down to municipal level, until 2010, incorporating the results of the 1990 census.

In accordance with the NSO projection, it estimates population decline in Manila and Pasay after 2005 and Makati after 2010. But in the latest 2000 Census, the decline in these three cities has already started.

In this analysis, the future population is projected on the basis of the NSO projection until 2010, and then, after 2010, growth is assumed $\pm 0\%$. The average number of family members and average floor area per house are assumed to be the same in future.

			Assur	Study	
	Actual St	atistics * ¹	NSO Pro	jection * ²	
	1995	2000	2005	2010	After 2010
Caloocan	1,023,159	1,177,604	1,383,071	1,608,034	
Manila	1,654,761	1,581,082	1,501,077	1,429,674	
Pasay	408,610	354,908	323,374	278,122	
Queøn	1,989,419	2,173,831	2,406,137	2,464,168	
Makati	484,176	471,379	475,531	471,267	
Taguig	381,350	467,375	589,397	732,741	
5 Cities&1Municipality	5,941,475	6,226,179	6,678,587	6,984,006	6,984,006
5-year groth rate		4 .79%	+7.27%	+4.57%	±0.00%
annual groth rate		€.94%	+1.41%	+0.90%	±0.00%
NCR	9,454,040	9,932,560	10,505,346	11,074,059	
5-year groth rate		5.06%	5.77%	5.41%	

 Table H.1.25
 Population Framework

Source: *1, NSO

*2, NSO, Population and Development in the Philippines, AIM (Asian Institute of Management) Policy Center, 2003

(Land Use Plans)

As mentioned in the *Main Report, Chapter 2.2*, land use plans have been released by the LGUs. In this economic analysis, the proposed land use plans are supposed to be realized immediately after project commencement in order to keep consistency with hydrodynamic simulation model, although the plans are not guaranteed to be realized within the project period, and the land use is transformed gradually in general.

Future Prospects of Damageable Assets

While the structure of damageable properties remains constant, economic value and distribution of the assets and properties in the flood-prone areas are considered to change in the future. Taking the socio-economic projection into consideration, these changes are derived in the following manner:

- The number of damageable housing units and buildings is computed as constant to keep consistency with hydrodynamic simulation model.
- The average damageable value of household effects and construction cost of housing units are assumed to increase in consideration of GDP per capita and population growth.
- The total values of both depreciable assets and inventory stock basically increase in consideration of the GDP and GDP per capita growth.
- Increase of damageable assets, which will be caused by increment of the number of business establishments in future, is assumed to be absorbed in the increment of the number of damageable assets of individual establishments. Thus, although the assessed values of an individual establishment are considered to have outwardly larger damageable assets than the actual values, the number of establishments could be frozen in the same number as the present one even in future.

	2005-2010	2010-2015	2015-
GDP Annual Groth Rate	4.70%	2.35% 0.0	0%
Population Annual Groth Rate =No. of bluseholds Annual Groth Rate	0.90%	0.00% (0.00%
GDP per capita Annual Groth Rate	3.77%	2.35% 0.0	0%

 Table H.1.26 Future Framework for Economic Analysis

Adjusted Annual Average Benefit

In accordance with the future framework mentioned above, flood damages in the future conditions are estimated. The annual average benefits in respective years increase as shown in the following figure (Base Estimation). When the progress of the project implementation is considered, the timing of accruing benefit appears to be delayed. The Study Team's assumption is shown in the following figure as well.

Figure H.1.12 Annual Average Benefit and Timing of Accruing Benefits (With Master Plan, in Future Condition)

(10) Intangible Benefit

As defined in the section (1), among the variety of flood reduction benefits, this analysis does not deal with the following intangible flood control benefit :

- Direct Damage
 - a. Physical damages to human bodies such as injuries, diseases, deaths
 - b. Mental influences to people affected
- Direct Damage

(Secondary damage because of long time inundation such as weed growth or corrosion)

- Indirect Damage
 - a. Extra Expenses for Emergency Activities
 - b. Degradation of environmental quality such as reverse flow of sediment, solid waste, sewer water,
 - c. Deterioration of hygienic safety such as food poisoning or outbreak of communicable diseases,
 - d. Increase of crimes such as stealing under the disordered situation,
 - e. Deterioration of sophisticated environment such as damage to townscape of street trees or damages to historical buildings, and
 - f. Benefit of Land Use Development

As to indirect damage as "a. Extra Expenses for Emergency activities" such as evacuation and relief of flood victims are brought about during flooding period and just after the disaster. These activities are usually executed by the public sector or by social welfare bodies. In the Philippines, the Office of Civil Defense has been compiling such data in cooperation with the Department of Social Welfare and Development and LGUs.

According to records of the Office of Civil Defense, the average rate of infrastructure damage to that of private property by the typhoons that hit the NCR region during 1982 to 2003 was 7.9%.

Year	Cause of	Date of	Va	alue of Damages	6	Assitance Extended						
	Damage	Damage Occurrence By Ca		Calamity	NDCC A	ssistance (Mil Php)					
						Govenment	Fund				Special Fund	
			Total	Infrastructure	Private	NGO LGU	Releases			Relief	released for	
			(Million Php)	(Million PhP)	(Rillion DhD)	(Mil Php)	(Mil Dhn)	Cach	Dico	Goode	Dead Victims	
			(willion Frip)			(iviii.Php)	(IVIII.PHP)	Casil	RICE	Goods		
1970												
1971												
1972												
1973												
1974	Bidang	Nov 24-29	43.000		0.043							
1975												
1976												
1977												
1079												
1970												
19/9												
1980												
1981												
1982	Ruping	Sept 5 - 11	199.000	68	0.010	0.173						
1983												
1984												
1985												
1986	T Gading	July 6 -10	676.000	300	0.009	7.046						
	T Miding	Aug 17-18, 24-25	263.000	99	0.001	2.114						
		Aug 27 to Sent /	200.000		0.001	214						
	TO Ourse	Aug 27 to Sept 4	E4 000		0.042	0.902						
	15 Oyang	UCI 6 - 7	54.000		0.043	0.002						
1987		L										
1988	T Biring	May 3-31 to June 3	27.000	24		0.704						
	T Unsang	Oct 21-26	5,636.000	811	0.018	103.750	1.600					
	T Yoning	Nov 5-8	2,748.000	348	0.187	7.875						
1989	TS Bining	May 15-19	74.000	66		0.192	6.640					
	T Goring	July 14-17	1,363.000	440		3.862	0.200					
	T Openg	Sept. 7-12	580.000	289	0.003	3.829						
	TS Saling	Oct 9-10	1.394.000	258	0.012	10.729	42.000					
	T Tasing	Oct 14-20	883.000	105	0.000	2 239 000						
	TC Upsing	Nev 16 22	8 000	103	0.000	2,233.000	0.500					
4000	TO UTISING	NUV 10-22	0.000	4	0.002	1.555	0.000					
1990	I Bising	June 18-23	200.000									
	T Gading	Aug 15-20	25.000									
	T Iliang	Aug 28-30	1,502.000									
	T Ruping	Nov 10-14	10,846.000	1,214		3.676	344.600					
1991												
1992	TD Ditang	July 17-21	471.000	213	0.009	1.872	9.745					
	TS Gloring	Aug 16-18	1,347.000	434		5.104	5.931					
1993	T Goring	Jun 23-27	2,774.453	995	0.045	1.806	218.020					
	TS Rubing	Aug 16-19	98.347			1 007	3 274					
	rortubilig	/lug to to	00.011				0.211					
	Manana	Dec 2.6										
	wonang	Dec 3-6				0.005	40.000					
1994	DTD Gading	Jun 21-24				0.385	16.000					
L	KT Katring	Uct 18-21	1,433.180	213	0.273	3.956	210.109					
1995	TS Mameng	Sep 27 - Oct 1	3,172.725	1,297		23.074	325.788					
	T Rosing	Oct 31 - Nov 3	10,828.772	1,727	0.066	0.033	890.637					
1996	T Gloring	Jul 21-27	2,120.254	723		3.417	187.120					
	T Huaning	Jul 27- 31	18.000	18		0.692	31.552					
1997	T Bining	May 26-28	104.843	80	0.020	1.309	0.500					
	Huling	July 30-Aug 7										
	T Ibiang	Aug 21-28	476.534	173	0.023	20.226	3.000					
1009	T Emanc	Sent 16-17	3 705 //00	544	0.020	13 690	28 220					
1000	T Llolming	Jul 21 26	0,100.400	044		13.009	2 000					
1999	i. neiming	JUI 2 1-20	24.000	21			3.000		0.040			
2000	Biring	may 18-22	50.085	16					0.040		0.01	
	Edeng	Jul 3-8	1,112.573	469	0.001	13.649	8.000	0.240	1.581		0.13	
	TS Maring	Sept 2-7										
	Reming	Oct 26-Nov 1	3,944.436	963	0.119	9.557	76.781	0.085	0.148		0.08	
	Seniang	Nov 1-5	733.195	315	0.034			0.040	0.148		0.05	
2001	TY Feria	July 2-5	3,586.000	1,854	0.383	46.055	42.020	19.000	8.480	0.247	1.88	
	TY Nanang	Nov 6-10	3.246.000	1.668	0.014	14.277	26.500	10.308	0.200		an n	
<u> </u>	TV Elorita Cloria Indev	lune 28- lulu 2	2,210.000	.,500	0.014		20.000	.0.000	0.200		0.00	
2002	& TS Hambalos	July 7-9 & July 12-14	521.890	177	0.001	28.899	0.500		5.280		0.215	
	TD Milanua	Aug 11 14	470.000	00	0.004	1 006					0.40	
<u> </u>	TU Willenyo	Mug 11-14	172.000	00	0.001	1.090		40.440	0.000		0.13	
2003	Truchedeng	IVIAY 20-29	538.046	291	0.084	9.113		13.140	3.280		0.02	
	I Y Onyok	Aug 30-Sept 2							0.688			

Table H.1.27 Major Damage by Typhoon and Flood attacked Metropolitan Manila

Source :

- Office of Civil Defense, National Disaster Coordination Council, Department of National Defence (OCD-NDCC-DND)

Dep. of Sosial Welfare and Development (DSWD)
Directorate for Special Operation - Public Safety Office, MMDA
"Database of Water-Related Projects in the Republic of the Philippines", Mr. Kagawa, JICA Expert

Note : T= Tyhoon, TS= Tropical Storm, TD= Tropical Depression

These intangible benefits of flood reduction mentioned above represent the adverse social effects of flood and inundation. Although their substantiality, quantification of these intangible benefits are difficult in the absence of detailed surveys which should be carried out over a long period, as such it would be more likely intuitive in so doing. With this in view, and coupled with the preceding analyses undertaken by other international development assistance agencies, no attempt was made to include these items as tangible benefit (or should not be included) to avoid double counting same benefit as separate elements.

Physical damages to human bodies

Regarding physical damages to human bodies, there are some research papers report water-borne diseases caused by mal-maintained drainage system and revealing relationships between water-borne diseases and typhoon and flood in Philippines.

(Example 1)

"TYPHOID FEVER IN MAHARLIKA VILLAGE, TAGUIG, METRO MANILA : A WATERBORNE DISEASE OUTBREAK", Internal Report, Revelyn U. Rayray and et al., March 1990 reports the outbreak of typhoid fever in Maharlika village Taguig, Metropolitan Manila caused by contaminated water supply. The epidemic was caused by a clogged sewer overflowing to a water main as the cause of contamination. Based on the survey, 93 suspected cases were identified with onset of illness from November to first week of December 1988. There was one mortality.

The village is supplied by a village water system. Water was pumped from two deep wells, stored in two elevated tanks and supplied to the different households twice a day. By review of the water and the sewer systems in the village, a broken sewer was found. The sewer overflowed with sewage material into a nearby water main contaminating the water supply at that point. Geographically, those blocks around the clogged sewer which were most likely served by the contaminated water main. In laboratory test, Salmonella typhi was isolated in 14 rectal swab samples of 63 cases.

The sudden and sustained increase in the number of typhoid cases points to a common source disease outbreak. Common source type of vehicle transmission is usually caused by ingestion of either contaminated food or drink. The explosive increase favors a waterborne outbreak. Interview with some of the cases in the village revealed no common source of food. The only identifiable common exposure was the water supply from November to December 1988 in Maharlika Village. Epidemiologic, environmental and laboratory data also pointed to a waterborne transmission. The isolation of Salmonella typhi from 17 % of the cases confirmed the diagnosis in this outbreak.

(Example 2)

"MANAGEMENT OF DIARRHEA BY THE CONTROL OF DIARREHEAL DISEASE PROGRAM DURING A CHOLERA OUTBREAK", Journal of the Philippine Medical Association, Ilya P. Abellanosa and et al., October 1992 reports the rapid increase of diseases immediately after the typhoon Ruping of November 1990.

The Typhoon Ruping hit the Philippines on November 13, 1990. According to the data of

Southern Islands Medical Center (SIMC), 740 persons met the case definition in 1990 compared to 322 in 1989. The majority of patients were below 5 years old and the cases were in a more advanced stage of dehydration in 1990. Stool cultures were done in 331 cases in 1990, 96 cases (29%) of which grew Vibrio Cholera. In 1989, stool cultures were done on only two suspected cholera cases, and both were negative for V. Cholera. Unless quickly treated, Cholera can result in severe and rapidly progressive dehydration and death in a matter of hours.

Source: SIMC(Southern Islands Medical Center), Management of Diarrhea by the Control of Diarrheal Disease Program during a Cholera Outbreak", Journal of the Philippine Medical Association, Ilya P. Abellanosa and et al. October 1992

Figure H.1.13 Diarrhea Cases, Nov 13-Dec.13, 1989 & 1990

Benefit of Land Use Development

In accordance with benefit of land use development, this benefit is characterized as the value added opportunity cost of scarce resources, or change of productivity of the land derived from the flood-free environment. Metropolitan Manila plays an important role in the economy of the Philippines, and land shortage is one of the major constraints of development. It is considered that converting the flood/inundation-prone area into a flood-free area will accelerate utilization of the land. The benefit of land enhancement (including change of land use) is measured in terms of the increase of the land value. HDM (hednic method) approach is one of the methods of quantification of land enhancement benefit based on the land capitalization hypothesis. This theory states that all benefits of investment resolve itself into the land, and growth of land value is regarded as benefit of the investment.⁶

To determine the impact of the project onto the land value requires a detailed survey on the area and structure of the economic environment surrounding the project. In accordance with a past spot survey in Metropolitan Manila conducted by a consultant team with the assistance of a realtor, the impact onto flood prone area resulted in a 20 to 30% decrease in price than higher ground on the same street.⁷

Meanwhile, for low and sunken areas, city assessor's offices in core area of Metropolitan Manila define a reduction within 30% from the base value of land assessment for taxation of real property tax.⁸ Taking these conditions into account, it is considered reasonable that about 20 to 30% of land value is regarded as land enhancement benefit from being flood-free.

However, as mentioned above, this land enhancement benefit is excluded from the total annual average benefit for this economic analysis.

H.1.3 COST OF THE M/P PROJECT

(1) Basic Conditions for Economic Analysis

Economic cost differs from financial cost in the sense of value judgment since the former is nominal figures that duly reflect the true economic value of goods and services involved (or also called "opportunity cost") and the latter is resource value at market prices. All the costs involved in every project have to be measured as economic costs, although this economic cost is used only for the economic evaluation of the project which requires the evaluation from the viewpoint of the national (in some cases, regional) economy. The measurement of economic cost of a commodity depends on how likely it is to be procured – whether by increasing import, decreasing export, expanding domestic production or diverting.

Prior to economic evaluation of the projects, all (financial) costs need to be expressed in terms of economic cost by using conceivable adjustment, i.e.,

Financial Cost x Conversion Factors = Economic Cost (Actual cost in market value)

"Sunk Costs" are defined as all those cost incurred on the projects prior to the preparation of the economic analysis. Since these expenses have already been incurred, they are no longer subject to investment decision making. As such, sunk cost should not be included in the analysis.⁹

(2) Conversion Factor and Elements for Real Economic Value

The elements of the adjustment are as follows.

Conversion Factor 1 : Transfer Payments

Transfer items such as taxes and duties imposed on construction materials and equipment, including government subsidy and contractor's profit, are to be excluded from the elements of financial cost. Because tax payment is just the change of money in ownership, the change does not produce any added value to national economy. These taxes are transferred to the government which acts on behalf of the society as a whole and are not treated as costs. Conversely, a government subsidy is an expenditure of resources that the economy incurs to operate the project. The parameter of DPWH Guideline is adopted in this analysis:¹⁰

Economic Cost =86% f Financial cost

Where the cost for land acquisition is also converted at same rate, in this analysis, it is assumed that the necessary lands for right-of-way and resettlement site would be acquired from private sector.

Conversion Factor 2 : Foreign Exchange Shadow Price Rate (or Shadow Exchange Rate, SER)

Since the central bank foreign exchange guiding rate is not reflective of the actual exchange rate due to balance of payments disequilibrium and the projection structure, in this analysis, 1.2 times of the official rate is adopted for Foreign Currency Portion. This rate is based on NEDA guideline.¹¹

Economic Cost =120% f Financial cost

Based on these assumptions and conversion factors, financial costs for civil works were converted to economic costs. Land acquisition cost, social cost such as resettlement cost, supporting cost, and non-structural measures' cost are converted only by factor 1 of transfer payments because major items of these costs are domestic costs.

(3) Operations and Maintenance (O/M) Costs

Being subject to the guidance from and discussions with the engineering experts of agencies concerned and the Study Team, annual operation cost is assumed to be 110% of current expenditure of MMDA for 2005 - 2020 to hold the status quo. After project period (year 2020), these cost are excluded from this economic analysis, because these costs are necessary under both "with" and "without" project situation. After 2020, only the maintenance cost for additional civil works proposed in the Master Plan is considered for 2005 - 2040 in economic analysis.

And also, the project costs for supporting measures are excluded from this economic analysis. Though the costs were identified in the previous chapter, it was excluded from economic analysis because there was not enough information to quantify the effect and benefit derived from the supporting measures.

As a result of adjustment, economic cost for Master Plan is calculated as follows.

		Unit : Php million
Item	Financial Cost	Economic Cost
1. Civil W/k	9,703.8	9,430.2
2. VAT	970.4	0.0
3. Resettlement and Compensation Cost	1,590.1	1,367.5
4. Government Administration Cost	291.1	250.3
5. Engineering Services	970.4	942.9
6. Physical Contingency	1,352.6	1,282.6
7. Supporting Measure Cost	488.9	0.0
8. Operation Cost (2005-2020)	0.0	3,316.2
9. Maintenance Cost (2005-2040)	0.0	1,269.4
Total	15,367.3	17,859.1

 Table H.1.28 Project Cost (Master Plan)

Source: The Study Team

Note : Costs for Supporting Measures are excluded. Details may not add up to totals due to rounding.

Wards Harm		Projec	t Cost		Phase 1							
work item	Phase 1	Phase 2	Phase 3	Total	2005	2006	2007	2008	2009	2010		
Civil Works	3,806.9	3,432.0	2,464.9	9,703.8	0.0	0.0	0.0	2,315.3	756.1	735.5		
VAT	380.7	343.2	246.5	970.4	0.0	0.0	0.0	231.5	75.6	73.6		
Resettlement and Compensation Cost	241.8	555.2	793.1	1,590.1	95.1	95.1	51.6	0.0	0.0	222.1		
Government Administration Cost	114.2	103.0	73.9	291.1	0.0	0.0	0.0	69.4	22.7	22.1		
Engineering Services	380.7	343.2	246.5	970.4	0.0	0.0	0.0	231.5	75.6	73.6		
Physical Contingency	492.4	477.7	382.5	1,352.6	9.5	9.5	5.2	284.8	93.0	112.7		
Total	5.416.7	5.254.3	4.207.4	14.878.4	104.6	104.6	56.8	3.132.5	1.023.0	1.239.6		

Table H.1.29 Disbursement Schedule for Economic Analysis(Master Plan Project, Financial Price)

Manda Mana			Phase 2								
work item	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	Total
Civil Works	0.0	156.2	1,160.2	1,069.3	1,046.3	0.0	117.4	782.7	782.5	782.3	9,703.8
VAT	0.0	15.6	116.1	106.9	104.6	0.0	11.7	78.3	78.3	78.2	970.4
Resettlement and Compensation Cost	222.1	111.0	0.0	0.0	317.2	317.2	158.7		0.0	0.0	1,590.1
Government Administration Cost	0.0	4.7	34.8	32.1	31.4	0.0	3.5	23.5	23.5	23.4	291.1
Engineering Services	0.0	15.6	116.1	106.9	104.6	0.0	11.7	78.3	78.3	78.2	970.4
Physical Contingency	22.2	30.3	142.7	131.5	160.4	31.7	30.3	96.3	96.3	96.2	1,352.6
Total	244.3	333.4	1,569.9	1,446.7	1,764.5	348.9	333.3	1,059.1	1,058.9	1,058.3	14,878.4

Source : The Study Team

Table H.1.30 Disbursement Schedule for Economic Analysis (Master Plan Project, Economic Price)

										Unit: Ph	p Million	
Werk Itom		Р	roject Co	st		Phase 1						
WORK Item	Phase 1	Phase 2	Phase 3	2021-	Total	2005	2006	2007	2008	2009	2010	
Civil Works	3,699.5	3,335.2	2,395.4	0.0	9,430.2	0.0	0.0	0.0	2,250.0	734.8	714.8	
VAT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Resettlement and Compensation Cost	207.9	477.5	682.1	0.0	1,367.5	81.8	81.8	44.4	0.0	0.0	191.0	
Government Administration Cost	98.2	88.6	63.6	0.0	250.3	0.0	0.0	0.0	59.7	19.5	19.0	
Engineering Services	369.9	333.5	239.5	0.0	942.9	0.0	0.0	0.0	225.0	73.5	71.4	
Physical Contingency	470.3	453.0	359.3	0.0	1,282.6	8.2	8.2	4.5	273.3	89.3	106.0	
Operation Cost	1,244	1,036	1,036	0	3,316.2	207.3	207.3	207.3	207.3	207.3	207.3	
Maintenance Cost	26.2	111.2	189.0	943.0	1,269.4	0.0	0.0	0.0	0.0	11.3	14.9	
Total	6,115.6	5,835.4	4,965.1	943.0	17,859.1	297.2	297.2	256.1	3,015.2	1,135.6	1,324.4	

Mark Kow			Phase 2					Phase 3			2021	
work item	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	-2040	Total
Civil Works	0.0	151.8	1,127.5	1,039.1	1,016.8	0.0	114.1	760.6	760.4	760.2	0.0	9,430.2
VAT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Resettlement and Compensation Cost	191.0	95.5	0.0	0.0	272.8	272.8	136.4	0.0	0.0	0.0	0.0	1,367.5
Government Administration Cost	0.0	4.0	29.9	27.6	27.0	0.0	3.0	20.2	20.2	20.1	0.0	250.3
Engineering Services	0.0	15.3	112.7	103.9	101.7	0.0	11.4	76.1	76.1	76.0	0.0	942.9
Physical Contingency	19.1	28.0	137.1	126.3	150.8	27.3	27.5	92.5	92.5	92.3	0.0	1,282.6
Operation Cost	207.3	207.3	207.3	207.3	207.3	207.3	207.3	207.3	207.3	207.3	0.0	3,316.2
Maintenance Cost	18.5	18.5	19.3	24.9	30.1	35.2	35.2	35.7	39.5	43.3	943.0	1,269.4
Total	435.9	520.3	1,633.7	1,529.1	1,806.4	542.5	534.9	1,192.4	1,196.0	1,199.3	0.0	17,859.1

H.1.4 ECONOMIC EVALUATION

(1) Economic Viability

The master plan was evaluated from the economic viewpoint by figuring out the economic viability, comparing the economic benefit and the economic cost in terms of economic internal rate of return (EIRR), benefit and cost ratio (B/C), and net present value (NPV = B - C, or Benefit minus Cost).

All the monetary calculations were based on the following parameters either predetermined or using assumptions.

Project Duration

- Project Start-up : 2005
- Project Life Span (Economic Life) :

30 years¹² after completion of the work in Short-Term

 Project Phase : The first phase starts in 2005 and continues to 2010. The second phase works are facilitated from 2011 to 2015. The third phase works are facilitated from 2016 to 2020. Then, beyond 2020, operation and maintenance works continue to 2040

Timing of Accruing Benefits

- 25% of annual average benefit will appear after the first phase,
- 50% of annual average benefit will appear after the second phase,
- The matured annual average benefit will appear after the third phase, i.e., completion of all phases of civil works.

Price Level

- The valuation of project costs and benefit should be in constant price at the current year's level. Though, cost of civil works was identified as the price at July 2004 (see *Chapter G of Supporting Report*), the basic price level in the economic analysis is set at the beginning of 2004 in order to keep consistency among all cost items.

Social Discount Rate (SDR)

Based on the guideline of NEDA¹³ for basic infrastructure projects, SDR is applied at 15% in this analysis.¹⁴

Prevailing Exchange Rate

Php 55 per US\$ and JPY 110 per US\$ at the official rate in market

Depreciation, Financial Charges, Interest and Amortization

- In general, financing of the project is not relevant to the economic evaluation. These financial items are independent of the economic value of the project. To ensure that only feasible projects are financed, investments should be subjected to cost-benefit analysis removed from financing considerations. Only after a project is determined feasible should terms of financing be incorporated to evaluate possible benefits derived from relative, favorable (e.g., concessional) loan terms.¹⁵ From these points of view, depreciation (residual value) of waterways and pumping stations, and financial cost or charges are not estimated in this analysis.

The calculations of NPV, B/C(Benefit and Cost Ratio), and EIRR were based on the annual cash flow that was prepared from the above-mentioned economic cost and the annual average benefit

discussed in accordance with the implementation schedule or annual disbursement schedule. The economic viability of the optimum plan was thus figured out as follows.

 Table H.1.31 Results of Economic Analysis (Future Condition, M/P Projects)

NPV	Php 27,595 milion
B/C	5.2
EIRR	42.8%

				(Php. millio	on, at Current Pri	ce in Economic	Value under Fut	ure Condition)
Project		-	conomic Cos	Posottlomont &			Benefit	Balance
Year	Year		Civil Works	Compensation	Other Costs	Total Cost		
1	2005			81.8	215.4	297.2		▲ 297.2
2	2006	ase		81.8	215.4	297.2		▲ 297.2
3	2007	Ph ₈		44 4	211 7	256.1		▲ 256 1
4	2008	term	2 250 0		765.2	3 015 2		▲ 3 015 2
-	2000	-tort-	2,200.0		100.2	1 125 6		▲ 1,010.2
5	2009	s	7 34.0	101.0	400.0	1,100.0		▲ 1,155.0
⁰	2010		/14.8		418.6	1,324.4		▲ 1,324.4
7	2011	hase		191.0	244.8	435.9	4,934.2	4,498.3
8	2012	۳ ۲	151.8	95.5	273.0	520.3	5,050.2	4,529.9
9	2013	-ten	1,127.5		506.3	1,633.7	5,168.8	3,535.1
10	2014	lium	1,039.1		490.0	1,529.1	5,290.3	3,761.2
11	2015	Med	1,016.8	272.8	516.8	1,806.4	5,414.6	3,608.2
12	2016	ų		272.8	269.7	542.5	10,829.2	10,286.7
13	2017	has	114.1	136.4	284.3	534.9	10,829.2	10,294.4
14	2018	E.	760.6		431.8	1.192.4	10.829.2	9.636.9
15	2019	ng-te	760.4		435.6	1.196.0	10.829.2	9.633.3
16	2020	Lor	760.2		439.1	1 199 3	10 829 2	9 629 9
	2021				47.2	47.2	21.658.5	21.611.3
18	2022				47.2	47.2	21,658.5	21,611.3
19	2023				47.2	47.2	21,658.5	21,611.3
20	2024				47.2	47.2	21,658.5	21,611.3
21	2025				47.2	47.2	21,658.5	21,611.3
22	2026				47.2	47.2	21,658.5	21,611.3
23	2027				47.2	47.2	21,658.5	21,611.3
24	2028				47.2	47.2	21,658.5	21,611.3
25	2029				47.2	47.2	21,658.5	21,611.3
26	2030				47.2	47.2	21,658.5	21,611.3
27	2031				47.2	47.2	21,658.5	21,611.3
28	2032				47.2	47.2	21,658.5	21,611.3
29	2033				47.2	47.2	21,658.5	21,611.3
30	2034				47.2	47.2	21,000.0	21,011.3
30	2035				47.2	47.2	21,030.5	21,011.3
32	2030				47.2	47.2	21,050.5	21,011.3
34	2037				47.2 47.2	47.2 47.2	21,050.5	21,011.3
35	2039				47.2	47.2	21,000.0	21,011.0
36	2040				47.2	47.2	21.658.5	21,611.3
				(To	tal at Current)	17.859.2	513.174.3	495.315.1
				((Total at PV)	6,601.9	34,197.3	27,595.4
		Г	Residual V	alue of Capital at	Current Price :	Php 0	NPV :	27,595.4
		F		Social [Discount Rate :	15%	B/C :	5.2
		L					EIRR :	42.8%

Table H.1.32 Annual Cash Flow of Master Plan 1 (Future Condition)

(2) Sensitivity Analysis

The cost and benefits were estimated at conservative side with discretion in this analysis. In spite of that, some uncertainty still exists in the estimation. In particular, the cases with long implementation period and/or expectation of future growth in Metropolitan Manila have high risks in terms of judgment on project viability. In this context, the sensitivity analysis was tested in the following relevant parameters guided by NEDA¹⁶ in consideration of sensitive factors for project feasibility.

Assumption I :	Increase in projected costs by 10% and 20%
Assumption II :	Decrease in benefits by 10% and 20%
Assumption III:	Combination of Cases I and II

In addition to the above NEDA guideline, another case that the benefit decreased to 50% of original estimate was also tested for reference.

Assumption IV: Decrease in benefit by 50%

(NPV, Future Condition, M/P Projects)					
					Unit : Php Million
			Benefit		
		±0%	-10%	-20%	-50%
	±0%	27,595	24,176	20,756	10,497
Cost	+10%	26,935	23,515	20,096	9,837
	+20%	26,275	22,855	19,436	9,176

Table H.1.33 Results of the Sensitivity Analysis 1 (NPV, Future Condition, M/P Projects)

Source: The Study Team

Table H.1.34 Results of the Sensitivity Analysis 2 (B/C, Future Condition, M/P Projects)

			Benefit		
		±0%	-10%	-20%	-50%
	±0%	5.2	4.7	4.1	2.6
Cost	+10%	4.7	4.2	3.8	2.4
	+20%	4.3	3.9	3.5	2.2

Source: The Study Team

Table H.1.35 Results of the Sensitivity Analysis 3 (EIRR, Future Condition, M/P Projects)

			Benefit		
		±0%	-10%	-20%	-50%
	±0%	42.8%	40.3%	37.8%	28.6%
Cost	+10%	40.6%	38.2%	35.8%	27.0%
	+20%	38.6%	36.4%	34.0%	25.5%

(2) Sensitivity Analysis

The cost and benefits were estimated at conservative side with discretion in this analysis. In spite of that, some uncertainty still exists in the estimation. In particular, the cases with long implementation period and/or expectation of future growth in Metropolitan Manila have high risks in terms of judgment on project viability. In this context, the sensitivity analysis was tested in the following relevant parameters guided by NEDA¹⁶ in consideration of sensitive factors for project feasibility.

Assumption I :	Increase in projected costs by 10% and 20%
Assumption II :	Decrease in benefits by 10% and 20%
Assumption III:	Combination of Cases I and II

In addition to the above NEDA guideline, another case that the benefit decreased to 50% of original estimate was also tested for reference.

Assumption IV: Decrease in benefit by 50%

(NPV, Future Condition, M/P Projects)					
					Unit : Php Million
			Benefit		
		±0%	-10%	-20%	-50%
	±0%	27,595	24,176	20,756	10,497
Cost	+10%	26,935	23,515	20,096	9,837
	+20%	26,275	22,855	19,436	9,176

Table H.1.33 Results of the Sensitivity Analysis 1 (NPV, Future Condition, M/P Projects)

Source: The Study Team

Table H.1.34 Results of the Sensitivity Analysis 2 (B/C, Future Condition, M/P Projects)

			Benefit		
		±0%	-10%	-20%	-50%
	±0%	5.2	4.7	4.1	2.6
Cost	+10%	4.7	4.2	3.8	2.4
	+20%	4.3	3.9	3.5	2.2

Source: The Study Team

Table H.1.35 Results of the Sensitivity Analysis 3 (EIRR, Future Condition, M/P Projects)

			Benefit		
		±0%	-10%	-20%	-50%
	±0%	42.8%	40.3%	37.8%	28.6%
Cost	+10%	40.6%	38.2%	35.8%	27.0%
	+20%	38.6%	36.4%	34.0%	25.5%

Figure H.1.14 Results of Sensitivity Analysis (EIRR, Future Condition, M/P Projects)

In principle, it is said that the project is feasible when NPV is positive (over 0), B/C is over 1.0, and EIRR is over social discount rate (15% in Philippines). As shown in the tables above, NPV of the all cases were positive, B/C exceeded 1.0, and the lowest EIRR exceeded social discount rate. Thus, the proposed projects are sufficiently feasible from the economic point of view.

Incidentally, in case of excluding socio-economic growth in future, EIRR would still keep the economically feasible level (20.0%, under the assumption of +20% increased cost and -50% decreased benefit, see *Table H.1.38*).

					Unit : Php Million
			Benefit		
		±0%	-10%	-20%	-50%
	±0%	16,823	14,481	12,138	5,111
Cost	+10%	16,163	13,820	11,478	4,450
	+20%	15,503	13,160	10,818	3,790

Table H.1. 36 Results of the Sensitivity Analysis 4 (NPV, Present Condition, M/P Projects)

Source: The Study Team

 Table H.1. 37 Results of the Sensitivity Analysis 5

 (B/C, Present Condition, M/P Projects)

		Benefit				
		±0%	-10%	-20%	-50%	
	±0%	3.5	3.2	2.8	1.8	
Cost	+10%	3.2	2.9	2.6	1.6	
	+20%	3.0	2.7	2.4	1.5	

		Benefit					
		±0%	-10%	-20%	-50%		
	±0%	35.0%	32.8%	30.6%	22.6%		
Cost	+10%	33.0%	31.0%	28.8%	21.2%		
	+20%	31.3%	29.4%	27.3%	20.0%		

Table H.1.38Results of the Sensitivity Analysis 6(EIRR, Present Condition, M/P Projects)

Source: The Study Team

	Economic Cost							Balance
Project Year	Year		Civil Works	Resettlement & Compensation	Other Costs	Total	2011011	Dalaitoo
1	2005			81.8	215.4	297.2		▲ 297.2
2	2006	ase		81.8	215.4	297.2		▲ 297.2
3	2007	ר Ph		44.4	211.7	256.1		▲ 256.1
4	2008	tern	2 250 0		765.2	3 015 2		▲ 30152
5	2009	hort-	734.8		400.8	1 135 6		▲ 1 135 6
6	2000	S	71/ 8	101.0	400.0	1 324 4		▲ 1,100.0
	2010					1,324.4	2 650 7	2 000 0
1	2011	has		191.0	244.8	435.9	3,659.7	3,223.9
8	2012	μP	151.8	95.5	273.0	520.3	3,659.7	3,139.4
9	2013	n-ter	1,127.5		506.3	1,633.7	3,659.7	2,026.0
10	2014	lium	1,039.1		490.0	1,529.1	3,659.7	2,130.6
11	2015	Med	1,016.8	272.8	516.8	1,806.4	3,659.7	1,853.3
12	2016	e		272.8	269.7	542.5	7,319.5	6,777.0
13	2017	has	114.1	136.4	284.3	534.9	7.319.5	6.784.6
14	2018	Ē	760.6		431.8	1,192,4	7,319,5	6,127,1
15	2019	g-te	760.4		435.6	1 196 0	7 319 5	6 123 5
16	2010	Lon	760.2		400.0	1,100.0	7 210 5	6 120.0
	2020				439.1	1,199.3	11,019.0	11 501 9
17	2021				47.2 47.2	47.Z 47.2	14,030.9	14,591.0
19	2022				47.2	47.2	14,638,9	14,591.8
20	2024				47.2	47.2	14,638.9	14,591.8
21	2025				47.2	47.2	14,638.9	14,591.8
22	2026				47.2	47.2	14,638.9	14,591.8
23	2027				47.2	47.2	14,638.9	14,591.8
24	2028				47.2	47.2	14,638.9	14,591.8
25	2029				47.2	47.2	14,638.9	14,591.8
26	2030				47.2	47.2	14,638.9	14,591.8
27	2031				47.2	47.2	14,638.9	14,591.8
28	2032				47.2	47.2	14,638.9	14,591.8
29	2033				47.Z	47.2	14,038.9	14,591.8
30	2034				47.2	47.Z 17.2	14,030.9	14,091.0
32	2035				47.2	47.2	14,030.5	14,591.0
33	2030				47.2	47.2	14,638.9	14,591.8
34	2038				47.2	47.2	14,638.9	14.591.8
35	2039				47.2	47.2	14,638.9	14,591.8
36	2040				47.2	47.2	14,638.9	14,591.8
			(T	otal at Current)	7,061.5	17,859.2	347,674.3	329,815.1
				(Total at PV)	2,477.4	6,601.9	23,425.1	16,823.1
			Residual Value of Capital at Current Price : Php 0				NPV :	16,823
			Social Discount Rate : 15%				B/C :	3.55
							EIRR :	35.0%

(3) **Project Justification**

Though social infrastructure projects such as flood control and drainage improvement works are in general put into implementation even at the lower EIRR, compared with other productive projects, the master plan shows a very high viability of 42.8% in EIRR (Future Condition), likewise resulting in high values of B/C and NPV for the conceivable reason that socio-economic needs for flood prevention in the study area where the central function of the political and economic activity locates will augment to a maximum degree.

The reason of high viability is easy to see. As mentioned already in the beginning of this report, there are totally 74 km esteros/creeks in length, 35 km drainage mains, and other small drainage network in Metropolitan Manila. In addition, there are high quality pumping stations started in service in 1970s and have been maintained functionally. However, the construction cost of these tremendous investments are not considered in this economic analysis, because these costs shall be excluded as "sunk cost" in conventional economic analysis on public infrastructure project. In other words, taking advantage of these infrastructure heritages, it is possible to output the most effective result with minimum additional investment for these kinds of infrastructure.

In this context, the Master Plan can be justified from the economic viewpoint to take a next step in accordance with the proposed schedule.

H.1.5 CONSIDERATION FOR INVESTMENT PLAN FOR M/P PROJECT

The purpose of this section is to analyze financial affordability for the master plan. Three resources can be considered to be available.

The first is the source under fiscal disbursement of the national government which is to be allocated to DPWH and MMDA in charge of flood control and drainage works.

The second is the local fund from respective LGUs.

The last source is special funds or schemes such as new allocation to the sector and/or introduction of new ear-marked taxation system in order to enhance financial capability of government.

As for the local fund from LGUs, very scarce budget has been allocated to flood control and drainage works in the past years. Even if fiscal revenue of LGUs through IRA would be expected to grow in near future, investment for this sector would not be expected unless the priority of this sector would become high dramatically.

While, the third option takes time to put in practice without strong political decision, because the introduction of new system is all-time subject of controversy. Therefore, the analysis on the third option must be based on conceptual approach.

(1) Future Framework of National Government Revenue

Growth of the Philippines Economy and GDP

In the last decade (1994-2003), the average of the growth rate of GDP (Gross Domestic Product) was about 4 %, though this includes the recession period of Asian Crisis in and after 1997. If these periods are excluded as singular situation, the performance of Philippines' economy is regarded better than the figure. After the crisis, as is witnessed by the fact that the country's economy recovered and record the following figures ;

				Unit:%
GDP Groth	2001	2002	2003	2004
Rate				
MTPDP 2001-2004	3.3	4.0-4.5	5.4-5.9	5.7-6.3
Actual Growth	3.0	4.3	4.7	
			(1 st semester 4.5)	(1 st semester 6.3)

Table H.1.40 MTPDP (2001-2004) Targets vs. Actual Performance

Source : MTPDP 2004-2010, NEDA

Note : At constant price basis, *As of first semester 2004

The GDP steadily grew and its growth rate has showed upward tendency. The rates of divergence between the actual performance and planned growth rates in the previous MTPDP (Medium Term Philippine Development Plan) were not big.

While, in the new MTPDP 2004-2010, the government set the target of the growth rate as follows;

							Unit : %		
	2004	2005	2006	2007	2008	2009	2010		
GDP Growth Rate	4.9-5.8	5.3-6.3	6.3-7.3	6.5-7.5	6.9-7.8	7.0-8.0	7.0-8.0		
Source MTDDD 2004 2010 NEDA									

Table H.1.41 GDP Targets of MTPDP (2004-2010)

Source : MTPDP 2004-2010, NEDA

Under the conditions where the country's economy was up-trend in recent years and the forecast of the authority was relatively accurate in the previous MTPDP, these new targets of 4.9% to 8.0% might not be impossible, though it seems rather high rates compared to the past performance.

Growth or the National Government's Revenue and Expenditure

Fiscal Revenue is broadly classified into tax and non-tax portion. In Philippines, the major tax portion consists of

- taxes on income and profits,
- taxes on property,
- taxes on domestic goods and services,
- taxes on international trade and transactions, and
- other taxes.

Non-tax revenues refer to all other impositions or collections of the government in exchange for services rendered, assets conveyed, penalties imposed, foreign grants, etc.

In addition, the national budget is financed not only from these fiscal revenues but

- borrowing from both domestic and foreign sources, and
- withdrawals from available cash balances.

Fiscal expenditure is broadly classified into current expenditure and development expenditure. The former, current expenditure is also called as Current Operating Expenditure (COE)¹⁷. The COE covers ;

- personal services (PS) such as salaries, wages, social security contributions, etc., and
- maintenance and other operating expenditures (MOOE) for day-to-day regular operation,

The latter, development expenditure consists of

- Capital Outlays (CO),
- Net Lending referring to net advances to government owned and/or controlled corporations (GOCCs) for servicing of government-guaranteed corporate debt and loan outlays, and
- Debt Service (Debt Amortization) such as the repayment of interest and related costs.

To make an accurate estimate, the forecast of future revenues and expenditures should be analyzed by each item individually based on the elasticity with respective economic growth, then, it should be multiplied. But the financial balance is affected not only by the socio-economic conditions but also by tax policies and other relevant political strategies for structural reform.

In the MTPDP 2004-2010, the government manifested the following targets;

- to balance the budget by 2010,
- to reduce the ratio of Consolidated Public Sector Deficit (CSPD) to GDP from 6.7% in 2004 to 1.0% in 2010, and
- to reduce the ratio of Public Sector Debt¹⁸ to GDP from 136% in 2004 to 90% by 2010 through institutional reforms for a more financial viability.

MTPDP 2004-2010 emphasized the importance of investment for infrastructures such as ;

"It will also boost growth by providing the fiscal resources to raise public infrastructure spending from 2.6 percent of GDP in 2003 to 4.2 percent on GDP by 2010.",

"The government is aiming to achieve its growth targets on account of strong investment spending and exports. Investment spending is targeted to increase to 28 percent by 2010 from around 20 percent in 2003,"

In line with these policies, it is considered that the framework of allocations to DPWH and MMDA shall be increased or at least maintained as same as the growth rate of total government investment for public infrastructure in future.

Regional & Sector allocation of DPWH to Metropolitan Manila on Flood Control and Drainage works.

In MTPDP, except the emphasis on the effort for decongestion of intensive traffic in Metropolitan Manila, there is no specific regional strategy for the area. The national government, preferably, put the stress of regional development from the viewpoint of poverty alleviation and uplifting the connectivity throughout the country.

(2) Development Expenditure of Relevant Stakeholders

The current expenditures on flood control and drainage improvement projects of relevant agencies are shown in the following table. When the annualized cost of proposed cost of the Master Plan are compared to the average amount of total expenditure of MMDA and the 6 LGUs for the past 6 years, it is fairly huge and requires almost 1.5 times of annual budget in order to implement the Master Plan.

While, on the assumption that the ODA loan would be appropriated as financial source of the Master Plan, the required share of the Philippine Government is equivalent to around 45% to the present expenditures, and that burden is not a prohibitive level of expenditure from the aspect of the financial status of the relevant authorities.

								Unit: Php M	fillion
	1999	2000	2001	2002	2003	2004	Average	Proposed	
								Master Pla	n
National								15 billion for 15 years	
(MMDA)	120	955	200	199	200	956* ¹	438		
LGUs								Annualized	ł
(Manila)	-	10	29	21	48	-	27	1,000 millio	on / year
(Makati)	118	127	73	30	5	212	94		
(Pasay)									
(Caloocan)	5	51	73	22	31	206*1	65		
(Taguig)	-	-	-	36	31	116	61		
(Quezon)*2	1	1	1	1	1	1	1		
Total						6,667	686		
Ratio of Present Average Expenditure to Total of Master Plan								146% (= 1,000/686)	
Ratio of Present Average Expenditure to GOP portion							45% (=311/686)		36)
								GOP 30%	Loan 70%
								311	727

Table H.1.42 Comparison of Expenditure on Flood Control

Source: The Study Team

Note : *1 Propsed, *2 Only for Maintenance

Based on the Study Team's survey to the MMDA and relevant agencies, present allocation is badly short on even recurrent cost for operation and maintenance activities against the required level. Although this Master Plan is proposing the same level of the future budgetary allocation comparing to the present conditions, this amount is regarded as bare minimum but essential level.

			Unit : Php Million
	2003	2004	Proposed Master Plan
Amount for OM	218	242	241
note	Approved	Proposal	

Table H.1.43Comparison of Budget on
Operation & Maintenance of Flood Control

Source: MMDA

(3) External Resources

External Borrowing and Loan

The total project cost of the Master Plan is estimated at about Php 15 billion. Assuming the project would be implemented with financial support by multilateral lending institutions, the example of general principle guideline of loan conditions are like as follows:

- There are upper limit of loan amount. For example, a limit of one of multilateral institutions shall be 85% of the total project cost or the total foreign exchange cost.
- There are also conditions of non-eligible cost for the loan by type of expenditures.
In accordance with one of institutions' loan conditions, non-eligible costs are considered for the following categories, but they could be included in the total project cost:

- Land acquisition cost
- Compensation for PAP (Project Affected People)
- Taxes and duties as well as government administration cost
- Interest during borrowing period

The total cost of Master Plan is shown in table below. Following the loan conditions, for example, the eligible costs for JBIC loan are civil works and engineering service which amount to Php 10,689 million corresponding to 70% of the total project cost.

	00313 (1 11		,
Item	Amount (Php million)	Ratio	Eligible Item for Loan *
1. Civil bł/ ks	9,703	63 %	0
2. VAT for (1)	970	6 %	
3. Resetlement & Social Cost	1,590	10 %	
4. Government Administration	291	2 %	
5. Engineering Service	970	6 %	0
6. Physical Contingency	1,353	9 %	
7. Supporting Measure	489	0 %	
Total	15,367	100 %	

 Table H.1.44
 Project Costs (Financial Term)

Source: The Study Team

Note : Amount excludes present on-going cost for operation / maintenance

Total does not represent the sum of items because of rounding.

* This is an example of loan scheme of JBIC(Japan Bank for International Cooperation).

(4) Other Fund Source (Non-Loan Scheme, Technical Assistance, and Coordination with Other Agencies)

In accordance with the eligibility of loan conditions among multilateral lending institutions, social costs are often not covered by the loan scheme. Meanwhile, bilateral donors and multilateral lending institutions start to put into effect their guidelines on Confirmation of Environmental and Social Considerations which placed a premium on participation by such stakeholders as local community inhabitants who will be affected by the project. They require the project executor to solicit stakeholders' participation from the project planning stage. Therefore, non-eligible costs which must be prepared by the Philippine Government side is required to fulfill the standard of the guideline in terms of technical, social and financial aspects.

As mentioned earlier in the chapter on social issue, however, the Philippine Government side has domestic laws and guidelines which define their own standard on involuntary resettlements affected by infrastructure projects.

In other words, there are some discrepancies between foreign donors/multinational lending agencies and Philippines side, and it can be possible that neither ODA nor national budget does finance some parts of social cost. In order to fill the gap, as the next best policy, technical assistance can be utilized for smooth implementation on relocation and establishment of stable livelihood of PAP.

As referred in Main Report, Chapter 2.2 "Economic Conditions" and 4.12 "Implementation

Organization", the stakeholders such as NHA and relevant agencies are closely related to this project from a view point of providing socialized housing, upgrading health/sanitary conditions and social welfare standard in vulnerable communities like the area along the waterways. In order to maximize the effectiveness of the priority projects, especially non-structural measures and supporting measures, well coordination on budgeting from the planning stage or preferably differentiate the roles and budgetary allocations clearly among agencies are indispensable for optimizing the limited government resources.

(5) Financial Feasibility

Comparing to the project cost and the current expenditures and its assumed future available resource on flood control and drainage improvement projects of relevant agencies, i.e. MMDA and the 6 LGUs, the burden of the proposed project is not a prohibitive level of expenditure from the financial aspect.

However, based on the Study Team's survey, present budgetary allocation of relevant agencies is badly short. The current budget levels of these agencies are bare minimum. Assuming to be maintained at proper level of services, future budgetary allocation for flood control and drainage improvement projects are strongly recommended to be raised politically to higher level than the above mentioned forecast which is basically based on the past trend. In the event of these proper budgetary arrangements are considered, the proposed cost of Master Plan are fairly achievable. Regardless of whether the projects would be financed by domestic resources or external resources, in view of the extensive damage of flood and its effect on socio-economic activities, metropolitan function of the country, and view of economically sound result of analysis, it is surely worthwhile for the national government to consider the increase of budgetary allocation to the urban flood control.

H.2 ECONOMIC EVALUATION FOR FEASIBILITY STUDY

H.2.1 BACKGROUND OF ECONOMIC EVALUATION

The economic evaluation in this section focuses on the projects dealt by Feasibility Study, i.e. the Priority Projects which would be implemented during 1^{st} phase of Master Plan.

The basic concept to estimate the benefit derived from the proposed programs/projects is worked out by the same equation referred in the on Master Plan.

Explanations of "benefit" and "cost" are found in *Chapter H.2.2 and H.2.3*, respectively, and then, economic viability derived from "net benefit" is analyzed in *H.2.4*. In *Chapter H.2.5*, financial viability is considered.

H.2.2 BENEFIT OF THE PRIORITY PROJECTS

(1) Basic Conditions for Analyzing Benefits of Priority Projects

The components of benefit considered in Feasibility Study were selected as same as analysis of Master Plan except traffic disruption*. Correspondingly, same unit values of assets, parameters of damage rate, future socio-economic framework and so on are applied in the Feasibility Study. For details, see previous *Chapter H.1*.

* As a result of analysis of Master Plan, the damages caused by traffic disruption were relatively small compared with other direct damages. Therefore, the additional computer modeling on traffic simulation for Priority Projects was not analyzed.

(2) Flood Damage by Return Period

Flood damage under the "Without" situation, the same estimate as Master Plan (see previous *Chapter H.1*) are employed. The results of the estimates under the "With Feasibility Study Project" are summarized in the following tables:

						Unit	: Php Million
			Return Peri	iod (Year)			
Item		2	3	5	10	20	30
Α.	Direct Damage	5,011.0	5,869.9	7,274.5	8,938.9	11,595.2	13,033.3
	1. Residence - House	757.8	901.0	1,054.6	1,253.1	1,833.0	2,113.2
	2. Residence - Household Effects	352.9	456.9	589.1	724.7	993.0	1,156.3
	3. Business Establishments	2,712.0	3,120.1	3,905.8	4,841.4	6,019.7	6,673.2
	3-1 Manufacturing	775.8	898.4	1,129.0	1,403.4	1,740.2	1,925.9
	3-2 Commerce (Wholesale & Retail Trade)	772.6	900.1	1,142.7	1,430.1	1,809.2	2,028.1
	3-3 Hotel and Restaurants	409.0	467.7	581.7	716.6	876.3	962.8
	3-4 Financial / Insurance / Real Estate Business	351.3	400.5	497.6	613.0	757.0	836.0
	3-5 Educational Facilities	98.4	110.3	134.3	164.0	202.1	221.7
	3-6 Medical Facilities	305.0	343.2	420.4	514.3	635.0	698.7
	4. Infrastructure	1,188.3	1,391.9	1,725.0	2,119.7	2,749.5	3,090.6
В.	Indirect Damage	2,373.6	2,828.1	3,510.4	4,303.9	5,630.6	6,331.9
	 Loss of Business Opportunity, Cost for Cleaning Activities, Public Service / Utility Service Disruption 	1,521.4	1,768.6	2,201.9	2,716.5	3,458.2	3,863.7
	6. Cost for Alternative Activities	852.2	1,059.6	1,308.5	1,587.4	2,172.4	2,468.2
С.	Total	7,384.7	8,698.0	10,784.9	13,242.8	17,225.7	19,365.2
		,		,		, -	,

 Table H.2.1
 Flood Damage by Return Period (With Priority Projects : North Manila)

						Unit	: Php Million
			Return Perio	od (Year)			
Item		2	3	5	10	20	30
Α.	Direct Damage	1,990.2	3,534.4	5,568.0	8,869.7	11,308.4	12,582.9
	1. Residence - House	303.6	690.6	1,173.9	2,039.1	2,625.1	2,882.9
	2. Residence - Household Effects	142.4	327.9	552.8	1,044.3	1,434.2	1,606.9
	3. Business Establishments	1,072.2	1,677.8	2,521.0	3,683.0	4,567.6	5,109.3
	3-1 Manufacturing	257.5	395.9	599.6	873.3	1,065.0	1,197.2
	3-2 Commerce (Wholesale & Retail Trade)	297.5	464.0	700.0	1,036.8	1,306.9	1,480.6
	3-3 Hotel and Restaurants	183.7	294.7	440.7	634.3	780.8	867.2
	3-4 Financial / Insurance / Real Estate Business	177.7	280.8	417.9	616.7	780.0	862.0
	3-5 Educational Facilities	36.4	56.4	84.6	121.2	146.2	161.5
	3-6 Medical Facilities	119.3	185.9	278.2	400.8	488.7	540.8
	4. Infrastructure	471.9	838.1	1,320.3	2,103.3	2,681.6	2,983.8
В.	Indirect Damage	908.5	1,637.6	2,584.5	4,268.6	5,458.0	6,052.5
	 Loss of Business Opportunity, Cost for Cleaning Activities, Public Service / Utility Serivce Disruption 	602.3	1,013.2	1,566.0	2,412.5	3,044.2	3,393.8
	6. Cost for Alternative Activities	306.2	624.4	1,018.5	1,856.1	2,413.8	2,658.6
C.	Total	2,898.6	5,172.1	8,152.5	13,138.3	16,766.4	18,635.3

 Table H.2.2
 Flood Damage by Return Period (With Priority Projects : South Manila)

Source: The Study Team

Table H.2.3Flood Damage by Return Period (With Priority Projects : All Study
Area)

.....

						Unit	: Php Million
			Return Peri	od (Year)			
Item		2	3	5	10	20	30
Α.	Direct Damage	7,001.2	9,404.4	12,842.5	17,808.6	22,903.6	25,616.2
	1. Residence - House	1,061.4	1,591.6	2,228.6	3,292.2	4,458.1	4,996.1
	2. Residence - Household Effects	495.3	784.8	1,141.9	1,769.0	2,427.1	2,763.2
	3. Business Establishments	3,784.3	4,797.9	6,426.7	8,524.5	10,587.3	11,782.5
	3-1 Manufacturing	1,033.3	1,294.2	1,728.7	2,276.7	2,805.2	3,123.1
	3-2 Commerce (Wholesale & Retail Trade)	1,070.1	1,364.2	1,842.7	2,466.9	3,116.1	3,508.7
	3-3 Hotel and Restaurants	592.7	762.5	1,022.4	1,350.9	1,657.1	1,830.0
	3-4 Financial / Insurance / Real Estate Business	529.0	681.3	915.4	1,229.7	1,537.0	1,698.0
	3-5 Educational Facilities	134.8	166.7	218.9	285.2	348.2	383.2
	3-6 Medical Facilities	424.3	529.1	698.6	915.1	1,123.7	1,239.5
	4. Infrastructure	1,660.2	2,230.0	3,045.3	4,222.9	5,431.1	6,074.3
В.	Indirect Damage	3,282.1	4,465.7	6,094.9	8,572.4	11,088.6	12,384.4
	 Loss of Business Opportunity, Cost for Cleaning Activities, Public Service / Utility Service Disruption 	2,123.7	2,781.8	3,767.9	5,129.0	6,502.4	7,257.5
	6. Cost for Alternative Activities	1,158.3	1,684.0	2,327.0	3,443.4	4,586.2	5,126.8
С.	Total	10,283.3	13,870.1	18,937.4	26,381.1	33,992.2	38,000.6

Source: The Study Team

(3) Estimation of Annual Average Benefit

The annual average benefit, defined as the reduction of probable damage under the "with" and "without" Priority Projects situations was estimated for the proposed plan, as presented in the tables below.

Flood Return Preod	Flood D Without Project	Flood Damage hout Project With Project		Average	Expectation Rate	Unit : Php million Benefit by Return Period
2.400	0.210	7 205	7 385 1 834		0.5000	459
2 year	9,219	7,300	1,034	2,201	0.1667	367
3 year	11,266	8,698	2,568	3 012	0 1333	402
5 year	14,241	10,785	3,456	0,012	0.1000	
10 year	18,935	13,243	5,693	4,574	0.1000	457
	00.550	47.000	5.007	5,510	0.0500	275
20 year	22,553	17,226	5,327	4,936	0.0167	82
30 year	23,910	19,365	4,545	Total (Annual A	verage Benefit)	2,042

Table H.2.4Breakdown of Annual Average Benefit
(Present Condition, Priority Projects, North Manila)

Source: The Study Team

Table H.2.5Breakdown of Annual Average Benefit
(Present Condition, Priority Projects, South Manila)

						Unit : Php million
Flood Return	Flood E	Damage	Poduction	Average	Expectation	Benefit by
Preod	Without Project	With Project	Reduction	Average	Rate	Return Period
		1 876	0.5000	038		
2 vear	6 651	2 899	3 752	1,070	0.5000	550
2 year	0,001	2,000	0,702	3 718	0 1667	620
3 vear	8 856	5 172	3 684	0,110	0.1007	
	0,000	0,112	0,001	4.026	0.1333	537
5 vear	12,520	8,153	4.367	1,020	0.1000	
	,		.,	4.667	0.1000	467
10 vear	18.106	13.138	4.968	,		
	-,	-,	,	4.854	0.0500	243
20 year	21,506	16,766	4,740	,		
	,	-,	, -	4,770	0.0167	79
30 vear	23.436	18.635	4.800			
,	.,	.,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Total (Annual A	2,883	

						Unit : Php million
Flood Return	Flood D	amage	Reduction	Average	Expectation	Benefit by
Preod	Without Project	With Project		, nonago	Rate	Return Period
			2.793	0.5000	1.397	
2 vear	15 870	10 283	5 586	_,		.,
2 you	10,010	10,200	0,000	5 010	0 1667	087
2 1/005	20 122	12 970	6 252	5,919	0.1007	507
5 year	20,122	13,070	0,252	7 007	0.4000	000
	00 700	40.007	7 000	7,037	0.1333	938
5 year	26,760	18,937	7,823	0.040	0.4000	
				9,242	0.1000	924
10 year	37,041	26,381	10,660			
				- 10,364	0.0500	518
20 year	44,059	33,992	10,067			
				9,706	0.0167	162
30 year	47,346	38,001	9,345			
2				Total (Annual A	verage Benefit)	4.926

Table H.2.6Breakdown of Annual Average Benefit(Present Condition, Priority Projects, All Study Area)

Source: The Study Team

Figure H.2.1 Elements of Annual Average Benefit (Priority Projects, All Study Area)

(4) Adjusted Annual Average Benefit

In accordance with the future framework, flood damages under the future conditions are estimated. The annual average benefits in respective years are shown in the following figure (Base Estimation). When the progress of the project implementation is considered, the timing of accruing benefit appears to be delayed. It is shown in the following figure as well.

Figure H.2.2 Annual Average Benefit & Timing of Accruing Benefits (Future Condition, Priority Projects, All Study Area)

H.2.3 COST OF THE PRIORITY PROJECTS

(1) Basic Conditions for Analyzing Cost of Priority Projects

All financial costs are converted into economic cost by categorizing foreign currency portion and local currency portion. In the analysis of Master Plan, only general two types of share rates of foreign currency portion and local currency portion are used, but in this feasibility study analysis, every project items were identified each distribution of foreign and local currency individually.

Regarding to the conversion factor from financial cost to economic cost, in the analysis of Master Plan, two conversion factors (Transfer payments and Foreign exchange shadow price rate) were applied, but in this feasibility study analysis, Shadow Wage Rate (SWR) is also considered in addition to Transfer payments and Foreign exchange shadow price rate because of the high precision of cost estimates of Priority Projects compared to M/P.

Since most of the labors engaged in a project are from the unskilled urban labor pool, labor cost is adjusted to reflect the estimated opportunity cost of labor. In this analysis, the adjustment is applied based on the NEDA guideline as follows.

SR/ of blskilled Labor : 0.6 times of market avge rate

This adjustment is to be applied only to the unskilled labor component. It is regarded that there is a competitive market of skilled labor, and their wage rate is decided reflecting the balance of demand and supply. Therefore, the SWR of skilled labor is negligible or defined as follows.

SR/ of Skilled Labor : 1.0 times of market age rate.

(2) Operations and Maintenance (O/M) Costs

Cost for operation and maintenance are assumed as same condition as Master Plan Analysis (see *Chapter H.1*). Operation Cost is included for 2005 - 2010. After project implementation period (2011-) are excluded from economic analysis except for the additional maintenance cost to maintain the engineering capacity of the drainage system increased by the additional works proposed in Priority Projects. Maintenance Cost is considered for 2005 - 2040.

And also, the project costs for supporting measures were excluded from this economic analysis because of same reason of M/P analysis.

Work Item	Financial Cost	Economic Cost for
		Economic Analysis
Civil Works	1,685.7	1,627.9
VAT	168.5	0.0
Resettlement and Compensation Cost	17.8	15.3
Government Administration Cost	50.6	48.8
Engineering Services	168.5	162.8
Physical Contingency	209.1	185.5
Operation Cost (2005-2010)	0.0	649.8
Maintenance Cost (2005-2040)	0.0	256.7
Total	2,300.0	2,946.8

Table H.2.7 Project Cost (Priority Projects, North Manila)

Source: The Study Team

Note: Cost for Supporting Measures are excluded. Details may not add up to totals due to rounding.

Work Item	Financial Cost	Economic Cost for
		Economic Analysis
Civil Works	1,729.0	1,685.1
VAT	172.9	0.0
Resettlement and Compensation Cost	204.0	175.4
Government Administration Cost	51.9	50.6
Engineering Services	172.9	168.5
Physical Contingency	233.1	208.0
Operation Cost (2005-2010)	0.0	593.8
Maintenance Cost (till 2040)	0.0	266.1
Total	2,564.1	3,147.5

 Table H.2.8
 Project Cost (Priority Projects, South Manila)

Source: The Study Team

Note: Cost for Supporting Measures are excluded. Details may not add up to totals due to rounding.

Table H.2.9 Project Cost (Priority Projects, All Study Area)

Work Item	Financial Cost	Economic Cost for Economic Analysis
Civil Works	3,415.1	3,313.0
VAT	341.5	0.0
Resettlement and Compensation Cost	221.9	190.8
Government Administration Cost	102.5	99.4
Engineering Services	341.5	331.3
Physical Contingency	442.3	393.4
Operation Cost (2005-2010)	0.0	1,243.6
Maintenance Cost (till 2040)	0.0	522.8
Total	4,864.8	6,094.3

Source: The Study Team

Note: Cost for Supporting Measures are excluded. Details may not add up to totals due to rounding.

Table H.2.10 Disbursement Schedule for Economic Analysis (Priority Projects, Financial Price)

						Unit: Php
		Amount				
		Foreign	Local			
		Ŭ		LC except	LC	
	Description			Unskild Lbr	Unskild Lbr	Total
1. Civil W	/orks					
	North Manila	1,091,973,822	593,501,151	564,715,178	28,747,741	1,685,702,428
	South Manila	1,186,889,028	542,374,693	525,786,196	16,626,728	1,729,036,266
	Total of North & South (All Study Area)	2,278,862,850	1,135,875,843	1,090,501,374	45,374,469	3,414,738,693
2. VAT						
	North Manila	109,197,382	59,350,115	56,471,518	2,874,774	168,547,497
	South Manila	118,688,903	54,237,469	52,578,620	1,662,673	172,926,372
	Total of North & South (All Study Area)	227,886,285	113,587,584	109,050,137	4,537,447	341,473,869
3. Resett	lement & Compensation Cost					
	North Manila	0	17,810,142	17,810,142	0	17,810,142
	South Manila	0	204,010,296	204,010,296	0	204,010,296
	Total of North & South (All Study Area)	0	221,820,438	221,820,438	0	221,820,438
4. Goveri	nment Administration Cost					
	North Manila	32,759,215	17,805,035	16,941,455	862,432	50,564,249
	South Manila	35,606,671	16,271,241	15,773,586	498,802	51,877,912
	Total of North & South (All Study Area)	68,365,885	34,076,275	32,715,041	1,361,234	102,442,161
5. Engine	eering Services					
	North Manila	109,197,382	59,350,115	56,471,518	2,874,774	168,547,497
	South Manila	118,688,903	54,237,469	52,578,620	1,662,673	172,926,372
	Total of North & South (All Study Area)	227,886,285	113,587,584	109,050,137	4,537,447	341,473,869
6. Phisica	al Contingency					
	North Manila	134,312,780	74,781,656	71,240,981	3,535,972	209,094,436
	South Manila	145,987,350	87,113,117	85,072,732	2,045,088	233,100,467
	Total of North & South (All Study Area)	280,300,131	161,894,773	156,313,713	5,581,060	442,194,903
7. Operat	tion Cost					
	North Manila	0	755,542,667	755,542,667	0	0
	South Manila	0	690,457,333	690,457,333	0	0
	Total of North & South (All Study Area)	0	241,000,000	1,446,000,000	0	0
8. Mainte	enance Cost					
	North Manila	0	0	0	0	0
	South Manila	0	0	0	0	0
	Total of North & South (All Study Area)	0	0	0	0	0
Total						
	North Manila	1,477,440,582	822,598,213	783,650,792	38,895,694	2,300,038,795
	South Manila	1,605,860,854	958,244,285	935,800,049	22,495,963	2,564,105,139
	I otal of North & South (All Study Area)	3,083,301,436	1,780,842,498	1,719,450,841	61,391,657	4,864,143,934

										Unit: Php
		2005			2006			2007		
	Description	F/C	Unskild	LC Unskild	F/C	LC except Unskild	LC Unskild	F/C	Unskild	LC Unskild
1. Civil W	orks									
	North Manila	16,563,043	4,408,683	139,480	0	0	0	27,030,886	7,194,970	227,631
	South Manila	0	0	0	0	0	0	13,964,654	3,981,746	412,830
	Total of North & South (All Study Area)	16.563.043	4,408,683	139,480	0	0	0	40,995,540	11,176,716	640,461
2. VAT										
	North Manila	0	0	0	0	0	0	0	0	0
	South Manila	0	0	0	0	0	0	0	0	0
	Total of North & South (All Study Area)	0	0	0	0	0	0	0	0	0
3. Resettle	ement & Compensation Cost									
	North Manila	0	0	0	0	0	0	0	15,316,722	0
	South Manila	0	0	0	0	115,704,400	0	0	59,744,455	0
	Total of North & South (All Study Area)	0	0	0	0	115,704,400	0	0	75,061,177	0
4. Govern	ment Administration Cost									
	North Manila	496,891	132,260	4,184	0	0	0	810,927	215,849	6,829
	South Manila	0	0	0	0	0	0	418,940	119,452	12,385
	Total of North & South (All Study Area)	496,891	132,260	4,184	0	0	0	1,229,866	335,301	19,214
5. Engine	ering Services									
	North Manila	1,656,304	440,868	13,948	0	0	0	2,703,089	719,497	22,763
	South Manila	0	0	0	0	0	0	1,396,465	398,175	41,283
	Total of North & South (All Study Area)	1,656,304	440,868	13,948	0	0	0	4,099,554	1,117,672	64,046
6. Phisica	I Contingency									
	North Manila	1,871,624	498,181	15,761	0	0	0	3,054,490	2,344,704	25,722
	South Manila	0	0	0	0	11,570,440	0	1,578,006	6,424,383	46,650
	Total of North & South (All Study Area)	1,871,624	498,181	15,761	0	11,570,440	0	4,632,496	8,769,087	72,372
7. Operati	ion Cost									
	North Manila	0	0	108,294,449	0	0	108,294,449	0	0	108,294,449
	South Manila	0	0	98,965,551	0	0	98,965,551	0	0	98,965,551
	Total of North & South (All Study Area)	0	0	207,260,000	0	0	207,260,000	0	0	207,260,000
8. Mainter	nance Cost									
	North Manila				82,815	22,043	697	82,815	22,043	697
	South Manila				0	0	0	0	0	0
	Total of North & South (All Study Area)				82,815	22,043	697	82,815	22,043	697
Total										
	North Manila	20,587,862	5,479,993	108,467,822	82,815	22,043	108,295,146	33,682,206	25,813,786	108,578,092
	South Manila	0	0	98,965,551	0	127,274,840	98,965,551	17,358,065	70,668,210	99,478,699
	Total of North & South (All Study Area)	20.587.862	5.479.993	207.433.373	82.815	127.296.883	207.260.697	51.040.271	96.481.996	208.056.790

Table H.2.11 Disbursement Schedule for Economic Analysis (Priority Projects, Economic Price)

		2008			2009			2010		
	Description	FIC	LC except	LC	E/C	LC except	LC	E/C	LC except	LC
	Description	F/G	Unskild	Unskild	F/C	Unskild	Unskild	F/C	Unskild	Unskild
1. Civil Wo	rks									
	North Manila	698,663,190	276,556,100	4,973,995	223,938,626	106,993,605	4,973,995	161,121,946	90,586,816	4,518,733
	South Manila	860,125,424	311,199,915	2,997,407	192,925,218	73,125,635	2,997,407	157,453,475	63,783,712	2,171,747
	Total of North & South (All Study Area)	1,558,788,614	587,756,015	7,971,402	416,863,844	180,119,240	7,971,402	318,575,421	154,370,528	6,690,480
2. VAT										
	North Manila	0	0	0	0	0	0	0	0	0
	South Manila	0	0	0	0	0	0	0	0	0
	Total of North & South (All Study Area)	0	0	0	0	0	0	0	0	C
3. Resettle	ment & Compensation Cost									
	North Manila	0	0	0	0	0	0	0	0	0
	South Manila	0	0	0	0	0	0	0	0	0
	Total of North & South (All Study Area)	0	0	0	0	0	0	0	0	C
4. Governm	nent Administration Cost									
	North Manila	20,959,896	8,296,683	149,220	6,718,159	3,209,808	149,220	4,833,658	2,717,604	135,562
	South Manila	25,803,763	9,335,997	89,922	5,787,757	2,193,769	89,922	4,723,604	1,913,511	65,152
	Total of North & South (All Study Area)	46,763,658	17,632,680	239,142	12,505,915	5,403,577	239,142	9,557,263	4,631,116	200,714
5. Enginee	ring Services									
	North Manila	69,866,319	27,655,610	497,400	22,393,863	10,699,361	497,400	16,112,195	9,058,682	451,873
	South Manila	86,012,542	31,119,992	299,741	19,292,522	7,312,563	299,741	15,745,347	6,378,371	217,175
	Total of North & South (All Study Area)	155,878,861	58,775,602	797,140	41,686,384	18,011,924	797,140	31,857,542	15,437,053	669,048
6. Phisical	Contingency									
	North Manila	78,948,940	31,250,839	562,061	25,305,065	12,090,277	562,061	18,206,780	10,236,310	510,617
	South Manila	97,194,173	35,165,590	338,707	21,800,550	8,263,197	338,707	17,792,243	7,207,559	245,407
	Total of North & South (All Study Area)	176,143,113	66,416,430	900,768	47,105,614	20,353,474	900,768	35,999,023	17,443,870	756,024
7. Operation	on Cost									
	North Manila	0	0	108,294,449	0	0	108,294,449	0	0	108,294,449
	South Manila	0	0	98,965,551	0	0	98,965,551	0	0	98,965,551
	Total of North & South (All Study Area)	0	0	207,260,000	0	0	207,260,000	0	0	207,260,000
8. Mainten	ance Cost									
	North Manila	217,970	58,018	1,836	3,711,286	1,440,799	26,706	4,830,979	1,975,767	51,576
	South Manila	69,823	19,909	2,064	4,370,450	1,575,908	17,051	5,335,076	1,941,536	32,038
	Total of North & South (All Study Area)	287,793	77,927	3,900	8,081,736	3,016,707	43,757	10,166,055	3,917,303	83,614
Total										
	North Manila	868,656,314	343,817,250	114,478,961	282,066,997	134,433,850	114,503,831	205,105,557	114,575,179	113,962,810
	South Manila	1,069,205,726	386,841,404	102,693,392	244,176,497	92,471,072	102,708,379	201,049,746	81,224,691	101,697,071
	Total of North & South (All Study Area)	1,937,862,040	730,658,654	217,172,353	526,243,494	226,904,922	217,212,210	406,155,303	195,799,869	215,659,881

						Unit: Php
			Total of			
		2011-2040	2005-2010			
		LC except		LC except	LC	
	Description	Unskild Lbr	F/C	Unskild	Unskild	Total
1. (Civil Works					
	North Manila	0	1,127,317,689	485,740,174	14,833,835	1,627,891,698
	South Manila	0	1,224,468,772	452,091,008	8,579,392	1,685,139,171
	Total of North & South (All Study Area	a) O	2,351,786,461	937,831,182	23,413,226	3,313,030,869
2. \	VAT					
	North Manila	0	0	0	0	0
	South Manila	0	0	0	0	0
	Total of North & South (All Study Area	a) 0	0	0	0	0
3. I	Resettlement & Compensation Cos	t				
	North Manila	0	0	15,316,722	0	15,316,722
	South Manila	0	0	175,448,855	0	175,448,855
	Total of North & South (All Study Area	a) O	0	190,765,577	0	190,765,577
4. (Government Administration Cost					
	North Manila	0	33,819,531	14,572,205	445,015	48,836,751
	South Manila	0	36,734,063	13,562,730	257,382	50,554,175
	Total of North & South (All Study Area	a) O	70,553,594	28,134,935	702,397	99,390,926
5. I	Engineering Services					
	North Manila	0	112,731,769	48,574,017	1,483,383	162,789,170
	South Manila	0	122,446,877	45,209,101	857,939	168,513,917
	Total of North & South (All Study Area	a) O	235,178,646	93,783,118	2,341,323	331,303,087
6. I	Phisical Contingency					
	North Manila	0	127,386,899	56,420,312	1,676,223	185,483,434
	South Manila	0	138,364,971	68,631,169	969,471	207,965,612
	Total of North & South (All Study Area	a) O	265,751,870	125,051,481	2,645,695	393,449,046
7. (Operation Cost					
	North Manila	0	0	0	649,766,694	649,766,694
	South Manila	0	0	0	593,793,306	593,793,306
	Total of North & South (All Study Area	a) O	0	0	1,243,560,000	1,243,560,000
8. I	Maintenance Cost					
	North Manila	244,183,755	8,925,864	247,702,425	81,511	256,709,801
	South Manila	252,770,876	9,775,350	256,308,229	51,154	266,134,733
	Total of North & South (All Study Area	a) 496,954,630	18,701,215	504,010,655	132,665	522,844,534
To	tal					
	North Manila	244,183,755	1,410,181,752	868,325,856	668,286,661	2,946,794,269
	South Manila	252,770,876	1,531,790,033	1,011,251,092	604,508,644	3,147,549,769
	Total of North & South (All Study Area	a) 496,954,630	2,941,971,786	1,879,576,948	1,272,795,305	6,094,344,039

(Continued) Table H.2.11 Disbursement Schedule for Economic Analysis (Priority Projects, Economic Price)

H.2.4 ECONOMIC EVALUATION

(1) Economic Viability

Priority Projects are evaluated from the economic viewpoint by figuring out the economic viability, comparing the economic benefit and the economic cost in terms of economic internal rate of return (EIRR), benefit/cost ratio (B/C), and net present value (NPV or B - C, i.e. Benefit minus Cost).

All the monetary calculations are based on the following parameters either predetermined or using assumptions.

Project Duration(Economic Life)

 Civil works and collateral works & arrangements for Priority Projects start in FY2005 and complete in FY2010.

Then, beyond 2010, operation and maintenance works continue for 30 years¹⁹ i.e. FY2005 – FY2010 (6 years) : Civil works and collateral works & arrangements including structural and non-structural measures

FY2011 – FY2040 (30 years) : Operation & maintenance as supporting measures

Timing of Accruing Benefits

Theoretically, the matured annual average benefit will appear after completion of F/S work, i.e., FY2011. However, considering consistency and make comparison easy to the analysis on Master Plan, the timing of accruing flood reduction benefit is set as follows:

- 50% of annual average benefit will appear after 2011,
- 75% of annual average benefit will appear after 2016,
- The matured annual average benefit will appear after 2021

Price Level

- The valuation of project costs and benefit should be in constant price at the current year's level. Though, cost of civil works was identified as the price at July 2004, the basic price level in the economic analysis is set at the beginning of 2004 in order to keep consistency among all cost items.

Social Discount Rate (SDR)

- SDR is applied at 15%²⁰ based on the guideline of NEDA²¹ for basic infrastructure projects as same as the analysis of Master Plan

Prevailing Exchange Rate

- Php 55 per US\$ and JPY 110 per US\$ at the official rate in market as same as the analysis of Master Plan

Depreciation, Financial Charges, Interest and Amortization

- In general, financing of the project is not relevant to the economic evaluation. For further details, see *Chapter H.1.4*. From these points of view, depreciation (residual value) of waterways and pumping stations, and financial cost or charges are not estimated in the economic evaluation.

The calculations of NPV, B/C, and EIRR are based on the annual cash flow that is prepared from the above-mentioned economic cost and the annual average benefit discussed in accordance with the implementation schedule or annual disbursement schedule. The economic viability of the Priority Projects was thus figured out as follows.

	North Manila	South Manila	All Study Area
NPV	Php 4,817 mil.	Php 7,374 mil.	Php 12,191 mil.
BC	3.7	4.8	4.3
EIRR	34.0 %	38.8 %	36.6 %

 Table H.2.12 Results of Economic Analysis (Future Condition, Priority Projects)

				(Php. million, a	t Current Price in	Economic Val	ue under Futi	ure Condition)
			Economic Cost				Benefit	Balance
Project Year	Year		Civil Works	Resettlement & Compensation	Other Costs	Total Cost		
1	2005		21.1		113.4	134.5		▲ 134.5
2	2006	ase			108.4	108.4		▲ 108.4
3	2007	n Ph	34.5	15.3	118.3	168.1		▲ 168.1
4	2008	-tern	980.2		346.8	1,327.0		▲ 1,327.0
5	2009	short	335.9		195.1	531.0		▲ 531.0
6	2010		256.2		177.4	433.6		▲ 433.6
7	2011	se			 8.1	8.1	1,376.7	1,368.6
8	2012	Pha			8.1	8.1	1,409.1	1,400.9
9	2013	term			8.1	8.1	1.442.2	1.434.1
10	2014	-mn			8.1	8.1	1.476.1	1.467.9
11	2015	Med			8.1	8.1	1.510.8	1.502.6
12	2016					8.1	2.266.2	2.258.0
13	2017	hase			8.1	8.1	2.266.2	2.258.0
14	2018	m P			8.1	8.1	2.266.2	2,258.0
15	2019	ng-te			8.1	8.1	2.266.2	2,258.0
16	2020	Lor			81	81	2 266 2	2 258 0
	2020		L			8.1	3.021.5	3.013.4
18	2022				8.1	8.1	3,021.5	3,013.4
19	2023				8.1	8.1	3,021.5	3,013.4
20	2024				8.1	8.1	3,021.5	3,013.4
21	2025				8.1	8.1	3,021.5	3,013.4
22	2026				8.1	8.1	3,021.5	3,013.4
23	2027				8.1	8.1	3,021.5	3,013.4
24	2028				8.1	8.1	3,021.5	3,013.4
25	2029				8.1	8.1	3,021.5	3,013.4
26	2030				8.1	8.1	3,021.5	3,013.4
27	2031				8.1	8.1	3,021.5	3,013.4
28	2032				8.1	8.1	3,021.5	3,013.4
29	2033				8.1	8.1	3,021.5	3,013.4
30	2034				8.1	8.1	3,021.5	3,013.4
31	2035				8.1	8.1	3,021.5	3,013.4
32	2036				8.1	8.1	3,021.5	3,013.4
33	2037				8.1	8.1	3,021.5	3,013.4
34	2038				8.1	8.1	3,021.5	3,013.4
35	2039				8.1	8.1	3,021.5	3,013.4
36	2040				8.1	8.1	3,021.5	3,013.4
				(To	otal at Current)	2,946.8	78,976.6	76,029.8
					(Total at PV)	1,774.1	6,591.4	4,817.3
			Residual V	alue of Capital at	Current Price :	Php 0	NPV :	4,817
				Social I	Discount Rate :	15%	B/C :	3.7
							EIRR :	34.0%

Table H.2.13 Annual Cash Flow of Priority Projects 1(Future Condition, North Manila)

				(Php. million, a	at Current Price	in Economic V	alue under Futi	ure Condition)
			Economic Cost				Benefit	Balance
Project Year	Year		Civil Works	Resettlement & Compensation	Other Costs	Total Cost		
1	2005				99.0	99.0		▲ 99.0
2	2006	ase		115.7	110.5	226.2		▲ 226.2
3	2007	h Ph	18.4	59.7	109.4	187.5		▲ 187.5
4	2008	tern	1 174 3		384 4	1 558 7		▲ 1 558 7
5	2000	hort-	269.0		170.3	/30/		▲ /30 /
6	2000	S	200.0		160.6	201 0		▲ 201 0
					100.0			▲ <u>304.0</u>
/	2011	hase			8.4	8.4	1,943.7	1,935.3
8	2012	m P			8.4	8.4	1,989.4	1,980.9
9	2013	h-ter			8.4	8.4	2,036.1	2,027.7
10	2014	lium			8.4	8.4	2,084.0	2,075.5
11	2015	Med			8.4	8.4	2,132.9	2,124.5
12	2016	е е			8.4	8.4	3,199.4	3,191.0
13	2017	has			8.4	8.4	3,199,4	3.191.0
14	2018	Ē			8.4	8.4	3,199,4	3,191.0
15	2019	ng-te			8.4	8.4	3,199,4	3,191.0
16	2020	Lor			8.4	8.4	3 199 4	3 191 0
	2020		L		8.4		4 265 9	4 257 4
18	2021				8.4	8.4	4 265 9	4 257 4
19	2023				8.4	8.4	4.265.9	4.257.4
20	2024				8.4	8.4	4.265.9	4.257.4
21	2025				8.4	8.4	4,265.9	4,257.4
22	2026				8.4	8.4	4,265.9	4,257.4
23	2027				8.4	8.4	4,265.9	4,257.4
24	2028				8.4	8.4	4,265.9	4,257.4
25	2029				8.4	8.4	4,265.9	4,257.4
26	2030				8.4	8.4	4,265.9	4,257.4
27	2031				8.4	8.4	4,265.9	4,257.4
28	2032				8.4	8.4	4,265.9	4,257.4
29	2033				8.4	8.4	4,265.9	4,257.4
30	2034				8.4	8.4	4,265.9	4,257.4
31	2035				8.4	8.4	4,265.9	4,257.4
32	2036				8.4	8.4	4,265.9	4,257.4
33	2037				8.4	8.4	4,265.9	4,257.4
34	2038				8.4	8.4	4,265.9	4,257.4
35	2039				8.4	8.4	4,265.9	4,257.4
36	2040				8.4	8.4	4,265.9	4,257.4
				(Tot	al at Current)	3,147.5	111,500.2	108,352.6
					(Total at PV)	1,932.0	9,305.9	7,373.9
			Residual Va	lue of Capital at (Current Price :	Php 0	NPV :	7,374
				Social D	iscount Rate :	15%	B/C :	4.8
							EIRR :	38.8%

Table H.2.14 Annual Cash Flow of Priority Projects 2(Future Condition, South Manila)

				(Php. millio	n, at Current Pric	e in Economic	Value under Fut	ure Condition)
			Economic Cost				Benefit	Balance
Project Year	Year		Civil Works	Resettlement & Compensation	Other Costs	Total Cost		
1	2005		21.1		212.4	233.5		▲ 234
2	2006	ase		115.7	218.9	334.6		▲ 335
3	2007	n Ph	52.8	75.1	227.7	355.6		▲ 356
4	2008	-tern	2.154.5		731.2	2.885.7		▲ 2886
5	2009	hort	605.0		365.4	970.4		▲ 970
6	2010	S	479.6		338.0	817.6		▲ 818
7	2011				<u></u>	 	3 320 4	3 303 8
8	2012	Phas			16.6	16.6	3 398 4	3 381 9
0 0	2012	erm			16.6	16.6	3 /178 3	3 /61 7
10	2013	im-te			16.6	16.6	3,470.0	2 542 5
10	2014	lediu			10.0	10.0	3,500.0	3,043.0
		- <u>-</u>			10.0	10.0	3,043.7	5,027.1
12	2016	ase			16.6	16.6	5,465.6	5,449.0
13	2017	h Ph			16.6	16.6	5,465.6	5,449.0
14	2018	term			16.6	16.6	5,465.6	5,449.0
15	2019	-ĝno			16.6	16.6	5,465.6	5,449.0
16	2020	Ľ			16.6	16.6	5,465.6	5,449.0
17	2021				16.6	16.6	7,287.4	7,270.8
18	2022				16.6	16.6	7,287.4	7,270.8
19	2023				16.6	16.6	7,287.4	7,270.8
20	2024				16.6	16.6	7,287.4	7,270.8
21	2025				10.0	10.0	7,287.4	7,270.8
22	2020				10.0	10.0	7,287.4	7,270.8
23	2027				10.0	10.0	7,207.4	7,270.0
24 25	2020				10.0	10.0	7,207.4	7 270.0
25	2029				16.6	16.6	7 287 4	7 270.0
20	2030				16.6	16.6	7 287 4	7 270.8
28	2032				16.6	16.6	7 287 4	7 270 8
29	2033				16.6	16.6	7.287.4	7.270.8
30	2034				16.6	16.6	7.287.4	7.270.8
31	2035				16.6	16.6	7,287.4	7,270.8
32	2036				16.6	16.6	7,287.4	7,270.8
33	2037				16.6	16.6	7,287.4	7,270.8
34	2038				16.6	16.6	7,287.4	7,270.8
35	2039				16.6	16.6	7,287.4	7,270.8
36	2040				16.6	16.6	7,287.4	7,270.8
				(To	otal at Current)	6,094.3	190,476.7	184,382.4
					(Total at PV)	3,706.1	15,897.3	12,191.2
			Residual	/alue of Capital at	Current Price :	Php 0	NPV :	12,191
				Social	Discount Rate :	15%	B/C :	4.3
							EIRR :	36.6%

Table H.2.15 Annual Cash Flow of Priority Projects 3(Future Condition, All Study Area)

(2) Sensitivity Analysis

The cost and benefits were estimated at conservative side with discretion in this analysis. In spite of that, some uncertainty still exists in the estimation. In particular, the cases with long implementation period and/or expectation of future growth in Metropolitan Manila have high risks in terms of judgment on project viability. In this context, the sensitivity analysis was tested in the following relevant parameters guided by NEDA²² in consideration of sensitive factors for project feasibility.

Assumption I :	Increase in projected costs by 10% and 20%
Assumption II :	Decrease in benefits by 10% and 20%
Assumption III:	Combination of Cases I and II

In addition to the above NEDA assumptions, another case that benefit decreased to 50% of original estimate was also tested for reference. i.e.,

Assumption IV : Decrease in benefits by 50%

The commencement of project delayed 5 years and 10 years were tested to check the elasticity against time utility. i.e.,

Assumption V : Delay of commencement of project for 5 years and 10 years

While the all of above mentioned analysis are considered the socioeconomic development, another sensitivity without change of socioeconomic development was tested. i.e.,

Assumption VI : Project without socioeconomic development (= Present Condition)

Result of Assumption I, II, III and IV

As mentioned in *chapter H.1*, it is said that the project is feasible when NPV is positive (over 0), B/C is over 1.0, and EIRR is over social discount rate (15% in Philippines). As shown in the tables below, NPV of the all cases were positive, B/C exceeded 1.0, and the lowest EIRR exceeded social discount rate. Thus, the proposed projects are sufficiently feasible from the economic point of view.

The results are as follows:

Table H.2.16 Results of the Sensitivity Analysis 1 (NPV, Future Condition, Priority Projects, North Manila)

					Unit : Php Million
			Benefit		
		±0%	-10%	-20%	-50%
	±0%	4,817	4,158	3,499	1,522
Cost	+10%	4,640	3,981	3,322	1,344
	+20%	4,462	3,803	3,144	1,167

			Benefit					
		±0%	-10%	-20%	-50%			
	±0%	3.7	3.3	3.0	1.9			
Cost	+10%	3.4	3.0	2.7	1.7			
	+20%	3.1	2.8	2.5	1.5			

Table H.2.17 Results of the Sensitivity Analysis 2 (B/C, Future Condition, Priority Projects, North Manila)

Source: The Study Team

Table H.2.18 Results of the Sensitivity Analysis 3 (EIRR, Future Condition, Priority Projects, North Manila)

			Benefit					
		±0%	-10%	-20%	-50%			
	±0%	34.0%	32.0%	29.9%	22.6%			
Cost	+10%	32.2%	30.3%	28.3%	21.3%			
	+20%	30.6%	28.8%	26.9%	20.1%			

Source: The Study Team

Table H.2.19 Results of the Sensitivity Analysis 4 (NPV, Future Condition, Priority Projects, South Manila)

					Unit : Php Million
			Benefit		
		±0%	-10%	-20%	-50%
	±0%	7,374	6,443	5,513	2,721
Cost	+10%	7,181	6,250	5,320	2,528
	+20%	6,988	6,057	5,126	2,335

Source: The Study Team

Table H.2.20 Results of the Sensitivity Analysis 5 (B/C, Future Condition, Priority Projects, South Manila)

			Benefit		
		±0%	-10%	-20%	-50%
	±0%	4.8	4.3	3.9	2.4
Cost	+10%	4.4	3.9	3.5	2.2
	+20%	4.0	3.6	3.2	2.0

Source: The Study Team

Table H.2.21 Results of the Sensitivity Analysis 6 (EIRR, Future Condition, Priority Projects, South Manila)

			Benefit		
		±0%	-10%	-20%	-50%
	±0%	38.8%	36.7%	34.4%	22.6%
Cost	+10%	36.9%	34.8%	32.6%	21.3%
	+20%	35.2%	33.2%	31.0%	20.1%

			Benefit		
		±0%	-10%	-20%	-50%
	±0%	12,191	10,601	9,012	4,243
Cost	+10%	11,821	10,231	8,641	3,872
	+20%	11,450	9,860	8,271	3,501

Table H.2.22 Results of the Sensitivity Analysis 7 (NPV, Future Condition, Priority Projects, All Study Area)

Source: The Study Team

Table H.2.23 Results of the Sensitivity Analysis 8 (B/C, Future Condition, Priority Projects, All Study Area)

			Benefit		
		±0%	-10%	-20%	-50%
	±0%	4.3	3.9	3.4	2.1
Cost	+10%	3.9	3.5	3.1	1.9
	+20%	3.6	3.2	2.9	1.8

Source: The Study Team

Table H.2.24 Results of the Sensitivity Analysis 9 (EIRR, Future Condition, Priority Projects, All Study Area)

			Benefit		
		±0%	-10%	-20%	-50%
	±0%	36.6%	34.5%	32.3%	24.6%
Cost	+10%	34.7%	32.8%	30.6%	23.2%
	+20%	33.1%	31.2%	29.1%	22.0%

Source: The Study Team

Result of Assumption V

If the commencement of the project would delay for 5 years or 10 years, each index changes as following table. Because of the socioeconomic development of Metropolitan Manila, B/C and EIRR would slightly improve, but each NPV would drop sharply at 50 % and 75% respectively. In addition, this assumption doesn't consider financial price escalation. If the inflation would be considered, the result would worsen. In view of this time conditions, it is recommended to commence the project as soon as possible.

Priority Projects, All Study Area)									
	Base Case Delay of 5 Years Delay of 10 Years								
NPV	Php 12,191 mil.	Php 6,215 mil.	Php 3,090 mil.						
B/C	4.3	4.4	4.4						
EIRR	EIRR 36.6 % 37.5 % 37.5 %								

Table H.2.25	Results of the Sensitivity Analysis 10
	(Delay of Project Commencement, Future Condition,
P	riority Projects, All Study Area)

Source: The Study Team

Result of Assumption VI

Incidentally, in case of excluding socioeconomic growth in future (= Present Condition), EIRR would decrease, but still keep economically feasible level (17.3%, under the assumption of +20% increased cost and -50% decreased benefit, see *Table H.2.34*).

(3) **Project Justification**

In line with the same manner as described in *Chapter H.1.4, "(3) Project Justification for the Master Plan*", the Priority Projects also can be justified from the economic viewpoint to take a next step in accordance with the proposed schedule. Comparing to the economic viability of the Priority Projects between in North Manila area and South Manila area, to be precise, South Manila portion shows slightly better viability, but roughly speaking, the rates are almost same. It is recommended that all portions of Priority Projects in both North Manila and South Manila be to be implemented simultaneously.

			Economic Cost	(Php million,	, at Current Price in	Economic Value	Benefit	nt Condition)
Project	Year		Civil Works	Resettlement &	Other Costs	Total	Denent	Dalance
Year	1001			Compensation		lotal		
1	2005		21.1		113.4	134.5		▲ 134.5
2	2006	ase	0.0		108.4	108.4		▲ 108.4
3	2007	μ	34.5	15.3	118.3	168.1		▲ 168.1
4	2008	tern	980.2		346.8	1 327 0		▲ 1 327 0
5	2000	lort	225.0		105 1	521.0		▲ 1,027.0 ▲ 521.0
5	2009	S	555.9		195.1	001.0		▲ 551.0
0	2010		256.2		1//.4	433.6		▲ 433.b
7	2011	lase			8.1	8.1	1,021.1	1,013.0
8	2012	n Pł			8.1	8.1	1,021.1	1,013.0
9	2013	-terr			8.1	8.1	1,021.1	1,013.0
10	2014	lium			8.1	8.1	1,021.1	1,013.0
11	2015	Med			8.1	8.1	1,021.1	1,013.0
12	2016	 0			8.1	8.1	1,531.7	1,523.6
13	2017	has			8.1	8.1	1,531.7	1,523.6
14	2018	erm F			8.1	8.1	1,531.7	1,523.6
15	2019	ng-te			8.1	8.1	1,531.7	1,523.6
16	2020	Lo			8.1	8.1	1,531.7	1,523.6
17	2021	_			8.1	8.1	2,042.3	2,034.1
18	2022				8.1	8.1	2,042.3	2,034.1
19	2023				8.1	8.1	2,042.3	2,034.1
20	2024				8.1	8.1	2,042.3	2,034.1
21	2025				8.1	8.1	2,042.3	2,034.1
22	2026				8.1	8.1	2,042.3	2,034.1
23	2027				8.1	8.1	2,042.3	2,034.1
24	2028				8.1	8.1	2,042.3	2,034.1
25	2029				8.1	8.1	2,042.3	2,034.1
20	2030				8.1	8.1	2,042.3	2,034.1
21	2031				0.1	0.1	2,042.3	2,034.1
20	2032				0.1	0.1	2,042.3	2,034.1
29	2033				0.1	0.1	2,042.3	2,034.1
30 31	2034				0.1	0.1	2,042.3	2,034.1
32	2000				8.1	8.1	2,042.3	2,004.1
33	2030				8.1	8.1	2,042.3	2,004.1
34	2038				8.1	8.1	2,042.0	2,004.1
35	2039				8.1	8.1	2,042.3	2,004.1
36	2040				8.1	8.1	2.042.3	2.034.1
	_2.0			(Total at Current)	2,946.8	53,609.2	50,662.4
				,	(Total at PV)	1,774.1	4,542.0	2,767.8
			Residu	al Value of Canital	at Current Price :	Php 0	NPV ·	2 762
			1,00100	Socia	al Discount Rate :	15%	B/C :	2.56
							EIRR :	27.6%

Table H.2.26 Annual Cash Flow of Priority Projects 4(Present Condition, North Manila)

				(Php milli	on, at Current Price	in Economic Va	alue under Pres	ent Condition)
Б.; ,			Economic Cost				Benefit	Balance
Project Year	Year		Civil Works	Resettlement & Compensation	Other Costs	Total		
1	2005		0.0		99.0	99.0		▲ 99.0
2	2006	lase	0.0	115.7	110.5	226.2		▲ 226.2
3	2007	n Ph	18.4	59.7	109.4	187.5		▲ 187.5
4	2008	ter	1,174.3		384.4	1,558.7		▲ 1,558.7
5	2009	hort	269.0		170.3	439.4		▲ 439.4
6	2010	S	223.4		160.6	384.0		▲ 384.0
7	2011	se -			8.4	8.4	1.441.6	1.433.2
8	2012	Phas			8.4	8.4	1 441 6	1 433 2
٥ ۵	2012	Brm			8.4	8.4	1 //1 6	1 / 33 2
10	2010	m-t			0.4	0.4 Q /	1,441.6	1 / 22 2
10	2014	lediu			0.4	0.4	1 441 6	1,400.2
						0.4	1,441.0	1,433.2
12	2016	ase			8.4	8.4	2,162.5	2,154.0
13	2017	۱Ph			8.4	8.4	2,162.5	2,154.0
14	2018	iterm			8.4	8.4	2,162.5	2,154.0
15	2019	-gno			8.4	8.4	2,162.5	2,154.0
16	2020				8.4	8.4	2,162.5	2,154.0
17	2021				8.4	8.4	2,883.3	2,874.9
18	2022				8.4	8.4	2,883.3	2,874.9
19	2023				8.4	8.4 9.4	2,883.3	2,874.9
20	2024				8.4	0.4 8.4	2,003.3	2,074.9
22	2026				8.4	8.4	2,883.3	2,874.9
23	2027				8.4	8.4	2,883.3	2,874.9
24	2028				8.4	8.4	2,883.3	2,874.9
25	2029				8.4	8.4	2,883.3	2,874.9
26	2030				8.4	8.4	2,883.3	2,874.9
27	2031				8.4	8.4	2,883.3	2,874.9
20 20	2032				0.4 8.4	0.4 8.4	2,003.3 2,883.3	2,074.9
30	2033				8.4	8.4	2,003.3	2,074.3
31	2035				8.4	8.4	2,883.3	2,874.9
32	2036				8.4	8.4	2,883.3	2,874.9
33	2037				8.4	8.4	2,883.3	2,874.9
34	2038				8.4	8.4	2,883.3	2,874.9
35	2039				8.4	8.4	2,883.3	2,874.9
36	2040				8.4	8.4	2,883.3	2,8/4.9
						3,147.5	/ 5,686.1	12,538.6
			r		(TOTAL AT PV)	1,932.0	0,412.4	4,480.4
			Residu	al Value of Capital	at Current Price :	Php 0	NPV :	4,480
				5001	ai Discount Rate :	10%	B/C: FIRR:	3.32 31.9%

Table H.2.27 Annual Cash Flow of Priority Projects 5(Present Condition, South Manila)

				(Php million,	at Current Price	in Economic Va	alue under Pres	ent Condition)
		_	Economic Cost				Benefit	Balance
Project Year	Year		Civil Works	Resettlement & Compensation	Other Costs	Total		
1	2005		21.1		212.4	233.5		▲ 234
2	2006	ase		115.7	218.9	334.6		▲ 335
3	2007	n Ph	52.8	75.1	227.7	355.6		▲ 356
4	2008	-terr	2.154.5		731.2	2.885.7		▲ 2886
5	2009	hort	605.0		365.4	970.4		▲ 970
6	2010	S	479.6		338.0	817.6		▲ 818
	2011						2 462 8	2 446 2
، ۵	2011	has			16.6	16.6	2,402.0	2,446.2
0	2012	E			10.0	10.0	2,402.0	2,440.2
9	2013	m-te			10.0	10.0	2,402.0	2,440.2
10	2014	ediu			10.0	10.0	2,462.8	2,446.2
11					16.6	16.6	2,462.8	2,446.2
12	2016	Ise			16.6	16.6	3,694.2	3,677.6
13	2017	Phe			16.6	16.6	3,694.2	3,677.6
14	2018	term			16.6	16.6	3,694.2	3,677.6
15	2019	-gu			16.6	16.6	3,694.2	3,677.6
16	2020	۲			16.6	16.6	3,694.2	3,677.6
17	2021				16.6	16.6	4,925.5	4,909.0
18	2022				16.6	16.6	4,925.5	4,909.0
19	2023				16.6	16.6	4,925.5	4,909.0
20	2024				16.6	16.6	4,925.5	4,909.0
21	2025				10.0	10.0	4,925.5	4,909.0 1 909.0
22	2020				16.0	16.6	4 925 5	4,303.0
24	2028				16.6	16.6	4.925.5	4,909.0
25	2029				16.6	16.6	4,925.5	4,909.0
26	2030				16.6	16.6	4,925.5	4,909.0
27	2031				16.6	16.6	4,925.5	4,909.0
28	2032				16.6	16.6	4,925.5	4,909.0
29	2033				16.6	16.6	4,925.5	4,909.0
30	2034				16.6	16.6	4,925.5	4,909.0
31	2035				16.6	16.6	4,925.5	4,909.0
32	2036				16.6	16.6	4,925.5	4,909.0
33	2037				16.6	16.6	4,925.5	4,909.0
34	2038				16.6	16.6	4,925.5	4,909.0
35	2039				16.6	16.6	4,925.5	4,909.0
36	2040				16.6	16.6	4,925.5	4,909.0
				(To	otal at Current)	6,094.3	129,295.3	123,201.0
					(Total at PV)	3,706.1	10,954.4	7,248.2
		ſ	Residual \	/alue of Capital at	Current Price :	Php 0	NPV :	7,248
		[Social I	Discount Rate :	15%	B/C :	2.96
							EIRR :	30.0%

Table H.2.28 Annual Cash Flow of Priority Projects 6 (Present Condition, All Study Area)

					Unit : Php Million
			Benefit		
		±0%	-10%	-20%	-50%
	±0%	2,768	2,314	1,859	497
Cost	+10%	2,590	2,136	1,682	319
	+20%	2,413	1,959	1,505	142

Table H.2.29 Results of the Sensitivity Analysis 11 (NPV, Present Condition, Priority Projects, North Manila)

Source: The Study Team

Table H.2.30 Results of the Sensitivity Analysis 12 (B/C, Present Condition, Priority Projects, North Manila)

		Benefit						
		±0%	-10%	-20%	-50%			
	±0%	2.6	2.3	2.0	1.3			
Cost	+10%	2.3	2.1	1.9	1.2			
	+20%	2.1	1.9	1.7	1.1			

Source: The Study Team

Table H.2.31 Results of the Sensitivity Analysis 13 (EIRR, Present Condition, Priority Projects, North Manila)

			Benefit		
		±0%	-10%	-20%	-50%
	±0%	27.6%	25.9%	24.1%	17.8%
Cost	+10%	26.1%	24.5%	22.7%	16.7%
	+20%	24.7%	23.2%	21.5%	15.7%

Source: The Study Team

Table H.2.32 Results of the Sensitivity Analysis 14 (NPV, Present Condition, Priority Projects, South Manila)

			Benefit		
		±0%	-10%	-20%	-50%
	±0%	4,480	3,839	3,198	1,274
Cost	+10%	4,287	3,646	3,005	1,081
	+20%	4,094	3,453	2,812	888

Source: The Study Team

Table H.2.33 Results of the Sensitivity Analysis 15 (B/C, Present Condition, Priority Projects, South Manila)

			Benefit		
		±0%	-10%	-20%	-50%
	±0%	3.3	3.0	2.7	1.7
Cost	+10%	3.0	2.7	2.4	1.5
	+20%	2.8	2.5	2.2	1.4

			Benefit		
		±0%	-10%	-20%	-50%
	±0%	31.9%	30.1%	28.1%	21.0%
Cost	+10%	30.2%	28.4%	26.5%	19.8%
	+20%	28.7%	27.0%	25.2%	18.7%

Table H.2.34 Results of the Sensitivity Analysis 16 (EIRR, Present Condition, Priority Projects, South Manila)

Source: The Study Team

Table H.2.35 Results of the Sensitivity Analysis 17 (NPV, Present Condition, Priority Projects, All Study Area)

					Unit : Php Million
			Benefit		
		±0%	-10%	-20%	-50%
	±0%	7,248	6,153	5,057	1,771
Cost	+10%	6,878	5,782	4,687	1,400
	+20%	6,507	5,412	4,316	1,030

Source: The Study Team

Table H.2.36 Results of the Sensitivity Analysis 18 (B/C, Present Condition, Priority Projects, All Study Area)

			Benefit		
		±0%	-10%	-20%	-50%
	±0%	3.0	2.7	2.4	1.5
Cost	+10%	2.7	2.4	2.1	1.3
	+20%	2.5	2.2	2.0	1.2

Source: The Study Team

Table H.2.37 Results of the Sensitivity Analysis 19(EIRR, Present Condition, Priority Projects, All Study
Area)

			Benefit		
		±0%	-10%	-20%	-50%
	±0%	30.0%	28.2%	26.3%	19.6%
Cost	+10%	28.3%	26.6%	24.8%	18.4%
	+20%	26.9%	25.3%	23.5%	17.3%

H.2.5 CONSIDERATION FOR INVESTMENT PLAN FOR PRIORITY PROJECTS

The purpose of this section is to analyze financial affordability for the Priority Projects.

The current expenditures on flood control and drainage improvement projects of relevant agencies are shown in the following table. When the annualized costs of proposed Priority Projects are compared to the average amount of current expenditures of MMDA and the 6 LGUs for the past 6 years, the cost for Priority Projects is fairly huge and equivalent to more than total of annual budget of relevant agencies.

While, on the assumption when some portion of Priority Projects would be financed by ODA loan or other assistance scheme, the burden of the agencies would be eased. If the costs for civil works which is equivalent to around 70% of total propose costs of Priority Projects are financed by assistance scheme, the share of the agencies would become 35% of total expenditure of relevant agencies and it is not a prohibitive level from the aspect of the financial status of the authorities.

								Unit: Php M	lillion
	1999	2000	2001	2002	2003	2004	Average	Proposed	
								Master Pla	n
National								4,865 milic	n
(MMDA)	120	955	200	199	200	956* ¹	438	for Priority Projects	
LGUs								for 6 years	
(Manila)	-	10	29	21	48	-	27	Annualizad	1
(Makati)	118	127	73	30	5	212	94	810 million	/ year
(Pasay)									
(Caloocan)	5	51	73	22	31	206*1	65		
(Taguig)	-	-	-	36	31	116	61		
(Quezon)*2	1	1	1	1	1	1	1		
Total						6,667	686		
Ratio of Current Expenditures to Priority Projects costs						ects costs	118	% (= 810/6	686)
Ratio of Present Average Expenditure to GOP portion						35% (=243/686)		36)	
								GOP 30%	Loan 70%
								243 mil	567 mil

 Table H.2.38
 Comparison of Expenditure on Flood Control

Source: The Study Team

Note : *1 Proposed, *2 Only for Maintenance

Reference

² The above schedule was obtained from the assessors' office of the City of Manila. Since this schedule was prepared under the coordination with surrounding LGUs based on Presidential Decree No.921 and Republic Act 7160 known as the Local Government Code of 1991, these unit costs are subject to same conditions as other LGUs in the study area.

³ Population and Housing Census, NSO, and Detailed Engineering Design of Pasig-Marikina River Channel Improvement Project, Main Report Volume II, March 2002, DPWH

⁴ For example, these factors are applied in the following studies.

Final Alternative Master Plan Strategy Report for the Metro-Manila Integrated Urban Drainage and Flood Control Master Plan, March 1984, DPWH, or

Flood Control Manual, 1993, Canadian International Development Agency (CIDA), or Economic model for urban watersheds, J. Hyd. Div. Am. Soc. Civ. Engrs., 106, (HY4), April, 475, 1980, T. N. Debo and G. N. Day

⁵ The factor of agriculture (10%) was not used because there is no agricultural land use in the study area. The Factor of Highway (25%) was not used because Railroads (23%) was applied as a representing factor of Infrastructure from the aspect of conservative evaluation.

⁶ Contrarily, there is an adverse opinion on including the land enhancement benefit into flood control benefit. Market price of land does not represent its economic value provided that has been set in terms of demand and supply in the market, as such no consumption of scarce resources accrued to the specific project in sight. Further, land prices in urban area tend to be distorted by speculation in future escalation expected and by social prestige psychologically attached to the specific land lot; therefore, the land value does not increase in proportion to the project benefit. The determination of the impact of the project among the land value requires a detailed survey on the location and structure of the economic environment surrounding the project.

⁷ Metro Manila Drainage System Rehabilitation Project, Final Report, Drainage Improvement Plans of Estero de Vitas and other Catchment Areas, March 1986, Ministry of Public Works and Highways

⁸ Based on the schedule of market value of land and the city ordinances of each city

⁹ ICC Project Evaluation procedures and Guidelines, NEDA

¹⁰ Technical Standards and Guidelines for Planning and Design, Draft, Volume I : Flood Control, March 2002, DPWH - JICA

¹¹ ICC Project Evaluation procedures and Guidelines, NEDA

¹² Regarding project life span, 30 years is recommended in the guideline "Economic Analysis for Social Development Study, 13 Flood Control & Sabo", 2002, JICA

¹³ ICC Project Evaluation procedures and Guidelines, NEDA

¹⁴ In Japan's guideline and several study reports, it is suggested to add a risk premium onto the discount rate as another way to reflect uncertainty in long-term and wide-sector analysis of the project like flood control which reduces the risk by itself. A variation of this is to add a premium to the discount rate for the benefits, and subtract a premium for the costs. Introducing these premiums into the calculations of economic evaluation has the effect of giving less weight to increasingly uncertain costs and benefits in the future. This method, however, must determine an arbitrary risk premium to add to the discount rate.

¹⁵ ICC Project Evaluation procedures and Guidelines, NEDA

¹⁶ ditto

¹⁷ The acronyms with parentheses hereinafter referred are definition by Department of Budget and Management. For details, the following publication is convenient for understanding of the words and basic concept of budgetary system of Philippines, "Frequently Asked Questions – National Government Budget", A joint undertaking of the Budget Advocacy Project, Philippine Governance Forum and the Department of Budget and Management, PH FF 3496 2002 NWB

¹⁸ Among outstanding liabilities of the national government of Philippines in the present

¹ Detailed Engineering Design of Pasig-Marikina River Channel Improvement Project, Main Report Volume II, March 2002, DPWH

situations, the most big issue is adjustment of NPC (National Power Corporation)'s financial loss and its absorption by the government. The burden depends on the appraisal value of the debt and affects the amortization plan of the government in no small way.

¹⁹ Regarding project life span, 30 years is recommended in the guideline "Economic Analysis for Social Development Study, 13 Flood Control & Sabo", 2002, JICA

²⁰ In Japan's guideline and several study reports, it is suggested to add a risk premium onto the discount rate as another way to reflect uncertainty in long-term and wide-sector analysis of the project like flood control which reduces the risk by itself. A variation of this is to add a premium to the discount rate for the benefits, and subtract a premium for the costs. Introducing these premiums into the calculations of economic evaluation has the effect of giving

less weight to increasingly uncertain costs and benefits in the future. This method, however, must determine an arbitrary risk premium to add to the discount rate.

²¹ ICC Project Evaluation procedures and Guidelines, NEDA

²² Ditto