JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)
METROPOLITAN MANILA DEVELOPMENT AUTHORITY (MMDA) DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS (DPWH) THE REPUBLIC OF THE PHILIPPINES

THE STUDY ON
 DRAINAGE IMPROVEMENT IN THE CORE AREA
 OF METROPOLITAN MANILA, REPUBLIC OF THE PHILIPPINES

FINAL REPORT SUPPORTING REPORT
Volume I

MARCH 2005

PACIFIC CONSULTANTS INTERNATIONAL NIKKEN CONSULTANTS, INC

NIKKEN

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)
METROPOLITAN MANILA DEVELOPMENT AUTHORITY (MMDA) DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS (DPWH) THE REPUBLIC OF THE PHILIPPINES

THE STUDY ON
 DRAINAGE IMPROVEMENT IN THE CORE AREA
 OF METROPOLITAN MANILA, REPUBLIC OF THE PHILIPPINES

FINAL REPORT SUPPORTING REPORT Volume I

Foreign Currency Exchange Rates Applied in the Study

Currency	Exchange Rate/USD
Philippine Peso (Php)	55.0
Japanese Yen (JPY)	110.0

(Rate as of July, 2004)

TABLE OF CONTENTS

Supporting Report (Volume I)

A. Database
B. Meteorology and Hydrology
C. Flood and Inundation
D. Mathematical Model and Simulation
E. Drainage Facility Plan
F. Preliminary Design
G. Cost Estimation
H. Economic Evaluation

Supporting Report (Volume II)

I. Social Issues
J. Public Participation
K. Environment (IEE and ELA)
L. Solid Waste Survey on Esteros
M. Guideline for Drainage Improvement
N. Workshop / Seminar

Supporting Report (Volume III)

O. Experiment at Pilot Barangays
A. DATABASE

TABLE OF CONTENTS

Page
A. 1 ObJECTIVE of DATABASE DEVELOPMENT A-1
A. 2 CONCEPT OF DATABASE STRUCTURE OF THE STUDY A-1
A.2.1 Design of Database Structure A - 1
A.2.2 Basic Data for Database of the Study A-2
A.2.3 Necessary Application A - 3
A. 3 DATABASE FOR THE STUDY A - 4
A.3.1 Procedure of Database Development A - 4
A.3.2 Database Structure A - 4
A. 4 ReCommendation for Effective and Sustainable Use A-9
AnNEX A. 1 DATA Arrangement for Gis
ANNEX A. 2 MANUAL FOR ARCEXPLORER
LIST OF TABLES
Page
Table A.3.1 List of GIS Data A - 10
Table A.3.2 Detailed List of GIS Data A - 14

LIST OF FIGURES

Page
Figure A.2.1 Concept of Database Structure A - 1
Figure A.3.1 Procedure of Database Development A - 4
Figure A.3.2 Database Structure A - 5
Figure A.3.3 Example of GIS Data and its Attribute A - 6
Figure A.3.4 Example of Data Sheet A - 7
Figure A.3.5 Sample of Folders for O\&M Records A-8

A. 1 Objective of Database Development

Main objectives of development of database in this Study are as follows:

- To develop an integrated database of the drainage system in the Core Area of Metropolitan Manila; and
- To develop an easy-to-understand, useful and visualized database, especially for effective O\&M activities and sustainable use by managing organizations: DPWH, MMDA and LGUs.

A. 2 Concept of Database Structure of the Study

A.2.1 Design of Database Structure

In this Study, the data stored in the database are used not only for presenting the condition of the existing drainage system but also for planning and evaluating them in combination with the information of drainage system and various data such as topographical, hydrological, hydraulic, social and economic data. In that case, it is better to have capabilities of processing and analyzing the special (graphic) data/information. In this context, the database is proposed to be developed mainly based on a Geographic Information System (GIS).

GIS has emerged as one of the most powerful tools in decision making and planning. It can handle large volumes of map and attribute data simultaneously. It has a wide range of data analysis functions such as overlay, buffer and attribute manipulation. Because of these capabilities, GIS has been used extensively for urban/regional planning, environmental or natural resource management, tax mapping and facilities management.

Concept of Database Structure of this Study is shown in the following figure.

Figure A.2.1 Concept of Database Structure
The database consists of three parts, 1) GIS data including basic data of drainage system and Study Area, 2) detailed data of drainage system, and 3) all the data relating to the Study.

Contents of each part are described below:

1) GIS Data

Fundamental data of the Study Area such as administrative boundary, population, contours,
geology, landuse, and infrastructures, and basic data of drainage system and facilities with location, name, completion year, code number, etc. are stored as GIS data classified into specific fields.
2) Detailed Information of Drainage System

Detailed data and information regarding drainage system and drainage facilities, which are difficult to input as GIS data due to the data type and high frequency of the data addition, are stored. Data include not only drawing data of cross-section and longitudinal profile of drains, and operating condition of drainage facilities but also records for daily O\&M activities and pictures. The data are linked with GIS data of drainage system and drainage facilities, and users can find out the relation between these data and GIS data from GIS application.
3) All the other data regarding the Study

The other data, mainly raw data collected and analyzed in this Study, such as rainfall data, questionnaire survey data, and geological data, are stored in order to avoid data missing and to utilize the data not only for this Study but also for the other projects in future. Data are categorized and stored in specific fields.

The above 1) and 2) constitute the main part of the database of this Study, which is named Drainage Management System.

A.2.2 Basic Data for Database of the Study

In Metropolitan Manila, multi-purpose database was already developed in the Study of "Earthquake Impact Reduction Study for Metropolitan Manila, Republic of the Philippines, (hereinafter referred to as "MMEIRS")" in 2004 by JICA. Regarding the database of drainage system, it was developed in "Study on the Existing Drainage Laterals in Metro Manila in the Republic of the Philippines (hereinafter referred to as "SEDLMM")" conducted by JICA in 2000.

Contents of each database are summarized as follows:

- Database of MMEIRS (grid coordinate system: the Philippine Transverse Mercator (PTM))

1) Database (ArcView data)

- Natural Conditions: Contour, river, etc.
- Social Conditions: Barangay boundary, city boundary, population, land use
- Infrastructures: Road, railway, airport
- Buildings: All the houses in Metropolitan Manila
- Public facilities: Hospital, school, etc.

2) $1: 5,000$ Digital Map (CAD Drawing)
3) Ortho-photos

- Database of SEDLMM (grid coordinate system: the Philippine Transverse Mercator (PTM))

1) $1: 2,500$ Drawings (CAD Drawing)

- Drainage system: Esteros, drainage mains, laterals and manholes
- Drainage Facilities: Pumping Stations, Control Gates

2) Database of manhole (Microsoft Access data)
3) Inundation data of 1999 flood (CAD Drawing \& Microsoft Access data)

It is often the case that these data are not suitable for the database of this Study due to the difference of the purpose and approach of the database construction, even though these databases were well-developed. For example, MMEIRS database are well-arranged as GIS data, but information of drainage system is insufficient for this Study because the main purpose of the Study is earthquake impact reduction. And SEDLMM database is specified in drainage system, but inconformity of location from CAD data and Access data is occasionally found so that database is not arranged as GIS data.

Therefore, in this Study, the database are developed modifying and importing the above existing database, and inputting the new data, which are collected, analyzed and simulated in the course of this Study.

A.2.3 Necessary Application

In this Study, the database is decided to be developed mainly by using the database function of GIS software of ArcView 8.* with following considerations:

- Amount of data handling in the database;
- Popularity of Software;
- Easiness of operation for data processing/analyzing; and
- Easiness of conversion of the database files to other database format.

After completion of this Study, the data will be distributed to concerned agencies such as MMDA and LGUs, because those agencies are responsible for conducting daily O\&M activities. But it is possible that some agencies are not able to prepare the software due to the budgetary deficit. Therefore, free software provided by distributing company of GIS software is also included in the system and distributed to them, so that at least users can see, check and use the data without any particular software.

A. 3 Database for the Study

A.3.1 Procedure of Database Development

Procedure of database construction is shown in the following figure.

Figure A.3.1 Procedure of Database Development
Data collection, data input and modification and arrangement of existing data are time consuming but most important, because these are based on all the analysis of the Study, and these determine the degree of accuracy. Many data were newly input and re-arranged, and analyses used the data were conducted and the results were also input to the database. Data were input as GIS data as much as possible.

In order to construct the valuable and useful database, systematic arrangement of the data as well as the above procedures are essential. All the data were arranged systematically as users can understand the data structure and correlation of the data easily.

A.3.2 Database Structure

Database structure is shown in Figure A.3.2.
As mentioned in A.2.1, the database consists of three parts, 1) GIS data including basic data of drainage system and Study Area, 2) detailed data of drainage system, and 3) all the data relating to the Study. In the actual database, the above three parts are organized as "GIS_Data," "DrainageManagementSystem," and "StudyDataAggregate" folders respectively.

Contents of each folder are described below.

(1) GIS_Data

This folder contains all the GIS data and data list of GIS data. GIS data are stored in "Shape" folder. First, it classified into three, "ExistingConditions," "MasterPlanPlaning" and "Simulation." The data of "MasterPlanPlaning" and "Simulation" folders are especially for Master Plan and its evaluation for this Study, and volume of these data is small. Almost all the data are categorized into 15 fields and put in "ExistingConditions" folder as shown in Figure A.3.2. Some of fields/folders have sub-folders as easy-to-recognize. For example, "DrainageSystem" folder has five sub-folders, in which two to nine GIS files are stored.
D DICAMM＿Database \square Drainage ManagementSystem

Facility＿Information
$+$
Drainage Main
沓 Estero ＋Lateral
O\＆M＿Equipment
EsteroNE01＿Estero＿de＿Vitas
$\square \square$ DataSheets （1）CrossSectionPost GrossSectionsDrawines O\＆M＿ActivitiesPictures
$+$
PumpingStation
（1）Waterway＿Connection
GuidelinesSystemSoftware
$+$ \qquad ArcExplorer
\square AutodeskDWFviewerGIS＿Data
ExplanationsProjectsShape ExistingConditions
\pmMasterPlanPlanning \square Simulation
$\square \square$ StudyDataAgeregate

Geology

Landuse
＋Meteo Hydrology
＋
SocialConditions
$+$TopographicSurvey

\square RawData

＋ NE02＿Estero＿de＿Sunog Apog＿Maypajo
＋ NE03＿Casili＿CreekNE04＿＿Estero＿dela＿Reina
田 NE05＿Estero＿de＿Binondo
田 NE06＿Estero＿de＿Maedalena NE07＿Estero＿de＿SanLazaroNE08＿Estero＿de＿Kabulusan
田NE09＿South＿Antipolo＿OpenCanal
\pm NE10＿North＿Antipolo＿OpenCanal
 NE11＿Estero＿de＿TutubanNE12＿Estero＿de＿Quiapo
＋ NE13＿Estero＿de＿SanSebastian
NE14＿Estero＿de＿SanMiguel＿UliUli
田 NE15＿Estero＿de＿Alix
\pm NE16＿Estero＿de＿Aviles
＋ NE17＿Estero＿de＿Sampaloc＿I
＋ NE18＿Estero＿de＿Sampaloc＿II
＋ NE19＿Estero＿de＿Calubcob
＋NE20＿Estero＿de＿Valencia
＋
Estero＿South
Estero＿summary＿Info
\square
ExistingConditions
BaseMap
Building
DrainageSystem
Drainage＿Basins
Drainage＿Mains
Esteros＿Creeks
＋
Laterals Probable＿Dicharge
（ Environment
Geology
E Infrastructure
田 Inundation
Landuse
MeteoHydrology
（T）NaturalConditions
OperationMaintenance
（ SocialConditions
目 SocioEconomicConditions
WasteManazement
四 WaterFacilities
＋
3 MasterPlanPlanning
\pm

Figure A．3．2 Database Structure

Table A.3.1 shows a list of GIS data. Every GIS data has not only spatial data but also various attribute data such as code number, name, length, specification of facilities, and survey results. Table A.3.2 is a detailed list of GIS data including all the attributes and those detailed explanation. These lists are put in "GIS_Data¥Explanations" folder.

GIS data regarding estero, drainage main, pumping station and operation and maintenance have the attribute indicates a linkage with "DrainageManagementSystem" folder as shown in Figure A.3.3. As for these data, many kinds and types of data are collected through this Study and got together in "DrainageManagementSystem" folder. When users see the indicated folder, they can get more detailed information of them.

Figure A.3.3 Example of GIS Data and its Attribute

(2) DrainageManagementSystem

This folder includes 1) detailed data and information especially regarding drainage system and drainage facilities, 2) guidelines for planning, design, construction and O\&M of drainage system and facilities, and 3) free softwares for using drainage management system.
"Facility_Information" folder is for detailed data and information, which are difficult to input as GIS data due to the data type and high frequency of the data addition. This folder is categorized into sub-folders by facilities. Each sub-folder is segmentized further and segmentized folder contains various data such as drawing of cross-section and longitudinal profile of drains, operating condition of drainage facilities, and pictures. Some of the folders are empty at present, but these will become very much useful in future especially for O\&M activities if the data continue to be added in these folders. The following figure shows an example of data sheet, which is put in "DataSheets" folder under "Estero" sub-folder.

Figure A.3.4 Example of Data Sheet

- Utilization of Database for O\&M Activities

Records of daily, monthly and yearly O\&M activities should be kept. Folders for storage of O\&M records are prepared in "DrainageManagementSystem" folder of the database as shown in Figure A.3.5.

Various kinds of records regarding O\&M should be made and kept as described in "O\&M part of guidelines in Supporting-M." At this moment, detailed database structure for folders of "O\&M Activities" are undefined. Eacn agencies/users can design own and useful sturucture for keeping data. However, contents and structures should be discussed among all the concerned agencies periodically and should be modified so as to be easy-to-use and efficient.

Figure A.3.5 Sample of Folders for O\&M Records
In order to use this database, six kinds of softwares are needed, which are Microsoft WORD, Microsoft EXCEL, Adobe Acrobat Reader, software for images, software for CAD drawing and software for GIS. Among them, softwares for CAD drawing and GIS may be difficult to prepare due to budget deficit of users/agencies. Therefore, free softwares for them are put in "SystemSoftware" folder. Users can see and check the CAD drawing and GIS data installing these softwares.

(3) StudyDataAggregate

This folder contains the other various data, which are collected, analyzed and made in this Study, such as landuse maps, Meteo-hydrological data and figures showing the results of the Study. This folder aims to avoid data missing and to utilize the data not only for this Study but also for the other projects in future. It is also expected to contribute to save the time for data gathering in the other projects. The data are categorized and stored in specific fields.

A. 4 Recommendation for Effective and Sustainable Use

Once the integrated database is constructed, a large-scale modification is unnecessary especially as for GIS data in case that drainage system or conditions of Study Area will not change drastically. Instead, a part of the database directly linked to O\&M activities ("DrainageManagementSystem" folder in this database) should be updated routinely in order to utilize and sustain the database effectively for future O\&M activity as well as actual one.

Consequently, the following are recommended.

1) To distribute the database to all the concerned agencies.
2) To assign the person who can grasp the contents of database and has technique to add and input the data, in the units in charge of O\&M activities of each agencies.
3) To update and input data routinely in each unit, and to modify the database structure such as making new folders if necessary.
4) To hold a meeting of concerned agencies periodically, in order to share the data which each unit input, integrate all the data at least to principal agency's database and discuss the database structure so as to be easy-to-use and efficient.
5) To review the database especially the part of GIS data at least once a year. In case that drainage system or conditions of Study Area changes drastically, principal agency modifies the correspondent data and distributes the revised data to all the concerned agencies.

The above activities are able to conduct for the part of daily routine work without any preparation and budget except the minimum equipments, such as computers. Although it is nothing but a first step and the system that is proposed in Clause 4.5 "Improvement of Operation and Maintenance System" of Main Report is eligible to construct in future times, it should be commenced to incorporate the database into daily O\&M activities for a start.

Table A.3.1 List of GIS Data (1/4)

File Name

Description

1. Exsitning Conditions

BASE MAP	DICAMM_DatabaselGIS_Data\Shape\ExistingConditions\BaseMap	
Study Area	BC_StudyArea.shp	Study Area
	BC_StudyArea_N.shp	Northern part of the Study Area
	BC_StudyArea_S.shp	Southern part of the Study Area
	BC_StudyArea_Bufferikm.shp	Buffer of Study Area
	BC_StudyArea_Mask.shp	Mask of Study Area
	BC_StudyArea_Mask1km.shp	Mask of Study Area

DRAINAGE SYSTEM	\DICAMM_Database\GIS_Data\Shape\ExistingConditions\DrainageSystem	
Esteros/Creeks	```DC_Estero_N.shp DC_Estero_S.shp DC_Estero_Section_N.shp DC_Estero_Section_S.shp DC_Estero_Edge_N.shp DC_Estero_Edge_S.shp DC_Estero_Poly.shp DC_Estero_CS_N.shp DC_Estero_CS_S.shp```	Esteros and Creeks in the Northern part Esteros and Creeks in the Southern part Estero Sections in the Northern part Estero Sections in the Southern part Estero Edges in the Northern part Estero Edges in the Southern part Polygon of Estero Cross Section Point of Esteros in the Northern part Cross Section Point of Esteros in the Southern part
Drainage Mains	DC_DrainageMain_N.shp DC_DrainageMain_S.shp DC_DM_Section_N.shp DC_DM_Section_S.shp DC_DM_MTH_N. shp DC_DM_MTH_S. shp DC_DM_MTH_Link_N.shp DC_DM_MTH_Link_S.shp	Drainage Mains in the Northern part Drainage Mains in the Southern part Drainage Main Sections in the Northern part Drainage Main Sections in the Southern part Maintenance Hole for Drainage Main in the Northern part of Study Area Maintenance Hole for Drainage Main in the Southern part of Study Area Maintenance hole link and culvert characteristic of drainage main in the Northern part of Study Area Maintenance hole link and culvert characteristic of drainage main in the Southern part of Study Area
Laterals	DC_Lateral.shp DC_Connection_N.shp DC_Connection_S.shp DC_Manhole.shp	Laterals in the Study Area Laterals to connect estero and estero, or estero and drainage main Laterals to connect estero and estero, or estero and drainage main Manhole
Drainage Basins	DC_Block_N.shp DC Block S.shp DC_Basin_N.shp DC_Basin_S.shp DC Reach N.shp DC_Reach_S.shp DC SubBasin N.shp DC_SubBasin_S.shp	Drainage Block Drainage Block Drainage Basins Drainage Basins Drainage Reach Basins Drainage Reach Basins Drainage Sub basins Drainage Sub basins
Probable Discharge	DC_ProbableDischarge_N.shp DC_ProbableDischarge_S.shp	Probable Peak Discharge of Specific Point Probable Peak Discharge of Specific Point

WATER FACILITIES	DICAMM_Database\GIS_DatalShape\ExistingConditionsIWaterFacilities	
Pumping Stations	WC_PumpingSta_All.shp	Pumping Stations
	WC_PumpingSta_N.shp	Pumping Stations in the Northern part
	WC_PumpingSta_S.shp	Pumping Stations in the Southern part
	WC_PumpingSta_Major.shp	Large Pumpning Stations
	WC_PumpingSta_Small.shp	Small Pumping Stations
Water Gates	WC_ControlGate.shp	
	WC_ControlWall.shp	Control Gate
	WC_IndependentFloodGate.shp	Control Wall
		Independent Flood Gate

Table A.3.1 List of GIS Data (2/4)
File Name Description

File Name	Description	
Automatic Trash Screen	WC_TrashScreen_S.shp	Automatic Trash Screens in the Northern part

O\&M	CICAMM_DatabaselGIS_DatalShapelExistingConditionslOperationMaintenance	
Operation and Maintenance	OC_OM_Zone.shp	Boundary for Operation \& Maintenance

INUNDATION Actual Inundation Map In 1999 flood	{\DICAMM DatabaselGIS DatalShapel ExistingConditions	
	IC_ActlnunDepth_N_1999.shp IC_ActlnunDepth_S_1999.shp IC_ActInunDuration_N_1999.shp IC_ActInunDuration_S_1999.shp	Inundation depth of 1999 flood Inundation depth of 1999 flood Inundation duration of 1999 flood Inundation duration of 1999 flood
	depth n depth_s duration_n duration_s	Inundation depth of 1999 flood Inundation depth of 1999 flood Inundation duration of 1999 flood Inundation duration of 1999 flood
	IC_ActinunPoint1999.shp	Inundation data of 1999 flood
	Intersection_building_depth_n.shp Intersection_building_depth_s.shp Intersection_building_duration_n.shp Intersection_building_duration_s.shp	Building Classification by inundation depth Building Classification by inundation depth Building Classification by inundation duration Building Classification by inundation duration
Actual Inundation Map In 2004 flood	IC_ActInunDepth_N_2004.shp IC_ActInunDepth_S_2004.shp IC_ActInunDuration_N_2004.shp IC_ActInunDuration_S_2004.shp	Inundation depth of 2004 flood Inundation depth of 2004 flood Inundation duration of 2004 flood Inundation duration of 2004 flood
	dep_n_2004 dep_s_2004 dur_n_2004 dur_s_2004	Inundation depth of 2004 flood Inundation depth of 2004 flood Inundation duration of 2004 flood Inundation duration of 2004 flood
	IC_ActInunPoint2004	Inundation data of 2004 flood

NATURAL CONDITIONS	IDICAMM_DatabaselGIS DatalShapelExistingConditions\NaturalConditions	
Contours	NC_Contour.shp	Contours
Elevations	NC_BenchMark elevation elev_dpwh	Bench Mark for the Study Elevation grid map in Raster Format Elevation grid map in Raster Format
Slope	slope NC_Slope	Slope grid map in Raster Format Slope classification
Rivers	NC_Pasig_River_Centerline.shp NC Pasig_River_Polygon.shp NC_Pasigisland.shp	Pasig River center line River Polyogn Islands in Pasig River
Reservoir/Pond	NC_ReservoirN.shp NC_ReservoirS.shp NC_Pond_S.shp	Reservoir or Pond in Northern part of Study Area Reservoir or Pond in Southern part of Study Area Pond in the Southern part of the Study area
Manila Bay	NC_ManilaBay.shp	Manila Bay
METEOHYDROLOGY	\DICAMM_Database\GIS_Data\|ShapelExistingConditions\Meteohydrology	
Meteorological Station	MC_MeteoSta.shp	Meterologigal Station in Metropolitan Manila
Water Level Station	MC WLSta.shp	Water Level Station in Metropolitan Manila
Tide Level Station	MC_TideSta.shp	Tide Level Station in Metropolitan Manila
Thiessen Polyline	MC_Thiessen.shp	Thiessen Polyline

Table A.3.1 List of GIS Data (3/4)

	File Name	Description
WASTE MANAGEMENT	IDICAMM DatabaselGIS_DatalShapelExistingConditionsiWasteManagement	
Waste Survey Point	WC_SurveyPoint.shp	Waste Survey Point
GEOLOGY	IDICAMM DatabaselGIS_Data\|ShapelExistingConditions\Geology	
Geological Formations	G_Formation1.shp G_Formation2.shp	Geological Formations - Phivolcs Geological Formations - Oyo

ENVIRONMENT	IDICAMM DatabaselGIS_DatalShapelExistingConditions\|Environment	
Water Quality	EC_WaterQualiry.shp	Water Quality survey result
Sediment Quality	EC_SedimentQuality.shp	Sediment Quality survey result
Pollution Source	EC_PollutionSource.shp	Pollution source survey result

| SOCIAL CONDITIONS | \DICAMM DatabaselGIS Data\|Shape|ExistingConditions|SocialConditions | |
| :---: | :---: | :---: |
| Barangay Boundaries | SC_. BgyBnd.shp | Barangay Boundaries
 Edited Boundaries to match NSO Boundaries |
| City/Municipal Boundaries | S_CityBnd.shp S_CityBnd2003.shp | City/Municipal Boundaries City/Municipal Boundaries in 2003 |
| EIS01
 (Survey for Estero Informal Settlers along selected Esteros) Building
 Reach | EIS01_Building.shp
 EIS01_Building_Clip.shp
 EIS01_DenseArea.shp
 EIS01_DenseArea_Clip.shp
 EIS01_Reach00.shp
 EIS01_Reach04.shp
 EIS01_Reach10.shp
 EIS01_Reach20.shp | Building along Estero de Sunog Apog and Tripa de Gallina
 Building within Estero de Sunog Apog and Tripa de Gallina Densely Buildup Area along Estero de Sunog Densely Buildup Area within Estero de Sunog
 Area of Water Body of Selected Esteros Area of 4 m outside from Edge of Selected Esteros Area of 10 m outside from Edge of Selected Esteros Area of 20 m outside from Edge of Selected Esteros |
| Structure | EIS01_EmbankmentType.shp EIS01_Road.shp | Type of Embankment along Selected Esteros Roads along Selected Esteros |
| EIS02
 (Survey for Estero Informal Settlers along Esteros except two) | EIS02_Building_SSHW.shp
 EIS02_DenseArea.shp
 EIS02_DenseArea_Clip.shp
 EIS02_EsteroReach.shp | Buildings along South Super Highway and Sen. Gil J. Puyat Avenue Densely Buildup Area along Esteros except Sunog Apog and Tripa de Gallina Densely Buildup Area within Esteros except Sunog Apog and Tripa de Gallina Area of Water Body of Esteros except Sunog Apog and Tripa de Gallina |

SOCIO-ECONOMIC CONDITIONS	\DICAMM_Database\GIS_Data\Shape\ExistingConditions\SocioEconomicConditions	
Land Price	SC_landprice.shp Landprice Landprice_n Landprice_s	Land price landprice grid map in Raster Format landprice grid map in Raster Format landprice grid map in Raster Format

LANDUSE	CDICAMM_Database\GIS_DatalShapelExistingConditions_Landuse	
Landuse	LC_Landuse_N.shp 	Land Use of Northern Part of Study Area Land Use of Southern Part of Study Area
	LC_Landuse_S.shp	
LC_Landuse_Per_SubBasin_N.shp		
Land Use per Sub Basin		
Land Use per Sub Basin		

Table A.3.1 List of GIS Data (4/4)

	File Name	Description
BUILDING	\DICAMM_Database\GIS_DatalShape\ExistingConditions\Building	
Building	BC_Building_Poly_N.shp BC Building Poly S.shp BC_Building_Point_N.shp BC_Building_Point_S.shp	Polygon of Building Polygon of Building Center Point of Building Center Point of Building
INFRASTRUCTURE	{IDICAMM DatabaselGIS DatalShapelExistingConditions	
Infrastructur}		
Roads	$\begin{aligned} & \text { IC_RoadCenter.shp } \\ & \text { IC_RoadEdge.shp } \end{aligned}$	Road Centerlines Road Edges
Railroads	IC_Railroads.shp	Railway Lines

2. Master Plan Planning

DRAINAGE SYSTEM	IDICAMM_Database\GIS_DatalShapelMasterPlanPlanninglDrainageSystem	
Esteros/Creeks	DP_Estero_Section_Plan_N.shp DP_Ester__Section_Plan_S.shp DP_Estero_Plan_CS_N.shp	Estero Sections in the Northern part Estero Sections in the Southern part Cross Section Point of Esteros
in the Northern part		
Cross Section Point of Esteros		
in the Northern part		

3. Simulation

INUNDATION MAP	IDICAMM_Database\GIS_Data\ShapelSimulaiton\Inundation Depth Duration	
Simulated Inundation Map	$\begin{aligned} & \text { n_a1_dep.shp } \\ & \text { n_a2_dep.shp ~ } \\ & \text { s_p2_dep.shp } \\ & \text { n_a1_dur2.shp } \\ & \text { n_a2_dur2.shp } \sim \\ & \text { s_p2_dur2.shp } \end{aligned}$	Simulated Inundation Depth Map Simulated Inundation Depth Maps Simulated Inundation Duration Map Simulated Inundation Duration Maps
INPUT DATA	IDICAMM DatabaselGIS DatalShapelSimulaiton\Input Data	
Simulated Inundation Points	$\begin{array}{r} \text { res_n_a1.shp } \\ \text { res_n_a2.shp } \sim \\ \text { res_s_p2.shp } \end{array}$	Point Data of Simulated Inundation Result Point Data of Simulated Inundation Results
Elevation of Simulated Points	Flood_Input_Ele_N.shp Flood_Input_Ele_S.shp	Elevation of Points used to Inundation Calculation in the Northern Part Elevation of Points used to Inundation Calculation in the Southern Part

Table A.3.2 Detailed List of GIS Data (1/15)

Category	${ }^{\text {Flle }}$ Name	Doscripilion	Sources	Year Coordinate	Data type	Format	Abstract	$\frac{\text { Atrlbute }}{\text { Name }}$	Type	Voth Doethation
1. Exsitining CondillonsBASE MAP										
$\frac{\text { BASE MAP }}{\text { Study Atea }}$	IDICAMM DatabaselGIS Datal BC StudyArea.shp	IExstingCOndidionsibaseMap Study Area	JCA Study	2004 PTM III	Potyon	Arcview	This shapeeflil contains study area ofthis study, Mhich is the core area of Mertopoflian Manila.	$\begin{array}{\|l\|l} \text { RID } \\ \hline \text { AHAEE } \\ \text { AREA } \end{array}$	Number	18 Totala rea of Study area in meter unit.
	BC_StudyAraa_..s.shp	Noorterin part of the Study Area	Jicastudy	2004 PTM III	Porygon	Acrview	This shapefilic contains Northerr parn of the study area ofthis study.	$\begin{array}{\|l\|l\|} \hline \text { FiI } \\ \text { SHAPE } \\ \text { AREA } \end{array}$	Number	is Total area of Northerm part of Study area in meter unit.
	BC_Studyarea_S.s.sp	Southern partof the Study Area	JICA Study	2004 PTM III	Poryoon	Acriew	This shapefili conntains Souther part of the stuy area of this stuyy.	$\begin{array}{\|l} \text { FID } \\ \text { SHPEE } \\ \text { AREA } \end{array}$	Number	${ }^{18}$ Total area of Southern pat of Study area in meter unt.
	BC_StudyArea_Butterikm.shp	Sutter of Stuy Area	Jcastudy	2004 PTM III	Porygon	Acriew	This shapefilie contains butier for the study area in 1 kilometer distance	$\begin{array}{\|l\|l} \text { Fin } \\ \begin{array}{l} \text { nhape } \\ \text { ACea } \\ \text { comment } \end{array} \end{array}$	$\left.\begin{array}{\|l\|l\|} \hline \text { Numbor } \\ \text { String } \end{array} \right\rvert\,$	17 in meter unit 50 Bufer for the study area with 1 km width
	BC_StudyArea_Mask.shp	Mask of Study Area	JICA Study	2004 PTM III	Potygon	Arcovew	This shapefilio is ust a trame used for the design of maps to cover other images	$\begin{aligned} & \text { FID } \\ & \text { Shape } \\ & \text { Comment } \end{aligned}$	String	50 Mask tor the study area
	BC_StudyAra_Maskkk.shp	Mask of Study Area	Jca Study	2004 PTM III	Porygon	Arciew	This shapeflil is iusta trame used for the dossing of maps to cover other images	FID Shape Comment	String	50 Mask tor the study area with 1 km width

Table A.3.2 Detailed List of GIS Data (2/15)

Calegory	Flio Name	Doscripition	Sources	Yoar Coordinato	Data 7ype	Format	Abstract	${ }^{\text {Atribute }}$ Name	IType	Withn Doturition
	DC_Estero_cs_N.shp	Cross Section Point of Esteros in the Northern part	Jica study	2004 PTM III	Point	Acrove	This shapefile contains detailed information of csoss section surveyed in 2000 SEDLMM and in 2004 DICA study in the Northern part of Study Area.			
	DC_Esterocs_s.shp	Cross Section Point of Esteros in the Southern part	JICA Sudy	2004 PTM III	Point	Acculew	This shapefile contains detaited Information of cross section surveyed in 2000 SEDLMM and in 2004 DICA study in the Southern part of Study Area.			15 New code from DICAMM Study in 2004 254 DicA code of estero ${ }_{5}^{254}$. nume oryed yation 10 Study name that survey was conducted 19 x-coordination of cross section post 19 y-coordination of coss 19 Elevation of Post 19 Elevation of left bank elevation 19 Elevation of right bank elevation 19 Width of extero 19 Existing river bed elevation 150 Folder name that detalled information is put (Note: "-999" ment (Note: "-999" means "no data")
Drainage Malns	DC_Oralagegmaln_N.stp	Dralnage Malns in the Northern part	Jica Study	2004 PTMIII	Line	Acriew	This shapetite contains drainage malns in the Northern part of the Study area. The original line was extracted from 2000 SEDLMM map and then edited based on the result of detailed fiek survey and investigation	FlD Shape Shap LILode Lenginh	String NumberString String	
	DC__Dranagemaln_S.shp	Dramage Mans in the Suthern part	JICA Study	2004 PTM III	Lne	Accriew	This shapefile contains drainage mains in the Southern part of the Study area. The original line was extracted from 2000 SEDLMM map and then edited based on the result of detailed field survey and Investigation	$\begin{array}{\|l} \text { FiD } \\ \text { Fhape } \\ \text { Shan } \\ \text { Socode } \\ \text { Length } \end{array}$		254 Code for drainage main 31 In meter unlt Note: Length is measured from junction of extero center line to the end of dralnage main) 254 Name of drainage main 120 Folder name that detailed Information is put
	DC_DM_Section_N.s.sp	Draingese Main Seciions in the Notrierr part	Jicastuay	2004 PTM III	Line	Arview	This shapefile contalns drainage main sections which are parts of DM diveded into several in the Northern part of Study Area. These was used for analysls and planning.		Sting String Stringe Number Sting Sumber	10 DM section code from DICAMM Study in 2004 10 DICA code of drainage main 50 Name of drainage main 19 Length of each section in meter unit (Note: Length of ist section is measured from junction of extero center line) 4 Existing discharge capacity of channel 1: The capacity is more than Q10 2: The capacty is Q10-Q5 3: The capacly is Q5-Q3 4: The capacity is Q3-Q2 5: The capacity is less than O 2 6: Not spacifised
	dC_DM_Section_S.shp	Drainage Main Secilions in the Southerm part	Jica Study	2004 PTM III	Line	Arcriew	This shapefile contains drainage maln sections which are parts of DM diveded into several in the Southern part of Study Area. These was used for analysis and planning.			10 DM section code from DICAMM Study in 2004 10 DICA code of drainage main 19 Length of each section in meter unit (Note: Length of 1st section is measured from junction of extero center line) Channel category Existing discharge capacity of channel 1. The capacity is more than Q10 2. The capacity is Q10-Q5 3: The capacity is Q5-Q3 4: The capacity is Q3-Q2 5: The capacity is less than Q 2 6: Not specified
	DC._MM.MTH_N. Shp	Maintenance Hole for Drainage Main in the Northern part of Study Area	JICAStudy	2004 PTM III	Point	Arcvew	This shape file contains maintenance hole data along drainage main. In the Northern part of Study Area			10 ID for dralnage maln ID for Maintenance holo from DICA Study 9 X-coordination of maintenance hole 9 Ground elevation for DICA 2004 study (m) Ground elevation by MSL for DICA 2004 study (m) 9 MTH bed elevation with sediment (m) 5 ID for MTH from 2000 SEDLMM 50 Nearest house lot no. 50\| Street

Table A.3.2 Detailed List of GIS Data (3/15)

Table A.3.2 Detailed List of GIS Data (4/15)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Category \& FFlie Name \& Doserriplon \& Sources \& Yoer Coordhate \& Data type \& Format \& |Abstract \& \(\frac{\text { Atrlbute }}{\text { Name }}\) \& Itype \& Whath Doetrition \\
\hline \& OC_DM_MTH_LInk_S.shp \& \begin{tabular}{l}
Malntenance hole llnk and culvert characteristic of dralnage main \\
in the Southern part of Study Area
\end{tabular} \& JICA Study \& 2004 PTM II \& Line \& Arcvew \& This shapefle contains link of maintenance holes and culvert characteristic for drainage mains in the Southern part of Study Area \& \& \& \begin{tabular}{l}
254 Number of culvert in the upstream side \\
Type of culvert In the upstream side
(B: Box, P:Pipe) \\
9 Width of culvert in the upstrearn side \\
19 Height or diameter of culvert in the upstrean side \\
10 ID for drainage main \\
15 ID for link of Malntenance hole from DICA Study \\
15 MTH code of the downstream slde of link/culvert \\
MTH code of the upstream side of link/culvert \\
19 in meter unit \\
Top elevation of culvert in the downstream side \\
254 Top elevation of culvert in the downstream side \\
254 Type of culvert in the downstream slde \\
(B: Box, P:Pipe) \\
19 Height or dlameter of culvert in the downstream side \\
9 Invert elevation of culvert in the upstream side \\
19 Top elevation of culvert in the upstream slde \\
254 Number of culvert in the upsteseam side \\
(B: Box, P:Pipe) \\
19 Width of culvert in the upstream skde \\
Height or diameter of culvert in the upstream side
\end{tabular} \\
\hline \multirow[t]{3}{*}{Laterals} \& \& Laterals in the Study Area \& JICA Study \& 2004 PTMIII \& Lne \& Accrew \& This shapefile contains lateral lines and lateral/culvent characteristic. The original line was extracted from 2000 SEDLMM map and then edited. \& \& \& \begin{tabular}{l}
15 ID for link of Mantotes from DICA Study \\
9 In meter unit \\
Ma minhole code of the downstream side of linkcuvert \\
 \\
 \\
10 Pvc, M Mor masonn, Ptor riprap) \\
Shape of channel (R for rectangle, C for clrcular, T tor \\
5 trapezoidal) \\
D(mm) \\
4 (mm) \\
4 Channel depth for Rectangular and Trapezoidal only (mm) \\
4 Bottom wdath (mm). Applicable only in Trapezoidal \\
4 Nister or cells \\
4 Distance of livert from top of manhole cover (mm) \\
4 Distance of top of channel from top of manhole cover (mm) \\
\({ }^{1}\) Condition of channel (Ni in normal, C it Clogged) \\
Composition/made of channel (C for concrete, S for steel, P for \\
\({ }^{10} \begin{aligned} \& \text { Pvc, M Mor masonn, R Ror riprap) } \\ \& \text { Shape of channel ((R tor rectangle }\end{aligned}\) \\
5 trapezoidal) \\
Diameter H Circular or top widith in Rectangular or Trapezoidal \\
4 (mm) \\
4 Channel depth for Rectangular and Trapezoidal only (mm) \\
4 Bottom width (mm). Applicable only in Trapezoidal \\
4 Distance of invert from top of manhole cover (mm)
\end{tabular} \\
\hline \& \begin{tabular}{l}
DC_Connection_N.shp \\
DC_Connection_S.shp
\end{tabular} \& \begin{tabular}{l}
aterals to connect estero and estero or estero and drainage main \\
Laterals to connect estero and estero or estero and drainage main
\end{tabular} \& \begin{tabular}{l}
JICA Study Survey Map \\
JICA Study Survey Map
\end{tabular} \& \begin{tabular}{l}
2004 PTM III \\
2004 PTM III
\end{tabular} \& \begin{tabular}{l}
Line \\
Line
\end{tabular} \& Arcview

Arcview \& | This shapefile contalns laterals to connect estero and estero, or estero and dralnage main in Northern part of the Study Area. |
| :--- |
| Thls shapefile contains laterats to connect estero and estero, or estero and dralnage maln in Southern part of the Study Area. | \& \& \&

\hline \& DC. Manholeshp \& Manhole \& SEDLMM Map 1:2500 Access data of SEDLMM \& \[
{ }_{2000}^{2000 PTM III}

\] \& Point \& Arcview \& This shape filie contains manhole focaion and various manhole data \& \& \& | 10 ID for manfole from 2004 DICA Study |
| :--- |
| 15 Manhole code from 2000 SEDLMM |
| 9 X-ccordination of manhole |
| 19 Y-coordination of manhole |
| Figure of " 0 " means "no data." |
| SEDLMM database |
| 50 Nearest house lot no. |
| 100 Street |
| 00. Barangay code |
| 20 City |
| 4 Manhole diameter (mm) |
| 4 Manhole length (mm) |
| 4 Manhole thlckness (mm) |
| 4 Manhole depth (mm) |
| 4 Number of manhole cover |
| Diameter of manhole cover (mm) |
| 4 Length of manhole cover (mm) |
| 4 Thickness of manhole cover (mm) |
| 1) With manhole crack? (Y for Yes, N for No) |

\hline
\end{tabular}

Table A.3.2 Detailed List of GIS Data (5/15)

Category	FFle Name	Doscriplotion	Sources	Coordinate	Data Type	Format	${ }^{\text {Abstract }}$	Atrtibue	JType	Wath Dotintion
Drainage Eashs	DC_Block_N.shp	Drainage Block	JICAStudy	2004 PTMIII	Poryson	Acriew	This shapefile contains drainage block of future plan that includes several drainage area for pumping station and gravity drainage area in the Northern part of the Study Area	FID_ SHAPE SLOCK_ID Bocka Name Area_ Rocooff	$\begin{aligned} & \text { String } \\ & \text { String } \\ & \text { Sumber } \\ & \text { Number } \end{aligned}$	254 ID for drainage block 50 Name of drainage bloc 13 Runotf coettic Runoff coafficien
	DC_Block_S.s.sp	Drainage Block	JICA Study	2004 PTM III	Porgon	Acciew	This shapefile contalns drainage block that includes several drainage area for pumping station and gravity drainage area in the Southern part of the Study Area.		$\left.\begin{aligned} & \text { String } \\ & \text { Stuing } \\ & \text { Number } \\ & \text { Number } \end{aligned} \right\rvert\,$	254 ID for drainage block 50 Name of drainage block 13 Runoft coefficient
	DC_Basin_. .s.sp	Drainage Basins	JICA Sudy	2004 PTM III	Porygon	Accriew	This shapefile contalns dralnage area that is divided by balcally based upon the previous plan for pumping drainage area, but modified based upon the information on existing laterals, and shows relation of each basins in the Northern part of the Study Area..		Sting String Stumber Number Ntings	254 ID for drainage basins 50 Name of drainage basin 1 in meter uni 10 Drainage system
	DC_Basin_s.shp	Dranage Basins	Jica study	2004 PTM III	Porygon	Acrview	This shapefile contains drainage area that is divided by baicaly based upon the previous plan for pumping dralnage area, but modified based upon the information on existing laterals, and shows relation of each basins in the Southern part of the Study Area..		String Stran Stumber Number String	254 IO tor drailage basins 17 In meter unit ${ }^{13}$ Runoff coefficien! Drainage system
	DC_Reach_N.N.shp	Dranage Reach Basins	JICAStudy	2004 PTM M	Polygon	Arcview	This Shapefile contains associated sub basins to estimate probable peak discharge at several observation points and to give run-off in conducting hydraulic simulation by MOUSE in the Northern part of Study Area		$\left\|\begin{array}{l} \text { Sting } \\ \text { Number } \\ \text { Number } \end{array}\right\|$	254 ID for reach basin 19 In meter unit 11 Runoff coetficien
	DC_Reach_s.shp	Dranage Reach Basins	Jica study	2004 PTM III	Porygon	Acriew	This Shapefile contains assoclated sub basins to estimate probable peak discharge at several observation points and to give run-off in conducting hydraulic simulation by MOUSE in the Southern part of Study Area.		$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline \text { Numbber } \\ \text { Number } \end{array}$	254 10 for reach basin 19 in meter unit 11 Runoff coefficient
	DC_SubBastn_N.shp	Drainage Sub bashs	JICA Study	2004 PTM III	Porgon	Arcview	This shapefile contains sub divided dralnage area according to the Information on existing laterals in the Northern part of Study Area.			10 ID for sub basin 19 Mean slope of sub basin (\%) 1. Minimum elevation of sub basin in DPWH datum (m) 19 Mean elevation of sub basin in DPWH datum (m) 19. Maximum elevation of sub basin in DPWH datum (m) 19 in meter unit 19 in meter unit 16 ID of basin along same estero or drainage main 10 ID of drainage basin 10 ID of drainage block 10 ID of reach basin
	DC_subBasin_s.shp	Dranage Sub basins	MCA Study	2004 PTM III	Poryon	Arcview	This shapefile contains sub divided drainage area according to the information on existing laterals in the Southern part of Study Area			10 IO Tor sub basin 19 Mean slope of sub basin (\%) 9 Minmum eievation of sub basin in DPWH datum (m) Mean elevation of sub basin in DPWH datum (m) 9 Maximum elevation of sub basin in DPWH datum (m) 19 in meter unit 16 ID of basin along same estero or drainage main 10 of drainage basin ID of drainage block 10 1D of reach basin
Probabile ilicharge	DC._Probablobischarge_N.shp	Probable Peak Discharge of Specticic Point	JICA Study	2004 PTM III	Poont	Arcview	This shape file contains probable peak discharge of specific point In the Northern part of the Study Area.		$\substack{\text { String } \\ \text { String } \\ \text { Str } \\ \text { String } \\ \text { Strang } \\ \text { Number } \\ \text { Number }}$	

Table A.3.2 Detailed List of GIS Data (6/15)

Table A.3.2 Detailed List of GIS Data (7/15)

Category	${ }^{\text {Flle }}$ Name	Descripition	Sourcos	Year Coordhnate	Data typa	Format	\|Abstract	$\frac{\text { Atrlbure }}{\text { Name }}$	Trype	Withn Deftrition	
	\|WC_Contowal.shp	Contro Wall	JICA Stuy	2004 PTM III		Accriew	TThis shapefilic contains localion of controt walls.	$\begin{aligned} & \text { FIO } \\ & \text { SHAPE } \\ & \text { JICA_Code } \end{aligned}$	String	10 New code fom DICAMM projet	
	WC_Independenfiloodaateshp	Independent Flood Gato	Jicastudy	2004 PTM III	Point	Arcview	This shapefilie contains location of independent tiood gates.		$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|} \substack{\text { string } \\ \text { String }} \end{array}$	10 New code from DICAMM project 15 Name of independent flood gates 50 Dimensions of flood gates	
	WC_TrashScreen_s.shp	Automaic T Tash Screens in ine Morthem part	गICAStuy	2004 PTMIII	Polnt	Arcuiew	This shapeflic contains location of tutumatic trash screens in the Southern part of the Study area.	$\begin{aligned} & \text { RID } \\ & \begin{array}{l} \text { FHAPE } \\ \text { SHAA } \\ \text { NAMEDE } \end{array} \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { string } \\ & \text { string } \end{aligned}\right.$	10. New Code for trash screens 30 Name for trash screen south 30 Name for trash screen south	
$\begin{aligned} & O \& M \\ & \text { Operation and } \\ & \text { Maintenance } \end{aligned}$	IDCAMM Databasel\|l	S Dalalals	ExistingConditionstOperationMaintenance Boundary for Operation \& Maintenance	MMDA	2004 PTMII	Poryon	Arcvew	This shapefile contalns boundary for Operation \& Maintenance. The original data was provided by MMDA.		$\left\lvert\, \begin{aligned} & \text { string } \\ & \text { Strling } \\ & \text { String } \end{aligned}\right.$	254 New codat trom DICAMM project ${ }^{40}{ }_{50}$ Name of ORM zone 50 Folder name that detalaled intormation or equipments for O\&M I s put

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
INUNDATION \\
\hline Actual \\
Inundation Map \\
In 1999 flood
\end{tabular} \& \& \& \& 2004 PTM III
2004 PTM III
2004 PTM III

2004 PTM III \& Potygon
Porygon
Porygon
Porygon \& Arcriew
Arcvow

Arcview \& \begin{tabular}{l}
This shapefile contalns inundated area classified by Inundation depth in Northern part of Study Area. This was calculated based on point data of maximum inundation depth of 1999 flood

Thls shapefile contains inundated area classified by inundation depth In Southern part of Study Area. Thls was calculated based on point data of maximum inundation depth of 1999 flood

This shapetile contains Inundated area classified by inundation duration in Northern part of Study Area. This classified inundated area is only area with inundation depth of more than 0.2 meter. Thls was calculated based on point data of inundation duration of 1999 flood

This shapetile contains inundation area classlfied by inundation duration in Southern part of Study Area. This classified inundated area is only area with inundation depth of more than 0.2 meter. This was calculated based on point data of Inundation duration of 1999 flood

 \& \& \&

10 JCA Study code in 2004

10 JICA Study code in 2004

15 Inundation depth in meter

17 Inundation area in meter unit

10 JICA Study code in 2004

15	Inundation duration in hour
17	Inundation area in meter unit

17 Inundation area in meter unit

10 JICA Study code in 2004

17 Inundation area in meter

nundation area in meter unit
\end{tabular}

\hline \& | deppt_n |
| :--- |
| depth_s |
| duration_n |
| duration_s | \& | Inundation depth of 1999 flood |
| :--- |
| Inundation depth of 1999 flood |
| Inundation duration of 1999 flood |
| Inundation duration of 1999 flood | \& | JcAStudy |
| :--- |
| JCA Study |
| JCA Study |
| JCA Study | \& | 2004 PTMIII |
| :--- |
| 2004 PTM III |
| 2004 PTM III |
| 2004 PTM III | \& Raster

Raster
Raster
Raster \& Arciew
Arcview
Arcview

Arcview \& | This shapefle contains grid inundation depth of 1999 in Raster format in the Northern part of Study Area. |
| :--- |
| This shapefile contains grid inundation depth of 1999 in Raster format In the Southern part of Study Area. |
| This shapefile contalns grid inundation duration in 1999 fiood in Raster format in the Northern part of Study Area. |
| This shapefile contalas grid inundation duration in 1999 flood in Raster format In the Southern part of Study Area | \& \& \&

\hline \& IC_ActlunnPoimit199.shp \& Inundation datat of 1999 tiood \& JCA Study \& 2004 PTMM \& Point \& Arcriem \& This shapefile contalns inundation datat of 2000 SEDLMM. In carefisl comparlson with original CAD drawing and table data (EXCEL data) including detailed data of survey points, survey points of CAD data are modifiled in this Study. \& \& \& | 5 JICA Study code in 2004 |
| :--- |
| |
| 19 Inundation duration 1 in hours |
| ${ }^{5} 50$ City name |
| 50 50 50 Street name Distr name |
| ${ }^{30}$ OVortiowed drainage name |
| ${ }_{40}^{30}$ Dralnage problem that caused inundation |
| ${ }_{19}{ }^{40}$ Other reason that caused inundation |
| 8 8 Surveyed date |

\hline \& mineisection_buldidin__dephtn_.shp \& Bulkng Classtricalion by iunnation deph \& JJCA Study \& 2004 PTM III \& Porygon \& Arcview \& \& $$
\begin{aligned}
& \text { FID } \\
& \text { FHAPE } \\
& \text { HANDLE } \\
& \text { HODE } \\
& \text { DEPTH }
\end{aligned}
$$ \& \[

$$
\begin{array}{|l|l|}
\hline \text { Sting } \\
\text { Sumber } \\
\text { String }
\end{array}
$$
\] \&

\hline \& metrsection_buiklng_dept_s.s.ip \& Building Classticalion by fiundation depph \& Jca Sudy \& 2004 PTM III \& Porygon \& Arcview \& This shapefle contains bulding classificated by Inundation depth in the Southerm pat of Stuy Area. \& \& \[
$$
\begin{array}{|l|l|}
\substack{\text { String } \\
\text { Number } \\
\text { String }}
\end{array}
$$

\] \& | 16 ID of building |
| :--- |
| 19 Code of depth |
| 15 Inundation depth in meter |

\hline \& Intersection_btilding \& Builing Classfication by mundation duration \& Jcastudy \& 2004 PTM III \& Poryon \& Arview \& This shapefilis contalass buding classticated by inundation duration in the Northern patto f Study Area. \& \& \[
$$
\begin{aligned}
& \text { Sting } \\
& \text { sumber } \\
& \text { string }
\end{aligned}
$$

\] \& | 16 ID of building |
| :--- |
| 19 Code of duration |
| 15 Inundation duration in hour |

\hline \& Intersectlon_building

_duration_s.shp \& Builing Classlicailion by huundalion duration \& JCAStudy \& 2004 PTM III \& Potygon \& Arcview \& Thls shapefilie conlans buviling classificated by inundation duration in the Souther part of Study Area. \& FID HANDLE CODE \& String \& | 16 ID of building |
| :--- |
| 19 Code of duration |

\hline
\end{tabular}

Table A.3.2 Detailed List of GIS Data (8/15)

Category	${ }^{\text {Fill Name }}$	Doscriplon	Sources	Year Coordinate	Datat Type	Format	Abstract	$\frac{\text { Atrlbute }}{\text { Name }}$	Type	Vioth Doefthlion
								Duration	${ }^{\text {string }}$	15 Inuundalion duration l h our
$\begin{aligned} & \text { Actual } \\ & \text { Inundation Map } \\ & \text { in } 2004 \text { flood } \end{aligned}$		Inundation deppth of 2004 flood	JICAStudy	2004 PTM III	Pongon	Acrview	This shapefile contains inundated area classified by inundation depth in Northern part of Study Area This was calculated based on point data of maximum inundation depth of 2004 fiood		$\begin{array}{\|c\|c\|} \begin{array}{c} \text { Number } \\ \text { String } \\ \text { Number } \end{array} \\ \hline \end{array}$	10 HCA Study code in 2004 15 Inundation depth in meter 17 mundation area in meter uni mundation area in meker unt
	IC_Actlunnoppti___2004.shp	Inundaion depth of 2004 flood	JICA Study	2004 PTM III	Porygon	Acrview	This shapefile contains inundated area classified by inundation depth in Southern part of Study Area This was calculated based on point data of maximum Inundation depth of 2004 flood		$\begin{array}{\|l\|l\|} \substack{\text { Nunber } \\ \text { Sting } \\ \text { Number }} \end{array}$	
	1C_ActhunDuration_N_2004.shp	Inundation duration of 2004 fliod	Jica Sudy	2004 PTM II	Porgon	Arcview	This shapefile contalns inundated area classified by inundation duration in Northern part of Study Area. This was cakulated based on point data of inundation duration of 2004 flood		$\begin{aligned} & \text { Number } \\ & \text { String } \\ & \text { Number } \end{aligned}$	10 JICA Study code In 2004 15 17 Indindation duration in hour Inundation area in meter unit -
	1c.Achlhunuration___2004.shp	Inundation duration of 2004 flod	Jica Study	2004 PTM III	Porgan	Arcview	This shapefile contains inundation area classified by inundation duration in Southern part of Study Area This was cakulated based on point data of inundation duration of 2004 tiood		$\begin{aligned} & \text { Number } \\ & \text { String } \\ & \text { Number } \end{aligned}$	10 JICA Study code in 2004 15 Inundation duration in hour 17 inundation area in meter unit
	dep_n_2004	Inundalion deppth of 20041 log	JICAStudy	2004 PTM III	Raster	Acruiew	Thl shapefilie contiains grid finundation depth of 2004 in Raster format in the Northern part of Study Area.			
	dep_s. 2004	Inundalion depth of 2004 flood	JICA Sudy	2004 PTM M	Raster	Acrview	Thls shapefile contains grid inundation depth of 2004 in Raster format in the Southern part of Study Area.			
	dur_n_2004	Inundation duration of 2004 flood	JiCA Study	2004 PTM II	Raster	Acrview	This shapafile contains grid inundation duration in 2004 flood in Raster format in the Northern part of Study Area.			
	dur_s_2004	Inundation duration of 2004 flood	Jicastudy	2004 PTM M1	Raster	Arcview	This shapefile contains grid inundation duration in 2004 flood in Raster format in the Southern part of Study Area.			
	IC.ActhunPPoin2004	Inundation data ot 2004 tlood	JICAStudy	2004 PTMII	Point	Arcview		${ }_{\text {Stin }}^{\text {SHAPE }}$		
								${ }^{\text {CODE }}$		
									Number	${ }^{16}$ Y Y coorrinination in PTM III
								M M MXDEPTH	Number	
									${ }_{\text {Stinge }}^{\text {String }}$	
								TimeFdSlip Cause	Sting	10 Time tor Flod to Recede (hrs) 47 Possible cause(s) of liooding
								Sureypate	Date	8 Suney date

$\frac{\text { Natupal Conolitions }}{\text { Comiturs }}$	\|licamm Diatabas	Conlours	JICA Study	2004 PTM III	Line	Acriew	This shapefile contains contours. It was made in combination with contours extracted from MMEIRS 2003 1:5000 base map and manhole top elevation revised based on		$\begin{array}{\|l\|l} \text { Sting } \\ \text { Number } \\ \text { Number } \end{array}$	$\left.\begin{aligned} 254 \\ \hline 11 \\ 16 \\ 16 \\ 16 \end{aligned} \right\rvert\,=$	"CONT-MJR" and "CONT-MNR" are from SEDLMM Elevation in meters based on MSL. Elevation in meters based on DPWH Datum
Elevalions	$\underbrace{\text { NC_BenchMark }}$	Bench Mark for the Study Elevation grid map in Raster Format Elevation grid map in Raster Format	JICA Study JICA Study JICA Study	2004 PTMIII 2004 PTM III 2004 PTM III	Point Raster Raster	Arcview Arcview Arculew	This sfapefile contains location and elevation of bench mark for JICA Study. This shapefile contains grid elevations based on MSL in raster format. Thls shapefile contains grid elevations based on DPWH datum in raster format.	$\begin{aligned} & \text { FIII } \\ & \text { SIAPE } \\ & \text { SMM } \\ & \text { BSL } \\ & \text { MSLH_Daum } \\ & \text { DPW } \end{aligned}$	$\begin{aligned} & \left.\begin{array}{l} \text { sting } \\ \text { Number } \\ \text { Number } \end{array} \right\rvert\, \end{aligned}$	20 11 11	Elevation in meters based on MSL. Elevation in meters based on DPWH Datum.
Slope	$\begin{array}{\|l} s_{\text {slope }} \\ \mathrm{NC} \text { _Stope } \end{array}$	Siope grid map in Raster Format Slope classification	$\begin{aligned} & \text { JCA SLudy } \\ & \text { JICA Study } \end{aligned}$	2004 PTMIII 2004 PTMII	$\begin{aligned} & \text { Raster } \\ & \text { Porygon } \end{aligned}$	Accrivew Accivew	This shapefile contains slope values in faster format. This shapefile contains slope classification.	$\left\lvert\, \begin{aligned} & \text { FID } \\ & \text { SHAPE } \\ & \text { Sippocoose } \\ & \text { Silope } \end{aligned}\right.$	$\begin{array}{\|l\|l} \text { String } \\ \text { Sting } \end{array}$	${ }_{20}^{10}$	
Rivers	NC_Pastg_RNeI_Centerino.shp NC_Pasig_River_Polygon.shp NC_Pasigisland.shp	Pasig Piver center line River Polyogn Islands in Pasig River	JICAStudy JHCA Study JICA Study	2004 PTM III 2004 PTM III 2004 РTM III	Line Polygon Polygon	Arcview Arcview Arculew	This shapentil contanins a conere Ino of Passig River. This shapefile contalns islands in Pasig River.	FID FIDAPE SASIG_R_ID FID FID SHAPE IO AREA PERIMETER FID FHAPE SACPASIID AREA	$\substack{\text { Number } \\ \text { Number } \\ \text { Number } \\ \text { Number }}$ Number Number	${ }^{11} 3118$	in meter unit in meter unit in meter unit
Resenvolifond	NC_ResenvolN.shp NC_Resenoirs.shp	Reservol or Pond in Northern part of Study Area Reservoir or Pond in Southern part of Study Area	MMEIRS Map 1:5000 MMEIRS Map 1:5000	2003 PTMIII 2003 PTMII	Polygon Polygon	Arcview Arcview	This shapofilie contalans resesenoir of Northern study area, which extracted from year 2003 MMEIRS JCA map. This shapofilie contalans fesesvolo of Northern study aroa, which extracted from year 2003 MMEERS JCA map.	FID FHAPE SH ID FID SHAPE	String		New Code tom Dicamm project

Table A.3.2 Detailed List of GIS Data (9/15)

Category	${ }^{\text {Fill }}$ Name	Description	Sources	Coordinat	Data Type	Format	Abstract	$\frac{\text { Atrlubute }}{\text { Name }}$	Itype	Weth Doetnillon
	Nc_Pond_S.shp	Pond in the Southern part of the Study aroa	MMEIRS Map 1:5000	2003 PTM III	Potygon	Acriew	This shapefilic contains the ony pond in the Southern part of the Study Area		String	${ }_{6}^{6} \int^{6}$ Now Code fode from DICAMM project
Manila Bay	NC_Manliagay.shp	Manial Bay	MMEIRS Map 1:5000 SEELMM Map 1:2500	2003 PTMIII	Pobyson	Arciew	Tris shapeflile conlains waler body of Manlia Bay extracted tom year 2003 MMEIRS JICA map.	$\left.\right\|_{\substack{\text { FID } \\ \text { SHAPE } \\ \text { SHCACADE }}}$	String	15 New Code tom dicamm proiect
METEOHYDROLOGY Meteorological Station	IDICAMM Databasel\|c MC_Moteosta.shp	ExistingConditionsiMeteohydrology Meterologigal Station In Metropolizan Manlia	Jica study	2004 PTMIII	Point	Arcovew	Thls shapefile contains Meteroogigal stations. The location data was provided by PAGASA/CAB/CDS and EFCOS			10 Number of Station 20 Name of Station 19 Location in PTM III 19 Location in PTM III 19 PAGASA Code 254 City name that station locates 19 Elevation in meters based on DPWH Datum 254 Category of Station 254 Observation item 254 Agency in charge 19 Established year $254 \begin{aligned} & \text { Operation condition in } 2004 \\ & \text { (Note: "-999" means "no data*) }\end{aligned}$
Water Level Station	MC_WLSta.shp	Water Level Stalubo in Metropoltan Manila	JICA Study	2004 PTM III	Point	Arciew	This shapeifile contans waiter ivevistations. The location dala was provided by EFCos.			
Tide Level Slation	MC_TIdeStastasp	Tide Level Station in Metropolitian Manlia	JICA Study	2004 PTMIII	Point	Arcriew	This shapefile contains a tide tovel station. The location data was provided by NAMRIA		Sting SNumber Number Number Number Nunnoer String	
Thessen Poylline	MC_Thiesson.shp	TThissen Poovine	JICA Study	2004 PTMIII	Line	Arcview	This shapellil connalas Thilessen Poyvines		$\begin{aligned} & \text { string } \\ & \text { Number } \\ & \text { Number } \\ & \text { Number } \end{aligned}$	11 ID for Thiessen Polyline 11 11 19 length of each polyline in meter uni
$\begin{aligned} & \text { WASTE MNAGEMENT } \\ & \begin{array}{l} \text { Waste SunAG } \\ \text { Point } \end{array} \end{aligned}$	$\begin{aligned} & \text { IDICAMM Datatabaselc } \\ & \hline \text { WC SurveyPoint.shp } \end{aligned}$	EXxsting CondtionssWastemanagement Waste Suney Polnt	JICA Study	2004 PTM III	Point	Arcview	This shapefile contains survey poin of waste \& gavage in the JcA Study.		String	10 DG:Drainage garbage, FG: Floating garbage, PG: Pumping Station
GEOLOGY Geological Formations	DICAMM Databaso G_Formation1.shp G_Formation2.shp	ExistingConditions\Geology Geological Formathons - Phivolcs Geological Formations - Oyo	Phivoles oyo	2000 PTM III 2003 PTM III	Polygon Polygon	Arcvlew Arcview	Thls shapefile contains geological formations of the Study Area. The original shape file from 2003 MMEIRS Database inciuded all the Metro Manila Area Original shape file was trimmed in the Study area boundary. This shapetile contains geological formations of the Study Area. The orginal shape file from 2003 MMEIRS Database included all the Metro Manila Area. Origlnal shape file was trimmed In the Study area boundary		$\left\|\begin{array}{c} \text { Number } \\ \text { Number } \\ \text { String } \\ \text { String } \end{array}\right\|$	19 in meter unit 19 in meker unit 128 Description 16 Description
ENVIRONMENT Water Quality		existingConditionstEnvironment Water Quality survey result	JICA Study	${ }^{2000}$ PTM III	Point	Accolew			Sting Stung Sunmer Number Number Number Number Number	10 JICA Study code in 2004 00 Sampling site 19 Temperature $\left({ }^{\circ} \mathrm{C}\right)$ on site pH or site analysis 19 DO (mg/L) on slte analysls 19 Electric Conductivity ($\mu \mathrm{S}$) on site analysis 19 BOD_{3} (mg/4) $19 \mathrm{BOD}_{\mathrm{s}}(\mathrm{mg})$

Table A.3.2 Detailed List of GIS Data (10/15)

Table A.3.2 Detailed List of GIS Data (11/15)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Category \& Filie Name \& \({ }^{\text {Doscription }}\) \& Sourc \& coordinate \& Data Type \& format \& |Abstract \& \(|\)\begin{tabular}{l}
Antribute \\
Name \\
\hline
\end{tabular} \& Itype \& Wath \& Dotintion \\
\hline \& S_Citysnd2003.shp \& CityMunclipal Buundarios in 2003 \& MMEIRS \& 2003 PTM III \& Porygon \& Accriew \& Thls shapefille contains the boundaries of all 17 ctilis and municipalifies in Metro Manla In 2003. Thls shapefilio is tom 2003 MMElRs. \& \[
\begin{aligned}
\& \text { Fone } \\
\& \text { Fsinape } \\
\& \text { Shane } \\
\& \text { Minazai } \\
\& \text { Min_Citicco }
\end{aligned}
\] \& \[
\left|\begin{array}{l}
\text { String } \\
\text { String } \\
\text { Sumber }
\end{array}\right|
\] \& \& Name of City or Municipality City code asslgned by MMEIRS \\
\hline \begin{tabular}{l}
(Sunvey for Estero Informal Settlers along selected Esteros) \\
Buikling
\end{tabular} \& \begin{tabular}{l}
EIS01_Building.shp EIS01_Building_Clip.sho \\
EISO1_DenseArea.shp \\
EISO1_DenseArea_Clip.shp
\end{tabular} \& \begin{tabular}{l}
Building along Estero de Sunog Apog and Tripa de Galina \\
Buliding within Estero de Sunog Apog and Tripa de Galkina \\
Densely Buildup Area along Estero de Sunog Apog and Tripa de Gallina \\
Densely Buildup Area within Estero de Sunog Apog and Tripa de Gallina
\end{tabular} \& JICA Study
JICA Study

JICA Study
JICA Study \& 2004 PTM III
2004 PTM III
2004 PTM III
2004 PTM III \& Porygon
Porygon

Polygon
Porygon \& Accuiew
Arcview

Acrview

Arcview \& \begin{tabular}{l}
Thls shapefile contains buildings and these type along estero de Sunog Apog and Tripa de Gallina. Type of building was surveyed in the field through 2004 JICA Study.

Thls shapefite contains buildings and these type within estero de Sunog Apog and Tripa de Gallina Type of building was surveyed In the field through 2004 JiCA Study.

Thls shapefile contains densely buildup area along estero de Sunog Apog and Tripa de Gallina Househokd density was set based on the field survey through 2004 JICA Study

This shapefile contains densely buildup area and number of househokds within estero de Sunog Apog and Tripa de Gallina. Household number was calculated using density and area.

 \& \&

$\substack{\text { String } \\
\text { Sting } \\
\text { String } \\
\text { Number }}$

Number

$\substack{\text { Number } \\
\text { Number } \\
\text { Number } \\
\text { Sting }}$

\hline

 \& \&

Type of buikding

Type of building Section code of estero Area of bulkings in meter units

Household density. (Number of househok per sq.m)

Household density. (Number of househokd per sq.m) Densely build-up area in meter units Number of calculated households Section code of estero
\end{tabular}

\hline Reach \& | ElSO1 Reach00.shp |
| :--- |
| ElS01_Reach04.shp |
| EIS01_Reach10.shp |
| EIS01_Reach20.shp | \& \& | JICA Study |
| :--- |
| JICA Study |
| JICA Study |
| JICA Study | \& | 2004 PTM II |
| :--- |
| 2004 PTM III |
| 2004 PTM III | \& | Polygon |
| :--- |
| Polygon |
| Polygon |
| Polygon | \& Arcview

Arcview
Arcview

Arcview \& This shapefile contains area of water body of estero de Sunog Apog and Tripa de Gallina. This shapefile contains area of 4 m outside from edge of estero de Sunog Apog and Tripa de Gallina. This shapefile contains area of 10 m outside from edge of estero de Sunog Apog and Tripa de Gallina. This shapefite contains area of 20 m outside from edge of estero de Sunog Apog and Tripa de Gallina. \& \& \begin{tabular}{l}
$\substack{\text { Sting } \\
\text { Number } \\
\hline \\
\text { String } \\
\text { Sumber } \\
\text { Num } \\
\hline \\
\text { String } \\
\text { Number } \\
\text { String } \\
\text { Number }}$

\hline

 \& 11 \&

Section code of estero

in meter units

Section code and riverbank Indication of estero in meter units

Section code and riverbank indication of estero In meter units

Section code and riverbank indication of estero in meter units
\end{tabular}

\hline Stucture \& | EISO1_EmbankmentType.shp |
| :--- |
| ElSO1_Road.shp | \& Type of Embankment along Selectee Esteros \& | JICA Study |
| :--- |
| JICA Study | \& | 2004 PTM III |
| :--- |
| 2004 PTM III | \& | Line |
| :--- |
| Polygon | \& Arcview

Arcview \& This shapefilie connains stpe of embankment along estero de Sunog Apog and TTipa de Gallina. \& \& \[
\left\lvert\, $$
\begin{aligned}
& \text { Sting } \\
& \begin{array}{l}
\text { Sutring } \\
\text { String }
\end{array} \\
& \begin{array}{l}
\text { Sting } \\
\text { Number }
\end{array} \\
& \hline
\end{aligned}
$$\right.

\] \& 28 \& | Type of embankement in meter unit Section code and riverbank indication of estero |
| :--- |
| Section code and tiverbank indkation of estero in meter units |

\hline except two) \& | EiS02_Building_SSHW.shp |
| :--- |
| EIS02_DenseArea.shp |
| ElS02_DenseArea_Clip.shp |
| EIS02_EsteroReach.shp | \& | Buildings akong South Super Highway and Sen. Gil J. Puyat Avenue |
| :--- |
| Densely Buikdup Area along Esteros except Sunog Apog and Tripa de Gallina |
| Densely Buildup Area within Esteros except Sunog Apog and Tripa de Gallina |
| Area of Water Body of Esteros except Sunog Apog and Tripa de Gallina | \& | JICA Study |
| :--- |
| JICA Study |
| JICA Study |
| JICA Study | \& | 2004 PTM III |
| :--- |
| 2004 PTM IIt |
| 2004 PTM It |
| 2004 PTM III | \& | Polygon |
| :--- |
| Polygon |
| Polygon |
| Polygon | \& Acrview

Arcview
Arcvew

Arcview \& | This shapefile includes buildings along South Super Highway and Sen. Gill J. Puyat Avenue |
| :--- |
| This shapefile contains densely buildup area along esteros except estero de Sunog Apog and Tripa de Gallina |
| Household density was set based on the field survey through 2004 JICA Study. |
| This shapefile contains densely buildup area and number of househoids within esteros except estero de Sunog Apog and Tripa de Gallina. |
| Household number was calculated using density and area. |
| Thls shape file contains area of water body of esteros except estero de Sunog Apog and Tripa de Gallina | \& \& Number

Number

Number
Number
Number
String
Stings
Sumber
:---
Household density. (Number of household per sq.m)
Densely bulld-up area In meter units
Number of calculated housenokds
Section code of estero
Section code of estero
in meter units

\hline Socio.ECONOMC Conol \& | MM DatabaselGIS Data |
| :--- |
| SC_landprice.shp | \& | elexistingConditions\|SocioEconomicConditions |
| :--- |
| Land price |
| landprice grid map in Raster Format | \& Laus

Jica Sudy \& \begin{tabular}{l}
2004 PTM III

2004 PTM

 \&

Line

Raster
\end{tabular} \& Accriew

Acrview \& | Land price data was provided from LGUs, of which appralsed year was various in each LGU. |
| :--- |
| Aopraised year of land price input to this database: |
| Manila: 1996, Makati: 1996, Pasay: 2002, Queson: 1994, Kalookan: 1992 |
| This shapefile contalns landprice grid based on 'SC_landprice .shp' data in raster format in Study Area and surroungdings. | \& \& Sting

Stern
String
Stringer
Number
Number
Number
Number
String
String
String
String
Sumber \& 25
25
25
50
19
19
19
20
10
20
16
16

19 \& | Key used to link with MMDA road data |
| :--- |
| Name of Road |
| Number of Lanes |
| Road width extracted from DPWH road Inventory |
| Calculated road width based on MMDA \# of lanes |
| Hoad width extracted from MMEIRS 2003 drawing Name of Road |
| Represents direction of traffic |
| Road classification of MMDA Key used to link with land price data |
| Landprice per square meter (Note: "-999" means "no data") |
| (Nole. -sss means no data") |

\hline
\end{tabular}

Table A.3.2 Detailed List of GIS Data (12/15)

2. Master Plan Planning

DRAINAGE SVSTEM
EsterosCCreoks

Table A.3.2 Detailed List of GIS Data (13/15)

Category	Filie Name	Doscriplon	Sourcos	Year Coordinate	Data 7ype	Formal	Abstract	$\frac{\text { Atribute }}{\text { Name }}$	Itrpe	Wath 1 Deflition
									NumberNuthmer String String String String String StringNumber	
	DP_Estero_Section_Pran_S.s.shp	Estero Secioios in the Suithern part	Jica Study	2004 PTM III	Line	Acrview	This shapefile contains estero sections for Master Plan, which are parts of extero diveded into several in the Southern part of Study Area. These was used for analysis and planning.			10 Estero section code from DICAMM Study in 2004 10 DiCA ode of este 50 Name of esterc 19 10 10 Length of each section in meter unit 10 Channel Category 4 Existing discharge capacity of channel Esstimated original discharge capacity of channel 1: The capacily is more than Q10 2: The capactly is Q10- $\mathbf{0 5}$ 3. The capactity is Q5-Q3 4: The capacty is $\mathrm{Q3}-\mathrm{Q2}$ 5: The capacity is less than Q2 6: Not specified 19. Dredging volume (m3) ${ }^{10}$ Eq Average dreant wding of channel (m) 10 Area of Water body (m 2) ${ }^{10}$ Total bullding and dense area wilhin channel (m2) ${ }_{10} 10$ Estimated number of buublings within channel 10 Estimated number of bulllings within channel 4 - $\begin{gathered}\text { Per lengath (km-1) } \\ \text { Dredging prioity }\end{gathered}$
	DP_Estero_Plan_Cs_N.shp	Cross Sectlon Point of Esteros In the Northern part	Jica Sludy	2004 PTM III	Point	Arcvew	Thls shapefile contains detalled information of cross section surveyed in 2000 SEOLMM and in 2004 DICA study, and Master Plan planning of cross section in the Northem part of Study Area.		String Stren String String Strag Number	15 New code from DICAMM Study in 2004 254 DICA code of estero 254 name of station for estero cross section 11 Surveyed year 11 Surveyed year $19 x \begin{aligned} & x \text {-coordination of cross section post } \\ & y-c o o r d i n a t i o n ~ o f ~ c r o s s ~ s e c t i o n ~ p o s t ~\end{aligned}$ 19 Elevation of Post 9 Elevation of left bank elevation 19 Elevation of right bank elevation 19 Width of extero 19 Existing river bed elevation (Note: "-999" means "no data")
	DP_Estero_Plan_Cs_S.s.hp	Cross Section Point of Esteros in the Northern part	лca Study	2004 PTM II	Polnt	Acrviow	This shapefile contains detailed information of cross section surveyed in 2000 SEDLMM and In 2004 DICA study, and Master Pian planning of cross section in the Southem part of Study Area.			15 New code from DICAMM Study in 2004 254 DICA code of estero 254 name of station for estera cross section 5 Surveyed year 10 Study name that survey was conducted 19 x-coordination of cross section post 19 y-coordination of cross section post 19 Elevation of Post 19. Elevation of left bank elevation 19. Elevation of right bank elevation 19. Width of extero 19 Existing river bed elevation 19 Planned river bed elevatlon (Note: "-999" means "no data")
Drainage Mans	DP_DM_Section_Plan_N.shp	Drainage Main Sections in the Northern part	JICA Study	2004 PTM III	Line	Acruiew	This shapefile contalns drainage main sections for Master Plan, which are parts of DM diveded into several in the Northern part of Study Area. These was used tor analysis and planning.		String String String stinber vimber String Number Number Number Number String	10 Estero section code from DICAMM Study in 2004 10 DICA code of drainage main 50 19 Name of drainage main (Note: Length of Ist section Is measured from junction of extero center line) 10 Channel category Existing discharge capacity of channel 1: The capacity is more than capacity of channel 3: The capacity is Q5 - Q3 4: The capacity is Q3 - Q2 5: The capacity is less than Q2 6 : Not spectied 19 Dredging volume (m3) $19 \mid$ Dredging volume per unit length (m3/m) 10 Dredging priority

Table A.3.2 Detailed List of GIS Data (14/15)

Table A.3.2 Detailed List of GIS Data (15/15)

Catagory	${ }^{\text {Flle Nams }}$	Descriplion	Sources	Yoar	Coordnate	Data Type Format	Abstract	$\left\lvert\, \begin{aligned} & \text { Atrlibute } \\ & \text { Name }\end{aligned}\right.$	Itypo	Mith Doethition
									Sting Sumber Number String	10 ID of reach basin 19 Drainage area (km2) 19 Time of Concentration Tc (hour) 9 Areal reduction factor 19 Q10 (m3/s) 19 $Q 5(\mathrm{~m} 3 / \mathrm{s})$ 19 $03(\mathrm{~m} 3 / \mathrm{s})$ $19 \mathrm{Q} 2(\mathrm{~m} 3 / \mathrm{s})$ 20 Remarks

Annex A. 1

Data Arrangement for GIS

Annex-A. 1 Data Arrangement for GIS

In developing the database, some GIS data needed the especial arrangement of the original data. The details are described below.

1) Topography

Topography for this Study was made in combination with MMEIRS contour and manhole top elevation of SEDLMM.

The process is as follows:

1) To convert the value of manhole top elevation to elevation on the basis of mean sea level, because the value of manhole top elevation of SEDLMM was measured using DPWH Datum.
2) To modify or omit some manhole data with strange elevation or with strange coordinate.
3) To rearrange contours of the Study Area in combination with MMEIRS contour and revised manhole top elevation of SEDLMM.

2) Inundation Data in 1999 Flood

Based on the survey result of 1999 flood in SEDLMM, inundation data in 1999 flood was input and analyzed with the aim of grasping the existing flood conditions.

The survey result of SEDLMM consists of the following data:

- Drawing by CAD, which includes exact coordinate and ID number of survey points
- Detailed survey data by Microsoft Access, which include survey points location defined by street name, inundation depth, inundation duration, cause of inundation and ID number.

The above data are linked by ID number.
The process of inputting is shown below.

- Inundation points

1) To check the location and ID number of survey points, comparing the drawing to the detailed survey data, because some points had the same ID number and some points had no ID number in the drawing.
2) To select available points for analysis from all the inundation survey points data.

- Inundation depth and duration maps in 1999 flood

1) To omit some local inundation points with high inundation depth or with long inundation duration from selected points.
2) To create inundation depth and duration maps using the value of inundation depth or duration of the selected points after omitting.

Annex A. 2

MANUAL FOR ARCExplorer

Annex-A. 2 Manual for ArcExplorer

ArcExplorer is a lightweight GIS data viewer developed by ESRI. This freely available software offers an easy way to perform a variety of basic GIS functions, including display, query, and data retrieval applications. It can be used on its own with local data sets or as a client to Internet data and map servers.

What you can do with ArcExplorer

- View and query shapefiles, CAD drawings, etc.
- Display a wide variety of image formats
- Address match (locate street addresses or intersections on a map)
- Measure distances on your map
- Find features
- Identify and query geographic and attribute data
- Display data using classifications, symbols, and labeling
- Pan and zoom through multiple map layers

View and download data published on Web sites which use ESRI IMS technology.

ArcExplorer also features legends, overview maps, saving and retrieving projects, and map printing.

ArcExplorer Environment

1- Menu Bar and Toolbars- to access all the functions of ArcExplorer
2- \quad Legend- Displays all the layers of the data as themes, the legends has two tabs: Local for managing locally stored data and WWW for managing data on Web sites

3- Map View- Displays the data
4- Scale Bar- Displays the scale of the current map view
5- Overview Map- Displays and overview map showing the full extent or half the extent of your data, with a red box outlining the area displayed in the map view.
6- \quad Status Bar- Shows the help messages on the left and lists the current active theme on the right.

The Toolbars

New ArcExplorer
Open project

Save Project

Close Project

Adds one or more theme(s) to view. Adds a Web map site in WWW mode

Print

国 Toggle ArcExplorer

* AEWeb Favorites

Cancel WWW

Prints the map view and legend to a preformatted map Layout. (Local mode only)

Toggles the legend on and off

Opens the AEWeb favorites dialog
Request cancels a request map server for a download of WWW data.

Saves an ArcExplorer

Removes all themes and returns an empty view. Closes the Web map site in WWW.
Starts a new session of ArcExplorer
Opens an ArcExplorer project (file with an .aep extension) (Local mode only)

Retrieve Data from WWW Downloads data displayed in the map view from WWW

Zoom to full extent
Zooms to the extent

Zoom to Active theme
Zooms to the extent of active theme (Local mode only)
\lesssim Zoom to previous extent Zooms to the last previous extent

Zoom in

Zooms out form the position you click or the box you drag on the map view

Pan

Pan Direction

(i) Identify

明 Find

Query Builder

氮 Map Tips

Measure

Address Match

Pans the map as you drag the mouse across the map View

Choose panning direction
It has four buttons: North, South, East, and West
Lists attributes of features you identify by clicking them in the map view

Finds a map feature(s) based on text string you type in.

Queries the active theme based on a query expression you construct.

Displays attribute information for features in the map

Measures distances on the map view. You must first choose measurement units from the detachable menu.

Locates a street address or intersection on the map view.

Clear Thematic Classification Removes thematic classification from the active Theme

Clears the selected/highlighted features from the map view.

Sets the display characteristics of the active theme

Adding Data in ArcExplorer

ArcExplorer has two modes for loading and viewing data: Local and WWW that can be switch by clicking tabs at the top of the ArcExplorer Legend. In Local mode, we can access data stored in computer or other computers connected to your computer via a network or an ESRI SDE server.

ADDING LOCALLY STORED DATA

1. Click the Add Theme Button
 to open the Add Themes dialog.

2. For data types, choose the type of data you want to load, or choose All Other Formats to see all files stored in the directory.
3. Click on each directory to navigate to the directory where your data are stored.
4. Click the file you wish to add.
5. Click Add Theme.
6. Navigate to another directory to add additional themes, or click Close to close the Add Themes dialog. The themes you chose appear in the legend.
Shortcuts for adding data to ArcExplorer:
From the Add Themes dialog, you can

- Double-click a file to add it as a theme or
- Drag and drop a file directly into the map view.

This drag and drop functionality also works by dragging a file from your Windows
Explorer into a map view.

ADDING DATA FROM THE WEB

1. Click the WWW tab in the legend.
2. Click Add Theme Button.

3. Type the URL of a Web site you wish to view data from.
4. Click the Add URL button.
5. If you have entered a URL other than ESRI ArcExplorer Web site, ArcExplorer prompts you to save the URL as one of your AEWeb Favorites. You can choose to save the URL and then enter a name for this new AEWeb Favorite, or choose no to open the URL without saving it as an AEWeb Favorite.
6. The name of the data server appears under AEWeb. Navigate through the directory of available data and click the data you want to add to the map view. A legend listing all the Web-based themes appears below the directory. Use the black and gray arrows to scroll through the list if it extends beyond the legend part.
7. To close a web site

Select the site in the AEWeb tree view. Click the close WWW Map site button.

Customizing the Map

SETTING MAP DISPLAY PROPERTIES

Control the background color, map outline, scroll bars and other characteristics in map view.

1. Choose Map Display Properties from the View menu

2. Check the Scrollbars on map box if you want the map to include scroll bars at the edge of the map for panning.
3. Check the 3d Appearance box if you want the map view to have a slightly raised effect.
4. Check the border style box if you want to enhance the border of around the map view.
5. Set the background color for the map view by clicking on the Background box and clicking the desired color.
6. Changed the color for highlight by clicking the Highlight box and choosing a desired color. Features found in query are highlighted with this color.
7. Set the escape key to cancel an action. You can set it to stop drawing the all the layers, to stop drawing the current layer, or to do nothing.

CREATING MAP TIPS

Map tips are small pop-ups that display data for field you specify. Map tips work on the active theme as you move the cursor over the features on the map view. (Map tips only work in Local Mode).

1. Make the theme you want to display MapTips for active.
2. Click the MapTips tool \square to display the MapTips dialog.
3. Choose the field to be displayed in the MapTips and then click ok.

To use the MapTips for a theme:
Move your mouse over features on the map view to display the MapTips. To disable MapTips, click the clear button on the MapTip Field Selection dialog.

ADDING A SCALE BAR TO THE MAP VIEW

1. Choose Display Scale Bar on the view menu to add a scale bar.
2. Right-click the scale bar and set the map, scale and screen units.

Map units are the units in which geographic data are stored.
Scale units set as miles, feet, meters or kilometers.
Screen units correspond to the actual display in your computer, set as either inches or centimeters

Symbolizing Data

THEME PROPERTIES DIALOG

This property is used to control how each theme is drawn in the map view: to classify theme's features, method of classification, color scheme for classification, display all the features with same symbol, or label a theme.

Creating Single Symbol Map

Displays the entire feature in the theme with the same color and style.

1. Open the Theme Properties dialog
2. Click the color box to change the color or to create a custom color.
3. Click the style box to change the symbol's style.
4. Enter a size value for line width, outline width, or marker size depending on, whether your themes feature type is line area, or point.
5. Click Apply to commit your changes and close the Theme Properties dialog at the same time.

Labeling a theme classified as Single Symbol

Open the Theme Properties dialog and first choose the Single Symbol classification.
Then choose either Standards Labels or No Overlapping Labels and set the labels for the theme.

Unique Values Map
 Displays features by applying a different color to each unique value for specified field.

1. Open the Theme Properties dialog
2. Choose Unique Values from the Classification Options.
3. Choose a field.
4. ArcExplorer automatically assigns random colors to each unique classification. Click a color box to change value's color.
5. Check the Remove Outline box if you want polygons drawn with no outline.
6. Click Apply to commit your changes and close the Theme Properties dialog at the same time.

Labeling a theme classified as unique values:

1. Add the theme to your legend twice.
2. Set the second theme as a Label map. Uncheck the draw Features box. Click Ok. Be sure that labeled theme is listed on top of the other theme in the legend so you can see the labels on the top of the map features.

Class Break Maps

Uses quantile classification to create graduated color maps.

1. Open the Theme Properties dialog.
2. Choose Class Breaks from the Classification Options.
3. Pick a Numeric field. This field contains the values that will be mapped. For the numeric field, ArcExplorer is limited for finding the first 2,000 unique values in the data sheet.
4. Choose the number of class you want in your classification.
a. Click the start and End color boxes to change the starting and ending colors for your color ramp.
b. Check the Remove Outline Box if you want polygons drawn with no outline.
5. Click Apply to commit your changes or OK to commit the changes and close the Theme Properties dialog at the same time.

Labeling a theme classified as Class Breaks

1. Add the theme to your legend twice.
2. Set the second theme as a Label map. Uncheck the draw Features box. Click Ok. Be sure that labeled theme is listed on top of the other theme in the legend so you can see the labels on the top of the map features.

LABEL MAPS

Standard Label Maps- labels are placed according to the preferences you choose on the Theme Properties dialog. It provides placement options: splined, fitted, flipped, and rotated.

1. Open the Theme Properties dialog.
2. Click Standard Labels.

3. Choose the Text field.

Options:
a. Use the vertical and horizontal alignment options to control the label position relative to the center of the feature being labeled.
b. Click the Font button to change the font, style, size, or color.
c. For displaying annotation in ARC/INFO coverages or SDE layers, choose an X-Offset and Y-Offset field.
d. Uncheck draw features to see only the labels and not the features. This is useful when labeling over an identical theme with a thematic classification.
e. Uncheck the Allow Duplicates box to label features with the same name only once. The advantages of not allowing of duplicates are most obvious for data such as street networks, where each segment of a street has a name field.

- Check Splined text for labels that follow the shape of its feature.
- \quad Check Flip to change the orientation of a label.
- Check Fitted to spread a label across a feature.
- Choose a value from 0 to 359 if you wish to rotate the labels.

4. Click Apply to commit your changes or click OK to close the Theme Properties dialog at the same.

No Overlapping Map- assesses the features being labeled and attempts to resolve cases where labels are crowded or overlapping.

1. Open the Theme properties dialog

2. Click No Overlapping Labels.
3. Choose a Text field.
a. Click the font button to change the font, style, size, or color.
b. Choose a label placement option.
c. Uncheck draw features to see only the labels and not the features. This is useful when labeling over identical theme with a thematic classification.
d. Uncheck Allow Duplicate box to label features with the same name only once. The advantages of not allowing duplicates are most obvious for data such as street networks, where each segment of a field has a name field.
e. Check Mask Labels and you can choose a mask color to be displayed under the label.
f. Choose the Label Size or check Scale labels and choose scaling factor.
4. Click Apply to commit your changes or click OK to close the Theme Properties dialog at the same.

Getting and using the Attributes of Features

IDENTFYING FEATURES WITH A MOUSE

Use to get information about one of the features in the map.

1. In the legend click the name of the theme you wish to identify to make it active.
2. Click the Identify tool

(i)

3. Click the feature you wish to identify. The feature you click flashes in the map view, and its attributes appear in the Identify Results dialog.

Identify Results			区
Location: X: 501,677. Y: 1,613,932.			
Feature:	Attributes:		
MANILA	Field	Value	
	Pop2k MUNICIPALI Featureld HousePop2k HouseHId2k CITYCODE Area Zone CityDen2k	1581082 MANILA 6 1568092 333547 3901 41283696.28 2 382.98	
1 features found	S_CityBnd	Polygon	,

In the Identify Results, panel, indicates the number of features found, and if one or more features are found you can see all the features that were found by using the drop-down functionality on the Features list.

FINDING FEATURES BY NAME

Use to locate particular features from the themes in the map view.

1. Click the find tool

In the find features dialog,

2. Enter the name of what you want to find. You don't nee to enclose the text you specify in quotes. Find is case sensitive. Wild cards are not supported.
3. Choose a search type. Choose "Any Part of the Field" if you want to enter only part of the search text.
4. Choose which theme or themes to search.
5. Click find. ArcExplorer searches the features in the chosen themes to find features that meet the search criteria. ArcExplorer is limited to finding the first 500 features that meet the search criteria.

FINDING FEATURES BY BUILDING A QUERY EXPRESSION

A Query expression is a precise definition of what you want to select. Building a query expression is powerful way to select features because an expression can include multiple attributes, operators, and calculations.

1. Click the name of the theme you wish to query.
2. Click the Query tool.
3. From the list of the fields, click CAPITAL to enter it into the expression.
4. Click the Equal button to enter the $=$ operator into the expression.
5. Click N from the Sample Values list. (Example for creating query for POPULATION.)
6. Click the And button to indicate that both parts of the expression must be true.
7. From the list of the fields, click POPULATION
8. Click the Greater Than button.
9. Type 1000000 into the expression
10. Click the Execute button. Feature that meet the query definition appear in the Query Results panel. The Query builder is limited to finding only the first 2,000 records that meet the search criteria.

Note: In working with Query we can make different ways to create query builders and results that meets the various analysis using ArcExplorer for example generating summary statistics using the same tool and selecting fields.

USING THE MEASURE TOOL

Use to measure distances in the map.

1. Click the Measure tool \square and choose a measurement unit from the detachable menu.
2. On the map view, click and drag to draw a line representing the distance you wish to measure.

The segment and total length you measured is displayed in the status panel at the top left of the map view.

To stop measuring and clear the measurements, double-click in the map view. After you double-click, the total length appears in the lower left corner on the status bar.

ADDRESS MATCHING

Address matching involves interpolation; it is not an exact science. Address matching is the process of calculating geographic positions from addresses by interpolating from the address of a street segment, taking into account even and odd address numbering.

Samples of Address Matching:

Before beginning Address Matching, we need to set first the properties for the street file you wish to address match against. (Prepare a theme that meets the requirements for a street file.)

1. Make the street theme you wish to address match against active.
2. From the Theme menu, choose Address Matcher Properties.
3. In the Address Matcher Properties dialog, you must specify the required input fields.
4. Click the Ok to make the theme matchable.

Locating a street address or intersection
What you need:
A street theme that meets the requirements for a street file.
A street theme that has been prepared for address matching through the Address
Matcher Properties dialog.

1. Make the street theme that you are address matching against active.
2. Click the Address Matcher button.
3. On the Address Matching dialog, choose whether you will enter an address or an intersection.
4. Type an address or intersection and cross street, city, state, and ZIP Code for the location you want to address match. Enter as much information as you have available to ensure the most accurate address match.
5. Click the Match button. ArcExplorer geocodes the address and, if it can find it, locates it in your map with a point. The map view pans and zooms to the location of the matched address.

Printing and Saving

PRINTING A MAP

1. Click the Print tool
2. Enter a title for your map.
3. Your map will print to your default printer. You can choose Print Setup properties to change printers or to access other printer options.
4. Click Print

If the legend for your map is too long, it prints onto a second page. ArcExplorer has two-page limit for the legend. If your legend exceeds two pages, you may want to reconsider the symbolization of your map.

SAVING YOUR WORK

Saving Project File

1. Choose the Save Project or Save As from the File Menu, or click the Save tool.
2. If necessary, name your ArcExplorer project.
3. Click OK.
B. METEOROLOGY AND HYDROLOGY

TABLE OF CONTENTS

Page
B. 1 General B-1
B. 2 Monitoring Network on Meteo-Hydrology B-1
B.2.1 Meteorological Stations and Data B-1
B.2.2 Hydrological Stations and Data B - 3
B.2.3 General Meteo-Hydrological Condition B - 5
B. 3 Meteo-Hydrological Analysis B - 13
B.3.1 Probable Rainfall B-13
B.3.2 Frequency Histograms of Annual Maximum Rainfall Events. B - 20
B.3.3 Rainfall Intensity-Duration-Frequency (RIDF) Curves at Port Area B-22
B.3.4 Design Rainfall Hyetograph B - 22
B.3.5 Areal Reduction Factor for Runoff Analysis B - 22
B.3.6 Design Tide and Water Levels B-22

LIST OF TABLES

Page
Table B.2.1 Inventory on Meteorological Stations B-4
Table B.2.2 Inventory on Hydrological Stations B-4
Table B.2.3 Tide Levels at Manila South Harbor for Different Tide Series B - 11
Table B.2.4 Historical Maximum and Minimum Tide Levels at Manila South Harbor B-12
Table B.3.1 Annual Maximum Rainfall at Port Area Station B-14
Table B.3.2 Annual Maximum Rainfall at Science Garden Station B-15
Table B.3.3 Annual Maximum Rainfall at NAIA Station B-16
Table B.3.4 Results of Probability Analyses on Annual Maximum Rainfalls B-18
Table B.3.5 Comparison on Estimated Probable Rainfall Depths by Different Studies B-19
Table B.3.6 Tide Pattern during Annual Maximum Tide Events (1999 ~ 2003) B - 28
Table B.3.7 Design Tide Level at Manila Bay. B-28
Table B.3.8 Design Water Levels at Pump Stations (30-Year Return Period) B-28
LIST OF FIGURES
Page
Figure B.2.1 Monitoring Network on Meteo-Hydrology B-2
Figure B.2.2 Historical Variation in Annual Total Rainfall B - 6
Figure B.2.3 Monthly Variation in Rainfall and Evaporation B-7
Figure B.2.4 Monthly Variation in Temperature and Relative Humidity B-8
Figure B.2.5 Daily Variation in Tide Level at Manila South Harbor for Year 1999 B - 10
Figure B.2.6 Monthly Variation in MHHW and MLLW at Manila South Harbor B - 10
Figure B.3.1 Probable Rainfall Depths by Return Periods B-17
Figure B.3.2 Frequency Histograms of Annual Maximum Rainfall Events B-21Figure B.3.3 Rainfall Intensity-Frequency-Duration (RIDF) Curvesat Port Area StationB-24
Figure B.3.4 Mass Curve of Rainfall at Port Area Station B-25
Figure B.3.5 Design Rainfall Hyetographs at Port Area Station B-26
Figure B.3.6 Areal Reduction Factor for Reducing Point Rainfall to Obtain Areal Average Value in the Study Area B-27

B. 1 General

In this chapter, meteorological and hydrological conditions in the study area are described. Firstly, inventory of monitoring network and general conditions on the meteo-hydrology are shown. Secondary, results of analysis on meteo-hydrology such as statistics of rainfall intensity are explained.

B. 2 Monitoring Network on Meteo-Hydrology

B.2.1 Meteorological Stations and Data

There are four rainfall stations in and around the study area: Port Area, Science Garden, NAIA and Napindan. An inventory on the meteorological stations is presented in Table B.2.1. Location map of the meteorological stations is shown in Figure B.2.1. Among the four rainfall stations, three stations, i.e. Port Area, Science Garden and NAIA, are climatic stations operated by PAGASA. Port Area station has the longest series of historical rainfall data. Next to Port Area, Science Garden has long historical rainfall data. Unfortunately, the station at NAIA has become irregular since 1993. Measurement method of rainfall at Port Area and NAIA is of automatic type. Measurement method of rainfall at Science Garden was of automatic type up to 2001 but from 2002 it has become telemetric type since EFCOS is using telemetric rainfall data of Science Garden. The rainfall station at Napindan is operated by EFCOS and had been recently installed in 2002.

Available historical time series rainfall data at all the above-mentioned four stations have been collected during the Study. PAGASA central office keeps a record of rainfall data measured by cylinder at 6 -hour interval. This data is available in digital form for period 1987-2000 at Port Area and for period 1986-2001 at Science Garden station. Flood Forecasting and Warning Center of PAGASA keeps a record of short duration (chart) rainfall data at Port Area (1949 2000), Science Garden (1965 - 1990) and NAIA (1949 - 1991) stations, which is available in digital format. EFCOS keeps a record of hourly rainfall data which is available in digital format for period 2002-2003 at Napindan station. All the digital data have been collected from PAGASA and EFCOS. Also, available tabular rainfall data of 6 hours interval for Port Area (period 1982-1985, 2002-2003), Science Garden (period 1961-1986, 2002-2003) and NAIA (1961-1992) stations have been manually extracted from PAGASA and have been digitized during the Study.

As for general climate data, historical monthly rainfall, temperature and relative humidity data at Port Area, Science Garden and NAIA stations for period 1961-2003 and monthly evaporation at Science Garden for period 1971-2003 have been collected in digital format from PAGASA.

Thiessen polylines for calculating basin mean parameters are shown in Figure B.2.1. It is found that Port Area has the most (56\%) influence over the Study area, NAIA and Napindan stations have almost same influence (17\%) and the rest (10\%) is influenced by Science Garden.

Figure B.2.1 Monitoring Network on Meteo-Hydrology

B.2.2 Hydrological Stations and Data

An inventory on hydrological stations is presented in Table B.2.2. There is one primary tide station located at Manila South Harbor, which is operated by NAMRIA. Location map of tide station is shown in Figure B.2.1. Daily predicted high and low tide levels (based on MLLW datum) are found in "Tide and Current Tables", which is published by NAMRIA each year. Tide tables for the last five years (1999-2003) have been collected and digitized.

There are three water level stations located along the Pasig River within the reach of the study area, namely Fort Santiago, Pandacan and Napindan. Location map of the water level stations is shown in Figure B.2.1. All the stations are operated by EFCOS and are of telemetric type. Fort Santiago and Pandacan stations have been operating since 1993 whereas Napindan station has been installed recently (2002). Digitized hourly water level data (based on DPWH datum) for the full available period (1993-2003 for Fort Santiago and Pandacan and 2002-2003 for Napindan) have been collected from EFCOS.
Table B.2.1 Inventory on Meteorological Stations

No.	Name	Code	Location	Coordinates		$\begin{gathered} \hline \text { Elevation } \\ \text { (EL. m) } \\ \hline \hline \end{gathered}$	Category	Type	ObservationItems	Agencyin Charge	Date of		Status
				Latitude	Longitude						Establishment	Closing	
1	Port Area	425	Manila	$14^{\circ} 35^{\prime} \mathrm{N}$	$120^{\circ} 59^{\prime} \mathrm{E}$	16	Synoptic	Automatic	Rainfall, Temperature, Relative Humidity	PAGASA	$\begin{gathered} 1951 \\ \text { (present location) } \end{gathered}$		Operational
2	Science Garden	430	Quezon City	$14^{\circ} 39^{\prime} \mathrm{N}$	$121^{\circ} 03^{\prime} \mathrm{E}$	43	Synoptic	Automatic upto 2001, Telemetric from 2002	Rainfall, Temperature, Relative Humidity, Pan Evaporation	PAGASA	1951		Operational
3	NAIA (MIA)	429	Pasay City	$14^{\circ} 31^{\prime} \mathrm{N}$	$121^{\circ} 01^{\prime} \mathrm{E}$	21	Synoptic	Automatic	Rainfall, Temperature, Relative Humidity, Pan Evaporation	PAGASA	1961		Irregular
4	Napindan		Pasig City	$14^{\circ} 33^{\prime} 22$ " N	$121^{\circ} 04^{\prime} 01{ }^{\prime \prime} \mathrm{E}$		Rainfall	Telemetric	Rainfall	EFCOS	2002		Operational

Source: PAGASA/CAB/CDS and EFCOS
Table B.2.2 Inventory on Hydrological Stations

No.	Name	River / Bay		Coordinates		$\begin{aligned} & \text { "0" Gauge } \\ & \text { (EL. m) } \\ & \hline \hline \end{aligned}$	Category	Type	Observation Items	$\begin{gathered} \text { Agency } \\ \text { in Charge } \\ \hline \hline \end{gathered}$	Date of		Status
		River	City	Latitude	Longitude						Establishment	Closing	
1	Fort Santiago	Pasig	Pasig City	14³5'46" N	$121^{\circ} 58^{\prime} 07^{\prime \prime} \mathrm{E}$		Hydrologic	Telemetric	Water level	EFCOS	1993		Operational
2	Pandacan	Pasig	Manila	$14^{\circ} 35^{\prime} 288^{\prime \prime} \mathrm{N}$	$121^{\circ} 00^{\prime} 40$ E		Hydrologic	Telemetric	Water level	EFCOS	1993		Operational
3	Napindan	Pasig	Manila	$14^{\circ} 33^{\prime 2} 22^{\prime \prime} \mathrm{N}$	$121^{\circ} 04^{\prime} 01^{\prime \prime} \mathrm{E}$		Hydrologic	Telemetric	Water level	EFCOS	2002		Operational
4	Manila South Harbor	Manila Bay		$14^{\circ} 35^{\prime} \mathrm{N}$	$120^{\circ} 58{ }^{\prime} \mathrm{E}$		Tidal Staion		Predicted Tide level	NAMRIA			Operational

Source: EFCOS and NAMRIA

B.2.3 General Meteo-Hydrological Condition

(1) Annual Rainfall

Historical variation in annual total rainfall at Port Area, Science Garden and NAIA stations for the period 1961-2003 and at Napindan station for 2002-2003 is shown in Figure B.2.2. The figure also shows historical annual total rainfall over the study area as calculated using Thiessen Polygons. Annual average rainfall at Port Area, Science Garden, NAIA and Napindan stations are calculated at $2,171 \mathrm{~mm}, 2,483 \mathrm{~mm}, 1,836 \mathrm{~mm}$ and $2,050 \mathrm{~mm}$, respectively. Over the study area, annual average rainfall is calculated at $2,125 \mathrm{~mm}$. Even though, a straight line fitting of the data shows an increasing tendency in annual total rainfall over the study area, but considering the short period of data, it can not be told whether the tendency is for a long period or not. Large annual total rainfall over the study area occurred in 1972 ($3,373 \mathrm{~mm}$), 1986 (3,204 mm) and $2000(3,504 \mathrm{~mm})$.

(2) Monthly Rainfall

Variation in average monthly rainfall at Port Area, Science Garden and NAIA stations averaged over the period 1961-2003 and at Napindan station averaged over the period 2002-2003 is shown in Figure B.2.3. Shape of the rainfall histogram at NAIA is different from the other three stations due to short period of data. Figure B.2.3 also shows average monthly rainfall over the study area as calculated using Thiessen Polygons. Maximum rainfall over the study area occurs in the month of July (475 mm) and then in the month of August (425 mm). It can be seen that 81% of the annual total rainfall over the study area falls during the months of June to October, which can be called as Wet Season.

(3) Monthly Pan Evaporation

Daily pan evaporation is measured only at Science Garden Station. Variation in average monthly pan evaporation at Science Garden station over the period 1971-2003 is shown in Figure B.2.3 Mean annual total pan evaporation at Science Garden is calculated at $1,334 \mathrm{~mm}$. Maximum pan evaporation occurs in the month of April (162 mm) and then in the months of May (148 $\mathrm{mm})$ and March (147 mm).

(4) Monthly Temperature

Variation in monthly minimum, average and maximum temperature at Port Area, Science Garden and NAIA stations as well as in the study area (as calculated using Thiessen Polygons) averaged over the period 1961-2003 is shown in Figure B.2.4. In the study area, average monthly minimum and maximum temperatures are observed in the months of January $\left(22^{\circ} \mathrm{C}\right)$ and April $\left(34^{\circ} \mathrm{C}\right)$, respectively. Annual average temperature in the study area is calculated at $28^{\circ} \mathrm{C}$ with small monthly variation.

(5) Monthly Relative Humidity

Variation in monthly average relative humidity at Port Area, Science Garden and NAIA stations as well as in the study area (as calculated using Thiessen Polygons) averaged over the period 1961-2003 is shown in Figure B.2.4. In the study area, average monthly minimum and maximum relative humidity are observed in the months of March-April (65\%) and August-September (80\%), respectively. Annual average relative humidity in the Study Area is calculated at 74%.

[^0]Figure B.2.2 Historical Variation in Annual Total Rainfall

Source: PAGASA/CAB/CDS and EFCOS
Study Area: Based on Thiessen Polygons
Figure B.2.3 Monthly Variation in Rainfall and Evaporation

Period: 1961-2003
Source: PAGASA/CAB/CDS
Study Area: Based on Thiessen Polygons
Figure B.2.4 Monthly Variation in Temperature and Relative Humidity

(6) Tide Level at Manila Bay

Daily variation in tide level at Manila South Harbor for year 1999 is shown in Figure B.2.5. It can be seen that highest tides occur in the months of July-September. Monthly variation in Mean Higher High Water (MHHW) and Mean Lower Low Water (MLLW) for the period 1999-2003 is shown in Figure B.2.6. High levels of MHHW are observed in the months of July (EL. 11.12 m), August (EL. 11.14 m) and September (EL. 11.11 m). Difference between MHHW and MLLW by month varies between 0.89 m to 1.05 m .

There exist calculated mean tide levels at Manila South Harbor for two series of tide cycles of 19-year periods, which are 1970-1988 series and 1901-1919 series. Mean tide values for the two series are presented in Table B.2.3. It can be seen that the two different series produced the same mean tide values except Mean High Spring Tide (MHST) which was calculated as EL. 11.34 m for 1970-1988 series and EL. 11.30 m for 1901-1919 series. In order to check whether there is any change in tide levels in recent years compared with the previous two tide series, NAMRIA tide data for period 1999-2003 has been analyzed during this Study. As shown in the last column in Table B.2.3, MLLW and MHHW for the period 1999-2003 is calculated to be EL. 10.01 and EL. 10.98 m, respectively which matches well with the previous values of the two tide series. Therefore, the mean tide values of the past two tide series are equally applicable for the present study.

Historical maximum and minimum tide levels at Manila South Harbor are presented in Table 2.1.5. The values have been extracted from the previous study reports and have been updated by the collected tide data during this Study. According to the data of the years in Table B.2.4 historical maximum (EL. 11.91 m) and minimum (EL. 9.33m) tide levels were observed in July 12, 1972 and February 3, 1913, respectively.

Figure B.2.5 Daily Variation in Tide Level at Manila South Harbor for Year 1999

Datum: DPWH
Period: 1999-2003
Source: NAMRIA

Figure B.2.6 Monthly Variation in MHHW and MLLW at Manila South Harbor

Table B.2.3 Tide Levels at Manila South Harbor for Different Tide Series

Series				
	$1970-1988^{1)}$ $(19$ Years)	$1901-1919^{2)}$ (19 Years)	$1984-1987^{3)}$	$1999-2003$ (This Study)
MLLW	10.00	10.00		10.01
MLW	10.10	10.10		
MHLW	10.20	10.20		
MSL	10.47	10.47		
MTL (MHW+MLW)/2	10.48	10.48		10.98
MLHW	10.71	10.71		
MHW	10.86	10.86		
MHHW	11.00	11.01		
MHST	11.34	11.30	11.25	
MR (MHW - MLW)	0.76	0.76		

Source: 1) DPWH, The Study on Flood Control and Drainage System Improvement for Kalookan-Malabon-Navotas-Valenzuela (KAMANAVA) Areas, 1998
2) MPWH, Metro Manila Drainage System Rehabilitation Project (PH-66), Drainage Improvement Plans for Estero de Vitas and Other Catchment Areas, Supplementary Study Report, 1987
3) MPWH, Metro Manila Drainage System Rehabilitation Project, Study Report, 1988

Definitions of Terms:

MLLW = Mean Lower Low Water: Average of 1st low (lowest) water levels of a tidal day MLW = Mean Low Water: Average of the maximum height reached by each rising tide MHLW = Mean Higher Low Water: Average of 2nd low water levels of a tidal day MSL = Mean Sea Level: The average height of the surface of the sea for all stages of the tide over a 19-year period, usually determined from hourly height readings MTL $=$ Mean Tide Level: A plane midway between Mean High Water and Mean Low Water MLHW = Mean Lower High Water: Average of 2nd low water levels of a tidal day MHW = Mean High Water: Average of the minimum height reached by each falling tide MHST = Mean High Spring Tide: Average of monthly 1st and 2nd high water levels (spring tides occuring at full and new moon SYZYGY) MHHW = Mean Higher High Water: Average of 1st high (highest) water levels of a tidal day MR = Mean Range: Difference in height between daily Mean High and Low Water

Table B.2.4 Historical Maximum and Minimum Tide Levels at Manila South Harbor

Year	Highest Tide			Lowest Tide			
	$\begin{gathered} \hline \text { Level } \\ \text { (EL. m) } \end{gathered}$	Date(s)		$\begin{gathered} \text { Level } \\ \text { (EL. m) } \end{gathered}$	Date(s)		
		Date 1	Date 2		Date 1	Date 2	Date 3
1911	11.77	July 23					
1913				9.33	February 3		
1972	11.91	July 12					
1978	11.48	October 12					
1979	11.44	August 9					
1980	11.36	August 27	August 28				
1981	11.51	July 4	August 1				
1982	11.60	June 24					
1983	11.68	August 11					
1984	11.76	August 27	August 29				
1985	11.79	June 22					
1986	11.68	July 9					
1987	11.62	July 12	July 13				
1988	11.65	July 30					
1989	11.61	June 5					
1990	11.59	June 24	June 25				
1991	11.72	October 27					
1992	11.72	August 29					
1993	11.66	October 6					
1994	11.67	June 23	July 10				
1995	11.70	October 1					
1996	11.86	July 31					
1997	11.71	August 18					
1998							
1999	11.40	July 14		9.59	January 3	December 14	December 25
2000	11.47	July 31	August 1	9.55	January 21	January 22	
2001	11.49	July 22	August 19	9.51	January 11		
2002	11.46	August 9	August 10	9.51	January 29		
2003	11.45	July 14		9.49	December 25		

Source: KAMANAVA 1998, PEA 1995, NAMRIA

B. 3 Meteo-Hydrological Analysis

B.3.1 Probable Rainfall

Historical annual maximum short duration rainfalls at Port Area, Science Garden and NAIA stations are presented in Table B.3.1, Table B.3.2 and Table B.3.3, respectively. Data have been collected from PAGASA central office (6-hour interval cylindrical data), Flood Forecasting and Warning Center of PAGASA (short duration chart data) and also have been extracted from previous study reports. Therefore, all the available historical extreme rainfall event data have been utilized for probability analyses.

There are two popular theoretical distribution methods for probability analysis: Gumbel's or Extreme Value Type I distribution method used as a standard method for flood frequency (extreme value) analysis by the U.K. Natural Environmental Research Council and Log-Pearson Type III distribution method used as a standard by U.S. Federal Agencies. There is no demarcation which method produces better result. In terms of analysis, Log-Pearson Type III method requires one empirical parameter called Map Skew Coefficient to account for adjustment of sample size and is available for different states of the U.S. but not available for other places in the world, whereas in Gumbel's method there is no such empirical parameter. In case of the Philippines, Flood Forecasting Center of PAGASA applies Gumbel's method for calculating probable rainfalls to construct Rainfall-Intensity-Duration-Frequency (RIDF) curves and many of the previous studies have also applied Gumbel's method for probability analysis of annual maximum rainfalls at Port Area and NAIA. Therefore, in this Study, probability analysis has been carried out applying Gumbel's method. The goodness of fit has been checked using the Thomas Plotting Position formula which is quite popular all over the world. It is noted during the analyses that, for annual maximum rainfalls up to 24 hours, the theoretical distributions (both Gumbel's and Log-Pearson Type III) fit quite well with the Plotting Positions but for annual maximum 48 -hour and 72 -hour rainfalls events. The theoretical distributions sometimes fit well with the Plotting Positions and sometimes don’t (depending upon the data) due to the fact that, as the rainfall duration becomes large, the rainfall events deviate from the extreme value type. However, considering long range of data, the results of probability analyses for long duration rainfalls are considered to be acceptable. Sample graphs of Gumbel's (theoretical) probability distribution along with Thomas Plot are shown in Figure B.3.1

The results of probability are summarized in Table B.3.4. The 60 -minute probable rainfall depth for 10 -year return period is estimated to be 81,92 and 94 mm at Port Area, Science Garden and NAIA rainfall stations, respectively. The $24-\mathrm{hr}$ probable rainfall depth for 10 -year return period is estimated to be 260, 267 and 287 mm at Port Area, Science Garden and NAIA stations, respectively. No general agreement could be found among the stations in terms of producing probable rainfalls for different duration and return periods.

A comparison has been made between probable rainfall depths estimated during this Study and those reported in previous studies, which is summarized in Table B.3.5. As can be seen, MPWH Study in 1984 reported the maximum values of probable rainfall depths as calculated with adjustment of the original rainfall data by multiplication factor of >1.0 to account for different uncertainties in measured rainfall data. The table shows that probable rainfall depths calculated by this Study is consistent with the previous studies, especially with the most recent FCSEC estimation.

Table B.3.1 Annual Maximum Rainfall at Port Area Station

Year	Minutes				Hours						
Rain	$\begin{gathered} 10 \\ (\mathrm{~mm}) \\ \hline \hline \end{gathered}$	$\begin{gathered} 20 \\ (\mathrm{~mm}) \\ \hline \hline \end{gathered}$	$\begin{gathered} 30 \\ (\mathrm{~mm}) \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline 60 \\ (\mathrm{~mm}) \\ \hline \hline \end{gathered}$	$\begin{gathered} 2 \\ (\mathrm{~mm}) \\ \hline \hline \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~mm}) \\ \hline \hline \end{gathered}$	$\begin{gathered} 6 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 12 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \hline 48 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 72 \\ (\mathrm{~mm}) \\ \hline \hline \end{gathered}$
1903									78.7	92.0	105.9
1904									226.2	423.7	475.9
1905											
1906									144.9	163.3	171.8
1907	15.2		40.0	57.3	72.4				141.9	201.2	217.8
1908	16.7		37.6	57.3	61.6				121.6	165.3	211.9
1909	28.7		43.1	46.7					88.7	152.0	200.8
1910	13.2		30.7	40.6					69.6	89.8	121.9
1911	15.2		27.2	43.9					133.1	179.4	221.4
1912	20.3		36.1	45.6					157.6	233.3	309.2
1913	23.1		49.5	60.7	62.0				128.2	234.0	278.9
1914	17.9		39.9	46.3					234.7	404.2	518.7
1915	15.2		32.5	41.6					105.4	144.9	200.8
1916	16.2		30.5	40.7					74.2	91.3	126.8
1917	23.4		43.5	44.8					107.6	141.0	168.8
1918	19.5		42.2	55.3					271.5	371.1	383.0
1919	20.1		41.6	49.8	80.0				310.6	511.0	566.5
1920	18.3		32.1	41.8					85.0		
1921	17.3		40.7	58.7	71.4				263.6	400.9	491.1
1922	13.5		20.7						104.2		
1923	16.6		36.6	54.2	70.0				309.1	556.0	592.1
1924	16.9		40.9	68.8	116.4				285.0	325.8	370.9
1925	13.2		28.9	32.6					130.7	225.5	237.5
1926	16.5		32.3	35.5					139.1	163.2	277.8
1927	19.6		36.8	63.0	73.6				103.9	142.8	189.4
1928	16.0		25.7	36.6					85.6	147.6	171.1
1929	21.1		49.8	65.0	67.6				121.9	166.7	207.6
1930	17.3		26.1						153.6	242.0	264.3
1931	24.1		59.2	65.8	82.6				265.7	529.0	730.2
1932	21.1		58.7	100.9	160.4				203.2	234.2	299.2
1933	15.0		28.7	32.0					116.6	187.2	267.4
1934	19.6		47.5	76.9	105.8				186.7		
1935	21.0		48.2	65.8	95.2				149.5		
1936	22.6		48.0	59.2	61.2				136.7		
1937	19.3		45.2	63.6	70.6				143.3		
1938	16.8		30.6	50.1	69.8				216.9	297.9	350.0
1939	14.2		27.7						177.8		
1949	11.6	17.6	21.7	28.0	40.1	47.9	60.8	74.5	83.3	90.9	111.2
1950	22.4	31.5	40.6	43.2	50.8	50.8	66.3	75.7	105.4	121.7	141.5
1951	23.6	38.9	43.4	45.2	55.4	56.4	65.3	88.6	99.1	122.7	177.9
1952	34.3	56.9	76.7	92.5	97.5	118.6	210.1	284.1	292.9		
1953	22.9	40.1	53.8	72.9	111.0	127.0	166.9	205.7	208.0		
1954	37.6	52.6	58.9	82.3	108.7	108.7	108.7	108.7	108.7	147.5	205.2
1955	23.3	32.0	41.8	54.6	77.9	96.7	136.2	161.2	177.3	118.6	118.9
1956	26.4	33.8	42.9	74.4	108.0	122.7	152.9	169.4	185.9	252.7	294.6
1957	21.1	30.5	44.5	58.9	61.2	73.4	96.0	109.5	132.3	178.5	200.9
1958	24.1	40.9	46.7	63.5	87.4	94.0	116.1	179.6	239.8	414.8	515.1
1959	14.0	22.4	32.5	52.1	74.2	90.7	123.7	128.5	130.6	156.8	160.4
1960	26.4	43.7	46.7	51.3	71.1	91.9	128.5	164.1	218.2	271.8	312.7
1961	18.0	31.2	38.6	54.9	87.6	100.3	132.8	191.3	236.2	331.2	
1962	22.8	35.0	44.0	59.6	87.1	105.5	140.1	171.0	195.8	277.2	346.0
1963	15.2	23.4	30.4	59.2	99.2	105.5	109.6	109.6	116.1	192.6	173.2
1964	26.5	38.6	46.5	55.6	64.6	72.2	97.0	150.3	202.9	226.0	211.3
1965	33.8	47.6	71.4	90.5	97.2	97.2	98.8	109.0	116.4	166.5	170.8
1966	20.6	35.0	49.2	74.1	76.2	79.4	108.8	141.5	143.6	285.7	
1967	18.6	32.8	42.9	72.0	98.6	103.3	146.0	198.2	213.2	251.0	299.4
1968	23.0	33.8	34.7	55.4	57.7	57.7	70.8	98.0	106.6	143.2	153.8
1969	15.1	23.2	31.9	49.0	54.5	56.5	74.4	90.6	103.4	154.4	170.5
1970	49.8	76.4	95.6	126.7	184.2	221.9	289.9	355.8	403.1	508.8	654.4
1971	16.3	26.6	39.9	67.0	93.0	95.6	95.6	99.1	99.1	99.1	123.9
1972	30.2	45.7	57.0	77.4	115.4	140.9	186.3	227.5	265.4	487.9	709.9
1973	21.1	32.9	41.0	59.5	59.7	59.7	61.5	77.5	91.4	124.3	116.8
1974	24.8	34.5	48.4	57.4	82.9	100.0	131.8	159.4	182.2	292.5	
1975	13.9	21.3	26.9	36.8	54.1	65.7	88.0	107.4	123.4	129.5	181.8
1976	41.8	64.1	80.1	105.9	153.8	185.1	241.4	296.3	335.4	383.7	400.9
1977	29.5	45.3	56.5	74.5	108.1	130.0	168.9	207.5	234.4	310.9	374.8
1978	33.0	49.9	62.3	82.8	119.4	143.5	186.8	226.5	257.4	429.7	536.3
1979										207.0	
1980										124.4	
1981	20.0	27.5	33.0	40.0	55.8	57.5	77.0	90.6	103.2	152.7	184.1
1982	13.7	21.1	26.4	34.8	50.5	60.8	79.3	97.4	110.2	157.0	174.4
1983	10.1	15.3	18.8	24.3	34.3	40.8	51.7	62.6	70.0	110.9	144.7
1984	19.3	27.6	33.4	45.4	54.0	56.1	60.6	65.6	81.2	139.8	181.0
1985	29.7	45.5	57.2	77.2	112.8	136.5	180.9	221.3	252.8	387.1	
1986	27.4	41.9	52.1	68.2	98.3	117.8	152.3	186.8	210.5	359.7	379.5
1987	19.8	27.4	30.1	35.2	53.5	56.7	63.4	85.2	88.7	117.5	135.7
1988	14.9	22.8	28.6	38.2	55.5	67.0	88.1	107.7	122.7	235.2	243.0
1989	20.3	22.9	28.3	38.1	54.9	66.9	89.8	110.8	127.5	180.7	233.3
1990	18.7	27.0	32.1	49.7	77.8	102.9	160.1	193.8	201.1	266.9	290.0
1991	24.1	36.5	46.1	62.6	84.8	97.0	125.5	154.5	174.8	253.7	263.1
1992	16.9	25.5	32.3	43.7	59.3	67.8	87.7	108.0	122.2	136.3	177.6
1993	11.5	17.4	22.0	29.9	40.4	46.3	59.9	73.7	83.4	113.7	134.4
1994	16.2	24.5	30.9	42.0	56.8	65.0	84.1	103.6	117.2	186.4	188.8
1995	18.7	28.3	35.7	48.5	65.7	75.1	97.2	119.7	135.4	188.2	211.1
1996	14.5	22.0	27.8	37.7	51.1	58.5	75.7	93.2	105.4	181.8	213.6
1997	33.3	50.5	63.8	86.5	117.1	134.0	173.4	213.5	241.5	402.0	425.0
1998	16.1	24.3	30.7	41.7	56.5	64.6	83.6	102.9	128.8	210.6	274.0
1999	26.3	39.8	50.3	68.2	92.3	105.7	136.7	168.3	190.4	353.6	421.0
2000	24.5	37.1	46.9	63.5	86.1	98.5	127.4	156.9	177.5	255.7	316.4
2001											
2002							119.6	201.6	342.6	448.8	513.6
2003							111.0	116.0	178.6	238.1	318.5
Maximum	49.8		95.6	126.7	184.2		289.9	355.8	403.1	556.0	730.2
Minimum	10.1		18.8	24.3	34.3		51.7	62.6	69.6	89.8	105.9
Mean	21.0		41.4	56.9	80.5		118.2	146.2	165.3	238.2	280.2
Std. Dev.	7.0		13.8	18.8	28.7		49.5	63.4	72.7	119.4	148.6
Skew Coeff.	1.5		1.3	1.0	1.2		1.2	1.1	0.9	0.9	1.3
Sample (n)	83		83	80	66		52	52	88	81	75

Table B.3.2 Annual Maximum Rainfall at Science Garden Station

Year	Minutes				Hours						
Rain	$\begin{gathered} 10 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 20 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 30 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 60 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 6 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 24 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \hline 48 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 72 \\ (\mathrm{~mm}) \end{gathered}$
1961							177.8	213.1	251.0	280.2	322.8
1962							135.6	173.7	205.0	327.9	396.0
1963							71.6	125.0	167.1	178.3	211.3
1964							99.1	104.1	198.3	259.5	272.2
1965	20.1	30.6	38.3	50.8	73.3	88.2	115.3	140.8	159.8	239.3	239.3
1966	25.6	38.8	47.8	60.0	85.1	100.7	125.1	153.9	169.9	274.3	316.7
1967	39.5	60.4	75.9	102.4	149.6	181.0	239.7	292.8	334.5	350.0	357.6
1968	17.9	27.4	34.2	45.6	66.1	79.6	104.7	127.9	145.5	205.0	209.6
1969	15.4	23.6	29.5	38.9	56.4	67.8	88.4	108.6	122.8	397.3	406.1
1970	31.9	48.8	61.5	83.7	122.4	148.4	197.7	241.0	276.5		-
1971	22.5	30.1	33.8	46.2	54.7	57.9	74.4	80.5	84.6	103.7	185.0
1972	19.8	27.9	41.8	72.5	122.5	143.5	158.5	159.8	218.0	435.2	682.1
1973	33.6	64.2	86.6	130.3	130.8	131.3	131.3	131.3	131.3	298.1	300.9
1974	16.8	25.9	32.6	42.2	77.5	102.6	149.4	180.8	214.3	366.3	440.4
1975	14.0	22.5	26.0	31.7	48.9	68.0	104.9	170.1	209.3	247.7	285.3
1976	50.0	76.8	96.2	128.0	186.3	224.7	294.5	361.2	410.1		-
1977	16.7	25.4	30.5	39.3	58.5	71.5	90.3	116.3	135.7		-
1978	19.2	29.4	37.0	47.2	68.1	81.3	103.8	148.2	174.4	255.5	319.2
1979	23.4	40.6	51.5	67.1	86.9	130.3	179.3	191.7	223.0	297.9	348.2
1980	21.7	32.1	38.0	46.0	70.4	77.4	102.7	123.6	133.8	147.5	220.7
1981	30.7	30.7	30.9	37.5	50.0	52.4	73.0	115.7	161.0	230.9	249.7
1982	17.9	27.1	33.3	42.2	60.1	71.2	89.1	109.8	121.6	144.2	170.4
1983	13.6	20.8	26.2	35.2	51.3	62.0	82.0	100.2	114.4	131.2	154.2
1984	14.5	22.2	27.5	35.4	50.9	60.8	77.4	95.4	106.6		
1985	16.6	25.1	31.5	41.8	60.3	72.6	95.1	116.0	131.0		-
1986	22.1	34.2	43.5	72.2	122.7	150.7	176.1	184.9	190.4	367.5	434.3
1987	16.4	24.9	31.2	42.4	62.0	74.7	99.0	120.1	137.6	142.0	176.0
1988	15.1	22.8	28.5	38.5	55.6	67.2	88.9	107.7	123.1	240.5	300.3
1989	13.4	19.7	24.4	32.4	45.8	54.5	70.4	85.2	96.4	175.4	217.7
1990	25.3	38.6	48.1	63.7	91.9	110.4	143.8	176.0	199.4	233.6	250.6
1991							157.8	194.2	253.5	295.5	304.1
1992							81.2	101.0	145.2	177.6	233.8
1993							112.6	138.6	151.9	209.4	223.6
1994							106.6	145.8	169.8	196.4	213.0
1995							72.0	106.0	163.6	169.8	202.4
1996							81.2	94.2	120.2	155.0	169.2
1997							104.2	191.8	223.8	301.2	324.1
1998							89.8	108.7	172.7	241.5	292.5
1999							191.7	204.8	280.7	431.3	532.9
2000							181.4	260.2	267.0	319.2	405.1
2001							88.0	105.0	129.4	209.7	235.7
2002							80.6	152.4	216.3	417.9	494.3
2003							73.2	99.0	156.0	278.6	363.6
Maximum							294.5	361.2	410.1	435.2	682.1
Minumum							70.4	80.5	84.6	103.7	154.2
Mean							120.0	150.2	181.3	256.1	301.6
Std. Dev.							49.9	58.6	65.8	87.8	113.0
Skew Coeff.							1.5	1.6	1.3	0.4	1.3
Sample (n)	26	26	26	26	26	26	43	43	43	38	38

Source: For 10-min, 20-min, 30-min, 60-min, 2-hr, 3-hr, 6-hr, 12-hr and 24-hr rainfalls for period 1965-1990: Flood Forecasting \& Warning Center, PAGASA

The rest of the data: 6-hourly data from PAGASA Central Office

Table B.3.3 Annual Maximum Rainfall at NAIA Station

Year	Minutes				Hours						
Rain	$\begin{gathered} 10 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 30 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 72 \\ (\mathrm{~mm}) \\ \hline \end{gathered}$
1949	10.9	16.7	20.9	27.5	40.0	48.0	62.4	76.6	86.6		
1950	12.5	19.1	24.1	33.0	48.4	58.8	78.8	96.1	110.5		
1951	19.1	33.8	47.2	73.7	80.8	81.5	84.3	84.3	84.3		
1952	24.4	37.8	41.9	44.2	64.9	85.3	147.8	217.4	228.6		
1953	22.1	39.9	49.0	69.1	92.2	106.4	118.6	127.0	140.0		
1954	26.2	35.1	38.4	49.8	66.5	77.5	77.5	97.8	117.9		
1955	17.8	24.9	27.9	28.7	38.2	46.1	60.6	73.7	84.1		
1956	21.1	30.5	42.7	59.7	69.4	86.1	118.4	137.2	146.6		
1957	14.8	22.7	28.4	37.5	54.5	65.7	85.7	105.2	119.1		
1958	45.0	68.9	86.0	113.0	163.8	196.7	255.2	313.5	353.8		
1959	12.8	19.6	24.7	33.7	49.3	59.9	79.8	97.1	111.5		
1960	20.3	34.3	44.7	75.7	90.2	95.3	122.2	172.2	229.1		
1961	28.4	43.6	54.4	71.6	103.9	124.9	162.3	199.4	225.3	305.1	342.9
1962	19.6	32.8	39.4	48.3	61.0	87.9	115.8	136.1	166.1	302.3	319.8
1963	29.9	44.2	59.0	81.0	118.7	135.6	166.0	196.8	228.9	379.2	439.7
1964	20.7	36.5	47.2	62.1	76.6	92.0	121.1	218.2	277.9	160.0	162.1
1965	17.2	32.8	38.5	48.1	54.2	57.4	58.5	58.9	65.3	123.0	129.8
1966	22.8	38.6	45.2	47.9	49.5	61.6	91.0	127.5	145.3	263.1	376.4
1967	26.9	35.5	35.5	43.4	58.7	66.3	91.8	137.0	149.4	199.6	210.6
1968	33.3	54.6	71.3	101.1	110.7	113.8	113.8	113.8	114.5	194.3	220.2
1969	19.3	27.7	34.7	43.0	48.4	50.4	65.6	78.4	80.0	126.2	153.8
1970	19.0	30.0	41.0	47.5	65.0	83.0	118.5	137.0	198.5	291.5	466.0
1971	15.6	27.3	33.9	44.5	66.0	70.1	98.5	109.0	119.0	131.8	193.0
1972	63.5	97.4	120.7	156.0	224.6	268.4	342.8	422.3	472.4	763.3	902.0
1973	12.3	19.7	20.8	28.2	41.3	50.5	72.7	115.1	129.0	148.8	158.2
1974	13.8	22.5	22.5	35.9	48.5	49.5	64.0	113.4	144.1	216.2	257.4
1975	21.8	30.3	43.7	63.7	75.6	113.4	170.1	210.6	218.3	234.8	263.1
1976	24.3	36.7	45.5	59.7	85.3	101.8	177.0	192.4	256.0	321.1	359.3
1977	25.1	38.0	47.4	63.2	91.3	109.7	143.2	174.3	199.0	278.5	317.5
1978	31.9	49.0	61.5	83.3	121.7	147.3	195.6	239.0	274.5	323.6	350.4
1979	18.5	23.9	31.1	39.0	63.8	78.1	96.1	102.9	104.0	262.7	290.0
1980	15.1	19.4	25.4	31.8	39.9	47.8	62.9	76.1	87.0	148.8	153.0
1981	15.1	22.7	27.5	29.1	46.7	47.8	50.7	68.5	76.4	137.0	150.7
1982	17.6	32.3	34.2	35.3	45.7	46.7	66.8	68.3	69.4	158.4	170.8
1983	15.1	23.2	29.0	38.4	55.9	67.3	87.9	107.9	122.2	126.8	129.2
1984	13.1	16.9	21.3	28.8	41.9	50.7	67.0	81.4	93.2	226.5	238.2
1985	38.8	59.4	74.4	99.0	144.1	173.7	227.5	279.1	316.8	476.6	511.5
1986	37.3	57.6	72.3	97.8	143.2	173.4	230.4	280.3	321.4	482.7	506.7
1987	17.0	28.5	32.5	38.4	38.4	43.0	53.0	94.0	103.0	104.0	149.4
1988	17.9	27.5	34.7	47.4	69.5	84.4	113.0	137.9	158.4	201.8	250.0
1989	20.8	33.8	45.4	85.6	90.2	90.2	90.2	90.2	102.0	131.7	131.7
1990	35.3	54.1	67.5	89.0	129.1	155.1	201.8	247.9	280.2	319.7	329.1
1991	15.1	23.0	29.0	39.5	57.8	70.1	93.5	114.0	130.8	238.9	353.9
Maximum	63.5		120.7	156.0	224.6		342.8	422.3	472.4	763.3	902.0
Minimum	12.3		20.8	28.2	38.2		50.7	58.9	65.3	104.0	129.2
Mean	22.5		43.3	57.5	77.3		118.6	147.1	168.4	250.9	289.9
Std. Dev.	10.1		19.9	27.7	39.3		62.7	77.8	90.2	137.3	161.0
Skew Coeff.	2.0		1.8	1.4	1.7		1.6	1.5	1.3	2.0	2.0
Sample (n)	43	43	43	43	43	43	43	43	43	31	31

Source: For 10-min, 20-min, 30-min, 60-min, 2-hr, 3-hr, 6-hr, 12-hr and 24-hr rainfalls for period 1949-1991:
Flood Forecasting \& Warning Center, PAGASA

The rest of the data: 6-hourly data from PAGASA Central Office

Source: Calculated by this Study
Figure B.3.1 Probable Rainfall Depths by Return Periods

Table B.3.4 Results of Probability Analyses on Annual Maximum Rainfalls

Port Area

Return Period (Years)	Probable Rainfall Depth (mm)								
	Minutes			Hours					
	10	30	60	2	6	12	24	48	72
2	19.85	39.09	53.83	75.80	110.05	135.74	153.35	218.60	255.77
3	22.76	44.86	61.69	87.82	130.74	162.23	183.74	268.49	317.91
5	26.01	51.29	70.44	101.21	153.78	191.74	217.60	324.07	387.12
10	30.09	59.37	81.44	118.03	182.74	228.81	260.13	393.90	474.09
20	34.00	67.12	91.99	134.17	210.51	264.37	300.93	460.89	557.51
30	36.26	71.58	98.06	143.45	226.49	284.83	324.41	499.42	605.51
50	39.07	77.15	105.65	155.05	246.46	310.40	353.75	547.59	665.50
100	42.87	84.67	115.89	170.70	273.40	344.89	393.33	612.57	746.42
Sample (n)	83	83	80	66	52	52	88	81	75

Period: 1903-2003
Science Garden

Return Period (Years)	Probable Rainfall Depth (mm)								
	Minutes			Hours					
	10	30	60	2	6	12	24	48	72
2	21	39	52	75	108	141	171	242	283
3	24	47	64	90	131	165	198	278	330
5	28	55	76	107	157	192	229	319	383
10	34	66	92	128	189	227	267	371	449
20	39	77	108	149	220	259	304	420	512
30	41	83	117	160	237	278	325	448	549
50	45	90	128	175	260	302	352	484	595
100	50	101	143	195	290	334	388	531	656
Sample (n)	26	26	26	26	43	43	43	38	38

Period: 1961-2003
NAIA

$\begin{aligned} & \hline \text { Return } \\ & \text { Period } \\ & \text { (Years) } \\ & \hline \end{aligned}$	Probable Rainfall Depth (mm)								
	Minutes			Hours					
	10	30	60	2	6	12	24	48	72
2	21	40	53	71	108	134	163	228	263
3	25	48	65	87	135	167	198	286	331
5	30	58	77	106	164	203	238	350	406
10	36	69	94	129	200	249	287	430	500
20	41	80	109	151	236	292	335	507	590
30	45	87	118	163	256	317	362	551	642
50	49	95	129	179	281	349	396	607	707
100	54	106	144	200	315	391	442	681	795
Sample (n)	43	43	43	43	43	43	43	31	31

[^1]Table B.3.5 Comparison on Estimated Probable Rainfall Depths by Different Studies

BPW 1952: Plan for the Drainage of Manila and Suburbs, Volume I, 1952
BPW 1974: Technical Report on Engineering Design for Drainage Pumping Stations and Floodgates, 1974
BPW 1978: Technical Report on Engineering Design for Drainage Pumping Stations and Floodgates, 1974
BPW 1978: Technical Report on Engineering Design for Drainage Pumping Stations and Floodgates, 1974
MPWH 1984: Metro Manila Integrated Urban Drainage and Flood Control Master Plan, 1984
(for annual maximum rainfall data of 5 and 10 minutes before 1950, adjustment factors of 1.13 and 1.04 were applied and for the rest of the data up to 120 minutes, adjustment factor of 1.20 was applied)
(for annual maximum rainfall data of >120 minutes but <1-day, adjustment factor of 1.10 was applied and for annual maximum rainfall data of 1,2 and 3 days, adjustment factor of 1.13 , 1.04 and 1.03 were applied)
MPWH 1986: Drainage Improvement Plans of Estero de Vitas and Other Catchment Areas, 1986
MPWH 1988: Metro Manila Drainage System Rehabilitation Project, 1988

[^2]
B.3.2 Frequency Histograms of Annual Maximum Rainfall Events

In order to grasp the critical month for inundation, analyses on frequency histograms have been carried out. Histograms of occurrences (percentage) of annual maximum rainfall events of 6 hours and longer than 6 hours are shown in Figure B.3.2 The histograms have been constructed by compiling collected rainfall data of 6 hours interval from PAGASA central office. From Figure B.3.2, it is interpreted that most of the historical annual maximum rainfall events occurred in the months of July, August and October at Port Area; in the months of June, July and August at Science Garden and in the months of June, July, August and October at NAIA. Considering that Port Area contributes most of the rainfall in the study area and integrating the combined effect of high rainfall with high tide at Manila Bay (as shown in Figure B.3.2), it is inferred that the most possible critical month in terms of inundation is August and the next is July.

In recent years, large inundation occurred in 1999 for which, detailed inundation survey data is available. The meteo-hydrological condition of 1999 inundation has been investigated and the details are explained in Supporting Report C.

Period: Port Area from 1982-2003, Science Garden from 1961-2003 and NAIA from 1961-1992
Figure B.3.2 Frequency Histograms of Annual Maximum Rainfall Events

B.3.3 Rainfall Intensity-Duration-Frequency (RIDF) Curves at Port Area

Using the calculated probable rainfall depths, RIDF curves and equations for different return periods have been constructed as shown in Figure B.3.3. After a trail of several types of equations, finally, the form of RIDF equations selected is the Horner type, which fits the data quite well, has been used by other previous studies and has been recommended in ASCE Urban Drainage Manual.

B.3.4 Design Rainfall Hyetograph

Design rainfall hyetographs with 1-hour time interval have been constructed for different return periods. Construction of design rainfall hyetographs has 2 steps: selection of the shape of hyetographs and computation of incremental rainfall for each time interval of 1-hour. Shape of the design rainfall hyetographs has been generated from mass curve analysis. Figure B.3.4 shows the mass curves of annual maximum rainfall events for period 1982 to 2003 along with hand fitted average mass curve. The duration of rainfall events are taken as 48 hours for design rainfall hyetographs since the intense part of rainfall amount lies within this time. From the average mass curve, shape of design hyetograph has been generated. Using the equations of RIDF curves, incremental rainfall depths by hour have been computed. Combining the generated rainfall hyetograph shape from mass curve and computed incremental rainfall depth from RIDF equations, design rainfall hyetographs have been constructed for different return periods.

B.3.5 Areal Reduction Factor for Runoff Analysis

In order to take account of the spatial distribution of rainfall, areal reduction factor (ARF) has been applied to point rainfall data at Port Area. No areal reduction factor curve could be available for Metro Manila. However, World Meteorological Organization (WMO, 1983) has published typical depth-area-duration (DAD) curves as shown in Figure B.3.5 (top left figure), which have been updated by this Study for the core area using calculated values.

In the updating process, first correlation analyses between point rainfall at Port Area and other stations (Science Garden, NAIA) have been carried out. Figure B.3.6 shows correlation between Port Area and other stations for rainfall of 6 hours interval during annual extreme rainfall events at Port Area station. Correlation coefficients between Port Area and Science Garden, NAIA and Napindan are found to be $0.77,0.41$ and 0.39 , respectively.

Using the results of correlation analyses and Thiessen Polygons, depth-area relation for 6-hour rainfall at core area has been computed and plotted along with WMO DAD curve for 6-hour rainfall, which is shown in Figure B.3.5(top right figure). It can be seen that there is some difference between the two values. Therefore, adjustment factors as shown in Figure B.3.5(bottom table and bottom right figure) have been applied to WMO DAD curves (same adjustment factor relation for different durations) for calculating areal adjustment factors for different catchments during runoff analysis.

B.3.6 Design Tide and Water Levels

Since tide at Manila South Harbor is of mixed type, there is no definite tide pattern that could be applied as design tide. In order to generate design tide for hydrodynamic simulation, tide pattern during annual maximum tide levels in the last five years (1999 to 2003) have been investigated. As shown in Table B.3.6, tide patterns during the annual maximum events for the
last five years were very similar. Since July ~ August are the most critical months in terms of inundation when both tide level and rainfall are high, the annual maximum tide pattern averaged over the last five years have been selected as the design tide pattern. As for the maximum and minimum design tide levels, mean high spring tide (MHST) level of EL. 11.34 m and mean lower low water (MLLW) level of EL. 10.00 m have been applied. The design tide level is shown in Table B.3.7. As for design water levels at the pump stations, same design tide pattern as at Manila Bay with maximum water levels corresponding to 30 -year return period (derived from previous studies since 30 -year is the design scale of rivers surrounding the study area) and minimum water levels as calculated from the difference between MHST and MLLW at Manila Bay have been used and is presented in Table B.3.8.

Data : 6-hour rainfall during annual maximum events between period 1982-2003
Figure B.3.3 Mass Curve of Rainfall at Port Area Station

Source: Constructed by this Study based on probable rainfall depths calcuated using data from $1903 \sim 2003$
Figure B.3.4 Design Rainfall Hyetographs at Port Area Station

Source: WMO DAD curves from FCSEC which is same as shown in Applied Hydrology by Ven Te Chow, 1988
Figure B.3.5 Areal Reduction Factor for Reducing Point Rainfall to Obtain Areal Average Value in the Study Area

Data :
6-hour total rainfall
during annual maximum events at Port Area

Figure B.3.6 Rainfall Correlations Between Port Area and Other Stations

Table B.3.6 Tide Pattern during Annual Maximum Tide Events (1999 ~ 2003)

1999-July			2000-July			2001-August		
Time mm:dd:yy hh:mm	Difference (hh:mm)	Water Level (EL. m)	Time mm:dd:yy hh:mm	Difference (hh:mm)	$\begin{aligned} & \text { Water Level } \\ & \text { (EL. m) } \\ & \hline \end{aligned}$	Time mm:dd:yy hh:mm	Difference (hh:mm)	$\begin{aligned} & \text { Water Level } \\ & \text { (EL. m) } \\ & \hline \end{aligned}$
07/12/99 17:06		9.87	07/30/00 17:09		9.86	08/17/01 16:28		9.92
07/13/99 09:26	16:20	11.39	07/31/00 09:26	16:17	11.47	08/18/01 08:33	16:05	11.46
07/13/99 17:52	8:26	9.82	07/31/00 17:52	8:26	9.85	08/18/01 17:09	8:36	9.90
07/14/99 10:17	16:25	11.40	08/01/00 10:22	16:30	11.47	08/19/01 09:32	16:23	11.49
07/14/99 18:36	8:19	9.83	08/01/00 18:34	8:12	9.89	08/19/01 17:47	8:15	9.93
07/15/99 11:07	16:31	11.37	08/02/00 11:20	16:46	11.42	08/20/01 10:34	16:47	11.47
07/15/99 19:19	8:12	9.88	08/02/00 19:14	7:54	9.97	08/20/01 18:25	7:51	10.01
Maxi		11.40	Maxim		11.47	Maxim		11.49

2002-August			2003-July			Average : 1999 ~ 2003	
Time mm:dd:yy hh:mm	Difference (hh:mm)	Water Level (EL. m)	Time mm:dd:yy hh:mm	Difference (hh:mm)	Water Level (EL. m)	Difference (hh:mm)	Water Level (EL. m)
08/07/02 16:57		9.91	07/12/03 16:53		9.82		9.88
08/08/02 08:52	15:55	11.42	07/13/03 08:38	15:45	11.41	16:04	11.43
08/08/02 17:34	8:42	9.89	07/13/03 17:41	9:03	9.75	8:38	9.84
08/09/02 09:46	16:12	11.46	07/14/03 09:29	15:48	11.45	16:15	11.45
08/09/02 18:12	8:26	9.91	07/14/03 18:26	8:57	9.74	8:25	9.86
08/10/02 10:42	16:30	11.46	07/15/03 10:19	15:53	11.44	16:29	11.43
08/10/02 18:49	8:07	9.98	07/15/03 19:08	8:49	9.78	8:10	9.92
Maximum		11.46	Maximum		11.45	Maximum	11.45

Table B.3.7 Design Tide Level at Manila Bay

Design Tide Leveln at Manila Bay		
Difference (hh:mm)	Time dd hh:mm	Tide Level (EL. m)
$0: 00$	Day1 17:00	10.03
$16: 05$	Day2 9:05	11.32
$8: 40$	Day2 17:45	10.00
$16: 15$	Day3 10:00	11.34
$8: 25$	Day3 18:25	10.02
$16: 30$	Day4 10:55	11.32
$8: 10$	Day4 19:05	10.08
Maximum		
Minimum		

Table B.3.8 Design Water Levels at Pump Stations (30-Year Return Period)

Time dd hh:mm	Design Water Level at North Pump Stations (EL. m)				
	Binondo	Escolta	Quiapo	Aviles	Valencia
Day1 17:00	10.79	10.79	10.88	11.34	11.44
Day2 9:05	12.08	12.08	12.17	12.63	12.73
Day2 17:45	10.76	10.76	10.85	11.31	11.41
Day3 10:00	12.10	12.10	12.19	12.65	12.75
Day3 18:25	10.78	10.78	10.87	11.33	11.43
Day4 10:55	12.08	12.08	12.17	12.63	12.73
Day4 19:05	10.84	10.84	10.93	11.39	11.49
Maximum	12.10	12.10	12.19	12.65	12.75
Minimum	10.76	10.76	10.85	11.31	11.41

Time dd hh:mm	Design Water Level at South Pump Stations (EL. m)						
	Gallina	Balete	Paco	Pandacan	San Andres	Sta. Clara	Makati
Day1 17:00	11.30	11.03	11.10	11.42	12.21	12.36	12.45
Day2 9:05	12.59	12.32	12.39	12.71	13.50	13.65	13.74
Day2 17:45	11.27	11.00	11.07	11.39	12.18	12.33	12.42
Day3 10:00	12.61	12.34	12.41	12.73	13.52	13.67	13.76
Day3 18:25	11.29	11.02	11.09	11.41	12.20	12.35	12.44
Day4 10:55	12.59	12.32	12.39	12.71	13.50	13.65	13.74
Day4 19:05	11.35	11.08	11.15	11.47	12.26	12.41	12.50
Maximum	12.61	12.34	12.41	12.73	13.52	13.67	13.76
Minimum	11.27	11.00	11.07	11.39	12.18	12.33	12.42

C. FLOOD AND INUNDATION

TABLE OF CONTENTS

Page
C. 1 General C-1
C. 2 Available Quantitative Information on Inundation in the Core Area C - 1
C.2.1 Interview Survey for Inundation in 1999 Flood by SEDLMM (2000) C - 1
C.2.2 Flood-Prone Roads in Metro Mania Provided by MMDA C-1
C.2.3 Interview Survey for Inundation in August 2004 C-2
C. 3 Inundation Condition in 1999 Flood C-2
C.3.1 Rainfall and Water Level in Manila Bay and the Pasig River C-2
C.3.2 Inundation Mapping C-6
C.3.3 Inundation Conditions with Basins C -10
C.3.4 Estimated Damages C - 11
C.3.5 Major Problem Areas C - 13
C. 4 Inundation Condition in August 2004 C - 13
C.4.1 Rainfall and Water Level in Manila Bay and the Pasig River C - 13
C.4.2 Inundation Survey and Mapping C-17
C.4.3 Pump Operation C-21
C.4.4 Newspaper Report C-21

LIST OF TABLES

Page
Table C.3.1 Main Causes of Large Rainfall Events in Metro Manila in 1999 C - 2
Table C.3.2 Evaluation of Return Period of 1999 Inundation C-4
Table C.3.3 Observed Maximum Water Level along the Pasig River during 1999 Inundation C-5
Table C.3.4 Inundation Conditions with Basins C - 10
Table C.3.5 Estimated Number of Affected People C-11
Table C.3.6 Estimated Number of Affected Houses/Buildings C - 11
Table C.3.7 Estimated Total Length of Inundated Road C-12
Table C.4.1 Nature of Typhoon AERE in August 2004 C - 13
Table C.4.2 Evaluation of Return Period of August 2004 Inundation C-16
Table C.4.3 Observed Maximum Water Level along the Pasig River During August 2004 Inundation C-16
Table C.4.4 Summary of Pump Operation during August 2004 Inundation C-22
Table C.4.5 Newspaper Reports during August 2004 Inundation C-23
LIST OF FIGURES
Page
Figure C.3.1 Tracks of Typhoons or Tropical Storm during 1999 Inundation C - 3
Figure C.3.2 Meteo-Hydrological Condition during 1999 Inundation C-4
Figure C.3.3 Survey Points for Interview Survey on 1999 Inundation C-7
Figure C.3.4 Maximum Depth in 1999 Inundation C-8
Figure C.3.5 Duration in 1999 Inundation C-9
Figure C.4.1 Tracks of Typhoon AERE in August 2004 C - 14
Figure C.4.2 Meteo-Hydrological Condition during August 2004 Inundation. C-15
Figure C.4.3 Survey Points for Interview Survey on August 2004 Inundation. C-18
Figure C.4.4 Maximum Depth in August 2004 Inundation. C - 19
Figure C.4.5 Duration in August 2004 Inundation C-20

C. 1 General

The core area of Metropolitan Manila has been suffering from serious flooding and inundation damage resulting from heavy rains brought by southwestern monsoons and typhoons. Metropolitan Manila topographically extends over the low-lying areas along Manila Bay. Rainfall amount and intensity during the rainy seasons especially in the periods of typhoons are heavy and high, respectively. Accordingly, it can be said that the core area is at high risk against natural disasters due to insufficiency of various structural measures and is highly vulnerable to attacks from natural disasters in view of social weakness for coping with disasters. In this chapter, recent inundation condition, flooding and inundation mechanism, etc., are discussed based on the results of site reconnaissance, collected data and analyses of those items.

C. 2 Available Quantitative Information on Inundation in the Core Area

The core area is inundated at least in some portion almost every year. However, the quantitative information on recent inundations such as depth, duration and areas is quite limited, so is information on damages caused by those. The only available information that has been obtained is as follows.

- Interview survey for inundation in 1999 flood by SEDLMM (2000) ${ }^{1}$
- Flood-prone roads in Metro Manila provided by MMDA ${ }^{2}$
- Interview survey for inundation in August 2004

C.2.1 Interview Survey for Inundation in 1999 Flood by SEDLMM (2000)

According to reports, the 1999 flood is the most serious flood in Metro Manila in recent years. In the course of SEDLMM (2000), an interview survey on inundation was conducted, especially in the core area. The items of questionnaire included inundation depth, duration, flow direction and cause of flood. The survey was conducted in 2000, and the total number of respondents was 1,756 . The area where the interviews were conducted covered almost the entire low-lying portion in the study area. According to the final report on SEDLMM (2000), the original questionnaire included answer spaces for the floods in both August 1999 and September 1999. However, the results were concluded for the flood in September 1999.

This survey gives us the most detailed quantitative information on recent inundation in the core area. Therefore, it can be used as a reference inundation to evaluate the existing drainage system. The results of the survey and processed data are shown in Chapter C.3.

C.2.2 Flood-Prone Roads in Metro Mania Provided by MMDA

MMDA has statistical data for flood-prone roads in Metro Manila. The data contain the observed maximum depth of floodwater along major roads from 1999 to 2003.

Before 2002, the data had been obtained and managed by NCR, DPWH. At that time, personnel to manage respective roads reported the maximum inundation depth based on their observation. After the flood control section in NCR was transferred to MMDA in 2002, MMDA has continued and strengthened this observation.

Those data tell us the streets that are inundated almost every year. The following streets have had episodes of inundation in three years or more in the last five years.

- España (in front of University of Sto. Tomas) in Sampaloc
- Maceda (corner Calamba St. Vicinity) in Sampaloc
- Rizal Avenue (corner C.M. Recto Avenue) in Sta. Cruz
- C.M. Recto Avenue (Evangelista St. to Rizal Ave.) in Sta. Cruz
- Buendia Canal (Batangas Street) in Makati
- Magallanes Interchange in Makati
- Roxas Boulevard (Buendia Flyover) in Pasay

C.2.3 Interview Survey for Inundation in August 2004

During the course of the present study, severe inundation occurred within the study area in August 2004. It is the first time for the study area to meet such severe inundation since 1999. Considering the importance of gathering the actual condition of the inundation, JICA and the study team decided to conduct interview survey for the inundation. The survey was conducted in October 2004, resulting in total 1,000 respondents within the entire low-lying portion in the study area. The results are shown in Chapter C. 4 together with hydrological information and pump operation records.

C. 3 Inundation Condition in 1999 Flood

C.3.1 Rainfall and Water Level in Manila Bay and the Pasig River

There were three large rainfall events in 1999: August 2-3, September 10-11 and October 16-17. Main causes of those rainfall events are summarized in Table C.3.1.

Table C.3.1 Main Causes of Large Rainfall Events in Metro Manila in 1999

Date	Category	Name	Maximum 1-min Averaged Wind Speed $(\mathrm{m} / \mathrm{s})$
August 2-3	Typhoon	OLGA	40.8
September 10-11	Typhoon	YORK	35.7
October 16-17	Tropical Storm	EVE	17.9

Source: Tropical Cyclone Database http://www.eorc.nasda.go.jp/TRMM/typhoon/index_e.htm

Figure C.3.1 demonstrates the tracks of these typhoons or tropical storm. Typhoon OLGA in August was very large, although it did not hit Metro Manila directly. It is inferred that typhoon-associated clouds brought about heavy rain in August. On the other hand, there were typhoons smaller than typhoon OLGA, but they attacked Metro Manila directly. The heavy rainfall and wind was directly brought by the typhoon.

Figure C.3.1 Tracks of Typhoons or Tropical Storm during 1999 Inundation

The meteo-hydrological condition of 1999 inundation has been investigated and is presented in Figure C.3.2. The rainfall was analyzed using the chart data provided by PAGASA. Among the three rainfall events, the largest rainfall event was in August 1999. Evaluation on return period of the three rainfall events is presented in Table C.3.2. At Port Area, maximum 24-hour rainfall depths were $278 \mathrm{~mm}, 116 \mathrm{~mm}$ and 247 mm in August September and October 1999, which correspond to 12-year, <2-year and 8-year return periods, respectively. Regarding short time rainfall, almost the same amount of 1-hour rainfall ($65 \mathrm{~mm} / \mathrm{hour}$) in these events was observed, which corresponds to a 4 -year return period.

Rainfall in September 1999 was actually quite small according to the observed rainfall data in Port Area station. There seems to be a contradiction to conclude that the result of interview survey in SEDLMM reflects only September inundation, because the rainfall data support that the inundations in August and October were also severe. Normally, people's memory on timing of the events is not so reliable, especially, when many events with similar magnitude occurred. It is quite natural to assume that the result of interview reflects all of the events.

-

August 1999 Rain and Tide
Table C.3.2 Evaluation of Return Period of 1999 Inundation

[^3]Since August 1999 had the highest rainfall amount, therefore, the hydrodynamic model developed during this study applied the August 1999 rainfall for model calibration. From results of probability analyses and also from inundation analyses using hydrodynamic simulation for different design rainfall events, it is concluded that the magnitude of August 1999 inundation is from 5 -year to 10 -year return period. The detail of hydrodynamic model is described in Supporting Report D.

Tide level at Manila South Harbor was high during these periods. The observed maximum water levels at pumping stations along the Pasig River during August 2-3, September 10-11 and October 16-17 are shown in Table C.3.3. Among these, most severe condition, which has the highest water level, appeared in August.

Table C.3.3 Observed Maximum Water Level along the Pasig River during 1999 Inundation

Pumping Station	Binondo	Escolta	Quiapo	Balete	Paco	Aviles	Pandacan
Chanage (km)	$1+550$	$2+150$	$2+600$	$3+300$	$3+650$	$4+800$	$5+200$
DHWL (m)	12.10	12.10	12.19	12.34	12.41	12.65	12.73
OMWL (m) August 1999	N/A	11.85	N/A	12.2	12.2	12.4	12.5
OMWL (m) September 1999	N/A	11.7	N/A	11.9	11.8	11.9	12.1
OMWL (m) October 1999	N/A	11.8	N/A	12.05	12.0	12.1	12.25

Pumping Station	Valencia	San Andres	Sta. Clara	Makati	Note:
Chanage (km)	5+300	8+350	$10+850$	$12+350$	DHWL $=$ Design High Water Level
DHWL (m)	12.75	13.52	13.67	13.76	in the Pasig River
$\begin{gathered} \text { OMWL (m) } \\ \text { August } 1999 \end{gathered}$	12.65	N/A	13.5	13.55	$\begin{aligned} \text { OMWL }= & \text { Observed Maximum } \\ & \text { Water Level in the Pasig } \end{aligned}$
OMWL (m) September 1999	12.0	12.7	12.7	12.7	River
$\begin{gathered} \hline \text { OMWL (m) } \\ \text { October } 1999 \\ \hline \end{gathered}$	12.2	N/A	12.5	12.8	Elevation is above DPWH Datum.

Source DHWH: DPWH, Project for Pasig-Marikina River Flood Control, 2002.3 OMWL: Pump operation records provided by MMDA

C.3.2 Inundation Mapping

After removing duplicated points in the database on the inundation survey by SEDLMM, a total of 838 survey points have been utilized to get an inundation map in 1999 flood. The survey points are shown in Figure C.3.3 with maximum depth of inundation. Based on those point data, contour maps for inundation depth and duration have been arranged using GIS. Singular points to make the contour strange were removed during several trials, and reasonable contours have been finally obtained. Estimated total area that has more than 20 cm maximum inundation depth is about $29.5 \mathrm{~km}^{2}$ (about 40% of the study area).

Figures C.3.4 and C.3.5 show the contour maps of maximum inundation depth and duration, respectively. The maximum inundation depth is around 1.3 m , which appears along España Street in North Manila and along PNR Canal in South Manila. The area in which depth of inundation is deeper than 0.5 m extends widely in the central part of North Manila. Duration of inundation in this area exceeds 24 hours. In South Manila, deep inundation occurs along the eastside of PNR Canal and along Estero de Tripa de Gallina. Duration of inundation is less than 12 hours in those areas, however.

In North Manila, the ground elevation near University of Sto.Tomas along España Street is lower than other portions, which makes the inundation depth deeper in this area. The excess floodwater from surrounding area seems to concentrate into this lower area. In South Manila, along Zobel-Roxas drainage main does the maximum depth of inundation does vary. There are two peaks along the Zobel-Roxas drainage main. The shallower portion between the two peaks appears at the west of PNR Canal, which runs next to South Super Highway. This fact indicates that South Super Highway and/or its surrounding area would act as a barrier to prevent the draining of the water accumulated in the east of it.

Data source: SEDLMM database (2000)
Figure C.3.3 Survey Points for Interview Survey on 1999 Inundation

Figure C.3.4 Maximum Depth in 1999 Inundation

Figure C.3.5 Duration in 1999 Inundation

C.3.3 Inundation Conditions with Basins

Table C.3.4 summarizes the average maximum depth of inundation and the average duration of inundation for each drainage basin

Table C.3.4 Inundation Conditions with Basins

Block_ID	Basin_ID	Name	Drainage Area (km ${ }^{2}$)	Average Depth of Inundation (m)	Average Duration of Inundation (hour)
	N01_01	Vitas	5.27	0.27	10.3
	N01_02	Binondo	2.69	0.20	8.4
	N01_03	Escolta	0.30	0.00	0.0
N02	N02_01	Quiapo	2.29	0.39	18.4
	N02_02	Aviles	3.28	0.22	7.4
N03	N03_01	Valencia	2.37	0.06	0.7
	N04_01	Maypajo-Blumentritt	9.42	0.02	0.7
	N04_02	Balut	0.49	0.17	8.0
N05	N05_01	North Harbor	2.37	0.25	3.3
	S01_01	Tripa de Gallina	17.05	0.04	0.3
	S01_02	Libertad	7.48	0.37	2.3
	S01_03	Vito Cruz	1.43	0.12	0.5
S02	S02_01	Balete	0.94	0.30	1.2
	S03_01	Paco	1.74	0.24	2.4
	S03_02	Pandacan	1.15	0.32	3.3
S04	S03_03	San Andres	3.23	0.33	3.3
S05	S04_01_01	Sta. Clara	Makati	1.57	0.29
	S05_02	Upper Calatagan	1.65	0.66	2.4
	S06_01	South Harbor	3.66	0.00	0.0
	S06_02	Pasig South	1.03	0.10	0.0
	S06_03	Paranaque	0.20	0.12	0.2

C.3.4 Estimated Damages

There is no available quantitative information on damages caused by inundation in 1999, unfortunately. The only available method to estimate the damages is to utilize currently developed GIS database in Metro Manila ${ }^{4}$ with the inundation map based upon the interview survey. Using overlay technique of GIS, the following are estimated.

- Number of affected people: Table C.3.5
- Number of affected houses/buildings: Table C.3.6
- Total length of inundated road: Table C.3.7

Table C.3.5 Estimated Number of Affected People
(1) Affected Population with Maximum Depth of Inundation

	Maximum Depth of Inundation (m)			Total
	$0.2-0.5$	$0.5-1.0$	$1.0-1.3$	
North Manila	562,810	78,220	110	$641,140(50 \%)$
South Manila	498,440	100,130	950	$599,520(63 \%)$
Total	$1,061,250(47 \%)$	$178,350(8 \%)$	$1,060(<1 \%)$	$1,240,660(55 \%)$

(2) Affected Population with Duration of Inundation (Maximum Depth of Inundation is more than 0.2 m)

	Duration of Inundation (hour)						Total
	$0-1$	$1-3$	$3-6$	$6-12$	$12-24$	$24-$	
North Manila	12,170	215,480	107,630	105,030	134,160	66,670	$641,140(50 \%)$
South Manila	21,790	398,550	120,770	45,290	12,120	0	$599,520(63 \%)$
Total	33,960 (1%)	614,030 (27%)	228,400 (10%)	150,320 (7%)	147,280 (7%)	66,670 (3%)	$1,240,660(55 \%)$

Note:
Total population in North Manila $=1,305,947$
Total population in South Manila $=945,910$
Total population in the study area $=2,251,857$

Table C.3.6 Estimated Number of Affected Houses/Buildings
(1) Affected Houses/Buildings with Maximum Depth of Inundation

	Maximum Depth of Inundation (m)			Total
	$0.2-0.5$	$0.5-1.0$	$1.0-1.3$	
North Manila	42,840	7,790	10	$50,640(45 \%)$
South Manila	38,280	8.970	90	$47,340(58 \%)$
Total	$81,120(41 \%)$	$16,760(9 \%)$	$100(<1 \%)$	$97,980(50 \%)$

(2) Affected Houses/Buildings with Duration of Inundation
(Maximum Depth of Inundation is more than 0.2 m)

	Duration of Inundation (hour)						Total
	$0-1$	$1-3$	$3-6$	$6-12$	$12-24$	$24-$	
North Manila	900	17,430	7,400	8,220	10,810	5,880	$50,640(45 \%)$
South Manila	1,780	31,600	9,610	3,650	700	0	$47,340(58 \%)$
Total	2,680	49,030	17,010 (1%)	11,870 (6%)	11,510 (6%)	5,880 (3%)	$97,980(50 \%)$

Note:
Total number of houses/buildings in North Manila $=113,494$
Total number of houses/buildings in South Manila $=82,168$
Total number of houses/buildings in the study area $=195,662$

Table C.3.7 Estimated Total Length of Inundated Road
(1) Total length of Inundated Road with Maximum Depth of Inundation in North Manila (Unit:km)

	Maximum Depth of Inundation (m)			Total
	$0.2-0.5$	$0.5-1.0$	$1.0-1.3$	
Major Arterial	14.7	3.0	0	$17.8(48 \%)$
Minor Arterial	10.7	4.3	0.3	$15.0(42 \%)$
Others	192.7	39.7	0.5	$232.9(42 \%)$
Total	$218.1(35 \%)$	$47.0(7 \%)$	$0.6(<1 \%)$	$265.7(42 \%)$

(2) Total length of Inundated Road with Duration of Inundation in North Manila (Unit:km)
(Maximum Depth of Inundation is more than 0.2 m)

	Duration of Inundation (hour)						Total
	$0-1$	$1-3$	$3-6$	$6-12$	$12-24$	$24-$	
Major Arterial	0.3	4.6	3.1	2.8	4.0	3.0	$17.8(45 \%)$
Minor Arterial	0.2	4.8	1.0	2.0	5.0	2.1	$15.0(58 \%)$
Others	3.9	65.5	32.9	41.8	52.8	36.0	$232.9(42 \%)$
Total	4.4	74.9	37.0	46.6	52.8	41.1	$265.7(42 \%)$
	$(<1 \%)$	(13%)	(6%)	(7%)	(8%)	(7%)	2

Note:
Total length of major arterial in North Manila $=37.5 \mathrm{~km}$
Total length of minor arterial in North Manila $=36.1 \mathrm{~km}$
Total length of other raods in North Manila $=555.8 \mathrm{~km}$
Total length of roads in North Manila $=629.4 \mathrm{~km}$
(3) Total length of Inundated Road with Maximum Depth of Inundation in South Manila (Unit:km)

	Maximum Depth of Inundation (m)			Total
	$0.2-0.5$	$0.5-1.0$	$1.0-1.3$	
Major Arterial	22.0	2.8	<0.1	$24.8(48 \%)$
Minor Arterial	22.7	3.5	0.1	$26.3(42 \%)$
Others	233.9	59.1	0.6	$293.6(45 \%)$
Total	$278.6(37 \%)$	$65.4(8 \%)$	$0.7(<1 \%)$	$344.7(45 \%)$

(4) Total length of Inundated Road with Duration of Inundation in South Manila (Unit:km)
(Maximum Depth of Inundation is more than $\mathbf{0 . 2} \mathbf{~ m}$)

	Duration of Inundation (hour)						Total
	$0-1$	$1-3$	$3-6$	$6-12$	$12-24$	$24-$	
Major Arterial	1.8	18.6	3.3	1.1	0	$0.8(48 \%)$	
Minor Arterial	2.3	17.0	5.1	1.7	0.2	0	$26.3(42 \%)$
Others	16.6	197.2	57.2	19.4	3.2	0	$293.6(45 \%)$
Total	20.7						
	232.8						
(30%)	65.6 (9%)	22.3 (3%)	3.3 $(<1 \%)$	0 (0%)	$344.7(45 \%)$		

Note:
Total length of major arterial in South Manila $=51.5 \mathrm{~km}$
Total length of minor arterial in South Manila $=61.5 \mathrm{~km}$
Total length of other raods in South Manila $=647.8 \mathrm{~km}$
Total length of roads in South Manila $=760.9 \mathrm{~km}$

C.3.5 Major Problem Areas

Because of implementation of flood control and drainage improvement made so far, flood and inundation situation has been so much improved in Metropolitan Manila. However, it still remains at several areas and particular local spots. Problem areas can be categorized into two aspects of regional and local inundation areas, based on available information in 1999 inundation. Regional inundation area is the widely spreading portion whose depth of inundation is more than 0.5 m , whereas local inundation area is the area where inundation is limited locally.

(1) Regional and Local Inundation Areas in North Manila

The regional inundation area in north Manila is Aviles Sampaloc area in the upper catchments of Quiapo-Aviles, Vitas-Binondo-Escolta and Maypajo-Blumentritt-Balut drainage blocks. The regional inundation is caused not only by local storm water in Quiapo-Aviles and Vitas-Binondo-Escolta drainage blocks but also by excess storm water in the hilly area of Maypajo-Blumentritt-Balut drainage block. Trunk road España Street running through the regional inundation area is suffering from severe traffic interruptions almost every year. Other drainage blocks do not have so serious and regional problems. However, local inundation areas remain at several spots.

(2) Regional and Local Inundation Areas in South Manila

The regional inundation area in South Manila is San Isidro, San Antonio and Pio del Pilar area covered by drainage channels of Zobel-Roxas, PNR Canal and Calatagan Creek I in Libertad-Tripa de Gallina drainage block. Due to various structural and social problems, this area is frequently inundated, even in the dry season from November to April. A trunk road, South Super Highway, running along PNR is suffering from frequent inundations, resulting in severe traffic interruption. In other drainage blocks, serious regional inundation cannot be observed. Local inundation areas are observed at several spots along Estero de Tripa de Gallina, in Balete drainage block, near Pandacan pumping station, etc., however.

C. 4 Inundation Condition in August 2004

C.4.1 Rainfall and Water Level in Manila Bay and the Pasig River

In early morning in 25 August 2004, heavy rainfall events occurred in the study area. Typhoon AERE caused this rainfall event. Table C.4.1 summarizes the nature of Typhoon AERE. Figure C.4.1 shows the track of the typhoon. The typhoon did not directly hit the Metro Manila. When the center of the typhoon reached Taiwan, the heavy rainfall occurred in the Metro Manila. It is interesting that similar weather pattern was observed in August 1999.

Table C.4.1 Nature of Typhoon AERE in August 2004

Date	Category	Name	Maximum 1-min Averaged Wind Speed $(\mathrm{m} / \mathrm{s})$
August 25-26	Typhoon	AERE	43.4

[^4]

Source: Tropical Cyclone Database
http://www.eorc.nasda.go.jp/TRMM/typhoon/index_e.htm
Figure C.4.1 Tracks of Typhoon AERE in August 2004

The rainfall amount and pattern during the heavy rainfall event has been investigated by analyzing the chart data provided by PAGASA for Port Area Stations. Aside from this, the rainfall records in Science Garden and Napindan were provided by EFCOS and the tide level at Manila Bay was obtained by Tide Table 2004 issued by NAMRIA. Figure C.4.2 shows the rainfall patterns in those three stations and the tide level at Manila Bay. It can be seen that the single peak appeared early morning in 25 August. At that time, the tide level was also almost peak.

Table C.4.2 shows continuous rainfall amount for several durations in three stations. At Port Area, maximum 24 -hour rainfall depth was 183 mm , which corresponds to 3 -year return periods. Maximum 6 -hour to 12 -hour rainfall depths are also equivalent to almost 3 -year return period. However, return period of maximum rainfall depth with shorter duration is less than 2-years.

At Science Garden, the total 2-days rainfall amount (306 mm) is higher than that at Port Area (262 mm). Maximum 24-hour rainfall depth was 230 mm , which corresponds to 5 -year return periods. Maximum 6 -hour to 12 -hour rainfall depths are equivalent to 5 -year return period or more. Return period of maximum rainfall depth with shorter duration is less than 2 -years.

Rainfall amount and intensity at Napindan is much smaller than those at the other stations. The maximum 24 -hours rainfall depth at Napindan is only 99 mm . This fact shows that the south of the study area received much smaller rainfall compared to the north.

Source:
Port Area: Chart data by PAGASA, Science Garaden and Napindan: EFCOS Tide level: NAMRIA

Figure C.4.2 Meteo-Hydrological Condition during August 2004 Inundation

Table C.4.2 Evaluation of Return Period of August 2004 Inundation

Port Area

	60 min	2hours	3hours	6hours	12hours	24hours	48hours
Maximum	44.0	81.5	97.0	136.7	147.4	183.1	262.0
Return Period	<2	$2-3$	-	$3-5$	$2-3$	3	3

Science Garden

	60 min	2hours	3hours	6 6hours	12hours	24hours	48hours
Maximum	49.0	82.0	106.0	172.0	201.0	230.0	306.0
Return Period	<2	$2-3$	-	$5-10$	$5-10$	5	$3-5$

Napindan

	60 min	2hours	3hours	6hours	12hours	24hours	48hours
Maximum	33.0	49.0	52.0	62.0	76.0	99.0	129.0
Return Period	-	-	-	-	-	-	-

The observed maximum water levels at pumping stations along the Pasig River are shown in Table C.4.3. The maximum water levels along the Pasig River were lower than those during August 1999 inundation.

Table C.4.3 Observed Maximum Water Level along the Pasig River
During August 2004 Inundation

Pumping Station	Binondo	Escolta	Quiapo	Balete	Paco	Aviles	Pandacan
Chanage (km)	$1+550$	$2+150$	$2+600$	$3+300$	$3+650$	$4+800$	$5+200$
DHWL (m)	12.10	12.10	12.19	12.34	12.41	12.65	12.73
OMWL (m) August 1999	N/A	11.85	N / A	12.2	12.2	12.4	12.5
OMWL (m) August2004	11.75	11.8	11.75	11.95	12.0	12.05	12.0

Pumping Station	Valencia	San Andres	Sta. Clara	Makati	Note: DHWL $=$ Design High Water Level
Chanage (km)	5+300	8+350	$10+850$	$12+350$	in the Pasig River
DHWL (m)	12.75	13.52	13.67	13.76	OMWL $=$ Observed Maximum
$\begin{gathered} \text { OMWL (m) } \\ \text { August } 1999 \end{gathered}$	12.65	N / A	13.5	13.55	Water Level in the Pasig River
OMWL (m) August 2004	12.05	12.4	12.5	12.7	Elevation is above DPWH Datum.

Source DHWH: DPWH, Project for Pasig-Marikina River Flood Control, 2002.
OMWL: Pump operation records provided by MMDA

C.4.2 Inundation Survey and Mapping

Interview survey was conducted during October 2004 in order to grasp the inundation condition on 25 August 2004. Totally 1,000 respondents have been interviewed within the low-lying area of the core area of Metropolitan Manila. The item of the interview survey was mainly maximum depth and duration of inundation. Flow direction, speed of water level change and causes of the inundation have also been asked as supplementary information.

The survey points are shown in Figure C. 4.3 with maximum inundation depth. Based on those point data, contour maps for inundation depth and duration have been arranged using GIS. Estimated total area that has more than 20 cm maximum inundation depth is about $14.3 \mathrm{~km}^{2}$ (about 20% of the study area). This is smaller than the inundation in 1999.

Figures C.4.4 and C.4.5 show the contour maps of maximum inundation depth and duration, respectively. The maximum inundation depth is around 1.0 m , which appears mainly along España Street. The area in which depth of inundation is deeper than 0.5 m extends widely in the central part of North Manila. Duration of inundation in this area is almost 12 hours. In South Manila, regional inundation area in which maximum depth exceeds 0.5 m is not observed. Local deep inundation area exists, however.

Figure C.4.3 Survey Points for Interview Survey on August 2004 Inundation

Figure C.4.4 Maximum Depth in August 2004 Inundation

Figure C.4.5 Duration in August 2004 Inundation

C.4.3 Pump Operation

Table C.4.4 shows summary of pump operation during August 2004 inundation. In the table, total volume of drained water at pumping station was estimated by assuming that pump efficiency is 100%. Estimated total volume of drained water per drainage area at pumping stations in North Manila is much larger than that in South Manila. This is presumably because of the difference of rainfall amount between North Manila and South Manila.

In North Manila, pumping stations in Quiapo - Aviles drainage block drained much more water per area than that in Vitas-Binondo-Escolta drainage. The difference (about 150 mm) is larger than the difference between rainfall amount at Port Area and Science Garden (about 50 mm). As discussed in chapter describing drainage system, existing Blumentritt interceptor has almost zero drainage capacity, which may result that almost all excess storm water in the upper drainage basin of the existing Blumentritt interceptor enters to Quiapo - Aviles drainage block. The records of pump operation during August 2004 support this.

According to the pump operation records, no floodgates at pumping stations were opened during August 2004 inundation.

C.4.4 Newspaper Report

Many newspapers reported the inundation occurred in August 2004. Table C.4.5 shows headline and summary of newspaper contents related to the inundation in the Metro Manila in August 2004. Many reported effects of solid waste and encroachment of informal settlers in esteros on inundation and how to treat those.
Table C.4.4 Summary of Pump Operation during August 2004 Inundation

Drainage Block	Pumping	Area	Total Capacity	Pump Unit	Total Op	Hour (hr) ${ }^{*_{1}}$	Total Volume	Total Volume/Area (mm)	PumpStart Level (m)	Max. WaterLevel In Estero (m) ${ }^{{ }^{1}}$	WaterLevel Rise in Estero (m)
	Station	$\left(\mathrm{km}^{2}\right)$	($\mathrm{m}^{3} / \mathrm{s}$)	($\mathrm{m}^{3} / \mathrm{s}$)	25-Aug	26-Aug	$\left(\mathrm{m}^{3}\right)$				
NO1	Vitas	5.69	32.0	6.400	48.25	25.75	1704960	294	10.1	10.40	0.30
	Binondo	2.56	11.6	2.900	18.18	56.47	779346		10.0	10.90	0.90
	Escolta	0.30	1.5	0.500	17.00	0	30600		10.0	10.90	0.90
N02	Quiapo	2.29	10.8	2.370	70.23	39.28	934339	443	10.5	10.85	0.35
	Aviles	3.28	15.6	3.530	73.31	47.28	1532458		10.5	11.45	0.95
N03	Valencia	2.37	11.8	2.625	56.64	45.3	963333	406	10.5	11.50	1.00
N04	Balut	0.49	2.0	1.000	29.50	20.75	180900	369	9.1	11.42	2.32
S01	Tripa de Gallina	17.06	57.0	7.000	47.36	39.92	2199456	165	9.9	10.60	0.70
	Libertad	7.52	42.0	7.000	39.75	33.87	1855224		9.9	10.20	0.30
S02	Balete	0.94	3.0	0.400	43.87	27.33	102528	109	10.6	11.45	0.85
S03	Paco	1.74	7.6	2.530	24.71	19.11	399113	166	10.5	10.75	0.25
	Pandacan	1.15	4.4	2.200	8.57	8.33	133848		10.5	10.85	0.35
	San Andres	3.12	19.0	4.750	15.47	11.72	464949		10.5	10.45	-
S04	Sta.Clara	1.63	5.3	2.650	14.19	9.89	229723	141	11.2	11.70	0.50
S05	Makati	1.65	7.0	3.500	8.23	5.96	178794	108	11.3	11.25	-
Source *1: MMDA											

Table C.4.5 Newspaper Report during August 2004 Inundation

No	Date	Source	Headline	Contents
1	25-Aug	Inquirer	Arroyo postponed town hall meeting due to heavy rain	The President postponed "Pulong Bayan" scheduled to be held at Petron depot in Manila as a result of heavy rains brought by Typhoon Aere which was spotted 560 km north of Basco, Batanes.
2	25-Aug	Inquirer	Down pour floods metro, forces suspension of classes, flight	Heavy rains battered Metro Manila overnight causing flooding in low lying areas forcing the suspension of classes and cancellation on some international flights. The most flooded areas are España Ave., Taft Ave., Tayuman St. in Manila and Quezon Avenue and East Ave. in Q.C.
3	26-Aug	Inquirer	6-hour downpour swamps Metro Manila; 6 killed	Yesterday downpour lasting for about six hours was so heavy with an estimated amount of rainfall of about 136 mm or with an equivalent to the normal amount of rain for the whole month of May. As a results, six people were either dead or missing and about 20,000 residents of MM fled their homes, suspension of classes, closure of many offices and cancellation of flights. The waist deep flood in some low lying areas was induced by Typhoon Aere which is now spotted at 1800 km east of northern Luzon.
4	26-Aug	Inquirer	Heavy rains trigger floods, close roads	The flooding induced by Typhoon Aere caused not only the closure of major roads in Central Luzon but also left eight peole dead and more than 60,000 people evacuated from their homes.
5	26-Aug	Inquirer	Arroyo seeks to decongest Metro Manila due to flooding	The President's observation during her inspection of Pandacan Flood Control and Pumping Station served as the wake-up call for the government to intensify efforts in decongesting MM by relocating residents in flood prone areas. She said that "the flooding in MM only strengthens our resolve to decongest the metropolis and relocate those families dwelling in flashflood danger zones to afar ground, aside from further improving our anti-flood measures and drainage systems." She added that "These efforts are already in place and shall be sustained by the Teamwork of the national and local government".
6	26-Aug	Inquirer	Garbage a major culprit in Metro Manila floods	MMDA Chairman Bayani Fernado said that floodings in MM can be attributed not only to heavy downpour but especially to the indiscriminate disposal of garbages along water-ways and to the informal settlers that reduces discharge capacity. In effect, he said that they will strictly enforce the door-to-door collection of garbage to enhance the performance of the agency's pumping stations.
7	26-Aug	Manila Bulltein	8 dead as floods hit Luzon	Classes and offices were suspended due to monsoon rains and floods affecting largely the MM area and Central Luzon. Further, at least eight (8) people were killed while severa others were injured and others missing based on reports reaching the NDCC. The waist deep flooding also resulted in the evacuation of thousands of families from their homes closure of major thoroughfares and damages to properties.
8	26-Aug	Manila Bulltein	Heavy rains inundate Metro Manila Street	It was observed that despite an assurance of 75% flood control improvement by MMDA, heavy rains resulted to waist deep floodings in the low lying areas and major roads in Metro Manila.
9	26-Aug	Manila Bulltein	Relief personnel deployed at the height of heavy rains	Following orders from Manila Mayor Lito Atienza, the Manila City DCC Team were immediately deployed to carry-out relief and rescue operations around the flood affected areas. Several families living along Geronimo St. in Sampaloc were evacuated to Tecson Elemtary School as a precautionary measures for flood water running along Estero de Kalub which is parallel with the said street.
11	26-Aug	PhilStar	Marce" leaves eight dead	At least eight (8) people were feared dead while three (3) others were missing as overnight heavy rains caused by two (2) typhoons triggered floods, landslide affecting several parts of the country. The flooding in MM is about three feet deep in nearby Rizal and Bulacan Most major roads were closed in the two provinces. Likewise, international flights to Taipei and a cargo flight originating from other countries were diverted to NAIA due to bad weather and domestic flight from Manila to Basco was stranded. The President canceled a planned town hall meeting in Pandacan and instead inpsected flood control projects. She instructed MMDA Chairman Bayani Fernando to enforce the door-to-door garbage collection policy as she observed that indiscrimate dumping of garbages along esteros is one of the major causes which reduced the discharge capacity.
12	27-Aug	Inquirer	PAGASA expects more rains	PAGASA forecasts and warns the public to expect more rains from two weather disturbances hovering the Philippine Area of Responsibility.

[^5]
[^0]: Source: PAGASA/CAB/CDS and EFCOS
 Study Area: Based on Thiessen Polygon Method

[^1]: Period: 1949-1991

[^2]: MPWH 1988: Metro Manila Drainage System Rehabilitation Project, 1988 .
 DPWH 1990: The Detailed Engineering and Construction Supervision of Metro Manila Flood Control Project
 JICA 1990: The Study on Flood Control and Drainage Project in Metro Manila, 1990
 PEA Mar. 1995: The Study on the Updated Drainage Plan for the Libertad Reclamation Area in Pasay City, M
 PEA Nov. 1995: The Study of and Updated Drainage Plan for Section II of Manila Bay Reclamation Area, Pasay City and Parañaque, Metro Manila, 1995
 PEA Nov. 1995: The Study of and Updated Drainage Plan for Section II of Manila Bay Reclamation Area, Pasay City and Parañaque, Metro Manila, 199
 DPWH 1998: The Study on Flood Control and Drainage System Improvement for Kalookan-Malabon-Navotas-Valenzuela KAMANAVA) Areas, 1998

[^3]: | August 1999 Rain | | | | | | | |
 | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
 | Station Rainfall -hr 6 -hr 12 -hr 24 -hr 48 -hr
 Port Amount (mm) 64 136 174 278
 Area Return Period (Year) 4 4 455 | | | | | | | |

[^4]: Source: Tropical Cyclone Database http://www.eorc.nasda.go.jp/TRMM/typhoon/index_e.htm

[^5]: ${ }^{1}$ JICA, DPWH, MMDA, Final Report on Study on the Existing Drainage Laterals in Metro Manila in the Republic of the Philippines (SEDLMM), 2000.
 ${ }^{2}$ MMDA, Statistical Data Flood-Prone Major Roads in Metro Manila, 2004.
 ${ }^{3}$ DPWH, Main Report on Detailed Engineering Design of Pasig-Marikina River Channel Improvement Project, 2002.
 4 JICA, MMDA, PHIVOLCS, Draft Final Report on Earthquake Impact Reduction Study for Metropolitan Manila, Republic of the Philippines (MMEIRS), 2004.

