E. DRAINAGE FACILITY PLAN

TABLE OF CONTENTS

E.1	Gener	E - 1
E.2		DUS STUDIES AND PLANNED PROJECTS OF FLOOD CONTROL AND DRAINAGE VEMENT
E.2.1 E.2.2 E.2.3	Previo	E - 2us Flood Control and Drainage Improvement PlansE - 2ut Studies Related to Drainage Improvement in the Core AreaE - 12
E.3	Сомрі	LETED AND ONGOING FLOOD CONTROL AND DRAINAGE IMPROVEMENT
E.3.1 E.3.2 E.3.3	Genera Compl	CTS IN THE CORE AREA
E.4	DRAIN	AGE CONDITIONS E - 24
E.4.1 E.4.2 E.4.3 E.4.4 E.4.5 E.4.6	Draina Draina Draina Necess	ge System in the Core AreaE - 24ge FacilitiesE - 31ge BasinE - 39ge ChannelsE - 55sity of Additional WorkE - 75ms and Constraints in the Drainage SectorE - 76
E.5	DRAIN	AGE IMPROVEMENT PLAN E - 78
E.5.1 E.5.2 E.5.3 E.5.4 E.5.5 E.5.6 E.5.7 E.5.8	Basic (Basic (Improv Improv Non-S Suppor Feature	Concept and Conditions for Formulating Drainage Improvement PlanE - 78Consideration of Drainage Improvement PlanE - 83Vement Plan for Drainage ChannelsE - 99Vement Plan for Drainage Pumping StationsE - 109tructural MeasuresE - 115rting MeasuresE - 116e and Phasing of Structural MeasuresE - 117y ProjectsE - 126
ANNEX	E.1	LONGITUDINAL PROFILE OF DRAINAGE CHANNELS
ANNEX	E.2	CALCULATION OF PROBABLE PEAK DISCHARGE
ANNEX	E.3	PRELIMINARY EXAMINATION OF DIMENSION OF STOP LOG GATE
ANNEX	E.4	PRELIMINARY EXAMINATION OF ADDITIONAL WORKS FOR DRAINAGE CHANNELS

ANNEX E.5 ALTERNATIVE STUDY

LIST OF TABLES

Table E.2.1	Major Studies and Planned Projects	E - 2
Table E.2.2	Master Plan Framework Priority Projects	
Table E.2.3	Planned Sewerage Projects	
Table E.2.4	Planned Sanitation Projects	
Table E.2.5	Structure of the Disater Management Plan for Metro Manila	
Table E.3.1	Drainage Improvement Project	
Table E.3.2	Features of Constructed Drainage Pumping Stations (1/3)	
Table E.3.3	Features of Constructed Drainage Pumping Stations (2/3)	
Table E.3.4	Features of Constructed Drainage Pumping Stations (3/3)	
Table E.3.5	Small Pumping Stations	
Table E.4.1	Definition of Drainage Channels and Facilities	
Table E.4.2	Major Dimensions of Each Drainage Block in North Manila	
Table E.4.3	Major Dimensions of Each Drainage Block in South Manila	
Table E.4.4	Total Drainage Capacity and Area of Drainage Basin	_
	for Large Pumping Stations	E - 32
Table E.4.5	Detailed Design Dimensions of Large Drainage Pumping Stations	
Table E.4.6	Tide Gauge Elevation	
Table E.4.7	Total Operating Hours of Pumps at Major Stations	
Table E.4.8	Annual Operating Hours and Fuel Consumption	2 0.
10010 12.1.0	of Drainage Pumping Stations	E - 35
Table E 4 9	Capacities of Small Pumping Stations	
	Dimensions of Floodgates	
	Outline of Present Sewerage Systems in Metropolitan Manila	
	Sub-Basin for North Drainage Area	
	Sub-Basin for South Drainage Area	
	Runoff Coefficient by Land Use	
	Summary of Land Use in the Study Area	
	Summary of Runoff Coefficient of the Study Area	
	Comparison of Pump Drainage Basins by Different Studies	
	Increase in Runoff Coefficients of Pump Drainage Basins	
	Runoff Coefficient by Future (Planned) Land Use	
	Future (Planned) Runoff Coefficient by Reach Basin for North Manila	
	Future (Planned) Runoff Coefficient by Reach Basin for South Manila	
	Main Dimensions of Esteros/Creeks	
	Dimensions of Drainage Mains (1/2)	
	Dimensions of Drainage Mains (1/2)	
	Estimated Probable Peak Discharge (1/2)	
	Estimated Probable Peak Discharge (1/2)	
	Dredging Volume from Esteros/Creeks (1/2)	
	Dredging Volume from Esteros/Creeks (1/2)	
Table E.4.25 Table E.5.1	Objective Drainage Channels and Facilities	
Table E.5.2 Table E.5.3	Definition of Category of Drainage Channels Design Scale for Additional Works	
	-	
Table E.5.4	Proposed Drainage Blocks	
Table E.5.5	Sub-Basin for Proposed Drainage Scheme (1/2)	
Table E.5.5	Sub-Basin for Proposed Drainage Scheme (2/2)	с-У/

Table E.5.7	Summary of Dredging and Declogging Volumes	E - 99
Table E.5.6	Estimated Probable Peak Discharge for Proposed	
	Drainage Scheme (1/2)	E - 103
Table E.5.6	Estimated Probable Peak Discharge for Proposed	
	Drainage Scheme (2/2)	E - 104
Table E.5.8	Stop Log Gate	E - 106
Table E.5.9	Proposed Additional Works for Drainage Channels (1/2)	E - 107
Table E.5.9	Proposed Additional Works for Drainage Channels (2/2)	E - 108
Table E.5.10	Discharge Capacity of Pumping Stations	E - 109
Table E.5.11	Criteria for Mechanical Checking and Diagnosis	E - 111
Table E.5.12	Criteria for Electrical Checking and Diagnosis	E - 111
	Technical Checking Results for Mechanical and Electrical Parts	
Table E.5.14	Phasing of Proposed Structural Measures	E - 121
Table E.5.15	Phasing of Dredging for Each Channel Section (1/2)	E - 122
Table E.5.15	Phasing of Dredging for Each Channel Section (2/2)	E - 123
Table E.5.16	Phasing of Declogging for Each Channel Section	E - 124

LIST OF FIGURES

<u>Page</u>

Figure E.2.1	Design Discharge Distribution of Pasig-Marikina River	E - 7
Figure E.2.2	Longitudinal Profile of Pasig River	E - 9
Figure E.2.3	Sub Catchment Areas Directly Drained to Pasig River	E - 10
Figure E.2.4	Concept of Drainage Improvement	E - 11
Figure E.3.1	Location of Major Ongoing Flood Control and	
	Drainage Improvement Projects in Metropolitan Manila	E - 21
Figure E.4.1	Drainage System in North Manila	E - 25
Figure E.4.2	Drainage System in South Manila	E - 28
Figure E.4.3	Drainage Area Drained by Pumping Stations	E - 31
Figure E.4.4	Locations of Small Pumping Stations	E - 36
Figure E.4.5	Locations of Existing Sewerage Systems in Metropolitan Manila	E - 38
Figure E.4.6	Sub-Basins of North Drainage Area	E - 40
Figure E.4.7	Sub-Basins of South Drainage Area	E - 41
Figure E.4.8	Existing Landuse Map (2003)	E - 46
Figure E.4.9	Future (Planned) Landuse Map (Incomplete)	E - 50
Figure E.4.10	Effect of Urbanization and Future Landuse Condition	
	on Runoff Coefficient	E - 52
Figure E.4.11	Schematic Diagram of Drainage Network in North Manila	E - 55
Figure E.4.12	Schematic Diagram of Drainage Network in South Manila	E - 56
Figure E.4.13	Channel Sections	E - 57
Figure E.4.14	Longitudinal Profile of Estero/Creek (Tripa de Gallina) (1/3)	E - 60
Figure E.4.14	Longitudinal Profile of Estero/Creek (Calatagan Creek I) (2/3)	E - 60
Figure E.4.14	Longitudinal Profile of Estero/Creek (Sunog Apog/Maypajo) (3/3)	E - 61
Figure E.4.15	Longitudinal Profile of Drainage Main(Blumentritt Interceptor)	E - 62
Figure E.4.16	Location of Discharge Observation Points (1/2)	E - 67
Figure E.4.16	Location of Discharge Observation Points (2/2)	E - 68
Figure E.4.17	Discharge Capacity of Drainage Channels in Existing Condition	E - 71
Figure E.4.18	Discharge Capacity of Drainage Channels	

	after Dredging and Declogging	E - 72
Figure E.5.1	Measures of Drainage Improvement	E - 79
Figure E.5.2	Channel Categories	E - 80
Figure E.5.3	Simulated Inundation Conditions - Effect of Dredging and Declogging	E - 85
Figure E.5.4	Simulated Inundation Conditions - Effect of Pumping Stations	E - 86
Figure E.5.5	Causes of Severe Inundation in North Manila	E - 90
Figure E.5.6	Drainage Block and Sub-Basin for Proposed Drainage Scheme (1/2)	E - 94
Figure E.5.6	Drainage Block and Sub-Basin for Proposed Drainage Scheme (2/2)	E - 95
Figure E.5.7	Location of Discharge Observation Points in the Proposed	
	Drainage Scheme (1/2)	E - 101
Figure E.5.7	Location of Discharge Observation Points in the Proposed	
	Drainage Scheme (2/2)	E - 102
Figure E.5.8	Specific Discharge in the Core Area	E - 105
Figure E.5.9	Concept of Degradation of Pumping Equipment	
	and Appurtenant Facilities	E - 110
Figure E.5.10	Master Plan	E - 119
Figure E.5.11	Simulated Inundation Conditions after Completion of Proposed Works	E - 120
Figure E.5.12	Phasing of Rehabilitation Works of Drainage Channels	E - 125
Figure E.5.13	Priority Projects	E - 127

E.1 GENERAL

The total catchment area of the drainage system in the core area is about 73 km2. Within the catchments, there are esteros / creeks and drainage mains with total length of about 73 km and 34 km, respectively and 15 major drainage pumping stations. The drainage system in the core area is geographically divided by the Pasig River into two areas: South Manila (south or left bank of Pasig River) and North Manila (north or right bank of Pasig River).

A flood control and drainage improvement works in Metropolitan Manila were initiated by the then BPW (Bureau of Public Works, presently DPWH) in the 1940s. A drainage improvement master plan was originally formulated by BPW in 1954. In line with the said plans, BPW and/or DPWH carried out various construction works of drainage channels, dredging of river channels and construction of other related works in Metropolitan Manila by own fund.

Subsequently, the construction of Mangahan floodway and 10 major drainage pumping stations were completed by 1984 and 5 more major drainage pumping stations were completed in 1997. Accordingly, the floods from the Pasig River and inundation problems in the core area have been reduced significantly. However, it was observed during the 1999 floods that there remained severe inundation areas regionally and locally. Such floods and inundations caused heavy traffic congestion, and disturbed commercial activities and urban living in the core area. The further drainage improvement is one of major tasks in the core area of Metropolitan Manila.

In this supporting report of Drainage Facility Plan, the present conditions of drainage facilities and pumping stations, and formulated drainage improvement master plan for coping with the above problems and constraints involved in the core area of Metropolitan Manila are described.

Major investigation and study results on the present conditions of drainage facilities and pumping stations are firstly described covering previous studies and planned projects, completed and ongoing flood control and drainage improvement project and drainage conditions of drainage system and catchments, and problems and constraints in the drainage sector.

Subsequently, study results of drainage improvement master plan are explained. The description of this item consists of basic concept for formulating drainage improvement plan, improvement plan of drainage channels and pumping stations, non-structural measures, supporting measures, phasing of structural measures and priority projects subject to a feasibility study.

E.2 PREVIOUS STUDIES AND PLANNED PROJECTS OF FLOOD CONTROL AND DRAINAGE IMPROVEMENT

E.2.1 GENERAL

The Bureau of Public Works (BPW, presently DPWH) initiated flood control and drainage improvement in what is now known as Metropolitan Manila in the 1940s. Since then, flood control and drainage improvement works have been constructed so far. Owing to the implementation of such improvement works, flood control and drainage situations in Metropolitan Manila have been so much improved, although frequent flood damage still remains. In this section, major previous studies and planned projects are discussed below.

E.2.2 PREVIOUS FLOOD CONTROL AND DRAINAGE IMPROVEMENT PLANS

The flood control and drainage plan, from time to time, has been reviewed and restructured to keep up with changes in flow patterns and other hydrological circumstantial requirements of natural and social causes. Major studies and planned projects made so far are summarized in *Table E.2.1*.

Year	Study and Project
1952	Plan for the Drainage of Manila and Suburbs (BPW)
1954	Marikina River Multipurpose Project (BPW)
1963	Review of the above Plan and Project (BPW/WB and WHO)
1984	Metro Manila Integrated Urban Drainage and Flood Control (DPWH/WB)
1986	Drainage Improvement Plans of Estero de Vitas and Other Catchment Areas in Metro Manila Drainage System Rehabilitation Project (DPWH/OECF)
1990	Study on Flood Control and Drainage Project in Metro Manila (DPWH/JICA)
1990	Manila Metropolitan Region Environment Improvement Study (DENR/ADB)
1995	Study on Updated Drainage Plan for Libertad Reclamation Area, Pasay City and Paranaque, Metro Manila (Public Estates Authority)
1996	Study on Water Supply and Sewerage Master Plan of Metro Manila (MWSS/JICA)
1998	Study on Flood Control and Drainage System Improvement for KAMANAVA Area (DPWH)
1999	Feasibility Study on Metro Manila Drainage System Rehabilitation Project (Phase II) in Republic of the Philippines (Japan Consulting Institute)
2000	Study on the Existing Laterals in Metro Manila in the Republic of the Philippines (DPWH/MMDA/JICA)
2002	Detailed Engineering Design for Pasig-Marikina River Flood Control Project

Table E.2.1 Major Studies and Planned Projects

The following three flood control and drainage master plans in Metropolitan Manila are introduced: 1) 1952 Plan for the Drainage of Manila and Suburbs, 2) 1984 Metro Manila Integrated Urban Drainage and Flood Control Master Plan and 3) 1990 Study on Flood Control and Drainage Project in Metropolitan Manila. Subsequently, the following study and engineering design directly related to drainage improvement in the core area is explained: 1) 2000 Study on Existing Laterals in Metro Manila in the Republic of the Philippines, and 2) 2002 Detailed Engineering Design for Pasig-Marikina River Flood Control Project.

(1) 1952 Plan for the Drainage of Manila and Suburbs¹

In 1952, the BPW formulated a drainage improvement master plan in Metro Manila. The details of the plan are described in Plan for the Drainage of Manila and Suburbs prepared by River Control Section, 1952 and outlined hereunder.

The objective area for the plan is around 50.8 km² consisting of 21.7 km² in North Manila and 29.1 km² in South Manila. North Manila is divided into 7 divisions of Bay Front, Estero de la Reina, Antipolo mains, Quezon City slope, Estero de Quiapo, Estero de Sampaloc and Estero de Valencia. Meanwhile, South Manila is divided into 10 divisions of Nielson Airfield, Buendia, Pasay Bay front, Makati, Sta. Ana, Malate-Ermita, Intramuros, Singalong, Paco and Pandacan. The drainage improvement plan is designed for 10-year return period. The following are the major proposed works in the plan.

- Land filling
- Construction of outfall and drainage channels
- Construction of interceptor
- Construction of drainage pumping stations of Quiapo, Sampaloc, Valencia, Paco, and Pandacan

(2) 1984 Metro Manila Integrated Urban Drainage and Flood Control Master Plan²

Subsequently, in March 1984, the then Ministry of Public Works and Highways (MPWH) formulated the World Bank-assisted Final Alternative Master Plan Strategy in the Report on the Metro Manila Integrated Urban Drainage and Flood Control Master Plan by Engineering-Science, Inc., USA in association with Basic Technology and Management Corporation, Philippines. The objective area of this master plan strategy covers 661 km² with four cities and 13 municipalities making up Metro Manila including Marikina area east of Mangahan Floodway.

In this study, various alternatives for urban drainage and flood control were examined and finally a prioritized master plan framework was recommended. The master plan framework consists of 40 priority projects as listed in *Table E.2.2*. Major priority projects are as follows.

- Establish and enforce flood proofing regulations for newly developing area
- Deferred maintenance on mechanical equipment including pumps and floodgates
- San Juan River improvement
- Estero de Tripa de Gallina improvement
- Estero de Vitas improvement
- Malabon River improvement
- Marikina/Mangahan area drainage improvement

Automatical and antical and antical and antical and antical and antical			
Edation and enteren forceprocling agaitance for nearly developing areas (proclearly 254 yearly mental parts). Dere of name encours on menanical equipment, including pumps and holdings and proclearly 254 yearly mental parts). Dere of name encours on menanical equipment, including pumps and holdings (and and and and and and and and and and	riority Orde		Total Capital Cost
Editation and onclore for concording in a public of the theory of concording in the theory of concording in the concord of concord o	,		(Pesos million)
A more non-series of the series of the serie	. .		Administrative costs to be borne bv METROFLOODS
Bu Jun New redeption - UV Contract : (a): Less Origina of Section Section (a): (b): (b): (b): (b): (b): (b): (b): (b	5		Expected to be funded by the
The net net obtained by the Contract in the Co			Japanese Government loan.
The of software strength of memory of memory space of the software strength of the soft	ė	San Juan River dredging - IAP Contract 1	39.5
Men de region, de la contra de	4	Estero Tripa de Gallina: estero dredging IAP Contract 2. (part)	20.6
Ere of the sent enderger, J.W. Contract, J.W. Contr	5.	Malabon River dredging-IAP Contract 2 (part)	17.1
and a characteric	.9	Estero de Vitas: estero dredging - IAP Contract 2 (part)	10.9
so Average for a content enhancement. PC percent cit. Ear ever a content of the percent of the percent of the percent of the percent enhancement of percent of the percent	7.	Parañaque River dredging - IAP Contract 2 (part)	12.6
The document content induction - NP Contract (and modure content induction in the contract (and modure) and mode redords operation in the contract (and modure) and mode redords operation in the contract (and mode modure) contract (and modure) and mode modure) and mode redords operation in the contract (and mode mode) and mode redords operation in the contract (and mode mode) and mode redords of the contract (and mode mode) and the contract (an	ω̈́	San Andres Bukid Drainage - IAP Contract 3	16.8
The many environment of the industry of the context (part) Element of the industry of the context (part) Element and Element and Elementation of element and element	6.	Estero Tripa de Gallina: culvert rehabilitation - IAP Contract 4 (part	1.3
Each of whys control and particular control and glutan mercination (March Mart) Easilish and enforce for operation in regulations for netaterinal actions: mencination for applicants for netaterinal actions: mencination applicants for netaterinal actions: mencination actions actions: mencination actions actions: mencination actions: mencination actions actions: mencination actions: mencination actions: mencination actions: mencination actions: mencination actions	10	Parañaque: culvert rehabilitation - IAP Contract 4 (part	5.2
 Estistina and enforce force/onling registration for new constration involution. Estistina and enforce force/onling registration for the constration involution. Estistina and enforce force/onling registration for substantial addition. Estistina and enforce force/onling registration for substantial addition. Estistina and enforce force/onling registration for substantial addition. Estistina and enforce force/onling registration. Estistina and enforce force/onling registration. Estistina and enforce force/onling registration. Estistina and enforce enforce/onling registration. Estistina enfore/onling registration. Estististina enforce/onli	11	Estero de Vitas: culvert rehabilitation -IAP Contract 4 (part)	11.3
stabilish and redording opticition for the state and adding or reconstruction throughout Materia. Takyan, Dario and Culat Creeks) and construction of subaging Creek pure statement and information and construction throughout Materia. Takyan, Dario and Culat Creeks) and construction of subaging creek pure statement and monogram. The statement and price statement of the statement in the statement and throughout Materia. These many are calmer, construction of Electric Take de Salar, terrind of Zabel Roseas Ana) and estero de Pandace. Electric Trade de Calmer, construction of Electric Take de Salar, terrind of Zabel Roseas Ana) and estero de Pandace. Electric Trade de Calmer, construction of Electric Take de Salar, terrind of Zabel Roseas and and the terrind of Zabel Roseas and Materia University of Materia and Calmer and Electric Take de Calmer, somether of Calmer Sana and the state of terrind of Zabel Roseas and and and the state of terrind of Zabel Roseas and Salar Salar state of Calmer and Salar Salar state of Calmer and Salar Sal	12.	Establish and enforce floodproofing regulations for new construction throughout Metro-Manila	g
Bay Jung New purner denging eight hurder b (10by return period flooted ana (Buhadjin, Maytunas, Salapan, Martabo, Dilman, Takyan, Dario and Culat Creeks) and construction of Bayman Creek purner serving reases min for Managana Flootway (But, Ban). Low and accume the Managana Flootway (But, Ban). Low and Callen (crent), Easter Traja de Galima: control color (Salama Control accument the Managana Control accument the Managana Control accument accument and culvert rehabilitation of Zobal Rosas main, Fasong 1 famo main, under accument acc	13.	Establish and enforce floodroofing regulations for substantial additions, remodeling or reconstruction throughout Metro-Mani	ا م ا
Retain from key matation and cheapen shortwork (Bull, Bahu, Long and Conception Creek Berkinal Managham redeping reveks north of Managham Flootwork (Bull, Bahu, Long and Conception Creek Berkinal Managham redeping reveks north of Managham Flootwork (Bull, Bahu, Long and Conception Creek Berkin Tipe de Galima - construction of Esten (Tran de Galima (contribution de Schel) Revouw and a Clobel Revouw and a dong Esten of an Esten Trapa de Galima - construction of Esten (Tran de Galima (contribution de Schel) Revouw and a dong Esten of an Esten Trapa de Galima - construction of Esten (Tran de Galima (contribution de Schel) Revouw and a dong Esten of Revouw and a dong Esten of Revouw and Berker construction of esten (Long) data within 100-y return peorid Qued an Esten Trapa de Galima - construction of esten (Long) datas within 100-y return peorid Qued an Esten Trapa de Galima - construction of esten (Long) datas within 100-y return peorid Qued an Warkand Managham Tierker, Trapa de Galima - construction of stene (Iccari) datas within 100-y return peorid Qued an Babon: retabilitation of stene (Iccari) datas within 100-y return peorid Qued an Esten Trapa de Galima: retabilitation of stene (Iccari) datas within 100-y return peorid Qued an Mankon: retabilitation of stene (Iccari) datas within 100-y return peorid Qued an Esten Trapa de Galima: retabilitation of stene (Iccari) datas within 100-y return peorid Qued an Esten Trapa de Galima: retabilitation of stene (Iccari) datas within 100-y return peorid Qued an Esten Trapa de Galima: retabilitation of stene (Iccari) datas within 100-y return peorid Qued an Esten Trapa de Galima: retabilitation of stene (Iccari) datas within 100-y return peorid Qued an Esten Trapa de Galima: retabilitation of stene (Iccari) datas within 100-y return peorid Qued an Esten Trapa de Galima: retabilitation of stene (Iccari) datas within 100-y return peorid Galima within 100-y return peorid Galima within 100-y return peorid Galima within 100-y return peorid Galima: retabilitation of stene (Iccari	14.	San Juan River dredging eight tributaries of San Juan river to 100-y return period flooded area (Buhangin, Maytunas, Salapan, Mariablo, Diliman, Talayan, Dario and Culiat Creeks) and construction of	
Ration Trage de Galina: construction of Esteor franch de Galina (Connection) Cadea Raceas de Salina (Construction of Esteor Trage de Galina: construction of Esteor Trage de Galina: construction of Esteor Trage de Galina: construction of Esteor and La Libration of Barceas and Salina (Construction of Esteor Trage de Galina: construction of esteor wills and ESDA mai. Esteor Trage de Galina: construction of esteor wills and Esteor de Cadea Raceas Earsysta (Camearia esteor) and Esteor Trage de Galina: construction of esteor wills and ESDA mai. Esteor Trage de Galina: construction of esteor wills and Esteor de Cadea Raceas Earsysta (Camearia esteor) and Esteor Trage de Galina: construction of esteor Wills and ESDA mai. Esteor Trage de Galina: construction of esteor (Coar) draina: whitin 100; yreturn peol fonded are Mailtoon: enhaltitation of travel (Coar) drains whitin 100; yreturn peol fonded are Mailtoon: enhaltitation of travel (Coar) drains whitin 100; yreturn peol fonded are Esteor for the de Galina: enhaltitation of travel (Coar) drains whitin 100; yreturn peol doubed are Mailtoon: enhaltitation of travel (Coar) drains whitin 100; yreturn peol doubed are Esteor for the de Galina: enhaltitation of travel (Coar) drains whitin 100; yreturn peol doubed are Galina: enhaltitation of travel (Coar) drains whitin 100; yreturn peol doubed are Galina: enhaltitation of travel (Coar) drains whitin 100; yreturn peol doubed are Galina: enhaltitation of travel (Coar) drains whitin 100; yreturn peol doubed are Galina: enhaltitation of travel (Coar) drains whitin 100; yreturn peol doubed are Galina: enhaltitation of travel (Coar) drains whitin 100; yreturn peol doubed are Galina: enhaltitation of travel (Coar) drains whitin 100; yreturn peol doubed are Galina: enhaltitation of travel (Coar) dr		Buhangin Creek pump station and floodgate	C.B2
Estero Tripa de Galima: curotor translingantor of Bandas charad. Estero Tripa de Galima: curotor translingantor of Bandas curdati. Literatad outifal and Estero de Pardasa Estero Tripa de Galima: curotor translingantor of Bandas curdati. Literatad outifal and ESA mai Estero Tripa de Galima: construction of estero walls adorg Estero do Faxo. Estero Tripa de Galima: construction de setro walls adorg Estero do Faxo. Estero Tripa de Galima: construction de setro walls adorg Estero do Faxo. Estero Tripa de Galima: construction de setro walls adorg Estero da Faxo. Estero Tripa de Galima: construction de setro walls adorg Estero do Faxo. Estero Tripa de Galima: construction de setro walls adorg Estero da Faxo. Estero Tripa de Galima: construction de setro walls adorg Estero da Faxo. Mai Jaan River Toripa de Galima: Revin, Tugo Varian melhalization of setro valls adorg Estero Arans within 100-y return peind Londona estero Mai Jaan River Indepjang fantor antimi 100-y return peind Londona est Mailaon rehabilitation of street (local) drains within 100-y return peind Londona est Mailaon est rehabilitation of street (local) drains within 100-y return peind Londona est Mailaon est rehabilitation of street (local) drains within 100-y return peind Londona est Galian est construction of estero walls adorg Estero de Sung Apog. Estero de Sung Apog. Estero de Sung Apog. Estero de Sung Apog. Estero de Mayrapi (domistream Linterceptor) and Casil Creek (downstream of Barton de visar: construction of estero (local) drains within 100-y return peind Londona est Galian estero esti local) drains within 100-y return peind Londona est Barto dra estero (local) drains within 100-y return peind Londona est Galian estero est local) drains within 100-y return peind Londona est Barto dra estero esta local) drains within 100-y return peind Londona est Barton dra esta esta curda litera esta local and transfer est and and and transfer est. Barton dra esta curda and fartero Revie. Trans Aran Aruso dra esta curda listero de Sung Apog. Estero de Barton	15.	Marikina/Mangahan: dredging creeks north of Mangahan Floodway (Buli, Baho, Long and Concepcion Creek:	16.3
Estero Tripa de Galine: contractemor destero activation of Beardia outilal and EDSA mai Estero Tripa de Galine: construction d'estero activation d'Beardia outilal and EDSA mai Deres main outifal and EDSA main Estero Tripa de Galine: construction d'estero avaits anorg Estero de Para. Estero Tripa de Galine: construction d'estero waits anorg Estero de Para. Estero Tripa de Galine: construction d'estero waits anorg Estero de Para. Estero Tripa de Galine: construction d'estero waits anorg Estero de Para. Estero Tripa de Galine: construction d'estero waits anorg Estero de Para. Main River: renabilitation of sterei (local) drains within 100-y return peold fooded are Maintampataria: renabilitation of sterei (local) drains within 100-y return peold fooded are Maintampataria: renabilitation of sterei (local) drains within 100-y return peold fooded are Maintampataria: renabilitation of sterei (local) drains within 100-y return peold fooded are Maintampataria: renabilitation of sterei (local) drains within 100-y return peold fooded are Maintampataria: renabilitation of sterei (local) drains within 100-y return peold fooded are Maintampataria: renabilitation of sterei (local) drains within 100-y return peold fooded are Stero Tripa de Galine: construction of sterei (local) drains within 100-y return peold foode are Stero reabilitation of sterei (local) drains within 100-y return peold foode are Stero of brains: renabilitation of sterei (local) drains within 100-y return peold foode are Stero of Page River: curvet rehabilitation of sterei (local) drains within 100-y return peold foode are Stero of Page River: curvet rehabilitation of sterei (local) drains within 100-y return peold foode are Stero of Page River: curvet rehabilitation of sterei (local) drains within 100-y return peold foode are Stero of Page River: curvet rehabilitation of sterei (local) drains within 100-y return peold foode are Stero of Page River: curvet rehabilitation of sterei (local) drains within 100-y return peold foode are Stero	16.	Estero Tripa de Gallina: construction of EsteroTripa de Gallina (north of Zobel Raoxas Ave.) and estero de Pandaca	44.0
Easer Tripa de Galima: crederguand Camachule Creek, Bargkal Creek, Makait diversion channel, and culvert rehabilitation of Zobel Roasa main, Pasong Tamo main, and an un outistal man outistal man outistal materia and prane, main outistal materia and prane de main. Tripa de Galima: construction of estero walls along Estero Tripa de Galima: construction of estero walls along Estero Tripa de Galima: construction of estero walls along Estero Tripa de Galima: construction of estero walls along Estero Tripa de Galima: construction of estero walls along Estero Tripa de Galima: construction of estero walls along Estero Tripa de Galima: construction of estero walls along Estero Tripa de Galima: construction of estero (usica) drains within 100-y return period flocade are Mariaba River, Chunkang River, Panghulb River and Estero de Saluys: San Laus Markina Marganam: rehabilitation of street (loca)) drains within 100-y return period flocade are Mariaba and Estero de Mars: rehabilitation of street (loca)) drains within 100-y return period flocade are Markina Ma	17.		
Bero ridal and EDSA main Else or fraja de Galima: construction of estero valis adong Estero de Paco. Estero Tripa de Galima: construction of estero valis adong Estero de Concordi. Estero Tripa de Galima: construction of estero valis adong Estero de Concordi. Estero Tripa de Galima: construction of estero valis adong Estero de Sconcol. Estero Tripa de Galima: construction of estero valis adong Estero de Sconcol. Estero Tripa de Galima: construction of estero valis adong Estero de Naciona Stivet, Churkang River, Paraghulo River and Estero de Saluys; Matatom France reabalitation of street (locar) drains within 100-y return period flooded are Maria River, reabalitation of street (locar) drains within 100-y return period flooded are Lestor Tripa de Galima: rehabilitation of street (locar) drains within 100-y return period flooded are Maria River, carbong of Risero de Maria River, Chana River, Churkang River, Paraghulo River and Estero de Saluys; Estero de Vilas: construction of estero (locar) drains within 100-y return period flooded are South of Pasig River: culver tenabilitation of treet (locar) drains within 100-y return period flooded are South of Pasig River: culver tenabilitation of treet (locar) drains within 100-y return period flooded are South of Pasig River: culver tenabilitation of treet (locar) drains within 100-y return period flooded are South of Pasig River: culver tenabilitation of Pase de Maria River San Ambrio Abad main, and dredging of Estero de Bagalan Estero de Sanney Apaga Imain and South Antipolo ma Estero de Vilas: construction of estero de Carek, and inhabilitation of Maria River San Ambrio. South of Pasig River: culver tenabilitation of Pase River and Maria Habelane Science San Lataro and Estero de Balana. Estero son Lataro and Estero de Balana Linamana. North of Pasig River: culver tenabilitation of Pase River. San Ambrio Abad main, and dredging of Estero de Clavita Ambridations of testero de Clavita Ambridations of testero de San River. Tripa Balang Pas River and Tipas Librasan Creek Lat	18.		
Ester Tria de Galima: construction of estero walls along Estero de Pack. Ester Tria de Galima: construction of estero walls along Estero 1 Zobel Roas ave. Madatom: erostruction of estero walls along Estero Triga de Galima (south of Zobel Roas ave. Madatom: erostruction of steret (local) drains within 100-y return period floaded are San Juan River: rehabilitation of street (local) drains within 100-y return period floaded are Madatom: erostruction of steret (local) drains within 100-y return period floaded are San Juan River: rehabilitation of street (local) drains within 100-y return period floaded are Madition River intelligation of street (local) drains within 100-y return period floaded are San Juan River rehabilitation of street (local) drains within 100-y return period floaded are Madition River erostruction of street (local) drains within 100-y return period floaded are San Juan River area (local) drains within 100-y return period floaded are San of the street (local) drains within 100-y return period floaded are San of a fload rest (local) drains within 100-y return period floaded are San of a fload rest (local) drains within 100-y return period floaded are San of Pasi River: cutwert rehabilitation of treet (local) drains within 100-y return period fload are San of a fload rest (local) drains within 100-y return period floaded are San of Pasi River: cutwert rehabilitation of treet (local) drains within 100-y return period fload are San of Pasi River: cutwert rehabilitation of Pasiko River (River and Asial River, Tipas Dana) fload are south of Pasig River: cutwert rehabilitation of Pasiko River, Ripa and Lina and Maditat Hadatomest and I and dredging of Estero de Marisoh and Lina reference de Binord Nuch of Pasig River: cutwert rehabilitation of Pasiko River, Santa Ana River, Taguig River, Tipas Dana River and Tipas Labasan Creek Andrin River dragging of festro de a Magushi River, Santa Ana River, Taguig River, Tipas Dana River, Balix and Cutwert and Santa River, Santa Ana River, Taguig River, Tipas Dana		Delores main outfall and EDSA main	0.0
Estero Tripa de Galima: construction de realero vals adong Estero de Concordi. Estero Tripa de Galima: construction de realero vals adong Estero de Concordi. Malaborn: deredina: construction of serei (cuca) rémai within (Toby return period focade are Markin-Margabar: rehabilitation of street (cuca) rémai within (Toby return period focade are Estero Tripa de Galima: rehabilitation of street (cuca) drains within (Toby return period focade are Estero for vitas: construction of street (cuca) drains within (Toby return period focade are Estero de vitas: construction of street (cuca) drains within (Toby return period focade are Estero de vitas: construction of street (cuca) drains within (Toby return period focade are Estero de vitas: construction of street (cuca) drains within (Toby return period focade are Estero de vitas: construction de stero walls adong Estero de Sungo Apog. Estero de Maypalo (downstream of Blumentrit interceptor) and Casil Creek (downstream of PN Are Estero de vitas: construction de stero walls adong Estero de Sungo Apog. Estero de Sungo March Margon ma Estero de vitas: construction de stero walls adong Estero de Sungo Apog. Estero de Balic Balin. Estero de santa Clara. Balisampan Creek (downstream of PN Are Estero de vitas: construction de stero valis adong Estero de Sungo Apog. Estero de Balic Balin. Estero de Sundo Aforda are South of Pasig Rver: culvert rehabilitation of Asauko Treade and National or drains within 100-y return period focade are North of Pasig Rver: culvert rehabilitation of sterei (cca) drains within 200-y return period focade are South of Pasig Rver: culvert rehabilitation of sterei (cca) drains within 100-y return period focade are North of Pasig Rver: culvert rehabilitation of sterei (cca) drains within 100-y return period focade are North of Pasig Rver: culvert rehabilitation of sterei (cca) drains within 100-y return period focade are South of Pasig Rver: culvert rehabilitation of sterei (cca) drains within 100-y return Rver draing of festero de Dango Creek. Taga and R	19.	Estero Tripa de Gallina: construction of estero walls along Estero de Pacα	58.1
Eator Tripa de Galima: construction of steet (local) drains within 100+ return period floaded are Maidowin renbalitation of street (local) drains within 100+ return period floaded are San Juan River: rehabilitation of street (local) drains within 100+ return period floaded are Maidowin: rehabilitation of street (local) drains within 100+ return period floaded are Ester of evines: rehabilitation of street (local) drains within 100+ return period floaded are Ester of evines: rehabilitation of street (local) drains within 100+ return period floaded are Ester of evines: rehabilitation of street (local) drains within 100+ return period floaded are Ester of evines: rehabilitation of street (local) drains within 100+ return period floaded are Ester of evines: rehabilitation of street (local) drains within 100+ return period floaded are Ester of evines: rehabilitation of street (local) drains within 100+ return period floaded are Ester of evines: rehabilitation of street (local) drains within 100+ return period floaded are South Artipolo and Ester of evines: rehabilitation of Steret (local) drains within 100+ return period floaded are South of Pasig River: cuivert rehabilitation of Retex (local) drains within 100+ return period floaded are Non of Pasig River: cuivert rehabilitation of Maatu Rivin 200+ return period floaded are South of Pasig River: cuivert rehabilitation of Maatu Rivin Stere San Lazaro and Estero de Balici Non of Pasig River: cuivert rehabilitation of Maatu Rivin, Tagua Rivin Stere San Lazaro and Estero de Balici North of Pasig River: cuivert rehabilitation of Maatus Rivin San Antonio Abad main, and dradging of Estero de Sulapo. Estero de Magadiana, Estero San Lazaro and Estero de Balici Stere of e Santo Artis er dedging of Estero de Sulapo. Estero de Santo Rivin Site Santo Artis Rivin Santo Artis Artis Rivin Ring	20.	Estero Tripa de Gallina: construction of estero walls along Estero de Concordi;	18.8
Madbor: credging of Nuzon-Dampait River, Tingatuda River, Tuantog Cotes, Navotas River, Chunkang River, Panghulo River and Estero de Saluysk Baa Juan River rehabilitation of street (local) drains within 100-y return period flooded are MarkinaMangatam: rehabilitation of street (local) drains within 100-y return period flooded are Bastor Tripa de Galima: rehabilitation of street (local) drains within 100-y return period flooded are Estero Tripa de Galima: rehabilitation of street (local) drains within 100-y return period flooded are Estero de vitas: construction for street (local) drains within 100-y return period flooded are Estero de vitas: construction for street (local) drains within 100-y return period floode are Estero de vitas: construction for steen cuella and Sauth Antipolo are Estero de vitas: construction of steen cuella and Sauth and and and and and and South Antipolo ma Estero de vitas: construction of steen cuella drains within 100-y return period floode are South of Pasig River: culvert rehabilitation of steen (local) drains within 100-y return period floode are South of Pasig River: culvert rehabilitation of steen (local) drains within 100-y return period floode are South of Pasig River: culvert rehabilitation of Steen de Magalena. Estero de Blinond Not of Pasig River: culvert rehabilitation of Steen de Magalena. Estero de Sana Lazaro and Estero de Blinond Not not of Pasig River: culvert rehabilitation of Pateros River, Kay Boboy Creek and Sapang Buwa Markina River dredging of Estero de Ouiepo. Estero de Sana Ana River, Taguig River, Tipas Labasan Creek Narkina River dredging Markina River d	21.	Estero Tripa de Gallina: construction of estero walls along Estero Tripa de Gallina (south of Zobel Roxas ave.	28.3
Markinal Amagnetic rehabilitation of street (local) drains within 100-y return period flooded are Bark valam Amer, rehabilitation of street (local) drains within 100-y return period flooded are Estero Tripa de Galima: rehabilitation of street (local) drains within 100-y return period flooded are Estero Tripa de Galima: rehabilitation of street (local) drains within 100-y return period flooded are Estero Tripa de Galima: rehabilitation of street (local) drains within 100-y return period flooded are Estero de Vitas, construction of estero walls along Estero de Sunog Apog. Estero de Mayapio (downstream of Blumentritt interceptor) and Casili Creek (downstream of PNR bridge) Estero de Vitas, construction of estero walls along Estero de Sunog Apog. Estero de Mayapio (downstream of Blumentritt interceptor) and Casili Creek (downstream of PNR bridge) Estero de Vitas, rehedping of Estero de Mayapia and Casili Creek (and rehabilitation of Manago Tasili Creek (downstream of PNR bridge) Estero de Vitas, rehedping of Estero de Mayapia (Doy return period) dhooded are South of Pasig River: cuivert rehabilitation of Masukol main, Zorbel Orbit outfall and Makait Headracos I and II and dredging of Estero de Brain Amagnet Neur Casili Creek, and Phingketisshan Creek Estero de Blinondo: dredging of Estero de Banin, Zorbel Orbit outfall and Makait Headracos I and in and Gouth Ampolo ma Estero de Blinondo: dredging of Estero de Banin, Zorbel Orbit outfall and Makait Headracos I and	22.	Malabon: dredging of Muzon- Dampalit River, Plinagkabalian River, Tugatuog Greek, Navotas River, Marala River, Panghulo River, Panghulo River and Estero de Saluysc	47.8
MarkinaMarganam: rehabilitation of street (local) drains within 100-y return period flooded are Estero ripa de Galim: rehabilitation of street (local) drains within 100-y return period flooded are Malabon: rehabilitation of street (local) drains within 100-y return period flooded are Estero de vitas: construction of estero walls along Estero de Nano, Estero de Maypajo (downstream of Blumentritt interceptor) and Casili Creek (downstream of PNR bridge) Estero de vitas: construction of street (local) drains within 100-y return period flooded are. South of Pasig River: culvert rehabilitation of Street (local) drains within 100-y return period flooded area South of Pasig River: culvert rehabilitation of Raneon Py Margal main, and Gouth Artifpolo ma Estero de vitas: creator tenabilitation of Nasuoli main, Zobel Orbit outfall and Makati Headraces I and II and dredging of Estero de Bale South of Pasig River: culvert rehabilitation of Masuoli main, Zobel Orbit outfall and Makati Headraces I and II and dredging of Estero de Bale North of Pasig River: culvert rehabilitation of Masuoli main, Zobel Orbit outfall and Makati Headraces I and II and dredging of Estero de Bale North of Pasig River: culvert rehabilitation of Masuoli main, Zobel Orbit outfall and Makati Headraces I and II and dredging of Estero de Bale North of Pasig River: culvert rehabilitation of Masuoli main, Zubaran main, Reyes-Severino mai North of Ragino of Estero de River, Tipas River, Tipas Daang Paa River and Tipas Labasan Creek Markina River dredging of Fatero de River, Tipas River, Kapa Boboy Creek, Iatayan Creek, Labasan Cree Parañaque River: dreging of Pateros River, Tipas River, Kap Boboy Creek, and Sapang Buwy Alaras: River dredging of Pateros River, Tipas River, Kay Boboy Creek, Baliva Creek, Labayan Creek, Culiat Creek, and Arayat Cree Sauth of Mangaban Flooren dredging of River (south). Dongalo River, San Lorenzo Creek, Diliman Creek, Labayan Creek, Culiat Creek, and Arayat Cree Sau Jana River dredging of River dredging of Pateros River, San Lor	23.	San Juan Kiver: rehabilitation of street (local) drains within 100-y return perod flooded are	17.6
Estero draima: retraoutation of street (local) drains within 100-y return period nooded are Malabor: rehabilitation of street (local) drains within 100-y return period floode are Estero de vitas: construction of street (local) drains within 100-y return period floode are Estero de vitas: construction of street (local) drains within 100-y return period flooded are: South of Pasig River: culvert rehabilitation of street (local) drains within 100-y return period flooded are: South of Pasig River: culvert rehabilitation of Rasukol main, Zorbel Orbit outfal and Makati Headraces I and II and dredging of Estero de santa Clara, Balisampan Creek and Pinagkaisahan Creek South of Pasig River: culvert rehabilitation of Masukol main, Zorbel Orbit outfal and Makati Headraces I and II and dredging of Estero de Binomdo: dredging of Estero de la Rona. Estero de Binomdo: dredging of Estero de la Rona. Estero de Magdalena, Estero San Lazaro and Estero de Binordo: dredging of Estero de Loudor of Pasig River: culvert rehabilitation of Masukol main, Zorbel Orbit outfal and San Antonio Ante deging of Estero de la Rona. Estero de Magdalena, Estero San Lazaro and Estero de Binordo: dredging of Estero de la Rona. Estero de Magdalena, Estero San Lazaro and Estero de Binordo North of Pasig River: dredging of Estero de Quiapo. Estero de San Miguel, Estero de Balico di Markina River dredging of Estero de Latero and San Antonio Abad main, and dredging of Estero de Aniles, and culvert rehabilitation of Pacheo outfall. Markina River dredging of Pateros River, Tipas River, Santa Ana River, Taguig River, Tipas Daang Paa River and Tipas Labasan Cree Paranague River: dredging of Pateros River, Ray Boboy Creek and Sapang Buway Markina River dredging of Pateros River, Ray Boboy Creek and Sapang Buway An anague River: dredging of Pateros River, Santa Ana River, Taguig River, Tipas Labasan Creek, cultat Creek, and Arayat Cree San Juan River: dredging of Pateros River (south). Dongalo River, Kay Boboy Creek and San jose Creek San Juan River dredging of	24.	MartinaManganar: rentertitation of street (locar switchin 100-y return period flooded are	88.3
Matabom: rehabilitation of street (local) drains within 100-y rreturn period floode are Estero de vitas: construction of estero walls along Estero de Narge Apog, Estero de Maypajo (downstrearn of Blumentritt interceptor) and Casili Creek (downstrearn of PNR bridge) Estero de vitas: construction of estero walls along Estero de Narge Apog, Estero de Maypajo (downstrearn of Blumentritt interceptor) and Casili Creek (downstrearn of PNR bridge) Estero de vitas: rehabilitation of street (local) drains within 100-y return period flooded are. South of Pasig River: cuevet trehabilitation of Pacte Faura outfal, Remedios outfal and San Antonio Abad main, and dredging of Estero de Bale South of Pasig River: cuevet trehabilitation of Maruello. Remedios outfal and San Antonio Abad main, and dredging of Estero de Bale Stero de Binond South of Pasig River: cuevet trehabilitation of Maruello. Protector de Balic Balic. Estero de Binond North of Pasig River: dredging of Estero de Cuejapo, Estero de Sampaloc. Estero de Balic, Estero de Uli Uli and Estero de Avies, and culvert rehabilitation of Pacheo outfall, Markina River dredging of Estero de Cuejapo, Estero de Sampaloc. Estero de Balic, Estero de Uli Uli and Estero de Avies, and culvert rehabilitation of Pacteo North of Pasig River: dregging of Estero de Cuejapo, Estero de Sampaloc. Estero de Balic, Estero de Balic, Estero de Balic, Estero de Bale. Stero de Bale Codan Markina River dregging of Estero de River, Tipas River, Tapas Daang Paa River and Tipas Labasan Cree Markina River dregging of Estero de River, Tapas River, Tapas Daang Paa River and Sanagar Creek, and Arayat Cree Markina River dregging of Pateros River, Tapas River, Kay Boboy Creek and Sanaga Buway Markina River dregging of Pateros River (reautin Estero Creek, Dario Creek, Dario Creek, and Arayat Cree San Juan River dregging of Fateros River, San Lorenzo Creek and San pisc San Juan River dregging of strantations River San Lorenzo Creek and San pisc Creek. Dario Creek, and Arayat Cree Estero Tripa de Gallina: dred	25.	Estero I npa de Gallina: renabilitation of street (local) drains within 100-y return penod flooded are	37.7
Estero de vitas: construction of estero walls along Estero de Surog Apog. Estero de Maypajo (downstream of Blumentritt interceptor) and Casili Creek (downstream of PNR bridge) Estero de vitas: creading of Estero de Maypajo and Casili Creek, and rehabilitation of Kanaon Piy Margal main and South Antipolo ma Estero de vitas: rehabilitation of street (local) drains within 100-y return period flooded are. South of Pasig River: culvert rehabilitation of Padre Faura outfall, Remedicos outfall and San Antonio Abad main, and dredging of Estero de Balei South of Pasig River: culvert rehabilitation of Masukol main, Zorbel Orbit outfall and San Antonio Abad main, and dredging of Estero de Balei South of Pasig River: culvert rehabilitation of Masukol main, Zorbel Orbit outfall and San Antonio Abad main, and dredging of Estero de Balei South of Pasig River: culvert rehabilitation of Masukol main, Zorbel Orbit outfall and San Antonio Abad main, and dredging of Estero de Balei Stero de Rimondo: dredging of Estero de la Reina, Estero San Lazaro and Estero de Balic Balic, Estero de Binondo North of Pasig River: dredging of Estero de Laipa, Estero de Sampaloc, Estero de Balei Balic, Estero de Avies, and culvert rehabilitation of Pacheo outfall, Lakandula outfall. Zurbaran main, Reyes-Seventon mai Marikina River dredging South of Mangahan Floodway: dredging of Fastero Sant Azazon and Estero San Daang Paa River and Tipas Labasan Cree Parafaque River: dredging of Parafaque River, South, Dongalo River, Taguig River, Tipas Daang Paa River and Tipas Labasan Cree Antandula outfall. Marikina River dredging of fastero de South, Kay Boboy Creek and Sapang Buway All are rehedging of fast ributaries Bayond 100-y return period flooded area (Mariablo Creek, Dario Creek, Dario Creek, Ayala Creek, Ayala Creek, Ayala Creek, Ayala Creek, Alarian Creek, Labyan Creek, Dario Creek, Ayala Creek, Ayala Creek, Ayala Creek, San Lorenzo Creek and San jose Creel Estero Tripa de Gallina: dredging of Star lubracine South Estero Tripa de Gallina: dredging of	26. 27.	Malabon: rehabilitation of street (local) drains within 100-y rreturn period floode are	24.4
Estero de Vitas: dredging of Estero de Maypajo and Casil Creek, and rehabilitation of Kanlaon Piy Margal main and South Antipolo ma Estero de vitas: rehabilitation of street (local) drains within 100-y return period flocoed area. South of Pasig River: culvert rehabilitation of Padre Faura outfall, Remedios outfall and San Antonio Abad main, and dredging of Estero de Balei South of Pasig River: culvert rehabilitation of Masukol main, Zorbel Orbit outfall and San Antonio Abad main, and dredging of Estero de Balei Estero de Binondo: dredging of Estero de Magdalena, Estero San Lazano and Estero de Binond North of Pasig River: culvert rehabilitation of Masukol main, Zorbel Orbit outfall and Makati Headraces I and II and dredging of Estero de Aniles, and culvert rehabilitation of Pacheo outfall, Lakandua outfall, Zurbaran main, Reyes-Severino mai Markina River dredging of Estero de Outapo, Estero de Sam Majuel, Estero de Sampaloc, Estero de Binond South of Mangahan Flocodway: dredging of Pateros River, Tipas River, Taguig River, Tipas Daang Paa River and Tipas Labasan Cree South of Mangahan Flocodway: dredging of Pateros River, Tipas River, Kay Boboy Creek and Sapang Buway Al areas: rehabilitation of and other (coant), Dongalo River, Kay Boboy Creek and Sapang Buway Al areas: rehabilitation of and other faque River (ave) froek, san Lorenzo Creek, and Sapang Buway Al areas: rehabilitation of and other (coant) Longalo River, Kay Boboy Creek and Sapang Buway Al areas: rehabilitation of and other (coant) drains.		Estero de vitas: construction of estero walls along Estero de Sunog Apog, Estero de Maypajo (downstream of Blumentritt interceptor) and Casili Creek (downstream of PNR bridge)	4. GR
Estero de vitas: rehabilitation of street (local) drains within 100-y return period flooded are. South of Pasig River: culvert rehabilitation of Masukol main, Zorbel Orbit outfall and San Antonio Abad main, and dredging of Estero de Balei South of Pasig River: culvert rehabilitation of Masukol main, Zorbel Orbit outfall and Makati Headraces I and II and dredging of Estero de Balei South of Pasig River: culvert rehabilitation of Masukol main, Zorbel Orbit outfall and Makati Headraces I and II and dredging of Estero de Binondo: dredging of Estero de Binondo: dredging of Estero de Binondo: dredging of Estero de Quiapo, Estero de Magdalena, Estero San Lazaro and Estero de Binond North of Pasig River: dredging of Estero de Quiapo, Estero de Sam Miguel, Estero de Binond Markina River dredging Markina River dredging Markina River dredging of Pateros River, Tipas River, Taguig River, Tipas Daang Paa River and Tipas Labasan Cree Antendia outfall, Zurbaran main, Reyes-Severino mai Markina River dredging of Pateros River, Tipas River, Kay Boboy Creek and Sapang Buway All arfaas: rehabilitation of all other street (local) drains All arfaas: rehabilitation of all other street (local) drains San Juan River: dredging of six tributaries beyond 100-y return period flooded area (Mariablo Creek, Dilinan Creek, Lalayan Creek, Dario Creek, Culat Creek, and Arayat Cree Estero Tripa de Gallina: dredging of san Isidro Creek, Ayala Creek, San Lorenzo Creek and San jose Creel Estero Tripa de Gallina: dredging of San Idan Maribacan Creek. Ayala Creek, San Lorenzo Creek and San jose Creel Estero Tripa de Gallina: dredging of Dilain/Maribacan Creek.	28.	Estero de Vitas: dredging of Estero de Maypajo and Casili Creek, and rehabilitation of Kanlaon Ply Margal main and South Antipolo ma	4.3
South of Pasig River: culvert rehabilitation of Padre Faura outfall, Remedios outfall and San Antonio Abad main, and dredging of Estero de Balei South of Pasig River: culvert rehabilitation of Masukol main, Zorbel Orbit outfall and Makati Headraces I and II and dredging of Estero de Banndon: dredging of Estero de Binondo: dredging of Estero de Binondo: dredging of Estero de Binondo: creek and Pinagkaisahan Creek and Pinagkaisahan Creek and Pinagkaisahan Creek and Pinagkaisahan Creek and Binondo: dredging of Estero de Binondo: credging of Estero de Binondo; Estero de Binondo: dredging of Estero de Naguel, Estero de Sampaloc, Estero de Balic Balic, Estero de Uli Uli and Estero de Aviles, and culvert rehabilitation of Pacheo outfall, Luharan main, Reyes-Severino mai Markina River dredging South of Mangahan Floodway: dredging of Pateros River, Tipas River, Taguig River, Tipas Daang Paa River and Tipas Labasan Cree Parañaque River: dreging of Pateros River, Santa Ana River, Taguig River, Tipas Daang Paa River and Tipas Labasan Cree All areas: rehabilitation of all other street (local) drains San Juan River: dredging of six tributaries beyond 100-y return period flooded area (Mariablo Creek, talayan Creek, talayan Creek, Dario Creek, and Arayat Cree Estero Tipa de Gallina: dredging of san Isidro Creek, San Lorenzo Creek and San jose Creel Estero Tipa de Gallina: dredging of Diain/Maribacan Creek	29.	Estero de vitas: rehabilitation of street (local) drains within 100-y return period flooded are:	34.4
South of Pasig River: culvert rehabilitation of Masukol main, Zorbel Orbit outfall and Makati Headraces I and II and dredging of Estero de santa Clara, Balisampan Creek and Pinagkaisahan Creek Estero de Binondo: dredging of Estero de la Reina, Estero de Magdalena, Estero San Lazaro and Estero de Binondo North of Pasig River: dredging of Estero de al Reina, Estero de Sam Miguel, Estero and Estero de Binondo North of Pasig River: dredging of Estero de Cuiapo, Estero de Sampaloc, Estero de Balic Balic, Estero de Uli Uli and Estero de Aviles, and culvert rehabilitation of Pacheo outfall, Lanaran main, Reyes-Severino mai Markina River dredging Mangahan Floodway: dredging of Pateros River, Tipas River, Santa Ana River, Taguig River, Tipas Daang Paa River and Tipas Labasan Cree Aviles, and culvert rehabilitation of Pacheo outfall, Lanaráque River: dreging of Pateros River, Kay Boboy Creek and Sapang Buway All areas: rehabilitation of all other street (local) drains San Lazaro and Sapang Buway San Juan River: dredging of rest (south), Dongalo River, Kay Boboy Creek and Sapang Buway San Juan River: dredging of six tributaries beyond 100-y return period flooded area (Mariablo Creek, talayan Creek, Dario Creek, Culiat Creek, and Arayat Cree Estero Tipa de Gallina: dredging of san Isidro Creek, San Lorenzo Creek and San jose Creel Estero Tripa de Gallina: dredging of Diain/Maribacan Creek	30.	South of Pasig River: culvert rehabilitation of Padre Faura outtall, Remedios outfall and San Antonio Abad main, and dredging of Estero de Balei	8.6
soun or Pasig Kreer: curvert renabilitation on masukon man. zoned Unit outral and maxati reacraces I and II and Greeging or Estero de Binondo: dredging of Estero de Reina, Estero de Magdalena, Estero de Binondo North of Pasig River: dredging of Estero de Cuiapo, Estero de Sampaloc, Estero de Balic, Estero de Uli Uli and Estero de Aviles, and culvert rehabilitation of Pacheo outfall, Latandula outfall, Zuharan main, Reyes-Severino mai Marikina River dredging South of Mangahan Floodway: dredging of Pateros River, Tipas River, Taguig River, Tipas Daang Paa River and Tipas Labasan Cree Parañaque River: dreging of Pateros River, Tipas River, Kay Boboy Creek and Sapang Buway All areas: rehabilitation of all other street (local) drains San Juan River: dredging of Pateros Biver, Yaala Creek, and Sapang Buway San Juan River: dredging of six tributaries beyond 100-y return period flooded area (Mariablo Creek, talayan Creek, bario Creek, culiat Creek, and Arayat Cree Estero Tripa de Gallina: dredging of san Isidro Creek, San Lorenzo Creek and San jose Creel Estero Tripa de Gallina: dredging of Diain/Maribacan Creek, San Lorenzo Creek and San jose Creel Estero Tripa de Gallina: dredging of Diain/Maribacan Creek, San Lorenzo Creek and San jose Creel	31.		6.7
Estero de Binondo: dredging of Estero de la Reina, Estero San Lazaro and Estero de Binond North of Pasig River: dredging of Estero de Quiapo, Estero de Magdalena, Estero de Balic Balic, Estero de Uli Uli and Estero de Aviles, and culvert rehabilitation of Pacheo ouffall. Lakandula outfall, Zuharan main, Reyes-Severino mai Markina River dredging of Pateros River, Tipas River, Santa Ana River, Taguig River, Tipas Daang Paa River and Tipas Labasan Cree South of Mangahan Floodway: dredging of Pateros River, Tipas River, Kay Boboy Creek and Sapang Buway All areas: rehabilitation of all other street (local) drain: San Juan River: dredging of Pateros Buver, Jongalo River, Kay Boboy Creek and Sapang Buway All areas: rehabilitation of all other street (local) drain: San Juan River: dredging of startibutaries beyond 100-y return period flooded area (Mariablo Creek, talayan Creek, talayan Creek, Dario Creek, and Arayat Cree Estero Tipa de Gallina: dredging of san Isidro Creek, San Lorenzo Creek and San jose Creel Estero Tipa de Gallina: dredging of Diain/Maribacan Creel		South of Pasig River; cuivert rehabilitation of Masukoi main, 20thet Orbit outtail and Makati Headraces I and II and dredging of Estero de santa Clara, Balisampan Creek and Pinagkaisahan Creek	
North of Pasig River: dredging of Estero de Quiapo, Estero de Sam Miguel, Estero de Sampaloc, Estero de Balic Balic, Estero de Uli Uli and Estero de Aviles, and culvert rehabilitation of Pacheo outfall, Lakandula outfall, Zurbaran main, Reyes-Severino mai Martina River dredging of Pateros River, Tipas River, Santa Ana River, Taguig River, Tipas Daang Paa River and Tipas Labasan Cree South of Mangahan Floodway: dredging of Pateros River, Tipas River, Kay Boboy Creek and Sapang Buway All areas: rehabilitation of all other street (local) draint San Juan River: dredging of Parañaque River (south), Dongalo River, Kay Boboy Creek and Sapang Buway All areas: rehabilitation of all other street (local) draint San Juan River: dredging of san Isidro Creek, Avala Creek, San Lorenzo Creek and San jose Creel Estero Tripa de Gallina: dredging of san Isidro Creek, San Lorenzo Creek and San jose Creel Estero Tripa de Gallina: dredging of Dilain/Maribacan Creek, San Lorenzo Creek and San jose Creel	32.		6.8
Lekandula outfall, Zurbaran main, Reyes-Severino mai Marikina River dredging South of Mangkane Flookey: dredging of Pateros River, Tipas River, Santa Ana River, Tipas Daang Paa River and Tipas Labasan Cree Parañaque River: dregging of Parañaque River (south), Dongalo River, Kay Boboy Creek and Sapang Buway All areas: rehabilitation of all other street (local) drains San Juan River: dredging of six tributaries beyond 100-y return period flooded area (Mariablo Creek, Diliman Creek, talayan Creek, Dario Creek, and Arayat Cree Estero Tripa de Galllina: dredging of san Isidro Creek, San Lorenzo Creek and San jose Creel Estero Tripa de Gallinia: dredging of Dilain/Maribacan Creek, San Lorenzo Creek and San jose Creel	33.	tero de San Miguel, Estero	12.9
Markina kiver dredging south of Managhan Floodway: dredging of Pateros River, Tipas River, Taguig River, Tipas Daang Paa River and Tipas Labasan Cree Paradane River: dregging of Parafaque River (south), Dongalo River, Kay Boboy Creek and Sapang Buway All areas: rehabilitation of all other street (local) drains San Juan River: dredging of six tributaries beyond 100-y return period flooded area (Mariablo Creek, Diliman Creek, talayan Creek, Dario Creek, and Arayat Cree Estero Tripa de Galllina: dredging of san Isidro Creek, San Lorenzo Creek and San jose Creel Estero Tripa de Gallina: dredging of Dilain/ Maribacan Creek, San Lorenzo Creek and San jose Creel Estero Tripa de Gallina: dredging of Dilain/ Maribacan Creek			
soun or mangarian Froodway: dredging or Fateros Evver, Japas Fiver, Jaguig Fiver, Tipas Laaang Faa Kiver and Tipas Labasan Cree Parañaque River: dreging of Parañaque River (south), Dongalo River, Kay Boboy Creek and Sapang Buway All areas: rehabilitation of all other street (local) drains San Juan River: dredging of six tributaries beyond 100-y return period flooded area (Mariablo Creek, Diliman Creek, talayan Creek, Dario Creek, and Arayat Cree Estero Tripa de Galllina: dredging of san Isidro Creek, San Lorenzo Creek and San jose Creel Estero Tripa de Gallina: dredging of Dilain/Maribacan Creek, San Lorenzo Creek and San jose Creel Estero Tripa de Gallina: dredging of Dilain/Maribacan Creek	34. 01		49.1
Paranaque River: creging or Paranaque River (soun), Dongalo River, hay boboy Creek and Sapang buway All areas: rehabilitation of all other street (local) draint San Juan River: dredging of six tributaries beyond 100-y return period flooded area (Mariablo Creek, Diliman Creek, talayan Creek, Dario Creek, and Arayat Cree Estero Tripa de Galllina: dredging of san Isldro Creek, San Lorenzo Creek and San jose Creel Estero Tripa de Gallina: dredging of Dilain/Maribacan Creek, San Lorenzo Creek and San jose Creel	30. 20.		4.05
All areas. reliabilitation of an outer, sucer (hocar) or and San Juan River: dredging of six tributaries beyond 100-y return period flooded area (Mariablo Creek, Daliman Creek, Dario Creek, Culiat Creek, and Arayat Cree Estero Tripa de Galllina: dredging of san Isidro Creek, San Lorenzo Creek and San jose Creel Estero Tripa de Gallina: dredging of Dilain/Maribacan Creel	30.	Dongalo Kiver, Kay Boboy	38.8
san uan river: dredging or six inbutaries beyond 100-y fetum period nooded area (mariabio Creek, uliman Creek, bario Creek, builat Creek, and Arayat Cree Estero Tripa de Gallina: dredging of san Isidro Creek, Ayala Creek, San Lorenzo Creek and San jose Creel Estero Tripa de Gallina: dredging of Dilain/ Maribacan Creel	. I C		C. /61
Estero I ripa de Gallima: dredging of san Isidro Creek, Avaia Creek, San Lorenzo Creek and San jose Creel Estero Tripa de Gallina: dredging of Dilain/ Maribacan Creel	38.	san Juan Kiver: dredging of sk trinutaries beyond 100-y reum period flooded area (Mariabio Creek, Juliman Creek, Jario Creek, Culiat Creek, and Arayat Cree	20.8
Estero i inpa de Gailina: dredging or Uriain/ Manibacan Creel	39.	Estero I npa de Gallina: dredging of san Isidro Creek, Ayala Creek, San Lorenzo Creek and San Jose Creel	13.9
	40.	Estero i npa de Gamina: creoging or Unianti manbacan Creei	10.8

Table E.2.2 Master Plan Framework Priority Projects

Source-Wid Burkassisted Final Alternative Master Plan Strategyin the Report on the Metro Mania Integrated Urban Drainage a nd Flood Control Master Plan by Engineering-Science, Inc., USA in association with Basic Technologyad Management Corporation.

(3) 1990 Study on Flood Control and Drainage Project in Metro Manila³

In line with the recommendations made by Metro Manila Integrated Urban Drainage and Flood Control Master Plan in 1984, the Department of Public Works and Highways (DPWH) conducted the JICA-assisted Study on Flood Control and Drainage Project in Metro Manila in 1990. The plan consists of framework plan, master plan and priority projects for urgent implementation aiming at target year of 2020.

For drainage countermeasures in the core area of Metro Manila, the concept developed by BPW in 1952 and World Bank in 1984 has been followed in the plan. In this section, 4 proposed priority projects other than drainage in the core area are introduced below.

1) Drainage Improvement in East and West of Mangahan

Lakeshore/backwater dikes are designed for EL 15.5 m with 40-year return period and drainage facilities, 5-year return period, respectively.

- Construction of lakeshore dike (L=10.7 km)
- Construction of backwater dikes (6 rivers)
- Construction/improvement of drainage channel (L=55 km)
- Construction of drainage pumping stations (9 stations with total capacity of 111 m³/s)

2) Drainage Improvement in Malabon-Navotas (North of Malabon River)

Coastal dike is designed for EL 13.5 m and river/ring dikes, EL12.5-13.5 m, respectively. Drainage facilities are designed for 5-year return period.

- Construction of coastal, river and ring dikes (L=15.9 km)
- Construction/ improvement of drainage channel (L=1.6 km)
- Construction of drainage pumping stations (3 stations with total capacity of 25 m³/s)

3) Drainage Improvement in Malabon-Navotas (South of Malabon River)

Coastal dike and parapet wall are designed for EL 13.5 m and river/ring dikes, EL12.5-13.5 m, respectively. Drainage facilities are designed for 5-year return period.

- Construction of coastal and river dikes (L=4.7 km)
- Construction of parapet wall (8.5 km)
- Construction/improvement of drainage channel (L=1.6 km)
- Construction of drainage pumping stations (3 stations with total capacity of 10 m³/s)

4) Pasig-Marikina River Improvement

A 30-year design flood is applied in the Pasig-Marikina River improvement.

- Channel improvement of Pasig-Marikina River (L=26.4 km)
- Construction of Marikina Control Gate Structure
- Reconstruction of Pandacan Bridge

(4) 2000 Study on Existing Laterals in Metro Manila⁴

The Study on Existing Laterals in Metro Manila was conducted under Local Development Study Program assisted by JICA in cooperation with DPWH and MMDA in 2000. Objectives of the study are as follows.

- To ascertain the present condition of existing drainage laterals,

- To establish a database of drainage laterals, and
- To analyze problems in the laterals of drainage system.

The following are outlines of the study based on the above report of Study on Existing Laterals in Metro Manila.

1) Field Survey of Existing Drainage Laterals and Inundation Conditions

Surveyed manholes and drainage channels are 7,178 manholes and 209 cross-sections in 19 open channels, respectively. Total length of channels surveyed is as follows.

- Esteros: about 26 km,
- Drainage mains and outfalls: 33 km, and
- Drainage laterals: 55 km

An inundation survey was made for the 1999 floods to evaluate the performance of existing drainage system. Also, interviews were conducted for 1,756 residents in the core area of Metro Manila to acquire a full appreciation of the 1999 floods. Based on the field survey results, flood problems are identified and analyzed as follows.

2) Identification and Analysis of Flooding Problems

Runoff and flow capacity estimation was made against 2-year and 10-year return periods. According to the above calculation, it can be said that almost all drainage laterals and a number of drainage mains and esteros have limited flow capacity against both the 2-year and 10-year return periods.

Flooding areas were categorized into two types of regional flooding and local flooding by size of area to be affected. The most seriously affected areas as regional one were eastern portions in North Manila from Sta. Mesa Heights to Sampaloc and Quiapo. In Sampaloc and Quiapo areas, flooding depth exceeded 0.5 m in many places. In some places, it reached 1.3 m. Average duration was 20 to 30 hours. In South Manila, the seriously affected areas classified as regional flooding were San Andres Bukid, San Antonio Village, Metropolitan Subdivision, Palanan, San Isidro and Bangkal (regional flooding). Average depth reached 1.0 m on the streets of Coral, Zobel-Roxas Avenue and exceeded 0.5 m in many places. The average duration ranges from 3 to 4 hours.

3) Establishment of Database

For the above-mentioned data, the database system was designed to facilitate the retrieval of necessary information to support the drainage system operation, maintenance rehabilitation and improvement programs of responsible agencies. The database system consists of the following 5 primary ones:

- Hardware and software composition,
- Digital location maps with 1/10,000 scale,
- Database of drainage channels and manholes
- Lateral database, and
- Flood condition database.

4) Conclusion and Recommendations

To cope with the above situation and problems, it is recommended that a comprehensive drainage plan through master plan study be undertaken. Areas identified for the master plan study are the Sampaloc area of North Manila and the San Antonio-Palanan-Pio del Pilar-San

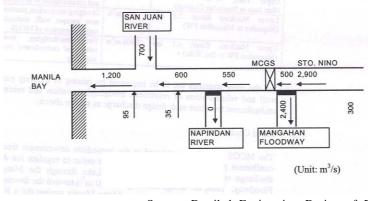
Isidro (areas along Estero de Tripa de Gallina system) of South Manila.

In connection with conducting the above master plan study, the following are further recommended.

- Implementation of Urgent Works
- Strengthening of Inter-agency Coordination
- Management of Database System
- Follow-up Study on the Flooding Problem in Metropolitan Manila

(5) 2002 Planned Project for Pasig-Marikina River Flood Control⁵

The Pasig-Marikina River Channel Improvement was proposed as an urgent project through the feasibility study in the JICA Study conducted in the period from 1988 to 1990. For this urgent project, OECF (now called JBIC) extended its financial support and executed Special Assistance for Project Formation (SAPROF) in 1998. Subsequently, OECF extended its loan for implementation of the urgent project under the 23rd loan package in June 1999. Thus the detailed engineering design was carried out for Pasig-Marikina River Channel Improvement Project from Oct. 2000 to Mar. 2002. The construction works are scheduled to commence in the year of 2004, but it has not commenced yet. The project features are outlined below, referring to Detailed Engineering Design of Pasig-Marikina River Channel Improvement Project, Main Report, Vol. II, DPWH, March. 2002.


1) Basic Conditions of Flood Control

Objective river length to be improved is around 30.3 km in total as divided below.

Pasig River: River mouth (Del Pan Bridge) to Napindan gate (17.1 km)

Marikina River: Napindan gate to Marikina Bridge (13.2 km)

The design discharge distribution for the river channel improvement against the 30-year return period is shown in *Figure E.2.1. Figure E.2.2* presents a proposed longitudinal profile of Pasig River.

Source: Detailed Engineering Design of Pasig-Marikina River Channel Improvement Project, Main Report, Vol. II, DPWH, March. 2002.

Figure E.2.1 Design Discharge Distribution of Pasig-Marikina River

2) Basic Conditions of Drainage Improvement

Objective area of drainage is 3,600 ha having 139 sub-catchments directly drained to the Pasig-Marikina River, consisting of 72 sub-catchments into Pasig River and 67 sub-catchments into Marikina River as shown in *Figure E.2.3*. A 10-year return period is adopted for the drainage improvement in the sub-catchment.

3) Planned Works

The proposed works consist of:

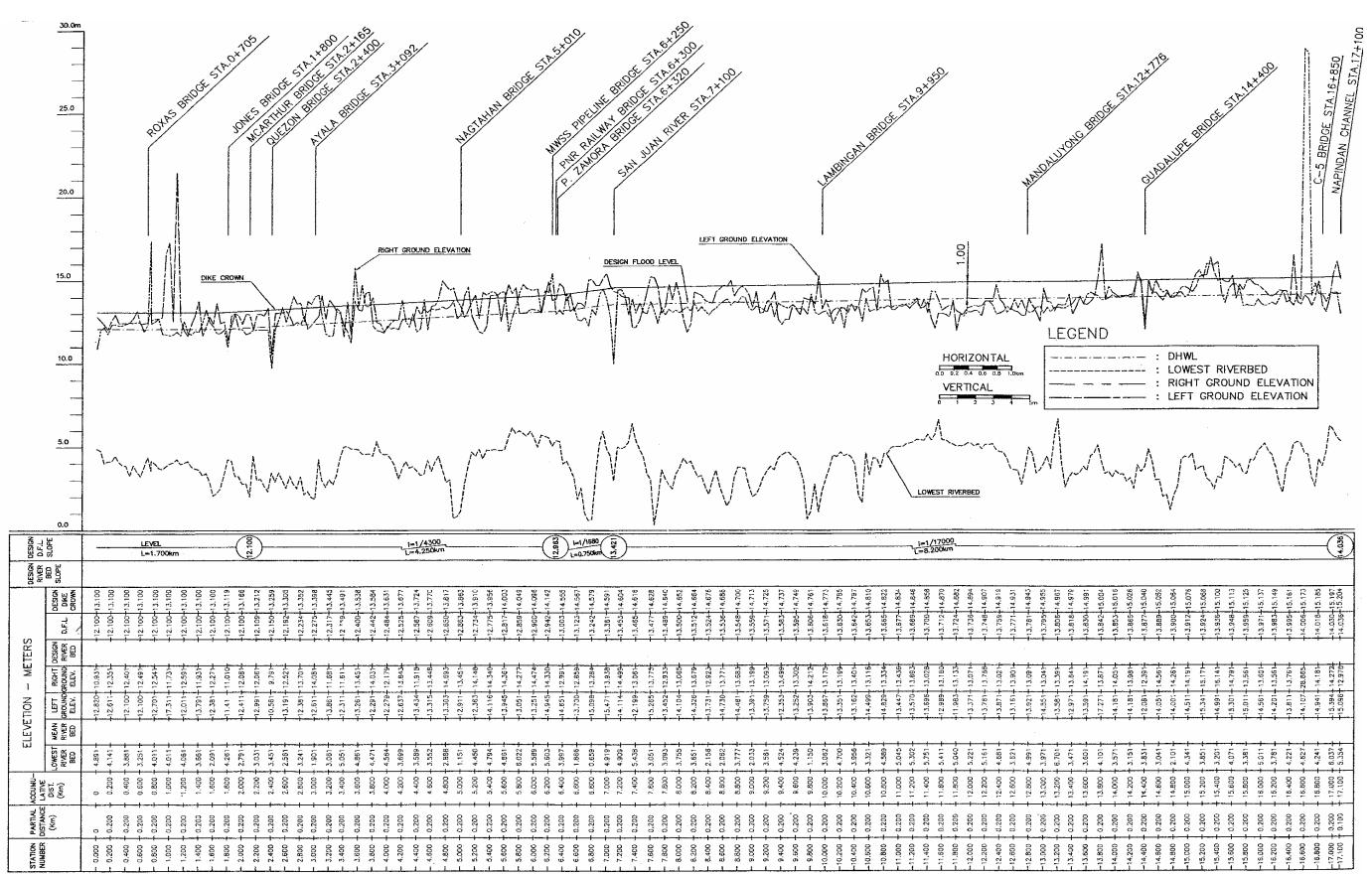
- River Channel Improvement of the Pasig-Marikina River,
- Construction of Marikina Control Gate Structure (MCGS) in the lower Marikina River and
- Drainage Improvement in the catchment along the Pasig-Marikina River.

On the other hand, drainage structures are to be constructed in line with the scheme as shown in *Figure E.2.4*. They are reinforced concrete pipe and box culvert, curb inlet, flap gate, slide gate, etc.

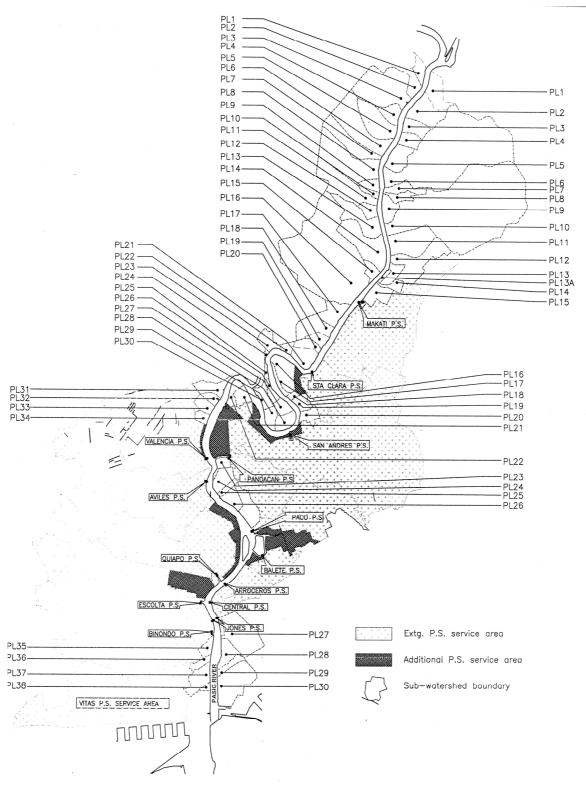
4) Proposed Phasing and Construction Schedule

The construction works are divided into 3 phases consisting of 5 packages and scheduled as follows.

Phase 1 works in the Pasig River (2003 to 2008 by JBIC 26th Loan)

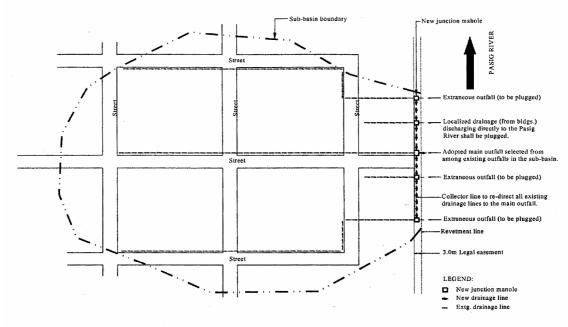

- Del Pan bridge to Lambingan bridge (9.2 km)
- Lambingan bridge to confluence with Napindan channel (7.2 km)

Phase 2 works in the Lower Marikina River (2004 to 2009)


- MCGS and its vicinity (1.2 km)
- Confluence with Napindan channel to MCGS (6.0 km)

Phase 3 works in the upper Marikina River (2005 to 2010)

- MCGS to Marikina bridge (6.1 km)



Source: Detailed Engineering Design of Pasig-Marikina River Channel Improvement Project, Main Report, Vol. II, DPWH, March. 2002.

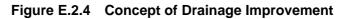

Source: Detailed Engineering Design of Pasig-Marikina River Channel Improvement Project, Main Report, Vol. II, DPWH, March. 2002.

Figure E.2.3 Sub Catchment Areas Directly Drained to Pasig River

Typical Drainage Scheme

Source: Source: Detailed Engineering Design of Pasig-Marikina River Channel Improvement Project, Main Report, Vol. II, DPWH, March. 2002.

E.2.3 CURRENT STUDIES RELATED TO DRAINAGE IMPROVEMENT IN THE CORE AREA

The following 3 plans related to drainage in the core area of Metropolitan Manila are briefly explained below. They are 1) Study on Water Supply and Sewerage Master Plan of Metro Manila in the Republic of the Philippines, 2) Earthquake Impact Reduction Study for Metropolitan Manila, Republic of the Philippines and 3) Manila Metropolitan Region Environment Improvement Study.

(1) 1990 Manila Metropolitan Region Environment Improvement Study⁶

The Environmental Management Bureau of the Department of Environment and Natural Resources (DENR) conducted this study assisted by Asian Development Bank in 1990. An objective of the study is to prepare an integrated environmental improvement program and consequent action plan to alleviate problems of environmental degradation in Metropolitan Manila.

The proposed integrated environmental improvement program consists of 2 major components. The first component is an environmental management program consisting of various non-engineering elements to support successful implementation of physical improvement projects. The second one consists of physical improvement projects that address the most serious problems and improve the quality of life in Metropolitan Manila.

In line with the above program, the following 5 action plans are proposed with a 5 years implementation period.

- Environmental management and monitoring program
- Integrated solid waste management program
- Flood control and drainage program
- Water quality management program
- Industrial pollution control program

Among the above 5 plans, the flood control and drainage program covers 1) East-West Mangahan drainage and flood control project, 2) Navotas-Malabon drainage and flood control project, 3) Pasig-Marikina River flood control project, and 4) Upgrading and realignment of informal settlers in the above 3 projects.

(2) 1996 Study on Water Supply and Sewerage Master Plan of Metro Manila⁷

In February 1996, the Metropolitan Waterworks and Sewerage System (MWSS) formulated a JICA-assisted master plan for water supply and sewerage including sanitation. In this sub section, outline of the master plan is briefly explained below, referring to the said report.

The master plan area covers 15,588 ha consisting of 5 systems of West Mangahan, South Manila, Ayala, Central Manila and North Manila, having a total population of 5.1 million. Direct objectives of the study are to establish development strategy on expansion of service areas and quality improvement of sewerage and sanitation. Throughout the study, the following respective 8 sewerage projects and 15 sanitation projects are formulated and planned to implement dividing into 2 phases of phase 1(up to 2010) and phase 2 (2009 to 2015).

Sewerage Project Name	Project Type	Implementation
Ayala sewerage treatment plant rehabilitation	Rehabilitation	Phase 1
Ayala sewerage system rehabilitation	Rehabilitation	Phase 1
Central Manila sewerage system rehabilitation	Rehabilitation	Phase 1
South Manila sewerage system rehabilitation	Rehabilitation	Phase 2
Central Manila sewerage system expansion	Expansion	Phase 2
North Manila sewerage system expansion	Expansion	Phase 2
West Mangahan sewerage system expansion	Expansion	Phase 2
Ayala sewerage treatment plant rehabilitation	Rehabilitation	Phase 2

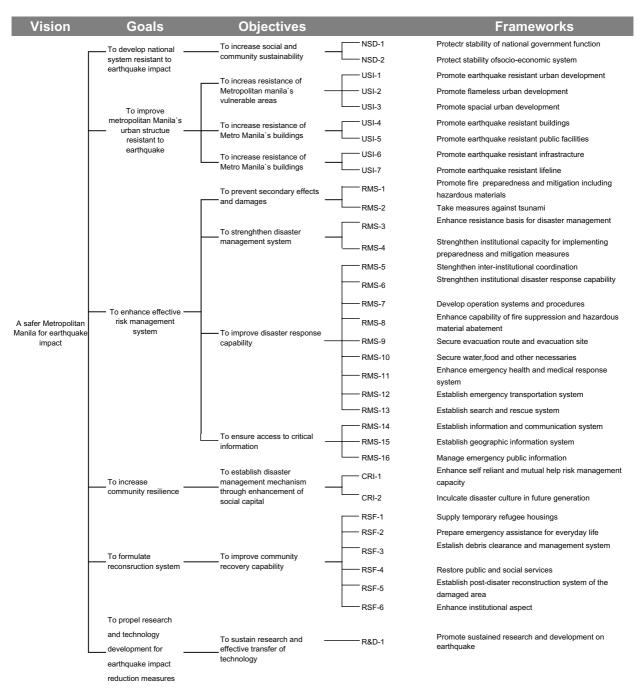
Table E.2.3 Planned Sewerage Projects

Source: Study on Water Supply and Sewerage Master Plan of Metro Manila, Final Report, Vol. I, Main Report

Table E.2.4	Planned Sanitation Projects

Sanitation Project Name	Project Type	Implementation
Septage collection and hauling	Management	Phase 1
Barging of septage for sea dumping	Management	Phase 2
Barge loading station 1st stage construction	Management	Phase 1
Barge loading station 2nd stage construction	Management	Phase 2
Dagat-Dagatan septage treatment plant (STP) 1st stage construction	Management	Phase 1
Supply of laboratory equipment, vacuum car etc.	Management	Phase 1
Dagat-Dagatan STP 2nd stage construction	Management	Phase 2
Dagat-Dagatan STP 3rd stage construction	Management	Phase 2
Quezon city STP 1st stage construction	Management	Phase 2
Quezon city STP 2nd stage construction	Management	Phase 2
Quezon city STP 3rd stage construction	Management	Phase 2
Taguig STP construction	Management	Phase 2
Paranaque STP 1st stage construction	Management	Phase 2
Paranaque STP 2nd stage construction	Management	Phase 2
Binangonan STP construction	Management	Phase 2

Source: Study on Water Supply and Sewerage Master Plan of Metro Manila, Final Report, Vol. I, Main Report


(3) 2004 Earthquake Impact Reduction Study for Metropolitan Manila⁸

MMDA and Philippine Institute of Volcanology and Seismology (PHIVOLCS) assisted by JICA conducted an Earthquake Impact Reduction Study for Metropolitan Manila in 2004. The objective of the study is to set forth basic policy and direction in pursuit of the vision of a safer Metropolitan Manila for earthquake impact. This plan is a road map to achieve the vision and structure of the plan.

The following are goals to attain the vision.

- To develop national system resistant to earthquake impact
- To improve Metropolitan Manila's urban structure resistance to earthquake
- To enhance effective risk management system
- To increase community resilience
- To formulate reconstruction system
- To propel research and technology development for earthquake impact reduction measures

As seen in *Table E.2.5*, the goals have 10 objectives, and then the objectives are broken down into 34 frameworks in total. The frameworks represent main policies and strategies to achieve goals and objectives. The frameworks contain 100 action plans to put in practice of the policies and strategies.

Table E.2.5 Structure of the Disater Management Plan for Metro Manila

E.3 COMPLETED AND ONGOING FLOOD CONTROL AND DRAINAGE IMPROVEMENT PROJECTS IN THE CORE AREA

E.3.1 GENERAL

A flood control and drainage improvement works in Metropolitan Manila were initiated by the then BPW in the 1940s. A drainage improvement master plan was originally formulated by BPW in 1954. In line with the said plans, BPW and/or DPWH carried out various construction works of drainage channels, dredging of river channels and construction of other related works in Metropolitan Manila by own fund. Flood and drainage situations in Metropolitan Manila were so much improved. However, wide vulnerable areas to inundation are still remaining because of lack of adequate drainage facilities, lack of flow capacity of drainage channel, occupation of informal settlers in and along drainage channels, etc. To cope with such serious situations, systematic flood control and drainage improvement projects were one after the other started in the 1970s.

E.3.2 COMPLETED PROJECTS

(1) Drainage Improvement Project

Major drainage improvement projects in Metropolitan Manila were started in the beginning of 1970s in line with the then master plan. More than 20 drainage pumping stations have been constructed within the core area of Metropolitan Manila so far, mainly by financial assistance of foreign countries, whereas DPWH-NCR, LGUs and private developers also undertook small-scale drainage projects by national or own funds. Among those are outlined below.

Year	Project
1973	Improvement Works of Drainage Facilities (BPW)
1975	Pasig River Flood Control Project (BPW/WB)
<i>1983</i>	Manila and Suburbs Flood Control and Drainage Project (DPWH, OECF 1 st loan)
1985	Planning and Detailed Engineering Design for Flood Control and Drainage Project (DPWH)
1987	Metro Manila Drainage System Rehabilitation Project (DPWH, OECF 12 th loan
1988	Pasig River (Mangahan Floodway) Flood Control Project (DPWH, OECF 4 th loan)
1989	Retrieval of Flood Prone Area in Metro Manila (DPWH, JICA)
1992	Retrieval of Flood Prone Area in Metro Manila (II) (DPWH, JICA)
1993	Pasig River Rehabilitation Project (PRRP and DSWPR) (DPWH, Danish/Belgian)
1996	North Laguna Flood Control Project (DPWH, OECF 16 th loan)
1998	Metro Manila Flood Control Project (II) (DPWH, OECF 14 th loan)
2001	Rehabilitation of Flood Control Operation and Warning System in Metro Manila (PAGASA/JICA)
2002	Dredging and Sanitation Works for Pasig River Area (Belgian Government)

 Table E.3.1
 Drainage Improvement Project

Major completed projects in the core area of Metropolitan Manila are explained in the following.

1) Manila and Suburbs Flood Control and Drainage Project by OECF 1st Loan (1973 to 1983)

The following 10 drainage pumping stations having each a drainage capacity against a 10 year-design storm were constructed in the core area of Metropolitan Manila.

Name	Location	Completion Year	Pump Capacity (m ³ /s)	Project Cost (Php)
Pandacan	Pandacan, Manila	April 1976	4.4	8,431,000
Aviles	Sampaloc, Manila	June 1976	15.6	18,468,000
Quiapo	Quiapo, Manila	June 1976	9.5	18,243,000
Valencia	Sta. Mesa, Manila	June 1976	10.5	14,640,000
Tripa de Gallina	Pasay	July 1977	56.0	73,694,000
Sta. Clara	Sta. Ana, Manila	May 1977	5.3	10,898,000
Paco	Paco, Manila	May 1977	7.6	19,479,000
Libertad	Pasay	May 1982	42.0	62,934,900
Makati	Makati	July 1984	7.0	10,620,000
Binondo	Binondo, Manila	July 1985	11.6	22,686,000

 Table E.3.2
 Features of Constructed Drainage Pumping Stations (1/3)

Source: Brief Information on the NCR-DPWH Pumping Stations and Floodgates Project, MMDA, 1999.

In connection with the above projects, the following independent floodgates were constructed at Balete, Pandacan and Sta. Banez (3 floodgates) in 1978 and at Escolta, Binondo and Vitas (3 floodgates) in 1983, respectively. The above Binondo and Vitas floodgates were integrated in one location beside the Binondo Pumping Station due to design changes of the Binondo Pumping Station scheme. Accordingly, there exist 5 independent floodgates along the Pasig River.

2) Expansion of Tripa de Gallina Pump Station and Procurement of Pump Equipment Project by EXIM Bank of Japan (1978)

In this project, appurtenant equipment to pump for Libertad, Makati and Binondo was procured and repaired, and pump capacity of Tripa de Gallina was expanded by 15 m³/s.

3) Metro Manila Drainage System Rehabilitation Project by OECF 12th Loan (1984 to 1987)

In this project, the following 2 drainage pump stations as shown in *Figure E.3.3* were constructed and also some repair and rehabilitation works for the above explained 10 drainage pumping stations were made. On the other hand, the then drainage improvement plan was reviewed based on the recommendations by Final Alternative Master Plan Strategy Report for the Metro Manila Integrated Urban Drainage and Flood Control Master Plan (Phase 1) and changing natural and social conditions in and around Metro Manila.

Name	Location	Completion Year	Pump Capacity (m ³ /s)	Project Cost (Php)
Balete	Ermita, Manila	Oct. 1989	2.5	7,890,000
Escolta	Sta. Cruz, Manila	1991	1.5	9,552,000

Table E.3.3 Features of Constructed Drainage Pumping Stations (2/3)

Source: Brief Information on the NCR-DPWH Pumping Stations and Floodgates Project, MMDA, 1999.

4) Metro Manila Flood Control Project II by 14th OECF Loan (1988 to 1998)

Based on the above reviewed plan, this project constructed the following 3 drainage pumping stations as shown in *Figure E.3.4* and improved major esteros.

 Table E.3.4
 Features of Constructed Drainage Pumping Stations (3/3)

Name	Location	Completion Year	Pump Capacity (m^3/s)	Project Cost (Php)
Vitas	Tondo, Manila	1997	32.0	456,552,000
Balut	Tondo, Manila	1997	2.0	81,954,000
San Andres	Pandacan, Manila	1998	19.0	339,492,000

Source: Brief Information on the NCR-DPWH Pumping Stations and Floodgates Project, MMDA, 1999.

5) Construction of Drainage Pumping Stations financed by National Fund

Aside from the above foreign-assisted projects, the following 8 locally funded small pumping stations projects were implemented in the core area of Metropolitan Manila as shown in *Table E.3.5*.

Name	Total Drainage Capacity (m^3/s)		
Malacanang P.S. No.1	0.66		
Malacanang P.S. No.2	0.76		
Arroceros P.S.	0.66		
Luneta Park P.S.	0.42		
Central Post Office P.S.	0.56		
Jones Bridge Underpass P.S. No.1	0.26		
Jones Bridge Underpass P.S. No.2	0.36		
Sta.Banez P.S.	0.318		

Table E.3.5 Small Pumping Stations

6) Retrieval of Flood-Prone Area, Improvement of Drainage Channels and Others in Metropolitan Manila financed by National Fund

Dredging equipment and appurtenant tools for operation and maintenance of drainage channel in Metropolitan Manila were provided to DPWH/MMDA through Japanese Grant Aid in 1989 and 1992, respectively. They are clamshells, barge, dump trucks, cranes, vacuum cars, etc. By using this equipment and tools, dredging and cleaning of major esteros in Metro Manila were carried out by Metro Manila Flood Control Project. Such equipment is presently working in the site effectively.

Aside from the above, small-scale drainage improvement works have been implemented so

far by the respective agencies of DPWH-NCR, MMDA and LGUs. Major ones are improvement of drainage mains and laterals, dredging of esteros, constructions of outfall, etc. In addition, a land reclamation plan is now at the stage of implementation in Manila Bay along Roxas Boulevard by Public Estates Authority (PEA). Among planned reclamation areas, two blocks directly related to the Study have been completed.

(2) Flood Control Project

As already explained in the above, flood control of the Pasig and Marikina Rivers was initiated by the BPW in the 1940s. The major projects completed so far in and around the study area are explained below.

1) Pasig River Flood Control Project by World Bank and OECF 4th Loan (1975 to 1988)

In this project, Mangahan Floodway was constructed to divert floodwater from the upper Marikina River to Laguna de Bay. Major dimensions of the floodway and structures are as follows.

- Design discharge: 2,400 m³/s (100-year design flood)
- Floodway length and average river width: 9,000 m and 250 m
- Rosario weir: 9 vertical roller gates

2) Effective Flood Control and Operation System (EFCOS) by OECF Loan and JICA (1993, 1999-2002)

The EFCOS was completed in 1993 as a non-structural measure to observe and analyze information on rainfall and water level with the objective of using the information to operate river structures for flood mitigation in the Pasig-Marikina River basin. EFCOS office is located at Rosario Master Control Station in the compound of Rosario weir.

However, the system is deficient for the monitoring of flooding conditions because the observation network does not keep up with the urbanization. In addition, the system is not able to meet the requirements for small and middle-sized floods resulting in progress of urbanization.

Taking the above into consideration, DPWH subsequently formulated a project to improve and enhance the overall function of EFCOS and made a request to the Government of Japan for its implementation under Japan's Grant Aid. The project started in 1999 and completed in 2002. Major works performed are as follows.

- Improvement of hydrological observation network
- Improvement of telecommunication system
- Rehabilitation of data processing system

3) Dredging and Sanitation Works for Pasig River Area assisted by Belgian Government (2000~2002)

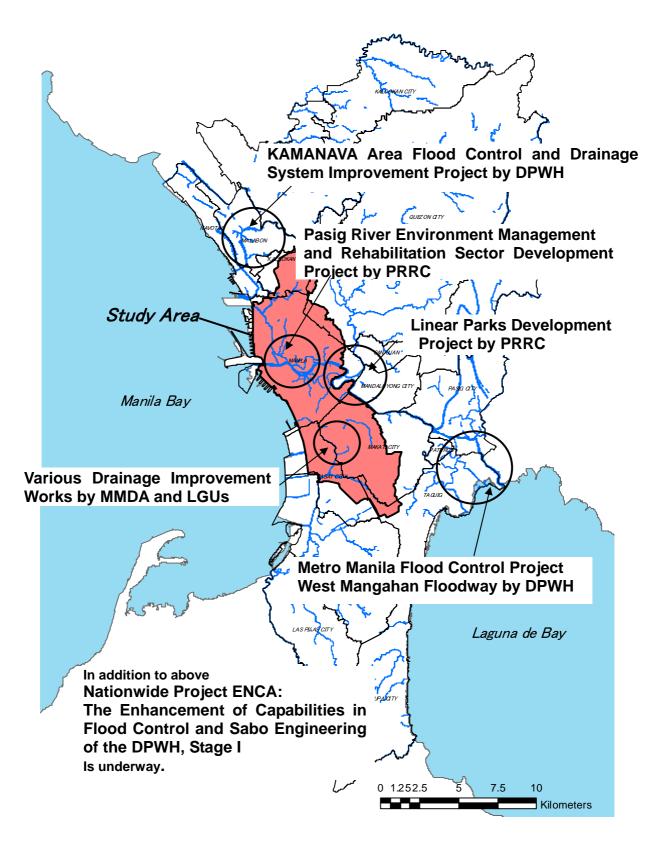
This project is the dredging and sanitation works for Pasig River that is a component of Pasig River Rehabilitation Projects by Pasig River Rehabilitation Commission (PRRC) directed by DPWH. This project is fund-assisted by a concessional loan extended to the Government of the Philippines by the Belgian Government. PRRC was established for the immediate interventions required for the improvement of environmental conditions in and along the Pasig River.

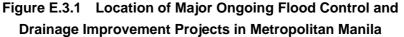
The objective river length covered was 4.5 km long from river mouth of Pasig River to Jones Bridge. Major works are dredging, wreck removal, relocation of informal settlers residing in the river area, etc. The total dredging volume was 676,000 m³ consisting of non-contaminated of 395,000 m³ and contaminated of 281,000 m³.

E.3.3 ONGOING PROJECTS

There are various ongoing flood control and drainage projects in Metropolitan Manila as shown in *Figure E.3.1*. Major projects related to this study are Project for the Enhancement of Capabilities in Flood Control and Sabo Engineering of the DPWH, Linear Parks Development along the Pasig River, Pasig River Environment Management and Rehabilitation Sector Development Project, local drainage improvement works, etc. Aside from the above, Metro Manila Flood Control Project-West Mangahan Floodway Project and KAMANAVA (Kaloocan-Malabon-Navotas-Valenzuela) Area Flood Control & Drainage System Improvement Project are underway in the outside of the core area of Metropolitan Manila. Those of related projects are briefly explained below.

(1) Project ENCA: Project for the Enhancement of Capabilities in Flood Control and Sabo Engineering of the DPWH, Stage I assisted by JICA (2000~)


The Project ENCA is different from those projects that do not refer to any type of construction at all; it rather aims for nationwide human resources development and institutional development through the Project Type Technical Cooperation by JICA. An objective of the project is to enhance capability of DPWH in planning and design of flood control and Sabo facilities in order to cope with water-induced disasters. For this purpose, DPWH established PMO-FCSEC (Flood Control and Sabo Engineering Center, located at Napindan Hydraulic Control Structure Compound) as implementing body of the project. According to BRIEF NOTE ON PROJECT ENCA, DPWH and JICA, outputs through the project will be as follows.


- Basic functions, organizations and institutions of the FCSEC will be established and secured for sustainable activities,
- The technical standards in the field of flood control and Sabo will be upgraded and made available for use,
- Sufficient number of personnel of the DPWH will be trained,
- Basic Information System for profiling damages occurred on disaster prevention structures will be established, and
- The DPWH will form an internal system to extend the technical standards and other outputs of the project throughout all relevant offices of the DPWH for effective implementation of services.

(2) Linear Parks Development Project along the Pasig River assisted by ADB Loan (2000~)

This project is to create linear parks within the 10 m easements to be created along the both banks of the Pasig River from its river mouth to the confluence of Napindan channel. The linear parks development project is being implemented under Pasig River Rehabilitation Commission (PRRC) assisted by ADB Loan.

As a first batch, a total of 15 linear parks were identified and are in various stages of development from planning, design, construction, and operation and maintenance. Further, 12 linear parks have been proposed to construct as a second batch.

(3) The Pasig River Environment Management and Rehabilitation Sector Development Project assisted by ADB (2001~)

This project is being implemented in line with an updated and integrated Pasig River Rehabilitation Master Plan formulated by PRRC with ADB financial assistance. PRRC was established in Jan. 1999 and consolidates the various government offices in charge of aspects of Pasig River rehabilitation into a single body. A goal of the project or program is to bring life back to the Pasig River so that people could reclaim it for leisure and livelihood. The Pasig River Program by said master plan includes an area approximately 500 m from the riverbank on both sides of the Pasig River.

These programs consist of 5 major programs of 1) environmental management, 2) urban renewal and rehabilitation, 3) housing and resettlement, 4) flood control and 5) information and advocacy. Also, it includes the final phase of the DANIDA assistance to the Pasig River Rehabilitation consisting of capacity building support to PMO, environment awareness, information campaigns and waste management. The programs are in various stages of development from planning, design, construction, and operation and maintenance.

(4) Metro Manila Flood Control Project-West Mangahan Floodway by OECF 21st Loan (1997~)

The project site is located in the respective administration areas of Taguig, Pateros and Pasig in Metropolitan Manila, and Cainta in Rizal Province. Major construction works with a loan period from March 1997 to June 2006 are as follows (Data source: PMO, DPWH).

- Lakeshore dike: 8.5 km
- Parapet wall: 5.8 km
- Drainage pumping stations: 4 pumping stations with a total drainage capacity of $36 \text{ m}^3/\text{s}$
- Regulation ponds: 4 ponds
- Floodgates: 9 floodgates
- Bridges: 2 bridges

(5) KAMANAVA (Kaloocan-Malabon-Navotas-Valenzuela) Area Flood Control and Drainage System Improvement Project by 24th JBIC Loan (1999~)

The project site is located at KAMANAVA area in Metropolitan Manila. The following are the major works of the KAMANAVA Area Flood Control and Drainage Project (Data source: PMO, DPWH).

Northern Area of Malabon River;

- Polder dike: 8.6	5 km
--------------------	------

- Raising of river wall: 4.4 km
- FloodgatE.3 gates
- Control gate: 1 gate
- Drainage pumping station: 2 sites with a total drainage capacity of $10.5 \text{ m}^3/\text{s}$

Southern Area of Malabon River;

-	Raising of river wall:	2.4 km
		4 1 1 1 1 1 1 1 2 2 4 5 3

- Pumping drainage station: 4 sites with a total drainage capacity of $34.5 \text{ m}^3/\text{s}$

- Drainage channel (improvement): 6 km
- Drainage channel (construction): 2.7 km

(6) Other Drainage Improvement Works by National Fund

There are various drainage improvement works being made by MMDA and LGUs. Those of MMDA in 2004 are declogging of drainage laterals, desilting of drainage mains, dredging of esteros, etc. On the other hand, various local drainage improvements along local roads are undertaken by the respective LGUs.

E.4 DRAINAGE CONDITIONS

E.4.1 DRAINAGE SYSTEM IN THE CORE AREA

(1) Definition of Drainage Channels and Facilities

The drainage system in the core area consists of innumerable drainage channels and facilities, namely esteros/creeks, outfalls, drainage mains, laterals, road gutters, drainage pumping stations, floodgates, flood wall, etc. The terminology of the drainage channels and facilities has been defined in the present study as shown in *Table E.4.1*.

Esteros / Creeks	Open channels		
Drainage mains	Closed channels consisting of one or two box culverts mostly connected to esteros		
Outfalls	Drainage mains directly connected to Manila Bay or the Pasig River		
Laterals	Small drainage channels other than above		
Drainage pumping stations	Drainage facilities that drain storm water mechanically		
Floodgates	Gate to control discharging storm water from esteros to the Pasig River when the water level at the Pasig River is lower than those in esteros		
Control gates	Gate that controls the flow direction in esteros as boundary of drainage block		
Control walls	Earth or concrete dike that controls flow direction in esteros as boundary of drainage block		
Detention ponds	Pond that retards storm water for drainage pumping stations		
Interceptors	Man-made channel that intercepts and drains storm water into esteros, the Pasig River and Manila Bay		

Table E.4.1 Definition of Drainage Channels and Facilities

(2) Drainage System

The total catchment area of the drainage system in the core area is about 73 km². Within the catchment, there are esteros / creeks and drainage mains with total length of about 74 km and 35 km, respectively. Density of drainage in the core area is thereby 1.0 km⁻¹ for esteros / creeks, and 1.5 km⁻¹ for both estreos / creeks and drainage mains. The drainage system in the core area is geographically divided by the Pasig River into two areas: South Manila (south or left bank of Pasig River) and North Manila (north or right bank of Pasig River).

(3) Drainage Block in North Manila

The drainage area in North Manila is divided into 5 drainage blocks with a total catchment area estimated at 28.78 km² as shown in *Figure E.4.1*. Major dimensions of each drainage block are summarized in *Table E.4.2*.

ID	Name of Drainage Block	Area (km ²)	Total Length of Esteros /Creeks (km)	Total Length of Drainage Mains (km)
N01	Vitas-Binondo-Escolta	8.55	13.14	6.62
N02	Quiapo-Aviles	5.58	6.77	3.90
N03	Valencia	2.37	1.22	0.67
N04	Maypajo-Blumentritt-Balut	9.91	6.65	4.13
N05	North Harbor	2.37	0.00	2.46
	Total	28.78	27.78	17.78

 Table E.4.2
 Major Dimensions of Each Drainage Block in North Manila

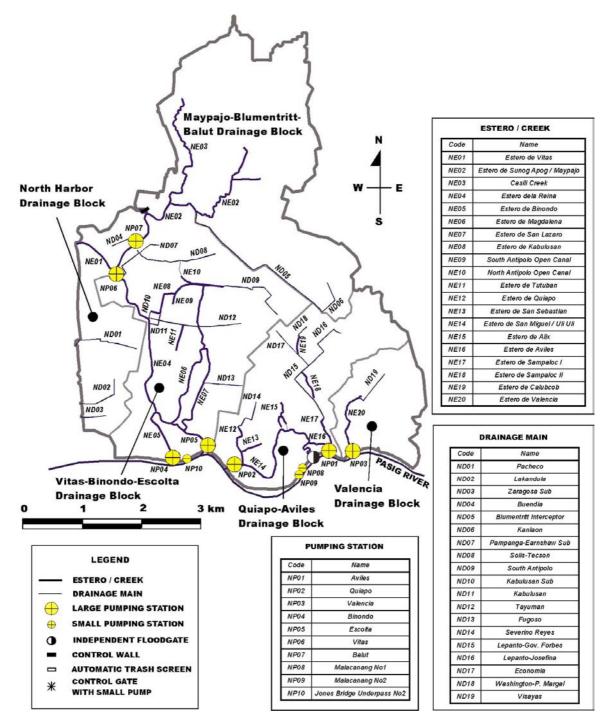


Figure E.4.1 Drainage System in North Manila

1) Vitas- Binondo- Escolta Drainage Block

The total catchment area is 8.55 km². The stormwater is drained by three drainage pumping stations: Vitas, Binondo and Escolta, having a total drainage capacity of 45.1 m³/s. Those drainage pumping stations are connected through major esteros of Vitas, de la Reina, and Binondo. Stormwater in the block is collected into the above major esteros directly or through the following secondary esteros.

- Kabulusan
- South Antipolo Open Canal
- North Antipolo Open Canal
- Magdalena
- San Lazaro etc

At the middle reach of the South Antipolo Open Canal, there exists a control gate with small drainage pump equipment.

2) Quiapo-Aviles Drainage Block

Two drainage pumping stations: Quiapo and Aviles, having a total drainage capacity of 26.4 m³/s, drain stormwater in this block. The total catchment area is 5.58 km^2 . These stations are connected by esteros of San Miguel / Uli-Uli and Aviles. Stormwater in the block is collected into the above esteros directly or through the following esteros.

- Quiapo
- San Sebastian
- Sampaloc I
- Sampaloc II
- Calubcob

Quiapo and Aviles drainage block is one of the remaining severely inundated areas in the core area.

3) Valencia Drainage Block

The total catchment area of this block is 2.37 km². The stormwater is drained by Valencia drainage pumping station that has a total drainage capacity of 11.8 m³/s. Major collecting channels are Estero de Valencia and Visayas Drainage Main.

4) Maypajo-Blumentritt-Balut Drainage Block

This block is mainly drained by gravity drainage system consisting of the following esteros, which has a total catchment area of 9.91 km^2 .

- Sunog Apog
- Casili Creek
- Maypajo

The Estero de Maypajo receives the stromwater from the Blumentritt interceptor that collects runoff in the hilly area in the northeast of Blumentritt Street. The area around the street and in the southwest of the street is suffering from severe inundation. On the other side, at the upper end of the lower Estero de Maypajo, control wall exists. Accordingly, stormwater coming from the middle and upper Estero de Maypajo is completely discharged through Estero de Sunog Apog. Balut pumping station with a total drainage capacity of

 $2.0 \text{ m}^{3/s}$ drains stormwater in the right bank of the Estero de Sunog Apog through drainage main of Buendia.

5) North Harbor Drainage Block

North harbor and other independent drainage areas along the Pasig River are basically drained by gravity system. Total catchment area of this block is 2.37 km^2 . The stormwater in the block is mainly drained by the following drainage mains.

- Pacheco
- Lakandula
- Zaragosa sub-main

(4) Drainage Block in South Manila

The drainage area in the south Manila area is divided into 6 drainage blocks as shown in *Figure E.4.2*, with a total catchment area estimated at 43.80 km². Major dimensions of each drainage block are summarized in *Table E.4.3*.

ID	Name of Drainage Block	Area (km ²)	Total Length of Esteros /Creeks (km)	Total Length of Drainage Mains (km)
S01	Libertad-Tripa de Gallina	25.96	29.80	11.02
S02	Balete	0.94	0.55	0.00
S03	Paco-Pandacan-San Andres	6.12	10.59	1.10
S04	Sta. Clara	1.57	1.49	0.13
S05	Makati	4.31	2.56	2.24
S06	South Harbor and Others	4.90	0.73	2.51
	Total	43.80	45.72	17.00

 Table E.4.3
 Major Dimensions of Each Drainage Block in South Manila

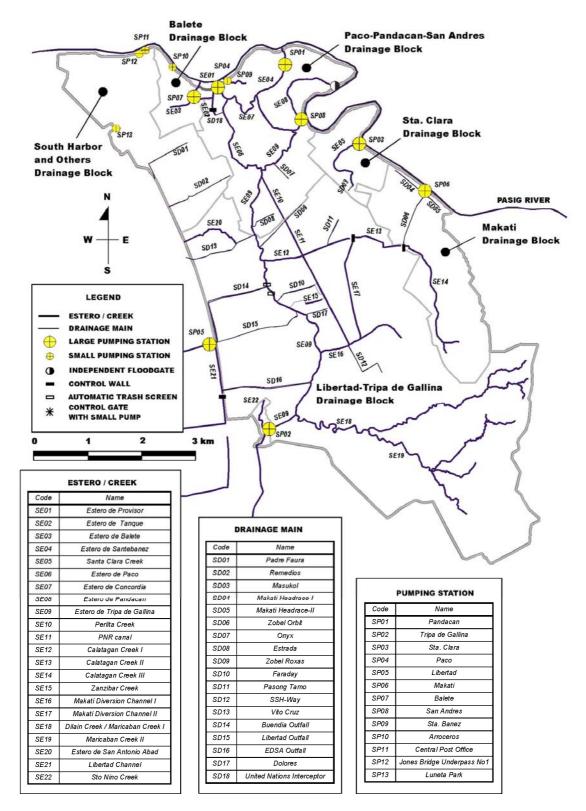


Figure E.4.2 Drainage System in South Manila

1) Libertad-Tripa de Gallina Drainage Block

The total catchment area of this block is 25.96 km^2 . The stormwater in the block is drained mainly by two drainage pumping stations of Libertad and Tripa de Gallina, which have a total drainage capacity of 99 m³/s consisting of 42 m³/s at Libertad and 57 m³/s at Tripa de Gallina. Main drainage channel in the block is the Estero de Tripa de Gallina. Stormwater in the Southern part of Tripa de Gallina is collected by the following esteros and drainage mains.

- Calatagan Creek I
- Calatagan Creek II
- Makati Diversion Channel
- Dilain Creek / Maricaban Creek I
- Maricaban Creek II
- PNR Canal
- Zobel-Roxas Drainage Main
- Faraday Drainage Main
- Pasong Tamo Drainage Main
- SSH-Way Drainage Main
- Dolores Drainage Main

The riverine areas of Tripa de Gallina, especially catchment areas of Zobel-Roxas Drainage Main, Calatagan Creek I, PNR Canal, are one of the most severely inundated areas in Metropolitan Manila. Collected stormwater through the esteros and drainage mains into the Estero de Tripa de Gallina is finally drained by the following three systems into Manila Bay.

- By Libertad drainage pumping station collecting through outfalls of Buendia, Libertad and EDSA
- By Tripa de Gallina drainage pumping station
- By gravity system through outfall of Vito Cruz and Estero de San Antonio Abad

This drainage block is systematically connected to the adjoining Paco-Pandacan-San Andres Drainage Block. Further, the upper catchment of the original Calatagan Creek (Calatagan Creek III) has been completely transferred into the adjoining Makati Drainage Block through Zobel-Orbit Drainage Main.

2) Paco-Pandacan-San Andres Drainage Block

The stormwater in this block is drained by three drainage pumping stations of Paco, Pandacan and San Andres, having a total drainage capacity of 31.0 m^3 /s against the total catchment area of 6.12 km^2 . These pumping stations are connected through the following esteros.

- Paco
- Concordia
- Pandacan
- Tripa de Gallina

Estero de Santebanez and Estero de Pandacan are connected with the Pasig River through floodgate of Santebanez and Pandacan, respectively.

3) Sta. Clara Drainage Block

The total catchment area of this block is 1.57 km² and the stormwater is drained by Sta. Clara drainage pumping station that has a total drainage capacity of 5.3 m³/s. Major collecting channels are Estero de Sta. Clara and Masukol Drainage Main.

4) Makati Drainage Block

The total catchment area of this block is 4.31 km^2 . The stormwater in the area neighboring the Pasig River is drained by Makati drainage pumping station that has a total drainage capacity of 7.0 m³/s. On the other hand, the stormwater gathered by the upper Calatagan Creek is directly flowing into the Pasig River through Zobel-Orbit Drainage Main. Major collecting channels in the drainage block are as follows.

- Calatagan Creek III
- Zobel-Orbit Drainage Main
- Makati Headrace I Drainage Main
- Makati Headrace II Drainage Mains

5) South Harbor and Others Drainage Block

Gravity system or small pumping stations drain the storm water in south harbor along Manila Bay and other independent drainage areas along the Pasig River. The storm water gathered by the following drainage mains is drained by gravity system.

- Padre Faura Drainage Main
- Remedios Drainage Main

Total catchment area of the block is 4.90 km^2 .

E.4.2 DRAINAGE FACILITIES

(1) General

The drainage method in the core area of Metropolitan Manila can be basically categorized into two types of gravity drainage and forced drainage by pumping station. Since a major portion of the core area of Metropolitan Manila is low-lying land, the tidal effect gives rise to one of the primary and most difficult flooding problems. Accordingly, storm water is drained mostly by means of pumping stations covering about 52 km² (71 %) of the total area of 73 km². *Figure E.4.3* shows the drainage area that is drained by pumping stations. In this section, present conditions of drainage facilities and related ones in the core area of Metropolitan Manila are summarized based on the site reconnaissance and analysis of data collected.

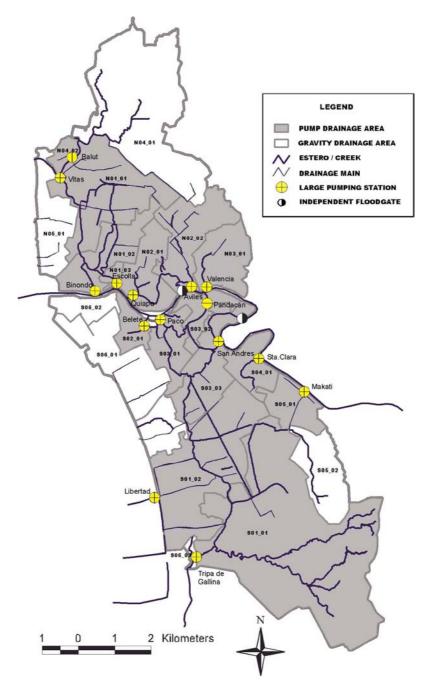


Figure E.4.3 Drainage Area Drained by Pumping Stations

(2) Drainage Pumping Stations and Floodgates

1) Large Drainage Pumping Stations

There exist 15 large drainage pumping stations in the core area of Metropolitan Manila. To specify the boundary of drainage basin of each pumping station is quite difficult, because the boundary can vary actually depending on flow condition, rainfall pattern and so on. Therefore, overall basin boundary was firstly specified based on the original plan, then, small modification was made based on available information for topography and existing drainage laterals. The areas of each drainage basin are shown in *Table E.4.4* together with capacity of pumping stations.

Among those, 7 stations were constructed in the 1970s, 4 stations in the 1980s and 4 stations in the 1990s. The detailed design dimensions provided by MMDA are summarized in *Table E.4.5*.

	101	Earge r amping ea		
Basin_ID	Name of Pumping Station	Drainage Area ^{*1} (km ²)	$Capacity (m^3/s)$	Specific Discharge (m ³ /s/km ²)
N01_01	Vitas	5.56	32.0	5.76
N01_02	Binondo	2.69	11.6	4.31
N01_03	Escolta	0.30	1.5	5.07
N02_01	Quiapo	2.29	10.8	4.71
N02_02	Aviles	3.28	15.6	4.75
N03_01	Valencia	2.37	11.8	4.98
N04_02	Balut	0.49	2.0	4.05
S01_01	Tripa de Gallina *2	17.05	57.0	3.34
S01_02	Libertad ^{*2}	7.48	42.0	5.61
S02_01	Balete	0.94	3.0	3.19
S03_01	Paco	1.74	7.6	4.37
S03_02	Pandacan	1.15	4.4	3.84
S03_03	San Andres	3.23	19.0	5.88
S04_01	Sta. Clara	1.57	5.3	3.38
S05_01	Makati	1.65	7.0	4.24

Table E.4.4 Total Drainage Capacity and Area of Drainage Basin

for Large Pumping Stations

Note: *1 Based upon the review by JICA Study Team

^{*2} Drainage boundary of Tripa de Gallina and Libertad is quite unclear. Storm water in these drainage areas is actually drained by cooperation work of the two pumping stations.

Major design conditions of the above drainage pumping stations are as follows.

Design flood scale:	10-year storm water
Operating system:	Electric power by MERALCO with diesel engines
Solid waste treatment:	Automatic trash removal equipment
Drainage gate:	Gate for gravity drainage
Total drainage capacity:	230.6 m ³ /s
Total service area:	51.80 km ²
Average unit drainage capacit	y per km ² : $4.45 \text{ m}^3/\text{s/km}^2$

	ומנ	I able E.4.3 Detailed Design Dimensions of Large Dramage Fumping Stations	stalleu De			Lai ye Ui	анаус г	o Guidun	נמנוטווס						
Items	Pandacan	Aviles	Quiapo	Valencia	Tripa de Gallina	Sta. Clara	Paco	Libertad	Makati	Binondo	Balete	Escolta	Vitas	Balut	San Andres
Location	Pandacan Manila	Sampaloc Manila	Quiapo Manila	Sta. Mesa Manila	Pasay City	Sta. Ana Manila	Paco Manila	Pasay City	Osmeña Makati	Binondo Manila	Ermita Manila	Nacional Manila	Tondo Manila	Tondo Manila	Sta. Ana Manila
Construction Year	1976	1976	1976	1976	1977	1977	1977	1982	1983	1985	1989	1991	1997	1997	1998
Drainage Area (ha)	180	356	225	246	1769	133	182	<i>611</i>	151	279	52	(*1)	578	49	356
Main Pump Equipment															
Total Pump Capacity (m3/s)	4.4	14.1	9.5	10.5	56.0	5.3	7.6	42.0	7.0	11.6	1.2	1.5	32.0	2.0	19.0
Numbers of pump unit (m3/s x no.)	2.2 x 2	3.53 x. 4	2.37 x 4	2.625 x 4	7.0 x 8	2.65 x 2	2.53 x 3	7.0 x 6	3.5 x 2	2.9 x 4	0.4 x 3	0.5 x 3	6.4 x 5	1.0 x 2	4.75 x 4
Total Pump Head (m)	3.1	3.1	2.5	3.3	3.2	3.5	2.8	2.8	3.6	2.9	3.5	3.5	3.2	3.6	4.3
Pump Start W.L (m)	10.50	10.50	10.50	10.50	9.90	11.20	10.50	9.90	11.30	10.00	10.60	10.00	10.10	9.10	10.50
Pump Stop W.L (m)	10.20	10.30	10.20	10.30	6.60	11.00	10.20	09.6	10.90	9.80	10.50	08.6	9.80	8.90	10.20
Top Revetment at P/S (m)	12.20	12.40	11.60	12.50	13.00	13.10	12.30	13.00	13.90	12.20	13.80	13.30	12.20	12.20	12.50
Type of Pump	VAF	VAF	VAF	VAF	HAF	VAF	VAF	HAF	VAF	\mathbf{VAF}	Submer.	Submer.	HAF	Submer.	VMF
Diameter of Pump Bore (mm)	1,000	1,200	1,000	1,000	1,650	1,000	1,000	1,650	1,200	1,000	400	650	1,650	700	1,500
Rehabilitation Year	1988	1988	1988	1988	1988	1988	1988	1988	1988	-	2000	1661	-		ı
Added Pump Equipment by Rehabilitation Project	ehabilitation	Project													
Total Pump Capacity (m3/s)	I	1.5	1.3	1.3	1.0	ı	I	ı	I	ı	1.8	I	I	I	I
Numbers of pump unit (m3/s x no.)		0.5 x 3	0.45 x 3	0.45 x 3	0.5 x 2						0.8 x 1+1.0 x 1				
Type of Pump		Submer.	Submer.	Submer.	Submer.						Submer.				
Diameter of Pump Bore (mm)		400	400	400	400						700				
Gate for Gravity Discharge															
Width (m) x Height (m)	4.0 x 4.75	4.0 x 6.0	4.0 x 6.3	4.0 x 6.2	8.0 x 5.3	5.2 x 5.0	14.0 x 6.5	10.0 x 5.0	$5.1 \ge 5.0$	6.0 x 4.7	4.0 x 4.9	4.0 x 5.4	10.0 x 4.4	2.2 x 2.2	3.0 x 2.0
Numbers of Gate (no.)	1	2	2	2	3	1	1	3	1	2	2	2	2	1	4
Source: Brief Information on the NCR-DPWH Pumping Stations and Floodgates Project, MMDA, 1999 and interview results Note: VAF; Vertical shaft axial flow pump, VMF; Vertical shaft mixed flow pump, HAF; Horizontal shaft axial flow pump, Submer; Submersible pump : *1 included in Binondo Drainage ara	NCR-DPWH low pump, V rainage ara	Pumping Stati MF; Vertical s	ons and Flo shaft mixed	odgates Proje flow pump, I	sct, MMDA, HAF; Horizo	1999 and int ntal shaft axi	erview resu al flow pun	lts np, Submer;	Submersible	dund a					
)														

Table E.4.5 Detailed Design Dimensions of Large Drainage Pumping Stations

In the course of the Study, the elevations of tide gauges installed in the pumping stations have been checked. The measurement was made for a tide gauge set in estero side. The results are shown in *Table E.4.6*. These indicate that there is possibility of inconsistency between tide gauge reading and actual elevation in some pumping stations.

Pumping Station	Tide Gauge Reading (m)	Measured Elevation (m)
Vitas	12.00	12.005
Binondo	12.00	12.045
Escolta	13.00	13.036
Quiapo	12.00	12.051
Aviles	12.00	12.021
Valencia	12.00	12.147
Balut	12.00	11.908
Tripa de Gallina	13.00	13.018
Libertad	14.00	14.145
Balete	12.00	10.981
Paco	12.00	11.972
Pandacan	12.00	11.973
San Andres	12.00	12.231
Sta. Clara	13.00	12.995
Makati	13.00	12.726

 Table E.4.6
 Tide Gauge Elevation

Total operation hours of all units by the pumping stations in the last 10 years are shown in *Table E.4.7* and details including fuel consumption are summarized in *Table E.4.8*.

									(Uni	t: hour)
Pumping Station	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Aviles	1,953	1,995	2,019	2,033	1,100	3,133	3,759	2,093	2,462	3,026
Quiapo	1,257	2,321	2,119	2,534	834	3,215	2,992	2,348	2,200	3,059
Valencia	889	878	1,071	1,008	589	1,675	2,208	1,458	1,471	2,132
Tripa de Gallina	1,972	2,607	1,562	1,711	1,190	2,453	2,486	2,078	2,462	2,691
Paco	1,438	1,635	1,778	1,852	446	2,315	2,425	1,583	1,450	2,108
Libertad	3,035	4,540	4,170	4,169	1,521	4,076	4,661	3,012	2,648	3,140
Binondo	1,201	1,895	1,671	1,695	1,048	2,903	2,835	2,323	2,448	3,344
Vitas				1,192	1,242	3,710	4,635	4,848	2,169	2,557
San Andres					330	845	971	766	717	88 <i>3</i>

Table E.4.7 Total Operating Hours of Pumps at Major Stations

Source: Flood Control Management Services, MMDA

		Table	le E.4.8		Annual Operatii	erating	Hours	and	Fuel Co	Consumption	otion of	f Drainage		Pumping	g Station	suc				
PUMP STATION	ITEM	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
AVIT FS	a. Total Operating Hours	1,293	1,667	2,448	2,366	1,997	2,183	2,013	2,382	3,010	1,953	1,995	2,019	2,033	1,100	3,133	3,759	2,093	2,462	3,026
CTTL A V	b. Total fuel consumption	51,045	70,005	87,925	101,685	75,510	27,455	85,090	95,320	107,770	93,810	86,040	91,270	86,615	50,520	130,000	145,020	78,410	91,020	105,238
ΟΙΠΑΡΟ	a. Total Operating Hours	2,022	2,437	2,647	3,090	2,630	3,018	2,146	2,275	2,174	1,257	2,321	2,119	2,534	834	3,215	2,992	2,348	2,200	3,059
	b. Total fuel consumption	55,890	60,925	66	71,190	68,998	73,065	55,350	56,870	58,870	57,175	58,220	55,170	62,415	34,830	86,380	81,650	63,250	67,180	80,400
VAI FNCIA	a. Total Operating Hours	817	1,389	1,772	2,026	2,129	3,229	1,916	1,741	2,298	889	878	1,071	1,008	589	1,675	2,208	1,458	1,471	2,132
	b. Total fuel consumption	21,785	33,345	44,310	56,130	56,235	52,500	45,265	45,275	45,310	29,945	27,700	33,380	30,935	21,805	51,170	64,410	35,200	45,780	57,527
DUNONIB	a. Total Operating Hours	108	784	1,526	2,018	942	245	1,491	2,014	2,360	1,201	1,895	1,671	1,695	1,048	2,903	2,835	2,323	2,448	3,344
Canonia	b. Total fuel consumption	4,145	25,095	45,775	67,090	30,410	7,715	55,655	64,435	71,800	50,985	75,930	65,170	63,825	42,425	104,650	92,245	79,525	79,275	104,835
STA CLADA	a. Total Operating Hours	415	516	780	864	975	736	585	772	1,097	595	364	134	176	165	551	831	256	465	458
ANALY CLANA	b. Total fuel consumption	9,065	13,415	17,930	21,725	19,850	19,530	18,960	20,845	24,180	25,350	10,860	3,985	6,920	6,745	21,115	31,580	9,660	15,700	16,705
PANDACAN	a. Total Operating Hours	666	1,146	1,828	2,117	1,021	955	983	775	631	804	454	260	532	366	628	560	164	291	431
	b. Total fuel consumption	16,110	26,365	40,215	50,310	23,595	21,930	19,600	17,860	15,540	25,390	14,950	7,890	19,505	12,170	19,036	17,325	5,525	9,400	13,740
PACO	a. Total Operating Hours	707	1,287	1,942	1,913	2,630	2,492	2,953	1,865	2,734	1,438	1,635	1,778	1,852	446	2,314	2,425	1,584	1,450	2,108
0001	b. Total fuel consumption	27,345	37,310	48,555	57,650	70,440	62,210	73,610	71,725	70,485	54,865	39,145	43,525	41,480	17,845	52,640	61,210	38,650	36,100	46,708
MAKATI	a. Total Operating Hours	356	412	467	546	537	471	353	342	701	345	388	188	277	142	469	563	384	379	335
	b. Total fuel consumption	16,180	19,345	22,430	27,940	24,625	23,725	17,115	15,940	15,565	16,135	14,430	8,520	10,970	7,470	18,550	27,745	19,910	19,245	17,510
TRIPA de GALLINA	a. Total Operating Hours	817	1,067	2,012	2,879	3,434	2,785	4,815	4,069	3,640	1,972	2,606	1,562	1,711	1,190	2,453	2,486	2,078	2,462	2,691
	b. Total fuel consumption	49,540	61,905	110,645	118,820	177,620	170,955	172,470	150,385	132,220	112,160	20,650	92,450	105,100	80,615	176,040	187,040	150,295	134,345	148,080
LIBERTAD	a. Total Operating Hours	682	1,377	1,928	2,048	1,949	2,197	3,001	4,137	5,038	3,035	4,540	4,170	4,169	1,521	4,076	4,661	3,012	2,648	3,140
	b. Total fuel consumption	57,955	78,515	102,210	173,995	122,005	120,255	156,240	219,350	278,960	287,960	249,460	229,260	233,445	123,590	269,950	308,350	196,270	161,030	174,310
VITAS*	a. Total Operating Hours													1,193	1,242	3,710	4,635	4,848	2,169	2,557
	b. Total fuel consumption													61,720	64,130	172,120	209,560	195,200	136,110	138,670
SAN ANDRES**	a. Total Operating Hours													62	330	845	971	766	717	883
	b. Total fuel consumption													4,155	19,400	44,220	50,835	41,025	36,300	43,550
BALITT***	a. Total Operating Hours													289	157	697	809	2,137	1,794	1,514
	b. Total fuel consumption													9,415	5,015	23,555	30,885	20,985	7,370	4,440
ESCOLTA	a. Total Operating Hours	1	Not provided wi	th running (opc	Not provided with running (operating) hour-meter	ter								230	72	192	227	77	82	188
	b. Total fuel consumption													5,105	1,765	4,765	5,755	2,925	4,535	2,920
BALETE	a. Total Operating Hours																	18	49	333
	b. Total fuel consumption																	441	1,368	3,110
G. TOTAL	a. Total Operating Hours	7,882	12,080	16,948	19,869	18,244	18,311	20,255	21,373	23,684	13,488	17,076	14,971	17,759	9,202	26,861	29,961	23,544	21,086	26,200
	b. Total fuel consumption	309,060	426,225	520,061	746,535	669,288	579,340	699,355	758,005	820,340	753,775	597,385	630,620	741,605	488,325	1,174,191	1,313,610	937,271	844,758	957,743
Source; Flood Contro	Source; Flood Control Management Services, MMDA Note: Creme of conservices & in Aneil 1007 *** in Aneil 1007	, MMDA	****	·1 1007											Unit: operat	ion hour: he	Unit: operation hour: hour, Fuel consumption: 1	nsumption: 1		

imping Stations ā Of Drain 9 ofing Un Table E 4.8 Annual Or

Note; Start of operation * in April 1997, ** in Aug. 1997 and *** in April 1997

These drainage pumping stations have been working effectively in improving drainage situation in the core area of Metropolitan Manila. However, almost 30 years have been past since their constructions, especially for 10 pumping stations. Accordingly, also superannuating of pump equipment and its appurtenant facilities has been progressed in some pumping stations. To cope with such situations, the drainage pump equipment was rehabilitated in 1988.

Subsequently in 1999, overhauling of pump equipment was made at five stations of Aviles, Tripa de Gallina, Valencia, Libertad and Quiapo. It was found that remarkable problems are deterioration of casing liner, erosion and corrosion of guide casing, crack of various major parts and units of engine, etc., due to aging, extremely low water quality, clogged and overloaded solid waste, decreasing of cooling effect, etc.

In the dry season from November to April, these pumping stations are frequently utilized for removing dumped solid waste flowing down in the channels towards pumping stations and operating periodically for maintenance of pump equipment.

2) Small Drainage Pumping Stations

There exist eight small drainage pumping stations having total drainage capacities of 4 m^3/s . Their locations and capacities are shown in *Figure E.4.4* and *Table E.4.9*, respectively.

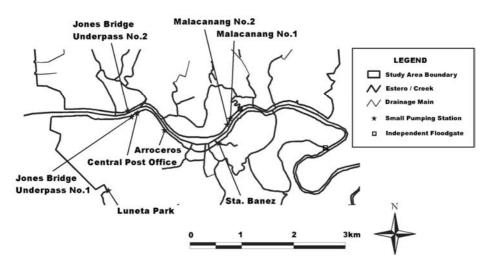


Figure E.4.4 Locations of Small Pumping Stations

Table E.4.9 Capacities of Shall Pull	iping Stations
Name of Pumping Station	Capacity (m^3/s)
Malacanang No.1	0.66
Malacanang No.2	0.76
Arroceros	0.66
Luneta Park	0.42
Central Post Office	0.56
Jones Bridge Underpass No.1 (South)	0.26
Jones Bridge Underpass No.2 (North)	0.36
Sta.Banez	0.318

Table E.4.9	Capacities	of Small	Pumping	Stations
-------------	------------	----------	---------	----------

3) Floodgates and Other Structures

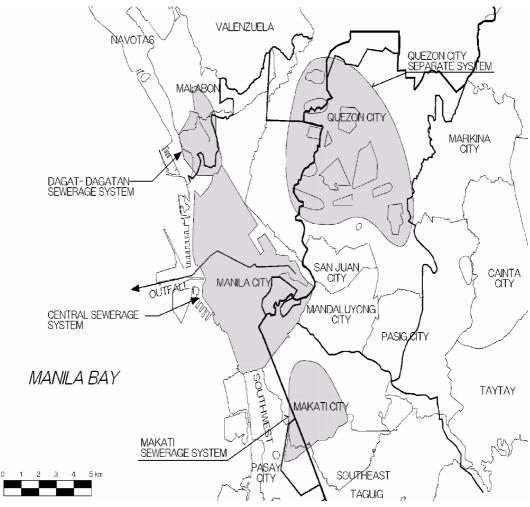
Floodgates and control walls have been constructed at outlets of the esteros or in the esteros, as shown in *Figures E.4.1 and E.4.2*. Objectives of the floodgate are to check return flow from the Pasig River in the high water level and to discharge storm water in the esteros to the Pasig River when the water level at Pasig River is lower than those in the esteros, whereas control wall is to control flow direction by installing wall made by concrete, steel or earth dikes.

There are originally 5 floodgates in total at the respective esteros of Escolta, Uli-Uli, Balete, Sta Banez, and Pandacan. The two floodgates of Uli-Uli and Pandacan are presently independent gates constructed at outlet of each estero, and others are installed jointly with the respective drainage pumping stations of Escolta, Balete and Sta. Banez. Width, height and gate numbers of these floodgates are shown in *Table E.4.10*.

	113 OF FIDOUGAICS
Name of Floodgate	Dimensions
Escolta	$4 \text{ m} \times 5.4 \text{ m} \times 2 \text{ gates}$
Uli-Uli	$1 m \times 1 m \times 4$ gates
Balete	$4 \text{ m} \times 4.9 \text{ m} \times 2 \text{ gates}$
Sante Banez	10 m ×5.5 m ×1 gate
Pandacan	$4 \text{ m} \times 4.8 \text{ m} \times 1 \text{ gate}$

 Table E.4.10
 Dimensions of Floodgates

On the other hand, there exist 5 control walls in the respective esteros of Tanque, Calatagan Creek II and III and Libertad channel in south Manila, and Maypajo in north Manila, as presented in *Figures E.4.1 and E.4.2*.


There is a control gate jointly equipped with small drainage pump in the south Antipolo creeks. Trash screens, automatic trash screens, are installed at inlet of outfalls along the Estero de Tripa de Gallina.

(3) Sewerage System

There are.3 sewerage systems in operation in Metropolitan Manila, all of which are separate collection systems under administration of Metropolitan Waterworks and Sewerage System (MWSS). *Figure E.4.5* shows locations of the respective services areas.

In 1997, operation and maintenance of the facilities was transferred to 2 private companies of Manila Water Company, Inc. (MWCI) and Maynilad Water Services, Inc (MWSI) in accordance with a 25-year concession contract. Total service area of the system is 45.6 km². The rest of the area not covered discharges its wastewater either to directly existing drainage systems or domestic septic tanks. Major dimensions of the above systems are summarized in *Table E.4.11*.

Aside from the above, there exist small community systems of Makati Pabahay (Makati City, for 480 house units), Valle Valde (Pasig City, 115 house units) and Karangalan Bio Module (Pasig City, 850 house units). The present system of the Central Manila is at the stage of rehabilitation under the Manila Second Sewerage Project assisted by IBRD Loan including Japanese Fund.

Source: Basic Study on Sewerage System Improvement in the Philippines, JICA, Sept. 2003

Figure E.4.5 Locations of Existing Sewerage Systems in Metropolitan Manila

Table E.4.11	Outline of Present Sewerage	Systems	in Metro	politan Manila
--------------	------------------------------------	----------------	----------	----------------

System	Service Area	System Covered Area (ha)	Population in Service (person)
Central Manila Sewerage System	Manila	2,620	520,000
Dagat-Dagatan Sewerage System	Caloocan, Malabon, Navotas, Manila	333	37,000
Makati Sewerage System	Makati	600	500,000
Quezon City Separate System	Quezon	1,000	200,000

Source: Basic Study on Sewerage System Improvement in the Philippines, JICA, Sept. 2003

E.4.3 DRAINAGE BASIN

(1) Sub-Basin

The total study area (72.57 km²) has been divided into 5 drainage blocks for North Manila (28.78 km²) and 6 drainage blocks for South Manila (43.79 km²). Each drainage block has again been divided into small drainage basins (pump and gravity drainage basins) and smaller sub-basins based on topography, laterals network, road network, channel connectivity, drainage facility etc. Drainage basin boundary of previous studies and sub-basin boundary of SEDLMM (2000) have been utilized in preparing drainage basin and sub-basin map of this study. In total, there are 7 and 8 pump drainage and 4 and 6 gravity drainage basins in North and South Manila drainage areas, respectively. Total number of sub-basins in North and South drainage areas is 72 and 120, respectively.

In addition, reach basins have been defined as catchment associated with a reach or branch of esteros or drainage mains, which are employed in runoff calculation.

Divisions of drainage blocks, drainage basins, reach basins and sub-basins for North and South Manila drainage areas are shown in *Figure E.4.6* and *Figure E.4.7*, respectively. Characteristics of the drainage blocks, drainage basins and sub-basins are presented in *Table E.4.12* and *Table E.4.13* for north and south drainage areas, respectively.

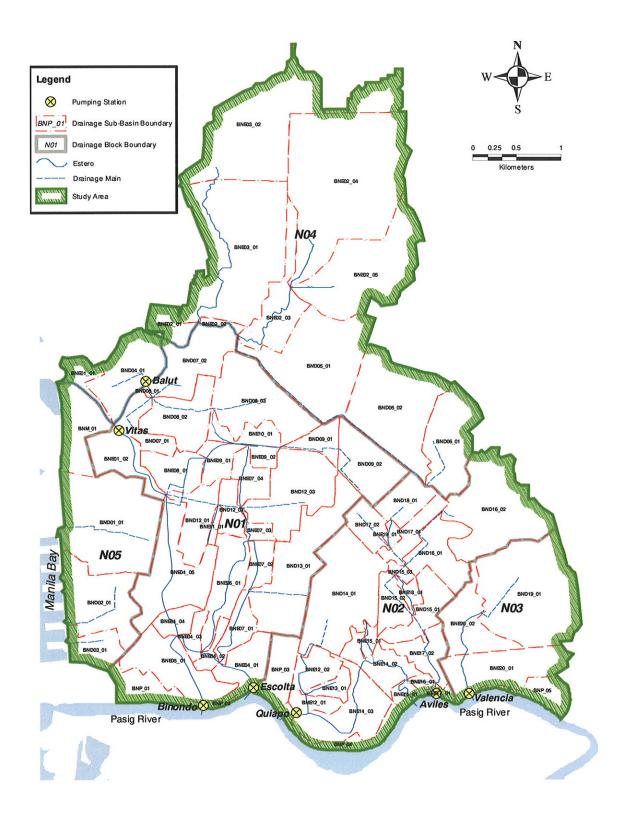


Figure E.4.6 Sub-Basins of North Drainage Area

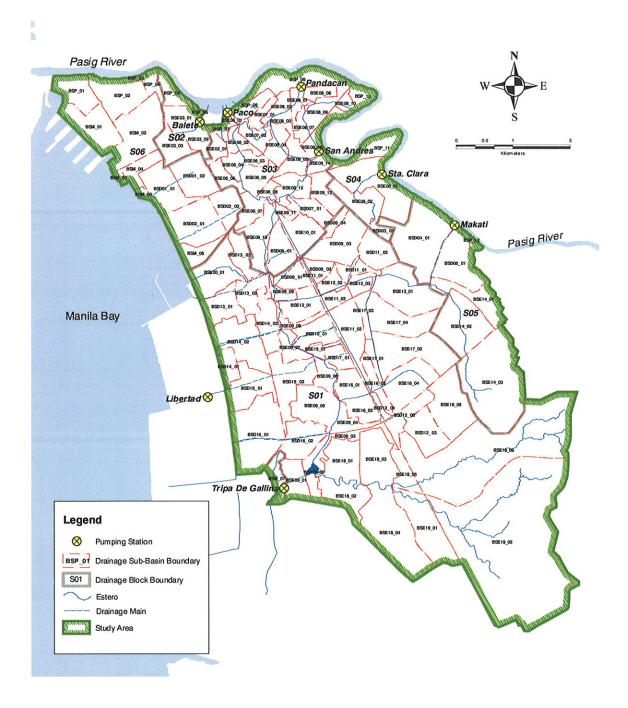


Figure E.4.7 Sub-Basins of South Drainage Area

	Drainas	e Block			Drainag	e Basin		Drai	nage Reach H	Basin	Drainage S	ub-Basin		Sub-Basin Cl	haracteristic	cs
Name	ID	Area	RO Coeff.	Name	ID	Area	RO Coeff.	ID	Area	RO Coeff.	ID	Area	Slope (%)		1 Elevation	
		(km ²)	С			(km ²)	С		(km ²)	С		(km ²)	Mean	Minimum	Mean	Maximum
								RND07_01	0.22	0.69	BND07_01	0.22	0.29	11.28	11.76	12.46
								RND07_02	0.49	0.79	BND07_02	0.49	0.81	11.48	12.37	14.27
								RND08_01	0.44	0.73	BND08_01	0.01	0.00	11.48	11.48	11.48
								KND08_01	0.44	0.75	BND08_02	0.43	0.24	11.48	12.14	12.68
								RND08_02	0.71	0.74	BND08_03	0.71	0.36	12.08	12.60	15.28
								RND09_01	0.59	0.74	BND09_01	0.16	0.48	12.08	12.64	14.02
								R(100)_01	0.57	0.74	BND09_02	0.43	0.31	12.08	12.67	13.71
								RND12_01	0.47	0.67	BND12_01	0.31	0.25	11.48	12.17	12.75
											BND12_02	0.16	0.25	11.87	12.22	12.48
				Vitas (P.S.)	N01_01	5.56	0.73	RND12_02	0.65	0.64	BND12_03	0.65	0.27	12.08	12.57	13.07
								RNE01_02	0.32	0.82	BNE01_02	0.32	0.60	11.48	12.05	13.28
								RNE04_03	0.70	0.79	BNE04_05	0.70	0.40	11.48	11.97	12.68
olta								RNE07_02	0.07	0.70	BNE07_03	0.07	0.17	12.08	12.46	12.68
3sci								RNE07_03	0.19	0.74	BNE07_04	0.19	0.13	11.99	12.28	12.51
Vitas-Binondo-Escolta								RNE08_01	0.27	0.74	BNE08_01	0.27	0.49	11.48	12.23	12.87
onc	N01	8.55	0.75					RNE09_01	0.25	0.75	BNE09_01	0.17	0.17	11.68	12.29	12.48
Bin											BNE09_02	0.08	0.29	12.08	12.34	12.64
as-]								RNE10_01	0.18	0.73	BNE10_01	0.18	0.17	12.06	12.34	12.68
Vit								RNE11_01	0.04	0.70	BNE11_01	0.04	0.07	11.87	12.06	12.15
								RND13_01	0.86	0.74	BND13_01	0.86	0.23	11.48	12.22	12.88
								DNE04 02	0.21	0.70	BNE04_02	0.08	0.39	11.48	11.79	12.27
								RNE04_02	0.31	0.78	BNE04_03	0.10	0.53	11.48	11.86	12.37
				Dince Ja							BNE04_04	0.13	0.29	11.48	11.72	12.39
				Binondo	N01_02	2.69	0.77	DATE OF OF	0.90	0.80	BNE05_01	0.51	0.52	10.48	12.11	13.07
				(P.S.)	-			RNE05_01	0.80	0.80	BNP_01 BNP_02	0.26	1.05	10.48 10.48	12.54 11.58	13.48 13.27
								RNE06 01	0.20	0.74						
								KINEU0_01	0.39	0.74	BNE06_01 BNE07 01	0.39	0.34 0.52	11.48 11.48	12.03	12.68 12.48
								RNE07_01	0.33	0.76	BNE07_01 BNE07_02	0.18	0.32	11.48	12.21	12.48
											BINE07_02	0.15	0.39	11.40	12.21	12.00
				Escolta	N01 03	0.30	0.79	RNE04_01	0.30	0.79	BNE04_01	0.30	0.46	10.48	11.90	13.48
				(P.S.)												
								RND14_01	0.93	0.72	BND14_01	0.93	0.31	11.48	12.18	12.97
											BNE12_01	0.11	0.49	10.75	11.91	12.88
				Ouisma				DNE12 01	0.76	0.75	BNE12_02	0.19	0.38	11.48	11.87	12.29
				Quiapo	N02_01	2.29	0.73	RNE12_01	0.70	0.75	BNP_03	0.26	0.48	10.48	12.12	13.48
				(P.S.)							BNP_04	0.19	0.89	10.48	11.76	12.63
								RNE13_01	0.10	0.71	BNE13_01	0.10	0.46	11.48	11.92	12.67
								RNE14_02	0.51	0.72	BNE14_03	0.51	0.56	10.49	11.88	12.88
											BND15_01	0.29	0.27	11.85	12.17	12.62
								RND15_01	0.51	0.61	BND15_02	0.19	0.23	11.87	12.26	12.68
les											BND15_03	0.04	0.24	11.87	12.00	12.22
Quiapo-Aviles								RND16_01	0.37	0.69	BND16_01	0.37	1.89	11.87	14.39	18.48
-0	N02	5.58	0.71					RND16_02	0.94	0.69	BND16_02	0.94	1.74	12.59	18.59	25.46
lia								RND17 01	0.38	0.74	BND17_01	0.19	1.05	12.05	13.05	18.79
õ								_			BND17_02	0.19	0.23	12.08	12.42	12.88
				Aviles (P.S.)	N02 02	3.28	0.70	RND18_01	0.24	0.74	BND18_01	0.24	0.65	11.88	12.58	14.81
								RNE14_01	0.35	0.74	BNE14_01	0.08	0.34	11.48	11.59	12.08
											BNE14_02	0.28	0.50	11.48	12.06	12.48
								RNE15_01	0.06	0.66	BNE15_01	0.06	0.19	11.85	12.30	12.47
								RNE16_01	0.04	0.76	BNE16_01	0.04	0.55	11.48	11.63	12.48
								RNE17_01	0.28	0.73	BNE17_01	0.04	1.07	11.48	12.21	13.27
									0.07	0.74	BNE17_02	0.24	0.45	11.48	12.13	12.67
								RNE18_01 RNE19_01	0.07	0.74 0.71	BNE18_01 BNE19_01	0.07	0.31 0.45	11.87 11.94	12.07 12.62	12.30 12.88
														11.94		
				Volennia				RND19_01	1.21	0.65	BND19_01	1.21	2.67		16.72 12.90	25.48
Valencia	N03	2.37	0.68	Valencia (P.S.)	N03_01	2.37	0.68	RNE20 01	1.16	0.71	BNE20_01 BNE20_02	0.56	1.27	11.48 11.48	12.90	22.48 18.48
70.				(r.s.)				KINE20_01	1.10	0.71	BNE20_02 BNP 05	0.41	1.27	11.48	13.06	18.48
								DNIDOS C1	1.06	0.47	_					
								RND05_01 RND05_02	1.06	0.47	BND05_01 BND05_02	1.06	1.73	11.71 12.48	18.22 16.80	24.48 22.12
												0.98				
alut								RND06_01	0.58	0.66	BND06_01 BNE01 01	0.58	2.95 7.28	12.48 11.48	18.53 17.26	24.48 45.48
mentrit-Balut								RNE01_01 RNE02_01		0.52	BNE01_01 BNE02_01	0.14	1.01	11.48	17.26	45.48
ntri				Maypajo-	N04 01	9.42	0.69	RNE02_01 RNE02_02	0.16	0.98	BNE02_01 BNE02_02	0.16	3.57	11.48	12.75	13.48
me	N04	0.02	0.69	Blumentrit	1104_01	7.42	0.09	KINEUZ_UZ	0.04	0.62		0.04	3.01	11.48	13.49	25.28
	N04	9.92	0.09					RNE02 03	3.44	0.68	BNE02_03 BNE02_04	1.99	1.10	11.48	27.28	34.48
l-oį.									2.44	0.00	BNE02_04 BNE02_05	1.99	1.10	15.48	27.28	31.48
y pa										-	BNE02_03 BNE03_01	1.01	1.30	13.32	18.58	25.48
Maypajo-Blu								RNE03_01	3.02	0.75	BNE03_01 BNE03_02	1.37	1.73	17.48	26.11	33.91
~											511203_02	1.40	1.00	17.40	20.11	55.71
				Balut (P.S.)	N04_02	0.49	0.79	RND04_01	0.49	0.79	BND04_01	0.49	0.37	11.28	11.70	13.55
								RND01 01	1.12	0.02	BND01 01	1.13	0.36	11.56	12.51	13.68
North Harbor				North				RND01_01 RND02_01	0.62	0.83	BND01_01 BND02_01	0.62	0.36	11.56	12.51	13.68
in Hai.	N05	2.37	0.80	North Harbor	N05_01	2.37	0.80	RND02_01 RND03_01	0.62	0.81	BND02_01 BND03_01	0.62	0.39	11.71 12.27	12.64	13.48
North				114(00)				RNM 01	0.23	0.79	BND05_01 BNM 01	0.23	0.41	12.27	12.95	15.48
Tota	1	28.78	0.72			28.78	0.72	01	28.78	0.08	51101_01	28.78	0.77	11.40	12.30	1.5.40
	aı	20.78	0.72			∠0./ð	0.72		∠o./ð	0.72		∠o./ð	1	1		1

 Table E.4.12
 Sub-Basin for North Drainage Area

Source: 1/5,000 scale GIS map

	Draina	age Block			Drainage	Basin		Drai	nage Reach I	Basin	Drainage S	ub-Basin	S	Sub-Basin Ch	naracteristi	cs			
Name	ID	Area	RO Coeff.	Name	ID	Area	RO Coeff.	ID	Area	RO Coeff.	ID	Area	Slope (%)	Ground	Elevation	(EL. m)			
		(km ²)	С			(km ²)	С	1	(km ²)	С	BSD12_01	(km ²) 0.06	Mean 0.69	Minimum 14.28	Mean 15.67	Maximum 16.23			
								RSD12_01	0.72	0.73	BSD12 02	0.26	3.05	10.48	17.23	21.90			
								RSE09 01	0.28	0.62	BSD12_03 BSE09_01	0.39 0.28	1.18 0.63	17.63 11.48	21.05	26.17 13.47			
								RSE09 02	0.44	0.72	BSE09 02	0.31	1.00	11.48	13.02	17.27			
									0.66	0.77	BSE09_03 BSE09_04	0.13 0.18	0.62	11.48 11.48	14.25 13.32	17.48 15.06			
								RSE09_03	0.66	0.77	BSE09_05	0.48	0.35	11.48	13.10	13.48			
								RSE13_01	0.72		BSE13_01 BSE16_01	0.72 0.24	1.05	14.41 11.48	17.60 13.24	21.48 14.06			
								RSE16_01	0.64		BSE16 02	0.23	0.88	11.48	13.90	15.61			
				Tripa de							BSE16_03 BSE16_04	0.18 0.54	0.86	11.48 10.48	14.51 17.19	16.83 24.48			
				Gallina (P.S.)	S01_01	17.05	0.62	RSE16_02	1.21	0.69	BSE16_05	0.66	1.49	19.67	25.24	30.48			
											BSE17_01 BSE17_02	0.09 0.77	0.94	11.48 12.22	13.88 18.40	14.63 29.48			
								RSE17_01	1.55	0.75	BSE17 03	0.13	0.69	13.42	14.14	14.67			
											BSE17_04 BSE18_01	0.55 0.44	0.82	14.23 11.48	17.30	21.48 13.27			
								RSE18 01	2.50		BSE18 02	0.41	1.52	11.48	14.37	20.30			
									2.50	0.05	BSE18_03 BSE18_04	0.55	0.78	11.48 11.48	13.90 19.44	16.48 28.48			
								RSE18 02	2.94	0.56	BSE18 05	0.21	3.53	11.48	15.55	22.37			
an 19											BSE18_06 BSE19_01	2.72 0.69	4.06	15.39 10.48	28.10 20.42	48.48 30.48			
Galli								RSE19_01	5.40	0.53	BSE19_02	4.71	3.89	15.68	29.56	45.48			
i de o								RSD09_01	0.22	0.71	BSD09_01 BSD09_02	0.22 0.14	0.32	12.61 12.68	12.97 13.02	13.48 13.17			
Trips	S01	25.96	0.66					RSD09_02	0.79	0.72	BSD09 03	0.55	0.12	12.87	13.36	13.66			
rtad-								RSD10 01	0.32		BSD09_04 BSD10_01	0.10	0.10	13.16 11.48	13.49	13.64 13.68			
Libertad-Tripa de Gallina								RSD10_01 RSD11_01	0.32	0.69	BSD11 01	0.15	0.20	13.13	13.63	14.96			
									0.77	0.07	BSD11_02 BSD14_01	0.34 0.19	0.49 0.28	13.48 12.48	14.52 13.02	16.81 13.36			
								RSD14_01	1.14	0.76	BSD14 02	0.61	0.32	12.09	13.08	14.23			
											BSD14_03 BSD15_01	0.34 0.45	0.30 0.26	12.20 11.48	12.94 13.29	13.77 13.68			
								RSD15_01	1.01	0.78	BSD15_02	0.56	0.12	12.71	13.30	13.48			
				Libertad (P.S.)	S01_02	7.48	0.75	RSD16_01	1.38	0.76	BSD16_01	0.98 0.40	0.29	11.48 12.27	13.21 13.23	13.88			
				(r.s.)				RSD17_01	0.16	0.79	BSD16_02 BSD17_01	0.16	0.26	12.56	13.12	13.68 13.81			
								RSE09_04 RSE09_05	0.19 0.19	0.78 0.77	BSE09_06 BSE09_07	0.19 0.19	1.25 0.87	11.48 11.48	12.99 12.91	13.48 13.88			
								RSE09_05 RSE09_06	0.19	0.69	BSE09_07 BSE09_08	0.19	0.87	12.68	12.91	13.88			
								RSE09_07	0.11	0.71	BSE09_09	0.11	0.23	12.48	12.73	13.10			
								RSE11_01 RSE11_02	0.04 0.14	0.75 0.80	BSE11_01 BSE11_02	0.04 0.14	0.31 0.33	12.75 12.48	13.04 13.22	13.41 13.68			
								RSE11_03	0.50	0.80	BSE11_03	0.50	0.35	11.48	13.45	14.33			
								BSE12_01	0.32	0.70	BSE12_01 BSE12_02	0.32 0.14	0.22 0.23	12.68 12.88	12.97 13.12	13.97 13.47			
								RSE12_02	0.28	0.74	BSE12_03	0.14	0.40	13.07	13.79	14.48			
								RSE15_01 RSD13_01	0.09 0.36	0.76	BSE15_01 BSD13_01	0.09 0.36	0.99 0.26	11.48 12.48	12.74	13.48 13.48			
				VitoCruz	S01 03	1.43	0.69	RSD13 02	0.53		BSD13_02	0.28	0.28	12.29	12.69	13.08			
					_			RSE20 01	0.55		BSD13_03 BSE20_01	0.25 0.55	0.24 0.20	12.27	12.50 12.63	12.88 13.23			
											BSE03_01	0.25	0.34	10.48	12.25	13.07			
Balete	S02	0.94	0.64	Balete	S02_01	0.94	0.64	RSE03 01	0.94		BSE03_02 BSE03_03	0.19 0.29	0.45	11.48 10.48	12.65 12.57	14.27 14.07			
Ban	502	0.51	0.01	(P.S.)	502_01	0.71	0.01	10205_01	0.91		BSP_05	0.19	1.05	10.65	12.29	15.28			
											BSP_06 BSE02_01	0.03	0.88	11.48 12.18	11.88	12.63			
								RSE02_01	0.21	0.69	BSE02_01 BSP_07	0.13	0.48	12.18	13.21	14.27 13.48			
								RSE04_01	0.19	0.52	BSP_08	0.19	0.38	11.48	12.88	13.48			
				Paco (P.S.)				RSE06_01	0.04	0.73	BSE06_01 BSE06_02	0.04 0.16	0.51	11.48 11.48	12.10 12.23	12.27 12.59			
					S03_01	1.74	0.71				BSE06 03	0.10	0.40	11.48	12.44	12.68			
					_			RSE06_02	1.01	0.75	BSE06_04 BSE06_05	0.13 0.25	0.44 0.65	11.48 11.48	12.49 12.62	13.04 13.58			
											BSE06 06	0.16	0.50	11.48	12.95	14.27			
								DEF07 01	0.20	0.60	BSE06_07 BSE07_01	0.21 0.11	0.52	11.48 11.48	12.75 12.50	13.48 13.27			
s								RSE07_01	0.30	0.69	BSE07_02	0.19	0.94	11.48	12.17	12.68			
ndre				Pandacan (P.S.)							BGEOG OI	0.01	0.60	BSE08_01 BSE08_02	0.13	0.96	11.48	12.15	12.48
an A								02 1.15	0.63	RSE08_01	0.91	0.60	BSE08 03	0.13	0.49	11.48	12.54	13.92	
an-S	S03	6.12	0.70				0.63	RSE08 02	0.23	0.74	BSP_09 BSE08_04	0.56 0.23	0.59	12.27 11.48	13.18 12.88	14.27 13.41			
Paco-Pandacan-San Andres								RSD07_01	0.23	0.73	BSD07_01	0.23	0.36	11.48	13.45	14.28			
o-Pa								RSD08_01 RSE06_03	0.32		BSD08_01 BSE06_08	0.32	0.27	11.48	12.65	14.27 14.48			
Pac								RSE08 03	0.24		BSE08 05	0.24	0.84	12.68	13.38	14.27			
											BSE08_06 BSE08_07	0.21 0.10	0.72	12.27 11.48	12.57 13.01	13.07 13.88			
								RSE08 04	0.87	0.70	BSE08 08	0.12	0.21	11.48	13.04	15.28			
				San Andres (P.S.)	S03_03	3.23	0.72		,		BSE08_09 BSE08_10	0.21 0.08	0.80	11.48 11.33	12.98 12.56	13.48 13.44			
				(1.0.)							BSP_10	0.14	0.61	11.48	12.59	13.20			
								RSE09_08	0.47	0.75	BSE09 10 BSE09 11	0.40	0.31 0.83	12.27 11.48	12.70 12.60	13.07 13.27			
											BSE09_12	0.28	0.76	11.48	12.82	13.27			
								RSE09_09	0.67		BSE09 13 BSE09 14	0.26 0.13	0.35	12.63 11.48	13.43 12.98	14.28 13.48			
								RSE10_01	0.35	0.70	BSE10_01	0.35	0.30	11.99	12.98	13.68			
ø				Sta Clara				RSD03_01	0.09	0.70	BSD03_01 BSE05_01	0.09	0.27	13.48	13.83	14.64			
Sta. Clara	S04	1.57	0.63	Sta. Clara (P.S.)	S04_01	1.57	0.63	RSE05_01	1.48	0.63	BSE05_01 BSE05_02	0.77 0.39	0.59 0.32	10.48 12.43	13.04 13.27	13.88 13.88			
2.								_			BSP_11	0.33	0.93	11.48	13.17	13.68			
				Makati (P.S.)	S05_01	1.65	0.68	RSD04_01	1.00		BSD04_01 BSD05_01	1.00 0.59	1.04 2.00	11.48 13.07	14.49 19.02	19.48 29.48			
Makati	S05	4.31	0.63					RSD05_01	0.65	0.72	BSP_12	0.06	3.38	20.48	31.46	44.48			
Ma				Upper	S05 02	2.66	0.60	RSE14 01	2.66	0.60	BSE14_01 BSE14_02	0.40 0.74	1.93	12.48 16.48	14.84 24.19	20.80 33.48			
				Calatagan		2.00	0.00		2.00		BSE14_03	1.52	3.03	18.48	22.31	29.99			
								RSD01_01	0.93	0.76	BSD01_01	0.48	0.27	11.48	12.90	13.27			
											BSD01_02 BSD02_01	0.46	0.29 0.46	12.48 11.48	12.82 12.87	13.48 13.68			
ers								RSD02_01	0.92	0.74	BSD02_02	0.28	0.29	12.08	12.67	13.27			
10th				South Harbor	S06_01	3.66	0.64	RSM_01 RSM_02	0.53 0.75	0.56 0.47	BSM_01 BSM_02	0.53	0.30	10.49 10.48	12.54 13.14	13.52 18.48			
South Harbor and Others	007	4.05						RSM_03	0.03	0.33	BSM_03	0.03	1.46	10.51	12.07	13.07			
arboi	S06	4.90	0.64					RSM 04 RSM 05	0.21 0.05	0.41 0.71	BSM 04 BSM 05	0.21 0.05	0.80	10.48 11.43	12.89 11.94	14.27 12.49			
Ч Ц				L				RSM_06	0.23	0.78	BSM_06	0.23	0.28	11.94	12.73	13.07			
Sou					001			RSP 01 RSP 02	0.36	0.62	BSP 01 BSP 02	0.36	0.83	10.49 10.67	12.54 13.47	17.28 19.28			
				Pasig South	S06_02	1.03	0.58	RSP_03	0.03	0.66	BSP_03	0.03	2.17	11.49	12.10	13.27			
				Paranaque	S06 03	0.20	0.78	RSP_04 RSM_07	0.12 0.20	0.38 0.78	BSP_04 BSM_07	0.12 0.20	1.05 0.81	11.29 11.48	12.60	14.27 13.48			
To	tal	43.79	0.66	- munaque		43.79	0.66		43.79	0.66		43.79	0.01						
_							-						_						

Table E.4.13 Sub-Basin for South Drainage Area

Source: 1/5,000 scale GIS map

(2) Existing Land Use and Runoff Coefficient

Landuse map prepared by MMEIRS (2004) using aerial photo is the landuse map of 2003 and will be used as existing landuse map by the Study. As presented in *Table E.4.14*, original landuse map of MMEIRS (2004) has been reclassified by the Study to reduce the number of landuse class for ease of analysis. Reclassified landuse map is shown in *Figure E.4.8*. After reviewing previous studies, manuals and books, runoff coefficient by different landuse class has been assigned by this study and is presented in *Table E.4.14*.

Landuse areas by sub-basins have been extracted for north and south drainage areas. Utilizing assigned runoff coefficient by landuse class (*Table E.4.14*), runoff coefficient for each sub-basin has been computed for north and south drainage areas and is presented in *Table E.4.12* and *Table E.4.13*, respectively.

Summary on land use and runoff coefficient for the total study area is presented in *Table E.4.15* and *Table E.4.16*, respectively.

The findings on landuse are as follows:

- Of the total study area, urban area comprises 33% in the north and 47% in the south drainage areas with a total of 80%.
- Of the total study area, non-urban area comprises 6% in the north and 14% in the south drainage areas with a total of 20%.
- Within urban area, residential area comprises 25% in the north and 35% in the south drainage areas with a total of 60%.
- Within urban area, informal settlers comprise 0.7% in the north and 0.5% in the south drainage areas with a total of 1%.
- Within urban area, commercial-industrial-institutional area comprises 16% in the north and 23% in the south drainage areas with a total of 39%.

The findings on runoff coefficient are as follows:

- For the total study area, runoff coefficient is calculated at 0.68. SEDLMM (2000) applied a little bit higher runoff coefficient (0.70) for the entire study area without making any calculation using landuse map.
- Runoff coefficient for the north and south drainage areas are 0.72 and 0.66, respectively.
- Runoff coefficient of the north drainage blocks vary from 0.68 (N03) to 0.80 (N05) and that of the south drainage blocks vary from 0.63 (S04, S05 and S06) to 0.70 (S03).

A comparison has been made between areas and runoff coefficients of pump drainage basins calculated by this study and that of previous studies, which is presented in *Table E.4.17*. There is no big change in pump drainage areas as calculated by this study using GIS database. However, there is increase in runoff coefficient, which is summarized in *Table E.4.18*. In the North Manila drainage area, maximum and minimum increases in runoff coefficient from original (1970s) runoff coefficient are at Balete (23%) and Pandacan (4%) pump drainage basins and that in the South Manila drainage area are at Binondo-Escolta (20%) and Valencia (16%) pump drainage basins.

Original Landuse Classification by		Reclassified Landuse by the	the		Applied		Runoff Coet	Runoff Coefficient used by Other Studies	Other Studies		RunoffCo	Runoff Coefficient in
JICA MMEIRS 2004		Present JICA Study, 2004)4		Runoff Coeff.	(JIC	A 2000 Study us	ed uniform Run	(JICA 2000 Study used uniform Runoff Coefficient of 0.70)	70)	Manual	Manual & Book
Name Class	ss	Name	Class	Group	С	DPWH 2002	DPWH 1998	JICA 1990	MPWH 1987	BPW 1974	A.S.C.E.	V.T. C. 1988
Very Low Res Dens 1-2 Storey VL-1	-1											
Very Low Res Dens 3-4 Storey VL-2	-2 Very Lov	Very Low Density Residential	VLR		0.35	0.35				0.35	0.25 - 0.40	
Very Low Res Dens >5 Storey VL-3	د <u>-</u>											
Low Res Dens 1-2 Storey L-1	н											
Low Res Dens 3-4 Storey L-2		Low Density Residential	LR		0.60	0.50	0.60	0.50	0.50	0.40	0.50 -0.80	
Low Res Dens >5 Storey Low Res Dens >5 Storey	3											
Medium Res Dens 1-2 Storey M-1	1			I								
Medium Res Dens 3-4 Storey M-2		Medium Density Residential	MR		0.70	0.65	0.65	0.65	0.65	09.0	0.25 - 0.75	
Medium Res Dens >5 Storey M- 3	3			e					1			
High Res Dens 1-2 Storey H-1				91A								
High Res Dens 3-4 Storey H-2		High Density Residential	HR	ue,	0.80		0.70	0.80	0.80		0.60 - 0.90	
High Res Dens >5 Storey H-3	3			lrb					1			
Very High Res Dens 1-2 Storey V-1	Т			1								
Very High Res Dens 3-4 Storey V-2		Very High Density Residential	VHR		0.90						0.70 - 0.95	
Very High Res Dens >5 Storey V-3	3											
Informal Settlers S	Informal Settlers	Settlers	IS		0.70							
Commercial & Business 2		Commercial & Business	CB		0.80	0.80			0.60, 0.75, 0.90	0.75	0.50 - 0.90	
Industrial 3	Industrial	1	IN		0.65	0.65	0.65	0.65	0.35, 0.50, 0.65	0.65, 0.75	0.50 - 0.90	
Government & Quasi-Public 4		Government & Quasi-Public	GР		0.70							
Educational & Cultural 5		Educational & Cultural	БC		0.70				0.35, 0.50			
Health & Welfare 6		Health & Welfare	HW	L	0.70							
Park & Recreational 7		Park & Recreational	PR		0.30	0.05 - 0.25	0.45	0.35	0.35	0.20	0.10 - 0.25	
Religious & Cemetary 8		Religious & Cemetary	RC		0.40		0.45	0.35	0.35 - 0.50	0.20	0.10 - 0.25	
Transport & Service Facilities 9		Transport & Service Facilities	TS	1	0.30						0.20 -0.40	
Military 10	0 Military		IM	1.69	0.40		0.45	0.35				
Agricultural Land 11		Agricultural Land	AG	V u	0.30		0.10, 0.30	0.10, 0.30				0.31 - 0.36
Grassland 12	2 Grassland	d	GR	ıpaı	0.25						0.10 - 0.40	0.25 - 0.30
Forestland 13	3 Forestland	pt	FO	-U-I	0.30	0.20 - 0.40						0.22 - 0.36
Open Spaces 15	5 Open Spaces	aces	OS	lov	0.25	0.10 - 0.30			0.35 - 0.50		0.10 - 0.30	0.10 - 0.30
Water Related 14	4 Water Body	whe	ЦM	I	1 00							
Water Bodies 16		60)	2		00.1							
	Other Im	Other Impervious Area	IA		0.80	0.75 - 0.85						
			1									

Table E.4.14 Runoff Coefficient by Landuse

JICA MMEIRS 2004: Earthquake Impact Reduction Study for Metropolitan Manila, Republic of the Philippines, 2004 DPWH 2002: Technical Standards and Guidelines for Planning and Design, Volume II, Urban Drainage, 2002 DPWH 1998: The Study on Flood Control and Drainage System Improvement for Kalookan-Malabon-Navotas-Valenzuela KAMANAVA) Areas, 1998

JICA 1990: The Study on Flood Control and Drainage Project in Metro Manila, 1990 MPWH 1987: Drainage Improvement Plans of Estero de Vitas and Other Catchment Areas, Supplementary Study Report of the Vitas Catchment Area Drainage Improvement Plan, 1987 BPW 1974: Technical Report on Engineering Design for Drainage Pumping Stations and Floodgates, 1974

A.S.C.E. : American Society of Civili Engineers

V. T. Chow 1988: Applied Hydrology, McGraw-Hill Book Co., 1988

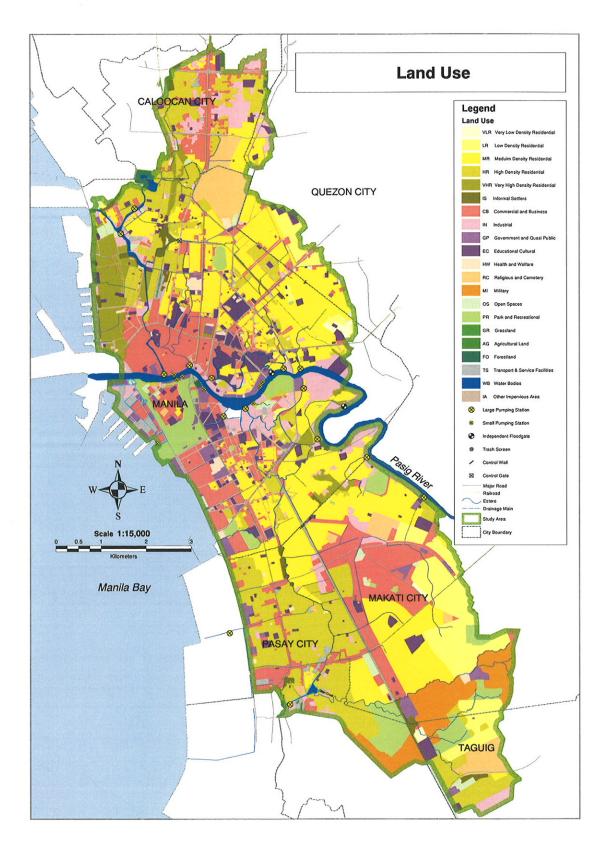


Figure E.4.8 Existing Landuse Map (2003)

Source: Estimated using JICA MMEIRS 2003 lnaduse data

	۶÷								
	RO Coeff.	С	0.66	0.64	0.70	0.63	0.63	0.64	0.66
	Area	(km^2)	25.96	0.94	6.12	1.57	4.31	4.90	43.79
Area		D	S01	S02	S03	S04	S05	S06	
South Drainage Area	Drainage Block	Name	Libertad-Tripa de Gallina	Balete	Paco-Pandacan-San Andres	Sta. Clara	Makati	South Harbor and Others	Total
	RO Coeff.	С	0.75	0.71	0.68	0.69	0.80		0.72
	Area	(km^2)	8.55	5.58	2.37	9.92	2.37		28.78
nage Area		IJ	N01	N02	N03	N04	N05		
North Drainage Area	Drainage Block	Name	Vitas-Binondo-Escolta	Quiapo-Aviles	Valencia	Maypajo-Blumentrit-Balut	North Harbor		Total

Table E.4.16 Summary of Runoff Coefficient of the Study Area

Source: Extracted by this Study from JICA MMEIRS 2003 GIS landuse map

Reclassified Landuse by this Study	Area (km ²)		_	South Draiange	South Draiange Area	South Draiange Area 0.13	South Draiange Area 0.13 3.82	South Draiange Area 0.13 3.82 9.10	South Draiange Area 0.13 3.82 9.10 7.07	South Draiange Area 0.13 3.82 9.10 7.07 0.37	South Draiange Area 0.13 9.10 9.10 0.37 0.30	South Draiange Area 0.13 3.82 9.10 9.10 7.07 0.37 0.37 0.30	South Draiange Area 0.13 3.82 9.10 7.10 0.37 0.37 0.30 7.18 7.18 2.81	South Draiange Area 0.13 3.82 9.10 9.10 7.07 0.37 0.30 7.18 7.18 7.18	South Draiange Area 0.13 3.82 9.10 9.10 7.07 0.37 0.37 0.30 7.18 7.18 7.18 7.18 7.18 7.18 7.18 7.18	South Draiange Area 0.13 9.10 9.10 9.10 7.07 7.07 7.07 7.18 7.18 7.18 7.18 7.18 7.18 7.18 7.1	South Draiange Area 0.13 9.10 9.10 9.10 7.07 7.07 7.07 7.18 7.18 7.18 7.18 7.18 7.18 7.18 7.1	South Draiange Area 0.13 9.10 9.10 9.10 7.07 0.37 0.37 0.30 7.18 7.18 7.18 7.18 7.18 7.18 7.33 0.30 1.37 0.20	South Draiange Area 0.13 9.10 9.10 9.10 7.07 0.37 0.33 7.18 7.18 7.18 7.18 7.18 7.18 7.18 7.18	South Draiange Area 0.13 9.10 9.10 7.07 7.07 0.37 0.37 1.45 1.45 1.45 1.45 1.37 0.20 0.20 3.33 3.33 2.54	South Draiange Area 0.13 3.82 9.10 7.18 7.18 7.18 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	South Draiange Area 0.13 3.82 9.10 7.07 0.37 0.37 0.37 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.37 0.20 0.20 0.20 0.20 0.00 0.00	South Draiange Area 0.13 3.82 9.10 7.07 0.37 0.37 0.37 0.37 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45	South Draiange Area 0.13 3.82 9.10 7.07 0.37 0.37 0.37 0.37 1.45 1.45 1.45 1.45 1.45 1.45 1.25 0.20 0.20 0.00 0.00 0.00	South Draiange Area 0.13 3.82 9.10 7.18 7.18 7.18 7.18 7.18 7.18 7.18 7.18	South Draiange Area 0.13 3.82 9.10 7.18 0.37 0.37 0.37 0.37 0.33 1.45 1.45 1.45 1.45 1.37 0.20 0.20 0.00 0.00 0.00 0.00 0.02 0.039 0.39
	+	North		e		Draiange Area 0.13	Draiange Area 0.13 0.80	Draiange Area 0.13 0.80 7.65	Draiange Area 0.13 0.80 7.65 4.02	Draiange Area 0.13 0.80 0.80 7.65 1 1.83	Draiange Area 0.13 0.80 0.80 7.65 1 1.83 0.38	Draiange Area Area 0.13 0.80 0.80 7.65 1 1.83 0.38 0.38 4.44	Draiange Area Area 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 1 1.33 0.38 0.38 0.38 2.04	Draiange Area Area 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.32 0.32	Draiange Area Area 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.20 2.04 0.32 0.32 2.10	Draiange Area Area 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 1 1.4.02 1 1.83 0.38 0.38 0.32 2.10 0.30	Draiange Area Area 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.20 0.38 0.32 0.32 0.30 0.30 0.30 0.30 0.15 0.15	Draiange Area Area 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 7.65 1 1.83 0.38 0.38 0.38 0.30 0.30 0.30 0.30 0.15 0.15 1.47	Draiange Area Area 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 1 1.65 1.1 1.83 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.39 0.30 0.15 0.27 0.27	Draiange Area Area Area 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.144 2.04 0.32 2.04 0.33 0.15 0.15 0.27 0.27 0.00	Draiange Area Area 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.38 0.38 0.38 0.38 0.38 0.38 0.144 2.04 0.33 0.33 0.15 0.15 0.15 0.15 0.000 0.000	Draiange Area Area 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.38 0.38 0.38 0.38 0.38 0.38 0.144 2.044 0.332 2.044 0.332 2.10 0.332 2.10 0.155 1.47 0.157 0.000 0.000	Draiange Area Area 0.13 0.13 0.13 0.80 0.81 0.81 0.82 0.83 0.84 1 1.65 1.65 1.83 0.80 0.30 0.32 0.32 0.32 0.32 0.32 0.15 1.47 0.15 0.15 0.15 0.15 0.15 0.00 0.00 0.00	Draiange Area Area 0.13 0.13 0.13 0.80 0.81 0.81 0.82 0.83 1 1.83 0.13 0.13 0.30 0.32 0.32 0.32 0.32 0.32 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.000 0.000 0.000 0.000 0.000	Draiange Area Area 0.13 0.13 0.13 0.80 0.81 0.81 0.82 0.83 1 1.83 0.13 0.13 0.80 0.32 0.32 0.32 0.32 0.32 0.15 0.15 0.15 0.15 0.000 0.000 0.000 0.000 0.030 0.051 0.051	Draiange Area Area 0.13 0.13 0.13 0.13 0.80 0.80 0.81 0.81 0.82 1 1 1.65 1.65 2.04 0.32 0.32 0.33 0.32 0.33 0.30 0.30 0.000 0.000 0.000 0.000 0.000 0.051 0.51 2.08
Name						Very Low Density Residential	Very Low Density Residential Low Density Residential	Very Low Density Residential Low Density Residential Medium Density Residential	Very Low Density Residential Low Density Residential Medium Density Residential High Density Residential	Very Low Density Residential Low Density Residential Medium Density Residential High Density Residential Very High Density Residential	Very Low Density Residential Low Density Residential Medium Density Residential High Density Residential Very High Density Residential Informal Settlers	Very Low Density Residential Low Density Residential Medium Density Residential High Density Residential Very High Density Residential Informal Settlers Commercial & Business	Very Low Density Residential Low Density Residential Medium Density Residential High Density Residential Very High Density Residential Informal Settlers Commercial & Business Industrial	Very Low Density Residential Low Density Residential Medium Density Residential High Density Residential Very High Density Residential Informal Settlers Commercial & Business Industrial Government & Quasi-Public	Very Low Density Residential Low Density Residential Medium Density Residential High Density Residential Very High Density Residential Informal Settlers Informal Settlers Industrial Government & Quasi-Public Educational & Cultural	Very Low Density Residential Low Density Residential Medium Density Residential High Density Residential Very High Density Residential Informal Settlers Informal Settlers Commercial & Business Industrial Government & Quasi-Public Educational & Cultural Health & Welfare	Very Low Density Residential Low Density Residential Medium Density Residential High Density Residential Very High Density Residential Informal Settlers Informal Settlers Industrial & Quasi-Public Government & Quasi-Public Educational & Cultural Health & Welfare Park & Recreational	Very Low Density Residential Low Density Residential Medium Density Residential High Density Residential Very High Density Residential Informal Settlers Commercial & Business Industrial Government & Quasi-Public Educational & Cultural Health & Welfare Park & Recreational Religious & Cemetary	Very Low Density Residential Low Density Residential Medium Density Residential High Density Residential Very High Density Residential Informal Settlers Commercial & Business Commercial & Business Industrial Guotarinal & Cultural Health & Welfare Park & Recreational Religious & Cemetary Transport & Service Facilities	Very Low Density Residential Low Density Residential Medium Density Residential High Density Residential Very High Density Residential Informal Settlers Commercial & Business Industrial Government & Quasi-Public Educational & Cultural Health & Welfare Park & Recreational Religious & Cenetary Transport & Service Facilities Military	Very Low Density Residential Low Density Residential Medium Density Residential High Density Residential Very High Density Residential Informal Settlers Commercial & Business Industrial Educational & Cultural Health & Welfare Park & Recreational Religious & Cemetary Transport & Service Facilities Military Agricultural Land	Very Low Density Residential Low Density Residential Medium Density Residential High Density Residential Very High Density Residential Informal Settlers Commercial & Business Industrial Commercial & Business Industrial Educational & Cultural Health & Welfare Accentary Transport & Service Facilities Military Agricultural Land Grassland	Very Low Density Residential Low Density Residential Medium Density Residential High Density Residential Very High Density Residential Informal Settlers Commercial & Business Industrial Covernment & Quasi-Public Government & Quasi-Public Government & Cultural Health & Welfare Para & Recreational Religious & Cemetary Transport & Service Facilities Military Agricultural Land Grassland Forestland	Very Low Density Residential Low Density Residential High Density Residential High Density Residential Very High Density Residential Normal Settlers Commercial & Business Industrial Government & Quasi-Public Educational & Cultural Health & Welfare Park & Recreational Religious & Cenetary Transport & Service Facilities Military Agricultural Land Grassland Forestland	Very Low Density Residential Low Density Residential High Density Residential High Density Residential Nerry High Density Residential Nerry High Density Residential Commercial & Business Industrial Government & Quasi-Public Educational & Cultural Health & Welfare Park & Recreational Religious & Cuntural Religious & Cuntural Religious & Service Facilities Miltary Transport & Service Facilities Miltary Open Spaces Water Body	Very Low Density Residential Low Density Residential Medium Density Residential High Density Residential Very High Density Residential Very High Density Residential Commercial & Business Industrial Government & Quasi-Public Educational & Cultural Health & Welfare Park & Recreational Religious & Cemetary Transport & Service Facilities Military Agricultural Land Grestland Forestland Open Spaces Water Body Other Impervious Area
Study Area	Study Area					Very	Very	Very Low J 34.92 Mediu																		
<u>ا</u> ري				Area				20.48																		
		North	e.	Area	-			14.43	14.43	14.43	14.43 0.38	14.43	0.38	14.43 0.38 9.19	0.38	14.43 0.38 9.19	0.38	9.19	9.19	9.19	9.19	9.19	9.19	9.19	9.19	9.19
Name						ľ	laita	Isitnəbi	lsitnəbizə\$	lsitnəbizə A	Informal Settlers	ıl, Baran Residential Salar Alexidential	rcial, al & B onal & S international	mercial, strial & wuional I	nammercial, adustrial & sectorial & secto	Commercial, Industrial & Institutional & E	Commercial, Industrial & Institutional & E S E S E S E S E S E S E S E S E S E	Commercial, Industrial & Residential Institutional	Commercial, Industrial & Institutional & Etter S & S & S & S & S & S & S & S & S &	Commercial, Industrial & Residential Institutional	Commercial, Industrial & Institutional	Commercial, Industrial & Institutional	Commercial, Industrial & Institutional	Commercial, Industrial & Institutional	Commercial, Industrial & Institutional	Commercial, Industrial & Institutional
		Study Area									57.80	57.80	57.80	57.80	57.80	57.80	57.80	57.80	57.80	57.80	57.80	57.80	57.80	57.80	57.80	57.80
Area (km ²)	(mm) man 1			Area							33.79	33.79	33.79	33.79	33.79	33.79	33.79	33.79	33.79	33.79	33.79	33.79	33.79	33.79	33.79	33.79
A		North	a	Area							24.01	24.01	24.01	24.01	24.01	24.01	24.01	24.01	24.01	24.01	24.01	24.01	24.01	24.01	24.01	24.01
Ż	Name								u	edī	n								uv	փՈ	l-nc	'n		-		

Table E.4.15 Summary of Landuse in the Study Area

Drainage Area	леа	Drainage Block	e Block	Pump	Presen	Present Study	JICA 20	2000	JCI 1999		EA Nov.	.1995 P	PEA Nov. 1995 PEA Mar. 1995		DPWH 1990		PCI 1988		MPWH 1986*		MPWH 1984	BPW 1978	1978	BPW 1974	1974
\triangleleft	Area	Ð	Area	Drainage	Area	Area Runoff	Area Runoff		Area R	Runoff /	Area R	Runoff	Area Rı	Runoff AI	Area Ru	Runoff A	Area Runoff		Area Runoff	off Area	a Runoff	Area	Runoff	Area	Runoff
	(ha)		(ha)	Basin	(ha)	(ha) Coeff.	(ha) Co	Coeff.	(ha) Coeff.	Coeff.	(ha) C	Coeff.	(ha) Coeff.		(ha) Coeff.		(ha) Coeff.	I	(ha) Coeff.	ff. (ha)	() Coeff.	(ha) Coeff.	Coeff.	(ha) Coeff.	Coeff.
1				Vitas	556	0.74	493	0.70		-	-	-			578	0.75	542		542 0	0.80					
		N01	855	855 Binondo	269	0.77	212	02.0	020						000		020	0 64	204	5 200	020	020	0.64	020	0.7.0
				Escolta	30	0.79	710	00	617						767						613	617	+0.0	617	00
	1,699	COIN	550	εso Quiapo	229	0.73	198	0.70	225						185		195 (0.63	212 0	0.84 1	195	225	0.63	225	0.63
		701	000	Aviles	328	0.70	307	0.70	356						298		356 (0.60	312 0	0.81 3	356	356	09.0	356	09.0
		N03	237	237 Valencia	237	0.68	215	0.70	246						238		246 (0.59		~	246	246	0.59	246	0.59
	l	N04	49	49 Balut	49	0.79	45	0.70							49	0.65	31								
I		C01	124 C	Tripa de Gallina	1,706	0.62	1,771	0.70	1,769		1,769	0.60				-	,769 (0.60		1,7	,769	1,769	0.60	1,323	0.56
		Inc	1,1,1 1,1,1	Libertad	748	0.75	567	0.70	<i>611</i>				779	0.64) 677	0.64			677	627	0.64		
		S02	94	94 Balete	94	0.64	34	0.70									85		85 0	0.60				52	0.52
	107			Paco	174	0.71	94	0.70	182						228		182 (0.64	226 0	0.83 1	182	182	0.64	182	0.64
	704,0	S03	612	612 Pandacan	115	0.63	94	0.70	180						95		180 (0.68	104 0	0.63 1	180	180	0.68	95	0.68
				San Andres	323	0.72	391	0.70							356	0.72	339								
		S04	157	157 Sta. Clara	157	0.63	89	0.70	133						133		116 (0.56		-	116	133	0.56	133	0.56
		S05	165	165 Makati	165	0.68	123	0.70	150								151 (0.62		_	151	151	0.62		

Comparison of Pump Drainage Basins by Different Studies Table E.4.17

Source of data of Present Study: GIS database of 1/5,000 ccale and landuse map of 2003

JICA 2000: Study on the Existing Drainage Laterals in Metro Manila in the Republic of the Philippines, 2000 JCI 1999: Japan Consulting Institute, Feasibility Study Report on Metro Manila Drainage System Rehabilitation Project (Phase II) in Republic of the Philippines, 1999 PEA Nov. 1995: The Study of and Updated Drainage Plan for Section II of Manila Bay Reclamation Area, Pasay City and Parañaque, Metro Manila, 1995

PEA Mar. 1995: The Study on the Updated Drainage Plan for the Libertad Reclamation Area in Pasay City, Metro Manila, 1995 DPWH 1990: Metro Manila Flood Control Project (II), 1990

PCI 1988: Pacific Consultants International, Metro Marila Drainage System Rehabilitation Project, Study Report, 1988 *MPWH 1986: Drainage Improvement Plans of Estero de Vitas and Other Catchment Areas, 1986 ==> Runoff coefficients were based on projected (future) landuse for year 2000

MPWH 1984: Metro Manila Integrated Urban Drainage and Flood Control Master Plan, 1984

BPW 1978: Technical Report on Engineering Design Tor Drainage Pumping Stations and Floodgates, 1974 BPW 1974: Technical Report on Engineering Design for Drainage Pumping Stations and Floodgates, 1974

Drainage	Pump	1970s		1980s-1990	S	This Study	% Increase from
Area	Drainage	Runoff		Runoff		Runoff	Original Runoff
	Basin	Coefficient		Coefficient	t	Coefficient	Coefficient
	Vitas		\rightarrow	0.75	\rightarrow	0.74	
	Binondo-Escolta	0.64	\rightarrow	0.64	\rightarrow	0.77	20
North	Quiapo	0.63	\rightarrow	0.63	\rightarrow	0.73	16
North	Aviles	0.60	\rightarrow	0.60	\rightarrow	0.70	17
	Valencia	0.59	\rightarrow	0.59	\rightarrow	0.68	15
	Balut		\rightarrow	0.65	\rightarrow	0.79	
	Tripa de Gallina	0.56	\rightarrow	0.60	\rightarrow	0.62	11
	Libertad	0.64	\rightarrow	0.64	\rightarrow	0.75	17
	Balete	0.52	\rightarrow		\rightarrow	0.64	23
South	Paco	0.64	\rightarrow	0.64	\rightarrow	0.71	10
South	Pandacan	0.68	\rightarrow	0.68	\rightarrow	0.63	
	San Andres		\rightarrow	0.72	\rightarrow	0.72	0
	Sta. Clara	0.56	\rightarrow	0.56	\rightarrow	0.63	13
	Makati	0.62	\rightarrow	0.62	\rightarrow	0.68	10

 Table E.4.18
 Increase in Runoff Coefficients of Pump Drainage Basins

(3) Future (or Planned) Land Use and Runoff Coefficient

Future (or planned) landuse maps for all the cities except the City of Manila have been collected from Local Government Units (LGUs) in Adobe Acrobat Reader (pdf) format. The projected year of planned land use is not known. Unfortunately, future (or planned) landuse map for Manila City has not been authorized as yet, so it is not allowed to use for the present study. The maps have been scanned, digitized using Auto CAD and finally a GIS database on future landuse map has been prepared by this study. Figure E.4.9 shows the future landuse map without the City of Manila. Based on assigned runoff coefficients by reclassified future landuse classes as shown in Table E.4.19, future land use and runoff coefficient by reach basin has been estimated. Since, the map is not complete and also due to difference in legends of land use by LGUs and also due to partial inconsistency of the future landuse map with the existing landuse map, therefore, estimated future runoff coefficient by reach basin has not been directly used in the runoff analysis. Instead, correlations have been developed between increase in runoff coefficient with increase in urbanization (against existing runoff coefficient and urbanization) and between increase in urbanization with existing non-urbanization as shown in Figure E.4.10. The correlations (or equations) of Figure E.4.10 in combination with data on existing urbanization and runoff coefficient were used in estimation of future runoff coefficient by reach basin for north and south drainage areas shown in Table E.4.20 and Table E.4.21, respectively. Averaged runoff coefficient in the entire study area will increase up to 0.70 from the current value of 0.68.

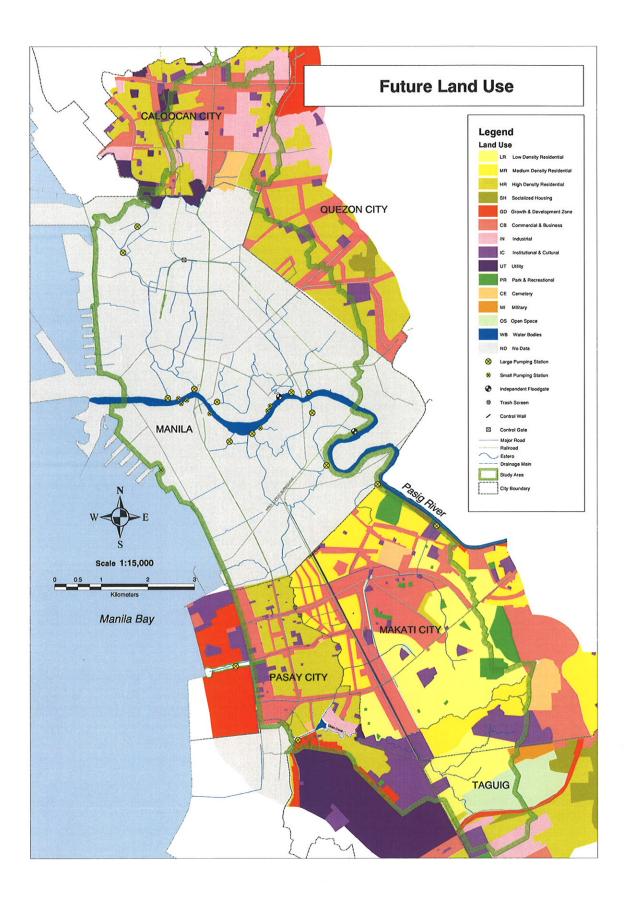
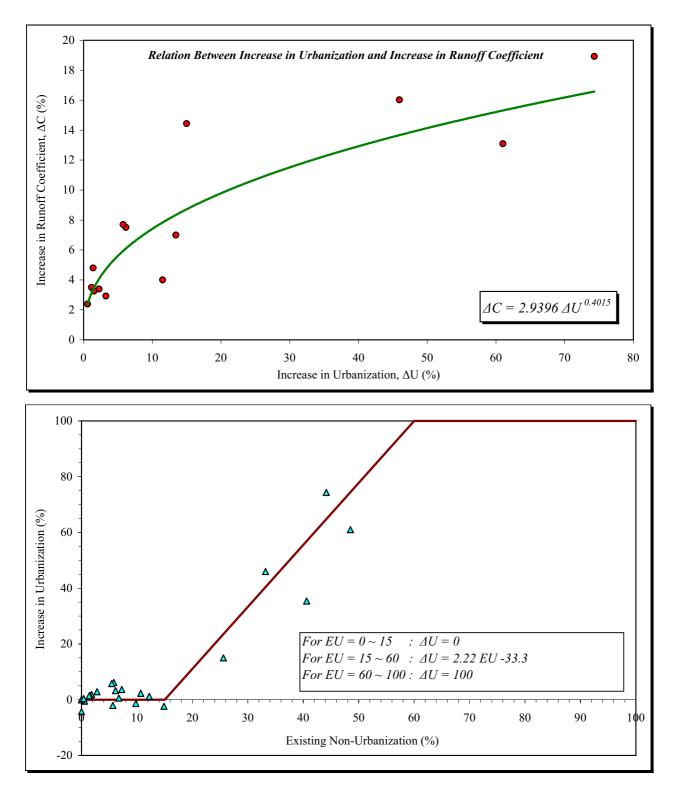



Figure E.4.9 Future (Planned) Landuse Map (Incomplete)

Original Landuse Classification	n	Reclassified Landuse by	the		Applied
by LGUs		Present JICA Study, 20	004		Runoff Coeff.
Name	Class	Name	Class	Group	С
Low Density Residential	LR	L Dit Ditti-1	L.R		0.60
Low Density Development Area	LDDA	Low Density Residential	LR		0.60
Medium Density Residential	MR	Medium Density Residential	MR		0.70
Residential 2	R2	Wiedrum Density Residential	MR		0.70
High Density Residential	HR				0.85
Residential	R	High Density Residential	HR		0.85
Residential 1	R1				0.85
Socialized Housing	SH	Socialized Housing	SH		0.70
Riverside Development Zone	RDZ			а	0.75
Controlled Growth Corridor	CGC	Growth & Development Zone	GD	Are	0.75
Plannd Unit Development	PUD			an 7	0.75
Commercial	CO			Urban Area	0.80
Low Density Commercial	LC				0.80
Medium Density Commercial	MC	Commercial & Business	СВ		0.80
High Density Commercial	HC				0.80
Central Business District	CBD				0.80
Urban Core Area	UCA				0.80
Industrial	IND	Industrial	IN]	0.65
Institutional	I	Institutional & Cultural	TC		0.70
Cultural	CU	institutional & Cultural			0.70
Utility	U	Utility	UT		0.70
Parks and Recreation	PR				0.30
Recreation	REC	Park and Pagrantianal	PR	ea	0.30
Entertainment	E	REC Park and Recreational		Ar	0.30
Tourism	Т			Non-Urban Area	0.30
Cemetery	CE			Crt	0.40
Military	М	CE Cemetery M Military	MI	on-	0.40
Open Space	OS	Open Space	OS	Ż	0.25
		Water Body	WB		1.00

Table E.4.19 Runoff Coefficient by Future (Planned) Landuse

Source: Prepared by this Study based on future (planned) landuse maps of the LGUs except Manila city

Figure E.4.10 Effect of Urbanization and Future Landuse Condition on Runoff Coefficient

Re	each		Existing Non-Urban Area		Increase from	n Existing to Future	Runoff C	oefficient
ID	Area (m ²)	Area (m ²)	w/o Park, Cemetary, Water Body	% of Total Area	Urbanization (%)	Runoff Coefficient (%)	Existing	Future
RND01 01	1,126,563	149,904	137,443	12.20	0.00	0.00	0.83	0.83
RND02 01	618,270	123,175	121,970	19.73	10.50	7.55	0.81	0.85
RND03 01	229,003	69,025	67,865	29.64	32.49	11.89	0.79	0.85
RND04 01	493,903	49,089	21,458	4.34	0.00	0.00	0.79	0.79
RND05 01	1.056.996	887,441	82.402	7.80	0.00	0.00	0.47	0.47
RND05 02	983,480	72,744	71.003	7.22	0.00	0.00	0.70	0.70
RND06 01	579,198	37,555	35,371	6.11	0.00	0.00	0.66	0.66
RND07 01	215,245	72,766	52.276	24.29	20.62	9.91	0.69	0.76
RND07 02	493,944	54,745	37,775	7.65	0.00	0.00	0.79	0.79
RND08 01	435,274	19,095	16,033	3.68	0.00	0.00	0.73	0.73
RND08 02	705,471	68,619	59,345	8.41	0.00	0.00	0.74	0.74
RND09 01	592,048	79,553	77,044	13.01	0.00	0.00	0.74	0.74
RND12 01	468,544	132,146	129,324	27.60	27.97	11.20	0.67	0.75
RND12 02	647,179	204,179	69,378	10.72	0.00	0.00	0.64	0.64
RND13 01	862,851	138,350	134,785	15.62	1.38	3.34	0.74	0.77
RND14 01	926,419	161,719	142,269	15.36	0.79	2.68	0.72	0.74
RND15 01	513,413	67,172	60,923	11.87	0.00	0.00	0.72	0.72
RND16 01	368,765	15,506	7,782	2.11	0.00	0.00	0.69	0.69
RND16 02	942,952	46,159	40,568	4.30	0.00	0.00	0.69	0.69
RND17 01	376,982	43,347	43,347	11.50	0.00	0.00	0.74	0.74
RND18 01	238,400	28,519	23,062	9.67	0.00	0.00	0.74	0.74
RND19 01	1,208,028	40,935	28,871	2.39	0.00	0.00	0.65	0.65
RNE01 01	136,105	70,072	56,460	41.48	58.79	15.09	0.52	0.60
RNE01 02	322,056	102,619	34,632	10.75	0.00	0.00	0.82	0.82
RNE02_01	164,966	152,244	0	0.00	0.00	0.00	0.98	0.85
RNE02_02	39,308	1,094	0	0.00	0.00	0.00	0.82	0.82
RNE02_03	3,444,460	721,545	169,379	4.92	0.00	0.00	0.68	0.68
RNE03_01	3,019,000	190,099	182,473	6.04	0.00	0.00	0.75	0.75
RNE04_01	296,082	26,872	24,085	8.13	0.00	0.00	0.79	0.79
RNE04_02	305,499	28,825	16,024	5.25	0.00	0.00	0.78	0.78
RNE04_03	701,252	106,830	72,508	10.34	0.00	0.00	0.79	0.79
RNE05_01	796,234	92,091	50,640	6.36	0.00	0.00	0.80	0.80
RNE06_01	392,241	47,584	45,926	11.71	0.00	0.00	0.74	0.74
RNE07_01	333,979	24,436	23,858	7.14	0.00	0.00	0.76	0.76
RNE07_02	68,680	2,418	2,418	3.52	0.00	0.00	0.70	0.70
RNE07_03	188,658	11,166	11,166	5.92	0.00	0.00	0.74	0.74
RNE08_01	267,567	30,902	22,050	8.24	0.00	0.00	0.74	0.74
RNE09_01	246,101	32,576	32,070	13.03	0.00	0.00	0.75	0.75
RNE10_01	176,112	32,678	31,790	18.05	6.77	6.34	0.73	0.78
RNE11_01	36,722	221	221	0.60	0.00	0.00	0.70	0.70
RNE12_01	760,775	91,959	68,686	9.03	0.00	0.00	0.75	0.75
RNE13_01	100,304	11,015	7,709	7.69	0.00	0.00	0.71	0.71
RNE14_01	353,996	62,325	47,397	13.39	0.00	0.00	0.74	0.74
RNE14_02	505,337	99,338	72,828	14.41	0.00	0.00	0.72	0.72
RNE15_01	55,682	6,514	6,514	11.70	0.00	0.00	0.74	0.74
RNE16_01	41,768	6,859	1,842	4.41	0.00	0.00	0.76	0.76
RNE17_01	282,565	55,493	42,079	14.89	0.00	0.00	0.73	0.73
RNE18_01	69,360	4,355	1,941	2.80	0.00	0.00	0.74	0.74
RNE19_01	39,934	3,972	3,972	9.95	0.00	0.00	0.71	0.71
RNE20_01	1,161,939	60,736	54,471	4.69	0.00	0.00	0.71	0.71
RNM_01	394,413	140,178	121,511	30.81	35.09	12.27	0.68	0.77
Total	28,784,019	4,778,760	2,664,945				0.72	0.73

Table E.4.20 Future (Planned) Runoff Coefficient by Reach Basin for North Manila

Source: Computed by this Study based on existing and future landuse maps

Rea	ach		Existing Non-Urban Area		Increase from	Existing to Future	Runoff C	Coefficient
ID	Area (m ²)	Area (m ²)	w/o Park, Cemetary, Water Body	% of Total Area	Urbanization (%)	Runoff Coefficient (%)	Existing	Future
RSD01 01	932,359	171,349	161,601	17.33	5.18	5.69	0.76	0.81
RSD02_01	924,419	192,749	175,351	18.97	8.81	7.04	0.74	0.79
RSD03_01	88,032	0	0	0.00	0.00	0.00	0.70	0.70
RSD04_01	1,001,546	122,369	1,025	0.10	0.00	0.00	0.66	0.66
RSD05_01	649,024	3,513	0	0.00	0.00	0.00	0.71	0.71
RSD07_01	226,110	7,798	0	0.00	0.00	0.00	0.73	0.73
RSD08_01	323,367	19,519	17,967	5.56	0.00	0.00	0.71	0.71
RSD09_01	220,689	14,630	14,630	6.63	0.00	0.00	0.71	0.71
RSD09_02 RSD10_01	786,063 319,811	8,193	0	0.00	0.00	0.00	0.73 0.72	0.73 0.72
RSD10_01 RSD11_01	488,310	82,338	0	0.00	0.00	0.00	0.72	0.72
RSD11_01 RSD12_01	715,060	51,939	51,939	7.26	0.00	0.00	0.08	0.08
RSD12_01 RSD13_01	356,756	40,693	26,140	7.33	0.00	0.00	0.75	0.75
RSD13_02	527,818	72,169	40,194	7.62	0.00	0.00	0.71	0.71
RSD14 01	1,139,563	66,250	64,066	5.62	0.00	0.00	0.76	0.76
RSD15_01	1,005,893	61,609	31,346	3.12	0.00	0.00	0.77	0.77
RSD16_01	1,380,647	163,559	158,659	11.49	0.00	0.00	0.76	0.76
RSD17_01	158,473	2,897	0	0.00	0.00	0.00	0.79	0.79
RSE02_01	213,281	46,133	29,254	13.72	0.00	0.00	0.68	0.68
RSE03_01	939,005	349,682	156,249	16.64	3.64	4.94	0.64	0.67
RSE04_01	185,788	90,580	59,013	31.76	37.22	12.56	0.52	0.58
RSE05_01	1,481,405	288,911	32,334	2.18	0.00	0.00	0.63	0.63
RSE06_01	36,814	8,633	33	0.09 15.95	0.00 2.10	0.00	0.73 0.75	0.73 0.78
RSE06_02		203,669 23,648	160,210	21.97		3.96		
RSE06_03 RSE07_01	84,496 299,134	67,954	18,565 48,655	16.27	15.48 2.81	8.83 4.45	0.76 0.69	0.83
RSE07_01 RSE08_01	914,307	281,493	31,404	3.43	0.00	0.00	0.60	0.72
RSE08_01 RSE08_02	232,772	38,136	19,281	8.28	0.00	0.00	0.74	0.74
RSE08_02	239,473	47,354	34,234	14.30	0.00	0.00	0.75	0.75
RSE08_04	868,413	19,262	0	0.00	0.00	0.00	0.70	0.70
RSE09_01	282,676	114,810	61,602	21.79	15.08	8.74	0.62	0.68
RSE09 02	439,260	112,430	64,321	14.64	0.00	0.00	0.72	0.72
RSE09_03	659,979	35,943	35,943	5.45	0.00	0.00	0.77	0.77
RSE09_04	192,231	2,911	0	0.00	0.00	0.00	0.78	0.78
RSE09_05	186,249	0	0	0.00	0.00	0.00	0.77	0.77
RSE09_06	113,846	0	0	0.00	0.00	0.00	0.69	0.69
RSE09_07	113,350	110	58	0.05	0.00	0.00	0.71	0.71
RSE09_08	470,337	71,020	53,172	11.31	0.00	0.00	0.75	0.75
RSE09_09	667,855	15,834	8,179	1.22	0.00	0.00	0.71	0.71
RSE10_01 RSE11_01	352,040 42,101	47,149 21,816	45,733 21,816	12.99 51.82	0.00 80.00	0.00 17.08	0.70 0.75	0.70 0.85
RSE11_01 RSE11_02	135,839	10,511	10,511	7.74	0.00	0.00	0.80	0.80
RSE11_02 RSE11_03	498,821	65,444	63,335	12.70	0.00	0.00	0.80	0.80
RSE12 01	322,552	4,424	4,424	1.37	0.00	0.00	0.70	0.30
RSE12_01 RSE12_02	283,612	29,345		0.00	0.00	0.00	0.74	0.74
RSE13_01	723,650	107,761	3,384	0.47	0.00	0.00	0.73	0.73
RSE14_01	2,657,107	179,129	12,185	0.46	0.00	0.00	0.60	0.60
RSE15_01	89,495	0	0	0.00	0.00	0.00	0.76	0.76
RSE16_01	640,841	2,552	592	0.09	0.00	0.00	0.79	0.79
RSE16_02	1,206,874	0	0	0.00	0.00	0.00	0.69	0.69
RSE17_01	1,542,322	87,374	50,166	3.25	0.00	0.00	0.75	0.75
RSE18_01	2,503,124	830,799	527,343	21.07	13.47	8.35	0.63	0.68
RSE18_02	2,935,041	1,295,413	1,194,693	40.70	57.06	14.91	0.56	0.65
RSE19_01	5,401,211	2,619,574	996,464	18.45	7.66	6.66	0.53	0.56
RSE20_01 RSM 01	549,452 532,665	198,937 292,232	54,620 243,729	9.94 45.76	0.00 68.28	0.00 16.02	0.64 0.56	0.64
RSM_01 RSM_02	752,026	525,358	3,026	0.40	0.00	0.00	0.56	0.65
RSM_02 RSM_03	34,882	34,882	2,032	5.82	0.00	0.00	0.47	0.47
RSM_05 RSM_04	214,173	169,979	2,032	5.66	0.00	0.00	0.41	0.33
RSM 05	46,782	3,434	3,434	7.34	0.00	0.00	0.71	0.71
RSM 06	225,257	51,942	51,942	23.06	17.89	9.36	0.78	0.85
RSM 07	204,636	20,038	75	0.04	0.00	0.00	0.78	0.78
RSP_01	364,753	164,653	106,861	29.30	31.74	11.78	0.62	0.69
RSP_02	508,679	197,083	34,957	6.87	0.00	0.00	0.60	0.60
RSP_03	32,283	16,740	0	0.00	0.00	0.00	0.66	0.66
RSP_04	123,855	103,569	2,715	2.19	0.00	0.00	0.38	0.38

Table E.4.21 Future (Planned) Runoff Coefficient by Reach Basin for South Manila

Source: Computed by this Study based no existing and future landuse maps