BASIC DESIGN STUDY REPORT ON THE PROJECT FOR THE IMPROVEMENT OF NATIONAL ROAD NO.1 (PHNOM PENH-NEAK LOUENG SECTION) IN THE KINGDOM OF CAMBODIA

MARCH 2005

JAPAN INTERNATIONAL COOPERATION AGENCY GRANT AID MANAGEMENT DEPARTMENT

PREFACE

In response to a request from the Royal Government of the Kingdom of Cambodia, the Government of Japan decided to conduct a basic design study on the Project for the Improvement of National Road No.1 and entrusted the study to the Japan International Cooperation Agency (JICA).

JICA sent to Cambodia a study team three times from March 3 till March 27, from April 17 till May 22, and from August 26 till September 9, 2004 respectively.

The team held discussions with the officials concerned of the Royal Government of Cambodia, and conducted field studies at the study area. After the team returned to Japan, further studies were made. Then, three missions were respectively sent to Cambodia from October 21 till November 4, 2004 in order to discuss a draft design, conduct the supplementary study from January 22 till February 10, 2005, and the environment baseline survey undertaken from March 5, till March 19, 2005, then, as this result, the present report was finalized.

I hope that this report will continue to the promotion of the Project and to the enhancement to friendly relations between two countries.

I wish to express my sincere appreciation to the officials concerned of the Royal Government of the Kingdom of Cambodia for their close cooperation extended to the team.

March 2005

Seiji KOJIMA Vice President Japan International Cooperation Agency

Letter of Transmittal

We are pleased to submit to you the basic design study report on the Project for the Improvement of National Road No.1 (Phnom Penh – Neak Loueng Section) in the Kingdom of Cambodia.

This study was conducted by Consortium between Katahira & Engineers International and CTI Engineering International, under a contract to JICA, during the first year period from March 1, 2004 till February 28, 2005, the second year period from March 2, till March 31, 2005. In conducting the study, we have examined the feasibility and rationale of the Project, with due consideration to the present situation of Cambodia and formulated the most appropriate Basic Design for the Project under Japan's grant aid scheme.

Finally, we hope that this report will contribute to further promotion of the Project.

Very truly yours,

Tsuneo BEKKI

Chief Consultant/O&M Planner

Basic Design Study Team on the Project for The Improvement of National Road No.1 (Phnom Penh – Neak Loueng Section)

Consortium between Katahira & Engineers International and CTI Engineering International

Location Map

PERSPECTIVE (WIDENING OF ONE ROAD SIDE)

AS-BUILT PHOTOS

Western Side View from Monivong Bridge Eastern Area (near Sta. 0+000)

Existing Road Circumstance (near Sta. 13+600)

Pipe Culvert PC-1 (near Sta. 23+983)

Existing Road Circumstance (near Sta. 25+360)

Water Gate WG-1 (near Sta.28+432)

Existing Waterway Conditions (near Sta. 28+432)

Road Surface Conditions of Water Gate BC-5 (near Sta. 41+006)

Existing Road Circumstance (near Sta. 42+190)

Replacement Bridge No.2 (near Sta. 42+800)

Replacement Bridge No.3 (near Sta. 47+940)

Water Gate BC-11 (near Sta.42+995)

Existing Road Circumstance (near Sta.55+100)

LIST OF TABLES

Page

T.11.22111	Desire Plant I. and P. Stime / Desire Des 11 and	2.4
Table 2.2.1.1-1	List of the Title of Democratic of Level Design Road Level.	2-4
Table 2.2.1.3-1 Table 2.2.1.2.2	List of the Title of Representative of Local Residents (Kingdom of Cambodia)	2-13
Table 2.2.1.3-2 Table 2.2.1.3.2	Dridge Length	2 - 14 2 1 2
Table 2.2.1.3-3 Table 2.2.1.4.1	L continue of Cultureta	2-13
Table 2.2.1.4-1 Table 2.2.1.4.2	The Degrifterments from Level Degridents	2-13
Table 2.2.1.4-2 Table 2.2.1.4.2	Width and Elevation of Culturate	2-10
Table 2.2.1.4-5 Table 2.2.1.5.1	Ordinary Market Area	2 - 1 / 2 - 1 9
Table 2.2.1.3-1 Table 2.2.1.5.2	L sostions of Dus Stan/Defuge Space (Connection Dead)	2-10
Table 2.2.1.3-2 Table 2.2.1.5.2	Locations of Bus Stop/Refuge Space (Connection Road)	2-19
Table 2.2.1.3-5 Table 2.2.1.12.1	Survey Degult of Noise Level	2-20
Table 2.2.1.13-1 Table 2.2.1.13-1	Survey Result of Noise Level	2-24
Table 2.2.1.13-2 Table 2.2.1.13-2	12 hours Soctional Traffic Volume Survey Desult	2-23
Table 2.2.1.13-3 Table 2.2.1.13-4	12 Hours Sectional Hame volume Survey Result	2-23
Table 2.2.1.13-4	Comparison of the Test Date with the Standards of Sampled Water	2-27
Table 2.2.1.13-3 Table 2.2.1.13-6	Comparison of the Test Data with Dequired Piver Water Standards	2-27
Table 2.2.1.13-0 Table 2.2.2.1.1	Major Component of the Project	2-20
Table 2.2.2.1-1 Table 2.2.2.2.1	Coomparing Design Criteria	2-30
Table $2.2.2.2-1$	Traffic Volume in Vest 2004 (12hours, Both Sides)	2-32
Table $2.2.2.2-2$	Fynanding Easter of Traffic Volume	2-33 2 34
Table $2.2.2.2-3$	Expanding Factor of frame volume	2-34
Table 2.2.2.2-4 Table 2.2.2.2.5	Polation Potwaan Sarvia I aval and V/C Patio in UCM	2-34
Table 2.2.2.2-3 Table 2.2.2.2 6	Deale Traffia Valume Dar Hour and V/C Patia in Vaar 2016	2-35
Table 2.2.2.2-0 Table 2.2.2.2 1	Division of the Section and CDD of Each Section	2-33
Table 2.2.2.3-1 Table 2.2.2.3 2	Cumulative 18 kin ESAL per Lane in Service Duration	2-37
Table 2.2.2.3-2 Table 2.2.2.3 2	Pequired SN corresponding to design CBP	2-30
Table 2.2.2.3-3 Table 2.2.2.3 4	Thickness of Stabilization	2-30
Table 2.2.2.3-4	Devemont Structure Examination	2-40
Table 2.2.2.3-3 Table 2.2.2.4 1	Proposed Elevation of Bridges	2-42
Table 2.2.2.4-1 Table 2.2.2.4-1	Comparative Study on Pier Type	2-40
Table 2.2.2.4-2 Table 2.2.2.4-2	Comparative Study on Foundation	2-51
Table 2.2.2.4-3 Table 2.2.2.4 A	Comparative Study on Foundation	2-52
Table 2.2.2.4-4 Table 2.2.2.4 1	Social Social Superstructure	2-55
Table 2.2.2.0-1 Table 2.2.2.6.2	Details of Catchment Area of the Road Drainage	2-30
Table 2.2.2.0-2 Table 2.2.2.6-3	Required Properties RC Pipe (IIS A 5302 Class2 or More)	2-57
Table 2.2.2.0-5 Table 2.2.2.6- 1	Outlet	2-00
Table 2.2.2.0-4 Table 2.2.2.6-5	Result of Hydraulic Analysis of Road Drainage Facility	2-01 2-62
Table $2.2.2.0-3$	Structure of Piverbed Protection	2-02
Table $2.2.2.7-1$	Structure of Revetment at Opening Section	2-05
Table 2.2.2.7-2 Table 2.2.2.8-1	Countermeasures against Road Slone Frosion	2-04
Table 2 2 2 9-1	Dimension and Quantity of Replacement Method	2-00
Table 2.2.2.)-1	Comparative Evaluation of Chbar Ampoy Intersection	2-72 2_75
Table 2.2.2.10-1	Schedule of Retaining Wall	2-75 2-77
Table 2.2.2.11-1 Table 2.2.2.11-2	Location of Guidenost and Guardrail	2-77
Table 2.2.2.11-2 Table 2.2.4 3_{-1}	Undertakings of Both Governments	2-75
Table 2.2.4.5-1 Table 2.2.4.5-1	Quality Control Plan for Concrete Work	2-85
Table 2.2.4.5-1 Table 2.2.4.5-2	Quality Control Plan for Earthwork and Pavement Work	2-86
Table 2.2.4.5-2 Table 2.2.4.6-1	Material Progurement Plan	2-80
Table 2.2.4.0-1 Table 2.2.4.6-2	Procurement Plan of Major Equipment	2-07
Table 2.2.7.0-2	Implementation Schedule	2-00
Table 2.5.7.1	Maintenance Plan and Cost Estimate	2-90
Table 2.5.2-1	Total Maintenance Budgets in the Last Three Vears	2-90
Table 3 1-1	Direct Effects by the Implementation of the Project	3_1
Table 3 1-7	Indirect Effects by the Implementation of the Project	3_3
Table 3 1-3	Direct Negative Effects by the Implementation of the Project	3-J 3_A
Table 3 1-4	Indirect Negative Effects by the Implementation of the Project	3_4
- 4010 2.1 1	maneee regaine Energy of the implementation of the roject	5 7

LIST OF FIGURES

		Page
Figure 2.2.1.1-1	Design Flood Level and Existing/Design Road Longitudinal Section	2-4
Figure 2.2.1.2-1	Future Cross Section	2-8
Figure 2.2.1.2-2	Cross Section with Road Widening in Unpopulated Areas	2-9
Figure 2.2.1.2-3	Cross Section with Road Widening in Populated Areas	2-10
Figure 2.2.1.2-4	Cross Section with Road Widening in Urbanized Area	2-10
Figure 2.2.1.2-5	Cross Section with Road Widening at Market area	2-11
Figure 2.2.1.5-1	Conceptual Plan of Road Facilities	2-21
Figure 2.2.1.13-1	Location Map of Survey Points	2-26
Figure 2.2.1.13-2	Distribution Map of Rare Spices	2-29
Figure 2.2.2.1-1	Project Layout	2-31
Figure 2.2.2.2-1	Relation between V/C Ratio of 4-lane and Service Level	2-36
Figure 2.2.2.3-1	CBR Test Result and Section Division	2-39
Figure 2.2.2.3-2	Typical Cross Section (Type1, Type2)	2-44
Figure 2.2.2.3-3	Typical Cross Section (Type3, Type4)	2-45
Figure 2.2.2.3-4	Typical Cross Section (Type5, Type6)	2-46
Figure 2.2.2.3-5	Typical Cross Section (Type7, Superelevation on Curved Section)	2-47
Figure 2.2.2.4-1	Width of Bridge	2-48
Figure 2.2.2.4-2	Location of Abutment	2-49
Figure 2.2.2.7-1	Plan of Revetment and Riverbed Protection at Opening Section	2-64
Figure 2.2.2.8-1	Location Map of Countermeasures against Road Slope Erosion	2-67
Figure 2.2.2.8-2	General Section of Road Embankment	2-68
Figure 2.2.2.8-3	Green Belt	2-69
Figure 2.2.2.8-4	Wet Masonry Revetment	2-70
Figure 2.2.2.9-1	Cross Section of Replacement Method	2-71
Figure 2.2.2.10-1	Channelized T-type Intersection	2-74
Figure 2.2.2.10-2	Tiger Beer Road Intersection	2-76

ABBREVIATIONS

AASHTO	:	American Association of State Highway and Transportation Officials
AC	:	Asphalt Concrete
ADB	:	Asian Development Bank
AH	:	Asian Highway
BC	:	Box Culvert
BCU	:	Bridge Construction Unit
BOD	:	Biological Oxygen Demand
CBR	:	California Bearing Ratio
C.C.P	:	Cast-in-place Concrete Pile
CO	:	Carbon Monoxide
DMS	:	Detailed Measurement Survey
DO	:	Dissolved Oxygen
EL	:	Elevation
E/N	:	Exchange of Note
ESAL	:	Equivalent Single Axle Load
F/S	:	Feasibility Study
GDP	:	Gross Domestic Product
GOJ	:	Government of Japan
HCM	:	Highway Capacity Manual
HV	:	Heavy Vehicles
H.W.L	:	High Water Level
IRC	:	Inter-Ministerial Resettlement Committee
JICA	:	Japan International Cooperation Agency
LV	:	Light Vehicles
MC	:	Motor Cycles, Motorbike
MPWT	:	Ministry of Public Works and Transport
MRC	:	Mekong River Commission
NO_2	:	Nitrogen Dioxide
PAPs	:	Project Affected Persons
PC	:	Pre-stressed Concrete
РС	:	Pedal Cycles
PCU	:	Passenger Car Unit
PH	:	Ionized Hydrogen Concentration Index
PRW	:	Provisional Road Width
RAP	:	Resettlement Action Plan
RCC	:	Road Construction Center
ROW	:	Right of Way
SN	:	Structure Number
SO_2	:	Sulfate Dioxide
SS	:	Suspended Solid
T/N	:	Tender Notice
TSP	:	Total Suspended Particulated
UNDP	:	United Nations Development Program
V/C	:	Traffic Volume/Traffic Capacity
V/C	:	Verification of Contract

SUMMARY

National Road No.1 connects the Cambodian Capital "Phnom Penh" and "Ho Chi Minh City" the primary commercial city in Vietnam. Furthermore, this national road forms a part of the Asian Highway (A-1) as a well-known international arterial road.

The improvement project for this national road belongs to the National Second Five-year Plan (2001-2005) and has a high priority. The section with about 105 km from Neak Loueng up to the border of Vietnam has been improved in 2003 by ADB.

However, because the section with about 56 km from Phnom Penh to Neak Loueng is located within the floodplain parallel to the Mekong River, it is the most difficult section to apply the design and construction. As a result, ADB excluded this section from their improvement list.

The traveling speed is restricted with an average of just about 30 kph due to severe damages of the section mentioned above, therefore the improvement of the section is an urgent problem by which the Royal Government of Cambodia is confronted.

To cope with the problem, the Royal Government of Cambodia requested a grant aid from Japan to improve the said section.

To analyze a hydraulic influence upon the requested area was arisen to necessity, and the Feasibility Study on the Improvement of National Road No.1 (Phnom Penh – Neak Loueng section) had carried out. Approximately one thousand and eight hundred (1,800) households were assumed to be affected due to the road widening. Then the Preparatory Study (Social Environmental Consideration Support Study) was carried out to confirm the fundamental agreement on the road improvement from the PAPs those must be resettled. Then, as a result 70% \sim 80% of agreement from these PAPs was confirmed.

In response to the above-mentioned request, the Government of Japan (GOJ) decided to implement the Basic Design Study. JICA dispatched the Basic Design Study Team for the next three (3) periods: from March 3 till March 27, from April 17 till May 22 and from August 26 till September 9, 2004. The Basic Design Study Team carried out the study in the Project area including the discussion with the Government of Cambodia.

After returning to Japan, the Basic Design Study Team conducted the Basic Design with the optimum project contents based on the outcomes of field investigation, and thus prepared the Basic Design Outline by summarizing those detail contents. Finally, JICA dispatched a Basic Design Outline Presentation Team from October 21 till November 4, 2004, and presented the outline of Basic Design together discussion with the Royal Government of Cambodia.

Additionally, the team of Supplement Study has been dispatched for environment social considerations from January 22, 2005 till February 10, 2005, and another for Environment Baseline Survey from March 5, 2005 till March 19,2005, to the Royal Government of Cambodia.

Conclusively, the outline of the Project to be proposed is as below based on the results of basic design outline presentation.

Target Road	National Road No.1 (Section from Phnom Penh Municipality to Neak Loueng) 55.98 km long						
Construction	(1) Monivong Bridge Eastern Area Section: Sta. 0+000 - Sta. 1+800						
of	① 4-lane carriageway for 4-wheel vehicles $(4 @ 3.5 m = 14.0 m)$						
Cross-section	\bigcirc 2-lane carriageway for motorbike (2 \bigcirc 2.5 m = 5.0 m)						
	③ Sidewalk (Standard is 2.5 m x $2 = 5.0$ m, and variation on some sections)						
	(2) General Section: Sta. 1+800 - Sta.54+740						
	(1) 2-lane carriageway for 4-wheel vehicles (2 (a) 3.5 m = 7.0 m)						
	② 2-lane carriageway for motorbike $(2 @ 2.5 m = 5.0 m)$						
	(3) Sidewalk (2 (a) 2.5 m = 5.0 m, and variation on some sections) and/or Shoulder (2 (a) 1.0 m = 2.0 m)						
	(3) Special Section: Other large-scale market area and Neak Loueng area						
Design Speed	80 kph (Except large-scale market or populated area)						

Major Contents of the Project:

1. Improvement of Widening of Road i) All the way with 55.98 km (Sta. 0+000 - Sta. 55+980)	
Road Width ii) 4-lane Section: 1.8 km	
iii) 2-lane Section: 54.18 km	
Raising of Road Surface Almost all the way excluding the vicinity of the beginning and the endi	ng
Pavement i) All the way: 55.98 km	
ii) 4-wheel lane carriageway, Motorbike lane carriageway, sidewalk, ar	nd shoulder
2. Widening of Small-scale Market Area 3 nos.	
Shoulder on Bus Stop/Emergency 20 nos.	
Roadside Service Evacuation Space	
Facilities School/Hospital Area i) School: 31 nos.	
ii) Hospital : 9 nos.	
3. Bridge (PC I-girder Type) 3 bridges:	
i) Length: 240.6 m (68.8 m + 103 m + 68.8 m)	
ii) Replacement: 2 bridges	
iii) Newly Construction: 1 bridge	
4. Culvert Nine (9) nos.:	
i) Pipe Culvert: 2 nos. (reconstruction), Total Length: 50.1 m	
ii) Box Culvert: 7 nos. (Reconstruction: 2 nos., New Construction: 5	nos.), Total
Length: 107.1 m	
5. Road Drainage Facilities i) Side Ditch: Total Length of 2,230 m	
ii) Drainage Pipe: Total Length of 5,045 m	
6. Revetment/Riverbed Revetment i) Bridge: 3 nos.	
Protection on the ii) Culvert: 9 nos.	
Openings Riverbed Protection i) Bridge: 3 nos.	
ii) Culvert: 9 nos.	
7. Measures for Slope Greenbelt i) Gross total : L=2,800 m	
Erosion/Scouring Wet Masonry The Mekong River side: L=1,060 m	
8. Measures for (1) Replacement by i) The Mekong River Side: L=16.52 km	
Embankment Weak High-quality Soils ii) Colmatage Side: L=44.96 km	
Foundation (Soft (2) Replacement by i) The Mekong River Side: L=0.80 km	
Ground) Sands ii) Colmatage Side: L=1.72 km	
9. Crossing Improvement of i) Chbar Ampov Crossing; and ii) Tiger Beer Crossin	g
10. Ancillary Facilities (1) Retaining Wall i) Masonry Retaining Wall: L=1.635 m	2
ii) RCL Retaining Wall: L= 1.166 m	
(2) Road Marking & i) Road Marking; Centerline, Carriageway, Lateral Line, and 3	9 nos. of
Traffic Sign Pedestrian Crossing	
ii) Traffic Sign: 20 nos. of Regulation Sign. 112 nos. of Warning Sign.	and 21 nos.
of Guide Sign	
(3) Guardrail i) The Mekong River Side: L=180 m	
ii) Colmatage Side: L=180 m	
(4) Guidepost 1,010 nos.	
(5) Access to the 269 nos.	
Connecting Roads	
(6) Road Hump 6 nos.	
(7) Truck Scale 2 nos.	

The Project will be undertaken by the Grant Aid of Japan and the detailed design and construction periods are planned to be seven (6.5) months and fifty two (52) months respectively. Total project costs of 8,194 million Japanese yen (Japanese Government's payment: 7,562 million Japanese yen, Cambodia Government's Payment: 632 million Japanese yen) were estimated.

At the beginning, the Project was planned to be implemented in two (2) phases as follow:

Phase 1 : Sta.23+900 - Sta.55+980

Phase 2 : Sta.0+000 - Sta.23+900

However, it was necessary to take a cautious countermeasures and obtain a reasonable agreement from PAP, then the Project is divided into following three (3) stages.

Stage - 1: Construction of No.2 and No.3 Bridges.

This is the most urgent component to rehabilitate.

Stage - 2: Improvement from Sta.13+100 to Sta.55+980 (end point).

Improvement work will proceed from the end point to the beginning.

Stage - 3: Improvement from Sta.0+000 to Sta.13+100.

Both Stage - 2 and Stage - 3 make the Project available to take flexible countermeasures considering a prospective agreement from PAP.

The direct beneficiaries by the Project are those residents with the populations of 2.42 million (2003) live in Phnom Penh (populations of 1.23 million) and Kandal Province (populations of 1.19 million), and indirect beneficiaries are 13.29 million populations (expectancy in 2003) of the whole nation. The advantageous effects resulted from the implementation of the Project are summarized as below.

- Function as an arterial road will improve because the existing road is narrow and congested with mixed vehicles and motorcycles traffic. This is causing the lower efficiency of traffic flow and significantly disturbing the function as an arterial road.
- Not enough traffic service facilities are provided, existing vehicle parking space and side walk are narrow or none. These make the residents inconvenient. Along the market area, school and hospital area new traffic service facilities are considered in the Study to improve the road function as life line.
- As a result of increased traffic capacity and improved mobility, trip time between Phnom Penh and Neak Loueng can be shortened as 45 - 50 minutes by upgrading the traveling speed from about 30 kph now up to 80kph for most sections.
- Traffic accidents, caused by mixed traffic, are expected to be reduced by the implementation of traffic separation between four and two wheels drivings. In addition, the provision of traffic sign board, guardrail, and hamper is also expected to increase traffic safety for vehicles and residents.
- At present, the load limits are 15 tons for the existing one-lane temporary Bailey bridges. Transport of large-scale goods can be made more efficient by applying the design loads of 20 tons together with the widening of bridge's width.
- To improve the soundness of road surface and safe traveling at the time of flood by improving the road elevation as flood control measures. Moreover, the flood control effects on the Mekong River can be strengthened by the construction/installation of more waterway openings (3 bridges, 2 pipe culverts and 7 box culverts). In addition, the agricultural promotion in the Colmatage side can be expected by the scaling up of farmlands to be irrigated by the inflow of overflow floodwater.
- The rainwater discharged into the road during raining will cause the lowering of traffic function and the inhibition of traffic safety because no rainwater drainage facilities exist within the urbanized area. Such situation can be resolved by installing the road surface drainage facilities.
- Socio-economic activities become active through the promoted people and physical exchanges due to the improved function of National Road No.1. Moreover, living standards will be upgraded together with the improvement of user-friendliness along the road because of the enhanced function of living road.

As mentioned above, significant advantageous effects will be expected from the Project. In addition, the regional gaps between the Capital Phnom Penh and local region can be eliminated by facilitation of human and physical migration. It can be judged that the Project to be undertaken by the Grant Aid of Japan is appropriate from the viewpoint of contributing the Cambodian nationwide socio-economic vitalization. However, it is considered that both of personnel and funds are unsatisfactory in management and maintenance for the Project.

Therefore, maintenance shall be adequately done by the Government of Cambodia to manifest/sustain the Project's significant advantageous effects. Especially, the cleanup activities for the road and bridge drainage facilities are most important. Moreover, it is considered that the significant advantageous effects of the Project can be enlarged through the improvement on the sections other than the tie-up target section to be carried out by self-help efforts.

This Grant Aid Project is implemented on condition that the Royal Government of Cambodia shall obtain an appropriate agreement from PAP relating to the involuntary resettlement.

Moreover, the Royal Government of Cambodia is required to make valid the provided facilities through the restriction of driving speed and traffic safety education to the residents etc. after completion of the Project.

TABLE OF CONTENTS

Preface Letter of Transmittal Location Map Perspective List of Figures & Tables Abbreviations Summary

Chapter 1		Background of the Project						
Chaj	pter 2	Contents o	of the Project	2-1				
2.1	Basic	Concept of	the Project	2-1				
2.2	Basic	Design of th	he Requested Japanese Assistance	2-3				
	2.2.1	Design P	olicy	2-3				
	2.2.1	2 2 1 1	Improvement Policy in Consideration of Mekong River Flood	2-3				
		2.2.1.2	Improvement Policy in Environmental and Social Considerations	2-7				
		2213	Bridge Location and Length	2-13				
		2.2.1.5 2 2 1 4	Culvert Location and Length	2-15				
		2215	Road Facilities	2-18				
		2216	Consideration on Natural Conditions	2-10				
		2217	Consideration on Socio-economic Conditions	2-22				
		2.2.1.7	Consideration on Construction and Procurement Conditions	······ 2 22 2_22				
		2.2.1.0	Participation of Local Construction Companies	2_22				
		2.2.1.9 2 2 1 10	Implementing Agencies' Ability in Management and Maintenance	······ 2-23				
		2.2.1.10	Establishment of Facility Grade	······ 2-23				
		2.2.1.11	Construction and Procurement Method and Construction Period	2-23				
		2.2.1.12	Environment Baseline Survey	2-23				
	222	Basic Pla	n	2-30				
	2.2.2	2 2 2 1	Overall Design	2-30				
		2.2.2.1	Road Design	2-32				
		2222	Pavement Design	2-37				
		2.2.2.3	Bridge Design	2-48				
		2.2.2.7	Culvert Design	2-40				
		2.2.2.5	Drainage Design					
		2.2.2.0	Revenuent and Riverbed Protection Design at Opening Section					
		2.2.2.7	Design of Countermeasures against Road Slope Embankment	2-05				
		2.2.2.0	Design of Countermeasures against Noted Stope Embankment	2-03				
		2.2.2.9	Intersection Design	2-71				
		2.2.2.10	Ancillary Facilities Design	2-73				
	2.2.3	Basic De	sign Drawings	2-80				
	224	Impleme	ntation Plan	2-81				
	2.2.4	2.2.4.1	Implementation Policy					
		2.2.7.1 2242	Implementation Conditions					
		2.2.7.2 2 2 4 3	Scope of Works	······ 2-82 7_83				
		2.2.7.5 2 2 4 4	Consultant Supervision	······ 2-85 7_84				
		2.2.7.7 2 2 4 5	Quality Control Plan					
		2.2.7.3	Producement Dlan	······ 2-30 2 87				
		2.2.4.0	Implementation Schedule	······ 2-07				
		2.2.4./	Imprementation Senedule					

2.3	Obligations of the Royal Government of Cambodia				
2.4	Project Operation Plan	2-92			
2.5	Rough Project Cost	2-94			
	2.5.1 Rough Estimate of Project Cost	2-94			
	2.5.2 Estimated Maintenance Cost	2-96			
Chap	ter 3 Project Evaluation and Recommendations	3-1			
3.1	Project Effect	3-1			
3.2	Recommendations	3-5			
3.3	Project Adequacy	3-7			

[Appendices]

- 1. Member List of the Study Team
- 2. Study Schedule
- 3. List of Parties concerned in the Recipient Country
- 4. Minutes of Discussions
- Cost Estimation Borne by the Recipient Country
 References

[Appendices in Separate Volume]

- 7. Traffic Data
- 8. Basic Design Drawings

Chapter 1 Background of the Project

Road networks in Cambodia had been ruined due to the lack of maintenance, damage by flooding, destruction by bombing or mines and load increase of vehicles etc., which are brought from the Civil War during 1970 to 1980's. Since 1993, donor countries such as Japan, and international funding agencies as ADB and World Bank has started to provide Cambodia with the assistance to restore infrastructure, however, as of 2003, road repaired under modern technology is 1,200 km which accounts for 60% of the trunk road, so that the improvement of the roads which connect the center of provinces with Phnom Penh is an urgent issue.

Under such circumstances, the Royal Government of Cambodia put up one of the targets, to restore and reconstruct main national trunk roads for the improvement of road transport networks, under the "National Second Five-year Plan" for Socio-economic Development, from 2001 to 2005. The National Road No.1 is the most important infrastructure having multipurpose functions such as international trunk road, regional development and life road. However, due to traffic congestion and damages to the pavement brought from increase of traffic, and the location of road alignment in floodplain, are causing traffic obstruction. The Royal Government of Cambodia made a request of Grant Aid for the improvement of the National Road No.1 Phnom Penh to Neak Loueng Section, to the Government of Japan, as part of road improvement plan.

Upon the receipt of the request, the Government of Japan has dispatched the delegation and carried out the F/S of Development Plan, from April 2002 to March 2003, and the result of the Study resulted in execution of the Preliminary Study in January 2004.

Contents of the Request

The contents of the original request were as follows:

- Road improvement, including road structures etc., of about 56km on the National Road No.1 between Phnom Penh and Neak Loueng especially, remedial works to the damage, such as bridges and culverts etc., caused by the flood occurred in AD 2000.
- 2) Improvement of the Monivong Bridge with a length of 283 m.

Among the requests, both Governments agreed on the conducting the Basic Design Study on item 1), but not item 2).

Chapter 2 Contents of the Project

2.1 Basic Concept of the Project

(1) Overall Goal and Project Purpose

The Royal Government of Cambodia, formulates three (3) national development objectives. In the Second Five-year Socio-economic Development Plan (year 2001-2005). The three objectives are:

- Economic growth that is broad enough to include sectors where the poor derive their livelihood;
- · Social and cultural development; and
- · Sustainable use of natural resources and sound environmental management.

Development of the basic infrastructure in the transport sector is essential in achieving an economic growth with equity and social development. The policy objective of developing the transport infrastructure is to be attained by giving first priority to road rehabilitation with an associated improvement in operations and maintenance capability. The plan has three main aims:

- To rehabilitate and reconstruct the main national roads, thereby improving land transport throughout the nation;
- To build road links to neighboring countries, thereby opening up some of the more remote areas of the country to international trade and tourism; and
- To develop a sustainable road maintenance program, thereby assuring that investment in road rehabilitation and reconstruction generates sustainable benefits.

The road network in Cambodia consists of 4,165 km of national roads (1,988 km of 1-digit national roads and 2,177 km of 2-digit national roads), 3,615 km of 3-digit provincial roads and 31,000 km of rural and strategic roads. National Road No.1, which is the project road, extends from Phnom Penh Municipality to Ho Chi Minh City the primary commercial city in Vietnam. The National Road No.1 is also the Asian Highway No. A-1 and serves as the Second East-West Corridor, which is given a high priority in this plan.

The overall goal and project purpose are as follows:

- · Overall Goal : To stimulate socioeconomic activities in Cambodia.
- Project Purpose : To improve the movement of people and goods between Phnom Penh Municipality and Ho Chi Minh City.
- (2) Basic Concept of the Project

This project aims to improve National Road No.1 (Phnom Penh - Neak Loueng Section),

approximately 56 km long including opening sections and revetments, to achieve the above over all goal.

However, approximately 105 km section of from Neak Loueng to the border of Vietnam has improved as a part of the Asian Highway No. A-1 in 2003 by ADB fund.

This section, approximately 56 km long, and located at the floodplain paralleling the Mekong River, is difficult to be designed and constructed. Moreover, the flood in 2000 has caused extensive damage to this section. Before this survey, the Feasibility Study in 2002 and Preparatory Study on the confirmation of Environmental and Social Consideration for the Project in 2003 was implemented.

The project is expected to smoothen the traffic and shorter the travel time as a result of the improvement of the road function.

2.2 Basic Design of the Requested Japanese Assistance

2.2.1 Design Policy

The following twelve (12) items are established as the design policy for the Project, out of which the first five (5) items are related to the basic concept with regard to formulation of the framework of the Project and the remaining seven (7) items are related to the other relevant matters.

2.2.1.1 Improvement Policy in Consideration of Mekong River Flood

(1) Design Flood Level and Design Road Level

Following the concept of the Feasibility Study, the annual maximum water level recorded on September 20, 2000 in the annual maximum water levels since 1960 at Chaktomuk gauging station (located at the confluence between the Mekong River and the Bassac River in Phnom Penh) is set as the Design Flood Level. However, the Design Flood Level of entire section of the Project is set adding the flood water level at Prek Yourn Water Gate, Koki Thom Water Gate, and Neak Loueng gauging station.

The return period of this Flood Level is calculated at approximately 12 years in the Feasibility Study. But based on the reexamination, the return period of this Flood Level seems to be 50-year to 100-year of return period.

Since the design standards for determining high water level is not available in Cambodia, the "Ordinance for Structural Standard for River Administration Facilities" has been referred to for the purpose. Moreover, the determined figure is effective to present an overflow on the road, accordingly the deterioration of the asphalt concrete surface course and gravel base course would be prevented, and the Design Road Level against flood is therefore set as follows:

Design Road Level = Design Flood Level + Freeboard (over 50cm)

The relation between the Design Flood Level and the Existing and Design Road Level is shown in Table 2.2.1.1-1 and Figure 2.2.1.1-1.

Location	Monivon Bridge East Coast	Confluence between Mekong and Bassac	Prek Pol Water Gate	Prek Yourn Water Gate	Koki Thom Water Gate	Neak Loueng
Station	0+000	3+500	28+430	31+100	45+740	55+300
Design Flood Level	10.18	10.18	9.04	8.92	8.40	7.79
Existing Road Level	14.06	9.97	9.86	9.43	8.88	8.04
Existing Road Level-Water Level	3.88	-0.21	0.82	0.51	0.48	0.25
Design Road Level	14.06	11.31	10.10	10.00	9.45	8.04
Design Road Level - Water Level	3.88	1.13	1.06	1.08	1.05	0.25

 Table 2.2.1.1-1
 Design Flood Level and Existing and Design Road Level

Figure 2.2.1.1-1 Design Flood Level and Existing/Design Road Longitudinal Section

- (2) Hydraulic Characteristics at Opening Structure
 - 1) Purpose of Placing Opening Structures

The purpose of placing opening structures is flood control, that is the flood water level between Phnom Penh and Neak Loueng and crossing National Road No.11 will decrease due to the inflow of the Mekong River to the floodplain. At this point, the influence to agriculture and residences caused by the inflow of floodwater are considered sufficiently.

2) Scale of Entire Opening Section

The Feasibility Study proposed the scheme for increasing the present discharge flow to the floodplain by placing new opening structures subject to a limitation of $3,600 \text{ m}^3/\text{s}$ of the

calculated flow discharge through the floodplain. All designs in this study follow the scheme mentioned above.

3) Setting of the Opening Structure Locations

The opening structure locations are determined, considering the scheme for new construction and improvement of opening structures proposed in the Feasibility Study and hearing survey to the residents along the Project road in this survey.

4) Inflow Analysis

The inflow analysis in this survey on floodwater from the opening section at design flood water level resulted to a total inflow amount of 3,600m³/s which is nearly equal to the ability of floodplain.

However, in the Feasibility Study the total inflow amount is $2,798m^3/s$ (which is 78% of $3,600m^3/s$) and the efficiency of water level decrease at Chaktomuk gauging station is:

$$10.18m \rightarrow 10.07m$$
 (decrease of 11cm)

Consequently, water level decrease of more than 11cm is expected on the setting of the opening structure locations in this survey.

(3) Influence to National Road No.11

There is no riskiness of flood damage increasing, because:

- Although two bridges on National Road No.11 were seriously damaged by the flood in 2000, these two bridges were improved to be 80m long bridge each. They are safe with the present flood flow at rate and discharge.
- At Sta.47+967 and Sta.42+830, the road embankment was open cut against further damage of road embankment. There are two temporary bridges there now. The ability of flood flow in the floodplain is included in this plan.
- (4) Influence to Residents, Agriculture, Revetment, and Riverbed Protection

It is actually difficult to estimate quantitatively the influence that the inflow of floodwater due to the new opening sections has on the Colmatage side. However, merit and demerit of social and environmental influence to the residents can be assumed as follows: (Positive impact)

- · Activation of agriculture due to spread of irrigation farmland
- Improvement of local drainage
- Increase of fishery resources due to spread of living and laying area for fish

(Negative impact)

- Deterioration of living surroundings due to scouring of existing farmland and residential land
- Weakening road structure due to concentration of floodwater at opening section.
- Unpredictable change of the ecosystem.

In this Basic Design, revetment and riverbed protection at opening section are designed to reduce the demerits described above and not to cause a great loss.

Moreover, the Study Team requested the Royal Government of Cambodia to confirm the scale of influence due to the new opening, and to implement the reasonable compensation to the residents when it's confirmed.

2.2.1.2 Improvement Policy in Environmental and Social Considerations

(1) Results on IEIA and ISIA by F/S

Both IEIA and ISIA were conducted during F/S stage. As for the involuntary resettlement, it was estimated as category B (potential negative impacts on the environment and society are not significant). However, in accordance with the revised JICA guideline for Environmental and Social Considerations (April 2004), it is re-estimated as category A which needs the treatment of the matter requires care.

Moreover, based on the results of F/S, cautious measures were taken to confirm the environmental and social considerations (especially involuntary resettlement) during Preparatory Study, Basic Design Study and Supplemental Study Stages.

As for the noise vibration, air pollution, water pollution, fauna and flower these constitutes parts of natural conditions, Environmental Baseline Survey has conducted in March 2005.

Followings are the lines to reflect those studies.

- (2) Environmental Considerations
 - 1) Setting of the Opening Section

Refer to "2.2.1.1 Improvement Policy in Considerations of Mekong River Flood" mentioned above, the opening structure locations and the structures are set not only for the purpose of reducing the flood water level at Phnom Penh but also for considering the use of drainage, irrigation and so on based on hearing survey to residents along the Project road. In terms of new openings, for there might be unexpected damages to those, the baseline study prior to the commencement of the implementation and the follow-up study after the completion should be undertaken.

2) Implementation Method

The implementation method of considering the environment around the site is adopted based on the following:

- To select the construction method generating as minimal noise and vibration as possible in urbanized areas;
- To definitely carry-out traffic control during construction and to pay enough attention to road safety; and
- To treat construction wastes properly.

(3) Consideration of Resettlement

Resettlement of the PAPs is the most important problem for the implementation of the Project. It is therefore the essence that the number of PAPs shall be minimized and that all stakeholders agree with this project.

The concept of improvement minimizing PAPs is shown as follows.

1) Cross Section

Typical Cross Section

The impact by the set-up of lane's number and width was minimized from the viewpoint of environmental and social considerations taking the road function (mobility, safety and countermeasures on flooding) into consideration. Moreover, reduction of negative impact was planned by adopting the one-side widening, and thus the utmost utilization was applied to the previously setback sections.

Future Cross Section

The Government of the Cambodia has a plan of future cross section with road widening of 4-vehicle lanes, because National Road No.1 locates as a part of the Asian Highway. The lane composition is shown as follows while the future cross section is shown on Figure 2.2.1.2-1.

- Vehicle Lane ; 3.50m x 4
- Motorbike Lane ; 2.50m x 2
- Shoulder or Sidewalk ; 1.00m x 2 or 2.50m x 2

Figure 2.2.1.2-1 Future Cross Section

Cross section with Road Widening in Unpopulated Areas

The comparative study on the following two (2) cases of road widening method was made for the unpopulated area such as the section from Sta.23+900 to Sta.53+400.

Case 1 : Widening at one side (Colmatage side)

Case 2 : Widening at both sides (the Mekong River and Colmatage sides)

Case 1 was adopted based on the following reasons by the Royal Government of Cambodia. Cross Section with road widening in unpopulated area is illustrated in Figure 2.2.1.1-2.

- ① Widening at one side is compatible with the future development plan of National Road No.1 of the Government of the Cambodia.
- ② Approximately four hundred (400) less number of houses at the Colmatage side seem to be affected by construction of the road comparing with the Mekong River side.
- ③ The set-back method of relocation may be acceptable in the unpopulated area, comparing with relocation to other places.
- ④ During construction, 2-lane can be maintained in case of one side widening, but only 1-lane is available in case of both sides widening at construction segments.
- (5) Widening at the one side can save the construction cost by eliminating double works, especially re-construction of costly embankment/river bank slope which are required in case of both sides' widening.
- 6 At the Colmatage side, bush/wasteland/floodplain are generally observed comparing with the Mekong River side where the land utilization such as agriculture is active.
- ⑦ Economic and stable road structure can be expected by widening the Colmatage side due to the utilization of the stable slope at the Mekong River side against the flooding after many years.

Section : Sta.23+900 - Sta.53+400 (2-lane)

Figure 2.2.1.2-2 Cross Section with Road Widening in Unpopulated Areas

Cross Section with Road Widening in Populated Areas

The comparative study on the following two (2) cases of road widening method was made for the populated area such as the section from Sta.1+800 to Sta.23+900 and from Sta.53+400 to Sta.54+740.

Case 1 : Widening at one side (the Mekong River side or Colmatage side) Case 2 : Widening at both sides (the Mekong River side and Colmatage side) Case 2 was adopted for the populated area based on the following reasons by the Royal Government of the Cambodia. The cross section with road widening in populated area is illustrated in Figure-2.2.1.2-3.

- ① There exist houses at both sides of the road relatively closely so that many houses are to be affected by the construction of the road. Fair treatment on them is considered to be vital.
- ② At the densely developed urban areas such as the beginning point of the road (Sta.0-Sta.1+800) and Kokir Market area (Sta.13+500-Sta.14+000), no widening shall be planned.
- ③ The relocation to other places of affected houses is inevitable because the set-back method of relocation can not be applied because no more space at back side.

Sta.14+000 - Sta.15+700 (2-lane) Sta.16+640 - Sta.23+900 (2-lane) Sta.53+400 - Sta.54+740 (2-lane)

Figure 2.2.1.2-3 Cross Section with Road Widening in Populated Areas

Cross Section at Urbanized Area and Market Area

• Sta.0+300~Sta.1+800

Allowing for the cost performance, the necessity brought from the density of affected houses, road width is minimized due to applying retaining wall limited in this section only. In this case, houses from which road access is difficult occur. For this problem, it will be decided by consultations with the residents at DMS implementation whether Cambodian side compensates construction cost for access improvement or resettlement.

Figure 2.2.1.2-4 Cross Section with Road Widening at Urbanized Area

• Sta.13+500~14+000: Kokir Market

No resettlement will occur due to the improvement within existing road width, no additional road right of way. Moreover, parking lane is separated from vehicle lane by sidewalk due to setting up parking lane outside the sidewalk. Therefore parking cars don't occupy vehicle lane and traffic safety is improved. Parking lane can be widened under this lane composition by Cambodian efforts.

Kokir Market

Figure 2.2.1.2-5 Cross Section with Road Widening at Market area

2) Road Alignment

Plan Road Elevation

The lower road elevation is, the narrower the road width becomes. Then, minimizing PAPs can be possible. Therefore, considering technical view, plan road elevation is decided counting the three (3) points below.

- ① High water level is the highest water level recorded in year 2000.
- ② Road elevation is satisfied with a free board of 50 cm and with minimized pavement thickness.
- ③ The balance of earth volume between cut and embankment and longitudinal alignment of the road are considered.
- 3) Construction Method and Provisional Road Width

The construction method by which Corridor of Impact (COI) is minimized is adopted, and Provisional Road Width is set based on the COI.

4) Location of Opening Section

Opening sections are planned at the location where there is no influence by running water to agricultural land and residential land at the floodplain side and resettlement and compensation is minimized to the utmost.

5) Setting of Green Belt (Plantings)

Green Belt is set up at Colmatage side of bridge opening and the velocity of flow at flood is reduced. Therefore, the degree of the erosion by water flow is reduced and the landscape is improved.

- 6) Traffic Service Facilities
 - Ordinary Market Area
 - Shoulder is widened as Parking Area at six market areas except relative big markets.
 - Bus Stop / Refuge Space

Shoulder is widened as bus stop/refuge space at the twenty (20) intersections at connection road, which are connected to National Road No.1 and used for the traffic to the centers of village and the public buildings.

School/Hospital Area

Shoulder is widened to increase the serviceability for going to schools/going to a hospital at thirty-one (31) schools and nine (9) health centers along the Project road. In addition, marking of crosswalk is set up.

Access to the Connecting Roads

The installation designing of smooth access to the public/private roads of 269 places to be connected with the National Road No.1 was carried out. The difference in level between the National Road No.1 and the connecting roads will cause the traffic obstacle because the proposed road surface elevation at National Road No.1 is higher than the existing one by 50 cm. Therefore, mutual smooth access shall be considered to assure the user-friendliness.

Road Hump

Within the urbanized area and market area, six (6) road humps were installed to reduce the traveling speed for the resident's safety and traffic accident prevention.

Moreover, taking the increase of numbers and speed up of traffic into account, an appeal to enforce the traffic safety campaign and restriction of driving speed by the Royal Government of Cambodia are necessary to utilize these facilities effectively.

2.2.1.3 Bridge Location and Length

(1) Bridge Location

Three (3) new bridges were proposed in the Feasibility Study. Locations of the proposed three bridges were verified through field survey by local residents in the Kingdom of Cambodia as shown in Table 2.2.1.3-1. Two (2) bridges proposed at the same location as the existing bailey bridges, and the location of the other bridge is proposed at the upstream side of Bridge No.2 as shown in Table 2.2.1.3-2.

Table 2.2.1.3-1 List of the Title of Representative of Local Residents (Kingdom of Cambodia)

Position
Deputy Director, District Leuk Daek
Officer of Water Resource, District Leuk Daek
Director of Public Works, District Leuk Daek
Director of Commune, Kom Pong Phnom, District Leuk Daek
Director of Commune, Preak Ton Laup, District Leuk Daek
Director of Public Works, District Kean Savay
Director of Commune, Koki, District Kean Savay
Deputy Chief of the Technical Office of the Heavy Equipment Center

(2) Bridge Length

Bridge Length is basically the same as the Feasibility Study, but widened a little to provide the allowance for slope erosion and maintenance space in front of abutments. Table 2.2.1.3-3 shows the length of bridges.

Bridge Name	Bridge Length (m)	Bridge Location
Bridge 1	68.8	Sta. 42+155.0 - Sta. 42+223.8
Bridge 2	103.0	Sta. 42+750.0 - Sta. 42+853.0
Bridge 3	68.8	Sta. 47+905.0 - Sta. 47+973.8

Table 2.2.1.3-3 Bridge Length

(3) Span Length

The minimum span length is designed as 20 m, according to the river discharges between 510 m^3 /s and 914 m^3 /s, based on the design criteria while the discharge is above 500 m^3 /s and below 2,000 m^3 /s by the "River Structure Standard, Japan River Association". Span lengths of No.1 Bridge and No.3 Bridge, which have three (3) spans, are 21.4 m both. And, span length of No.2 Bridge, which has four (4) spans, is 24.1 m.

							-			
Frist		Fristing	Proposed	Bridges	Requirement of Local Residents					
No.	Station (Km)	Bridges (Length)	F/S	B/D	Proposed Station	Proposed Bridges (Length)	Elevation of Invert	Purpose of Bridge Openings	Team Observation	
Bridge 1	42 +110	None	PC-I Shape Girder Bridge (L=66m)	PC-I Shape Girder Bridge (L=68.8m)	42 +190	PC-I Shape Girder Bridge (L=68.8m)	50cm higher than ground level	Drainage	Relocated 80m to Neak Loueng (downstream), because of existence of a water channel in the Mekong River Side.	
Bridge 2	42 + 800	Bailey (L=100m)	PC-I Shape Girder Bridge (L=100m)	PC-I Shape Girder Bridge (L=103.0m)	42 + 800	PC-I Shape Girder Bridge (L=103.0m)	Ground level	Drainage	Main flow coming with right angle to the bridge, Existing channel in Mekong side.	
Bridge 3	47 +940	Bailey (L=66m)	Re-fill	PC-I Shape Girder Bridge (L=68.8m)	47 + 940	PC-I Shape Girder Bridge (L=68.8m)	Ground level	Drainage	Local people request not to re-fill, Existing channel in length of 1500m which is but not straight in Mekong side.	
Bridge 3	48 +400	None	PC-I Shape Girder Bridge (L=66m)	None	-	-	-	Drainage	No additional opening is required.	

 Table 2.2.1.3-2
 Results of Field Survey on Bridges

2.2.1.4 Culvert Location and Length

(1) Location

Thirteen (13) culverts were proposed in the Feasibility Study. The requests regarding the proper locations and needs of these culverts from the representatives of district were confirmed. As the result of the discussion, it is confirmed that the appropriate locations of nine (9) culverts were decided with minor adjustments, shown in Table 2.2.1.4-1 while they replied that four (4) culverts (BC2, BC3, BC6, BC7) were not needed. They requested that special three (3) locations except BC2 should not be placed because the arrangement of compensation would be difficult when the inflow would affect the farmlands and the residential lands within the floodplain. The requests from districts are as shown in Table 2.2.1.4-2. Nine (9) culverts, two (2) pipe culverts and seven (7) box culverts, are set up at nine (9) locations below each due to the above-mentioned points.

Table 2.2.1.4-1 Location of Culverts

Pipe1	Sta. 23+983	BC4	Sta. 36+880	BC9	Sta. 46+930
Pipe2	Sta. 24+823	BC5	Sta. 41+006	BC10	Sta. 48+740
BC1	Sta. 32+420	BC8	Sta. 44+350	BC11	Sta. 49+995

It is confirmed that nine (9) culverts are set up with a view to local storm sewage and drainage of floodwater of the Mekong River and only BC11 has a function of irrigation canal.

(2) Proposed Elevation of Culvert

Culvert invert elevation is set at the elevation which is nearly same as existing ground level or existing culvert elevation. And following the Feasibility Study, design high water level is the highest water level in year 2000 and the freeboard is over 1 m. While widths of box culvert are: BC11 is 3-box 2 m wide, others are 2-box 2 m wide in the Feasibility Study, BC5 is 3-box 2 m wide same as existing culvert due to the request of residents. And while the two (2) pipe culverts are 1-pipe 1 m in diameter each in the Feasibility Study, Pipe1 is 1-tube with one (1) meter in diameter and Pipe2 is 2-tubes with one (1) meter in diameter.

With above considerations, the elevation and the width of culverts are shown in the Table 2.2.1.4-3.

Remarks		The culvert is required to be allocated at present location	Two cells of pipe is required	The location of culvert is required to be allocated considering topographic	No requirement of culvert	No requirement of culvert	The location and elevation of culvert is required to be allocated considering topographic condition.	The size and elevation of existing culvert is required to be kept	No requirement of culvert	No requirement of culvert	The location of culvert is required to be allocated considering topographic	The location of culvert is required to be allocated considering topographic	The location of culvert is required to be allocated considering topographic	The size and elevation of existing culvert is required to be kept
	Purpose of Opening (Culvert)	Local drainage	Local drainage	Local drainage	No necessary	Not to be installed to protect agricultural and residential areas	Local drainage	Local drainage	Not to be installed to protect agricultural area	Not to be installed to protect agricultural area	Local drainage	Local drainage	Local drainage	Local drainage Irrigation
Requirement of Local Residents	Elevation of Invert	Ground level	Ground level	Ground level	None	None	50 cm higher than ground level	Channel bed level			Ground level	Ground level	Ground level	Channel bed level
	Proposed Culvert Nos of Cell@Width	Pipe D=1.0m	Pipe 2 cells D=1.0m	Box with stop log 2cells 2.0m			Box with stop log 2cells 2.0m	Box with stop log 3cells 2.0m	None	None	Box with stop log 2cells 2.0m	Box with stop log 2cells 2.0m	Box with stop log 2cells 2.0m	Box with stop log 3cells 2.0m
	Proposed Station	23 + 983	24 + 823	32 + 420			36 + 880	41 + 006		44 + 350	46 + 930	48 + 740	49 + 995	
Proposed	Cell@W*H	Pipe D=1.0m	Pipe D=1.0m	Box with Gate 2cells 2.0*5.4m	Box with Gate 2cells 2.0*6.4m	Box with Gate 2cells 2.0*4.7m	Box with Gate 2cells 2.0*6.3m	Box with Gate 2cells 2.0*5.6m	Box with Gate 2cells 2.0*5.2m	Box with Gate 2cells 2.0*5.4m	Box with Gate 2cells 2.0*5.0m	Box with Gate 2cells 2.0*4.5m	Box with Gate 2cells 2.0*5.2m	Box with Gate 3cells 2.0*5.8m
Existing Culvert Nos of Cell@W*H		Pipe D=0.5m	Pipe D=0.9m	None	None	None	None	Box 3cells 2.0x4.6m	None	None	None	None	None	Box 3cells 2.0x5.4m
Station		23 + 983	24 + 823	32 + 420	32 + 750	33 + 200	36 + 870	41 + 006	41 + 770	43 + 460	44 + 360	46 + 920	48 + 760	50 + 002
No.		Pipe 1	Pipe 2	BC 1	BC 2	BC 3	BC 4	BC 5	BC 6	BC 7	BC 8	BC 9	BC 10	BC 11

Table 2.2.1.4-2 The Requirements from Local Residents

Culvert	Dimension	Design High Water Level (m)	Invert Evasion (m)	Inside Height (m)
Pipe 1	Dia.=1.0m, 1cell	9.24	5.5	Φlm
Pipe 2	Dia.=1.0m, 2cells	9.21	6.0	Φ1m
BC 1	Width 2.0m, 2cells	8.88	4.5	5.4m
BC 4	Width 2.0m, 2cells	8.72	4.5	5.3m
BC 5	Width 2.0m, 3cells	8.58	4.0	5.6m
BC 8	Width 2.0m, 2cells	8.46	4.5	5.0m
BC 9	Width 2.0m, 2cells	8.35	5.0	4.4m
BC 10	Width 2.0m, 2cells	8.25	4.0	5.3m
BC 11	Width 2.0m, 3cells	8.15	2.9	6.3m

Table 2.2.1.4-3 Width and Elevation of Culverts

(3) Form of Culvert

Structure of culvert is concrete considering local actual result and economical efficiency. However, stop log is set up at the Mekong River side of each culvert due to the request of local residents. This stop log is necessary for the maintenance of culvert and as a blockage of the opening in an emergency. This aims at the closure of the openings in case of culvert maintenance and emergency situations, and to control the impact to the farmlands etc. within the Colmatage side.

2.2.1.5 Road Facilities

(1) Ordinary Market Area

Shoulder is widened to the both sides or one side as parking area at three (3) market areas except relative big markets. Refer to the Table 2.2.1.5-1.

No.	Name	Station (km)	Right/Left From Phnom Penh	Village	
1	Pre Eng Market	5 + 800	Both	Metapheap	
2	Samrong Thom Market	35 + 730	Both	Phom Sting	
3	Koki Thom Market	45 + 680	Both	Koki Thom	

 Table 2.2.1.5-1
 Ordinary Market Area

(2) Bus Stop / Refuge Space

Shoulder is widened as bus stop/refuge space at the twenty (20) intersections at connection road, which are connected to National Road No.1 and used for the traffic to the centers of village and the public buildings. Refer to the Table 2.2.1.5-2.

(3) School/Hospital Area

Shoulder is widened to increase the serviceability for going to school/going to a hospital at thirty-one (31) schools and nine (9) health centers along the Project road. In addition, marking of crosswalk is set up. Refer to the Table 2.2.1.5-3.

Conceptual plan of road facilities above are shown in the Figure 2.2.1.5-1.
No.	Station	L/R	Village
	(Km)	View from Phnom Penh	- C
01	3+326	L	Veal Sbov
02	6+940	L	Preak Aeng
03	8+102	L	Chrouy Ampel
04	9+527	R	Kbal Kaoh
05	11+202	L	Phum Thum
06	16+306	L	Slap Ta Dun
07	19+830	R	Dei Edth
08	22+825	R	Khsom
09	28+309	L	Bantery Dek
10	30+077	L	Chey Otdam
11	30+966	L	Chey Otdam
12	32+000	L	Prek Taker
13	33+700	L	Chrouy Dang
14	37+455	R	Samrong Thom
15	39+600	L	Samrong Kaer
16	41+200	L	Por Mouv
17	44+278	L	Koki Thom
18	48+968	L/R	Crouy Dong
19	50+068	L	Kompang Phnum
20	54+924	R	Prek Tunlop

 Table 2.2.1.5-2
 Locations of Bus Stop/Refuge Space (Connection Road)

Note: L means the left side, R means the tight side

Loca	tion of Schools			
No.	Name	Station (Km)	L / R (From Phnom Penh)	Village
1	Chbar Ampou High School	1 + 572	R	Beang Chouk
2	Kdey Takoy Primary School	3 + 918	R inside	Kdey Takoy
3	Veal Sbov Primary School	4 + 984	L	Svay Ta Ouk
4	Prek Eng High Primary School	5 + 874	L	Kbal Chrouy
5	Prek Eng High School	6 + 098	R inside	Toul Tachan
6	Mache Mavoan Primary School	8 + 102	L inside	Chrouy Ampel
7	Cham Par Primary School	9 + 000	L inside	Chrouy Ampel
8	Youk Bath Primary School	10 + 325	R	Youk Bath
9	Rek Smay Primary School	12 + 310	L	Phum Thom
10	Koki Primary School	13 + 887	R inside	Toul Thnot
11	Hun Sen Slaket Primary School	15 + 257	L	Slap Ta Oun
12	Voth Kos Primary School	16 + 306	L inside	Slap Ta Oun
13	Day Eth Primary School	17 + 675	R	Day Eth Kos Phos
14	Chey Vora Mant No. 7 High School	17 + 793	R	Day Eth Kos Phos
15	Sdauv Kan Leang Primary School	20 + 540	R	Sdauv Kan Leang
16	Khsom Primary School	22 + 825	R	Khsom
17	Banteay Daek Primary School	25 + 475	L	Kandal Loeu
18	Porti Prek Primary School	27 + 362	L	Kandal Kroum
19	Chhey Ouk Dom Primary School	28 + 748	R	Chhey Ouk Dom
20	Chhey Moung Koul Primary School	32 + 000	L inside	Prek Taker
21	Prek Treang Primary School	35 + 040	R	Prek Treang
22	Doy dos Primary School	38 + 777	R	Samrong Kaer
23	Samrong Primary School	39 + 600	L inside	Samrong Kaer
24	Por Mouv Primary School	41 + 200	L inside	Por Mouv
25	Koki Thom High School	44 + 050	L inside	Koki Thom
26	Koki Thom Primary School	45 + 124	R	Koki Thom
27	Samrong Thom Primary School	45 + 495	L inside	Crouy Dong
28	Kompong Phnom Primary School	51 + 993	R	
29	Hun Sen Kompong Phnom High School	52 + 311	R	Umpel Tek
30	Kompong Cham Loueng Kindergarten	54 + 860	L	Kam Pong Cam Loueng
31	Kompong Cham Loueng Primary School	54 + 860	R	Kam Pong Cam Loueng

Table 2.2.1.5-3 School/Hospital Areas

Location of Hospitals

No.	Name	Station (Km)	L / R (From Phnom Penh)	Village
1	Prek Eng Health Center	6 + 300	L	Kbal Chrouy
2	Kbal Koh Health Center	9 + 966	R	Prek Thom
3	Phum Thom health Center	12 + 333	R	Phum Thom
4	Kien Svay Hospital	13 + 890	R	Toul Thnot
5	Dey Eth Health Center	17 + 490	R	Day Eth Kos Phos
6	Banteay Daek Health Center	25 + 362	L	Kandal Loeu
7	Koki Thom Health Center	34 + 830	R	Koki Thom
8	Kompong Phnom Health Center	45 + 228	R	Kbal Chrouy
9	Samrogn Thom Health Center	48 + 968	L inside	Crouy Dong

Figure 2.2.1.5-1 Conceptual Plan of Road Facilities

2.2.1.6 Consideration on Natural Conditions

The Project area, inundated for about four months during rainy season and highly dried in dry season, is located in the floodplain paralleling the Mekong River. It is formed by agricultural zones using the flood water and desolate lands those are not cultivated on both the Mekong River side and the Colmatage side.

The area is almost flat and the Mekong River bank with a height of 3-6m is constructed therein, the crown of which is utilized as the "National Road No.1". Ground is composed of weak layer of silty soils.

The following measures shall be taken to reflect the said natural conditions.

- Provision of waterway openings on the bank as flood control measures for Phnom Penh urban area;
- · Revetment/riverbed protection on the waterway openings;
- Erosion protection work on the bank;
- Slope protection on the water colliding front of the bank;
- · Mitigation measures against wave action on the bank slope; and
- · Countermeasure for soft ground on the high embankment and toe of slope

2.2.1.7 Consideration on Socio-economic Conditions

The Project area is predominantly agricultural area with two (2) big markets (one is located at the beginning and the other is Kokir Market) and three (3) roadside markets. Most of the residential houses are wooden-made built over the piles and connected with National Road No.1 by the embankment. There are some villages along the road with pagoda (temple), school and hospital at the center.

The following measures are necessary to keep the above-mentioned life style and cultural tradition.

- Resettlement measures to prevent disturb the community from being disturbed;
- Provision of parking spaces at the market areas;
- Provision of evacuation spaces in case of emergency (flooding); and
- Access measures to schools/hospitals

2.2.1.8 Consideration on Construction and Procurement Conditions

Since the Royal Government of Cambodia has rich experience of completing foreign assisted projects, the Project is expected to be implemented without any problems on construction and

procurement. In principle, all the equipment and materials are procured in Cambodia as far as available, while for those unavailable locally such as gabion, large-scale plant machinery and large-scale vibration rollers are procured from Japan or third countries.

2.2.1.9 Participation of Local Construction Companies

The construction is to be undertaken by a Japanese Contractor and local contractors will participate in the Project in provision of personnel, lease of equipment, and sub-contractual works. For local contractors/personnel to easily participate in the Project, simple structures, simple construction method and easy quality control method are available to adopt.

2.2.1.10 Implementing Agencies' Ability in Management and Maintenance

Management and maintenance of the Project road after completion will be undertaken by the Municipal/Provincial Departments of Public Works and Transport and the Ministry of Public Works and Transport, the former taking charge of daily maintenance works and the latter repair/rehabilitation works. The personnel for these works have been secured but the technical and financial capacity of the agencies concerned is not always enough. To facilitate the maintenance works, the pavement and structures with high durability are designed within the reasonable range, at the same time the technical transfer related to the management and maintenance shall be considered through road construction stage.

2.2.1.11 Establishment of Facility Grade

The National Road No.1 is one of the most import arterial roads in Cambodia and forms a part of the Asian Highway. Therefore, the road shall have the minimum grade to meet such an international standard and roles as well as the above-mentioned considerations.

2.2.1.12 Construction and Procurement Method and Construction Period

The construction plan shall be prepared in due consideration of the safety of road users and construction workers during construction and environmental preservation measures during and after construction. The land for detour during construction is to be temporarily borrowed by the Royal Government of Cambodia.

It is the rainy season from July to November in the Project area. The implementation schedule is prepared aiming at the early completion with required quality by selecting/distinguishing workable items in both rainy and dry seasons.

2.2.1.13 Environment Baseline Survey

In terms of natural conditions along the project road, such as noise, vibration, air and water pollution, though the F/S has undertaken it, upon the suggestion of the JICA Advisory Council of Environmental and Social Consideration Review, the following works have been carried out for data collection and the measurement and analysis of them, prior to the commencement of the project implementation.

(1) Noise

The Equivalent Noise Level (L_{Aeq}) for 12 hours of each site ranges from 58.8 to 68.7dB, and its maximum was given by T-1 point, and the minimum by T-5 point. The source of noise are mostly from horning of cars. All the sites, except T-1 point, exceeds the limit of the allowable level under the Environment Standards, by 2 - 24db.

The noise criteria in Japan is stipulated as 70 db in day time where adjacent to the trunk road.

Survey	Distance from Road Center to	Land Use	* Equiva	lent Nois _{Aeq}) [dB	e Level	Max. (L _{Amax})	Environment Criteria in	Environment Criteria in
Point	Household	Land USC	12 hours	Max.	Min.	[dB]	Cambodia	Japan
	Limit (m)							
		Vicinity of		69.6	67.7	102.5		
T-1	15	Hospital,	68.7				45	
	School etc.							
T-2	30	Residential	62.1	63.9	(0,2)	95.7	60	
		Area			60.2			
		Vicinity of						70
T-3	30	Hospital,	62.6	64.3	61.0	95.4	45	70
		School etc.						
T 4	20	Residential	(2.0	(2.0	(0.1	00.7	(0)	
T-4	30	Area	62.0	63.8	60.1	88.7	60	
т 5	30	Residential	59.9	60.1	57.0	01.2	(0)	
1-5		Area	58.8			91.2	60	

Table 2.2.1.13-1 Survey Result of Noise Level

(2) Vibration

The equivalent noise level for 12 hours of each site ranges form 33.0 to 40.9db, the maximum being given by T-3 point and the Minimum by T-5 point. The change of noise is moderate and constant at each site, and does not show the significant variation in time wise. According to the criteria in Japan, maximum LAeq in the commercial area is 70 db and 65 db is stipulated in the residential area.

^{*} Equivalent Noise Level: One of the evaluation methods of noise level, being the average of "n" monetary noise energies (db)

^{* 40} dB: Quiet residential area in the afternoon, 50 dB: quiet office room, 60 dB: common conversation, 70 dB: noisy street

	Distance from		* Equiv	valent Vib	oration	*Hourly Vibration Level			
Survey	Road Center	Land Lise	Le	vel (L _{eq})		(L_{10})			Criteria
Point	to Household	Land Use		[dB]			[dB]		in Japan
	limit [m]		12 hours	Max.	Min.	12 hours	Max.	Min.	
		Vicinity of							
T-1	15	Hospital and	38.2	39.6	36.2	41.3	42.7	39.5	70
		School							
T-2	30	Residential Area	39.9	41.0	37.7	43.2	44.6	41.1	70
		Vicinity of							
T-3	30	Hospital and	40.9	41.7	39.5	44.4	45.6	42.9	70
		School							
T-4	30	Residential Area	39.7	41.9	34.8	42.6	45.7	37.6	65
T-5	30	Residential Area	33.0	36.2	30.6	35.6	37.4	33.7	65

Table 2.2.1.13-2 Measurement Result of Vibration Level

(3) Traffic Survey

During day time from 6:00 to 18:00 for 12 hours on weekly days, the sectional traffic volume survey has been carried out for each direction with four vehicle classification. The result of the 12 hours survey is shown on the table 2.2.1.13-3, and the ones of water sampling and traffic volume, noise, vibration and the points of air pollution survey are shown on the table 2.2.1.13-1.

Comparing with the result conducted during B/D stage, PCU at T-1 and T-2 are almost same figure, the latest PCU at T-4 and T-5 are 20% - 30% less than that of B/D stage.

However, considering the survey points and traffic volume in each category are very close, the latest result is worth to trust.

Survey Point	Station No.	Surrounding Environment	Motor- Bike	Auto- mobile	Small Cargo	Large Cargo	Total	Total (PCU)
T-1	1+600	School	22,638	3,853	1,728	721	28,940	14,376
T-2	4+100	Resident House	19,058	5,968	1,589	475	27,090	14,500
T-3	5+900	Vicinity of School	17,213	3,372	1,492	532	22,609	11,535
T-4	35+200	Temple	2,558	1,051	662	213	4,484	3,317
T-5	46+000	Resident Houses	2,514	968	722	175	4,379	3,155

 Table 2.2.1.13-3
 12 hours Sectional Traffic Volume Survey Result
 (Unit: Number)

Vehicle Classification : 1) Auto-Mobile : Motor Cycle, Motor Bike Trailer

2) Passenger Car: Sedan Type Car, Station Wagon, Pick-Up Track, Jeep, Light Track

3) Light Cargo Truck : Mini Bus, Cargo Truck less than 2 tons loading

4) Large Cargo Truck: Cargo Truck more than 2 tons loading, Large Bus, Semi and full Trailer, Large Special Vehicle.

Equivalent Vibration Level: One of the Evaluation Methods of vibration level, being the average of "n" momentary vibration energy(db).

Time Wise Vibration : L_{10} means the point value of top 80%, L_{50} means the center value of all the data L_9 means the minimum value.

Figure 2.2.1.13-1 Location Map of Survey Points

(4) Air Pollution

Measured concentration of carbon monoxide is $3\sim14$ ppm, $0.009\sim0.055$ ppm for nitrogen dioxide, 0.003 (Capable Measurement Minimum Value) ~0.011 ppm for sulfate dioxide, 0.005 (Capable Measurement Minimum Value) ~0.436 ppm for all particles, T-1 shows the highest records in all the tested items. Only the result of the item of all the particles, exceeds the allowable limit of environment standards by 0.100 mg/m₃.

Survey Point	Carbon Monoxide (CO) [ppm]		Nitrogen Dioxide (NO2) [ppm]		Sulfate (S [r	e Dioxide 502) ppm]	All Paricles (TPM) [mg/m ³]	
	Test Result	Standard	Test Result	Standard	Test Result	Standard	Test Result	Standard
T-1	14		0.055		0.011	less than 0.100ppm	0.436	less than 0.100mg/m ³
T-2	3	loss than	0.040	loss than	0.004		0.151	
T-3	6	less then 20ppm	0.010	0.100mm	ND<0.003		0.105	
T-4	3		0.013	0.100ppm	ND<0.003		0.0507	
T-5	10		0.009		ND<0.003		ND<0.005	

Table 2.2.1.13-4Measurement Result of Air Pollution

(5) Water Pollution

The concentration of ionized hydrogen is (ph)7.1 \sim 8.3, 1.3 \sim 8.9mg/l for solvent oxygen, 20 \sim 290mg/l for suspended solid (SS) and 0.25 \sim 19.1mg/l for B.O.D. In comparison with each criterion of environment standards, W-3 and W-5 exceeds the allowable limit on D.O and W-4 does in B.O.D.

 Table 2.2.1.13-5
 Comparison of the Test Data with the Standards of Sampled Water

Survey Point	Station No.	Location of Sampling	Concentration of Ionized Hydrogen (ph) [-]		Disolved Oxygen (DO) [mg/l]		Suspended Solid (SS) [mg/l]		Biological Oxygen Demand (BOD) [mg/l]	
			Test Result	Standard	Test Result	Stand-ar d	Test Result	Stand-ar d	Test Result	Stand-ar d
W-1	9+760	Domestic well	7.1	(0-00	2.0	more	24	less	1.15	less
W-5	54+500	Domestic well	6.6	0.0, 09.0	1.3	2.0 mg/l	20	50 mg/l	0.25	30 mg/l

Survey Point	Station No.	Location of Sampling	Ionized Hydrogem Concentration (ph) [-]		Dissolved Oxygem (DO) [mg/l]		Suspended Solid (SS) [mg/l]		Biological Oxygem Demand (BOD) [mg/l]		
			Test Result	Standards	Test Result	Standards	Test Result	Standards	Test Result	Standards	
W-2	20+000	Mekong River	8.3		7.4		24		0.42		
W-3	23+300	Fish Culturing	8.3	6.5~8.5	8.9	$2.0\sim$	98	$25\sim$	19.1	$1.0 \sim$	
W-4	32+700	Pond near C-Box No.1	7.7		4.4	/.sing/1	290	100mg/1	4.61	10.0Mg/I	

 Table 2.2.1.13-6
 Comparison of the Test Data with Required River Water Standards

(6) Fauna and Flora

Field investigation and hearing has been carried out every 1.0 km approximately along the existing and newly planned road, and every 1km wide to the direction of Colmatage from the points of openings, to seek for wild species, and which gave an result of 133 species of flora and 113 species of flora (fishes and birds) being existed.

There is no flora being in the fear of extinction. It has been revealed that, in connection with fauna, there are 14 endangered species, existed around the openings of the planned road, such as fishes, birds, reptiles, amphibians and mammals), which are active in rainy season only.

As the water table in Mekong River and Bassac River increases in the rainy reason, the fin move through the opening to the spawning ground in Colmatage. After depositing spawn, the cycle of the nature shows that, those fin move to Bassac River, or stay at the pond which is going to run dry, then as a result caught by fisher mean / feathers.

As for the new opening structure, the No.1 Bridge seems to affect the movement of fin, however, the opening width is approximately 65m only which shows the rate width is less than 0.2% of the Project Road length. And only small scale of movement would be carried out.

Therefore it is concluded that the new opening would not affect to the ecosystem in Colmatage. Figure 2.2.1.13-1 shows the distributing of rare spices.

Figure.2.2.1.13-2 Distribution Map of Rare Spices

Base on the latest baseline survey, it is pointed out that the environment survey should be carried out properly during the construction stage by Japanese side in accordance with the environment management plan. After the completion of the construction, it is recommended that the Royal Government of Cambodia shall undertake those survey / hearing survey and analysis of data continuously.

Some surveyed results over the Cambodian domestic criteria, Japanese side is ready to submit those data to Ministry of Environment in Cambodia upon their request. Japan side would like to require them to study and review their criteria by comparing with other international ones.

2.2.2 Basic Plan

2.2.2.1 Overall Plan

Based on the basic concept established in Section 2.1, the overall plan of the Project was developed as shown in Table 2.2.2.1-1. Refer to Figure 2.2.2.1-1.

Item	Request	Plan
Road Improvement	58.00 km	55.98 km
Bridge	3 nos.	3 nos.
Culvert	13 nos.	9 nos.
Monivong Bridge	(Rehabilitation)	None

 Table 2.2.2.1-1
 Major Component of the Project

As for the grade of the Project, Asian Highway Standard and Cambodian Standard are used as standards of this design and other criteria such as AASHTO, Japan Road Association are used as subsidiaries.

Design Criteria for Road Design :

AASHTO :	Highway Capacity Manual, 1965						
AASHTO :	Guide for Design of Pavement Structure, 1993						
United Nations, Economic and Social Commission for Asia and the Pacific :							
	Asian Highway (AH) Classification and Design Standards						
Kingdom of Cambodia, Ministry of Public Works and Transport :							
	Road Design Standard (Part1, 2 and 3)						

Design Criteria for Bridge and Culvert :

AASHTO :	Standard Specification for Highway Bridges									
Japan Road Association :	Specifica	ation for	Highway Bri	dges						
Japan River Association :	Cabinet	Order	Concerning	Structural	Standards	for	River			
	Management Facilities, etc.									
Kingdom of Cambodia, Ministry of Public Works and Transport;										
	Road De	sign Sta	ndard (Part1,	2 and 3)						
	Bridge D	esign S	tandard							
United Nations, Economic and Social Commission for Asia and the Pacific :										
Asian Highway (AH) Classification and Design Standards										

Live Load :

AASHTO HS-20-44

2-31

2.2.2.2 Road Design

(1) Geometric Design Criteria

Design Criteria which is adopted in this Basic Design are shown in the Table 2.2.2.2-1.

Item	Asian Hig	ghway (AH)	Cambodia	F/S	B/D Study	Remarks
	Category I	Category II	Standard			
Design Speed	100kph	80kph	100kph (80kph)	80kph	80kph	Adopt AH Category II
Number of Lanes	4 or more	2	-	4 - 6, mix vehicle & motorbike lanes varies	2 or 4 for vehicle lane + motorbike lane	depend on the V/C ratio of the section
Lane Width	3	.5m	3.5m	3.0 - 3.5m for vehicle lane 2.0 - 2.5m for motorbike lane	3.5m for vehicle lane 2.5m for motorbike lane	Follow AH
Shoulder Width	3	.0m	3.0m	1.0m	1.0m	
Median Width	3.0m	N/A	4.0m	2.0m	2.0m	
Crossfall (for Lane) (for Shoulder)	3	2% - 6%	2.5 - 3% 4 - 5 %	3% 4%	3% 4%	for AC surface for gravel surface
Max. Super-elevation (e)	1	0%	6 ~7%	6%	4%	use small value for local road user
Min. Radii to Omit Transition Curve	1,500m	900m	-	900m (380m) ^{absolute}	900m	Follow AH
Min. transition Curve Length	85m	70m	-	70m	70m	Follow AH
Min. Curve Radii	350m	215m	495m (360m)	280m	280m	minimum for $e = 4\%$
Max. Grade 4%		3 - 5% (4 - 6%)	4%	4%	follow AH	

Table 2.2.2.2-1 Geometric Design Criteria

Note: kph means km per hour

As described in 2.2.1.11. Establishment of Facility grade, the criteria of Asian Highway Category II is adapted to satisfy the minimum grade as an international arterial road.

(2) Examination of Number of Lane

1) Future Traffic Demand

The target year of the Project was year 2015 or after 10 years from the commencement of construction in the Feasibility Study, but the time of commencement of construction is later them that of the Feasibility Study. Therefore, the target year for the Project is set at year 2016.

On the present traffic volume, which is the base of future traffic demand, traffic survey of the present Basic Design is compared with the prospective traffic volume in year 2004 in the Feasibility Study and the result of the comparison is shown in Table 2.2.2.2-2.

			Foreca	ast in F/	S			Actual C	Counted	Number	in B/D	
	PC	MC	LV	HV	Total	Total	Total	Total	HV	LV	MC	PC
PCU Ratio	0.25	0.25	1.25	3.75	(veh.)	(PCU)	(PCU)	(veh.)	3.75	1.25	0.25	0.25
0km-100	3,042	90,827	10,743	1,064	105,676	40,886	38,938	103,546	570	11,056	89,575	2,345
0km+100	3,272	55,879	9,507	977	69,635	30,335	26,776	72,730	432	7,081	61,350	3,867
1km+500	-	-	-	-	-	-	14,362	28,914	475	5,471	21,690	1,278
3km+500	-	-	-	-	-	-	12,471	24,515	360	5,082	18,643	430
5km+000	967	10,981	3,111	512	15,571	8,796	11,203	22,286	278	4,658	16,746	604
7km+000	1,142	10,897	2,701	385	15,125	7,830	8,189	16,116	275	3,197	11,344	1,300
12km+500	721	9,485	2,025	509	12,740	6,992	6,179	11,893	190	2,541	8,866	296
14km+500	-	-	-	-	-	-	5,953	11,561	243	2,212	8,715	391
34km+500	1,724	2,835	1,399	280	6,238	3,939	4,247	5,814	306	1,722	2,855	931
54km+500	2,155	3,921	1,307	270	7,653	4,165	4,632	8,620	198	1,784	4,279	2,359

Table 2.2.2.2-2Traffic Volume in Year 2004 (12 Hours, Both Sides)

The survey data nearly equal to the forecast value was obtained in this survey, but the volume of heavy vehicle is smaller than that projected in the survey in 2002. For this reason, it is supposed that the construction of C2 section and urgent remedial work of flood damage were completed and the decrease of construction vehicles besides the heavy vehicles detoured to the other national roads due to the load limit caused by the Bailey bridges. There was an indication that traffic survey for 24 hours should be implemented because of greater traffic volume of heavy vehicles in the night-time on other National Roads. However, Neak Loueng Ferry does not run from 21:00 to 6:00 next morning, therefore it is not necessary at this section that the day-night ratio of traffic volume is adjusted. In the Feasibility Study the traffic survey was conducted for a day during weekday, but in this survey the traffic survey is carried out for 2 days during weekday and the average of those 2 days traffic volume is adopted. Therefore, traffic survey in this survey is more reliable than that in the Feasibility Study. The survey data in this survey is used as present traffic volume.

For future traffic demand, OD matrix was made and the expanding factor of traffic volume was decided in the Feasibility Study. The expanding factor of traffic volume of each year is shown in

Table 2.2.2.3 (Average year growing ratio in the round bracket).

Traffic data are shown in Appendix 8.

TYPE	2005	2010	2015	2020
PC	1.08 (2.6%)	1.21 (2.4%)	1.35 (2.3%)	1.50 (2.3%)
MC	1.21 (6.6%)	1.61 (6.1%)	2.16 (6.1%)	2.88 (6.1%)
LV	1.28 (8.6%)	1.83 (7.8%)	2.59 (7.6%)	3.63 (7.4%)
HV	1.25 (7.7%)	1.75 (7.2%)	2.41 (7.0%)	3.29 (6.8%)

Table 2.2.2.3 Expanding Factor of Traffic Volume

The traffic volume of C2 section is growing at a rate of 4% and that limited to heavy vehicle is growing at a rate of 8% actually. The expanding factor of traffic volume in the Feasibility Study corresponds to the present condition, and the traffic survey results as of March 2005 substrate that the adapted factor is appropriate. Therefore, the future traffic volume is calculated with this factor. In this case, future traffic demand at the goal year of this project is shown in Table 2.2.2.2-4.

Station	Yea	r 2016 (Nos. of	Vehicle in 12	hrs)
Station	PC	MC	LV	HV
Expanding factor	1.37076	2.2767	2.72573	2.52501
0-100	3,054	179,598	25,563	1,240
0+100	5,036	123,007	16,372	940
1+500	1,664	43,489	12,650	1,034
3+500	560	37,379	11,750	783
5+000	787	33,576	10,770	605
7+000	1,693	22,745	7,392	598
12+500	385	17,776	5,875	413
14+500	509	17,474	5,114	529
34+500	1,212	5,724	3,981	666
54+500	3,072	8,579	4,125	431

Table 2.2.2.2-4Future Traffic Demand

2) Analysis of Service Level

Service level of road is the base when the number of lane of the project road is examined. Recently, decline of travel speed is an index to judge the service level. But, traffic volume/traffic capacity (V/C ratio) is used in this survey because continuous fixed point measurement and observation is necessary.

The relation between service level and V/C ratio is shown in HCM (Highway Capacity Manual, 1965) and presented in Table 2.2.2.2-5.

	Level-of-Service	V/	C
Level	Operation Condition	Rural Area	Urban Area
Level A	Free Flow (Primarily)	Under 0.20	Under 0.60
Level B	Free Flow (Reasonably)	Under 0.45	Under 0.70
Level C	Stable Flow	Under 0.70	Under 0.80
Level D	Between Stable and Unstable	Under 0.85	Under 0.90
Level E	Unstable (Extremely)	Under 1.00	Under 1.00
Level F	Forced Flow	-	-

Table 2.2.2.5 Relation Between Service Level and V/C Ratio in HCM

Service level of Urban Arterial Road should be Level C in AASHTO. And service level of Rural Arterial Road should be Level B (Level C in mountain area). For this project section, the peak V/C ratio of the target year in case of opposite 2-lane is calculated shown in Table 2.2.2.2-6, assuming that Possible Traffic Capacity of 4-wheel vehicle is 2,000 PCU/hr and for motorbike is 2,640 PCU/hr.

	Yea	r 2016 (Pea	ık-hour in v	reh.)	Year 2016	(Peak-hour)	V/C	(2-lane)
	PC	MC	LV	HV	4-wheel	Motorbike	4-wheel	Motorbike
					Vehicle		Vehicle	
PCU Ratio	0.25	0.25	1.25	3.75	(PCU)	(PCU)	2,000	2,640
0km+100	604	19,681	1,637	75	2,328	5,071	1.16	1.92
1km+500	283	6,088	1,139	83	1,735	1,593	0.87	0.60
3km+500	106	5,607	1,058	63	1,559	1,428	0.78	0.54
5km+000	142	4,701	862	48	1,258	1,211	0.63	0.46
7km+000	389	3,412	665	48	1,011	950	0.51	0.36
12km+500	31	2,133	470	33	711	541	0.36	0.20
14km+500	41	2,097	409	53	710	535	0.36	0.20
34km+500	133	687	438	67	799	205	0.40	0.08
54km+500	246	1,201	619	52	969	362	0.48	0.14

Table 2.2.2.2-6 Peak Traffic Volume Per Hour and V/C Ratio in Year 2016

Because service level of vehicle lane is critical in case of opposite 2-lane, the relation between V/C ratio of 4-lane and service level is shown in Figure 2.2.2.2-1.

Figure 2.2.2.2-1 Relation between V/C Ratio of 4-lane and Service Level

Referring to above figure, in the urban area, section up to Sta.1+500 is under level D of service level, therefore opposite 2-lane needs 4-lane. In the Project, considering the transition of 4-lane section and the expansion of urban area, the section from Sta.0+100 to Sta.1+800 is designed as 4-lane. In rural area, V/C ratio is almost satisfied with service level B indicating no service level problem, therefore, the road in rural area is designed as 2-lane to minimize the impact to PAPs.

2.2.2.3 Pavement Design

(1) Pavement Design

Condition : ① Standard-sized car and large-size car are considered as traffic Load except motorbike.

- 2 Equivalent Conversion Factor of 18kip Equivalent Single Axle Load (ESAL) is the calculation result based on the axial load investigation in the Feasibility Study.
- ③ Duration in-service is 10 years from 2007 to 2016.
- ④ Traffic volume is calculated from the expanding factor decided in the Feasibility Study based on the traffic volume in this survey on 2004.
- 1) Evaluation of Subgrade Soil and Traffic Load

It was found that the bearing capacity of subgrade was weaker than was expected. In general, a soft subgrade which CBR under 3 is re-constructed with new subgrade materials. Therefore, the existing subgrade will be removed and replaced with good quality soil at the section where CBR is under 3. The division of the section and CBR of each section based on the CBR test result are shown in Table 2.2.2.3-1 while the above-mentioned detail is shown in the Figure 2.2.2.3-1.

On the other hand, ADB only carried out the urgent heightening of embankment (rehabilitation works) on the damaged sections and overtopping sections without CBR tests as a immediate countermeasure. However, the Project reflected the pavement design by the section divisions based on the results of CBR tests to be conducted about every 2 kms.

Division of section	Section I 0 - 5km	Section II 5km - 15km	Section III 15km - 23km	Section IV 23km - 32km	Section V 32km - 55km
Section CBR	3.0	4.1	2.0	3.0	0.9
Replacement of	Partial	-	Replacement	Partial	Replacement
subgrade soils	Replacement		(Modified CBR4)	Replacement	(ModifiedCBR4)

Table 2.2.2.3-1 Division of the Section and CBR of Each Section

When subgrade is constructed, goal design CBR is set. But, in this survey, the comparative evaluation of the composition of pavement is implemented with considering that design CBR is changeable with some various subgrade improvements. Cumulative 18 kip ESAL (W_{18}) a lane in service duration is shown in Table 2.2.2.3-2, which is the traffic load of each section.

		Cumulative 18	kip ESAL
Station	Calculated	Division of	Design Value
	Value	Section	Design value
0km+100	2.82×10^{6}		
1km+500	3.08×10^{6}	Section I	3.08×10^{6}
3km+500	2.60×10^{6}	Section 1	5.00 10
5km+000	2.02×10^{6}		
7km+000	1.98×10^{6}	с ^{с.} н	2.02.106
12km+500	1.37×10^{6}	Section II	2.02×10°
14km+500	1.74×10^{6}		
34km+500	2.18×10^{6}	Section III, IV	2.18×10^{6}
54km+500	1.42×10^{6}	and V	2.10/10

Table 2.2.2.3-2 Cumulative 18 kip ESAL per Lane in Service Duration

Note): 90 % of the traffic volume is loaded at Sta.0km+100 and 1km+500 of 4-lane section.

2) Required Structural Number

Each coefficient used in decision of Structural Number is as follows:

Reliability (R)	: 80% (Lowest recommended level of urban principal arterials)
Standard Deviation (S ₀)	: 0.45 (Standard value of flexible pavement)
Initial Serviceability (P ₀)	: 4.2 (Standard value of flexible pavement)
Terminal Serviceability (P _t)	: 2.5 (Lowest recommended level of principal arterials)

Required SN corresponding to design CBR of each section is shown in Table 2.2.2.3-3.

Design CBR	Section I	Section II	Section III - Section V
CBR=3	SN=4.645	SN=4.361	SN=4.412
CBR=4	SN=4.199	SN=3.931	SN=3.979
CBR=5	SN=3.872	SN=3.618	SN=3.662
CBR=6	SN=3.611	SN=3.376	SN=3.418
CBR=7	SN=3.411	SN=3.183	SN=3.222

Table 2.2.2.3-3 Required SN corresponding to design CBR

The plan road minimum thickness of AC surface and crushed-stone subbase are 9 cm and 15 cm respectively referring to AASHTO standard.

Figure 2.2.2.3-1 CBR Test Result and Section Division

3) Motorbike Lane

Motorbike lane is examined considering 4-wheel vehicle passing such as the entry and exit to the road facilities, buses stopping, parking on the shoulder and so on. SN is calculated to 2.56 under the condition that 25% of cumulative 18 kip ESAL, which is 2.18×10^6 , is loaded, the traffic load is $W_{18}=0.55\times 10^6$ and Design CBR is 7. It is planned that subbase structure is same structure as 4-wheel vehicle lane for securing the equality of improved subgrade and stabilized sub-base, and SN satisfies it with the change of surface course thickness.

(2) Subgrade Improvement and Pavement Structure

1) Subgrade Construction

The field surface soil is cohesive soil deposited on the floodplain, and this soil is used as the material for embankment at the Project road. Following the CBR test results by the study, the bearing capacity is expected to be only 3 or 4 of CBR. There is no more good material sources because the whole sections along the Project road is floodplain, and the material to be provided from the far places is unrealistic due to immeasurable costs. Therefore, the replacement material for soft subgrade for the Project is provided with the surface soil from the place where bearing capacity is expected (modified CBR shall be 4 or more), and utilized.

The bearing capacity of subgrade is a big factor when the pavement structure is decided. The thick pavement structure supported by weak subgrade which was not improved is frequently more expensive than the pavement structure whose subgrade is improved and design CBR was increased. Referring to 2.2.2.3(1)1) mentioned above, a comparison evaluation of the design CBR is varied by different subgrade improvement is carried out to propose the most appropriate pavement structure in this survey.

The method of subgrade improvement is either lime soil stabilization or cement stabilization. However, it is not easy to obtain lime soil at the field, therefore the subgrade improvement is planed under the condition that the goal CBR15 is achieved by cement stabilization. Each thickness of stabilization corresponding to CBR of subgrade which is needed to obtain each design CBR is shown in Table 2.2.2.3-4.

Design	Thicknes	s of Stabilization (G	oal CBR15)
CBR	Subgrade CBR4	Subgrade CBR3	Subgrade CBR2
CBR=4	-	15cm	Refer to subgrade
CBR=5	15cm	30cm	subgrade
CBR=6	30cm	40cm	replacement
CBR=7	40cm	50cm	

Table 2.2.2.3-4 Thickness of Stabilization

2) Pavement Structure

The plan for the surface to be asphalt concrete which is typical in Cambodia is proposed. Crushed base course stone is expensive because rocky mountain is far from the Project road so that stone has to be hauled from the quarry around National Road No.2 about 67 km and/or the opposite bank by ferry about 16 km away from the Project road respectively. Because aggregate is needed for base course even if the base course is stabilized, the base course is mechanically stabilized base which is more economical than stabilized base course. However, it is possible to make an economical plan without crushed stone subbase because river sands which are available along the Project road are stabilized and the stabilized sands become the subbase.

The pavement structure is examined by varying the design CBR of each section is shown in the Table 2.2.2.3-5. Referring to this table, cases of each pavement structure whose subgrade is improved and design CBR is 7 are the most economical, and, these pavement structure are good for transfer of the load from the surface to the subbase. Moreover, because the road elevation can be low due to thin pavement structure, this pavement structure reduces the social and environment impact.

٨	56km+000m	23.0km	0.0	Do	3.222	Replaced soil Im	7m 100m = 7,000m2	000 25,100,000	 : Replacement of	52cm	Embankment is low.	
	+000m			Do	3.662	Keplaced soil In the second solution second solution second solution second solution second second solution second seco	7m 7m x 1.0	25,700,0	Existing road subgrade	64cm	Embankment is high. 1,000,000 yen higher at embankment cost.	
	33km			Do	3.222	brund ground 20 22 22 22 22 22 22 22 22 22 22 22 22	7m	22,200,000	no replacement	52cm	Embankment is low.	
				Do	6 3.418	brunos ganisical	7m n = 7,000m2	22,600,000	adjustment, i	58cm		
IV		9.0km	3.0	Do	5 3.662	Bestaing ground	7m x 1,000r	23,000,000	Only Longitudir	64cm		
	-000m			Not do	3 4.405	No improvement	7m	21,800,000	Existing Road : of subgrade	78cm	Embankment is high. 2,100,000 yen higher at embankment cost.	
	24km	km	0	Do	3.222	Replaced soil Im 28 156 16 156 16	7m m = 7,000m2	25,600,000	Replacement of	52cm	Embankment is low.	
Π	-000m	8.0	2	Do	5 3.662	Replaced soil Im	7m 7m x 1.000r	26,200,000	Existing road :] subgrade	64cm	Embankment is high. 1,000,000 yen higher at embankment cost.	
_	16km-	0km	.1	Do	3.182	Pinong grund	7m m = 7,000m2	21,800,000	left box.	51cm	Embankment is low.	
	m000+	11.0	4	Not do	4 3.931	9.0cm 20cm No. Improvement	7m 7m x 1,000	21,600,000	Same as	69cm	Embankment is high. 1,500,000 yen higher at embankment cost.	
	5km			Do	3.411	Estimation of the second secon	15m	48,700,000	o replacement	57cm	Embankment is low.	
				Do	6 3.617	buung gnitzixil	15m 1 = 15,000m2	48,600,000	al adjustment, n	63cm	500,000 yen higher at embankment cost.	
-		5.0km	3.0	Do	5 3.872	Biology Biolog	15m 15m x 1,000m	50,700,000	Daly Longitudin	68cm	900,000 yen higher at embankment cost.	
	0km			Not do	3 4.652	11cm 28cm 28cm 28cm 28cm 10cm No Inprovement	15m	53,400,000	Existing Road : (of subgrade	79cm	Embankment is high. 1,800,000 yen higher at embankment cost.	
Section	STA	Section length	Existing subgrade CBR result	Subgrade improvement	Improved subgrade CBR Required SN	Pavement structure 0cm Surface course / Base course -10cm (Asphalt Concrete) 20cm Base-course 30cm (vershmal stabilized base) 20cm (rement stabilized base) 30cm (Cement stabilized sand) 70cm Subgrade improvement 90cm 110cm 110cm 110cm 110cm 110cm	Vehicle lane width Vehicle lane area per 1km	Cost (yen/1km of vehicle lane) (Direct cost)	- -	Pavement structure thickness	Consideration	

Table 2.2.3-5 Pavement Structure Examination

3) Motorbike lane

Following the result of pavement structure examination of Vehicle lane, the design CBR is 7 with subgrade improvement. The required SN is calculated to 2.56 with traffic load, which is 25 % of vehicle lane traffic load $W_{18}=0.55\times10^6$, and with the design CBR=7 when considering the longest section: Section III to Section V. In this case, the pavement structure is as follows, and, SN is adjusted with the change of surface course thickness and with the same subbase structure as the vehicle lane.

Surface Course AC	5cm	0.768
Base Course Mechanically Stabilized Base	15cm	0.797
Subbase Stabilized Soil	28cm	1.047
		Total SN=2.61

It is necessary that entry and exit of 4-wheel vehicle shall be avoided because the pavement structure of motorbike lane is weaker than that of 4-wheel vehicle lane. Therefore, the difference of 5 cm between the 9 cm of 4-wheel vehicle lane thickness and 5 cm of motorbike lane thickness is clear with the existing of the gap between them with run-off.

(3) Countermeasure against Inundation

The Project road combines the role of the road with the role of dyke for the Mekong River flood. In Japan, it is provided in detail that the material for embankment is managed with grain-size distribution. However, because the Project is not only an embankment for a river dyke but also an improvement of the road, it is not appropriate that the quality of the embankment material is required with extreme quality. Moreover, referring to the previous section, the whole section along the project road is floodplain with silty soil deposits and therefore, it is difficult to obtain cohesive soil for embankment. Therefore, the edge of the embankment is stabilized with cement to lower the permeability as a countermeasure against inundation in the Project.

Typical cross sections are shown in the Figure 2.2.2.3-2 to Figure 2.2.2.3-5.

2-47

2.2.2.4 Bridge Design

- (1) General Items
 - 1) Design Standard

Standards : AASHTO Standard Specifications for Highway Bridges, 2002 Live Load : HS20-44 Coefficient of Horizontal Seismic Force : 0.05

2) Width of Bridge

Figure 2.2.2.4-1 shows the width of bridge.

Figure 2.2.2.4-1 Width of Bridge

3) Proposed Elevation of Bridge

Proposed elevation of bridge is calculated based on the total height of pier beam, bearing, main girder, haunch, deck slab, pavement, and cross fall. The elevation of the soffit of pier beam corresponds with the High Water Level (H.W.L). The end of girders is partially cut off to lower the proposed elevation of bridges. The vertical clearance is 1.0m referring the "Ordinance for Structual Standard for River Administration Facilities" in Japan. Table 2.2.2.4-1 shows the proposed elevation of bridges.

Table 2.2.2.4-1	Proposed Elevation of Bridges
10010 2.2.2.1 1	Troposed Elevation of Bridges

(unit : m)

									· · ·
Name of	H.W.L	Pier	Bearing	Main	Haunch	Deck	Wearing	Cross	Proposed Elevation
Bridge		Beam		Girder		Slab	Course	Fall	(Minimum)
No.1	EL8.53	2.000	0.120	0.972	0.050	0.200	0.050	0.180	12.102
No.2	EL8.51	2.000	0.120	0.972	0.050	0.200	0.050	0.180	12.082
No.3	EL8.26	2.000	0.120	0.972	0.050	0.200	0.050	0.180	11.832

4) Elevation of Riverbed

The elevation of riverbed is basically the same as the ground elevation proposed during the F/S stage. The elevation of riverbed is proposed at EL3.70m at Bridge No.1 and No.3 and EL4.00m at Bridge No.2. The elevation of riverbed should be verified and subject to field adjustment before the construction of the said bridges.

(2) Structure Type of Bridge

A comparative study on the determination of Structure Type of Bridge is done for Bridge No.2 since the width of superstructure, height of abutments and piers are same, and length of span, and ground conditions are similar with the other two (2) bridges. The results of the comparative study are also applicable to the other two (2) bridges.

Hereinbefore, a comparative study is done on the abutment, pier, foundation, and superstructure respectively.

1) Abutment

The inverted T-type is recommended for abutment which is economical type for the height of 7.0m. The bottom elevation of footing should be determined according to the "River Structure Standards, Japan River Association". Location of Abutment is as shown in Figure 2.2.2.4-2.

Figure 2.2.2.4-2 Location of Abutment

2) Pier

The Cylindrical Column Type with pier beams is adopted for the piers because the flow direction of floodwater varies at the pier location. The lowest elevation of pier beam corresponds to the H.W.L. The thickness of soil cover on footing is approximately 2 m. Table 2.2.2.4-2 shows the result of comparative study on Pier.

3) Foundation

Cast-in-place Concrete Pile (C.C.P) by reverse circulation drill method is adopted for the foundation, as per results of the boring test. Because the bearing strata for foundation are deeper than 50m at Bridge No.2, friction pile is recommended as the foundation type. Also, at Bridge No.1 and No.3 the bearing strata are deeper than 30m, then the friction pile is also recommended for the foundation. The length of pile is approximately 30m for these bridges. Table 2.2.2.4-3 shows the results of comparative study on the foundation.

4) Superstructure

PC I-shape Girder Bridge based on AASHTO Standard is adopted for superstructure. Soft ground exists at bridge location and the location of bearing layer is found more than 50m in depth, according to the boring data, so that friction pile foundation should be adopted. Bridges with simple beams, shorter spans, and lighter girders are adequate for the superstructure. Minimum span is 20m in length, according to River Structure Standards, Japan River Association because the flood discharge is between 500 m³/s to 2000m³/s. Span length of Bridge No.1 and No.3 is 21.400m, and span length of Bridge No.2 is 24.100m. Table 2.2.2.4-4 shows the result of comparative study on superstructure.

	1001	ic 2.2.2.772 Comparative Study on 1 ici 13 pc	
	ALTERNATIVE 1 TTYPE	ALTERNATIVE 2 WALL TYPE	ALTERNATIVE 3 RIGID FRAME TYPE
SIDE VIEW	Proposed river bed	Proposed inverbed	Proposed river-bed
STRUCTURAL PROPERTIES	 Diameter of column bigger than thickness of wall type pier(diameter: biggest) Rebars necessary, because of long Cantilever Evaluation: △ 	 Thinner thickness of wall(thickness:thin) Shorter cantilever Evaluation: O 	 Pier with two(2) columns(diameter : middle) Shorter cantilever Evaluation : △
CONSTRUCTIVITY	 No cofferdam necessary on excavation work Supporting, forming & bar arrangement complicated because of longer cantilever 	Good constructivity as same as T type pier Evaluation: O	 Execution of rigid corners very important Evaluation: O
CONSTRUCTIO N DURATION	• Three(3) months necessary to complete five(5) substructures of Bridge No.2 Evaluation: O	 Three(3) months necessary to complete five(5) substructures of Bridge No.2 Evaluation: 	Three(3) months necessary to complete five(5) substructures of Bridge No.2 Evaluation: O
HYDROLOGICA L PROPERTIES	• The most adequate type, because of less turbulent flow of flood water at piers Evaluation: O	 Wall type has a risk of obstruction against flood flow because of turbulent flow at piers Evaluation: × 	Obstruction to flood flow because of adjacent two(2) pier columns Evaluation: ×
CONSTRUCTIO N COST	Cheapest in construction cost 4.95million yen/pier Evaluation: O (adopted)	 A little bit expensive in construction cost 5.07million yen/pier Evaluation: △ 	 Expensive in construction cost 5.21 million yen/pier Evaluation: ×

Table 2 2 2 4-2 Comparative Study on Pier Type

	Table 2	.2.2.4-3 Comparative Study on Foundation	
	ALTERNATIVE 1 Cast-In-Place CONCRETE PILE	ALTERNATIVE 2 STEEL PIPE PILE	ALTERNATIVE 3 WELL FOUNDATION
SIDE VIEW	Proposed river bed	Proposed river bed	Proposed river-bed
	 Vertical bearing capacity & horizontal resistance both bigger, because of big diameter pile 	Vertical bearing capacity & horizontal resistance both bigger, because of big diameter pile	 Adequate to foundation of big bridge because of big resistance Good quality, because of product in the air
PROPERTIES	• Quality of pile depending on construction ability • Suitable for friction pile because of bigger friction	 High quality due to materials fablicated in factory Inadecuate to friction nile 	 Longer foundation necessary, because of depending on resistance at bottom of well foundation
	Evaluation: O	Evaluation: ×	Evaluation: ×
	 Important in construction supervision 	Good handling because of light weight	Sinking work of well necessary
CONSTRUCTIVITY	 Yard necessary for temporary facilities & bar arrangement 	Welding work necessary at joints of members	Surcharge or water jet facilities necessary for deeper foundation
	Evaluation: Δ	Evaluation: O	Evaluation: ×
ENVIRONMETNT IMPACT	• Low noise & vibration at construction • Treatment of water pollusion & disposal of soil through excavation necessary(No problem in this project)	 Noise & vibration through construction due to driving Treatment of water pollusion & disposal of soil unnecessary because there is no excavation through pile construction 	 No noise & vibration Disposal of soil necessary because of big mass excavation(No problem in this project)
	Evaluation: O	Evaluation: ×	Evaluation: O
	• One(1) pile a day	• 2 Piles a day	• 4 months per foundationt(Diameter 8.0m, 28m/foundation)
CONSTRUCTION DURATION	 8 days for one(1) pier (\$01.0m\$, 8 piles, 28m/pile) 60 days for Bridge No.2 	 8 days for one(1) pier (Ф0.8m, 15 piles, 28m/pile) 60 days for Bridge No.2 	8 months for Bridge No.2(3 sets)
	Evaluation: O	Evaluation: O	Evaluation: ×
	· Cheapest, materials for C.C.P able to be procured in	More expensive, because of imported piles	 Most expensive, because of bringing facilities from abroad
CONSTRUCTION	the CAMBODIA	 21.0million yen/pier foundation 	• 84.0 million yen/pier foundation
1600	• 12.0 million yen/pier foundation	- F	- -
	Evaluation: O (adopted)	Evaluation: ×	Evaluation: ×

2-52

Table 2.2.2.4-4 Comparative Study on Superstructure

BRIDGE TYPE	COST(million yen)	STRUCTURAL PROPERTIES	HYDROLOGICAL PROPERTIES	CONSTRUCTION DURATION	CONSTRUCTITITY	ENVIRONMENT IMPACT	MAINTENANCE	Evaluation
SIMPLE PC-I SHAPE GIRDER		· short span, reduction of weight of superstructure	· River-bed protection and revetment	8 Months,	· Erection Method : Construction by	· Detour necessary at	Maitenance work minimal	
0 24100 2000 24100 2000 24100 300	SUPERSTRUCTURE : 1.00	 Utilizing studard cross section of AASHTO Simple heam available for un-even settlement, hecause 	protection necessary, scouring by velocity of super-critical flow in $3 \sim$	Construction duration within dry season	erection girder method • Erection not so difficult	construction stage. No special problem	because of concrete bridge	
Riverbed Protection: 400 %	SUBSTRUCTURE : 1.00 GIRDER ERECTION : 1.00 SUBSIDIARY WORK : 1.00	of friction pile - Lower evation of bridge due to cutting of girder end (h=1.372m)	5m/s • Measurement to local scouring			 After completion, No problem 		O (adopted)
14500 xer.r.a.m.a	TOTAL OF COST : 1.00		around piets necessary • Inhibitory Ratio of river cross section : 8.7%					
6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	RESULT : O	RESULT : O	RESULT : ∆	RESULT: O	RESULT : ∆	RESULT : O	RESULT : O	
SIMPLE STEEL H GIRDER 103000 123150 500 25150 500 23150 23150 23150		 H-shaped steel girder available due to short span Uniform shape of H-shaped steel girder (h=0.90m) 1 ittle influence due to lioh self-weight of serder 	 River-bed protection and revetment protection necessary, scouring by velocity of super-critical flow in 3~ 	9 Months, construction duration into rainy season	Erection Method : After installation of erection bent, execution by middle-size crane	Wide yard unnecessary. No influence to vicinity After completion. No	 Maitenance work minimal due to corrosion-resisting steel 	
88 RiverBad Protection : 400 th	SUPERSTRUCTURE : 1.78 SUBSTRUCTURE : 0.97	Necessary to import steel girder	5m/s • Measurement to local scouring	partialy	 On girder of middle span, erection from deck slab after completion of side span 	problem	2	
1800 4800 4800 4800 4800 8000 8000	GIRDER ERECTION : 0.46 SUBSIDIARY WORK : 1.06 TOTAL OF COST : 1.18		around piers necessary • Inhibitory Ratio of river cross		Erection easy			
14000			section : 7.3%					
	RESULT : ×	RESULT : O	RESULT : Δ	RESULT : ∆	RESULT : O	RESULT : O	RESULT : Δ	
N SIMPLE PC HOLLOW SLAB GIRDER		Reduction of weight of supertructure due to short span	River-bed protection and revetment protection necessary scouring by	9 Months, construction duration	Erection Method : Construction by erection girder method	Detour necessary at construction stage. No special	Maitenance work minimal	
0 25150 10000 25150 600 25150 300		Pre-cast girder by pre-tension system	velocity of super-critical flow in $3 \sim 5m/s$	into rainy season partialy	Big crane necessary because of heavy	problem	because of concrete bridge	
RiverEnd Presection : 1 400°	SUBSTRUCTURE : 1.08	· Lower neight of grace(n= 1.0m)	Measurement to local scouring		Erection little difficult	 Atter completion, No problem 		
4500 4500 4500 4500 5000	GIRDER ERECTION : 0.96 SUBSIDEARY WORK : 1.13		around piers necessary					
- 562-000 Field Adjustment 14000	TOTAL OF COST : 1.17		 Inhibitory Ratio of river cross section : 8.7% 					
14 14 14 14 14 14 14 14 14 14 14 14 14 1		ľ					,	
	RESULT : ×	RESULT : O	RESULT : ∆	RESULT : Δ	RESULT : ×	RESULT : O	RESULT : O	
AN SIMPLE PC-I SHAPE GIRDER 103000 2000 2300 2000 3000 3000		Bigger weight of superstructure due to long span Utilizing studard cross section of AASHTO	 River-bed protection and revetment protection necessary, scouring by velocity of super-critical flow in 3~ 	8 Months, Construction duration within dry season	Erection Method : Construction by erection girder method	Detour necessary at construction stage. No special	 Maitenance work minimal because of concrete bridge 	
	SUPERSTRUCTURE : 1.07	 Lower elevation of bridge due to cutting of grider end (h=1.6m) 	5m/s		 Big crane necessary because of heavy weight of girder 	problem		
RiverBed Protection : 200 ^w 3000	SUBSTRUCTURE : 0.95 GIRDER ERECTION : 1.52		Measurement to local scouring		Erection little difficult	 After completion, No problem 		
4500 * Subject to 	SUBSIDIARY WORK : 1.13 TOTAL OF COST : 1.08	-	around preis necessary					
14600			 Inhibitory Ratio of river cross section : 7.8% 					
				4			4	
A A AMPLESTEEL COMPOSITE GIRDER	RESULT : ∆	 RESULT : × I couver influence to substructure due to light self. 	RESULT: O	RESULT : O	RESULT : ×	• Wide verd immedeesers No	RESULT : O	
ANN DIMIT DI LILLO COMI COLLE CINCLEN 2010 102000 2000 2000 2000 2000		weight though long span	 Kiver-bed protection and revelment protection necessary, scouring by velocity of super-critical flow in 3 ~ 	o intollats, Construction duration within drv season	 Exection Internot: A Article Instantation of erection bent, execution by middle-size crane 	influence to vicinity	 Maitenance work minimal because of concrete bridge 	
	SUPERSTRUCTURE : 2.26	 rugner auatomy by corrosion protection memori Higher girder height (h=1.7m) 	5m/s		On girder of middle span. erection from	 Atter comptensor, No problem 		
Bit RiverBed Protection: 24.00 2 2 2000 700 700 700 700 700 700 700	SUBSTRUCTURE : 0.85 GIRDER ERECTION : 0.37	 Necessary to import steel girder 	 Measurement to local scouring around niers necessary 		deck slab after completion of side span			
4500 * Stabiset to 	SUBSIDIARY WORK : 1.31 TOTAL OF COST : 1.33		Inhibitory Ratio of river cross section - 5 8%		 Protection equipment against overturning of girder necessary, because of higher girder 			
	RESULT : ×	RESULT : ∆	RESULT : O	RESULT: O	RESULT : O	RESULT : O	RESULT : Δ	

2.2.2.5 Culvert Design

Refer to 2.2.1.4 Culvert Location and Length. Location, size and shape are described in that section.

(1) Range of Revetment of Embankment around Culvert

The range of approach revetment of embankment is 10 m long from the end of each wing wall at upstream and downstream side to each upstream and downstream side.

(2) Parapet and Diaphragm Wall

The horizontal width of parapet and diaphragm wall of box culvert is over 1.0 m with thickness of 40 cm. However, the thickness of parapet and diaphragm wall of pipe culvert is 35 cm considering it to be smaller structure.

(3) Splice

Box Culvert

Differential settlement of box culvert may occur because the foundation ground is soft and the embankment load is not uniform to box culvert since the box culvert is extended at the position of raising of existing embankment and providing new embankment. Splice joint is placed to relieve the effects of differential settlement to the box culvert. One splice is set up at the middle of box culvert because the boundary between the existing embankment and the new embankment is at the center of the road.

Pipe Culvert

Splice is set up because pipe culvert is over 20 m long and has the danger of failure due to differential settlement and shrinkage etc. It is preferable that splice is not set up near center of embankment. Therefore, two (2) splices are set up at the pipe culvert.

(4) Notch for Stop Log

The flood around culvert flows from the Mekong River side to the flood area in the Colmatage side. Notch for stop log is set up at the Mekong River side to retain the running water for maintenance or during an emergency. The dimension is 15 cm in depth and 10 cm in width similar to the existing culvert.
(5) Steps

Cleaning and maintenance etc. are necessary during maintenance period for the culverts of the Project. The steps for maintenance are placed at both upstream and downstream sides. The width of step is 1.0 m by which managers can meet.

(6) Foundation

Each box culvert and pipe culvert has spread foundation. Replacement of good quality soil or sand is applied due to the possibility of the problem of consolidation settlement caused by the soft foundation. The location, range and depth are same as the ones decided in Section 2.2.2.9 Design of Countermeasure against Soft Ground to Embankment.

(7) Diaphragm Wall

The diaphragm wall is set up below the bottom slab for the protection of piping at the foundation ground of box culvert. The length of the diaphragm wall is 3.0 m considering the examination of infiltration route and minimum embedment length of 3.0 m.

2.2.2.6 Drainage Design

(1) Sections at which Road Drainage is Placed

Considering the proposal of the Feasibility Study and the results of the meeting with related organizations, surface drainage and urban area drainage are set up below sections where urbanization is progressing. Sections at which Road drainage is placed are presented in Table 2.2.2.6-1.

Area Name	Section	Purpose	Collecting Area (ha)	Flow Facility	Inflow Facility	Plac Disc	ce to harge
Chbar Ampov	0+000 - 1+800	Surface and Urban Area Drainage	5.640	Pipe	Curb Inlet	The Bass	sac River
Kokir Market	13+500 - 13+950	Surface and Urban Area Drainage	2.650	Pipe	Curb Inlet	The River	Mekong
Neak Loeung	54+750 - 55+300 55+380 - 55+945	Surface and Urban Area Drainage	6.315	U Shaped Side Ditch	Top with Hole	The River	Mekong

Table 2.2.2.6-1 Sections at which Road Drainage is Placed

1) Chbar Ampov Section (Sta.0+000 - Sta.1+800)

The section of Sta.0+000 to 0+400 is dense commercial area and rainfall flows into the road of the section. The rain collecting area is 25m from the centerline to each left and right side considering topography inclination. The section of Sta.0+400 to 1+800 is embankment road. Therefore, rainfall does not flow from the area along the road into the road but rainfall on the road sustains on the road due to the mount-up sidewalk. Therefore, a countermeasure against road surface water is taken at this section.

2) Kokir Market Section (Sta.13+500 - Sta.13+950)

This section is dense commercial area centering the market and rainfall flows into the road. The rain collecting area is 25 m from the centerline to each left and right side considering topography inclination. Partial discharge from the market area, the area is 0.4 ha, discharges into Mekong River through the side ditch at present, but the pipe line of the drainage of the road overlaps with that side ditch. Therefore, the project drainage covers the partial discharge.

3) Neak Loeung Section (Sta.54+750 - Sta.55+300, Sta.55+380 - Sta.55+945)

This section is a commercial area crowded with people using ferry terminal for the ferry crossing the Mekong River. At the inside land of the loop road, it is not easy to clear rainfall. And the land collects with water recurrently due to the loop road surrounding the market etc. Therefore, the drainage facilities which aim to clear the inside water and road surface drainage are set up.

The details of catchment area of the road drainage facilities are shown in the Table 2.2.2.6-2.

			Explanation		Phnom Penh Municipality	officers designate the location of the outlet.					Phnom Penh Municipality	ouncers designate the rocation of the outlet.		The proposed discharge pipe is in the same route as existing	Koki Commune officers advise to improve the said existing	drain for discharging the stormwater.	The area confined by the looping	road is requested to be drained out, Right side ground level of the target road is lower than the	proposed pavement level, Prek Tonloab Commune officers	request not to concern are the stormwater to the right side ground w		
			Design FWL	(m)	10.18						10.18	<u>, 1</u>		9.72		<u> </u>	7.79	1 0 1	<u> </u>			
	_	Invert	Level of Outlet	(m)	7.50						7.69			7.50			4.85					
scharge Dine	ndr i ve mirve		Diamater	(m)	0.7						0.7			0.7			0.7					
Ĕ	2		Length	(m)	140						180			85			240					
			Location of Outlet		Mekong	River					Stream	to Dassac River		Mekong River			Mekong	Kiver				
			Purpose		toad Surface & Roadside Area Drainage	toad Surface & Roadside Area Drainage		koad Surface Drainage	koad Surface Drainage		koad Surface Drainage	koad Surface Drainage		toad Surface & Roadside Area Drainage	koad Surface, Roadside Area & Market Space Drainage		toad Surface Drainage	toad Surface, Roadside Area & Looping Area Drainage		koad Surface Drainage	toad Surface, Roadside Area & Looping Area Drainage	
			Total	(ha)	$1.000 \frac{F}{4}$	1.000 F	2.000	0.130 F	0.130 F	0.260	1.690 F	1.690 F	3.380	1.125	1.525	2.650	0.385 F	2.803 8	3.188	0.396 F	2.732 ^F	3.127
		-	Local Drainage Area	(ha)											0.400	0.400		2.418	2.418		2.336	2.336
		Are	Roadside Area	(ha)	0.314	0.314	0.628						1	0.473	0.473	0.945						
Areac	CIPAT		Road Surface	(ha)	0.686	0.686	1.372	0.130	0.130	0.260	1.690	1.690	3.380	0.653	0.653	1.305	0.385	0.385	0.770	0.396	0.396	0.791
at Drainage	- Ammunu 12		Local Drainage Area	(ha)											0.400		,	2.418			2.336	
Tare		dth	Roadside Area	(m)	7.850	7.850								10.500	10.500							
		Wi	Road Surface	(m)	17.150	17.150		13.000	13.000		13.000	13.000		14.500	14.500		7.000	7.000		7.000	7.000	
			Length	(m)	400	400		100	100		1,300	1,300		450	450		550	550		565	565	
		Side	riewed from Phnom Penh		Right	Left	Total	Right	Left	Total	Right	Left	Total	Right	Left	Total	Right	Left	Total	Right	Left	Total
			Sections		0+000 - 0+400			0+400 - 0+500			0+500-1+800			13+500 - 13+950			54+750 - 55+300			55+380 - 55+945		
			Areas		1. Chbar Ampov									2. Koki Market			3. Neak Loeung					

 Table. 2.2.2.6-2
 Details of Catchment Area of the Road Drainage

(2) Calculation of Rainwater Discharge Volume and Channel

1) Calculation of Rainwater Discharge Volume

The maximum rainwater discharge that rain flows from the farthest point of catchment area to the interest point is calculated by the rational formula as below.

$$Q = \frac{1}{360} C \cdot I \cdot A$$

Where:

Q : Peak rain discharge volume (m^3/sec)

- C: Coefficient of discharge (Urban area=0.70, Paved road surface=0.90)
- I : Rainfall intensity within the concentration time (mm/hr)
- A: Rainwater catchment area (km^2)

This coefficient of discharge is weighted average value calculated with ratio of area composition of paved road and urban area (Pi).

$$C = \sum (Pi \times Ci)$$

The time that rain flows from the farthest point of collecting area to the project point is as follows.

$$Tc = T_1 + T_2$$

Where:

- *Tc* : Reaching time of flow (min)
- T_1 : Time that rain flows from the farthest point of water collecting area to a drainage facilities (Inflow time) (min)
- T_2 : Time that rain flows through the drainage facilities to the project point (Flow down time)(min)

In this case, the minimum value of *Tc* is 10 min.

The rain intensity corresponding to *Tc* is calculated with the 2-year return period rainfall intensity formula proposed in the JICA study on drainage improvement and flood control in the Municipality of Phnom Penh in 1999.

$$I = 2556.07(Tc + 25.48) - 0.93$$

Where:

I : Rainfall intensity (mm/hr)

Tc : Reaching time of flow (min)

10 minutes rainfall intensity is I=2556.07(10+25.48)-0.93=92.5 (*mm/hr*). This value is appropriate because concentrated heavy rain occurs from May to October due to the wet air brought by the southwest monsoon.

4) Hydraulic Analysis of Channel

The ability of flow of pipe and ditch is calculated with Manning formula below, and they are designed subject to natural flow.

$$v = \frac{1}{n} R^{2/3} \cdot i^{1/2}$$

Where:

- V: Section average flow velocity (m/s)
- *N*: Coefficient of roughness (Concrete U-shaped side ditch=0.015, Concrete pipe=0.013)
- R: Hydraulic mean depth (m) (R=A/P, A : Flow area, P : Wetted perimeter)
- i: Channel inclination

80 % flow ability of a section is designed considering an interruption of water sectional area by mixed soil. And, the range of flow velocity is from 0.6 m/s to 3.0 m/s for soil not to deposit and for a pipe not to be eroded by flow.

(3) Composition of Road Drainage Facility

1) Design Live Load

The strength of road drainage facilities is satisfied with HS20-44 of AASHTO.

2) Drainage Facility for Flow

Chbar Ampov and Kokir Market Section

Construction method that pipes are set up under sidewalk is adopted considering the landscape around mount-up sidewalk. The type of pipe is concrete pipe which is typical in Cambodia with a minimum diameter is 50 cm considering the ease of maintenance. The depth of buried pipe, that is the distance from the top of pipe to the surface of shoulder, is more than 0.5 m because of the control of the load and the vibration caused by vehicles. A pipe with the strength of "RC Pipe of JIS A 5302 class 2 in Japan" or more is necessary.

Required properties of adopted RC pipe are shown in Table 2.2.2.6-3.

10010													
Nominal	Cracking Load	Inside	Thickness	Weight	Radius of								
Diameter		Diameter			Thickness enter								
(mm)	(kN/m)	(mm)	(mm)	(kN/m)	(m)								
500	28	500	69	2.96	0.2845								
700	33	700	83	4.90	0.3915								

 Table 2.2.2.6-3
 Required Properties RC Pipe (JIS A 5302 Class2 or More)

Foundation structure is 120-degree concrete foundation.

Neak Loeung Section

RC U-shaped ditch with cover is adopted because sidewalk is not built and rainfall has to flow into the ditch and considering the safety of vehicles and pedestrians. The flow direction in the ditch cannot correspond with the direction of the longitudinal profile due to the limitation of the location of discharge facilities. Therefore, free inclination of the invert of the ditch adjusted by the thickness of the secondary work mortar is adopted.

4) Inflow Facilities

Chbar Ampov and Kokir Market Section

Curb inlets which is generally used at urban road in Cambodia, is applied as inflow facilities because the drainage facility for the storm water is under ground pipe. The longitudinal inclination at the proposed section is nearly zero, therefore the curb inlet is set up every 10 m along the road.

Neak Loeung Section

The shape of the top of U shaped ditch has a lateral divided hole for rainfall to flow in to it naturally but with strength satisfying the design live load.

5) Discharge Facility

Discharge Pipe

Rainfall collected through the pipe and the ditch flows down through the discharge pipe and is discharged from the outlet. The type of the discharge pipe is same as the drainage facility for flow described above. Therefore, the depth of buried pipe is over 0.6 m and the foundation structure is likewise 120 degree concrete foundation. Running water in the discharge pipe is also natural flow.

Outlet

The outlet is RC wing wall shape transiting the slope of the river. Foundation concrete 20 cm thick and wooden pile 3 m long are placed to prevent differential settlement. The slope protection of wet masonry is provided so that the discharge water will not erode the slope of the river. The design of wet masonry is same as the road slope protection. Therefore, the thickness of wet masonry is 25 cm and each crushed stone foundation and leveling concrete is 10 cm thick at the wet masonry covering part. Mattress gabion is to be adopted as foot protection and run off, and is filled with the material which particle size is about 20 cm in diameter. Outlet is shown in Table 2.2.2.6-4.

	Discharge	Pipe	Level of In	vert (m)	Discharge	Design
Section	Name	Diameter (mm)	Discharge Pipe	Outlet Apron	River or Channel	Flood Water Level (m)
Chbar	CA Discharge Pipe 1	700	7.50	7.38	The Bassac River	10.18
Ampov	CA Discharge Pipe 2	700	7.69	7.57	Channel to the Bassac River	10.18
Kokir Market	KM Discharge Pipe	700	7.50	7.38	The Mekong River	9.72
Neak Loeung	NL Discharge Pipe	700	4.85	4.73	The Mekong River	7.79

Table 2.2.2.6-4 Outlet

6) Manhole

Manhole is set up for the maintenance and cleaning of pipe. The places of manhole are the section changing point, confluence point and every 50 m point in the straight section considering the cleaning equipment capacity belonging to Phnom Penh Municipality. The shape of manhole is RC box type, and the top is RC slab. The sandpit of 30 cm depth is set up between invert of manhole and the bottom of the connected pipe.

(4) The result of Hydraulic Analysis of Road Drainage Facility

The whole result of hydraulic analysis of road drainage facility is shown in the Table 2.2.2.6-5.

		Dimension of Dusis						Catchment Area		a	Runoff Coefficient	Inflow Time	Travel Time	Rainfall Concentration Time	Rainfall Intensity	Design Discharg	je								
Areas	Station	Drainag	e Areas	s	tation	Chainage	Partial Length of Drains	Pavement Height at Curb (PH)	Inside Size of Pipe or Culvert	Invert Level of Pipe or Ditch	Inside Top Level of Pipe or Ditch (TL)	Longitudinal Slope of Pipe or Ditch	PH-TL	Velocity	80% Discharge	Road Surface	Roadside Area	Total A	с	Tin	L/V	Te =Tin+L/V	1=2556.07x (Tc+25.48) ^{0.01}	Q =1360xCxIxA	Judge
Chbar Ampov	0+000 - 0+500	Right CA-1-R	Left	0	+ 500	(m) 0	(m) 0	(m) 11.002	(m) D=0.5	(m) 9.700	(m) 10.200	(%)	(m) 0.802	(m's)	(m [*] /s)	(ha)	(ha)	(ha)		(min)	(min)	(min)	(mm/h)	(m*/s)	
	Road Surface & Side Area Drainage			0.	+ 400 + 260	100 240	100	10.536	D=0.5 D=0.5	9.200 8.920	9.700 9.420	0.500	0.836	0.860	0.240	0.130	0.000	0.130	0.80	8.89 10.00	1.11 3.44	10.00	92.5 84.9	0.027	OK OK
				0	+ 160 + 110	340 390	100	10.541 10.576	D=0.5 D=0.5	8.720 8.620	9.220 9.120	0.200	1.321	0.860	0.152	0.312	0.120	0.432	0.75	10.00	5.11	15.11	81.6 80.1	0.073 0.116	OK OK
			CA-1-L	0	+ 500	0	0	11.002	D=0.5	9.700	10.200		0.802												
				0	+ 400 + 260	100 240	100	10.536	D=0.5 D=0.5	9.200 8.920	9.700 9.420	0.500	0.836	1.360 0.860	0.240	0.130	0.000	0.130	0.80	8.89 10.00	1.11 3.44	10.00 13.44	92.5 84.9	0.027	OK OK
				0	+ 160 + 110	340 390	100	10.541 10.576	D=0.5 D=0.5	8.720 8.620	9.220 9.120	0.200	1.321	0.860	0.152	0.312	0.120	0.432	0.75	10.00	5.11 5.94	15.11 15.94	81.6 80.1	0.073	OK OK
		Discharj	ge Pipe 1	0	+ 000	0	0	10.576	D=0.7	8.210	8.910		1.666												
				0	+ 015	15	15	10.576	D=0.7 D=0.7	8.180 8.090	8.880 8.790	0.200	1.696	1.076	0.373	1.014	0.390	1.404	0.75	10.00	6.15	16.15 16.78	79.7	0.233	OK OK
				0	+ 065	65 88	5	10.100	D=0.7 D=0.7	8.080 8.034	8.780 8.734	0.200	1.320	1.076	0.373	1.014	0.390	1.404	0.75	10.00	6.85	16.85	78.5 77.9	0.230	OK OK
				0	+ 140	140	52	7.500	D=0.7	7.500	8.200	1.027	-0.700	2.439	0.845	1.014	0.390	1.404	0.75	10.00	7.49	17.49	77.4	0.226	OK
		(1.3.8						11.002	D. o.c	0.700	10.200		0.002												
	0+500 - 1+800 Road Surface Drainage	CA-2-R		0.	+ 500	100	100	11.002	D=0.5	9.700	10.200	0.100	0.802	0.608	0.107	0.130	0.000	0.130	0.80	7.62	2.38	10.00	92.5	0.027	OK
				0	+ 700 + 800	300	100	11.050	D=0.5	9.500	9.900	0.100	1.050	0.608	0.107	0.260	0.000	0.260	0.80	5.24	4.76	10.00	92.5	0.053	OK
				0	+ 900 + 000	400	100	11.050	D=0.5 D=0.5	9.300 9.200	9.800 9.700	0.100	1.250	0.608	0.107	0.520	0.000	0.520	0.80	0.48	9.52 11.90	10.00	92.5 88.1	0.107	OK OK
				1	+ 100	600	100	11.050	D=0.5	9.050	9.550	0.150	1.500	0.880	0.156	0.780	0.000	0.780	0.80	0.00	13.99	13.99	83.8	0.145	OK
			CA-2-L	0	+ 500 + 600	0	0	11.002	D=0.5 D=0.5	9.700 9.600	10.200	0.100	0.802	0.608	0.107	0.130	0.000	0.130	0.80	7.62	2.38	10.00	92.5	0.027	ОК
				0	+ 700 + 800	200 300	100	11.050 11.050	D=0.5 D=0.5	9.500 9.400	10.000 9.900	0.100	1.050	0.608	0.107	0.260	0.000	0.260	0.80	5.24	4.76	10.00	92.5 92.5	0.053	OK OK
				0	+ 900 + 000	400	100	11.050	D=0.5 D=0.5	9.300 9.200	9.800 9.700	0.100	1.250	0.608	0.107	0.520	0.000	0.520	0.80	0.48	9.52 11.90	10.00	92.5 88.1	0.107	OK OK
				1 -	+ 100	600	100	11.050	D=0.5	9.050	9.550	0.150	1.500	0.880	0.156	0.780	0.000	0.780	0.80	0.00	13.99	13.99	83.8	0.145	OK
		CA-3-R	-	1	+ 800 + 700	0	0	11.050 11.050	D=0.5 D=0.5	9.700 9.600	10.200	0.100	0.850	0.608	0.107	0.130	0.000	0.130	0.80	7.62	2.38	10.00	92.5	0.027	ОК
				1	+ 600	200	100	11.050	D=0.5	9.500 9.400	10.000	0.100	1.050	0.608	0.107	0.260	0.000	0.260	0.80	5.24	4.76	10.00	92.5	0.053	OK OK
				1	+ 400	400	100	11.050	D=0.5	9.300	9.800	0.100	1.250	0.608	0.107	0.520	0.000	0.520	0.80	0.48	9.52	10.00	92.5	0.107	OK OV
				1	+ 200	600	100	11.050	D=0.5	9.050	9.550	0.150	1.500	0.719	0.127	0.650	0.000	0.650	0.80	0.00	13.99	13.99	83.8	0.127	OK
					+ 100	700	100	11.050	D=0.5	8.900	9.400	0.150	1.650	0.880	0.173	0.910	0.000	0.910	0.80	0.00	16.07	16.07	79.9	0.162	0K
			CA-3-L	1 ·	+ 800 + 700	0	0	11.050	D=0.5 D=0.5	9.700 9.600	10.200	0.100	0.850	0.608	0.107	0.130	0.000	0.130	0.80	7.62	2.38	10.00	92.5	0.027	OK
				1 ·	+ 600 + 500	200 300	100	11.050	D=0.5 D=0.5	9.500 9.400	10.000 9.900	0.100	1.050	0.608	0.107	0.260	0.000	0.260	0.80	5.24 2.86	4.76	10.00	92.5 92.5	0.053	OK OK
				1 -	+ 400 + 300	400 500	100	11.050	D=0.5 D=0.5	9.300 9.200	9.800 9.700	0.100	1.250	0.608	0.107	0.520	0.000	0.520	0.80	0.48	9.52 11.90	10.00	92.5 88.1	0.107	OK OK
				1	+ 200 + 100	600 700	100	11.050 11.050	D=0.5 D=0.5	9.050 8.900	9.550 9.400	0.150	1.500 1.650	0.880	0.156	0.780	0.000	0.780	0.80	0.00	13.99 16.07	13.99 16.07	83.8 79.9	0.145	OK OK
		Dischar	ge Pipe 2	0	+ 000	0	0	11.050	D=0.7	8.500	9.200		1.850												
				0	+ 122 + 164	122	122	9.470 9.970	D=0.7 D=0.7	7.951	8.651 8.462	0.450 0.450	0.819	1.908 1.908	0.661	3.380 3.380	0.000	3.380 3.380	0.80	0.00	17.20	17.20 17.59	77.9 77.2	0.585	OK OK
				0	+ 180	180	16	8.500	D=0.7	7.690	8.390	0.450	0.110	1.908	0.661	3.380	0.000	3.380	0.80	0.00	17.74	17.74	77.0	0.578	ОК
Kakir Market	12-500 12-050	KM-I-R		13	+ 500	0	0	9.911	D=0.5	8.600	9100		0.811												
KOLI MAINL	Road Surface &			13	+ 620	120	120	9.861	D=0.5	8.480	8.980	0.100	0.881	0.608	0.107	0.174	0.126	0.300	0.75	10.00	2.86	12.86	86.1	0.054	OK
	Side Area Dramage		KM-1-L	13	+ 500	0	0	9.911	D=0.5	8.600	9.100	0.100	0.811	0.608	0.107	0.174	0.126	0.200	0.75	10.00	2.96	12.94	96.1	0.054	OF
				15	+ 020	120	120	9.801	D-0.5	8.480	8.780	0.100	0.081	0.008	0.107	0.174	0.120	0.300	0.75	10.00	2.80	12.80	80.1	0.034	UK
		KM-2-K		13 -	+ 950 + 720	230	230	9.733	D=0.5	8.400	8.900	0.100	0.833	0.719	0.127	0.334	0.242	0.575	0.75	10.00	5.48	15.48	80.9	0.097	ОК
				13	+ 620	330	100	9.861	D=0.5	8.070	8.570	0.100	1.291	0.719	0.141	0.479	0.34/	0.825	0.75	10.00	7.86	17.86	/6.8	0.132	OK
			KM-2-L	13 · 13 ·	+ 950 + 720	0 230	0 230	9.733 9.895	D=0.5 D=0.5	8.400 8.170	8.900 8.670	0.100	0.833	0.719	0.127	0.334	0.242	0.575	0.75	10.00	5.48	15.48	80.9	0.097	ок
				13	+ 620	330	100	9.861	D=0.5	8.070	8.570	0.100	1.291	0.719	0.141	0.479	0.347	0.825	0.75	10.00	7.86	17.86	76.8	0.132	OK
		Discha	rge Pipe	0	+ 000 + 060	0 60	0 60	9.861 9.500	D=0.7 D=0.7	7.670	8.370 8.250	0.200	1.491	1.272	0.441	1.305	0.945	2.250	0.75	10.00	8.69	18.69	75.4	0.353	OK
				0	+ 080 + 085	80 85	20	9.100 7.300	D=0.7 D=0.7	7.510 7.500	8.210 8.200	0.200	0.890	1.272	0.441	1.305	1.345	2.650 2.650	0.70	10.00	8.97 9.04	18.97 19.04	75.0 74.9	0.386	OK OK
				H	E																				
Neak Locung	54+750 - 55+300 55+380 - 55+945	NL-1-R		54 · 54 ·	+ 750 + 900	0	0	7.979 8.058	0.4x0.4 0.4x0.4	7.429 7.279	7.829	0.100	0.150	0.550	0.070	0.105	0.000	0.105	0.80	5.83	4.17	10.00	92.5	0.022	ОК
	Road Surface & Side Area Drainage			54 · 55 ·	+ 960 + 100	210 350	60 140	8.090	0.4x0.4 0.4x0.4	7.219	7.619	0.100	0.471 0.649	0.550	0.070	0.147	0.000	0.147	0.80	4.17 0.28	5.83 9.72	10.00	92.5 92.5	0.030	OK OK
	-			55	+ 183	433	83	8.109	0.4x0.4	6.996	7.396	0.100	0.713	0.550	0.070	0.303	0.000	0.303	0.80	0.00	12.03	12.03	87.8	0.059	OK
			NL-1-L	54 54	+ 750 + 900	0	0	7.979	0.6x0.6 0.6x0.6	7.229	7.829	0.100	0.150	0.721	0.208	0.105	0.504	0.609	0.65	10.00	3.57	13.57	84.6	0.093	ОК
				54 · 54 ·	+ 960 + 960	210 210	60 0	8.090 8.090	0.6x0.6 0.8x0.8	7.019 6.819	7.619	0.100	0.471 0.471	0.721	0.208	0.147	0.794	0.941	0.65	10.00	5.00	15.00	81.8	0.139	OK
				55 · 55 ·	+ 100 + 183	350 433	140	8.128	0.8x0.8 0.8x0.8	6.679 6.596	7.479	0.100	0.649 0.713	0.873	0.447	0.245	1.519	1.764	0.65	10.00	7.59 9.13	17.59	77.2 74.7	0.246	OK OK
		NL-2-R		55	+ 300	0	0	7.830	0.4x0.4	7.280	7.680		0.150												
				55	+ 183	117	117	8.109	0.4x0.4	7.163	7.563	0.100	0.546	0.550	0.070	0.082	0.000	0.082	0.80	6.75	3.25	10.00	92.5	0.017	OK
			NL-2-L	55 · 55 ·	+ 300	0	0	7.830	0.5x0.5 0.5x0.5	7.180	7.680	0.100	0.150	0.639	0.179	0.082	0.461	0.547	74.0	10.00	3.75	12.25	85.7	0.084	OK
		NL 3 P		50	103			0.109	0.4-0.4	7,020	7.303	0.100	0.150	0.008	0.128	0.002	0.401	0.343	3.03	13.00	3.23		63.2	3.084	./K
				55	+ 452	72	72	7.768	0.4x0.4	6.998	7.398	0.100	0.370	0.550	0.070	0.064	0.000	0.064	0.80	8.00	2.00	10.00	92.5	0.013	ОК
			NL-3-L	55	+ 380	0	0	7.620	0.5x0.5	6.970	7.470	0.700	0.150	0.077	0.127	0.001		0.025	0.65	10.07	2.01	10.01		0.007	0"
		A17 1		22	+ 4/2	92	92	7.809	0.5x0.5	0.878	7.378	0.100	0.431	0.638	0.128	0.064	0.448	0.512	0.65	10.00	2.56	12.56	86.7	0.080	UK
		NL-4-R		55 · 55 ·	+ 945 + 800	0 145	0	8.065 7.576	0.4x0.4 0.4x0.4	7.515 7.022	7.915 7.422	0.340	0.150	0.550	0.070	0.102	0.000	0.102	0.80	5.97	4.03	10.00	92.5	0.021	OK
				55 · 55 ·	+ 560 + 472	385 473	240 88	7.938	0.4x0.4 0.4x0.4	6.783 6.695	7.183	0.100	0.755 0.714	0.550	0.070	0.270	0.000	0.270	0.80	0.00	10.69	10.69 13.63	90.8 84.5	0.054	OK OK
			NL-4-L	55	+ 945	0	0	8.065	0.4x0.4	7.515	7.915		0.150												
				55 · 55 ·	+ 800 + 800	145 145	145	7.576	0.4x0.4 0.7x0.7	7.022 6.722	7.422 7.422	0.340	0.154	1.015	0.130	0.102	0.286	0.388	0.68	10.00	2.42	12.42	87.0	0.064	ОК
				55 · 55 ·	+ 560	385 385	240	7.938	0.7x0.7 0.8x0.8	6.483 6.383	7.183	0.100	0.755	0.799	0.313	0.270	1.519	1.789	0.65	10.00	7.42	17.42	77.5	0.250	OK
				55	+ 472	473	88	7.809	0.8x0.8	6.295	7.095	0.100	0.714	0.873	0.447	0.331	1.888	2.219	0.65	10.00	9.05	19.05	74.9	0.300	OK
		Discha	rge Pipe	0	+ 000	0	0	8.109	D=0.7	6.396	7.096	0.500	1.013	1 702	0.500	0.770	2.410	3 100	0.49	10.02	1.1 ~~~	27.77	40.4	0.410	0r
				0	+ 102	102	85 17	7.809	D=0.7	5.886	6.586	0.500	1.223	1.702	0.589	0.770	2.418	3.188	0.68	10.00	12.77	22.92	69.3	0.419	OK
				0	+ 112	112	10	7.809	D=0.7 D=0.7	5.811	6.511 6.361	0.750	1.298	2.463	0.853	1.561	4.754	6.315	0.68	10.00	12.99	22.99 23.14	69.2 69.0	0.825	OK OK
				0	+ 183 + 240	183 240	51	7.240 5.620	D=0.7 D=0.7	5.279 4.851	5.979	0.750	0.069	2.463 2.463	0.853	1.561	4.754	6.315 6.315	0.68	10.00 10.00	13.51 13.92	23.51 23.92	68.5 68.0	0.817 0.811	OK OK
1	1	1		1	1	1				1	1	1		1	1						i i	1			

Table 2.2.2.6-5 Result of Hydraulic Analysis of Road Drainage Facility

2.2.2.7 Revetment and Riverbed Protection Design at Opening Section

(1) Riverbed Protection

Non-uniform flow analysis is implemented under the condition that the difference between the water level at floodplain of the Colmatage side and the water level at the Mekong River side is 1 m as well as the Feasibility Study. The structure is decided referring to the record of current speed at flood time and considering above-mentioned results of analyses.

But the revetment and riverbed protection of BC5 is same size as the existing ones as well as the Feasibility Study because the current velocity there seems to be not so high due to the topographic condition. The structure of riverbed protection is shown in the Table 2.2.2.7-1.

	Mattress G	abion Length	Riprap V	Vork Length	Rubble Stone
Opening Section	Upstream Side Lu (m)	Downstream Side Ld (m)	Upstream Side	Downstream Side	Min. Dia. (cm)
Bridge (Br.1, Br.2, Br.3)	10	20	5	5	60
Box Culvert (BC1, BC4, BC8, BC10)	10	20	5	5	30
Box Culvert (BC5)	10	10	5	5	20
Box Culvert (BC9)	10	15	5	5	30
Box Culvert (BC11)	10	30	5	5	20
Pipe Culvert (Pipe1, Pipe2)	5	5	5	5	20

Table 2.2.2.7-1 Structure of Riverbed Protection

(2) Revetment

Revetment is set up around the bridges and the inlet and outlet of box culverts and pipe culvers for the prevention against erosion and collapse of the slope caused by water inflow. The structure of revetment is decided considering the analysis result that current velocity of flow approaches from 3 to 6 m/s at the nearest down stream point of the opening structure. The structure of revetment at opening section is shown in the Table 2.2.2.7-2.

Item	Range	Туре	Structure
Bridge	Road embankment of 15 m from the front of parapet of abutment. Both inlet and outlet.	Flat Concrete Revetment	RC, thickness : 20cm Foundation crushed stone, thickness : 10cm Levelling concrete with wire mesh, thickness : 10cm At the bottom of embankment : Embedment length : 0.5m, Protecting with mattress gabion Filling with crusher-run (Dia.15 - 20cm) Foundation pile ; L=2.0m@1.5m
Culvert (Box, Pipe) *Except BC5	Road embankment of 10m from the end of the wing wall. Both inlet and outlet.	Wet Masonry Revetment	Wet masonry, thickness : 25cm Foundation crushed stone, thickness : 10cm Levelling concrete with wire mesh, thickness : 10cm At the bottom of embankment : Embedment length : 0.5m, Protecting with mattress gabion Foundation pile : L=2.0m@1.5m

 Table 2.2.2.7-2
 Structure of Revetment at Opening Section

The Plan of Revetment and Riverbed Protection at Opening Section is shown in Figure 2.2.2.7-1.

Figure 2.2.2.7-1 Plan of Revetment and Riverbed Protection at Opening Section

2.2.2.8 Design of Countermeasures against Road Slope Erosion

(1) Water Colliding Section of Road Slope

Wet masonry is setup at the slope at which the Mekong River contacts directly.

(2) Curved Section of the Road Alignment

This section is not the direct water colliding section, but the water flowing down through the irrigation channel connected to the Mekong River collides gently with the curved section of the road embankment at right-angle. Greenbelt is set up at the Mekong River side to dissipate the energy of running water to new embankment.

(3) Bridge Section

Current velocity of flooding water flowing from bridge section into Colmatage side achieves 3.9 m/s to 4.6 m/s according to the result of the analysis. The revetments are set up around bridges. And green belt is set up at Colmatage side to control turbulent flow occurring along the long section of the road.

(4) The section of road slope affected by the wave

This section is not water colliding section by floodwater. Huge continuous water surface is formed in flood season and the wave caused by the wind collides with road embankment. In the section mentioned-above and with poor luxuriance of trees along the road at present, green belt is set up to gain the effect of reducing the wave colliding.

(5) General Section of Road Embankment

Sod which is easy to be obtained at the site is transplanted to all new slopes except at the slope at which the revetment is set up to prevent against gully erosion on the slope of the embankment caused by rainfall, and slope collapse and scouring caused by inundation during flood season. Cement treated soil is applied from the top to 1.0 m below H.W.L of the slope to reinforce the countermeasure against erosion. This cement treated soil is applied at all slopes except the slope section of wet masonry revetment and staunch side slopes.

The summary of countermeasures against road slope erosion mentioned-above is shown in Table 2.2.2.8-1 and location map of countermeasures against road slope erosion is shown in Figure 2.2.2.8-1.

	The N	lekong Riv	er Side		Colmatage Side							
Symbol	Section	Length (m)	Туре	Note	Symbol	Section	Length (m)	Туре	Note			
EP-1-L	18+500 -19+100	600	Green Belt	Water colliding section Upstream	EP-1-R	31+600 -33+000	1,400	Green Belt	Wave colliding section			
EP-2-L	19+100 -19+600	500	Wet masonry	Water colliding section	EP-2-R	41+500 -44+350	2,850	Green Belt	Bridge & Wave colliding Section			
EP-3-L	21+550 -22+000	450	Green Belt	Water colliding section Upstream	EP-3-R	47+610 -48+970	1,360	Green Belt	Bridge & Wave colliding Section			
EP-4-L	22+100 -22+280	180	Wet masonry	Water colliding								
EP-5-L	32+500 -33+000	500	Green Belt	Curved Section								
EP-6-L	35+300 -35+550	250	Green Belt	Water colliding section Upstream								
EP-7-L	36+000 -36+500	500	Green Belt	Water colliding section Upstream								
EP-8-L	36+500 -36+880	380	Wet masonry	Water colliding section								
Subtotal	of Green Belt	2,300			Subtotal	of Green Belt	5,610					
Subtotal o	of Wet Masonry	1,060			Subtotal o	f Wet Masonry	0					
	Total	3,360				Total	5,610					
Total o	f Green Belt	7,910										
Total of	Wet Masonry	1,060										
	Total	8,970										
Sodding	is set up at	all new ro	oad slope e	xcept at the	slope at w	which the reve	etment is	set up. F	Flat concrete			
revetmen	evetment is set up around the bridges and wet masonry revetment is set up around the culverts (box and pipe).											

Table 2.2.2.8-1 Countermeasures against Road Slope Erosion

Figure 2.2.2.8-1 Location Map of Countermeasures against Road Slope Erosion

Cross section of Countermeasures against Road Slope Erosion is shown in Figure 2.2.2.8-2 - Figure 2.2.2.8-4.

Figure 2.2.2.8-2 General Section of Road Embankment

Both side widening section SCALE: 1/200

Figure 2.2.2.8-3 Green Belt

2.2.2.9 Design of Countermeasures against Soft Ground to Embankment

The new road embankment ground is floodplain. There are places at which soft silty cohesive soil and/or humus soil is deposited. Countermeasure against the places at which harmful consolidation settlement and/or slope slip may occur due to the embankment is designed based on the conditions below.

- Definition of the ground applied the countermeasure design $Cohesive \ soil \ of \ N \ value \leq 4 \ and \ Unconfined \ compressive \ strength: \ q_u \leq 60 k N/m^2$
- Analyses
 One dimension consolidation settlement analysis
 Slip slope analysis
- Required Conditions for the stability of road embankment Residual settlement at the time of surface course work $S_r \le 5$ cm Slip safety factor $Fs_{min} \ge 1.2$

Cross section of replacement method is shown in Figure 2.2.2.9-1.

Figure 2.2.2.9-1 Cross Section of Replacement Method

Replacement thickness (t) and width (w) depend on the height and the soft layer thickness. Dimension of replacement method every section is shown in the Table 2.2.2.9-1. With regard to the classification of replacement materials, sands will be adopted for the sections where cannot be compacted due to under the water full-time, however, high-quality soils will be applied for the remaining sections.

Replacement by Soil		Mekong	Side		Colmatage Side				
		Ave	Ave	Section				Section	
Station	Length	Ave.	Ave. Width	Araa	Length	Ave.	Ave. Width	Area	
		THICKNESS	widui	Alta		THICKNESS	width	Alta	
0.0.1	m	m	m	III-	m	m	m	III-	
0.0 km - 1.0 km									
1.0 km - 2.0 km	(10	0.00	0.47	<u> </u>	(00	0.40	0.74		
2.0 km - 3.0 km	640	0.68	9.47	6.44	680	0.49	9.74	4.//	
3.0 km - 4.0 km	800	0.64	8.35	5.34					
4.0 km - 5.0 km	800	1.02	5.32	5.43	800	0.76	4.32	3.28	
5.0 km - 6.0 km	720	0.50	8.66	4.33	840	0.50	5.72	2.86	
6.0 km - 7.0 km	560	0.87	7.93	6.90	680	0.50	6.36	3.18	
7.0 km - 8.0 km	840	0.83	6.65	5.52	600	0.50	6.91	3.46	
8.0 km - 9.0 km	680	0.50	8.02	4.01	840	0.50	5.37	2.69	
9.0 km - 10.0 km	720	0.50	6.64	3.32	1,000	0.50	5.94	2.97	
10.0 km - 11.0 km	920	0.72	5.07	3.65	920	0.56	6.68	3.74	
11.0 km - 12.0 km	360	0.70	8.13	5.69	640	0.96	4.55	4.37	
12.0 km - 13.0 km	840	1.39	6.94	9.65	1,000	1.84	6.16	11.33	
13.0 km - 14.0 km	880	0.54	7.22	3.90	880	0.29	3.40	0.99	
14.0 km - 15.0 km	680	0.81	11.01	8.92	440	0.52	3.54	1.84	
15.0 km - 16.0 km	600	0.50	2.12	1.06	640	0.50	5.82	2.91	
16.0 km - 17.0 km	360	0.50	21.92	10.96	560	0.80	3.71	2.97	
17.0 km - 18.0 km	320	0.50	7.90	3.95	480	1.26	9.58	12.07	
18.0 km - 19.0 km	640	0.80	7.86	6.29	960	1.00	8.44	8.44	
19.0 km - 20.0 km	520	0.94	14.82	13.93	440	1.02	12.96	13.22	
20.0 km - 21.0 km	1.000	0.50	6.32	3.16	1.000	0.66	6.10	4.03	
21.0 km - 22.0 km	1,000	0.50	5.72	2.86	1,000	0.50	6.41	3.21	
22.0 km - 23.0 km	1,000	0.00	0.72	2.00	1,000	0.95	7.21	6.85	
23.0 km - 24.0 km					1,000	1 50	5.18	7 77	
24.0 km - 25.0 km					1,000	0.83	5 51	4 57	
25.0 km - 26.0 km					1,000	0.50	5 37	2 69	
26.0 km = 27.0 km					1,000	0.50	5.86	2.07	
27.0 km = 28.0 km					1,000	117	5.00	615	
$\frac{27.0 \text{ km}}{28.0 \text{ km}} = \frac{29.0 \text{ km}}{29.0 \text{ km}}$	840	0.50	5 10	2 55	1,000	0.60	6 50	4.55	
20.0 km = 29.0 km	040	0.50	5.10	2.55	1,000	0.09	6.55	3.28	
29.0 km = 30.0 km	80	1.50	2.63	2.05	1,000	0.30	0.55	5.28	
30.0 km - 31.0 km	260	1.30	2.03	3.93	920	0.80	6.50	0.01	
31.0 km - 32.0 km	300	0.73	4.40	5.21 19.15	920	0.72	0.50	4.00	
32.0 km - 33.0 km	480	1.82	9.97	18.13	1 000	0.90	7.01	0.31	
33.0 km - 34.0 km					1,000	1.90	0.38	12.50	
34.0 km - 35.0 km					1,000	1.//	0.32	11.19	
35.0 km - 36.0 km					1,000	1.62	4.72	/.65	
36.0 km - 37.0 km					1,000	1.25	7.38	9.23	
37.0 km - 38.0 km					1,000	0.70	/.65	5.36	
38.0 km - 39.0 km					760	0.55	11.31	6.22	
<u>39.0 km - 40.0 km</u>					1,000	0.60	8.58	5.15	
40.0 km - 41.0 km					1,000	0.75	7.36	5.52	
41.0 km - 42.0 km					1,000	0.65	9.11	5.92	
42.0 km - 43.0 km	240	1.48	10.25	15.17	920	0.92	10.47	9.63	
43.0 km - 44.0 km	40	0.50	5.28	2.64	1,000	0.90	6.51	5.86	
44.0 km - 45.0 km					1,000	1.00	4.51	4.51	
45.0 km - 46.0 km					720	0.94	6.45	6.06	
46.0 km - 47.0 km					1,000	1.00	16.36	16.36	
47.0 km - 48.0 km	240	0.50	13.30	6.65	960	1.00	10.73	10.73	
48.0 km - 49.0 km	40	0.50	20.88	10.44	1,000	2.30	6.70	15.41	
49.0 km - 50.0 km					1,000	2.15	5.06	10.88	
50.0 km - 51.0 km					920	1.68	5.14	8.64	
51.0 km - 52.0 km					920	0.91	4.82	4.39	
52.0 km - 53.0 km					1.000	1.07	5.84	6.25	
53.0 km - 54.0 km	80	0.50	11.56	5.78	600	0.50	5.30	2.65	
54.0 km - 54.5 km	240	0.50	14.76	7.38	360	0.50	15.00	7.50	
Total	16 520				44 960				
	-,-=0				,,	1			

 Table 2.2.2.9-1
 Dimension and Quantity of Replacement Method

Replacement by Sand

		Mekong	Side		Colmatage Side						
Station	Lanath	Ave.	Ave.	Section	Lonoth	Ave.	Ave.	Section			
Station	Length	Thickness	Width	Area	Length	Thickness	Width	Area			
	m	m	m	m ²	m	m	m	m ²			
2.0 km - 3.0 km					80	1.00	7.80	7.80			
3.0 km - 4.0 km					920	1.40	4.54	6.36			
4.0 km - 5.0 km					80	1.50	6.63	9.95			
8.0 km - 9.0 km					200	1.50	2.79	4.19			
9.0 km - 10.0 km					80	1.50	5.49	8.24			
11.0 km - 12.0 km	640	1.50	5.46	8.19	360	1.50	6.83	10.25			
12.0 km - 13.0 km	160	1.50	8.91	13.37							
Total	800				1,720						

2.2.2.10 Intersection Design

(1) Chba Ampov Intersection (Sta.0+000)

This intersection is contiguous to Monivon Bridge and the Kokir Market, therefore the traffic is very congested. The improvement alternatives: three (3) types such as channelized T-type intersection, channelized Y-type intersection and rotary type intersection are compared and evaluated from the viewpoint of traffic flow etc. The T-type intersection is judged as the best intersection type. However, in the case of T-type intersection, the arrangement of detour is necessary, but there is no arrangement plan of detour in the Royal Government of Cambodia which makes the improvement work of the intersection is difficult in this Project. Furthermore, drastic measure is necessary for the reconstruction of Monivong Bridge by 4-lane due to the saturation of traffic volume. Therefore, only overlay is applied to this intersection.

T-type intersection is shown in Figure 2.2.2.10-1 and the comparative evaluation is shown in the Table 2.2.2.10-1.

(2) Tiger Beer Road Intersection (Sta.6+953.1)

The service level is above C judging from the present traffic volume and from the future traffic volume 10 years later, therefore, the improvement of this intersection is ordinary T-type intersection, refer to Figure 2.2.2.10-2.

	Schematic Traffic Flow	Traffic characteristics
Present Traffic Condition	22.600 20.300 8.800 Prohibited	 Presently, the volume of motorbike is about 90% of total traffic. Completely free flow. Heavy side due to car parking along road side. Present interestion type may be acceptable until the volume of traffic remains same as the present. Asphalt concrete over lay is adopted for the improvement.
Scheme-1, T - Type	X Crossing • Merging	 Channelized T-type intersection Following movements are prohibited at the intersection and rerouted to a next intersection. (see Figure.) Left turn from Neak Loueng Through traffic along Market and Left turn from Market to Neak Loueng Points of crossing and merging of heavy traffic are separately located with reasonable distance which can provide waiting space. Recommendable especially for vehicle movement.
Scheme-2, Y - Type	X Crossing Merging	 Channelized Y-type intersection. The movements same as scheme-1 are prohibited thus require the rerouting of traffic. (same as scheme-1.) Points of crossing and merging of heavy traffic is located at same location which may create traffic congestion. Not recommendable unless strict traffic enforcement at crossing point is implemented.
Scheme-3, T - Rotary Type	X Weaving/Crossing • Merging	 Rotary type intersection. All movements are allowed. Three point of weaving / crossing of heavy traffic may create traffic congestion. Widening of roadway. (reconstruction of retaining wall is required.) Recommendable only for light vehicle, but not recommendable for future.

Table 2.2.2.10-1	Comparative	Evaluation	of Chbar	Ampov	Intersection

Figure 2.2.2.10-2 Tiger Beer Road Intersection

2.2.2.11 Ancillary Facilities Design

(1) Retaining Wall

Wet masonry gravity retaining wall is set up at the section from 0+300 to 1+900 instead of embankment slope to minimize the number of PAPs. The schedule of retaining wall is shown in the Table 2.2.2.11-1. The total length of wet masonry gravity retaining wall and L-shape RC retaining wall are 1,635 m and 1,166 m respectively.

(STONE MASONRY)									
LEFT SIDE					RIGHT SIDE				
NO	STAT	TION	HEIGHT	LENGTH	NO	STA	ΓION	HEIGHT	LENGTH
NO.	START	END	H(m)	L(m)	NO.	START	END	H(m)	L(m)
1	0+450	0+490	3.0	40	1	0+460	0+485	2.5	25
2	0+490	0+506	1.0	16	2	0+485	0+505	1.5	20
3	0+506	0+530	3.0	24	3	0+505	0+530	0.5	25
4	0+530	0+550	1.0	20	4	0+530	0+590	2.5	60
5	0+550	0+565	0.5	15	5	0+590	0+630	2.0	40
6	0+586	0+605	0.5	19	6	0+630	0+670	2.5	40
7	0+605	0+630	1.0	25	7	0+670	0+725	1.5	55
8	0+630	0+650	2.5	20	8	0+725	0+765	1.0	40
9	0+650	0+690	1.0	40	- 9	0+765	0+880	2.5	115
10	0+690	0+705	2.5	15	10	0+880	0+930	1.5	50
11	0+705	0+725	3.0	20	11	0+930	0+945	2.5	15
12	0+725	0+750	2.0	25	12	0+945	0+990	1.5	45
13	0+750	0+775	3.0	25	13	0+990	1+035	2.5	45
14	0+775	0+800	1.0	25	14	1+035	1+065	3.0	30
15	0+800	0+810	1.5	10	15	1+085	1+095	3.5	10
16	0+810	0+825	3.0	15	16	1+100	1+115	2.0	15
17	0+825	0+850	2.0	25	17	1+165	1+248	1.5	83
18	0+850	0+874	2.5	24	18	1+252	1+290	1.0	38
19	0+874	0+905	1.5	31	19	1+290	1+350	1.5	60
20	0+935	1+010	1.0	75	20	1+775	1+810	2.5	35
21	1+010	1+050	2.5	40	21	1+810	1+830	1.0	20
22	1+050	1+090	1.5	40					
23	1+095	1+130	0.5	35					
24	1+130	1+150	1.0	20					
25	1+150	1+170	3.0	20					
26	1+230	1+245	2.0	15					
27	1+245	1+280	1.0	35					
28	1+635	1+670	1.5	35					
29	1+765	1+785	1.5	20					
LEF	T SIDE TO	TAL		769	RIG	HT SIDE T	OTAL		866
TOTAL							1635		

 Table 2.2.2.11-1
 Schedule of Retaining Wall

(L-SHAPED RC)

LEFT SIDE				RIGHT SIDE					
NO	STAT	ΓION	HEIGHT	LENGTH	NO	STA	ΓION	HEIGHT	LENGTH
NO.	START	END	H(m)	L(m)	NO.	START	END	H(m)	L(m)
1	0+565	0+586	3.5	21	1	1+065	1+085	3.5	20
2	0+905	0+935	3.5	30	2	1+115	1+125	3.5	10
3	1+170	1+230	4.0	60	3	1+125	1+165	5.0	40
4	1+280	1+330	4.0	50	4	1+350	1+390	3.5	40
5	1+330	1+375	3.5	45	5	1+390	1+430	4.5	40
6	1+375	1+405	4.5	30	6	1+430	1+530	4.0	100
7	1+405	1+560	4.0	155	7	1+530	1+590	4.5	60
8	1+560	1+585	5.0	25	8	1+590	1+725	4.0	135
9	1+585	1+635	4.5	50	9	1+725	1+775	3.5	50
10	1+670	1+710	4.5	40					
11	1+710	1+765	4.0	55					
12	1+785	1+830	3.5	45					
13	1+850	1+870	3.0	20					
14	1+870	1+915	4.0	45					
LEFT SIDE TOTAL 671 RIGHT SIDE TOTAL							495		
TOT	AL								1166

(2) Pavement Marking and Traffic Sign

Centerline, lane line, borderline and crosswalk are set up as pavement marking. Cat's-eye is set up every 25 m on the centerline. Center line, lane line and border line are set up at all sections of the road, and crosswalk is set up at school and hospital zone.

Traffic signs for traffic safety are set up. Speed limit sign as regulatory sign, chevron board and school zone as warning sign and informatory sign are set up.

(3) Guardrail and Guidepost

Guideposts are set up at the curved alignment sections where radius is under 500 m, culvert approaches and the road with embankment height of over 5 m. In addition, guardrails are set up at bridge approaches, bridges and culverts.

The guardrail and guidepost locations are shown in the Table 2.2.2.11-2. Total numbers of guidepost is 1,010, and total length of guardrail is 360 m.

(4) Truck Scale (Vehicle Weighing Machine)

Within the Cambodia, the damages of the roads and bridges caused by overloading vehicles is remarkable, and become the severe problems from the viewpoints of road maintenance and traffic safety control. Therefore, two (2) truck scales were installed at Sta. 7+000 (right side) and Sta. 52+000 (left side) to regulatory the overloading vehicles

(Guideposts)

Left Side				Right Side							
	Stat	ion	Length	Nos.		No.	Sta	tion	Length	Nos.	
No.	Start	End	(m)	Pitch =5m	Remarks	Start	Start	End	(m)	Pitch =5m	Remarks
1	1+010	1+030	20.0	5	Embankment	1	2+955	2+985	30.0	7	Embankment
2	1+090	1+230	140.0	29	Embankment	2	12+340	12+616	276.0	56	Acute Curve
3	1+330	1+360	30.0	7	Embankment	3	12+720	12+755	35.0	8	Embankment
4	1+750	1+770	20.0	5	Embankment	4	12+800	12+825	25.0	6	Embankment
5	1+875	1+925	50.0	11	Embankment	5	12+875	12+885	10.0	3	Embankment
6	1+955	1+965	10.0	3	Embankment	6	13+110	13+125	15.0	4	Embankment
7	2+050	2+070	20.0	5	Embankment	7	14+222	14+236	14.0	4	Acute Curve
8	2+125	2+160	35.0	8	Embankment	8	16+300	16+448	148.0	31	Acute Curve
9	2+320	2+330	10.0	3	Embankment	9	32+396	32+416	20.0	5	Box Culvert
10	2+950	2+985	35.0	8	Embankment	10	32+424	32+444	20.0	5	Box Culvert
11	3+182	3+713	531.0	107	Acute Curve	11	32+490	32+520	30.0	7	Acute Curve
12	12+715	12+750	35.0	8	Embankment	12	32+980	33+040	60.0	13	Acute Curve
13	12+870	12+890	20.0	5	Embankment	13	36+856	36+876	20.0	5	Box Culvert
14	13+015	13+145	130.0	27	Embankment	14	36+888	36+908	20.0	5	Box Culvert
15	13+617	13+744	127.0	26	Acute Curve	15	40+982	41+006	24.0	6	Box Culvert
16	14+744	14+754	10.0	3	Acute Curve	16	41+010	41+030	20.0	5	Box Culvert
17	16+650	16+745	95.0	20	Acute Curve	17	41+955	42+125	170.0	35	Embankment
18	32+396	32+416	20.0	5	Box Culvert	18	42+255	42+310	55.0	12	Embankment
19	32+424	32+444	20.0	5	Box Culvert	19	42+500	42+710	210.0	43	Embankment
20	32+715	32+800	85.0	18	Acute Curve	20	42+875	43+075	200.0	41	Embankment
21	36+856	36+876	20.0	5	Box Culvert	21	44+326	44+346	20.0	5	Box Culvert
22	36+888	36+908	20.0	5	Box Culvert	22	44+354	44+374	20.0	5	Box Culvert
23	40+982	41+002	20.0	5	Box Culvert	23	46+906	46+926	20.0	5	Box Culvert
24	41+010	41+030	20.0	5	Box Culvert	24	46+934	46+954	20.0	5	Box Culvert
25	42+010	42+115	105.0	22	Embankment	25	46+954	46+980	26.0	6	Embankment
26	42+255	42+290	35.0	8	Embankment	26	47+040	47+075	35.0	8	Embankment
27	42+650	42+690	40.0	9	Embankment	27	48+005	48+310	305.0	62	Embankment
28	42+875	43+000	125.0	26	Embankment	28	48+670	48+750	80.0	17	Embankment
29	44+326	44+346	20.0	5	Box Culvert	29	48+716	48+736	20.0	5	Box Culvert
30	44+354	44+374	20.0	5	Box Culvert	30	48+744	48+764	20.0	5	Box Culvert
31	46+906	46+926	20.0	5	Box Culvert	31	49+971	49+991	20.0	5	Box Culvert
32	46+934	46+954	20.0	5	Box Culvert	32	49+999	50+019	20.0	5	Box Culvert
33	47+850	47+875	25.0	6	Embankment	33	53+565	53+945	380.0	77	Acute Curve
34	48+005	48+090	85.0	18	Embankment	34	53+980	54+050	70.0	15	Embankment
35	48+716	48+736	20.0	5	Box Culvert	35	54+435	54+530	95.0	20	Acute Curve
36	48+744	48+764	20.0	5	Box Culvert						
37	49+971	49+991	20.0	5	Box Culvert						
38	49+999	50+019	20.0	5	Box Culvert						
39	53+955	53+985	30.0	7	Embankment						
l	TOTA	L	2128.0	464			TOTAL		2553.0	546	

(Guardrails)

Left Side					Right Side				
No	Sta	tion	Length	NO	Stat	Length			
INO.	Start	End	(m)	NO.	Start	End	(m)		
1	42+125	42+155	30	1	42+125	42+155	30		
2	42+224	42+254	30	2	42+224	42+254	30		
3	42+710	42+740	30	3	42+710	42+740	30		
4	42+843	42+873	30	4	42+843	42+873	30		
5	47+875	47+905	30	5	47+875	47+905	30		
6	47+973	48+003	30	6	47+973	48+003	30		
Sub Total 180m				Sub Total 180m					
Total (L+R)				360m					

2.2.3 Basic Design Drawings

Basic Design Drawings are shown in Appendix 8.

2.2.4 Implementation Plan

2.2.4.1 Implementation Policy

The basic conditions for implementing the Project are as follows:

- This Project, if approved, will be implemented in accordance with the guidelines of Japan's Grant Aid after the signing of the Exchange of Notes between the Governments of Japan (GOJ) and the Kingdom of Cambodia.
- The Ministry of Public Works and Transport (MPWT) is responsible for implementing the Project.
- The detail design, assistance in tendering, and construction supervision of the Project will be undertaken by a Japanese consulting firm in accordance with a contract between the MPWT and the consultant.
- The construction will be undertaken by the successful Japanese tenderer in awarding the contract with the MPWT.

The basic concepts in the implementation plan and procurement plan are as follows:

- Materials and equipments and labors necessary for the Project will be procured in Cambodia as far as available. Items unavailable locally will be procured from Japan or third countries, which will be selected on the basis of cost, on condition that the quality and supplying capacity meet the requirements.
- Imported materials which are constantly available in the local market will be procured and regarded as local materials.
- · Common equipment owned by local contractors will be leased from them.
- The construction method and schedule will be planned reflecting local conditions of climate, topography, geology etc.
- Easy and common construction methods which do not require the use of special equipment or new technology will be adopted as much as available.
- Organizations for construction management by the contractor and construction supervision by the consultant will be established meeting the standardized construction management requirements.
- The traffic shall be maintained during construction period and necessary measures for safety shall be taken.
- Full attention shall be paid to the environmental preservation, preventing the washing away of soil in the rainy season, pollution of river, minimizing the noise/vibration, impact against traffic in urbanized areas etc.

The Project is implemented under three (3) stages, taking into consideration the environmental and social aspects.

Stage-1 : Bridge No.2 and No.3 Stage-2 : Sta.13+100 ~ Neak Loueng Stage-3 : Sta.0 ~ 13+100

2.2.4.2 Implementation Conditions

- (1) Securing of safety for the road users and construction
 - 1) During Road Construction

A space of at least one lane shall be opened to traffic which is controlled by alternate passing. Necessary safety facilities such as notice signs, detour signs, safety cones safety light and traffic control men shall be properly placed.

- 2) During Structure Construction
 - The detour shall be provided for the existing traffic.
 - The workers engaging in works at high place shall be prevented from falling down by putting proper equipment/facilities for going up and down, downfall prevention facilities etc.
- (2) Environmental Considerations
 - Measures to prevent the dust pollution during road construction shall be undertaken by sprinkling water etc.
 - Proper maintenance shall be carried out for the existing road utilized in transporting the materials and equipment.
 - The construction methods minimizing the noise/vibration are adopted in the populated areas: Sta. 0+000 - Sta.23+900 and Sta.53+400 - Sta.55+980.
- (3) Considerations on Natural Condition

It shall be difficult to carry out the embankment, substructure, revetment and riverbed protection in the rainy season because the Mekong River covers the bed of road embankment from July to November. Therefore, those works shall be carried out in the dry season or when the Mekong River does not affect them from December to June.

2.2.4.3 Scope of Works

The undertakings of both governments of Japan and Cambodia are listed in Table 2.2.4.3-1.

Items	Contents	Undert	aking by	Remarks	
items			Cambodia	Kennarks	
	Procurement & delivery	0			
Procurement of materials and	Tax exemption and customs clearance		0		
equipment	Maintenance/improvement of delivery route		0		
Preparatory Works	Acquisition of lots for construction	0		Site office, stock yard, plant yard, working area, etc.	
	Other preparatory works	0			
Removal/	Removal of ground obstructions		0	Electric posts and wire, etc.	
obstructions	Removal of underground obstructions		0	Optical cables, water pipes etc.	
Demolition of existing bridges	2 Bailey bridges	0			
	Road improvement	\bigcirc			
Construction works	Construction and improvement of structures: 3 bridges 9 culverts: 2 pipe culverts, 7 box culverts	0			
	Construction of revetments	0			

Table 2.2.4.3-1 Undertakings of Both Governments

2.2.4.4 Consultant Supervision

A Japanese consultant will carry out the detailed design, assistance in tendering and construction supervision in accordance with the contract between the MPWT and the Consultant.

(1) Detailed Design

Major works in the detailed design to be carried out by the consultant are as follows:

- Review of road design, opening design, revetment design, and drawings prepared during the Basic Design Study;
- Review of the construction plan and materials/equipment procurement plan prepared during the Basic Design Study; and
- Review of the cost estimation prepared during the Basic Design Study.

The necessary time for the Detailed Design is one and half (1.5) month for Stage-1, three (3) months for Stage-2 and two (2) months for Stage-3.

(2) Assistance in Tendering

Major items of the services in the assistance in tendering are as follows:

- Preparation of tender documents (conducted simultaneously with the Detailed Design);
- Tender publication;
- Pre-qualification;
- Assistance in tendering;
- Tender evaluation; and
- Contract facilitation

The necessary time for the assistance in tendering is 3 months for Stage-1, Stage-2 and Stage-3, respectively.

(3) Construction Supervision

The Consultant will carry out the supervision of the construction works executed by the contractor. Major items of the construction supervision are as follows:

- Inspection and approval of site survey;
- Inspection and approval of construction plan;
- Quality control;
- Progress control;

- Measurement of work;
- Inspection of safety aspects; and
- Final inspection and turnover

The necessary construction periods are as follows:

Stage-1 (Bridge No.2 and No.3) :	16 months
Stage-2 (from Sta. 13+100 to Sta.55+980) :	28 months
Stage-3 (from Sta. 0+000 to Sta.13+100) :	17 months

One (1) resident engineer would be in change of construction supervision during Stage-1, because the main component is to improve two (2) bridges only.

As for Stage-2, one (1) more engineer is required to fulfill the tasks because the improvement length is 44.98 km long. The main components involve significant scale of earth works, cement stabilization against sub-grade and subbase course, bridge, culverts and due to soft soil layer, the construction procedure base on monitoring is required. The construction tasks are more than that of ordinary project.

Although the improvement length is 13.10 km in Stage-3, this section is located on the soft soil layer which requires the same monitoring procedure as Stage-2. Many involuntary resettlements would be occurred due to the nature of this area is populous. A lot of detailed meetings with client and close attention to PAPs are required.

Therefore one (1) resident engineer and one (1) more engineer are stationed for Stage-3 as well.

2.2.4.5 Quality Control Plan

The quality control plan for concrete work is shown in the Table 2.2.4.5-1 and the quality control plan for earthwork and pavement work is shown in Table 2.2.4.5-2.

Item	Test	Test Method (Specification)	Frequency of Test
Cement	Physical property test JIS R 5201 - 3		Once before trial mix. Thereafter, once a month or when the material brand is changed.
Fine Aggregate	Physical property test	JIS A 1103	Once before trial mix. Thereafter, once a month or when the material source is changed.
Aggregate	Sieve analysis	JIS A 1102	Once a month
Coarse	Physical property test	JIS A 1110, 1121	Once before trial mix. Thereafter, once in every $1,500 \text{ m}^3$ or when the material resource is changed.
Aggregate	Sieve analysis	JIS A 1102	Once a month
Water	Quality test	pH, Cl ⁺	Once before trial mix
	Slump test	JIS A 1101	Once in every 50m3 for each category
Concrete	Moisture content test	JIS A 1111	Once a day
	Compressive strength test	JIS A 1108	6 specimens per 100 m ³ in each category (3 specimens for 7 days strength test and 3 specimens for 28 days strength test)

Table 2.2.4.5-1Quality Control Plan for Concrete Work

 Table 2.2.4.5-2
 Quality Control Plan for Earthwork and Pavement Work

Work Item	k Item Test Test Method (Specification		Frequency of Test		
Embankment	Density in-situ	JIS A 1214	Once in every 5,000m ³ , 500 m ³ in subgrade.		
	Sieve analysis	JIS A 1102	Once before placement and when the material source is changed.		
Base course /	CBR	Hosou-shiken hou 2-3-1	Once before placement and when the material source is changed.		
course	Moisture- density relation	JIS A 1210	Once before placement and when the material source is changed.		
	Density in-situ	Hosou-shiken hou 2-5-3	Once in every 1,000m ²		
Asphalt	Temperature of asphalt mixture	-	As required		
surface course	Bulk specific gravity	Hosou-shiken hou 2-5-3	Once every 1,500 m ²		

2.2.4.6 Procurement Plan

(1) Construction Materials

The construction materials available in Cambodia are sand, crashed stone, aggregate, asphalt concrete, ready mixed concrete (only in and around Phnom Penh), prefabricated concrete products and timbers. All others are imported.

Procurement plan of the major materials is shown in Table 2.2.4.6-1.

	Procu	irement So	urce	
Item	Cambodia	Japan	Third Country	Remarks
Construction Materials				
Crusher-run (Foundation, roadbed)	0			
Cement	0			
Sand	0			
Crusher-run (Coarse Aggregate)	0			
Reinforcing Bar : D6 - D32	0			
Concrete Admixture		\bigcirc		Japan
PC Strand Wire			0	Thailand
Bridge Shoe		\bigcirc		Japan
Non Shrinkage Mortar	0			
Expansion Device 4 PC Girder		0		Japan
Boulder (Wet Stone Masonry)	0			
Reinforced Concrete Pipe	0			
Straight Asphalt			0	Singapore
Mattress Gabion		0	0	Japan, Thailand
Cylinder Gabion		0	0	Japan, Thailand
Concrete Curb Block	0			
Verge Block	0			
Interlocking Block	0			
Concrete Pile	0			
Wooden Pile	0			
Planting Tree	0			
Steel Sheet Pile	0			
Water Stop Plate	0			
Timber	0			
Expansion Joint		\bigcirc	0	Japan, Thailand
Guardrail		0	0	

Table 2.2.4.6-1Material Procurement Plan

(2) Equipment

There is no equipment lease company in Cambodia while equipments owned by local contractors are possible to be leased. The common equipments owned by local contractors are of old model and quantity is not enough for this Project. Special equipments such as large crane, reverse circulation drill, vibration hammer, erection girder facilities, etc. are not locally available and to be procured from the third countries or Japan. Procurement plan of the major equipment is shown in Table 2.2.4.6-2.

		Camb	odia			_
Item	Туре	Lease from Local Contractor	Lease near NR1	Third Country	Japan	Remarks
Backhoe	0.27m ³				\bigcirc	
Backhoe	0.5m ³	0		0		Thailand
Backhoe	0.8m ³	0				
Backhoe	1.4m ³				\bigcirc	
Bulldozer	3 t			0		Thailand
Bulldozer	15 t	0		0		Thailand
Bulldozer	21 t				\bigcirc	
Motor Grader	3.1m	0		0		Thailand
Road Roller	10~12 t	0				
Pneumatic Tire Roller	8-20t	0			\bigcirc	Left-hand-drive
Vibration Roller	0.8~1.1 t	0				
Vibration Roller	3∼4 t	0				
Vibration Roller	15~18 t				\bigcirc	
Road Stabilizer	1.2m				\bigcirc	
Road Stabilizer	2.0m				\bigcirc	
Water Tanker	6m ³	0				
Dump Truck	10 t	0			\bigcirc	Left-hand-drive
Agitator Truck	$4.5m^{3}$				\bigcirc	Left-hand-drive
Asphalt Finisher		0				
Asphalt Distributor		0				
Truck	2t,4t	\bigcirc				
Concrete Mixing Plant				0		Thailand
Sub-base Mixing Plant	105m ³ /h				\bigcirc	
Portable Impact Crusher	53t/h				\bigcirc	
Crawler Crane	50t	0				
Vibration Hammer	60KW			0		Thailand
Truck Crane	20t			0		Thailand
Reverse Circulation Drill				0		Thailand
Trailer	20~40t	0				

Table 2.2.4.6-2Procurement Plan of Major Equipment

2.2.4.7 Implementation Schedule

At the beginning, the Project was planned to be implemented in two (2) phases as follows:

Phase 1 : Sta.23+900~55+980 Phase 2 : Sta.0+000~23+900

However, it is necessary to take cautious and flexible countermeasures in cope with environmental and social considerations. Following three (3) stages are planned for implementation of the Project considering the progress and result of involuntary resettlement.

Stage	Scope	Budget		
Stage-1 :	Construction of No.2 and No.3 Bridge	(by single year government budget)		
Stage-2 :	Improvement from Sta.13+100 to Sta.55+980	(by three years government bonds)		
Stage-3 :	Improvement from Sta.0+000 to Sta.13+100	(by two years government bonds)		

These stagings make taking cautious and flexible countermeasures available in cope with the progress of obtaining the PAPs' agreement.

Moreover, the scoping of Stage-2 and Stage-3 are variable subject to the progress of obtaining the PAPs' agreement (attention must be paid that the implementation schedule would be divided into more stages subject to the progress of agreement been by the Cambodian side).

The Cambodian side shall report the progress of agreement as follows;

Stage-1 : End of March, 2005 Stage-2 : End of October, 2005 Stage-3 : End of October, 2006

2-89

	32															onths)						
Implementation Schedule	30															8.0 mo						
	29															otal 2						
	28															D						
	27																-					
	26																					
	25																					
	24																					
	23																					
	22																					
	21																					nths)
	20							nths)														0 mo
	19							0 mo														al 17.
	18							al 16														(Tot
	17							(Tot														
	16																					
	15																					
	3																					
	2																					
	1																				-	
	0					_	_														_	
-1	9					_																
Table 2.2.4.7.	8					_																
	7					_					<u>s)</u>									_		
	9			<u>s)</u>		-					nonth						-		s)			
	5			nonth		-					3.0 n								nonth			
	4			1.5 r							Total								2.0 r			
	ю			Total															Total			
	2			5																		
	-																					
			_		'ork		р			_		'ork						_				u
		'ey	Japan	ion	ory W		h Roa	cility	'ey	Japan	ion	ory W				cility	'ey	Japan	ion		cility	izatio
	lonth	s Surv	rk in	alizat	parate	dge	proac	ad Fae	s Surv	rk in	alizat	parato	dge	vert	pı	ad Fae	s Surv	rk in	alizat	pu	ad Fae	nobil
	~	Site	Wo	Fin	Prej	Brie	Apţ	Roê	Site	Wo	Fin	Prej	Brie	Cul	Roê	Roê	Site	Wo	Fin	Roέ	Roê	Der
		Construction Detail Design							Construction Detail Design								Construction Detail Design					
	Work Item	Rehabilitation of 2 Bridges							Sta.13+100 ~ Sta.55+980 Rehabilitation of 1 Bridge, 9 Culverts and Road Improvement (L=42.88km)								Sta.0+000 ~ Sta.13+100 Road Improvement (L=13.1km)					
	Stage	[9gat2							Stage 2							Stage 3						
2.3 Obligations of the Royal Government of Cambodia

The following measures should be undertaken by the Royal Government of Cambodia on condition that the Grant Aid by the Government of Japan is extended to the Project.

- To provide data and information necessary for the Project.
- To relocate existing utilities such as power poles, power cable, optical cable and water pipes, etc.
- To bear commissions to the bank in Japan for its banking services based upon the Banking Arrangement, namely the advising commission of the "Authorization to Pay" and payment commission.
- To ensure prompt unloading, tax exemption, customs clearance at the port of disembarkation in Cambodia and prompt internal transportation of the materials and equipment for the Project.
- To exempt Japanese nationals engaged in the Project from customs duties, internal taxes and other fiscal levies, which may be imposed in Cambodia with respect to the supply of the products and services under the verified contracts.
- To accord Japanese nationals, whose services may be required in connection with the supply of the products and the services under the verified contract, such facilities as may be necessary for their entry into Cambodia and stay therein for the performance of their work.
- To provide necessary permission, licenses and other authorizations for implementing the Project.
- To maintain and use properly and effectively the facilities constructed under the Project.
- To coordinate and solve any issues related to the Project which may be raised form third parties or inhabitants in the Project area during implementation of the Project.
- To bear all the expenses, other than those covered by the Japan's Grant Aid, necessary for the Project.

The Royal Government of Cambodia should execute the resettlement of the Project affected people (PAPs) including the followings.

- Agreement on compensation consent from PAPs;
- Confirmation to budgetary arrangement for resettlement compensation
- Compensation payment to PAPs; and
- Rehabilitation of life on PAPs

2.4 Project Operation Plan

(1) Operation and Maintenance System

Maintenance of the Project road after completion will be undertaken by MPWT and Departments of Public Works and Transport of the Municipality/Provinces and those obliged to maintain the Project road. The demarcation of maintaining the Project road is as follows:

Sta.0+000 - Sta.5+000 : Phnom Penh Municipality Sta.5+000 - Sta.55+980 : Kandal Province

Jurisdictionally, Departments of Public Works and Transport of Municipality/Provinces belong to both MPWT and Municipal/Provincial governments. Demarcation of tasks related to maintenance of roads between the Municipal/Provincial Departments and the MPWT is as follows:

- Daily maintenance works such as cleaning of road surface ditch and culverts, slope vegetation management, maintenance of lighting, etc. are executed by the Municipal/Provincial Departments using the maintenance budgets of Municipal/Provincial governments.
- Repair/rehabilitation works such as crack sealing and pothole patching of pavement, repair
 of bridge revetment and riverbed protection, etc. are executed by the Municipal/Provincial
 Departments in some cases and by the MPWT in other cases.

In the former case, the necessary budget for specific tasks is requested to the MPWT and the work is executed using the budget when approved. The inspection to assess the necessity of the works, decide the scope of works and estimate the budget is usually conducted jointly with the MPWT and the Ministry of Economy and Finance.

In the latter case, the Maintenance Management Office set up in the General Directorate of Public Works is in charge.

(2) Maintenance Works to be Done

Necessary maintenance works for the Project road are as follows:

- Daily Maintenance : Routine inspection, cleaning of road surface ditch/culverts, maintenance of slope planting, cleaning of bridge ancillary facilities and maintenance of lighting, etc.
- Repair/Rehabilitation : Sealing of pavement crack, repair of pothole, repair of guidepost, repair of wet masonry (revetment, retaining wall), repair of slope damage, patching of

bridge surface pavement, reconstruction of bridge surface pavement, repair of hand rail, repair of revetment/riverbed protection, repair of older damages, etc.

The daily maintenance and the repair will be done by the Municipal/Provincial Departments of Public Works and Transport and by the MPWT respectively.

Although the road, bridges and culverts to be improved/constructed in this Project have high durability and weather resistance, the repair works of riverbed protection may possibly be necessary after the floods. Since the repair works of riverbed protection and revetment have been carried out frequently in Cambodia, no technical difficulty is expected in executing those repair works. Extensive repairs will not be required for a fairly long time for other structures. No technical difficulty is expected in executing daily maintenance works as well. It is considered possible for the road to be properly operated and maintained under the present system.

2.5 Rough Project Cost

2.5.1 Rough Estimate of Project Cost

The total project cost necessary to implement this Project is estimated at 8,194 Million Yen. The costs to be borne by both governments, Japan and Cambodia based on the scope of works for both governments as previously stated and respective details are estimated as follows on the conditions shown in (3) below.

This cost estimate is provisional and would be further examined by the Government of Japan for the approval of the Grant.

(1) Cost Borne by the Government of Japan

Total Cost	Stage 1	approximately 796 Million Yen
	Stage 2	approximately 4,696 Million Yen
	Stage 3	approximately 2,070 Million Yen
	Total	approximately 7,562 Million Yen

Improvement of National Road No.1, Phnom Penh – Neak Loueng Section (about 56km long)

Item		Roughly Estimated Cost (Million Yen)							
		St	age 1	Sta	ige 2	Sta	ige 3	Total	
	Roadway	97	730	3,185	4,473	1,313	1,972	7,175	
Facility	Bridge	458		169		-			
	Ancillary	175		1,119		659			
	Facilities								
Detailed Design			66	2	.23		98	387	
/Constructi	on & Supervision								

(2) Cost Borne by the Royal Government of Cambodia

Total Cost	approximately	23,160 Million Riel (equivalent	to 632 Million Yen)

	Roughly Estimated Cost			
Item	Riel in Million	Equivalent JPN Yen in Million		
Compensation to PAPs	8,610	235		
Relocation of Power Line	4,180	114		
Relocation of Fiber Optical Cable	10,260	280		
Relocation of Water Pipe	110	3		
Total	23,160	632		

(3) Conditions in Cost Estimate

-	Time of Cost Estimat	e:	June 2004
-	Exchange Rate	:	1US Dollar =109.17 Yen
			1,000 Riel = 27.293 Yen
-	Construction Period	:	as shown in the Implementation Schedule
-	Others	:	This Project is implemented in accordance with the system of
			Japan's Grant Aid.

2.5.2 Estimated Maintenance Cost

The annual costs of the maintenance works are roughly estimated at US\$ 21,970 as detailed in Table 2.5.2-1.

When the Project is completed, both routine inspection and daily maintenance work are undertaken by the Department of Public Works and Transport those belong to Municipality and Province. And repair and rehabilitation are undertaken by MPWT.

1. Routine Inspection	n (Undertaken by the Departments of	Public Works and T	ransport of Munic	ipality/Province)		
Facility	Inspection Item	Frequency	Number of Staff	Equipment	Quantity	Cost (US\$/year)
Road		12 times a year	2 persons	scoop, hammer,	Worker:	480
Pavement	crack, deformation, pothole, etc.	(4 days/time)		sickle, barricade,	96 man-day	
Sholder/slope	erosion, collapse, etc.			pick-up truck	/vear	
Pavement marking	injury, deformation, stain, splitting			1 1	,	
Guide post	damage				Pick-up:	1,680
Revetment	crack, damage, collapse, etc.				48 veh-day	
Bridge					/year	
Pavement	crack, deformation, pothole, etc.				-	
Drainage	existence of soil, obstacles					
Pavement marking	injury, deformation, stain, splitting					
Chan atoma	damage on bridge surface/					
Suucture	abutment/ pier					
Revetment/	araak damaga aallanga ata					
Riverbed protection	crack, damage, comapse, etc.					
Anaillan, facilities	damage of lighting, apparatus to					
Anomary facilities	attach utilities, handrail etc.					
Culvert						
Structure	displacement, damage					
Revetment/	araak damaga aallanga ata					
Riverbed protection	crack, damage, collapse, etc.					
					Subtotal	2,160

 Table 2.5.2-1
 Maintenance Plan and Cost Estimate

2. Daily maintenance work (Undertaken by the Departments of Public Works and Transport of Municipality/Provi
--

Facility	Work Item	Frequency	Number of Staff	Equipment/ Materials	Quantity	Cost (US\$/year)
Road		12 times a year	5 persons	scoop, barricade,	Worker:	1,200
Pavement	cleaning	(4 days/time)		mowing machine,	240 man-day	
Sholder/slope	cleaning, cutting grass			broom, tools,	/year	
Pavement marking	cleaning			pick-up truck,	Pick-up:	1,680
Bridge				bulb	48 veh-day	
Pavement	cleaning				/year	
Drainage	clearance of soil, obstacles					
Pavement marking	cleaning					
Lighting	cleaning, replacement of bulb					
					Subtotal	2,880
		Subtotal of routine	inspection and dail	y maintenance		5,040

5. Repair/Renabilitation (Undertaken by the MF w 1)

Facility	Work Item	Frequency	Number of Staff	Equipment/	Ouantity	Cost
				Materials	Q	(US\$/year)
Road		2 times a year	8 persons		Worker:	1,600
Pavement	crack sealing, patching of potholes,	(20 days/time)			320 man-day	
Sholder/slope	repair of damages				/year	
Pavement marking	re-marking			Plate tamper	40 unit-day	280
Guide post	repair of damages, replacement			-	/year	
Revetment	repair of damages			Pick-up truck	80 veh-day	2,800
Bridge				-	/year	
Pavement	crack sealing, patching of potholes,				-	
Drainage	repair of damages			Base course	100 m ³ /year	1,000
Pavement marking	re-marking			Asphalt concrete	10 t/year	600
Structure	repair of damages			Cement	100 bags/year	350
Revetment/				Boulder	50 m3/year	300
Riverbed protection	repair of damages				-	
Ancillary facilities	repair of damages, repainting			Road marking	1,000 m/year	10,000
Culvert				paint		
Structure	repair of damages					
Revetment/	nonoin of domocoo					
Riverbed protection	repair of damages					
					Subtotal	16,930
				Total		21.970

The total budgets appropriated for the road maintenance by office in charge in the last three years are shown in Table 2.5.2-2.

				(Unit : US\$)
	Year	2001	2002	2003
MPWT		2,134,700	1,116,800	1,997,200
Municipality	DPWT of Phnom Penh	715,500	2,027,200	1,052,200
and	DPWT of Kandal Province	N/A	143,000	280,000
Province	Total of Municipality and	2 850 200	2 170 200	1 222 200
	Province	2,830,200	2,170,200	1,332,200

Table 2.5.2-2 Total Maintenance Budgets in the Last Three Years

Note: N/A means not available

The required costs for the routine inspection and daily maintenance of the Project road are 5,040 US\$/yr accounting for about 0.4% of the total budgets of the two (2) concerned Municipal/Provincial DPWTs in 2004 appropriated for the road maintenance and the required costs for repair works of the Project road is 16,930 US\$/yr accounting for about 0.8% to 1.5% of the budget of the MPWT for the road maintenance. No financial problem in budgets is expected.

Chapter 3 Project Evaluation and Recommendations

3.1 Project Effect

The aim of the Project is to improve the damages and deteriorated pavement observed all through the road, by implementing the road improvement of about 56 km in between Phnom Penh and Neak Loueng, to restore the function and capacity of the Trunk National Road, by widening the road and replacing temporary bridges which are the bottleneck at present, and smoothen the flow of goods and peoples.

The direct beneficial are the residents of Phnom Penh in which the Project located and of Kandal Province, and the indirect beneficial are all the population of 242 million (estimated population in 2003) in Cambodia.

The direct and indirect positive effects under the Project implementation are described on Table 3.1-1, and Table 3.1-2 as below, the negative effects are on the table 3.1-3 and Table 3.1-4.

	, <u>, , , , , , , , , , , , , , , , , , </u>	, <u> </u>
Present Conditions and Issues	Counter Measure under the Project	Effect and its Degree of the Project Improvement
 Function as Arterial National Road Road is narrow; Congested with vehicles and motorcycles being mixed; and Bridges with one lane The above is causing lower efficiency of traffic flow, and congestion, that is, significantly disturbing the function of as a trunk road. 	 To widen the road width by separating 4-wheel lane and motorbike lane, and replace or newly construct the bridges. - 4-wheel lane section: 1.8 km (Beginning - Sta. 1+800) - Motorbike lane section: 54.18 km (Sta. 1+800 - Ending) - Bridge replacement/construction: 3 nos. 	 To expect the improvement of traffic capacity, reduction of travel time, upgrading of traffic ability and traffic safety. To upgrade the function of the National Road
 2. Function as Lifeline Regarding the market area, bus stop/emergency evacuation space, and schools/hospitals, inconvenience caused by the issues below. There are no roadside service facilities; and Restricted or without parking space and sidewalk 	To install the roadside service facilities as below along the connecting roads from the rural community or village center. - Small-scale market area: 3 nos. - Bus stop: 20 nos. - School/hospital area: 40 nos.	Marketing activities become active and evacuation space for the livestock can be ensured at the time of flood with securing the smooth traffic flow through the solution on the traffic congestion around the market area, bus stop/emergency evacuation space.
 3. Travel Time Average speed is 30 kph now from Phnom Penh to Neak Loueng about 55.98 km long Travel time is 1 hour and 50 minutes 	- To construct the economic and durable road structure and pavement with high traffic ability.	 Vehicle travel speed becomes 80kph. Travel time can be shortened as 45 - 50 minutes.

 Table 3.1-1
 Direct Positive Effects by the Implementation of the Project

Present Conditions and Issues	Counter Measure under the Project	Effect and its Degree of the Project Improvement
4. Heavy Cargo Traffic Two bridges to be replaced are temporary Bailey bridges with one lane only, and limited to the vehicle loads of 15 tons.	 To replace as the bridges with design active loads by HS20-44. 	 To enable heavy cargoes to pass through; and To promote the efficiency of cargo service.
 5. Flood Countermeasures Stage of the Mekong river There exist two (2) pipe culverts and two (2) box culverts in the opening before 2000 flood. However, each one culvert among these four culverts cannot respectively work. Two (2) openings were excavated because Phnom Penh municipality was on the edge of submerge riskiness due to the stage of the Mekong River was going up to 10.16 m. Two Bailey bridge were built on both places. Flood countermeasures are still no sufficient due to the poor conveyance, even four (4) box culverts were newly installed. 	 Place the additional openings: Newly construction of one bridge; Replacement of two (2) bridges; Newly installation of seven (7) box culverts; and Newly installation of two (2) pipe culverts. 	 To reduce the flood riskiness by lowering the water level of about 11 cm in the Mekong river near the Phnom Penh Municipality.
 (2) Road Elevation The difference between the present road surface elevation and flood level in 2000 is only 30 cm on average. Consequently, overflow occurred on three (3) places (total length: 1.1 km) in 2000 flood. 	 To raise the road surface elevation by 70 cm on average 	 No more overflow occurs at the time of flood; To enhance the travel safety; and To improve the durability of road structures.
(3) Slope Damages At the time of flood, damages on bank slopes occurred frequently by the flow especially around the road curves, bridge peripheral parts and water colliding fronts.	 Revetment works will be done for the bank slopes where are easily destroyed so as to mitigate the flow attack; and To install greenbelt around the said three bridges. 	 To sustain the stable embankment with the slope protection of road embankment by installing greenbelt; and To expect the additional affects as environmental protection.
(4) Refuge Space No refuge space is provided, at the time of flood residents retire to road space and cause at the malfunction of the road.	 Shoulder is widened as bus stop / refuge space at the twenty (20) intersections at connection road. 	 At the time of flood, 3,000 residents are available to retire at its maximum.
 6. Drainage Facilities No rainwater drainage facilities within the urbanization areas such as Chbar Ampov, Kokir Market, and Neal Loueng. To cause the degradation of traffic function and limiting of traffic safety because the rainwater is discharged into the roads during raining. 	 Installation of road drainage facilities as below: U-shaped side ditch: L=2,230m (both sides) Drainage channel: L=5,045m 	- To secure the smooth traffic flow and improve the traffic safety by installing the road drainage facilities.

Present Conditions and Issues	Counter Measure under the Project	Effect and its Degree of the Project Improvement
 7. Traffic Safety Road width is almost 6.5m on an average; High riskiness of traffic accident occurrence due to the traffic is mixed with 4-wheel vehicles and motorbikes without separation. 	 To improve traffic safety by separating the traffic between vehicle and motorbikes. The following traffic safety facilities were installed. road marking: centerline, lane, sidetrack, pedestrian crossing traffic sign: regulatory signs (speed limit), warning signs (sharp turn, school), guide signs guardrails/guideposts: bridge's or culvert's circumference, fill with height more than 5 m. 	 To expect the reduction of traffic accidents by traffic facilitation based on the separation between 4-wheel vehicles and motorbikes To install the various traffic safety facilities to assure the safety of increasing and speeding-up passing vehicles.

1000 J.1 Z Indirect 1 Ositive Effects by the implementation of the 1 loped
--

Present conditions and Issues	Counter Measure under the Project	Effect and its Degree of the Project Improvement
1. Smooth Flow of Goods and Peoples Present narrow road width and the structure that is easily damaged by flood, lower the function of national trunk road and limit the smooth flow of goods and peoples.	To upgrade the road structures and improve the function of the national roads.	Improvement of national trunk road function by reducing the transport time and costs will encourage the flow of goods and peoples.
2. Socio-Economic Activities Socio-Economic activities are not activated enough due to inadequate distribution of goods and association of peoples.	To improve the function of national trunk road and upgrade the lifeline function.	To promote socio-economic activities due to the increment of exchange of goods and peoples.
3. Upgrade of Residents' Living Standards along the Road Transport cost is high due to the long transport time of agricultural goods, and poor access to the schools/hospitals and urban facilities.	To improve the traffic ability by larger traffic capacity, and install roadside service facilities	To transport easily agricultural goods, and improve the access to schools/hospitals and urban facilities.

Issues	Counter Measures (Counter Measures under/over and above the Project)
1. Increase of Traffic Accident NR1 is functioning as a life road for the residents those stay along the road. There is a possibility of increasing the traffic accident due to the high speed driving after the improvement.	To enlighten all road users' traffic safety consciousness/knowledge, by holding a traffic safety education to the pupil/students and residents, and promote the driving moral through the traffic safety campaign/maintain control of driving speed.
2. Effect by New Opening Water flows into Colmatage through the new openings and erode the agricultural land or residential area. Moreover, there is a possibility to affect fauna and flora.	I.R.C would compensate for the damage when it is confirmed by PAP and MoRAM. It is very difficult to forecast the effect to ecosystem, therefore the Environmental Baseline Survey was conducted in March 2005, and follow up Survey will be conducted to confirm the presence or magnitude of effect.
3. Overloaded Vehicle When the function as arterial road is improved number of car will increase and at the same time illegal overloaded vehicles increase. There is a possibility that overloaded vehicle will damage the pavement and cause the traffic accident.	The truck scales are planned and shall provided through the Project. Cambodian side shall maintain the control of overloaded vehicle by utilizing the provided facility to prevent the road damage or traffic accident due to the overloaded vehicle.

Table 3.1-3 Direct Negative Effects by the Implementation of the Project

Table 3.1-4 Indirect Negative Effects by the Implementation of the Project

Issues	Counter Measures (Counter Measures under/over and above the Project)
1. Increase of HIV/AIDS	To enlight all Project employees the fundamental knowledge
Road improvement will activate the human interchange	and prevention means though the safety meeting opportunity
and spread HIV/AIDS.	during the construction stage.

3.2 Recommendations

The Royal Government of Cambodia is expected to fulfill the following items, issues and recommendations, in order to execute the project satisfactory and maintain the sustainability of the effect of the Project:

- (1) Issues
- As for the agreement related to the in voluntary resettlement, Cambodian side should proceed reasonable schedule subject to the appropriate milestone which was agreed with Japanese side and carry out a necessary report to Japanese side.
- To keep good maintenance. It is important, especially to maintain the road pavement and opening structures such as bridges and culverts for the road maintenance. Road maintenance is not only for comfortable driving, but also for prolonging the durability (periods until the maintenance required). To secure adequate budget to have good road maintenance, which is inevitable. It is also important to keep drainage structures and bearings clean, to repair the revetment and riverbed protection, and to maintain the slope vegetation and thus to prolong working life.
- With regard to the Colmatage side, of which influence might come up in the form of water intake into the area, as a result of additional new openings, the attention should be paid to the impact to the social and natural conditions. Especially, within the parts without waterway on the Colmatage side, careful observation should be done to prevent the reverse impact to the existing farmlands and inhabited area from scouring. Therefore, establishment of countermeasure system is required by establishing the information system from the residents to grasp the flooding and disaster etc. information as soon as possible together with the thorough monitoring during the rainy season.
- As a result of road improvement, it is predictable that the traffic speed will be increased. Therefore, it is important to maintain traffic safety by the implementation of traffic safety education, improvement of traffic manner and observance of traffic regulations etc.
- It is indispensable to check whether the resettlement especially those livelihoods of the socially weak are already reintegrated or not. In addition, it is recommended that adoption of those affected inhabitants shall be employed as workers during construction stage, and for the maintenance jobs such as clearing and the crossing guard/guides within the areas of markets/schools/hospitals, to assist the reintegration of livelihood of the said peoples.
- It is recommended that Cambodian side shall utilize the results of Environmental Baseline Survey conducted March 2005, and proceed the monitoring after completion of the Project appropriately.

To increase the traffic capacity by the improvement of the Monivong Bridge. Moreover, the maintenance of those roads connect with National Road No.1 as much as possible is desirable. Therefore, the expanding effects by the Project can be expected.

(2) Recommendation

•

Technical assistance on the maintenance and traffic safety measures to be implemented is recommended to ensure the maintenance and traffic safety, and secure manifestation/sustainment of the Project effects. Specifically, system formulation and establishment of guidelines are indispensable.

3.3 Project Adequacy

It is reasonable to judge, upon the reason mentioned below, that the project is adequate to implement under the grant aid program of the Government of Japan:

- ① It contributes to the improvement of living standard of residents by improving as a life road, reduction of traffic accidents, provision of countermeasure against flood, activation of social and economic activities, as an effects of the project implementation.
- ② Domestic funds and man-power and technology would be suit for the administration and maintenance, since it doesn't require highly sophisticated technology.
- ③ The Royal Government of Cambodia has targeted in "the Second 5 years Socio-Economic Development Plan (2001~2005)", to improve trunk roads as an aim of road improvement, in this connection, the present project is worthy to attain the goal of the plan, and in addition, the present project is incorporated in the course of "Asian Highway".
- ④ Apart from the involuntary resettlement, in terms of negative impacts of the project in aspect of environment social considerations, it is very possible to overcome significantly the impacts, by studying the contents of the present report and reflect the result of it on the design. After completion of the Project, to carry out monitoring is recommended considering the results of Environmental Baseline Survey.

For the involuntary resettlement, careful consideration is due to affected residents, to have approval and concurrence from them., so that based upon the suggestion of the "JICA Advisory Council of Environmental and Social Consideration Reviews", the Basic Study has been carried out from in January to March, 2005, and others, such as Supplemental Study, Baseline Study and Preliminary Study II (Second Environmental Social Consideration Supporting Study) have been taken place, for the study of adequacy of the resettlement, of which needs occurred in the Phase-1 portion, to be established under the responsibility of the Government of Cambodia. The result of it has been presented as a suggestion in this detailed design stage, to minimize the negative impacts to PAPs.

3.4 Conclusion

The Implementation of the project is expected to have enormous positive effects, as mentioned above, on condition that the Royal Government of Cambodia shall take an appropriate countermeasures against involuntary resettlement, and contributes to the residents in improving their living standards, it is, therefore, quite adequate to execute the project under the grant aid program of the Government of Japan. Further, in terms of the administration and maintenance after the completion of the project, it is very much likely that the Government of the Cambodia has no problem in arranging the funds and manpower.