E.4.4 Drainage Channels

(1) Drainage Network

Numerous drainage channels exist in the study area, and those connections are very complicated. In the present study, totally 74 km in length for esteros/creeks and 35 km in length for drainage mains have been identified based upon the results of previous studies, especially SEDLMM (2000), and the drainage inventory and maps provided by MMDA. The fieldworks have been also conducted to confirm those connections by the Study Team with the help of MMDA. The results have been summarized as schematic diagram of existing drainage network for the North Manila and South Manila as shown in Figures E.4.11 and E.4.12, respectively. The figures also show the definition of the start and end points of each estero/creek and drainage main. Drainage channels have been further divided to channel sections as shown in Figure E.4.13.

Figure E.4.11 Schematic Diagram of Drainage Network in North Manila

Note: The boundary between S01_01 and S01_02 is quite unclear. The stormwater collected through SE13, SE17, SE16, SD12 may be drained by SP05(Libertad Pumping Station).

Figure E.4.12 Schematic Diagram of Drainage Network in South Manila

(2) Dimensions of Drainage Channels

1) Estero / Creek

There are 20 esteros/creeks in North Manila and 22 esteros/creeks in South Manila. Among those, longitudinal and cross-sectional profiles of 30 esteros/creeks were surveyed in 2000 in the course of SEDLMM. In the present study, survey on most of the remained esteros/creeks has been conducted supplementary. The current conditions of estero/creeks are summarized using data obtained by both SEDLMM and the Study.

Table E.4.22 summarizes main dimensions of esteros/creeks. The longest is Estero de Tripa de Gallina that is 7600 m in length, and the shortest is Zanzibar Creek in South Manila. The width varies from a few meters to 75 m . Along the esteros/creeks are various bank protection works by means of steel sheet piles, concrete sheet piles and wet masonry, and drainage culverts.

Figure E.4.14 shows longitudinal variations of bed and bank elevations and river width in Estero de Tripa de Gallina, Calatagan Creek I and Estero de Sunog Apog/Maypajo, as examples.

In Figure E.4.14, longitudinal variation of bed elevations in Estero de Tripa de Gallina in 1990 and 1995 and the previously planned bed elevation are also shown. The bed elevation in 2004 is higher than those in 1990 and 1995 in general. Aggradation of riverbed is severe, which makes the existing riverbed 1-3 m higher than the planned one. It causes reduction of discharge capacity.

Existing Calatagan Creek I is basically shallow and narrow, which leads small discharge capacity. In addition, there is a neck point at the section where the railroad along South Super Highway crosses.

Bed elevation in Estero de Sunog Apog/Maypajo seems to become high compared to before. It is estimated that the previous bed elevation at the outlet of Blumentritt interceptor is about EL. 8 m . However, the bed elevation in 2000 is almost EL. 10.5 m , which makes the outlet of Blumentritt interceptor mostly closed.

The longitudinal profiles of the other esteros/creeks are shown in Annex E. 1

Table E.4.22 Main Dimensions of Esteros/Creeks

Block_ID	Code	Name	Length (m)	Width (m)	Source
N01	NE01	Estero de Vitas (*1)	1990	15-72	a
	NE04	Estero dela Reina	3020	8-21	a
	NE05	Estero de Binondo	1040	15-32	a
	NE06	Estero de Magdalena	1510	5-36	b
	NE07	Estero de San Lazaro	2830	3-16	b
	NE08	Estero de Kabulusan	690	9	b
	NE09	South Antipolo Open Canal	830	2.5-7	b
	NE10	North Antipolo Open Canal	780	3-4.5	b
	NE11	Estero de Tutuban	450	2-2.5	a
N02	NE12	Estero de Quiapo	1120	12-26	b
	NE13	Estero de San Sebastian	380	6-12	b
	NE14	Estero de San Miguel / Uli-Uli	2670	7.5-21	b
	NE15	Estero de Alix	650	2.5-3	a
	NE16	Estero de Aviles	380	4.5-11	b
	NE17	Estero de Sampaloc I	720	8-16	b
	NE18	Estero de Sampaloc II	510	2-10	a
	NE19	Estero de Calubcob	340	9-10	b
N03	NE20	Estero de Valencia	1220	5-27	a
N04	NE02	Estero de Sunog Apog / Maypajo	4270	5-72	b
	NE03	Casili Creek	2380	2.5-7.5	b
S01	SE09	Estero de Tripa de Gallina (*2)	7640	4-30	a
	SE11	PNR canal	2660	1.5-3	b
	SE12	Calatagan Creek I	1710	4.5-8	b
	SE13	Calatagan Creek II	1000	6-8.5	b
	SE15	Zanzibar Creek	330	5-7.5	b
	SE16	Makati Diversion Channel I	1790	4-10	b
	SE17	Makati Diversion Channel II	1990	6.5-10	b
	SE18	Dilain Creek / Maricaban Creek I	6320	5-15	b
	SE19	Maricaban Creek II	4240	6-25	b
	SE20	Estero de San Antonio Abad	1220	3-6	a
	SE21	Libertad Channel	900	15-20	a
S02	SE03	Estero de Balete	550	6-12	a
S03	SE01	Estero de Provisor	1020	15-26	a
	SE02	Estero de Tanque	340	5-25	a
	SE04	Estero de Santebanez	520	4-10	a
	SE06	Estero de Paco	2400	6-23	b
	SE07	Estero de Concordia	1070	3-18	a
	SE08	Estero de Pandacan	4320	3-16	a
	SE10	Perlita Creek	920	3-4	b
S04	SE05	Santa Clara Creek	1490	3-8	a
S05	SE14	Calatagan Creek III	2560	5.5-7	b
S06	SE22	Sto Nino Creek	730	N / A	N / A
Source Note	a: JICA Study Team, b: SEDLMM database (2000)				

Source:

1) JICA Study Team
2) DPWH, JICA, The Study on Flood Control and Drainage Project in Metro Manila, 1990.
3) DPWH, Metro Manila Flood Control (II) Project (PH-79), Drawings for Estero Improvement, 1991.
4) Public Estates Authority, The Study on the Updated Drainage Plan for Section II of Manila Bay Reclamation Area, Pasay City and Paranaque, Metro Manila, 1995.

Figure E.4.14 Longitudinal Profile of Estero/Creek (Tripa de Gallina) (1/3)

Source: JICA, DPWH, MMDA, Study on the Existing Drainage Laterals in Metro Manila in the Core Area of the Philippines, 2000.

Figure E.4.14 Longitudinal Profile of Estero/Creek (Calatagan Creek I) (2/3)

Source: 1) JICA, DPWH, MMDA, Study on the Existing Drainage Laterals in Metro Manila in the Core Area of the Philippines, 2000.
2) DPWH, Metro Manila Flood Control (II) Project (PH-79), Drawings for Estero Improvement, 1991

Figure E.4.14 Longitudinal Profile of Estero/Creek (Sunog Apog/Maypajo) (3/3)

2) Drainage Main

There exist 18 and 19 drainage mains in North Manila and in South Manila, respectively. Based upon the database for drainage laterals developed by SEDLMM, the dimensions of the drainage mains can be summarized as shown in Table E.4.23.

The length of the drainage mains ranges 130 m to 2980 m . The longest is Blumentritt interceptor in North Manila, whereas the shortest is Kabulusan Sub main in North Manila. Most of the drainage mains consist of one or two box culverts.

In SEDLMM, the deposition depth in the drainage main was also investigated, which clarifies how much the drainage cross-section had been clogged by silt or solid waste at the moment the survey was conducted in 2000. The longitudinal profile of Blumentritt interceptor is shown in Figure E.4.15 as an example. Deposition fully occupied at the outlet and the middle and upper parts in Blumentritt interceptor. There were the regions where no deposition was observed. However, only one neck point can significantly reduce discharge capacity even if other places have enough cross-sectional area. Thus, the discharge capacity of Blumentritt interceptor was almost zero at the moment the survey was conducted in 2000.

The longitudinal profiles of the other drainage mains are shown in Annex E. 1
Many of maintenance holes of drainage mains have been improperly operated and maintained. Some of them have been covered by road pavement or structures and no longer utilized. This would be one of the reasons why the deposits have been accumulating so much in drainage mains.

Figure E.4.15 Longitudinal Profile of Drainage Main
(Blumentritt Interceptor)
Table E.4.23 Dimensions of Drainage Mains (1/2)

Block_ID	Code	Name	Length (m)	Location of manhole (m)	Tipe	$\begin{aligned} & \text { Number } \\ & \text { of cell } \end{aligned}$	Width (m)	$\begin{aligned} & \text { Depth (m) or } \\ & \text { Diameter (m) } \end{aligned}$	DownStream Condition	Downsstream WL Condition	$\begin{aligned} & \text { DownStream } \\ & \text { Water Level (} m \text {) } \end{aligned}$	$\begin{gathered} \text { Qcap }\left(m^{3} / s\right) \\ \text { with Deposition } \\ \text { (2000) } \end{gathered}$	$\begin{aligned} & \text { Qcap }\left(m^{3} / s\right) \\ & \text { Original } \end{aligned}$	$A\left(k m^{2}\right)$	$\begin{gathered} \frac{Q 10}{\left(m^{3} / s\right)} \end{gathered}$	Q5 (mms)	Q3 $\left(m^{3} / s\right)$	Q2 $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	$\begin{gathered} \begin{array}{c} \text { Judgement } \\ \text { Existing } \end{array} \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Judgementent } \\ \text { orrignanal } \end{array} \end{gathered}$	$\begin{aligned} & \text { Declogging } \\ & \text { Volume } \\ & \text { (m3) } \end{aligned}$
not				44.501	Box Culvert	2	$2.60-2.80$	2.40-3.36		Top Elev. of D.M.	10.44	26	31	1.85	35.4	30.9	26.7	23.2	4	2	606
	ND07	Panpanga-Earnshaw Sub	1040	652-1037	Box Culvert	1	2.20-3.20	2.20-2.40	stero	Top Elev. of D.M.	10.44	4	12	0.49	11.4	10.0	8.6	7.5	5	1	1017
	ND08	Solis-Tecson	1430	0-60	Box Culvert	1	2.00	1.30-1.52	Drainage Main	-	,	-	-	-	-	-	-	-	.	-	47
				166-1004	Bax Culvert	2	1.50-2.00	1.09-1.53		Top Elev. of D.M.	10.21	2.6	${ }_{8}$	1.14	23.0	20.1	17.4	15.2	5	5	1498
				1041-1359	Box Culvert	1	2.00	1.15-1.48		Top Elev. of D.M.	10.21	1.5	6	1.14	23.0	20.1	17.4	15.2	5	5	370
				1428	Pipe	1	,	1.02		Top Elev. of D.M.	10.21	1.4	4	0.71	16.1	14.1	12.2	10.6	5	5	388
	ND09	South Antipolo	1370	0-1218	Box Culvert	1	$3.00-4.50$	1.85-2.67	Estero	Top Elev. of D.M.	12.05	0	9	0.59	11.0	9.6	8.3	7.2	5	3	7261
				1375	Box Culvert	1	2.00	2.14	Estero	Top Elev. of D.M.	12.05	0	0	0.22	4.1	3.6	3.1	2.7	5	5	358
	NDIO	Kabulusan Sub	140	14-142	Box Culvert	1	2.81	2.40	Estero	Top Elev. of D.M.	10.15	10	44	0.64	9.8	8.6	7.4	6.4	1	1	$415(44)$
	NDII	Kabulusan	370	8-367	Box Culvert	1	3.35-5.80	2.00-2.70	Estero	Top Elev. of D.M.	11.30	0	35	0.64	9.5	8.3	7.1	6.1	5	1	1935
	${ }^{\text {NDI }} 2$	Tayuman	1600	0-692	Box Culvert	1	2.12-3.10	1.36-2.40	Estero	Top Elev. of D.M.	10.15	0	8	1.41	30.6	26.8	23.2	20.2	5	5	2921
				875-1303	Bax Culvert	1	1.85-1.91	1.48-1.89	Estero	Top Elev, of D.M.	10.15	0	6	0.65	14.9	13.1	11.3	9.8	5	5	834
	NDI3	Fugsoso	670	0-365	Box Culvert	2	2.00-2.20	1.63-2.87	Estero	Top Elev. of D.M.	10.99	10	21	0.86	15.8	13.8	11.9	10.4	4	1	915
				$470-546$	Bax Culvert	1	$2.80-3.00$	1.50		Top Elev. of D.M.	10.99	5	12	0.40	7.3	6.4	5.5	4.8	4	1	350
N02	NDI4	Severino Reyes	650	$70 \cdot 220$	Box Culvert	1	3.10-3.20	1.60	Esero	Top Elev. of D.M.	10.31	16	21	0.93	17.6	15.4	13.3	11.6	2	1	77
				322-648	Box Culvert	1	2.65-3.20	1.60-1.77	Estero	Top Elov. of D.M.	10.31	7	11	0.87	16.6	14.5	12.5	10.9	5	4	243
	NDIS	Lepanto-Gov. Forres	1160	0-1160	Bax Culvert	3	3.40-4.00	1.75-3.15	Estero	Top Elev. of D.M.	11.52	13	25	2.55	36.4	31.6	27.3	23.6	5	4	7817
	NDI6	Lepanto-osesfina	1060	0	Box Culvert	3	3.40	2.24	Drainage Main	-	-	-	,	.	.	-	-	.	-	.	.
				133-223	Box Culvert	2	2.00-2.12	2.00-2.24		Top Elev. of D.M.	11.06	21	33	1.31	21.9	19.1	16.5	14.3	2	1	1290
				916-1021	Box Culvert	1	$4.10-4.30$	3.00-3.24		Top Elev. of D.M.	11.06	13	20	0.94	17.9	15.7	13.5	11.8	4	1	144
	NDI7	Economia	820	0-232	Bax Culvert	3	2.30-3.40	2.25-2.70	Drainage Main	Top Elev. of D.M.	11.06	49	80	0.66	20.9	18.4	15.8	13.8	1	1	1562
				555-695	Box Culvert	1	1.40-1.53	2.20-2.70		Top Elev. of D.M.	11.06	4	9	0.20	5.7	5.0	4.3	3.7	4	1	469
	NDI8	Washington-P. Margal	210	12-167	Box Culvert	1	2.80	2.37-2.48	Estero	Top Elev. of D.M.	11.18	5	26	0.24	6.0	5.3	4.5	3.9	3	1	485
N03	NDI9	V isayas	670	2-324	Box Culvert	2	2.00	2.00	Estero	Top Elev. of D.M.	11.46	11	21	1.21	25.4	22.2	19.2	16.8	5	3	610
				403-573	Box Culvert	2	1.70	1.70		Top Elev. of D.M.	11.46	8	15	0.87	18.3	16.0	${ }^{13.8}$	12.1	5	3	493
				673	Box Culvert	1	2.90	1.60		Top Elev. of D.M.	11.46	8	13	0.47	9.9	8.6	7.5	6.5	3	1	0
N04	ND05	${ }^{\text {Blumentritt Interceptor }}$	2980	10-1463	Box Culvert	2	$1.20-2.62$	2.00-2.63	Estero	Top Elev. of D.M.	10.76	0	8	2.62	34.4	29.9	25.9	22.4	5	5	861
				2276 -2840	Bax Culvert	2	1.40-2.15	1.57-2.25		Top Elev. of D.M.	10.76	0	8	1.56	29.5	25.7	22.2	19.4	,		5895
				2978	Box Culvert	1	2.10	1.44		Top Elev. of D.M.	10.76	0	6	0.58	12.5	10.9	9.5	8.3	5	5	3817
	ND06	Kanlaon	640	0	Box Culvert	1	2.19	1.44	Drainage Main	,	\bigcirc	\bigcirc	\bigcirc	-	,	-	-	-	-	-	0
				328-459	Pipe	1	\bigcirc	0.61		Top Elev. of D.M.	12.22	0.2	0.4	0.58	12.5	10.9	9.5	8.3	5	5	${ }^{188}\left({ }^{(4)}\right.$)
				483	Box Culvert	1	0.762	0.762		Top Elev. of D.M.	12.22	0.2	0.4	0.30	6.5	5.7	4.9	4.3	5	5	$5\left({ }^{*} 4\right)$
	ND04	${ }^{\text {Buendia }}$	510	125-293	Bax Culvert	1	2.50-3.00	1.93-2.40	Balut PS	PSTL	10.70	6	16	0.49	17.3	15.2	13.1	11.4	5	2	459
				437-511	Box Culvert	1	$2.50-3.00$	1.66-1.67	Balut PS	PSTL	10.70	4	10	0.23	8.0	7.1	6.1	5.3	5	1	135
N05	NDO1	Pacheco	1160	0.866	Box Culvert	I	4.00-4.40	1.60-2.72	Manila aqy	MHST	11.34	9	13	1.13	28.0	24.5	21.2	18.5	J	5	1879
				913-1041	Box Culvert	1	3.00	0.74-1.75	Manila aby	MHST	11.34	3	4	0.34	8.5	7.4	6.4	5.6	5	5	0
	${ }^{\text {ND02 }}$	Lakandula	870	0-212	Box Culvert	1	3.84-4.20	2.01-2.62	Manila Bay	MHST	11.34	1	43	0.62	20.9	18.4	15.8	13.8	5	1	3507
				$740-873$	Pipe	1	\bigcirc	1.07	Manila Bay	MHST	11.34	0.4	1	0.13	4.4	3.9	3.3	2.9	5	5	13
	ND03	Zaragosa Sub	430	0-429	Pipe	1	\bigcirc	0.91	Manila Bay	MHST	11.34	0	1	0.23	8.8	7.7	6.6	5.8	5	5	279

[^0]Judgment
Note (1) Dimensions are basically based uop SEDL.MM database (2000).
2) PSTL: Pump Start Level., MHST: Mean High Spring Tide
Table E．4．23 Dimensions of Drainage Mains（2／2）

			這する		¢	2			\％					$\stackrel{7}{2}$	20		玉 \％
	－		$\cdots \cdots$				\cdots		\cdots				－		－－		
	－		\cdots	\cdots		，	\cdots		\cdots		－		\cdots		$\cdots+$		－
	20	2 O	$\stackrel{\circ}{\circ}$	三¢	\therefore	8	\％${ }^{2}$	\％	）${ }^{\circ}$	\because			\bigcirc	으욱ํ	$\stackrel{\square}{\circ}$		4
$\begin{aligned} & \widehat{\widehat{n}} \\ & \hat{\mathrm{n}} \end{aligned}$	$\stackrel{\infty}{\circ}$	くこた	$2 \geqslant$	$\stackrel{\sim}{\square} \stackrel{\circ}{\circ}$	$8:$	\bigcirc	\bigcirc		\cong	2	23	8	$\stackrel{\infty}{\sim}$	¢	\cdots	$\bar{\circ} \mathrm{O}$	\bigcirc
$\begin{aligned} & \text { ax } \\ & \text { an } \\ & 0 \end{aligned}$	）	ミ\％	58	$\stackrel{\square}{ \pm}$	$\pm{ }^{\circ}$	$\stackrel{\sim}{\sim}$	號	\％	®	7	$\overbrace{}^{\circ} \mathrm{O}$		\bigcirc	$\stackrel{\sim}{\square}$ ¢	$\stackrel{*}{\sim}$ ¢	\％	$\stackrel{*}{*}$
\％动	\bigcirc	¢ ${ }^{\text {a }}$	$2{ }^{2}$	20	¢ $\mathrm{c}_{\text {a }}$	2	\bigcirc		呈	A	$\therefore 2$	－	\cong	¢	令会完	¢ 2	7
令	2	\％	玉	\％		＋	\geq	\％	\％	a	त20	\％	为	凧迢	20	20	2
	2	\sim	22	－	\cdots	\therefore	\approx 天 ${ }^{\text {a }}$				$\cdots+$		\bigcirc	\％	$\therefore \sim$	$\infty=$	20
	\wedge	a	－		2	$x=$	$=2$				\cdots		$\because 2$	\％	$2 \pm$	$=2$	8
	）	20	\bigcirc	㖪	$\stackrel{+}{\infty}$		边		管	$\stackrel{\text { à }}{\text { a }}$	$\stackrel{\circ}{8}$		$\stackrel{\square}{0}$	$\stackrel{\square}{0}$	$\stackrel{\text { \％}}{\text { \％}}$	\％	$\stackrel{\sim}{*}$
会	$\begin{array}{\|c} 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	0	0	O							A	Rex	范	管	気合合	步	5
		妾	咅	葡							离	蜜				$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	
		5	笭	（1）	20	8				$\left\|\begin{array}{c} 2 \\ \\ 0 \\ \end{array}\right\|$	－	20				\％	¢
	$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{0} \\ 0 \\ 0 \\ \vdots \end{array}\right\|$			迢	$\sqrt{\text { a }}$	20	（1）	－	208	这		$\sqrt{\text { a }}$	¢		¢	สั่	9
部离	－	－．	－－	$\sim \sim$	\sim	\sim	\sim	，	－	－－	－	－	－	－－	－－	－－	－
है						景											
	$\stackrel{8}{8}$	8			coser	$=$	（1）	－	\％	108	\％	${ }_{2}$		近			－
		ミ	를	\％ั		気运	䜌	¢	\％	9	\％	2	\％\％	¢ ¢ ¢	$\stackrel{\text { E }}{ }$		\％
部		音		害				（20）			咅		$\begin{aligned} 2 \\ 0 \end{aligned}$	$\begin{array}{ll} 5 \\ 0 \end{array}$			慈
苍		ลี่	\％	\％	気	运运	运运	Bion		运迢	这	会		号這	㐔		令
					亏ิ						\％	\％		¢		$\stackrel{\square}{\square}$	，

[^1]
(3) Discharge Capacity

Drainage network in the study area is very complex and flow direction varies with time in some places. It is necessary to employ hydrodynamic network model to evaluate such a complex system accurately. However, a simple estimation of discharge capacity with some assumptions is also useful to get a fundamental idea for understanding the existing drainage system. In this section, the results of the estimated discharge capacity for esteros/creeks and drainage mains are summarized.

1) Estero/Creek

The following are assumed to estimate discharge capacity for an estero/creek

- Uniform flow
- Bankfull flow
- Resistance law: Manning equation
- Manning’s coefficient: 0.030 (Existing condition), 0.025 (Improved condition)
- Energy slope: Average bed slope or planned bed slope

2) Drainage Main

The discharge capacity for a drainage main is determined as the discharge without overflow at any manholes along the drainage main. To estimate it, pressure flow is assumed in the present study, because when large flood comes, the water level becomes almost equal to bank elevation in esteros/creeks. In such situation, pressure flow in drainage main would occur.

The water level at downstream end of drainage main is assumed as follows.

- Manila Bay: Mean High Spring Tide Level (11.34m)
- Estero/Creek: Top level of drainage main
- Drainage Main: Top level of drainage main
- Pumping Station: Pump start level

The following is also assumed.

- Resistance law: Manning equation
- Manning's coefficient: 0.018 (Existing condition), 0.015 (Improved condition)

The estimated discharge capacities for both original condition without deposition and condition with deposition in 2000 are summarized in Table E.4.23.

3) Probable Peak Discharge and Discharge Capacity

To evaluate the existing discharge capacity, probable peak discharges for several observation points of esteros/creeks and drainage mains have been estimated. Runoff coefficient based on the future expected landuse was applied. Flow direction was assumed based on mainly originally planned pump drainage basins. Rational method has been applied to estimate probable peak discharge. Time of concentration has been given by summation of time of flow and time of inlet. The time of flow was estimated assuming uniform and bankfull flow against improved or estimated original condition of esteros/creeks and drainage mains. The time of inlet is estimated based upon assumed flow path within a sub-basin. It is noted that the same methodology to calculate time of concentration is applied for hydrodynamic modeling by MOUSE. Figure E.4.16 shows the location of observation points for estimating probable peak discharges. The estimated
probable peak discharges for several observation points for the existing condition are summarized in Table E.4.24. The time of flow and inlet for each reach basin and matrix to calculate contributing reach basin for the discharge observation points are summarized in Annex E.2.

Figure E.4.17 shows the existing discharge capacity compared to probable peak discharge. Many channels have the capacity less than 2 -years return period peak discharge. The main reason for this is the reduction of cross-sectional area due to heavily accumulated bottom deposits. It is noted that the existence of the informal settlers within channels as obstacles for water flow has not been taken into account directly in this analysis. However, if it is considered, the discharge capacity becomes smaller, although it is difficult to analyze quantitatively. The important finding here is that the reduction of cross-sectional area due to heavily accumulated bottom deposits is already enough to reduce the discharge capacity significantly.

(4) Effect of Dredging and Declogging

Based upon available previous reports and existing observed cross-sectional shapes, the original bed levels for each estero/creek have been estimated. The bed levels to be recovered are then set by considering the connections of each channel. The bed level setting is categorized into the following:

- Original: The bed level is set by following the original plan shown in the previous report.
- Modified: The bed level is set by modifying the original plan (basically higher than the bed level of the original plan).
- New: The bed level is set by estimating the original bed level based on the existing observed cross-sectional shape and connections between channels.
- No: The bed level is kept with existing condition.

The original bank location was estimated using the surveyed cross-sectional shape of the channels. The width of the channel to be dredged is then set using the estimated bank location. The longitudinal profiles of the esteros/creeks are shown in Annex E.1.

The above-mentioned categories for the bed levels and estimated dredging volumes for each channel division are summarized in Table E.4.25, together with estimated number of structures within esteros. Total volumes to be dredged from esteros/creeks are estimated at about $840,000 \mathrm{~m}^{3}$. On the other hand, estimated declogging volume for each drainage main is shown in Table E.4.23. Total volumes to be declogged from drainage mains are estimated at about $80,000 \mathrm{~m}^{3}$.

By conducting the dredging of esteros/creeks and declogging of drainage mains, the discharge capacity can be recovered as shown in Figure E.4.18. Discharge capacity for almost all of the esteros directly connecting to pumping stations will recover to the capacity of more than 10 -year return period peak discharge. Many drainage mains have the capacity of more than 3 -year return period peak discharge. This result clarifies that dredging and declogging can be significantly effective to regain the channel capacity and consequently to reduce inundation in the core area. However, as can also be seen in Figure E.4.17, some drainage mains such as Blumentritt interceptor in north Manila and Zobel-Roxas in South Manila have less capacity still even if declogging is executed. The dredging and declogging are fundamental, but additional work is still required in some places.

Figure E.4.16 Location of Discharge Observation Points (1/2)

Figure E.4.16 Location of Discharge Observation Points (2/2)
Table E.4.24 Estimated Probable Peak Discharge (1/2)

Note: Observation points are basically located at downstream end of each reach basin.
Table E.4.24 Estimated Probable Peak Discharge (2/2)

[^2]

Figure E.4.17 Discharge Capacity of Drainage Channels in Existing Condition

Figure E.4.18 Discharge Capacity of Drainage Channels
after Dredging and Declogging

Table E.4.25 Dredging Volume from Estreos/Creeks (1/2)

Referred previous report

1. Metro Manila Flood Control (II) Project(PH-79), Supporting Data to Main Engineering Report (Vol.1) for Hydraulic Design, Design of Civil Works, Mechanical and Electrical Works and Sanitary Works and Cost Estimates, 1991
2. Metro Manila Drainage System Rehabilitation Project (PH-66), Drainage Improvement Plans of Estero de Vitas and Other Catchnent Areas, Final Report, 1986
3. Metro Manila Flood Control (II) Project(PH-79), Drawings for Estero Improvement, 199 J
4. The Study on the Updated Drainage Plan for the Libertad Reclamation Area in Pasy City, Merro Manila, 1995

Judgement
$1,2,3,4,5,6=$ The discharge capacity and probable discharge
$t=$ The capacity is more than Q10
$2=$ The capacity is $Q 10 \cdot Q 5$.
$3=$ The capacity is $Q S-Q 3$.
$4=$ The capacity is $Q 3-Q 2$.
$5=$ The capacity is less than $Q 2$.
$6=$ Not specified
(Note) * $1:$ Dredging is not proposed in the Master plan.

Table E.4.25 Dredging Volume from Estreos/Creeks (2/2)

Estaro Cose	Name of Estoro	Portion	SECCCODE	Length (m)	Reforenca	Assumed 8ed	$\begin{gathered} \text { Oredging Vowume } \\ \left(\mathrm{m}^{3}\right) \end{gathered}$	Estimated number of biuldings witht? channel	sudgement Exisling	Juogement After Oredging
SE01.	Eslero De Provisar		SE0101	1018	0	NO	0	0	8	8
SE02	Estero De Tanque		SE0201	344	0	NO	0	0	8	6
SE03	Estero De Bajele		SE0301	550	0	NEW	4601	11	5	5
SE04	Estero De Santebanez		SE0401	518	0	NO	0	4	8	6
SEE5	Santa Clara Croek	-	SEOS00	95	0	NO	0	-	6	6
			SE0S01	487	0	NEW	5685	0	5	3
			SE0502	905	0	NEW	10431	10	5	1
SE06	Estero De Paco	.	SE0600	127	0	NO	0	-	8	6
			SE0601	288	0	NEW	295B	1	1	1
			SE0602	268	0	NEW	3207	0	1	1
			SE0603	1217	0	NEW	11232	209	3	1
			SE0604	499	0	NO	0	68	1	1
SE07	Estaro De Concordia		SE0701	1070	0	NEW	24702	0	1	1
SEOa	Estero Oe Pandacar	.	SE0800	351	0	NO	0	0	8	6
		1	SE0801	853	0	NEW	10115	0	5	1
			SE0802	710	0	NEW	6005	25	1	$!$
			SE0803	366	0	NEW	1915	28	3	1
		2	SE0804	292	3	CRIGINAL,	2446	0	3	$!$
		3	SE0805	1657	0	NEW	7148	1	4	!
		.	SE0898	89	0	NO	0	.	6	6
SE0g	Erero de Tripa de Gatina	.	SE0900	100	0	NO	0	-	6	6
		1	SE0901	436	4	MODIFIEO	40900	1	5	2
			SE0902	305	4	MODIFIEO	34362	20	6	6
			SE0903	575	4	MODIFIEO	18337	126	5	!
			SE0904	813	4	MOJIFIEO	22220	168	5	!
		2	SE0905	807	4	MODIFIEO	28870	114	5	:
			SE0906	215	4	MODIFIEO	9379	17	5	1
			SE0907	132	4	MODIFIEO	3750	22	5	;
			SE0908	281	4	MODIFIEO	${ }^{8586}$	51	5	;
		3	SE0909	355	4	MODIFIEO	18865	49	5	?
			SE0910	533	4	MODIFIEO	10184	131	5	2
			SE0911	359	4	MODIFIEO	6833	50	5	1
		4	SE0912	269	4	MODIFIEO	4882	9	5	1
			SE0913	150	3	ORIGINAL	1698	8	5	1
		5	SE0914	1054	3	ORIGINAL	10421	72	5	1
			SE0915	135	3	ORICINAL	1815	3	5	1
			SE0916	313	3	ORIGINAL	3832	12	5	1
			SE0917	926	3	ORIGINAL	9378	5	5	2
SE10	Perha Croek		SE1001	922	0	NEW	3284	12	5	2
SE11	PNR Canal	1	SE1101	731	0	NEW	1533	6	1	1
			SE1102	313	0	NEW	1011	1	5	2
			SE1103	839	0	NEW	2428	2	5	2
		2	SE1104	771	0	NEW	1499	105	5	2
SE12	Catatagan Creek I		SE1201	763	0	NEW	6879	6	5	2
			SE1202	948	0	NEW	6483	0	5	3
\$E13	Calalagan Creek 1		SE1301	609	0	NO	0	0	2	2
			SE1302	368	0	NO	0	0	1	1
SE14	Calaagan Creek III		SE1401	3031	0	NO	0	0	1	1
			SE1402	504	0	NO	0	0	1	1
			SE1403	1023	0	NO	0	0	6	8
SE14b1	Cabagan Creak III		SE14b1	217	0	NO	0	.	6	8
SE15	Zanzioar Creak		SE1501	329	0	NO	0	-	6	6
SE10	Maxatiowerston Chamel		SE1801	549	0	NEW	6818	0	5	5
			SE1802	285	0	NEW	4349	43	5	1
		-	SE1603	980	0	NO	0	0	1	1
SE17	Maxali Divarson Channel II		SE1701	607	0	NEW	14958	0	5	1
			SE1702	838	0	NEW	10535	0	5	1
			SE1703	550	0	NEW	2810	0	1	1
SE1a	DRan Creek/ Maricaban Creak I		SE1801	115	0		0	.	8	6
			SE1802	2151	0	NEW	45823	9	5	5
			SE1803	478	0	NEW	0	0	5	5
		-	SE1804	492	0	NO	0	15	5	5
			SE1805	3088	0	NO	0	-	6	6
SE18b1	DRain Croek/ Maricaban Creek I	.	SE18b1	987	0	NO	0	.	6	8
SE1Bb2	DRain Creek/Maricaban CreekI	.	SE18b2	395	0	NO	0	\cdot	6	8
SE19	Maricaban Creek 11	*	SE1901	759	0	NO	0	0	5	5
			SE1902	3482	0	NO	0	.	6	6
SE19b1	Maticabas Creak II	-	SE1961	1080	0	NO	0	.	6	6
SE19b2	Maricaban Creek 11	.	SE19b2	1253	0	NO	0	.	6	8
SE1963	Maricaban Croek II	\cdot	SE91b3	242	0	NO	0	.	1	1
SE20	Estero de San Antonio Abad	.	SE2001	364	0	NO	0	0	1	1
			SE2002	612	0	NO	0	0	1	1
			SE2003	757	0	NO	0	0	8	6
SE21	Liberlad Channel	-	SE2100	177	0	NO	0	-	8	6
			SE2101	914	0	NO	0	-	6	6
			SE2102	1691	0	NO	0	.	6	6
SE21b1	Liberlad Channel	.	SE21b1	2486	0	NO	0	-	6	8
SE21b2	Lbertad Channel	.	SE21b2	725	0	NO	0	.	6	6
SE22	Slo Ni. Creek	.	SE2201	168	0	NO	0	.	6	6
SE99	Paranaque	.	SE9901	1994	0	NO	0	-	6	6
Total (South Manlia)								1412		

Referred previous report

1. Metro Manila Flood Control (II) Project(PH-79), Supporting Data to Main Engineering Report (Vol.I) for Hydraulic Design, Design of Civil Works, Mechanical and Electrical Works and Sanitary Works and Cost Estimates, 199]
2. Metro Manila Drainage System Rehabilitation Project (PH-66), Drainage Inprovement Plant of Estero de Vitas and Other Catchment Areas, Final Report, 1986
3. Metro Manila Flood Control (II) Project(PH-79), Drawings for Estero Improvennent, 1991
4. The Study on the Updated Drainage Plan for the Libertad Reclamation Area in Pasy City, Metro Manila, 1995

Judgement
$1,2,3,4,5,6=$ The discharge capacity and probable discharge
$l=$ The capacity is more than Q10.
$2=$ The capacity is $Q 10-Q 5$.
$3=$ The capacity is $Q S-Q 3$.
$4=$ The capaciny is $Q^{3} \cdot Q^{2}$.
$5=$ The capacity is less than $Q 2$.
$6=$ Not specified

E.4.5 Necessity of Additional Work

As have shown in Chapter E.4.4, dredging of esteros/creeks and declogging of drainage mains are significantly effective to recover the original function of drainage system in the core area. However, some additional works will be required to improve the inundation condition, especially in severely inundated areas. There are two notable regional inundation areas, one in Aviles, Sampaloc area in North Manila, and the other, San Isidro, San Antonio and Pio del Pilar area in South Manila.

Major causes of the regional inundation in North Manila are assumed as follows:

- Storm water coming from a hilly area in Quezon City is not intercepted by the present drainage system of Blumentritt Interceptor and consequently flows down into the upper catchment of Quiapo-Aviles drainage block.
- Improper function of inlet facilities of existing upper Blumentritt Interceptor due to accumulation of bottom deposits drainage gutter
- Lack of channel flow capacity of Blumentritt interceptor
- Clogging of outlet of Blumentritt interceptor due to accumulation of bottom deposits in the Estero de Maypajo.

Discharge capacity of Blumentritt interceptor now is almost zero. Almost all of stormwater in the drainage area of Blumentritt interceptor can thereby enter the upper catchment of Quiapo-Aviles drainage block. This means that the actual drainage area for Quiapo-Aviles drainage block is much larger than the original plan. Consequently, depth and duration of inundation are also considerably deep and long in the low-lying area of this block. Even if declogging is executed, the discharge capacity of Blumentritt interceptor is still less than the capacity of 2 -year return period peak discharge. An additional drainage will be required to keep the function of the interceptor and to prevent overflowing together with some remedial works for existing Blumentritt interceptor.

Major causes of the regional inundation in South Manila are assumed as follows:

- Lack of channel flow capacities of existing connection channels between Calatagan Creek I, PNR Canal, Zobel-Roxas, Makati diversion channel and Estero de Tripa de Gallina due to accumulation of bottom deposits and encroachment of informal settlers
- Lack of connection channels (PNR and South Super Highway as flow barrier)
- Lack of channel flow capacity of Estero de Tripa de Gallina due to accumulation of bottom deposits and encroachment of informal settlers

Main drainage facilities to Manila Bay in this area are drainage pumping stations of Libertad and Tripa de Gallina. However, these pumping stations are not fully operating in the inundation period due to lack of flow capacities of connection or approaching channels, especially at Tripa de Gallina pumping station. Compared with installed drainage pump capacities, flow capacity of the connection channel to Estero de Tripa de Gallina is considerably small. In addition to dredging and declogging, additional works to improve flow capacity for connecting channels to Estero de Tripa de Gallina will be required.

There are some other necessary additional works. These are further discussed in Chapter E.5.

E.4.6 Problems and Constraints in the Drainage Sector

(1) General

The present drainage system in the core area has been constructed and improved so far. A well-considered system was developed with countless drainage channels of esteros, drainage mains and laterals. Before expansion of urbanization progressed in the last 2 to 3 decades, it was supposed that the drainage system was functioning and consequently, the face of Metropolitan Manila would show open space of water surface and green. It is observed that such valuable drainage channels and facilities are no longer working properly due to illegal activities, encroachment of informal settlers, lack of integrated operation and maintenance system in combination with resident's participation, etc. In this section, problems and constraints in the drainage sector are summarized.

(2) Problems and Constraints

Problems and constraints are categorized into the following 3 aspects of structural, non-structural, and supporting system.

1) Structural Aspect

The existing 15 large drainage pumping stations and 8 small drainage pumping stations are working significantly effective in improving drainage situation in the core area of Metropolitan Manila under the administration of MMDA. Also daily operation and maintenance of pump equipment are well being made. However, 10 pumping stations have being operated nearly 30 years since their constructions. Therefore, mechanical superannuating of pump equipment and its appurtenant facilities has been progressed in some pumping stations. Generally, an economic life of pump equipment and appurtenant facilities is considered to be 20 to 25 years. In this sense, mechanical superannuation of pumping stations is one of the remarkable problems. Also spare parts are out of stock due to stop of production. It can be said that the same problems for the other pumping stations will be coming up in the next 10 years.

In the existing countless drainage channels, it can be generally said that original functions of the respective channels are not demonstrated due to various illegal social activities of dumping of solid waste, encroachment of informal settlers, lack of public awareness, various constraints and limitation for daily operation and maintenance, and budget, etc. Channel flow capacities are considerably decreased compared with original design conditions. Declogging and dredging of the channels are needed.

For the regional inundation areas, basic facilities to collect and drain storm water are in shortage against the respective areas in question. In this regard, it is indispensable to carry out additional structural countermeasures.

2) Non-structural Aspect (Floodplain Management)

The non-structure aspect (measures) aims to reduce damageable objects or properties in the inundation-prone areas or to lower vulnerability against repeating disasters by application of the respective systems of floodplain management, disaster preparedness, flood forecasting and warning, etc, and by means of resettlement of informal settlers residing in the drainage channels, etc., supported by legislation and establishment of consensus among the people and the authorities concerned.

Existing systems of EFCOS and Inter-agencies Floodplain Management are available for
flood forecasting and warning, and floodplain management in the core area. Also, Disaster Management System for disaster preparedness is undertaken by Disaster Coordination Committees of National and Regional levels as well as City, Municipality and Barangay levels, and special arrangement of funding allotment is available at the emergency case. These existing systems under government services are applicable to floodplain management as non-structural measures in the core area of Metropolitan Manila.

Meantime, urbanization in the core area has been highly progressed. Open and green spaces including swamps and ponds have been converted into commercial and business complexes. Due to such urbanization, stormwater retention capacity in the core area is decreasing. Also infiltration capacity to underground is remarkably decreasing because of asphalting of ground surface. As a result, runoff coefficient of storm water is still increasing. In this sense, some countermeasures to lower runoff coefficient or to retard storm water temporally (stormwater retention facilities and permeable pavement) are strongly needed in connection with urban development planning in view of effective utilization of present drainage systems and sustainable floodplain management in the core area.

3) Supporting Aspect

In order to sustain the structural and non-structural aspects in effective condition, a setup of powerful supporting system is indispensable. In this regard, the existing supporting system is insufficient at present and for the future. Therefore, the supporting system in this study consists of social education to improve illegal activities of solid waste dumping and encroachment of informal settlers, minimum-scale resettlement to secure necessary flow area of drainage channels, proper operation and maintenance system including resident's participation, funding system to sustain all related activities of drainage improvement, etc.

[^0]: ${ }^{\text {Judgment }} \quad 1,23.4,5=$ The discharge capacity and probable discharge

[^1]: $123.45=$ The discharge capacity and probable discharge

[^2]: Note: Observation points are basically located at downstream end of each reach basin.
 Note: *1 Stormwater from these reaches is assumed to be drained through EDSA outfall, considering the existing condition.

