

S10 - 34

Figure S10-2.2.18 Cross Sections of Streams Drawn in Field Study

Relatively sand rich debris in Chacaito

Big Boulders seem to have fallen from slope beside of stream of Tocome

Round boulders and angular boulders can be seen, in Tocome

Figure S10-2.2.19 Photos of Stream Bed.

original image

Figure S10-2.2.20 Satellite Image with Infrared Band

Thick Vegetation (middle altitude)

Weak Vegetation (lower altitude)

Figure S10-2.2.22 Annual Average Temperature and Annual Precipitation Around Avila Mountains^{S10-6)}

Figure S10-2.2.23 Vegetation Transition in North and South Slopes of Avila Mountains (Ecograph, Caracas, Imparques, Provita)

CHAPTER 3. STUDY ON VARGAS DISASTER IN 1999 AND MARACAY DISASTER IN 1987

In last 20 years, two major debris disasters occurred in the north Venezuela. One is debris flow disasters in Vargas Area in December 1999. The other is debris flow disasters in Maracay Area in September 1987. They are both in mountainous area in La Costa Range. We studied these disasters to find the disasters characteristic in north Venezuela. Their locations are shown in Figure S10-3.1.1.

3.1 Vargas Disaster

Collapses which occurred in San Julian basin in 1999 Disaster are shown in Figure S10-3.1.2. This collapse distribution map was drawn using aerophotos which were taken on January 14, 2000 after the disaster.

Collapses crowd in the basin except one third top of the basin. Configurations of collapse patterns are different from lower basin to upper basin. It can be classified into four zones from lowest basin to highest basin; lowest zone, lower middle zone, higher middle zone and highest zone as shown in Figure S10-3.1.3. Configuration of collapses in lowest zone is characterized by flat collapses which are shallow and wide. In lower middle zone, it is characterized by deep and crowded collapses. In higher middle zone, it is characterized by big and deep collapses, and in highest zone, there is no collapses. The zoning may reflect altitude difference. The boundaries of the zones are about 400 m, 800 m, 1,500 m in altitude. Lithology in Sun Julian basin, which consist schists and gneisses mostly, is not much different from the engineering point of view. However, in lower part of the basin, two major faults are reported; San Sebastian Fault which is along shoreline, and Macuto Fault which cross the basin at about 1km upper from San Sebastian Fault (Figure S10-1.2.1). These are possibility that two major faults affected on the collapses in only lower potion of the basin.

Figure S10-2.2.22 shows vegetation transition in north and south slopes of the Avila Mountains. It is easy discern different types of vegetation arranged in horizontal stripes in the Avila Mountains. It is possible that the difference of configuration of collapses reflects the vegetation transition, since no much difference of lithology and no much rain fall difference in 1999 Disaster.

3. 2 Maracay Disaster

Collapses which occurred in 1987 Disaster in Limon river basin are shown in Figure S10-3.2.1. This collapse distribution map was drawn using aerophotos which were taken on September 9, 1987, just 3 days after the disaster.

The debris flow was occurred on Guacamaya, Guamira, Corrol de Pladra and El Codra which are tributaries of Limon River. The collapses occurred in upper area of these streams. The collapses are characterized by following;

- a. Collapses were above 800m
- b. Collapses were in limited area (Guacamaya, Guamita, Corrol de Pladra, El Codra)
- c. Collapses were on the slopes which face south or east.
- d. Locations of collapses were not harmonize with geology and vegetation as shown in Figure S10-3.2.2 and S10-3.2.3.

Figure S10-3.1.1 Location Map of Vargas and Maracay Disasters

red : collapses and erosions orange : debris deposit

Figure S10-3.1.2 Collapses in San Julian Basin Using Aerophoto Taken on 14 December, 2000

Figure S10-3.1.3 Satellite Image and Aerophoto of San Julian Basin Type of Collapses in San Julian Basin are Classified into Four

red : collapses and erosions orange : debris deposit

Figure S10-3.2.1 Collapses in Limon River Basin Using Aerophoto Taken on September 9, 1987

Figure S10-3.2.2 Geological Map

(source; Provided by MARN-Aragua Office)

Figure S10-3.2.3 Vegetation Distribution Map

CHAPTER 4. PRIMARY FACTOR OF DEBRIS FLOW IN THE AVILA MOUNTAINS

The followings are summary of the study in the Avila Mountains;

- 1. Although relatively soft rocks such as marble or serpentinite are reported in the eastern side, there is no major difference of geology / lithology between the east side and the west side. The density of faults and lineaments is not different between the east and the west.
- New collapses are more in the west because there were a lot of collapses in December 1999, and old collapses are scattered in the whole area. Although there were quite a few collapses in February 1951, their vegetations have already been recovered and at present they are regarded as old collapses.
- 3. Weathered zone is thicker in the west than in the east. This may be caused by the terrain. The material of weathered zone is rich in gravel and poor in silt/clay.
- 4. Debris on streams seems more in the east. This may be caused by that the streams in the east have steps in its profile and have trellis / angular pattern of its drainage pattern.
- Vegetation is classified from lower altitude to upper altitude of the Avila Mountains. Vegetation above 1,700m altitude is thicker than in below. Therefore, Catuche, Cotiza basins which are mostly below 1,700m have weaker vegetation.

In 1999 Disaster, the occurrence of debris flow did not depend on strength of rain fall but strength of the ground. The ground in the west side should be weaker, since the debris flow occurred in the west side and new collapses can be seen in only the west side. The deference of strength of the ground owes the protection by vegetation.

In the east side, the facts that vegetation is thicker, weathered zone is thinner, stream profiles have steps and steam pattern shows trellis / angular pattern indicate stronger against debris flow.

However, the distribution of old collapses are scattered even in the east side uniformly shows possibility of debris flow in the east side. If strong rain fall was only in the east side, debris flow would occur only in the east.

References

S10-1) RODRÍGUEZ, José Antonio, Franco URBANI, Franck AUDEMARD, Harald STOCKHAUSEN, Lucía BARBOZA, Siul RODRÍGUEZ, Luis MELO, Victor CANO, Juan Carlos SUAREZ, Adrian CASTILLO & Herbert FOURNIER (2002). El macizo del Ávila, geología y procesos de agradación ocurridos en Diciembre 1999 (The Ávila Massif, geology and agradation proceses happened in December 1999). Caracas, Geos 35, 4-12 pag.

S10-2) URBANI Franco (2002). Geología del área de la autopista y carretera vieja Caracas-La Guaira, Distrito Capital y Estado Vargas, guía de excursión (Geology of Caracas- La Guaira Highway and old road, Capital District and Vargas State, Field trip guide), Caracas, Geos 35, 27-41 page.

S10-3) RODRÍGUEZ, José Antonio, Franco URBANI, Franck AUDEMARD, Harald STOCKHAUSEN, Lucía BARBOZA, Siul RODRÍGUEZ, Luis MELO, Victor CANO, Juan Carlos SUAREZ, Adrian CASTILLO & Herbert FOURNIER (2002). El macizo del Ávila, geología y procesos de agradación ocurridos en Diciembre 1999 (The Ávila Massif, geology and agradation proceses happened in December 1999). Caracas, Geos 35, 4-12 pag.

S10-4) URBANI Franco (2002). Geología del área de la autopista y carretera vieja Caracas-La Guaira, Distrito Capital y Estado Vargas, guía de excursión (Geology of Caracas- La Guaira Highway and old road, Capital District and Vargas State, Field trip guide), Caracas, Geos 35, 27-41 page.

S10-5) SINGER Andre Michel (1977). Acumulations torenciales Holocenas catastroficas, de possible origin sismico, y movimientos Neotectonicos de subsidencia en La Parte Oriental del valle de Caracas, Geos 22, 64-65 page.

S10-6) AMEND Stephan (1991). Parque Nacional El Avila, Caracas, Imparqes

S10-7) SINGER Andre Michel, Recent techtonics, seismic morphogenesis and geological risk in the graben of Caracas, Venezuela

S11

LAND SLIDE AND STEEP SLOPE FAILURE

"Be part of the plan, help us to prevent natural disasters!"

Reinaldo Ollarves

STUDY ON DISASTER PREVENTION BASIC PLAN IN THE METROPOLITAN DISTRICT OF CARACAS

FINAL REPORT

SUPPORTING REPORT

S11

LAND SLIDE AND STEEP SLOPE FAILURE

TABLE OF CONTENTS

CHAF	PTER 1 GENERAL		
CHAF	PTER 2 CHARACTERIST	TC OF LANDSLIDE AND STEEP SLOP	PE FAILURE
2.1	Landslide		\$11-2
2.2	Steep Slope Failure		\$11-2
CHAF	PTER 3 METHODOLOGY	Y OF LANDSLIDE AND SLOPE FAILU	RE STUDY
3.1	Historical Slope Failure Stu	ıdy	S11-4
3.2	Screening		S11-4
3.3	Classification of Steep Slop	e Stability	S11-6
CHAF	PTER 4 RESULT OF LAN	DSLIDE AND SLOPE FAILURE STUD	ŶY
4.1	Historical Slope Failure Stu	ıdy	\$11-11
4.2	Identification of Risky Slop	e	\$11-12
4.3	Site Inspection		\$11-13
4.4	Affected Area and Property	(Risk Map) or Hazard Evaluation	\$11-13
4.5	Slope Classification Map fo	or the three (3) Municipalities	S11-14
CHAF	PTER 5 RECOMMENDAT	ΓΙΟΝ	

LIST OF TABLES

S11

Table S11-2.1.1	Differences of Landslide and Steep Slope Failure S11-3
Table S11-3.3.1	Classification of Slope Instability PotentialS11-6
Table S11-4.1.1	Summary of Historical Disaster data by Protection CivilS11-15
Table S11-4.2.1	Number of Slope Instability Potential (Sediment Study Area) S11-15
Table S11-4.3.1	List of Preliminary Inspection SiteS11-16
Table S11-4.3.2	Number of Slope Instability PotentialS11-16
Table S11-4.4.1	Number of Houses affected by Steep Slope Failure and Landslide S11-17
Table S11-4.5.1	Number of Slope Instability Potential (3 Municipalities) S11-17

LIST OF FIGURES

S11

Figure S11-1.1.1	Flow Chart of Slope Study S11-1
Figure S11-3.2.1	Criteria for Identification of Unit Slope S11-7
Figure S11-3.2.2	Notable Identification Point of LandslideS11-7
Figure S11-3.2.3	Criteria for Identification of LandslideS11-8
Figure S11-3.2.4	Criteria for Identification of Steep SlopeS11-8
Figure S11-3.2.5	Notable Identification Point of Steep Slope Failure S11-9
Figure S11-4.3.1	Slope Inspection Sheet (1/4) S11-18
Figure S11-4.3.1	Slope Inspection Sheet (2/4) S11-19
Figure S11-4.3.1	Slope Inspection Sheet (3/4) S11-20
Figure S11-4.3.1	Slope Inspection Sheet (4/4) S11-21
Figure S11-4.5.1	Slope Classification MapS11-22

LIST OF PHOTO

Photo S11-3.2.1 Steep Slope and Landslide in CaracasS11-	-1	1	()	1
--	----	---	---	---	---

S-11 LAND SLIDE AND STEEP SLOPE FAILURE

CHAPTER 1. GENERAL

The purpose of this study is to identify the slopes that have possibility to collapse and to develop to disaster, and then to make the slope classification map. The slope classification map made by the Study Team in this study shows unstable slopes which would affect inhabitants.

Generally, investigation of slope disaster in Japan is conducted in accordance with the work flow diagram that is shown in Figure S11-1.1.1. The investigation of slope disaster consists of 2 phases, namely "Wide Area Study" and "Individual Slope Study (Minute Investigation)". JICA study team conducted until "Aero photograph and Topographical map Analysis" and "Identify Potential Collapse Slope (Screening)" in this study. The Study team proposed the criteria for "slope hazard Inspection" which that is next step in Figure S11-1.1.1.

Figure S11-1.1.1 Flow Chart of Slope Study

CHAPTER 2. CHARACTERISTICS OF LANDSLIDE AND STEEP SLOPE FAILURE

Slope failures are divided into two types, namely "Landslide" and "Steep Slope Failure" in this study. This is a common practice in Japan. The characteristics of each type of slope failures are described as follows. Differences between landslide and steep slope failure are shown in Table S11-2.1.1

2.1 Landslide

Landslide is a kind of slope mass movement. Generally, it occurs in a gentle slope as 5 to30 degrees, and on a slip plane such as thin clay layer or in a zone of weak materials. Movement is continuous, and it tends to recur. Velocity of movement is slow as 0.01 to 10 millimeters per a day. We can see some indications such as clacks, subsidence and bulge etc. on ground surface before landslide happen.

A primary cause of landslide is mainly concerned with geological condition such as type of rock and geological structure, and there are many cases that a zone of fault gouge makes slip plane. The fault gouge is a kind of clay layer on the fault which was generated due to the fault movement. Landslide is reactivated by storm, and artificial modifications to the land such as excavation of the foot of slope or construction of buildings on the slope (Weight of buildings makes increase of the driving force). A new landslide occurs as the result of heavy rain, earthquake and human activities.

2. 2 Steep Slope Failure

Scale of steep slope failure is smaller than that of landside. Generally, a steep slope failure occurs on steep slope as more than 30 degrees. Gradients of the slip plane is 35 to 60 degrees. The velocity of collapse is very fast as more than 10 millimeters per a day. There are not so many symptoms before occurrence of slope failure, and then slope failure occurs suddenly. The steep slope failure often occur on the plane which is corresponding to the boundary between the surface soil layer and the base rock, or the boundary between the severe weathered soil layer and the light weathered soil layer.

A primary cause of steep slope failure is concerned with geological condition such as thickness of overburden or weathered soil layer and geological structure. Steep slope failure is activated by mainly heavy rain and earthquake.

	Landslide	Steep Slope Failure		
Geological Condition	Type of rock and geological structure. Thin clay layer can be slip plane.	Thickness of overburden and weathered layer.		
Gradient of surface slope	Gentle slope as 5 to 30 degree.	Steep slope as more than 30 degrees.		
movement	Continuous, recur.	Sudden		
Velocity of	Slow	Fast		
Movement	0.01 to 10mm/day	More than 10mm/day		
Structure of Landslide Mass	not disturbed so much	disturbed.		
Cause of Occurrence	Rising of groundwater level, earthquake and artificial modification to the land	Rainfall and earthquake.		
Scale	Big (1 to 100ha)	Small		
Symptom	Clacks, subsidence and bulge. Change of groundwater level.	scarce		
Gradient of Slip Plane	10 to 25 degrees	35 to 60 degrees		

 Table S11-2.1.1 Differences of Landslide and Steep Slope Failure

CHAPTER 3. METHODOLOGY OF LANDSLIDE AND SLOPE FAILURE STUDY

"Historical Slope Failure Study" and "Aero Photo and Topographical Map Analysis" that are shown in Figure S11-1.1.1 were conducted to identify the possibility of disaster of landslide and steep slope failure. Methodology of these studies is described on following sections.

3.1 Historical Slope Failure Study

Historical slope failures occurred in the study area were analyzed. There data were collected by Civil Protection and Fire Fighters departments of Metropolitan Caracas. Ands also, FUNVISIS has the historical slope failure study report that was compiled from a point of view of seismology, topography and geology.

Especially, the disaster which occurred since 1984 up to 2002 has been compiled by Civil Protection. These data are including other types of disasters such as flood. For this study, the data of slope failures which affected preservation target are picked up from the historical disaster database of Civil Protection and input to the slope classification map.

3.2 Screening

In this study, the identified target of disasters are "landslide" and "steep slope failure", and then the identified target of preservation are houses, important facilities and roads that have more than four lanes. Screening was conducted by using aero photographs taken in February 2002 (scale: 1/25,000), Topographical Maps published in 1984 (scale: 1/5,000) and satellite images "Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER)" taken in April 2003. The slopes that were identified by the screening are considered to be possible landslide or steep slope failure which may cause disasters.

The distinctive point of the study is to identify slope as a unit. Each unit of slope that has possibility to collapse was identified. Slope unit defined by slope pattern (refer to Figure S11-3.2.1). Thus, slope unit is classified as convex slope, concave slope or flat slope. If flat slope is continuous, it is divided into each 200m to 250m width. This criterion is based on the slope investigation standard by the unit of Ministry of Land, Transportation and Infrastructures in Japan.

However in "barrio" on steep slope, most of the houses are distributed on the convex and concave slopes continually without a clear boundary. It is difficult to identify each unit of slope either as concave slope or convex slope clearly. Therefore in case of convex or concave slope on which has

"barrio", the slope was divided into two (2) separate unit slope by the slope change line along the slope direction as shown in the most left side figure in Figure S11-3.2.1.

(1) Landslide

It is very important that the reading of trace of landslide by aero photograph and topographical map since landslides have a property of relapse at the slide slope in the past (refer to Photo S11-3.2.1). The slope that is estimated as landslide is identified. Concerning a target of protection of landslide, it is same as the case of steep slope failure; more than 5 houses or important facilities. The notable identification point (refer to Figure S11-3.2.2) of steep slope failure is as follows,

- Landslide scarp : It can be read from landform and transition of slope gradient.

- Landslide mass :Area of landslide mass can be estimated from deference of slope gradient and change of vegetation. And also, vacant land in densely build-up area may be the place where landslide occurred in the past.

(2) Steep Slope Failure

Methodology of identification of steep slope in this study is based on the Law of Sediment Disaster Prevention in Japan. The risky slopes were identified by condition as the height of slope is more than 5m, and gradient of slope is more than 30 degrees (refer to Figure S11-3.2.4 and Photo S11-3.2.1). Having a target of protection such as 5 or more houses or some important facilities (i.e. hospital, school, factory). Additionally, roads having more than 2 lane can be a target of protection in the study (refer to Photo S11-3.2.1).

Geomorphological and geological condition, vegetation and land use condition, obtained from topographical map, aerial photograph and satellite image, were considered for the identification of steep slope failure. Satellite image was used to study the condition of vegetation. The notable identification point (refer to Figure S11-3.2.5) of steep slope failure is as follows,

- slope collapse: The distributed area and type of collapse can be estimated from contrast of shade on aerial photograph, shape of slope and transition of slope gradient.
 Some slope can be estimated whether the slope failure occurred recently or not by condition of vegetation of aero photograph.
- Singular landform: The knick line on slope, cliff and steep slope can be recognized by the form of ground surface and transition of slope gradient. It can be

estimated whether the ground surface is covered by weathered soil layer or not from degree of slope, change of vegetation and slope form.

3. 3 Classification of Steep Slope Stability

Based on the results of screening and the historical failure records, the selected steep slopes were categorized into three (3) ranks as shown in Table S11-3.3.1.

The site inspection was conducted regarding the slope which was identified by the screening using the topographic map and the aerial photograph. As the result of the site inspection, the slopes judged to be stable obviously from viewpoint of geology were excluded from a category of dangerous slopes.

The locations of slopes which were identified by screening and site inspection were input on the slope Hazard Map of the sediment study area. Each slope has layer number on GIS as follows,

- Layer No. 40: Steep Slope above house
- Layer No.43: Landslide
- Layer No.44: Steep Slope above road

Grade		Description			
1 High Potential		Picked up slopes by the screening, and having past records of failure.			
2 Moderate Potential		Picked up slopes by the screening, but having no past records of failure.			
3 Low Potential		The slopes except picked up slopes by the screening.			

Table S11-3.3.1 Classification of Slope Instability Potential

Figure S11-3.2.1 Criteria for Identification of Unit Slope

Figure S11-3.2.2 Notable Identification Point of Landslide

Figure S11-3.2.3 Criteria for Identification of Landslide

Figure S11-3.2.4 Criteria for Identification of Steep Slope

Figure S11-3.2.5 Notable Identification Point of Steep Slope Failure

Steep Slope Failure

Steep Slope Failure above Road

Landslide

Photo S11-3.2.1 Steep Slope and Landslide in Caracas

CHAPTER 4. RESULT OF LANDSLIDE AND SLOPE FAILURE STUDY

4.1 Historical Slope Failure Study

(1) Programa Preventivo y de Actuacion en Caso de Lluvias (Civil Protection)

The annual report of disasters in Municipality of Libertador is prepared by Civil Protection. Metropolitan Civil Protection has historical disaster data that is collected since 1984 up to 2002. From 1984 to 2000, disaster data is recorded by the Municipality of Libertador. After 2001, disaster data is covering a whole Metropolitan Caracas by Metropolitan Civil Protection. Municipality of Chacao also prepared annual report of disaster in 2001 and 2002. Compiled these data are shown on Table S11-4.1.1. According to the data, the number of slope failures is very small. It is supposed that almost all slope failures are identified as landslide.

It was difficult to identify the exact locations of slope disaster from the historical disaster data that was prepared by Metropolitan Civil Protection. Therefore, the exact locations of the historical disaster have been put on the topographical map (scale 1/5,000) according to the result of interview with Metropolitan Civil Protection.

(2) The Slope Hazard Map (INGEOMIN)

A slope hazard map was prepared by National Institute of Geology and Mining (INGEOMIN) as a part of "Avila Project". The slopes were evaluated from the viewpoint of slope stability based on topographical and geological conditions. This slope hazard map shows the unstable slope areas. The slope hazard map was digitized on GIS map. The parameters of classification for slope stability are as follows,

- 1. Rock classification: Weathering grade and interval of joint development
- 2. Geological Structure: Relation between direction of major joints and orientation of slope.
- 3. Topography: gradients of slope
- 4. Condition of slope: Slope form, transition of slope gradient, erosion and water condition etc.

The slope stability is evaluated based on the result of consideration for each of the parameters. In the Avila project, the slope stability evaluation is applied for Avila mountain area. However, the slopes in the urban area were not studied applying the methodology.

(3) Inventario Nacional de Riesgos Geologicos (FUNVISIS)

This report was prepared in 1983. FUNVISIS conducted identification of slope failures based on the past slope failure data in Venezuela. Most data were obtained from newspaper, documents and photographs that were prepared by the government and historical documents in 17th and 18th century. The point to which the report directing attention are the relation with earthquake, the relation with geological condition and the cause of occasion. The data up to 1981 used in the report. FUNVISIS is preparing the updated report by using the data since 1982 up to the latest.

(4) Historical disaster Database (Fire Fighter Department)

Historical disasters are registered by fire fighter department in metropolitan and each Municipalities. Fire fighter department of metropolitan government collects the disaster data of whole Metropolitan Caracas to make historical disaster database and historical disaster map. The exact disaster locations were put on the topographical map, with the scale of 1/5,000 according as the interview with the Civil Protection.

4. 2 Identification of Risky Slope

In the identification of risky slopes, the slopes that have possibility to collapse and to develop into disaster are identified by using topographical maps, aerial photograph and satellite image.

The number of identified landslide slopes and steep slopes in sediment study area at the moment are shown in Table S11-4.2.1.

According to the result, no landslide nor steep slope except for road were picked up in Municipality of Chacao, in which there is not so many steep slopes steeper than 30 degrees. On the other hand, there are many landslide slopes and steep slopes which were picked up in Municipality of Libertador and Sucre. Especially many traces of landslide and steep slopes were picked up in Carapita area and Tacagua area in Municipality of Libertador and Petare area in Municipality of Sucre.

There are some slope failures in the study area occurred in the 1st study period in Venezuela between May and July in 2003. Loose weathered schist is distributed in these areas. One of these slope failures that occurred in Tacagua area has slip plane that is located on the boundary of bedrock and embankment (refer to Photo S11-3.2.1).

The slope hazard map that shows the picked up landslides and steep slopes was prepared as one of the GIS map in the project.

4.3 Site Inspection

The Study Team conducted up to the identification of risky landslides and steep slopes in the study. Additionally, we proposed methodology of "Slope Inspection" for each picked up landslides and slopes. It is the next step in the work flow diagram Figure S11-1.1.1.

In the case of Japan, the methodology of the slope inspection is presented by Ministry of Land, Transportation and Infrastructure. The slope inspection has been conducted in all over Japan. Each prefecture government in Japan has constructed the database of slope stability.

The proposed slope inspection sheets are shown in Figure S11-4.3.1. These inspection sheets are prepared based on Japanese methodology. The inspection sheets are composed of sections of General Slope Data, Location Map, Site Sketch, Photograph, Condition of Slope and Existing Countermeasure. In the section of Condition of Slope, the score is marked based on the topography, geometry, material, geological structure, deformation and surface condition. The full score is 100, which means the most dangerous. The score of geological condition is very significant in the total score.

Table S11-4.3.1 is the list of site for which the Study Team made the inspection sheets in the 1st study in Venezuela. Totally 27 sites were inspected in Sucre and Libertador in and around the sediment disaster study area.

Table S11-4.2.1 also shows the number of unstable slopes after the inspection within the sediment study area. However, the above inspection was conducted preliminary in the 1st study in Venezuela. Due to security problems in some areas, all potential areas were not inspected in the sediment disaster study area.

The chart of hazard evaluation of slope inspection is shown on Table S11-4.3.2. The full score is one hundred (100). The higher score means the higher potential on the failure. According to the chart, the four (4) slopes among the inspected twenty seven (27) slopes correspond to High Potential slope. These slopes are supposed to have high potential for collapse, and the more detailed investigation should be carried out.

4.4 Affected Area and Property (Risk Map) or Hazard Evaluation

In this study, the number of house (building) which is supposed to be affected by slope failure or landslide in the sediment study area has been calculated. The calculation of the risk is used the following standard of supposing affected area.

- Landslide: The affected area of landslide is difficult to estimate, since affected distance by landslide mass differs according to the condition of geology, geomorphology and type of landslide. In this study, the affected area by landslide was estimated as a half of landslide slope length from toe of the landslide to the top of it (Hiroyuki Nakamura, "Estimation of Landslide Behavior, diffusion and sediment area", Fukada-ken Library No. 47, refer to Fig.S11-3.2.3).
- Steep Slope failure: Supposing affected area by slope failure shall be provided extent area which is twice as length as the slope height from the toe of the slope (maximum 50m) and extent area which is as length as the slope height from the top of the slope (maximum 50m) (refer to Figure S11-3.2.2).

The number of houses is shown on Table S11-4.4.1. According to the table, the number of affected informal house by slope failure or landslide is as about 20 times as the number of the affected formal house. The cause of the result is considered that most formal houses in sediment study area are on flat area as Chacao municipality, while the most informal houses concentrate on slope area.

4. 5 Slope Classification Map for the three (3) Municipalities

In this study, the identification of risky slopes was done for the entire 3 municipalities. Those selected areas were mapped on the slope classification map as shown in Figure S11-4.5.1.

Table S11-4.5.1 shows the number of slope instability for the entire 3 municipalities.

Year	Total	Landslide	Slope Failure	Others	Target		
1996	279	215	0	64			
1997	255	92	3	160			
1998	181	59	1	121	Libertador		
1999	199	197	2	0			
2000	357	128	1	228			
2001	387	70	3	314	_		
2002	220	19	6	185	Caracas		

Table S11-4.1.1 Summary of Historical Disaster data by Protection Civil

Table S11-4.2.1 Number of Slope Instability Potential (Sediment Study Area)

	Steep Slope		Steep Slope above Road		Landslide	
Municipality	Before	After	Before	After	Before	After
	Inspection	Inspection	Inspection	Inspection	Inspection	Inspection
Libertador	136	89	25	25	5	7
Chacao	0	0	12	12	0	0
Sucre	110	89	17	15	1	1
Slope ID	Type of Disaster	Municipality	Target for Preservation	Score		
----------	------------------	--------------	-------------------------	-------		
1	Slope Failure	Sucre	Residencial, Factory	54		
2	Slope Failure	Sucre	Residencial, Factory	63		
3	Slope Failure	Sucre	Residencial	58		
4	Slope Failure	Sucre	Commercial	39		
5	Slope Failure	Sucre	Commercial	15		
6	Slope Failure	Sucre	Residencial	57		
7	Slope Failure	Sucre	Residencial	46		
8	Slope Failure	Sucre	Residencial	23		
9	Slope Failure	Sucre	Residencial	62		
10	Landslide	Sucre	Residencial	41		
11	Landslide	Libertador	Residencial	63		
12	Slope Failure	Libertador	Residencial	41		
13	Slope Failure	Libertador	Residencial	51		
14	Slope Failure	Libertador	Residencial	48		
15	Slope Failure	Libertador	Residencial	59		
16	Slope Failure	Libertador	Residencial	59		
17	Slope Failure	Libertador	Residencial	67		
18	Slope Failure	Libertador	Residencial	69		
19	Slope Failure	Libertador	Residencial	68		
20	Landslide	Libertador	Residencial	40		
21	Slope Failure	Libertador	Residencial	47		
22	Slope Failure	Libertador	Residencial	39		
23	Slope Failure	Libertador	Residencial	66		
24	Slope Failure	Libertador	Residencial	53		
25	Slope Failure	Libertador	Residencial	48		
26	Slope Failure	Libertador	Residencial	51		
27	Slope Failure	Libertador	Residencial	45		

 Table S11-4.3.1
 List of Preliminary Inspection Site

Table S11-4.3.2 Number of Slope Instability Potential

Table 511-4.3.2 Number of Slope Instability Potential					
Risk Potential	Score	Steep slope	Landslide		
Very High	R>=75	0	0		
High	65<=R<75	4	0		
Moderate	50<=R<65	10	1		
Low	R<50	10	2		

	Interpreted House		Affected House		Total	
	Formal	Informal	Formal	Informal	Formal	Informal
Slope Failure	49	6797	304	5197	353	11994
Landslide	2	383	16	139	18	522

 Table S11-4.4.1 Number of Houses affected by Steep Slope Failure and Landslide

Table S11-4.5.1 Number of Slope Instability Potential (3 Municipalities)

Municipality	Landslide	Steep Slope (Road)
Libertador	45	1,427 (57)
Chacao	0	0 (12)
Sucre	6	659 (33)
Total	51	2,086 (102)

	SHEET 1	/ 4			
General Slope D	Data				
Type of Disaster	Slope Failure / Lands	slide	Municipality	SUCRE (Lebr	un)
Slope ID	1				
Date Checked	28/7/2003		Data Inspected	9/7/2003	
Checked by	Fumihiko Yokoo		Inspected by	Takashi Hara	
Vegetation /Cultivation	Primary Forest / Trees / G	Grass Others		Barrio	
Target of Preservation	Residencial Hotel / Co Rancho	ommercial /Ho os, Factory	osottal / Factor /Sc	hool / Others	
Disaster Record	No Records				
Existing Countermeasure	Nothing				
Hazard Score	54	Commen Ranchos.	t: The almost all	surface of the slo e is put some cou	ope is covered with Intermeasure partially.
Proposed Countermeasure					
	Quantity		Unit Rate		Amount
Cost Estimation					
Location Map (1	:5,000)		1		
		Slope			

Figure S11-4.3.1 Slope Inspection Sheet (1/4)

-Some parts of the slope on which Kancho have not been constructed is covered with distable soft -Some parts of toe of the slope are put countermeasure, but the other parts of toe of the slope still

Figure S11-4.3.1 Slope Inspection Sheet (2/4)

SLOPE INSPECTION SHEET							
	SHEET	3/4					
Slope ID	1		Type of Disaster	Slope Failure / Landslide	Date 9/7/2003		

Photograph

P-1 General View

P-2 The bare slope situation

P-3 Existing Countermeasure

P-4 Closs view fo the bare slope

Figure S11-4.3.1 Slope Inspection Sheet (3/4)

SLOPE INSPECTION SHEET							
1 SLOPE FAI	LURE	SHEET 4/4					
Slope ID 1	Type of Disaster	Slope Failure.	✔ Landslide	Date	9/7/2003		
Condition of Slop	<u>pe</u>				Tick One		
Topography	Alluvium Slope		Yes		2		
	No				0		
	Trace of Collapse		Yes	п	1		
			No		0		
	Clear Knick Point or Overha	a	Yes	-			
			NO	- 11			
	Concave Slope or Debris S	lı –	No		0		
Geometry	A · Soil Slone	HN9		- 11	30		
Soloct A or B	H : Height	H≤30m	i > 45 dea		24		
Select A OF B	i : Angle of Slope	15m ≤H<30n	n. i≦45 dea	-	20		
	I Angle of Olope	H<15m, i	≦45 deg		10		
	B : Rock Slope	H>	50m		30		
	H : Height	30 m ≦	H < 50m	П	26		
	3	15 m ≦	H < 30m		20		
		Η <	15m		10		
Material	A : Soil Character		Conspicuous		8		
Select A and B	Swelling Clay Conten	ts	Slightly		4		
			No Swelling Clay	п	0		
	B : Rock Quality		Conspicuous		8		
	Sheared Rock or We	Slightly	П	4			
			No Available		0		
Geological	Dip Slope (Bedding, Weak	Plane)			8		
Structure	Soft Soil over Base Rock						
	Hard Rock over Weak Rock	(4			
	Others		0		0		
Deformation	Slope Deformation		Clear	ar 10			
	Bockfall Exfoliation Swelling	rosion, Fretting Erosion,	Obscure	11	8		
	Clopa Deformation at adias	ant clana	Clear		5		
	Slope Deformation at adjace	ent siope	Obsours		3		
	Rockfall. Collapse, Crack, Swelling	, Other deformation	No Slope Deformation		0		
Surface Condition	Condition of Surface	Linetable	No Slope Delomation		8		
Surface condition	Condition of Surface	Moderate			6		
		Stable			0		
	Ground Water	Natural water spring			8		
		Water seepage		П	4		
		Dry			0		
	Cover	No-vegetation, Grass	sland		4		
		Complex (Grass, Str	ucture)	П	3		
		Structure			1		
	Surface Drainage	Available (Good)			0		
		Available (Need Rep	air)	-	3		
		Not Abailable		П	6		
			Score		64		
Countermoseuro				-	Tick One		
countermeasure				1	TICK ONE		
Effective					-20		
Partially effective				П	-10		

Figure S11-4.3.1 Slope Inspection Sheet (4/4)

CHAPTER 5. RECOMMENDATION

The Study conducted up to the identification of risky landslides and steep slopes. Additionally, draft methodology of "Slope Inspection" for each picked up landslides and slopes, which is the next step to the slope identification, is suggested. The result of the slope inspection shall be modified to make database. These data could be useful for a future plan of disaster prevention (decision of measuring priority order for the slope disaster) and an urban development plan which is considered implementation of protection measure or relocation of residence, important facilities and infrastructures which located in dangerous area. Almost residence in Barrio area shall be relocated because they are located in estimated affected area by slope disaster. If it is difficult to relocate, some countermeasures for mitigation of slope disaster is necessary. There is a drain problem which is an important factor in the slope collapse occurrence. For example, providing of drain system on the slope surface, which can guide rainwater and domestic wastewater from residence to river or drain under the slope is considered to be reduce potential of slope disaster. The providing of opened and closed drain works could be conducted under moderate cost, and is expected effect on slope disaster mitigation.

It is desirable that integrating the historical slope disaster data managed with INGEOMIN, the fire fighter department, Civil Protection, and FUNVISIS. These data shall be updated on database system, and the construction of the system by which related organs which is necessary to use the data can refer freely to data is preferable.

This study has extracted only the slope where the possibility that a slope collapse happens is high. More detailed investigation (e.g. geological reconnaissance, Dynamic Cone Penetration Test, Drilling survey) for each slope is necessary for consideration of countermeasure. The targets of protection such as houses or facilities, which are located below the slopes identified in this study, shall be watched during abnormal event as earthquake or heavy rain. Additionally, the attention shall be paid especially that the following phenomenon are found on the slope.

=>Crack found on the slope.

=>Water seepage found on the slope ordinarily.

=>Rock fall from the slope found.

When some cracks are found in landslide area, iron or wooden pile shall be placed across the crack. It could be simple monitoring for landslide activity measuring the distance between the piles.

Slope failure (Collapse) would be difficult to predict the occurrence as a collapse occurs unexpectedly. Therefore, it is desirable to construct the system that related organs or district manager patrol in abnormal weather, and that they can correspond to unexpected situation.

S12

DEBRIS FLOW AND SEDIMENT STUDY

"The worst of a tragedy,

is that never you know what to do. Prevent, get the information"

Francisco Layrisse

STUDY ON DISASTER PREVENTION BASIC PLAN IN THE METROPOLITAN DISTRICT OF CARACAS

FINAL REPORT

SUPPORTING REPORT

S12

DEBRIS FLOW AND SEDIMENT STUDY

TABLE OF CONTENTS

CHAPTER 1 POTENTIAL OF DEBRIS FLOW

1.1	Genera	al	S12-1			
	1.1.1	Study Procedure	\$12-1			
	1.1.2	Definition of Technical Term	S12-1			
1.2	Identif	ication of Potential Stream for Debris Flow	\$12-2			
1.3	Identification of Potentially Affected Area by Debris FlowS12-2					
1.4	Catego	prization of Potential Stream for Debris Flow	\$12-3			
1.5	Factors	s for Occurring of Debris Flow	S12-3			
	1.5.1	Streambed Slope	\$12-3			
	1.5.2	Catchments Area	\$12-3			
	1.5.3	Streambed Condition	\$12-4			
	1.5.4	Mountain Slope Condition	\$12-4			
	1.5.5	Condition of Sediment Control Structure	S12-4			
1.6	Sketch	of Mountain Stream Condition	\$12-5			
1.7	Sedime	ent Volume	S12-5			
	1.7.1	Sediment Balance	S12-5			
	1.7.2	Debris Flow Potential	S12-8			
CHA	PTER 2	DEBRIS FLOW HAZARD / RISK				
2.1	Mappi	ng Streams	S12-21			

2.2 Methodology------S12-21

2.3	Method	1: Method by Japanese Law Sediment Disaster Prevention	S12-22
	2.3.1	Peak Discharge and Height of Debris Flow	S12-22
	2.3.2	Flow Width of Debris Flow (B)	S12-23
	2.3.3	Longitudinal Change of Debris Flow	S12-23
	2.3.4	Definition of "Red Zone"	S12-24
	2.3.5	Definition of "Yellow Zone"	S12-25
	2.3.6	Hazard / Risk Map by Method –1	S12-26
2.4	Method	2: Method by FLO-2D Model	\$12-26
	2.4.1	Hydrological Part	S12-26
	2.4.2	Hydraulic Part (FLO-2D)	S12-27
	2.4.3	FLO-2D Modeling for Caracas	S12-29
	2.4.4	FLO-2D Model Runs	S12-31

LIST OF TABLES

S12

Table S12-1.5.1	Crossing Condition of the Mountain Streams at Cota Mil	S12-9
Table S12-1.6.1	List of Sketch for Section, Slope and Column	S12-10
Table S12-1.7.1	Sediment Runoff Volume	S12-11
Table S12-2.1.1	Subjective Mountain Streams for Debris Flow Hazard Mapping	S12-31
Table S12-2.2.1	Model Structure	S12-31
Table S12-2.2.2	Difference Between the FLO-2D Model by the Avila Project	
	and by the Study Team	S12-31
Table S12-2.3.1	Sediment Runoff Volume for Method-1 and Method-2	S12-32
Table S12-2.3.2	Example of Calculation Result (Catuche)	S12-34
Table S12-2.3.3	Property in Yellow and Red Zones (Principal Stream Basis)	S12-35
Table S12-2.3.4	Property in Yellow and Red Zones (Alluvial Fan Basis)	S12-36

LIST OF FIGURES

S12

Figure S12-1.2.1	Definition of 1 st Order Stream	S12-12
Figure S12-1.2.2	Stream Order Concept of Strahler	S12-12
Figure S12-1.2.3	Sub-catchment Boundary for the 2 nd Order Stream as	
	Unit Catchment	S12-13
Figure S12-1.5.1	Streambed Profile	S12-14
Figure S12-1.5.2	Unstable Sediment on Streambed	S12-15
Figure S12-1.5.3	Potential Slope Collapse	S12-16
Figure S12-1.6.1	Location of Sketch for Section, Slope and Column	S12-17
Figure S12-1.7.1	Sediment Movement before and After December 1999 Flood	S12-18
Figure S12-1.7.2	Evaluation Flow for Target Sediment Volume	S12-18
Figure S12-1.7.3	Ratio of Slope Collapse to Catchment Area	S12-19
Figure S12-1.7.4	Target Sediment Volume	S12-19
Figure S12-1.7.5	Target Sediment Volume per Catchment Area	S12-20
Figure S12-2.3.1	Structure Model for Concrete Column	S12-37
Figure S12-2.3.2	Yield Strength Curves for Red Zone Delineation	S12-37
Figure S12-2.3.3	Example of Cross Section for Method 1	S12-38
Figure S12-2.3.4	Definition of Yellow Zone	S12-39
Figure S12-2.3.5	Fan Rule	S12-39
Figure S12-2.3.6	Debris Flow Hazard Map by Method-1	S12-40
Figure S12-2.3.7	Number of House in Red Zone	S12-41
Figure S12-2.3.8	Risk Map for Debris Flow	S12-42
Figure S12-2.4.1	Graph of Sediment Discharge	S12-43
Figure S12-2.4.2	Depth for 100 years Return Period Under Existing Conditions	S12-44
Figure S12-2.4.3	Velocity for 100 years Return Period Under Existing Conditions	S12-45
Figure S12-2.4.4	Depth for 100 years Return Period Under with-Sabo	
	Dam Conditions	S12-46

S-12 DEBRIS FLOW AND SEDIMENT STUDY CHAPTER 1. POTENTIAL OF DEBRIS FLOW

1.1 General

1.1.1. Study Procedure

The study of debris flow covers from the basic investigation to the estimation of debris flow potential for the usage in the next steps such as hazard mapping, structure and non-structure measures.

The description from section 1.2 to section 1.6 followed the table of contents of a guideline on study for potential debris flow stream in Japan.

1.1.2. Definition of Technical Term

This section shows the definition of various technical terms used in the sediment study in general.

Mountain Stream

Mountain stream is defined as principal stream which is originating from the southern slope of the Avila and joining to the Guaire River passing through the Caracas Valley. Mountain stream is called "quebrada" in Spanish language in Caracas.

1st order stream

See section 1.2. This concept is the basis how large the unit catchment is defined for the sediment study.

Unit Catchment

Unit catchment is a basic catchment for the sediment runoff estimation. When the sediment runoff volume is calculated from individual slope collapse and unstable sediment on the stream, one (1) volume is calculated for one (1) unit catchment. In this study the unit catchment was defined as the catchment of 2^{nd} order stream considering the catchment size of principal stream.

Basic Point

Basic point is a section of principal stream course at which the total sediment volume upstream is estimated for the debris flow countermeasures. In other words, all the countermeasures such as sabo dam are proposed the basic point upstream for the estimated sediment volume. In the study the basic

points of most of the principal streams are the Cota Mil crossing section, which are corresponding to alluvial fan apex.

Debris Flow

Debris flow is a flood flow containing significant sediment and water which is generated in upper part of mountain stream because of slope collapse and erosion of unstable sediment on stream bed.

1.2 Identification of Potential Stream for Debris Flow

A stream can be defined as topography with a valley on the topographical map of scale 1:5,000. The stream has several orders such as 1^{st} , 2^{nd} , 3^{rd} , etc.

The 1st order stream can be defined as a stream which has the following conditions.

- the length of "b" is longer than "a".
- episodes of debris flow and evidences from which debris flow could occur.

Generally, the sediment analysis is conducted based on the unit catchment concept. The Figure S12-1.2.2 shows the stream order concept of Strahler. When this concept is applied, it is convenient to compare a lot of mountain stream catchments on a common condition for sediment transport phenomena. In the case of the study area, the 2^{nd} order stream should be treated as a unit catchment to consider the entire catchment size and the drainage density.

Figure S12-1.2.3 shows the sub-catchment boundary for the 2^{nd} order stream unit catchment in the mountain streams. The delineation was conducted based on the scale 1:5,000 Topographic Map of 1984 and 1954.

The total number of unit catchment is 195. Among the 47 mountain streams, the Tocome stream catchment has 26 catchment units as the maximum.

The maximum stream order is five (5) in the Tocome stream. The catchments having 4th order streams are Catuche, Cotiza, Chapellin, La Julia, Galindo and Caurimare as well as Tocome.

1.3 Identification of Potentially Affected Area by Debris Flow

The Valley of Caracas was formed by the sediment deposit generated from the Avila. Indeed as Dr. Singer indicated, the alluvial fans were developed downstream from the limit between the mountainous area of the Avila Massif and the Valley of Caracas. The streams, affluents of the Guaire River that have their origin in the mountainous zone, abruptly change of slope, giving rise to the deposition of alluvial fans.

The potentially affected area by debris flow from the Avila is definitely the alluvial fan within the Caracas Valley. From the geomorphologic viewpoint, such alluvial fans can be regarded as the area definitely affected by debris flow.

In addition, the fan apex downstream is highly occupied by valuable property such as barrio houses and formal house / building.

In Japan, a potentially affected area by debris flow is defined by topographical conditions. In principle, the potentially affected area by debris flow is the area from the debris flow generation point in the mountain to the alluvial fan whose slope is about 2 - 3 degree. In this Study, this criterion in Japan can be applied to the sediment study area in Caracas.

1.4 Categorization of Potential Stream for Debris Flow¹

In Japan, the potential stream for debris flow is categorized based on the type and the number of target property to be protected. The type is for example residential house and public building, etc. The number of the property is more than five (5) or less. In the sediment study area, the potentially affected area by debris flow is already highly occupied by residential houses and public buildings, etc. The number of the property is far beyond five (5). In this study, the potential stream for debris flow is not categorized in terms of the type and the number of target property to be protected.

1.5 Factors for Occurring of Debris Flow

1.5.1. Streambed Slope

Slope Category	General Description of Section
$20^{\circ} < \theta$	Generation
$15^{\circ} < \theta < 20^{\circ}$	Generation and Transport
$10^{\circ} < \theta < 15^{\circ}$	Transport
$3^{\circ} < \theta < 10^{\circ}$	Deposition

Generally the relation between the debris flow generation and the stream bed slope is as follows,

Figure S12-1.5.1 shows the stream bed slope profile along the trunk stream of major mountain stream in the Avila. In the upper part of the stream there are both reaches of debris floe generation and transport. Below the elevation 1,000 m there are mainly reaches for deposition.

¹ "Ministry of Construction, Guideline for the study of debris flow prone torrents and debris flow risky area, 1999"

1.5.2. Catchments Area

The catchment area of the basic point upstream is shown in Table S12-1.5.1. The basic point of each principal stream is corresponding to the point at which the debris flow starts to spread (flooding). Actually the basic point of each principal stream is the Cota Mil crossing point.

1.5.3. Streambed Condition

Figure S12-1.5.2 shows the distribution of unstable sediment on the streambed based on the field survey in this study. It can be seen that the eastern catchments have more unstable sediment on the streambed. Because in December 1999 among the debris flows which happened in the Avila, only the debris flows in the western catchment arrived at the fan apex downstream. The debris flow in the eastern catchment remained in the Avila.

1.5.4. Mountain Slope Condition

Figure S12-1.5.3 shows the distribution of potential slope collapse based on the field survey in this study. The new collapses including the active collapse are assumed to be those which happened in December 1999. The new collapses are mainly recognized in the upper part of the western catchment, while some new collapsed are seen in the middle part of eastern catchment. The old collapses are assumed to be of time scale several hundred and thousands years. The old collapses are mainly distributed in the eastern catchment, especially the lower part of catchment.

1.5.5. Condition of Sediment Control Structure

(1) Condition in the nearby Cotamil

Boyaca Avenue so called "Cota Mil" in Spanish is the significant structure for the mountain streams from the Avila. The principal streams for debris flow were categorized depending on the relation with the "Cota Mil" (Table S12-1.5.2).

Among the totally forty seven (47) principal streams, the streams which are not affected by "Cota Mil" at the basic point are five (5) streams west of the Cotiza stream and the three (3) streams east of the Caurimare stream.

The remaining thirty nine (39) principal streams are crossed by "Cota Mil" at their fan apex, that is the basic point in this study. The types of the crossing way are bridge, embankment with large culvert and embankment with small culvert / pipes. The bridge crossing can be seen in the Tocome, Chacaito and Gamboa streams. Comparatively large size culverts can be seen in the Cotiza and Anauco, Caurimare streams. Including these, for other streams, the collected or confirmed information on the site were shown in the Table S12-1.5.2, however,

most of the sites are occupied by private and public ownership and also there was a security problem, so that the detailed site confirmation was difficult for the study team.

(2) Others

There are few sediment control structures in the Avila at present. Only an abandoned concrete weir for water supply in the Galindo Stream was recognized during the field visit. Also from the aerial photos, there were quite a few small scale gabions on the stream bed.

1.6 Sketch of Mountain Stream Condition

In the mountain stream survey, the sketches for typical section, slope and weathering column were made as shown in Table S12-1.6.1. The location of each sketch is shown in Figure S12-1.6.1.

1.7 Sediment Volume

1.7.1. Sediment Balance

For the evaluation of the possibility of debris flow in the mountain streams, it is significant to analyze the mechanism on sediment runoff. For El Avila Mountain, the December 1999 disaster is the only example available for the sufficient analysis.

(1) Sediment Balance in December 1999

During the event of December 1999 flood, the significant sediment runoff to the urban area took place in the Catuche, Cotiza and Anauco streams. In other streams the sediment movement might occur within the catchment, however, the runoff to the urban area was quite few. Here taking the phenomenon in the Catuche, Cotiza and Anauco streams in 1999 as a material, the ratio of the runoff sediment volume to the unstable sediment in the catchment is evaluated.

Figure S12-1.7.1 shows the schematic image of the unstable sediment in a catchment before and after the 1999 event. Before 1999 there was an amount of unstable sediment on the streambed.

For the event of December 1999, it is assumed that the steep slope, so-called the active collapse and new collapse, collapsed and went out to the connecting streams. Some part of the collapsed sediment and the unstable sediment on the streambed went out to the downstream urban area. The runoff sediment volume in 1999 was 50,000 m^3 in the Catuche (after the Study), 39,000 m^3 in the Cotiza after PREVENE and 31,000 m^3 in the Anauco after PREVENE.

After the December 1999 event, there has been no major sediment runoff so far, the remaining sediment deposits on the streambed.

The lower part of Figure S12-1.7.1 explains the sediment budget at the event of 1999 for the 3 streams. The left column of each stream is the summation of the sediment runoff in 1999 (=A) and the present unstable sediment on streambed. The right side column of each stream is the summation (=B) of the collapsed sediment in 1999 and the sediment deposit on streambed before 1999. The only unknown factor is the sediment deposit on streambed before 1999. This can be calculated if the left and right column were equal.

The objective sediment and its assumed thickness and runoff ratio are shown below:

Sediment Type	Thickness (m)	Ratio of sediment runoff to connecting stream			
Unstable sediment on streambed	Varied on order of stream	-			
Active Collapse	1.5	1.0			
New collapse covered with grass	2.0	0.7			

The ratio of the runoff sediment in 1999 to the unstable sediment before 1999 can be calculated as follows,

$$R = \frac{A}{B}$$

A is the runoff sediment volume in 1999. B is the summation of the collapsed sediment in 1999 and the sediment deposit on streambed before 1999. The collapsed sediment in 1999 means here the active collapse and new collapse covered with grass. The volume A of the Cotiza and Anauco streams includes the deposition just upstream of the Cota Mil.

The resultant ratio (=R) is 0.20, 0.25 and 0.27 for the Catuche, Cotiza and Anauco streams, respectively.

Based on this result, taking a safety side, the ratio of 0.30 can be applied for the evaluation of the sediment runoff in the next rainfall event that is corresponding to the December 1999.

(2) Sediment Balance for Future Event

Assuming the rainfall event corresponding to the December 1999 one, for the 47 mountain streams, the runoff sediment volume was estimated as follows (Figure S12-1.7.2),

The ratio of the area of active slope collapse to the whole catchment area was calculated as 3.7 % for the western part of the Avila, in which significant slope collapses occurred in 1999 (Figure S12-1.7.3). This calculation was done based on the geomorphologic map made in the Study.

The assumed slope collapse area for the scenario event was calculated as the product of 3.7 % multiplied by each catchment area.

The sediment volume generated from the assumed slope collapse area was calculated as the product of the above collapsed area, thickness and the ratio of remaining sediment volume.

Thickness (m)	Ratio of remaining sediment volume				
	to collapsed slope volume				
2.3	0.3				

Finally in order to estimate the sediment runoff volume below the control point of each catchment, the ratio of the runoff sediment for the future event to the present unstable sediment is assumed as R = 0.3 for the major catchment whose area is larger than 1.0 km², while R=1.0 was applied to the remaining small catchment.

The above sediment runoff volume below the control point is a kind of potential value based on the condition in the upper part of the Avila. The runoff sediment volume below the control point is actually affected by the topographic condition around the control point and the hydrological condition. As it is widely done in Japan, the following sediment volume was calculated as the value possible through the control point.

$$Vec = \frac{10^3 \cdot Rt \cdot A}{1 - \lambda} \left(\frac{Cd}{1 - Cd}\right) \cdot fr$$

Where A: Catchment area in km², Rt: 24 hours rainfall in mm for the selected return period, λ : void ratio(= 0.4), fr: runoff ratio, Cd: sediment concentration as a function of stream bed slope.

Cd is calculated as follows,

$$\begin{split} C_d &= \frac{\rho \cdot \tan \theta}{(\sigma - \rho)(\tan \phi - \tan \theta)} \\ \rho : density \quad of \quad water \\ \sigma : density \quad of \quad se \dim ent \\ \phi : internal \quad friction \quad angle \quad of \quad se \dim ent \\ \theta : average \quad bed \quad slope \quad 200m \quad upstream \quad of \quad basic \quad point \end{split}$$

Fr is calculated as follows,

 $fr = 0.05(\log A - 2.0)^2 + 0.05$ A: Catchment area (km²)

If the calculated Vec is smaller than the assumed sediment runoff volume, the Vec is selected as the design sediment volume.

Figure S12-1.7.4 shows the estimated runoff sediment for each principal catchment. The catchment No.14 is at the Tocome Stream, which has the largest runoff sediment volume among all. The second largest volume is expected in the Caurimare stream (No. 4). The Catuche (No.44) and Cotiza (No.42) streams have smaller estimated sediment volume compared with the eastern part of El Avila, because the unstable sediment in those two streams already went out of the catchment in 1999.

Figure S12-1.7.5 indicates the comparison of the estimated runoff sediment in Caracas and that in Vargas and Japan. The specific values per km² in Caracas are positioned in lower part compared to that in Vargas. This is because the rainfall amount for the data in Vargas is much larger than in Caracas. The two (2) parallel straight lines indicate the range of specific sediment runoff volume in Japan for the similar geological condition to Caracas. The assumed sediment volume in Caracas is basically also positioned in lower part compared to Japan.

1.7.2. Debris Flow Potential

In terms of the streambed slope there is no significant difference among the forty seven (47) mountain streams as well as among the unit catchments. So the total amount of unstable sediment volume and new and old collapse area is a major factor to indicate the potential of debris flow.

As the principal catchment-wise, the Tocome, Caurimare, Galindo, Chacaito and Cotiza have much sediment in this order to be generated at the future flood as shown in Figure S12-1.7.4.

Table S12-1.7.1 is the summary of sediment runoff volume for 100 years return period and 25 years return period.

No. of Catchment	Catchment name	Catchment Area	Storage Volume at Cota Mil upstream	t Crossing Condition at Cota Mil					
		(km2)	(m3)	Bridge	Large Culvert	Small Culvert	No Info.	Remark	
-	Agua Salad			\sim					
47	Agua Salud	0.48		\rightarrow					
46		0.08		\sim					
45	St. Isabel	0.09		\sim					
44	Catuche	4.50		\sim					
43	Oution	0.27	444.050		/				
42	Cotiza	3.80	444,852		*			3.3m*2.3m 2 Box	
41	Anauco	0.10	110,240		*		÷.		
20	Beatac	0.19	680				* *		
20	Deatas	0.43	14 041				*		
30	Gamboa	307	14,341	*			т	Bridge with nier (Open)	
36	Gamboa	0.07		-1-			*		
35	Canoas(Sarria)	0.57	21,338			*		1300mm 1nos	
34	Ganoad(Ganna)	0.09	21,000			· ·	*		
33	Mariperez	0.70	72,161				*		
32		0.06	/ _, / 0 /				*		
31		0.24	3,270		*			2.0m*2.0m 1 Box	
30	Cuno	0.60	9,462		*			2.0m*2.0m 1 Box	
29		0.07				*		Dia.1070mm 1 nos.	
28	Chapellin	1.19	7,353		*			Dia.2440mm 1 nos.	
27		0.25				*		Dia.1520mm 1 nos.	
26		0.16				*		Dia.1520mm 1 nos.	
25	Chacaito	6.33	_	*				Bridge (Culvert 6m*10m)	
24		0.21				*		Dia.1520mm 1 nos.	
23	Seca	0.78			*			2 2m*2 2m 1 Box	
22	Quintero	1.97			*				
21		0.27			*			2.5m*2.5m*1 Box	
20	D · · ·	0.11				*		Dia.1520mm 1 nos.	
19	Pajarito	1.37					*		
18	Calingan	0.17					*	0 Onet 7 Tan 1 Days	
16	Sebucan	1.07			*	ч		2.0m+2./m 1 Dox	
10	Agua de maiz	1.40	10.025		*	*		1000mm 1 Hos.	
1/	Tocome	9.45	10,035	*	т			Bridge with pier (Open)	
13	Tocome	0.33		-1-			*		
10	La Julia	2.10				*		1 Box	
11	Gamburi	0.25					*	1 Box	
10		0.06					*		
9		0.12					*		
8	Pasaquire	1.14					*		
7		0.36					*		
6		0.09					*		
5	Galindo	3.85			*			Water Supply Dam H=15m	
4	Caurimare	6.35			*			5m*3m 2 Box	
3		0.08							
2		0.99		\sim	/	/			
1		0.16		\sim	/	/			
TOTAL		60.84		3	12	8	16		

Table S12-1.5.1 Crossing Condition of the Mountain Streams at Cota Mil

	Steep Slope		Cross Section					
No.	Stream	Serial No.	No.	Stream	Serial No.			
1	Tocome	T-1	14	Camburi-La Julia	12-LJ-27			
2	Tocome	TO-33	15	Camburi-La Julia	12-LJ-28			
3	Tocome	TO-31	16	Camburi-La Julia	12-LJ-36			
4	Pasaquire	LJ-13	17	Tocome	14-TO-02			
5	Cota Mil	CM-3	18	Tocome	14-TO-03			
6	Pasaquire	PAS-2	19	Tocome	14-TO-21			
7	Galindo	CAU-4	20	Tocome	14-TO-36			
8	Tocome	TO-14	21	Tenerias-Tributary	15-TE-06			
9	Gamboa	GAM-10	22	Tenerias	15-TE-09			
10	Gamboa	GAM-03	23	Tenerias	15-TE-11			
11	Cotiza	COT-02	24	Sebucan	17-SE-01			
12	Cartafuegos	RD-14	25	Sebucan	17-SE-02			
13	Road	RD-12	26	Sebucan	17-SE-05			
			27	Pajaritos	19-PAJ-02			
	Weathering Colum	n	28	Pajaritos	19-PAJ-03			
No.			29	Pajaritos	19-PAJ-07			
1	Road1	Car-2	30	Quintero	22-Q-4A			
2	Road1	Car-8	31	Quintero	22-Q-4B			
3	Road1	Car-14	32	Quintero	22-Q-5			
4	Road1	Car-15	33	Quintero	22-Q-7			
5	Road2	Rd-4	34	Quintero	22-Q-8			
6	Road2	Rd-5	35	Quintero	22-Q-17			
7	Road2	Rd-7	36	Quintero	22-Q-32			
8	Road2	Rd-9	37	Chacaito	25-CH-1			
9	Road2	Rd-10	38	Chacaito	25-CH-2			
10	Road2	Rd-12	39	Chacaito	25-CH-3			
11	Road2	Rd-17	40	Chacaito	25-CH-5			
12	Tocome	ТО-6	41	Chacaito	25-CH-6			
13	Tocome	TO-9	42	Chacaito	25-CH-8			
14	Caurimare	CAU-12	43	Chacaito	25-CH-10			
15	Quintero	Q1	44	Chacaito	25-CH-12			
16	Tenerias	TE-1	45	Chapellin	28-AV-2			
17	Tenerias	TE-5	46	Chapellin	28-AV-3			
18	La Julia	LJ-1	47	Chapellin	28-AV-6			
19	La Julia	LJ-3	48	Chapellin	28-AV-7			
20	La Julia	LJ-25	49	Mariperez	33-MARi-1			
			50	Canoa	35-CAN-1			
	Cross Section		51	Canoa	33-CAN-2			
No.	Stream	Serial No.	52	Canoa	35-CAN-3			
1	Caurimare	4-CAU-14	53	Canoa	35-CAN-4			
2	Caurimare	4-CAU-25	54	Canoa	35-CAN-5			
3	Caurimare	4-CAU-26	55	Canoa	35-RD-11			
4	Galindo	5-GAL-1	56	Gamboa	37-GAM-2			
5	Galindo	5-GAL-2	57	Gamboa	37-GAM-3			
6	Galindo	5-GAL-4	58	Gamboa	37-GAM-5			
7	Galindo	5-GAL-8	59	Anauco	41-ANA-2			
8	Galindo	5-GAL-9	60	Anauco	41-ANA-6			
9	Pasaquire	8-PAS-4	61	Cotiza	42-COT-11			
10	Camburi-La Julia	12-CAM-3	62	Cotiza	42-COT-06			
11	Camburi-La Julia	12-CAM-4	63	Catuche	44-CAT-04			
12	La Julia	12-LJ-20	64	Catuche	44-CAT-10			
13	La Julia	12-LJ-21	65	Catuche	44-CAT-18			

Table S12-1.6.1 List of Sketch for Section, Slope and Column

Note: Serial No = Principal Stream No. + Location Number

	Potential			Return Period 100 yr.			Return Period 25 yr.					
Principal Stream	Catchment Area	Unstable Sediment	Slope Failure Sediment	Runoff Sediment (Ve)	Specific Runoff Sediment	Transportable Sediment(Vec)	The smaller among Ve and Vec	Specific Sediment Volume	Transportable Sediment(Vec)	The smaller among Ve and Vec	Specific Sediment Volume	Cota Mil Pocket Capacity
	km2	m3	m3	m3	m3/km2	m3	m3	m3/km2	m3	m3	m3/km2	m3
1	0.16	0	9 591	9 591	59 570	9 299	9 299	57 756	7 751	7 751	48 144	
2	0.99	11 596	58 796	21 117	21 396	25 318	21 117	21 396	21 105	21 105	21 383	
3	0.08	0	4,468	4,468	59,570	3,830	3.830	51.067	3,193	3,193	42.571	
Caurimare 4	6.35	726.522	378,508	331,509	52,173	101.429	101.429	15,963	84,548	84.548	13,306	
Galindo 5	3.85	484.019	229.047	213.920	55.636	58,960	58,960	15.334	49,147	49,147	12.782	
6	0.09	1.613	5.183	6.796	78,115	12,171	6,796	78,115	10.145	6,796	78,115	
7	0.36	26.018	21,445	47.463	131.842	16,314	16.314	45.316	13.029	13.029	36,190	
8	1.14	45,810	68,089	34,169	29,895	35,448	34,169	29,895	28,309	28,309	24,768	13,400
9	0.12	0	6,970	6,970	59,570	16.039	6.970	59,570	12.809	6.970	59,570	
10	0.06	0	3,276	3,276	59,570	9,792	3,276	59,570	7,820	3,276	59,570	
11	0.25	17,199	14,714	31,913	129,201	15,134	15,134	61,270	11,797	11,797	47,763	
12	2.10	403,843	125,097	158,682	75,563	62,947	62,947	29,975	49,070	49,070	23,367	
13	0.33	20,238	19,479	39,717	121,460	50,512	39,717	121,460	39,377	39,377	120,418	
Tocome 14	9.45	1,716,695	562,817	683,854	72,381	152,175	152,175	16,107	118,627	118,627	12,556	
15	1.40	67,151	83,577	45,218	32,230	45,318	45,218	32,230	35,465	35,465	25,278	
16	0.38	9,464	22,637	32,100	84,475	52,003	32,100	84,475	40,698	32,100	84,475	
17	1.57	154,682	93,525	74,462	47,428	48,669	48,669	30,999	38,088	38,088	24,260	10,700
18	0.17	8,346	9,948	18,294	109,544	31,317	18,294	109,544	24,413	18,294	109,544	
19	1.37	128,422	81,849	63,081	45,911	44,718	44,718	32,546	34,996	34,996	25,470	
20	0.11	1,085	6,672	7,757	69,258	23,398	7,757	69,258	18,240	7,757	69,258	2,400
21	0.27	15,243	16,084	31,327	116,025	24,891	24,891	92,187	19,479	19,479	72,146	4,900
22	1.97	102,990	117,532	66,157	33,531	56,156	56,156	28,462	43,948	43,948	22,275	
23	0.78	48,798	46,167	94,964	122,535	30,802	30,802	39,744	24,105	24,105	31,104	
24	0.21	2,759	12,331	15,090	72,900	36,549	15,090	72,900	28,492	15,090	72,900	
Chacaito 25	6.33	428,734	377,197	241,779	38,184	112,394	112,394	17,750	87,960	87,960	13,891	
26	0.16	647	9,412	10,059	63,662	30,085	10,059	63,662	23,453	10,059	63,662	
27	0.25	4,046	15,071	19,118	75,563	42,165	19,118	75,563	32,869	19,118	75,563	
28	1.19	95,641	71,007	49,994	41,942	67,986	49,994	41,942	53,205	49,994	41,942	1,000
29	0.07	0	4,110	4,110	59,570	14,850	4,110	59,570	11,576	4,110	59,570	
30	0.60	21,511	35,623	57,134	95,542	70,924	57,134	95,542	55,505	55,505	92,818	3,800
31	0.24	0	13,999	13,999	59,570	34,374	13,999	59,570	26,881	13,999	59,570	
32	0.06	0	3,395	3,395	59,570	10,539	3,395	59,570	8,241	3,395	59,570	
Mariperez 33	0.70	16,868	41,461	58,328	83,805	26,564	26,564	38,167	20,773	20,773	29,847	
34	0.09	0	5,480	5,480	59,570	17,010	5,480	59,570	13,302	5,480	59,570	
35	0.57	41,973	33,895	75,869	133,337	23,196	23,196	40,767	18,140	18,140	31,880	
36	0.27	1,234	15,846	17,079	64,207	30,780	17,079	64,207	24,604	17,079	64,207	
Gamboa 37	3.07	91,399	182,939	82,302	26,800	/1,825	/1,825	23,388	/3,030	/3,030	23,781	
38	0.19	0	11,437	11,437	59,570	24,398	11,437	59,570	19,503	11,437	59,570	
39	0.43	10,855	25,436	36,292	84,993	15,636	15,636	36,618	12,499	12,499	29,271	
40	0.19	100 51 1	11,378	11,378	59,570	24,307	11,378	59,570	19,430	11,378	59,570	00 500
Anauco 41	3.09	130,014	219,813	100,898	28,9/0	233,670	100,898	28,970	110 774	110,898	28,970	000,80
Gotiza 42	3.80	331,3/3	220,24/	10 540	44,046	144,514	144,514	38,050	110,7/1	110,771	29,166	93,000
43 Catualia 44	0.27	3,315	10,024	141 200	/2,038	11,320	11,320	42,100	9,054	9,054	33,057	
Jatucrie 44	4.00	203,008	200,000	5 491	50 570	12 700	5 401	21,307	11 020	5 401	50 570	
45	0.09	0	3,421	0,421 1 005	50 570	13,798	0,421 1 005	50 570	11,030	0,4ZI	50 570	
40	0.00	10 774	4,000	4,000	00 046	21 700	21 700	45 414	3,939	17 250	26 202	
4/ Total	60.94	5 200 644	2624 250	47,248	30,040	21,708	1 600 240	40,414	17,352	1 454 122	30,302	107 700
i Utai	00.04	0,000,044	0,024,000	0,202,200			1,033,240			1,404,100		197,700

Table S12-1.7.1 Sediment Runoff Volume

Figure S12-1.2.1 Definition of 1st Order Stream

Figure S12-1.2.2 Stream Order Concept of Strahler

Figure S12-1.2.3 Sub-catchment Boundary for the 2nd Order Stream as Unit Catchment

Figure S12-1.5.3 Potential Slope Collapse

Figure S12-1.6.1 Location of Sketch for Section, Slope and Column

Figure S12-1.7.1 Sediment Movement before and After December 1999 Flood

Figure S12-1.7.2 Evaluation Flow for Target Sediment Volume

Ratio of Slope Collapse to Catchment Area

Figure S12-1.7.3 Ratio of Slope Collapse to Catchment Area

Figure S12-1.7.4 Target Sediment Volume

Figure S12-1.7.5 Target Sediment Volume per Catchment Area

CHAPTER 2 DEBRIS FLOW HAZARD / RISK

2.1 Mapping Streams

In the previous chapter, there were totally forty seven (47) principal streams in the Avila. The scope of works of the JICA study specifies twenty streams (20), which are completely included in the above forty seven (47) principal streams in the Avila. The 20 streams can be grouped into 11 alluvial fans, which are subjective to the hazard and risk mapping in this study. Table S12-2.1.1 shows the relation between the 20 streams and the 11 alluvial fans.

Hazard mapping for the 11 alluvial fans has also been executed by PREVENE, the Avila Project and the Caracas Project in Venezuela. The Table S12-2.1.1 also shows the project names covering these 11 alluvial fans.

Among the above 11 alluvial fans, the Cotiza-Anauco-Gamboa and Tocome-La Julia models were developed by "PREVENE" while the remaining were developed in the "Mapa de Amenaza" by Central University in Venezuela (UCV) except for the Caroata Stream. In addition to the "Mapa de Amenaza", UCV has been conducting an extensive study of drainage system for the 11 alluvial fans including the Caroata stream to improve the simulation models in the Caracas Project.

2.2 Methodology

This chapter describes the methodology how to delineate the hazardous / risky area by debris flow for the sediment study area.

The methods of the above PREVENE, Avila Project and Caracas Project can be explained as follows (Table S12-2.2.1).

First of all, the rainfall and runoff simulation for the Avila has difference between the PREVENE, and the Avila Project / Caracas Project. The PREVENE applied unit hydrograph method, whereas the Avila Project / Caracas Project is using the kinematic wave method which was conducted by MARN (CGR Engineers).

Regarding the flood simulation for the Caracas Valley, the FLO-2D model was used by these projects.

The rainfall-runoff simulation by MARN (CGR Engineers) is a comprehensive hydrological study for the entire Avila mountain, while the PREVENE was a kind of pilot study for some specific study areas. The Study Team reviewed the results of rainfall-runoff simulation by MARN (CGR Engineers) and compared with the conventional rational formula as described in Supporting Report S13 (Hydrology). Since the hydrological study by MARN (CGR Engineers) has been the basis in the hazard mapping field in Caracas, the Study Team decided to make use of the results as a runoff (water) data from the Avila. For the debris flow hazard mapping, the Study Team took into consideration of sediment volume based on the filed survey in this study.

For the hydraulic modeling, the Study Team merged the 11 alluvial fans into the west and the east modeled area. For each modeled area, the flood simulation model was made using FLO-2D covering the all 11 alluvial fans. The FLO-2D model by the Study Team was designed in order to analyze the effect of sabo dam in the Avila simply taking into consideration of the Master Plan level.

The difference between the model of the Avila Project and the model by JICA Study Team is shown in Table S12-2.2.2.

The hazard map is created by two (2) methods. Method 1 is by Japanese Law Sediment Disaster Prevention. Method 2 is by FLO-2D Model.

2.3 Method 1: Method by Japanese Law Sediment Disaster Prevention

The Law of Sediment Disaster Prevention, which was issued in 2000 in Japan, and the related guidelines indicate the methodology to delineate the potential area for debris flow.

2. 3. 1. Peak Discharge and Height of Debris Flow

The potential peak discharge by debris flow can be calculated as follows,

$$Q_{sp} = \frac{0.01 \cdot C_*}{Cd} \cdot V$$
$$Cd = \frac{\rho \cdot \tan \theta}{(\sigma - \rho)(\tan \phi - \tan \theta)}$$

where Qsp : potential peak discharge by debris flow, V : transported sediment volume by debris flow, C* : volumetric concentration of the deposit (= 0.6), Cd : concentration of debris flow after Takahashi, σ : specific density of sediment (t/m³) (= 2.6), ρ : flow density (t/m³) (= 1.2), ϕ : internal friction angle (degree) (= 35), theta : slope of stream bed (degree).

The unit weight of debris flow and the velocity of debris flow are as follows,

$$\rho_d = \frac{\rho \cdot \tan \theta}{\tan \phi - \tan \theta}$$
$$U = \frac{h^{2/3} \cdot (\sin \theta)^{1/2}}{n}$$
where row-d : unit weight of debris flow (t/m^3) , h : depth of debris flow (m), U : average velocity of debris flow (m/s), n: Manning's roughness (= 0.1 for natural channel).

Therefore, the depth (height) of debris flow can be expressed as

$$h = \frac{Q_{sp}}{B \cdot U} = \left(\frac{n \cdot Q_{sp}}{B \cdot (\sin \theta)^{1/2}}\right)^{3/5}$$

2. 3. 2. Flow Width of Debris Flow (B)

The flow width of debris flow can be evaluated by 2 kinds of approaches, namely Manning method and Regime method.

The Manning method is to calculate the flow width which can satisfy the following equation.

$$Q_{sp} = \frac{1}{n} \left(\frac{A}{S}\right)^{2/3} (\sin\theta)^{1/2} \cdot A$$

where A : flow area (m^2) , S : hydraulic radius of the section (m).

In the case of laterally flat alluvial fan, it is difficult to evaluate the flow width from the above formulas. For such case, the regime theory can be applied.

The regime theory is as follows,

$$B = 4\sqrt{Q_{sp}}$$

If both methods can be applicable to evaluate the flow width (B) in a cross section, the smaller width (B) is selected.

2. 3. 3. Longitudinal Change of Debris Flow

The following equations are the relation between the volumetric concentration of debris flow and the peak discharge of debris flow while the debris flow goes downstream.

$$Qsp_{i} = \frac{C_{*} - Cd_{i-1}}{C_{*} - Cd_{i}}Qsp_{i-1}$$

where suffix (i) and (i-1) indicate downstream and upstream, respectively.

2. 3. 4. Definition of "Red Zone"

The seriously affected area by debris flow so called "Red Zone" can be defined as the section in which the hydraulic force by debris flow is larger than the resistant force of house / building.

The hydraulic force in kN/m² is expressed as

$$F_d = \frac{\rho_d}{g} \cdot U^2$$

The resistance force of house / building is

$$P_2 = \frac{35.3}{H(5.6 - H)}$$

where P_2 : resistance force of ordinary house / building in kN/m², H : height of debris flow when the force is acted on the house / building by debris flow.

The equation of P_2 has been authorized in Japan by the Law of Sediment Disaster Prevention, however, it is based on the structure of ordinal wooden house in Japan.

In this study, the yield strength for concrete columns against debris flow attack was developed as explained below.

1. Basic Conditions Concrete compressed strength : "Sigma-c" (kgf/cm²) Short-term strength for concrete shear force : Fs =(Sigma-c) / 30 * 3 Size of Concrete Column: D (cm) Sectional Area of Concrete Column : As = D^2 Yield Shear Strength of Concrete Column : Qdmax=(2/3) * As * Fs

Assuming the uniform load (p) acts on the concrete column of the 1st floor,

 $2*Q_d = h_0*p*b$

where h0 is the height of the column (cm), p is the uniform load (kgf/cm²) and b is the span between 2 columns (cm).

The assumed structure model is shown in Figure S12-2.3.1.

It is assumed that the load by the debris flow acts on the column as the uniform load. The above statically indeterminate beam can be solved as follows,

$$Q_{da} = \frac{pH}{8h_0^3} \Big[4 \Big(H^2 \Big) h_0 - H^3 \Big] = \frac{pH^3}{8h_0^3} \Big[4h_0 - H \Big]$$
$$Q_{db} = \frac{pH}{8h_0^3} \Big[8h_0^3 - 4 \Big(H^2 \Big) h_0 + H^3 \Big]$$

Therefore, the uniform load, p, can be expressed as a function of H, as follows,

$$p = \frac{8h_0^3 Q_{db}}{H(8h_0^3 - 4(H^2)h_0 + H^3)b} = \frac{8h_0^3 (Qd_{\max})}{H(8h_0^3 - 4(H^2)h_0 + H^3)b} \cdots Eq(1)$$

The applied parameters are as follows,

	Concrete Columns of	Concrete Columns of	Wooden Columns
	Barrio Area	Urban Area	in Japan
Height of Columns h0	300	300	280
(cm)			
Interval of Columns b	350	600	91
(cm)			
Area of Column D^2	20*20	30*30	10.5 * 3.5
(cm^2)			
Compressed Strength	80	180	-
Sigma-c (kgf/cm ²)			
Short-term shear	80/30*3=8	180/30*3=18	6*3*(4/3)=24
strength Fs (kgf/cm ²)			

According to the above structure analysis in this study, the yield strength of concrete columns of barrio house in Caracas is almost same as that of ordinary wooden house in Japan. The concrete column of house in formal area in Caracas has stronger strength than that of ordinary wooden house in Japan (Figure S12-2.3.2).

Figure S12-2.3.3 and Table S12-2.3.2 show an example of calculation. The cross sections on the plane view and the depth and width for each section are shown.

2. 3. 5. Definition of "Yellow Zone"

The normally affected area by debris flow so called "Yellow Zone" can be defined as the section in which the potentially debris flow could reach from the topographical viewpoint. The yellow zone is the basic point downstream and the slope two (2) degree upstream, in principle.

The concept to delineate the yellow zone in the valley shape cross section is illustrated in Figure S12-2.3.4. If the height of red zone is less than 5 m, then the height of the yellow zone will be 5 m. If the height of red zone is more than 5 m, then the height of the yellow zone will be 1 m above the height of the red zone.

"Fan Rule" is applicable when the cross section is flat and the area of 5 m height can not be decided. The fan rule is illustrated in Figure S12-2.3.5. The 40 m length vector (dotted line) is described as the steepest slope direction from each end point of the yellow zone. The vector (non-dotted line) for the yellow zone is described as thirty (30) degrees from the dotted vector. The vector for the yellow zone is repeated until the slope is less than two (2) degrees.

2. 3. 6. Hazard / Risk Map by Method -1

Figure S12-2.3.6 is the debris flow hazard map by the method-1. The number of affected house and the total area of the house in Yellow and Red Zones are shown in Table S12-2.3.3 and Table S12-2.3.4. From the 2,700 houses located in the red zone, 1,300 are barrio houses of which about 1,000 are built in the streams. Therefore, it is recommended that these are relocated.

The former table is the principal stream basis, in which the counted property numbers have duplicated counts in alluvial fans. The former table can be referred when individual principal streams are compared in terms of the potential hazard.

The latter table is the alluvial fan basis, in which the counted numbers do not have any duplication in alluvial fans. As a scenario case, if debris flows happen in all the principal streams, the hazard area can be shown in the latter table (Figure S12-2.3.7).

The Risk map is shown in Figure S12-2.3.8. This is the map that is classified by the colors according to the density of houses in the hazardous area based on the hazard map.

2.4 Method 2: Method by FLO-2D Model

2.4.1. Hydrological Part

(1) Modeled Area

The hydrological study report "Estudio de Crecidas" is focused on the mountainous area above the 1,000 Meter Road (the Cota Mil) of each stream. The report studied the design rainfall hyetograph by return period for the areas. Also the design discharge is calculated by rainfall-runoff analysis.

The output of the hydrological study is configured as the upstream boundary condition for the hydraulic analysis.

(2) Rainfall Analysis

"Estudio de Crecidas" states that the distribution of monthly rainfall in Caracas Valley is quite different from that in Vargas State, which means that the metereological characteristics are different among them. While the distributions of monthly rainfall within Caracas Valley are similar among the rainfall stations, the aerial distribution in terms of short duration rainfall has a large variation. Hence, five (5) rainfall stations were selected as representative stations for the southern part of El Avila Mountain.

The report pointed out that the heavy rainfall in Caracas did not continue for several days as it happened in Vargas.

(3) Runoff Calculation

For the conversion of the rainfall amount to the runoff discharge, SCS method was used to estimate the effective rainfall amount and the kinematics wave method was applied to produce the runoff hydrographs.

2. 4. 2. Hydraulic Part (FLO-2D)

(1) Applicability for the topography of the area to be modeled

The hydraulic study is focused on the urban area below the 1,000 Meter Road (the Cota Mil) of each stream. The area to be modeled is the alluvial fan that was composed of sediment from El Avila. The slope along the streams is very steep and the contour lines of the area are fan-shape, so that the floodwater tends to flow downward very rapidly and to spread. The floodwater passing the fan apex could distribute into two directions depending on the topography. In the above sense, the use of the 2-dimensional hydraulic model "FLO-2D" is quite appropriate.

(2) Usability in Venezuela

"FLO-2D" is commercial software. It was developed by Dr. Jim O'Brien in the United States of America and by Dr. Reinaldo Garcia in the Central University of Venezuela (UCV). The UCV is one of the counter parts of the Study.

The methodology for the use of FLO-2D was tested in twenty-three sites in the Caracas and Vargas State region by Venezuelan side. The hazard maps of the Vargas State are being used by planners of the Venezuelan Ministry of Environment and Natural Resources and other agencies to design emergency plans and new land use policies. The methodology is being expanded to other flood hazard regions in Venezuela.

(3) Usability in the world

FLO-2D is a hydraulic software officially evaluated as hazard mapping tool by the Federal Emergency Management Agency in the United States. It is widely used for flood hazard mapping in a lot of countries as well as in the USA. This means that there are a lot of users for the software in the world and it has been applied to many practical problems.

(4) Hydraulic Solution Concept

FLO-2D is a two-dimensional flood routing model that is a valuable tool for delineating flood hazards, regulating floodplain zoning and designing flood mitigation. FLO-2D routes a flood hydrograph using the full dynamic wave momentum equations and guaranteeing volume conservation to accurately predict the area of inundation. The fluid viscous and yield stress terms are accounted in the model. The channel and floodplain roughness play a role in the turbulent stresses in the full dynamic wave equation. The model is effective for analyzing river overbank flows, but it is also valuable for analyzing unconventional flooding problems such as unconfined flows over complex topography and roughness, spilt flows, mud / debris flows and urban flooding. The key to the model applicability is volume conservation that tracks the flood wave progression over unconfined surfaces. Flood hazard delineation detail can be enhanced with FLO-2D by modeling rainfall and infiltration, applying bridge, culvert and levee components, simulating hyper-concentrated sediment flows or by modeling the effects of buildings or flow obstructions.

(5) Mathematical Equations and Solution

The governing equations for hydrodynamic computation are as follows,

 $\begin{aligned} \frac{\partial h}{\partial t} &+ \frac{\partial hV_x}{\partial x} + \frac{\partial hV_y}{\partial y} = i \\ S_{fx} &= S_{ox} - \frac{\partial h}{\partial x} - \frac{V_x}{g} \frac{\partial V_x}{\partial x} - \frac{V_y}{g} \frac{\partial V_y}{\partial y} - \frac{1}{g} \frac{\partial V_x}{\partial t} \quad S_{fy} = S_{oy} - \frac{\partial h}{\partial y} - \frac{V_y}{g} \frac{\partial V_y}{\partial y} - \frac{V_x}{g} \frac{\partial V_y}{\partial x} - \frac{1}{g} \frac{\partial V_y}{\partial t} \end{aligned}$

Where h is the flow depth, Vx and Vy are the depth averaged velocity components along the x- and y- coordinates, and I is excess rainfall intensity.

The differential form of the continuity and momentum equations in the FLO-2D model is solved with a central, finite difference scheme. The solution domain is discretized into uniform, square grid elements.

The friction slope components S_{fx} and S_{fy} are composed of yield slope component, viscous slope component and turbulent-dispersive slope component.

 $S_{f} = S_{y} + S_{v} + S_{td}$ S_{f} : friction slope S_{y} : yield slope S_{y} : viscous slope S_{td} : turbulent – dispersive slope

FLO-2D routes hyper-concentrated sediment flows (mud and debris flow) as a fluid continuum by predicting viscous fluid motion. For mudflows, the motion of the fluid matrix is governed by the sediment concentration. A quadratic rheologic model for predicting viscous and yield stresses as function of sediment concentration is employed and sediment volumes are tracked through the system. As sediment concentration changes for a given grid element, dilution effects, mudflow cessation and the remobilization of deposits are simulated.

(6) Criteria of Simulation

The model takes into account the hydraulic structures such as channel, culvert and bridge and existing infrastructure as building density.

The model is the two (2) dimensional and the grid size is 30 m * 30 m except for the Tocome and Anauco models. The hydraulic structure can be modeled within a grid.

The discharge hydrograph for water to be used is based on the study "Estudio de Crecidas". For the return periods of 10, 100 and 500 years, the hazard maps has been prepared.

The hydrograph for sediment material at the upstream boundary is made to consider the ratio of sediment concentration to water discharge.

The reduction factor on building area, which could affect the depth of water and sediment, is taken into account.

2.4.3. FLO-2D Modeling for Caracas

(1) Modeled Area

The 11 alluvial fans were divided into 2 separate modeled areas, namely the east model and the west model. The east model covers the Caurmare, Tocome, Agua de Maiz, Sebucan, Seca and Chacaito alluvial fans. The west model covers the Mariperez, Canoas, Anauco, Catuche and Caroata.

Each model can simulate the floods of all the alluvial fans in one run. So the model can simulate the flood water from 2 alluvial fans to converge and form the contiguous flooded area.

(2) Grid Size and Grid Elevation

The grid size was set to 100 m * 100 m square. It was decided to consider the spatial scale of topography accuracy as well as the modeling work volume. Especially the grid size can affect on the modeling work volume directly because it is necessary to adjust the model data such as elevation, channel section, roughness for each grid cell in the course of repeated simulation runs.

The grid elevation was given by the average elevation of the point elevation data of 5 meter resolution DTM which was generated from the base map (scale 1:5,000) for this study.

(3) Channel

The channel within grid was configured for main streams in both models. All the channels are regarded as open channel with rectangular shape.

(4) Sediment Concentration

Due to the software requirement, for the simulation of debris flow the sediment concentration must be at least 0.20. For the scenario case, the sediment concentration was decided to input the total sediment volume as the portion exceeding the sediment concentration 0.20, equal to the target sediment volume.

Based on the FLO-2D concept, sediment discharge is calculated as follows,

$$Qsp = \frac{Cv}{1 - Cv}Qp$$

Cv: volumetric sediment concentration

Qp is water discharge given by the rainfall and runoff calculation. As shown in the Figure S12-2.4.1 below, the sediment discharge graph is given by setting of sediment concentration profile (time series). The sediment runoff volume shown in Table S12-2.3.1, for example V=101,400 m3 for the Caurimare catchment, is almost equivalent to the integration of the sediment discharge profile.

The timing of debris flow occurrence was set approximately 30 minutes around the peak of water discharge hydrograph.

2. 4. 4. FLO-2D Model Runs

(1) Case

The simulated cases are 10 years, 100 years in terms of return period of design rainfall under existing condition. The considered sediment conditions are no debris flow happening (Cv = 0.2 constant) for 10 years, sediment runoff volume for 100 years.

As a reference, assuming all the Sabo Dams are constructed in the Avila, one (1) case was simulated for 100 years return period.

(2) **Results**

Figure S12-2.4.2 and Figure S12-2.4.3 are the depth and velocity for 100 years return period under the existing condition. The values of depth and velocity are the average value for each grid cell.

Figure S12-2.4.4 is the depth for 100 years return period assuming all the Sabo Dam constructed in the future. The peak discharge was reduced because of less sediment concentration, resulting into that the flooded area was also reduced.

	20 streams by JICA S/W	Name of Alluvial Fan	Venezuelan Study
1	Caroata, Agua Salud, Agua Salada	Caroata	"Proyecto Caracas"
2	Catuche	Catuche	"Mapa de Amenaza"
3	Cotiza, Anauco, Gamboa	Cotiza-Anauco-Gamboa	"PREVENE"
4	Sarria (Canoas)	Canoas	"Proyecto Caracas"
5	Mariperez	Mariperez	"Mapa de Amenaza"
6	Chapellin, Chacaito	Chacaito-Chapellin	"Mapa de Amenaza"
7	Quintero	Quebrada Seca	"Mapa de Amenaza"
8	Pajaritos, Sebucan	Pajaritos-Sebucan	"Mapa de Amenaza"
9	Tenería	Agua de Maíz	"Mapa de Amenaza"
10	Tocome, La Julia	Tócome-La Julia	"PREVENE"
11	Pasaquire, Galindo, Caurimare	Caurimare-Galindo-Pasaquire	"Mapa de Amenaza"

 Table S12-2.1.1
 Subjective Mountain Streams for Debris Flow Hazard Mapping

Table S12-2.2.1 Model Structure

	PREVENE	Avila / Caracas Project	JICA Study
Rainfall Runoff Model	Unit Hydrograph	Kinematic wave(MARN-CGR report)	Kinematic wave(MARN-CGR report)
Hydraulic Model	FLO-2D (Tocome, Anauco)	FLO-2D (11 alluvial fans, each alluvial fan has a separated model)	FLO-2D (11 alluvial fans, combined as 2 models)
	25 m grid	30 m grid	100m grid

Study Team

	Avila / Caracas Project	Study Team
Inflow	Water Hydrograph (CGR report)+	Water Hydrograph (CGR report)+
Hydrograph	standard sediment concentration	proposed sediment volume
	value	
Grid size	30 m	100 m
Channel within	considered	considered
grid		
Culver, Street		

1 0	No of Cato	chment	Catchment nan	ne	Area		Sediment Runoff Volume	adjustment	Cota Mil upstream pocket capacity (m3)	Sedime Volume fo ar	Sediment Runoff Volume for Method-1 and 2 (m3) (m3/km2)		
1 46 Courimare 0.801 9.300 24.00 30.000 Vec 30.000 2-0 48 Caurimare 0.955 0.155 3.400 3.400 - - 2-1 0.955 0.155 3.400 3.400 - - - 2-2 0.022 13.700 13.700 -	1	40		Countingous	0.161		0.200	(113)	(110)	(110)	(III3/ KIII2)	Vee	(115/ 5/
2-0 45 Caurmare 0.951 0.107 21,100 24,00 21,000 Vec 24a 2-2 0.955 0.071 1,600 1,600 1,600 1,600 3 48 Caurimare 0.075 3,800 13,700 51,000 Vec 3,7 4 48 Caurimare 0.075 3,800 101,400 16,000 Vec 3,7 4 48 Caurimare 0.087 6,800 15,000 Vec 4,800 6 48 Caurimare 0.36 16,300 11,400 28,000 45,000 Vec 44,4 8 48 Paaguira Caurimare 0.117 7,000 7,000 6,0000 Vec 14,4 10 48 Caurimare 0.117 7,000 13,400 60,000 Vec 14,00 11 50 Camirimare 0.127 12,900 12,200 12,000 4,000 12,000 4,000 12,000 </td <td>0.0</td> <td>40</td> <td></td> <td>Caurimare</td> <td>0.101</td> <td>0 107</td> <td>9,300</td> <td>0.400</td> <td></td> <td></td> <td>38,000</td> <td>vec</td> <td>0.0</td>	0.0	40		Caurimare	0.101	0 107	9,300	0.400			38,000	vec	0.0
2-1 0 0.990 0.159 3.3400 1.860 1.860 2-3 0 0.021 1.3700 1.9700 1.800 1.800 2-3 4 48 Caurimare 0.075 3.800 10 15.000 Vec 3.7 4 48 Caurimare 0.354 101.400 101.400 15.000 Vec 75.0 5 48 Gaindo Caurimare 3.345 59.000 59.000 15.000 Vec 8.2 7 48 Caurimare 0.087 6.800 15.300 45.000 Vec 13.40 9 48 Caurimare 0.117 7.000 17.000 15.000 Vec 14.0 10 48 Caurimare 0.027 15.100 15.00 Vec 14.0 11 50 Garuimare 0.027 15.100 12.000 12.000 12.00 12.000 12.00 12.000 12.00 12.000 12.000	2-0	48		Caurimare	0.987	0.107	21,100	2,400		0.400	21,000	Ve	24.8
2-3 0.011 1.000 1.000 1.000 3 48 Caurimare 0.075 3.800 13.700 13.700 4 48 Caurimare 0.075 3.800 13.700 13.700 Vec 7.3 5 48 Caurimare 0.345 59.000 15.000 Vec 7.6 6 44 Caurimare 0.36 16.300 6.800 78.000 Vec 7.6 6 44 Caurimare 0.36 16.300 45.000 Vec 14.4 8 48 Pasaguire Caurimare 0.35 3.300 3.300 Vec 14.4 9 48 Caurimare 0.021 1.17 7.000 60.000 Vec 14.4 10 48 Caurimare 0.247 15.100 15.100 61.000 Vec 14.6 11 50 Gamburi Tocome 0.247 0.124 39.700 17.240 12.000 1	2-1				0.955	0.155		3,400		3,400			
2-3 48 Caurimare 0.075 3.800 13.700 13.700 13.700 4 48 Caurimare 0.075 3.800 10.100 15.000 Vec 37.50 5 48 Galindo Caurimare 3.835 59.000 59.000 15.000 Vec 68.00 6 48 Caurimare 0.087 6.800 16.300 74.000 Vec 14.4 8 48 Pasaguire Caurimare 0.117 7.000 7.000 60.000 Vec 14.4 10 48 Caurimare 0.155 3.300 3.300 60.000 Vec 14.1 10 48 Caurimare 0.227 0.142 39.700 17.240 17.240 17.240 17.240 17.240 17.240 17.240 17.240 12.000 Vec 13.9 11 50 Tocome 0.227 0.14 30.00 19.000 Vec 14.0 14.500 12.000	2-2					0.071		1,600		1,600			
3 48 Caurimare 0.075 3,800 101,400 101,400 101,400 100,900 7.2 5 48 Galindo Caurimare 0.845 59,000 15,000 Vec 768,00 6 48 Caurimare 0.037 6,800 16,300 46,000 Vec 144 8 48 Pasaquire 0.111 7,000 13,400 20,800 9,000 Vec 144 9 48 Caurimare 0.117 7,000 13,400 20,800 90,000 Vec 141 10 48 Caurimare 0.247 15,100 15,100 60,000 Vec 174.0 11 50 La Julia Tocome 0.247 15,100 17,240 17,240 12,1000 Vec 182.0 14 50 Tocome 1,227 142,29,00 1,2000 45,200 16,000 Vec 182.0 15 50 Tocome 0,247 0	2-3					0.622		13,700		13,700			
4 48 Caurimare 6.354 101,400 101,400 16,000 Vec 75 5 48 Galindo Caurimare 0.087 6.800 59,000 15,000 Vec 38,000 Vec 38,000 Vec 38,000 Vec 38,000 Vec 38,000 Vec 34,000 Vec 14,11 50 Gamburi Tocome 0.247 15,100 15,100 16,000 Vec 14,00 Vec 14,00<	3	48		Caurimare	0.075		3,800				51,000	Vec	3.7
5 48 Galinde Caurimare 3.845 59.000 59.000 15.000 Vec 68.00 7 48 Caurimare 0.36 16.300 16.300 45.000 Vec 3.2 7 48 Pasaguire Caurimare 0.117 7.000 13.400 20.800 30.00 Vec 51.1 10 48 Pasaguire Caurimare 0.117 7.000 3.300 66.000 Vec 51.1 10 48 Caurimare 0.055 3.300 15.100 61.000 Vec 10.1 11 50 Gamburi Tocome 0.247 15.100 15.000 Vec 10.0 13 50 Tocome 1.4243 152.200 16.000 Vec 13.9 14 50 Tocome 1.443 152.200 145.000 Vec 147.00 15 50 Toerame 1.444 32.100 12.000 84.000 Vec 17.1 </td <td>4</td> <td>48</td> <td>Caurimare</td> <td>Caurimare</td> <td>6.354</td> <td></td> <td>101,400</td> <td></td> <td></td> <td>101,400</td> <td>16,000</td> <td>Vec</td> <td>75.0</td>	4	48	Caurimare	Caurimare	6.354		101,400			101,400	16,000	Vec	75.0
6 48 Caurmare 0.087 6.800 6.800 76.800 Vec 32 7 48 Caurimare 0.113 0.00 15.300 15.300 45.000 Vec 14.4 8 48 Pasaguire Caurimare 1.143 34.200 13.400 20.800 30.000 Vec 34.1 10 48 Caurimare 0.055 3.300 3.300 60.000 Vec 24.1 11 50 La Julia Tocome 2.41 15.100 15.100 Vec 14.0 13 50 Tocome 0.247 14.2 39.700 17.240 121.000 Vec 132.00 14 50 Tocome 1.403 45.200 152.000 142.000 22.000 Vec 142.0 15 50 Tenerias Tocome 1.448 152.00 12.000 12.000 12.000 12.000 12.00 12.000 12.00 12.00 12.00 <td< td=""><td>5</td><td>48</td><td>Galindo</td><td>Caurimare</td><td>3.845</td><td></td><td>59,000</td><td></td><td></td><td>59,000</td><td>15,000</td><td>Vec</td><td>68.0</td></td<>	5	48	Galindo	Caurimare	3.845		59,000			59,000	15,000	Vec	68.0
7 48 Caurimare 0.36 16.300 16.300 45.000 Vec 14.4 8 48 Pasaquire Caurimare 0.117 7.000 13.400 20.800 30.000 Vec 34.0 10 48 Caurimare 0.055 3.300 13.400 20.800 30.000 Vec 14.4 11 50 Gamburi Tocome 0.247 15.100 15.100 61.000 Vec 10.6 12 50 La Julia Tocome 0.327 0.142 39.00 17.240 17.240 17.240 17.240 17.240 14.400 Vec 13.9 14 50 Tocome Tocome 1.43 45.200 45.200 32.000 10.000 Vec 13.9 15 50 Tenerias Tocome 1.43 44.700 12.000 84.000 Vec 7.1 18 54 Sebucan 0.112 7.800 2.400 5.600	6	48		Caurimare	0.087		6,800			6,800	78,000	Ve	3.2
8 48 Pasaquire Caurimare 1.143 34,200 13,400 20,800 30,000 Ve 34,00 10 48 Caurimare 0.055 3,300 3,300 60,000 Ve 2,1 11 50 Gamburi Tocome 0.247 15,100 61,000 Vec 74,0 13 50 Tocome 0.247 11,120 17,240 17,240 12,1000 Vec 74,0 13 50 Tocome 0.327 0.142 39,700 17,240 17,240 10,000 Vec 18,20 15 50 Tenerias Tocome 1,443 45,200 45,200 32,000 Ve 47,0 16 52 Agua de maiz Agaa de Maiz	7	48		Caurimare	0.36		16,300			16,300	45,000	Vec	14.4
9 48 Caurimare 0.117 7.000 7.000 60.000 Ve 5.1 10 48 Caurimare 0.955 3.300 5.300 60.000 Vec 10.6 12 50 La Julia Tocome 0.247 15.100 15.100 61.000 Vec 17.40 13 50 Tocome 0.327 0.142 39.700 17.240 17.240 12.000 Vec 182.0 14 50 Tocome 1.033 45.200 15.200 16.000 Vec 182.0 15 50 Tenerias Tocome 1.033 0.142 32.100 12.000 84.000 Vec 12.0 17 54 Sebucan 0.167 0.1 13.000 10.000 Vec 53.0 18 54 Sebucan 0.172 7.800 2.400 54.00 70.000 Vec 42.0 21 54 Sebucan 0.172 7.800	8	48	Pasaquire	Caurimare	1.143		34,200		13,400	20,800	30,000	Ve	34.0
10 48 Caurimare 0.055 3.300 3.300 60.000 Vec 2.4 11 150 Gamburi Tocome 2.47 15,100 15,100 61.000 Vec 10.00 13 50 La Julia Tocome 0.327 0.142 39,700 17,240 17,240 121,000 Vec 13.9 14 50 Tocome 0.327 0.142 39,700 17,240 121,000 Vec 182.0 16 52 Agua de maiz 0.38 0.142 32,100 12,000 45,200 30,000 Vec 182.0 16 54 Sebucan 0.167 0.1 18,300 10,000 Vec 73.0 18 54 Sebucan 0.117 7,44,700 10,700 38,000 30,800 Vec 14.2 20 54 Sebucan 0.172 7,222,22,400 5,600 70,000 Vec 11.2 21 54 Sebuca	9	48		Caurimare	0.117		7,000			7,000	60,000	Ve	5.1
11 50 Gamburi Tocome 0.247 15,100 15,100 61,000 Vec 10.6 12 50 La Julia Tocome 0.327 0.142 39,700 17,240 17,240 121,000 Vec 74,30 14 50 Tocome 9,448 152,200 152,200 16,000 Vec 182,0 15 50 Tenerias Tocome 1,403 45,200 12,000 46,200 32,000 Vec 12,00 16 52 Agua de maiz 0,38 0,142 32,100 12,000 12,000 46,000 Vec 53,00 18 54 Sebucan 0,157 48,700 10,960 10,960 110,000 Vec 54,00 20 54 Sebucan 0,172 7800 2,000 Vec 11,5 21 54 Sebucan 0,270 0,232 24,900 2,570 49,200 Vec 11,5 22 56 </td <td>10</td> <td>48</td> <td></td> <td>Caurimare</td> <td>0.055</td> <td></td> <td>3,300</td> <td></td> <td></td> <td>3,300</td> <td>60,000</td> <td>Ve</td> <td>2.4</td>	10	48		Caurimare	0.055		3,300			3,300	60,000	Ve	2.4
12 50 La Julia Tocome 0.327 0.142 39.700 17.240 17.240 121.000 Vec 13.9 14 50 Tocome 0.327 0.142 39.700 17.240 17.240 121.000 Vec 182.0 15 50 Tenerias Tocome 1.403 45.200 32.000 34.000 Vec 182.0 16 52 Agua de maiz Agua de maiz 0.38 0.142 32.100 12.000 34.000 12.000 44.700 34.000 31.000 Vec 53.0 18 54 Sebucan 0.167 0.1 18.300 10.960 10.960 10.960 Vec 42.0 20 54 Sebucan 0.27 0.22 49.00 2.400 5.400 70.000 Vec 41.2 23 56 Seca 0.775 39.800 2.0570 4.900 13.700 Vec 2.59 24 56 Seca	11	50	Gamburi	Tocome	0.247		15,100			15,100	61,000	Vec	10.6
13 50 Tocome 0.327 0.142 39,700 17,240 17,240 17,240 17,240 17,240 182,200 16,000 Vec 182,00 15 50 Tenerias Tocome 1,403 45,200 12,000 12,000 84,000 Vec 12,00 16 52 Agua de maiz Agua de maiz 0.38 0.142 32,100 12,000 84,000 Vec 12,00 17 54 Sebucan 0.167 0.1 18,300 10,960 10,960 110,000 Vec 7.1 19 54 Pajarito Sebucan 0.112 7.800 2.400 5.400 30,300 Vec 44.8 21 54 Sebucan 0.27 0.223 24.900 20,570 4.900 15.670 92,000 Vec 115.5 22 56 Guintero Seca 0.277 0.3600 30,300 Vec 18.90 23 56 Seca	12	50	La Julia	Tocome	2.1		62,900			62,900	30,000	Vec	74.0
14 50 Tocome 9.448 152,200 152,200 16,000 Vec 182,200 15 50 Tenerias Tocome 1.403 45,200 45,200 32,000 Vec 17,000 16 52 Agua de maiz Agua de maiz 0.38 0.142 32,100 12,000 84,000 Vec 53,000 17 54 Sebucan 0.167 0.1 18,300 10,960 110,000 Vec 53,00 18 54 Paiarito Sebucan 0.112 7,800 2,400 5,400 70,000 Vec 42,00 20 54 Sebucan 0.27 0,232 24,900 20,570 4,900 16,670 92,000 Vec 11,5 22 56 Quintero Seca 19,73 56,200 28,000 Vec 41,2 23 56 Seca Seca 0,207 0,84 16,100 6,130 73,000 Vec 11,5	13	50		Tocome	0.327	0.142	39,700	17,240		17,240	121,000	Ve	13.9
15 50 Tenerias Tocome 1.403 45,200 12,000 84,000 Ve 47.00 16 52 Agua de maiz Agua de maiz 0.38 0.142 32,100 12,000 84,000 Ve 12,000 17 54 Sebucan 1.57 48,700 10,700 38,000 31,000 Vec 7.1 19 54 Pajarito Sebucan 0.112 7,800 2,400 5,400 70,000 Vec 42.0 20 54 Sebucan 0.21 0.223 24,900 20,570 4,900 16,670 92,000 Vec 11.5 22 56 Quintero Seca 0.271 30,800 30,800 40,000 Vec 25.9 24 56 Seca Seca 0.275 30,800 112,400 18,000 Vec 17.0 26 58 Chacaito 0.532 0.18 19,100 113,590 13,500 17.0 <td< td=""><td>14</td><td>50</td><td>Tocome</td><td>Tocome</td><td>9.448</td><td></td><td>152,200</td><td></td><td></td><td>152,200</td><td>16,000</td><td>Vec</td><td>182.0</td></td<>	14	50	Tocome	Tocome	9.448		152,200			152,200	16,000	Vec	182.0
16 52 Agua de maiz Agua de maiz 0.38 0.142 32.100 12.000 12.000 84.000 Vec 12.0 17 54 Sebucan 1.57 48.700 10.700 38.000 31.000 Vec 53.0 18 54 Sebucan 0.167 0.1 18.300 10.960 10.960 110.000 Vec 73.0 20 54 Pajarito Sebucan 0.12 7.800 2.400 5.400 70.000 Vec 11.5 22 56 Quintero Sebuca 0.27 0.232 24.900 25.070 4.900 15.670 92.000 Vec 11.5 23 56 Seca 0.275 30.800 30.800 40.000 Vec 41.2 24 56 Chacaito 0.158 10.100 112.400 112.400 112.400 18.000 Vec 117.0 26 58 Chacaito 0.253 0.18 19.100	15	50	Tenerias	Tocome	1.403		45,200			45,200	32,000	Ve	47.0
17 54 Sebucan 1.57 48,700 10,700 38,000 31,000 Vec 53.0 18 54 Sebucan 0.167 0.1 18,300 10,960 110,000 Vec 42.0 20 54 Paiarito Sebucan 0.112 7,800 2,400 5,400 70,000 Vec 42.0 21 54 Sebucan 0.27 0.223 24,900 20,570 4,900 15,670 92,000 Vec 41.2 23 56 Quintero Seca 0.775 30,800 30,800 40,000 Vec 41.2 24 56 Seca 0.207 0.84 15,100 6,130 73,000 Ve 8.8 25 58 Chacaito Chacaito 0.158 10,100 46,000 Ve 17.0 26 58 Chacaito 0.253 0.18 19,100 13,590 13,500 Ve 10.3 28 58<	16	52	Agua de maiz	Agua de maiz	0.38	0.142	32,100	12,000		12,000	84,000	Ve	12.0
18 54 Sebucan 0.167 0.1 18,300 10.960 10.960 110,000 Ve 7.1 19 54 Paiarito Sebucan 0.112 7,800 2.400 33,000 Vec 42.00 20 54 Sebucan 0.27 0.223 24,900 20.570 4,900 15,670 92,000 Vec 11.5 22 56 Quintero Seca 0.277 3.0800 30,800 40,000 Vec 41.2 23 56 Seca Seca 0.207 0.84 15,100 6,130 6,130 73,000 Vec 8.8 24 56 Seca Seca 0.207 0.84 15,100 6,130 6,130 73,000 Ve 8.8 25 58 Chacaito 0.158 10,100 112,400 18,000 Vec 10.3 28 58 Chacaito 0.253 0.18 19,100 13,590 75,000	17	54	Sebucan	Sebucan	1.57		48,700		10,700	38,000	31,000	Vec	53.0
19 54 Pajarito Sebucan 1.374 44,700 33,000 Vec 42.0 20 54 Sebucan 0.112 7,800 2,400 5,400 70,000 Vec 41.0 21 54 Sebucan 0.27 0.223 24,900 15,670 92,000 Vec 41.2 23 56 Seca Seca 0.775 30,800 30,800 40,000 Vec 41.2 24 56 Seca Seca 0.207 0.84 15,100 6,130 73,000 Vec 41.2 24 56 Seca Chacaito 0.253 0.18 10,100 112,400 18,000 Vec 11.7.0 26 58 Chacaito 0.253 0.18 19,100 13,590 13,590 75,000 Ve 10.3 29 58 Chacaito 0.596 57,100 3,800 53,300 95,000 Ve 3.3 30 58	18	54		Sebucan	0.167	0.1	18,300	10,960		10,960	110,000	Ve	7.1
20 54 Sebucan 0.112 7,800 2,400 5,400 70,000 Vec 4.8 21 54 Sebucan 0.27 0.223 24,900 15,670 92,000 Vec 11.5 22 56 Quintero Seca 0.775 30,800 30,800 40,000 Vec 25.9 24 56 Seca 0.207 0.84 15,100 6,130 73.000 Vec 25.9 24 56 Seca 0.207 0.84 15,100 6,130 73.000 Vec 25.9 24 56 Chacaito Chacaito 0.158 10,100 112,400 18,000 Vec 6.7 27 58 Chacaito 0.253 0.18 19,100 1,590 13,590 75,000 Vec 40.0 29 58 Chacaito 0.235 0.136 14,000 8,100 60,000 Vec 3.3 30 58 Cuno	19	54	Pajarito	Sebucan	1.374		44,700			44,700	33,000	Vec	42.0
21 54 Sebucan 0.27 0.223 24,900 20,570 4,900 15,670 92,000 Vec 11.5 22 56 Quintero Seca 1.973 56,200 28,000 Vec 41.2 23 56 Seca Seca 0.775 30,800 30,800 40,000 Vec 24.56 24 56 Seca 0.207 0.84 15,100 6,130 73,000 Vec 8.8 25 58 Chacaito 0.158 10,100 112,400 112,400 Vec 117.0 26 58 Chacaito 0.253 0.18 19,100 13,590 13,590 75,000 Vec 10.3 28 58 Chacaito 0.059 4,100 59,000 Ve 3.3 30 58 Cuno Chacaito 0.255 0.136 14,000 8,100 60,000 Ve 10.9 32 62 Mariperez 0.057<	20	54		Sebucan	0.112		7,800		2,400	5,400	70,000	Ve	4.8
22 56 Quintero Seca 1.973 56,200 28,000 Vec 41.2 23 56 Seca Seca 0.775 30,800 30,800 40,000 Vec 25.9 24 56 Seca 0.207 0.84 15,100 6,130 73,000 Vec 41.2 24 56 Chacaito Chacaito 6.332 112,400 112,400 112,400 18,000 Vec 117.0 26 58 Chacaito 0.158 10,100 13,590 75,000 Ve 10.3 28 58 Chacaito 0.069 4,100 1,000 49,000 Ve 40.0 29 58 Chacaito 0.058 57,100 3,800 53,300 95,000 Ve 24.5 31 58 Chacaito 0.255 0.136 14,000 8,100 60,000 Ve 10.9 33 62 Mariperez 0.656 0.137	21	54		Sebucan	0.27	0.223	24,900	20,570	4,900	15,670	92,000	Vec	11.5
23 56 Seca 0.775 30,800 30,800 40,000 Vec 25.9 24 56 Seca 0.207 0.84 15,100 6,130 73,000 Vec 8.8 25 58 Chacaito 0.138 112,400 112,400 18,000 Vec 8.8 26 58 Chacaito 0.158 10,100 13,590 75,000 Ve 6.7 27 58 Chacaito 0.253 0.18 19,100 13,590 75,000 Ve 10.3 28 58 Chacaito 0.069 4,100 1,000 49,000 Ve 40.0 29 58 Cuno Chacaito 0.598 57,100 3,800 53,300 95,000 Ve 24.5 31 58 Cuno Chacaito 0.235 0.136 14,000 8,100 8,000 Vec 24.5 31 58 Cuno Chacaito 0.235 0.136	22	56	Quintero	Seca	1.973		56,200			56,200	28,000	Vec	41.2
24 56 Seca 0.207 0.84 15,100 6,130 6,130 73,000 Ve 8.8 25 58 Chacaito Chacaito 6.332 112,400 112,400 112,400 Vec 117.0 26 58 Chacaito 0.158 10,100 64,000 Ve 6.7 27 58 Chacaito 0.253 0.18 19,100 13,590 75,000 Ve 40.0 28 58 Chapellin Chacaito 0.069 4,100 59,000 42,000 Ve 40.0 29 58 Cuno Chacaito 0.598 57,100 3,800 53,300 95,000 Ve 24.5 31 58 Cuno Chacaito 0.598 57,100 8,100 8,100 0.000 Ve 24.5 32 62 Mariperez 0.057 3,400 26,600 26,600 38,000 Ve 43.0 34 63 Ca	23	56	Seca	Seca	0.775		30,800			30,800	40,000	Vec	25.9
25 58 Chacaito 6.332 112,400 112,400 18,000 Vec 117.0 26 58 Chacaito 0.158 10,100 64,000 Ve 6.7 27 58 Chacaito 0.253 0.18 19,100 13,590 75,000 Ve 10.3 28 58 Chacaito 0.069 4,100 59,000 42,000 Ve 40.0 29 58 Chacaito 0.059 57,100 3,800 53,300 95,000 Ve 3.3 30 58 Cuno Chacaito 0.235 0.136 14,000 8,100 8,100 60,000 Ve 11.9 32 62 Mariperez 0.057 3,400 2,600 38,000 Vec 34.0 34 63 Canoas 0.092 0.034 5,500 2,030 2,030 60,000 Vec 28.0 35 63 Canoas 0.569 23,200 23,2	24	56		Seca	0.207	0.84	15,100	6,130		6,130	73,000	Ve	8.8
26 58 Chacaito 0.158 10,100 64,000 Ve 6.7 27 58 Chacaito 0.253 0.18 19,100 13,590 75,000 Ve 10.3 28 58 Chapellin Chacaito 1.192 50,000 1,000 49,000 42,000 Ve 40.0 29 58 Chacaito 0.069 4,100 59,000 Ve 3.3 30 58 Cuno Chacaito 0.598 57,100 3,800 53,300 95,000 Ve 42.5 31 58 Chacaito 0.235 0.136 14,000 8,100 60,000 Ve 10.9 32 62 Mariperez 0.696 26,600 26,600 38,000 Vec 34.0 34 63 Canoas 0.992 0.034 5,500 2.030 2.030 41,000 Vec 28.0 35 63 Canoas 0.992 0.17 17,10	25	58	Chacaito	Chacaito	6.332		112,400			112,400	18,000	Vec	117.0
27 58 Chacaito 0.253 0.18 19,100 13,590 13,590 75,000 Ve 10.3 28 58 Chapellin Chacaito 1.192 50,000 1,000 49,000 42,000 Ve 40.0 29 58 Cuno Chacaito 0.699 4,100 59,000 Ve 3.3 30 58 Cuno Chacaito 0.235 0.136 14,000 8,100 60,000 Ve 24.5 31 58 Chacaito 0.235 0.136 14,000 8,100 60,000 Ve 2.7 33 62 Mariperez 0.696 26,600 2.030 2.030 60,000 Ve 3.4 34 63 Canoas 0.92 0.034 5.500 2.030 2.030 60,000 Vec 28.0 35 63 Canoas 0.266 0.107 17,100 6.880 64,000 Vec 52.8 38 <td>26</td> <td>58</td> <td></td> <td>Chacaito</td> <td>0.158</td> <td></td> <td>10,100</td> <td></td> <td></td> <td></td> <td>64,000</td> <td>Ve</td> <td>6.7</td>	26	58		Chacaito	0.158		10,100				64,000	Ve	6.7
28 58 Chapellin Chacaito 1.192 50,000 1,000 49,000 42,000 Ve 40.0 29 58 Chacaito 0.069 4,100 59,000 Ve 3.3 30 58 Cuno Chacaito 0.598 57,100 3,800 53,300 95,000 Ve 24.5 31 58 Chacaito 0.235 0.136 14,000 8,100 8,100 60,000 Ve 24.5 32 62 Mariperez 0.057 3,400 60,000 Ve 2.7 33 62 Mariperez 0.696 26,600 2.030 2.030 60,000 Ve 34.0 34 63 Canoas 0.092 0.034 5,500 2.030 2.030 60,000 Ve 43.0 35 63 Canoas Canoas 0.569 23,200 23,200 23,200 Vec 28.0 36 66 Anauco 3.071<	27	58		Chacaito	0.253	0.18	19,100	13,590		13.590	75.000	Ve	10.3
29 58 Chacaito 0.069 4,100 59,000 Ve 3.3 30 58 Cuno Chacaito 0.598 57,100 3,800 53,300 95,000 Ve 24,5 31 58 Chacaito 0.235 0.136 14,000 8,100 8,100 60,000 Ve 24,5 32 62 Mariperez 0.057 3,400 60,000 Ve 27,7 33 62 Mariperez 0.696 26,600 26,600 38,000 Vec 34,03 34 63 Canoas 0.092 0.034 5,500 2,030 2,030 60,000 Vec 28,00 35 63 Canoas Canoas 0.569 23,200 23,200 23,200 Vec 28,00 36 66 Anauco 0.171 17,100 6,880 6,880 6,40,000 Vec 52.8 37 66 Gamboa Anauco 0.192 </td <td>28</td> <td>58</td> <td>Chapellin</td> <td>Chacaito</td> <td>1,192</td> <td></td> <td>50,000</td> <td>İ</td> <td>1.000</td> <td>49,000</td> <td>42,000</td> <td>Ve</td> <td>40.0</td>	28	58	Chapellin	Chacaito	1,192		50,000	İ	1.000	49,000	42,000	Ve	40.0
30 58 Cuno Chacaito 0.598 57,100 3,800 53,300 95,000 Ve 24,5 31 58 Chacaito 0.235 0.136 14,000 8,100 8,100 60,000 Ve 10.9 32 62 Mariperez 0.057 3,400 60,000 Ve 2.7 33 62 Mariperez 0.696 26,600 26,600 38,000 Vec 34.0 34 63 Canoas 0.992 0.034 5,500 2.030 60,000 Ve 4.3 35 63 Canoas 0.569 23,200 23,200 23,200 Vec 28.0 36 66 Anauco 0.266 0.107 17,100 6,880 64,800 Vec 28.0 37 66 Gambaa Anauco 0.192 11,400 11,400 59,000 Vec 10.0 40 66 Anauco 0.427 15,600 15,600 </td <td>29</td> <td>58</td> <td>·</td> <td>Chacaito</td> <td>0.069</td> <td></td> <td>4,100</td> <td>İ</td> <td>,</td> <td>,</td> <td>59,000</td> <td>Ve</td> <td>3.3</td>	29	58	·	Chacaito	0.069		4,100	İ	,	,	59,000	Ve	3.3
31 58 Chacaito 0.235 0.136 14,000 8,100 8,100 60,000 Ve 10.9 32 62 Mariperez 0.057 3,400 60,000 Ve 2.7 33 62 Mariperez Mariperez 0.696 26,600 26,600 26,600 38,000 Vec 34.0 34 63 Canoas 0.092 0.034 5,500 2,030 60,000 Ve 4.3 35 63 Canoas 0.569 23,200 23,200 41,000 Vec 28.0 36 66 Anauco 0.266 0.107 17,100 6,880 64,000 Ve 8.8 37 66 Gamboa Anauco 3.071 71,800 71,800 23,000 Vec 52.8 38 66 Anauco 0.427 15,600 15,600 37,000 Vec 10.0 40 66 Anauco 3.69 106,900 68,50	30	58	Cuno	Chacaito	0.598		57,100	İ	3.800	53,300	95,000	Ve	24.5
32 62 Mariperez 0.057 3,400 60.000 Ve 2.7 33 62 Mariperez Mariperez 0.696 26,600 26,600 38,000 Vec 34.0 34 63 Canoas 0.992 0.034 5,500 2,030 60,000 Vec 34.0 35 63 Canoas 0.992 0.034 5,500 2,030 60,000 Vec 34.0 36 66 Anauco 0.266 0.107 17,100 6,880 64,000 Vec 52.8 38 66 Anauco 0.192 11,400 11,400 59,000 Vec 52.8 39 66 Beatas Anauco 0.427 15,600 15,600 37,000 Vec 10.0 40 66 Anauco 3.798 106,900 68,500 38,400 29,000 Vec 50.0 41 66 Anauco 3.798 144,500 93,000	31	58		Chacaito	0.235	0.136	14,000	8,100	, , , , , , , , , , , , , , , , , , ,	8,100	60,000	Ve	10.9
33 62 Mariperez Mariperez 0.696 26,600 26,600 26,600 38,000 Vec 34.0 34 63 Canoas 0.092 0.034 5,500 2,030 60,000 Vec 34.0 35 63 Canoas Canoas 0.569 23,200 23,200 23,200 Vec 28.0 36 66 Anauco 0.266 0.107 17,100 6,880 64,000 Vec 28.9 37 66 Gamboa Anauco 3.071 71,800 71,800 23,000 Vec 52.8 38 66 Anauco 0.192 11,400 11,400 59,000 Vec 52.8 39 66 Beatas Anauco 0.427 15,600 15,600 37,000 Vec 10.0 40 66 Anauco 3.798 106,900 68,500 38,400 29,000 Vec 50.0 41 66 Acouco <	32	62		Mariperez	0.057		3,400				60,000	Ve	2.7
34 63 Canoas 0.092 0.034 5,500 2,030 60,000 Ve 4.3 35 63 Canoas Canoas 0.569 23,200 23,200 23,200 41,000 Vec 28.0 36 66 Anauco 0.266 0.107 17,100 6,880 64,000 Vec 28.0 37 66 Gamboa Anauco 3.071 71,800 71,800 23,000 Vec 52.8 38 66 Anauco 0.192 11,400 11,400 59,000 Vec 10.0 40 66 Anauco 0.427 15,600 15,600 37,000 Vec 10.0 41 66 Anauco 3.798 144,500 93,000 51,500 38,000 Vec 50.0 42 66 Cotiza Anauco 3.798 144,500 93,000 51,500 38,000 Vec 50.0 43 67 Catuche 0.2	33	62	Mariperez	Mariperez	0.696		26,600	İ		26.600	38,000	Vec	34.0
35 63 Canoas Canoas 0.569 23,200 23,200 41,000 Vec 28,00 36 66 Anauco 0.266 0.107 17,100 6,880 64,000 Vec 28,0 37 66 Gamboa Anauco 3.071 71,800 71,800 23,000 Vec 52,8 38 66 Anauco 0.192 11,400 11,400 59,000 Vec 52,8 39 66 Beatas Anauco 0.427 15,600 15,600 37,000 Vec 10.0 40 66 Anauco 0.191 11,400 11,400 60,000 Vec 10.0 41 66 Anauco 3.798 144,500 93,000 51,500 38,000 Vec 56.0 42 66 Cotiza Anauco 3.798 144,500 93,000 51,500 38,000 Vec 56.0 43 67 Catuche 0.269 <t< td=""><td>34</td><td>63</td><td></td><td>Canoas</td><td>0.092</td><td>0.034</td><td>5,500</td><td>2.030</td><td></td><td>2.030</td><td>60.000</td><td>Ve</td><td>4.3</td></t<>	34	63		Canoas	0.092	0.034	5,500	2.030		2.030	60.000	Ve	4.3
36 66 Anauco 0.266 0.107 17,100 6,880 64,000 Ve 8.9 37 66 Gamboa Anauco 3.071 71,800 71,800 23,000 Vec 52.8 38 66 Anauco 0.192 11,400 11,400 59,000 Vec 52.8 39 66 Beatas Anauco 0.427 15,600 15,600 37,000 Vec 10.0 40 66 Anauco 0.427 15,600 11,400 60,000 Vec 10.0 41 66 Anauco 3.69 106,900 68,500 38,400 29,000 Vec 50.0 42 66 Cotiza Anauco 3.798 144,500 93,000 51,500 38,000 Vec 56.0 43 67 Catuche 0.269 11,300 42,000 Vec 10.4 44 67 Catuche Catuche 4.499 95,900	35	63	Canoas	Canoas	0 569		23 200			23 200	41 000	Vec	28.0
00 00 7112000 711200 711200 711200 711200 711200 711200 711200 7112000 7112000 7112000 7112000 7112000 7112000 7112000 7112000 7120000 7120000 7120000 7120000 7	36	66	Gundus	Anauco	0.266	0 107	17 100	6 880		6 880	64,000	Ve	8.9
38 66 Anauco 0.192 11,400 11,400 59,000 Ve 6.4 39 66 Beatas Anauco 0.192 11,400 11,400 59,000 Ve 6.4 39 66 Beatas Anauco 0.427 15,600 15,600 37,000 Vec 10.0 40 66 Anauco 0.191 11,400 11,400 60,000 Vec 6.4 41 66 Anauco 3.69 106,900 68,500 38,400 29,000 Vec 50.0 42 66 Cotiza Anauco 3.798 144,500 93,000 51,500 38,000 Vec 56.0 43 67 Catuche 0.269 11,300 42,000 Vec 10.4 44 67 Catuche 0.269 11,300 42,000 Vec 59.0 45 69 StIsabel Catroata 0.091 5,400 5,400 59,000	37	66	Gamboa	Anauco	3 071	0.107	71 800	0,000		71 800	23 000	Vec	52.8
00 00 711 col 111 col<	38	66	Guillood	Anauco	0.071		11 400			11 400	59,000	Ve	6.4
40 66 Anauco 0.191 11,400 11,400 60,000 Vec 16,400 41 66 Anauco 0.191 11,400 11,400 60,000 Vec 16,400 42 66 Cotiza Anauco 3.69 106,900 68,500 38,400 29,000 Vec 50.00 42 66 Cotiza Anauco 3.798 144,500 93,000 51,500 38,000 Vec 56.00 43 67 Catuche 0.269 11,300 42,000 Vec 10.4 44 67 Catuche 0.269 11,300 95,900 21,000 Vec 59.0 45 69 StIsabel Catroata 0.082 4,900 4,900 60,000 Ve 3.0 46 69 Catroata 0.082 4,900 4,900 60,000 Vec 14.7 47 69 Anau Salud Catroata 0.0428 21,700 21,700 </td <td>39</td> <td>66</td> <td>Beatas</td> <td>Anauco</td> <td>0 427</td> <td></td> <td>15 600</td> <td></td> <td></td> <td>15 600</td> <td>37 000</td> <td>Vec</td> <td>10.0</td>	39	66	Beatas	Anauco	0 427		15 600			15 600	37 000	Vec	10.0
10 11<	40	66	Deatuo	Anauco	0 191		11 400			11 400	60,000	Ve	6.4
11 26 Anaco 3.798 144,500 93,000 50,500 22,000 Vec 50,00 42 66 Cotiza Anauco 3.798 144,500 93,000 51,500 38,000 Vec 50,00 43 67 Catuche 0.269 11,300 42,000 Vec 10.4 44 67 Catuche Catuche 4.499 95,900 95,900 21,000 Vec 59,0 45 69 StIsabel Catroata 0.091 5,400 5,400 59,000 Vec 59,0 46 69 Catroata 0.082 4,900 4,900 60,000 Vec 1.7 47 69 Ana Salud Catroata 0.478 21,700 21,700 Vec 1.4	41	66	Anauco	Anauco	3 69		106 900		68 500	38 400	29,000	Ve	50.0
12 13 14<	42	66	Cotiza	Anauco	3 798		144 500	İ	93,000	51 500	38 000	Vec	56.0
Add for Catuche Output Outpu	42	67	00020	Catuche	0.750		11 300		30,000	01,000	42 000	Vec	10.0
47 67 Outche 4.437 53,500 33,500 21,000 Vec 33.0 45 69 St.Isabel Catroata 0.091 5,400 5,400 59,000 Vec 30.0 46 69 Catroata 0.082 4,900 4,900 60,000 Vec 21.7 47 69 Agua Salud Catroata 0.478 21.700 21.700 45.000 Vec 14.7	40	67	Catuche	Catuche	4 400		95 900			95 900	21 000	Vec	59.0
46 69 Catroata 0.082 4,900 4,900 60,000 Ve 3.0 47 69 Agua Salud Catroata 0.082 4,900 4,900 60,000 Ve 2.1	44	60	St Icabel	Catroata	4.439		5 400			5 400	50 000	Vec	30
47 69 Agua Salud Catroata 0.478 21700 7,500 90,000 Vec 1.7	45	69	SLISADEI	Catroata	0.091		4 900			<u> </u>	60,000	Ve	2.0
	40	69	Amua Salud	Catroata	0.002		21 700			21 700	45 000	Vec	14.7

Table S12-2.3.1 Sediment Runoff Volume for Method-1 and Method-2

Cross	h: Heigh of Debris	B: Flow Width of	U: Velocity of	Ed: Hydraulic	P2. Resistance
Section	Fow	Debris Flow (m)	Debris Flow	Force (kN/m2)	Force (kN/m2)
140.	(m) E10	04.04	(m/s)	101.50	150
2	4.52	38.92	6.92	69.62	4 50
3	4.71	36.34	6.45	58.85	4.50
1	5.04	32.87	6.38	57.41	4.50
5	4.27	48.40	5.04	33.55	4.50
7	4.18	50.13	5.74	43.61	4.50
3	4.17	50.31	5.36	37.98	4.50
9	2.18	148.54	4.72	29.48	4.74
11	2.20	140.71	5.19	20.00	4.00
12	2.44	129.97	4.34	24.48	4.58
13	2.58	118.53	5.16	34,59	4.53
14	2.28	145.71	4.79	29.76	4.66
15	2,48	100.30	5.08	33.54	4.50
17	2.53	122.46	4.55	26.83	4.54
13	2.28	145.71	4.65	28.12	4.66
19	2.28	145.71	4.65	28.03	4.66
20	2.32	140.71	<u> </u>	21.77	4.04
22	2.32	145.71	4.64	27.88	4.64
23	2.33	144.35	3.87	19.30	4.63
24	3.34	79.43	4.68	28.26	4.50
26	3.44	89.45	3.55	15.89	4.50
27	2.69	134.57	4.39	24.25	4.51
23	2.51	141.75	3.46	15.03	4.52
29	2.01	141.75	4.17	21.91	4.52
31	2.01	141.75	3.87	18.84	4.50
32	2.61	141.75	4.59	26.49	4.52
33	2.61	141.75	5.03	31.84	4.52
34	3.58	43.57	5.16	33.43	4.50
36	2.81	125.43	5.33	35.78	4.50
37	2.61	141.75	3.87	18.80	4.52
38	3.84	77.86	3.40	14.47	4.50
40	3.23	139.29	5.24	33.74	4.50
41	4.12	93.14	5.19	33.01	4.50
42	4.34	85.45	5.50	37.10	4.50
43	4.27	87.82	4.89	29.29	4.50
45	3.62	115.41	3.70	16.79	4.50
46	3.66	113.20	3.20	12.56	4.50
47	3.23	139.29	4.41	23.81	4.50
48	3.23	139.29	2.97	10.83	4.50
50	3.64	114.59	4.45	24.34	4.50
51	3.23	139.29	3.97	19.36	4.50
52	3.23	139.29	4.30	22.69	4.50
54	3.23	139.29	3.79	17.03	4.50
55	3.23	139.29	3.98	19.44	4.50
56	3.23	139.29	4.29	22.58	4.50
57	3.23	139.29	5.21	33.28	4.50
58	3.23	139.29	5.43	36.20	4.50
60	3.23	139.29	4.35	23.24	4.50
61	3.23	139.29	3.25	12.98	4.50
62	3.70	138.10	1.94	4.58	4.50
64	3,70	138.10	3.12	11.85	4.50
65	3.70	138.10	4.16	21.02	4.50
66	3.70	138.10	4.84	28.53	4.50
67	3.70	138.10	4.37	23.18	4.50
60	3.70	138.10	3.64	16.15	4.50
70	3.70	138.10	3.13	11.95	4.50
71	3.70	138.10	1.94	4.60	4.50
72	3.70	138.10	2.46	7.34	4.50

Table S12-2.3.2 Example of Calculation Result (Catuche)

Dringing	Watawahad				Yellow Zone			Red Zone						
Frincipal	watershed	В	uilding Cour	nt		Building Area		B	uilding Cou	nt		Building Area		
No.	Name	Barrio	Formal	Total	Barrio	Formal	Total	Barrio	Formal	Total	Barrio	Formal	Total	
		nos.	nos.	nos.	m2	m2	m2	nos.	nos.	nos.	m2	m2	m2	
02_1		46	0	46	2,272	0	2,272		0			0		
02_2		231	168	399	11,312	55,591	66,903		0			0		
02_3		195	96	291	10,348	48,343	58,691	9	27	36	339	10,272	10,610	
4	Caurimare	316	271	587	20,981	121,969	142,950	109	103	212	6,107	79,994	86,101	
5	Galindo	0	18	18	0	5,702	5,702		0	16		4,733	4,733	
6		0	198	198	0	46,569	46,569		0			0		
7		0	90	90	0	21,377	21,377		0	41		5,741	5,741	
8	Pasaguire	0	233	233	0	54,548	54,548		0	60		7,355	7,355	
9		0	171	171	0	51,812	51,812		0			0		
10		0	336	336	0	141,091	141,091		0			0		
11	Gamburi	0	246	246	0	66,192	66,192		0	12		1,937	1,937	
12	La Julia	10	696	706	888	187,272	188,159	8	397	405	838	97,416	98,255	
13		0	92	92	0	29,800	29,800		0	9		3,803	3,803	
14	Tocome	0	638	638	0	160,183	160,183		42	42		11,909	11,909	
15	Tenerias	0	92	92	0	24,275	24,275		0			0		
16	Agua de maiz	115	247	362	5,487	64,580	70,068		0	2		610	610	
17	Sebucan	0	742	742	0	255,255	255,255		0			0		
18		0	507	507	0	152,338	152,338		0			0		
19	Pajarito	0	517	517	0	210,755	210,755		1	1		503	503	
20		0	805	805	0	352,716	352,716		0	1		460	460	
21		0	900	900	0	389,840	389,840		0			0		
22	Quintero	9	1,157	1,166	62	454,710	454,772		0	184		37,703	37,703	
23	Seca	24	529	553	683	186,530	187,213		57	57		7,639	7,639	
24		69	397	466	6,355	140,453	146,808		0	1		548	548	
25	Chacaito	63	454	517	5,487	162,209	167,696	39	209	248	2,635	55,814	58,450	
27		303	484	787	23,016	127,160	150,176		4	4		781	781	
28	Chapellin	255	139	394	18,325	30,036	48,361		0	2		152	152	
29		278	143	421	19,247	26,440	45,687		0			0		
30	Cuno	248	106	354	17,581	21,626	39,207		0	10		1,700	1,700	
31		259	105	364	17,843	21,796	39,639		0			0		
33	Mariperez	0	106	106	0	23,550	23,550		3	32		6,545	6,545	
34		920	154	1,074	61,584	45,133	106,717		0	1		1	1	
35	Canoas(Sarria)	551	341	892	34,297	69,282	103,578	5	5	163	4,471	7,132	11,602	
36		463	755	1,218	20,953	174,237	195,190		0			0		
37	Gamboa	83	315	398	11,277	68,997	80,274		2	17		2,179	2,179	
38		191	433	624	22,346	99,098	121,444		0			0		
39	Beatas	184	169	353	15,849	28,282	44,131		0			0		
40		319	255	574	28,308	40,941	69,249		8	8		815	815	
41	Anauco	339	340	679	32,774	58,615	91,389	290	188	478	26,218	23,045	49,263	
42	Cotiza	64	69	133	3,636	12,680	16,316		0			0		
44	Catuche	659	696	1,355	59,691	194,692	254,383	660	399	1,059	59,967	111,363	171,330	
45	St. Isabel	224	0	224	13,050	0	13,050		0			0		
46		299	275	574	20,588	26,812	47,400	23	10	33	828	443	1,271	
47	Agua Salud	158	224	382	11,774	23,590	35,364	134	0	299	8,665	13,071	21,736	

Table S12-2.3.3 Property in Yellow and Red Zones (Principal Stream Basis)

Note: The count and area of building/house were calculated based on the topographical map of scale 1:5,000.

		Zone Area		m2	595,200	394,000	4,200	22,100	148,500	353,900	53,800	36,600	168,300	393,900	57,200	0	0	0	700	0	2,228,400
			Total		56,400	100,800	0	0	38,500	57,600	600	5,200	48,200	171,100	10,500	0	0	0	0	0	489,000
		uilding Area	Urban	m2	50,000	100,000	0	0	38,500	55,000	600	700	22,000	111,100	1,000	0	0	0	0	0	378,900
Basis)	Red Zone	В	Barrio	m2	6,400	800	0	0	0	2,600	0	4,500	26,200	60,000	9,500	0	0	0	0	0	110,100
vial Fan			Total	nos.	248	448	0	0	50	254	3	10	480	1,054	167			1			2,715
nes (Allu		uilding Count	Urban	nos.	130	440	0	0	50	215	3	5	190	394	10	0	0	1	0	0	1,438
Red Zoi		Bı	Barrio	nos.	118	8				39		5	290	660	157			0			1,277
llow and		Zone Area		m2	1,784,800	997,500	459,800	1,643,600	1,088,500	1,285,700	124,600	556,600	867,900	559,200	172,900	600	71,300	268,400	270,900	62,500	10,214,800
rty in Ye			Total	m2	398,000	332,200	117,100	524,000	337,900	349,200	23,600	210,600	282,300	224,200	79,900	300	17,200	86,500	113,400	27,800	3,124,100
Prope		Building Area	Urban	m2	370,200	331,300	111,700	524,000	337,100	312,200	23,600	127,200	226,100	164,500	40,800	300	17,200	86,500	104,400	27,800	2,804,800
12-2.3.4	Yellow Zone	Ш	Barrio	m2	27,800	900	5,500	0	700	37,000	0	83,300	56,200	59,700	39,100	0	0	0	9,000	0	319,300
Table S		t	Total	nos.	1423	1313	530	1525	909	1546	106	1862	1694	1161	1029	4	38	284	724	201	14,349
		uilding Coun	Urban	nos.	965	1,303	415	1,525	879	1,063	106	592	1,006	502	433	4	38	284	517	201	9,833
		a	Barrio	sou.	458	10	115	0	30	483	0	1,270	688	629	596	0	0	0	207	0	4,516
	Watershed	System	No.		Caurimare	Tocome	Agua de Maiz	Sebucan	Seca	Chacaito	Mariperez	Canoas	Anauco	Catuche	Caroata	51	55	57	64	68	Total

	л
- 1	T
2	2
ρ	Ο
	_
3	
- (σ
-È	
-	_
-	-
	U
	>
	ć.,
	_
	2
<	1
-	_
1	
	-
- 5	-
- (Ľ
	1
- 5	
	-
P	J
•	
-	_
	Ļ
- (Ľ
2	2
β	C
-	
	-
- 5	
	U
1	
	>
	-
	~
1	5
į	5
	ó
	Ó 1
	ó Þ
Volloy	Ó Đ
No IION	
CIICX .	
vellov ei ve	
And Nollow	
static Volley	
Suthing Volla	
Substant in Volley	
South in Volley	
Sector in Veller	
Sector is Velle	
Concerts in Volles	
Dresserts in Velle	
Drements in Velles	
Drements in Velles	
Preserver in Veller	
Descentifier Veller	
A Dreastly in Veller	
1 Dreastly in Valle,	
o I Dresetti in Vellei	
O J Dresetti in Vellei	
7.2.4 Discussified in Velley	
O J Drementin in Veller	
O O O Discouti in Velle:	
O O O D D CONTRACT IN Volley	
10001 Duesenti, in Vellei	
CADODA Ducestry in Velley	
CIDDI Ducuetti in Vellei	
CIDD I DECENTING Volley	
CIDD A Dreserts in Velles	
Ic C40 0 0 Diseast in Valle.	
In Circles A Dummarkin in Valles	
ble Cin Jo A Dueneutri in Vellei	
chic Cin o o A Dreservi is Velle	
Table C40.0.0.4 Dresserin is Veller	
Table 642.5.5.4 Dresstrid in Valley	

Note: The count and area of building/house were calculated based on the topographical map of scale 1:5,000.

Figure S12-2.3.1 Structure Model for Concrete Column

Figure S12-2.3.2 Yield Strength Curves for Red Zone Delineation

Figure S12-2.3.3 Example of Cross Sections for Method 1

Figure S12-2.3.4 Definition of Yellow Zone

Figure S12-2.3.6 Debris Flow Hazard Map by Method-1

Figure S12-2.3.7 Number of House in Red Zone