Chapter 3 Drilling Survey

3-1 Objective

The main objective of the survey is to discover a profitable ore deposits by the geophysical survey of this year, in Marrakech Tekna area in the Kingdom of Morocco, through drilling survey, and also to pursue technology transfer to the Moroccan counterpart personnel.

3-2 Survey points and members

The Marrakech Tekna area is located in the central part of the Kingdom of Morocco (Fig.1). It is approximately 330 km south of Rabat (capital city), north of the Haut Atlas Mountains, and also southwest of Marrakech. The survey area extends from $31^{\circ} 19^{\prime}$ to $31^{\circ} 38^{\prime}$ latitude north and from $8{ }^{\circ} 01^{\prime}$ to $8{ }^{\circ} 24^{\prime}$ longitude west.

Fig.II-3-1 Locality map of survey area

The survey quantity of this survey is shown in the following table.
(1) Drilling

No.	Inclination	Declination	Length	Coordinates		Altitude
MJTK-3	$-70 \square$	$325 \square$	701.0 m	N31 2830.5	W08 1149.8	588 m
MJTK-4	$-55 \square$	$325 \square$	601.2 m	N31 2840.1	W08 11 34.9	570 m
MJTK-5	$-70 \square$	$270 \square$	502.1 m	N31 2459.1	W08 12 22.7	682 m
MJTK-6	$-70 \square$	$325 \square$	301.9 m	N31 2810.2	W08 12 11.0	589 m
		Total	2106.2 m			

(2) Laboratory Tests.

Items	Quantity
$\begin{array}{\|l\|c\|}\hline \text { Chemical analysis (Ag,Al,As,B,Ba,Be, } \mathrm{Bi}, \mathrm{Ca}, \mathrm{Cd}, \mathrm{Co}, \mathrm{Cr}, \mathrm{Cu}, \mathrm{Fe}, \\ \mathrm{Ga}, \mathrm{Hg}, \mathrm{K}, \mathrm{La}, \mathrm{Mg}, \mathrm{Mn}, \mathrm{Mo}, \mathrm{Na}, \mathrm{Ni}, \mathrm{P}, \mathrm{Pb}, \mathrm{S}, \mathrm{Sb}, \\ \mathrm{Sc}, \mathrm{Sr}, \mathrm{Ti}, \mathrm{Tl}, \mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{Zn}, \mathrm{Au})\end{array}$	16
Microscopic observation (polished sction)	

The members who participated in the drilling survey is as follows.

Japan	Morocco	
Junichi ISHIKAWA (Geotechnos Co., Ltd.)	El Bachir BARODI	(Directeur de l'Exploration, Bureau de Recherches et de Participations Minieres : BRPM)
	M'hamed ANNICH	(BRPM)
	Abdellah MOUTTAQI	(BRPM)
	Mustapha CHAIB	(BRPM)
	Mohamed NAJAHI	(BRPM)
	Ahmed KORCHI	(BRPM)
	Said QASRI	(BRPM)
	Houcine ABARBACH	(BRPM)

Inspector: Nobuaki ISHIKAWA (Japan Oil, Gas and Metals National Corporation Metals Exploration Group)

The survey period is as follows.
Local stay period: From November 20, 2004 to February 15, 2005
Grilling period: From November 28, 2004 to February 9, 2005
Observation of rock core: From November 29, 2004 to February 10, 2005

3－3 Method and Content of Survey

3－3－1 Outlines

The drilling operation was ordered to Bureau de Recherches et de Participations Minieres（BRPM）， and the machine parts used the thing which the company owned in principle．The main machine parts were owned by BRPM．

1／200 columnar figure was arranged about the cores extracted，a reduced scale．Colored photographs are taken about all cores．And geological survey around drilling points was executed for the correlation with a geology of the hole and integrated evaluation．Chemical analysis，the observation of polished sections and isotope analysis were executed，and observed a microscope representation．And X－ray diffraction test was executed in order to know the alteration．

3－3－2 Method and Equipments

The drillings were executed by wire－line method，and casings were inserted as responding the geologic situation．The holes were drilled protecting the walls by regulating the concentration of mud water．

Principal equipment，materials，supplies，diamond bits and reamers was indicated by Table II－3－3 ．The operated rigs were Bonne Esperance，L44／I，L38／13 及び L44n／S owned by BRPM．

3－3－3 Survey Team

The penetration work was taken turns at 8－hours shifts， 3 －shifts per day． 1 shift is organized of 27 BRPM engineers and 12 workers who live around this area．And Japanese engineer usually directed them about general instruction．The base camp of drilling workers had stayed in Marrakech and near this area．And they commuted to the drilling sites by car．

3－3－4 Transportation and Preparation

The equipments and materials for drilling survey were carried truck from Rabat，to the drilling sites．Some machines were taken from the Draa Sfar mine．
There is no－pavement road in the Survey area．Therefore the road was repaired by bulldozer． As drilling site were far－off from the occurred roads，roads were built anew．

3－3－5 Withdrawal

After the finish of Survey，equipments and materials owned by BRPM were taken out to Rabat．Whole drilling cores were reserved at the Rabat office of BRPM．

3－3－6 Drilling Water

Drilling water was usually pumped up from a river，and was transported to the sites，by a tanker．

The record and itinerary of penetration were indicated in Table II-3-1 and Table II-3-2. Measured deviations are shown in Table II-3-4. Drilling Equipment and Consumption Goods are indicated in Table II-3-3, and the result of measurement of Hole deviation is indicated in Table II-3-4.
(1) MJTK - 3 Direction 325 ДInclination 70 ДLength 701.00 m)

The drilling period is from November 27 to January 13.
Setting up was carried since November 24 until November 26. Tricone drilling was started on Nov. 27.

Percussion drilling (101 mm diameter) was carried out from 3 m depth to 221.8 m depth till Dec. 7 . And the order of drill pipes was arranged in order to execute HQ wire-line drilling. And also, the order was arranged for NQ wire-line drilling, just after the hole was drilled to 386.55 m on Dec. 16 . the drilling was stopped at 701.00 m depth on Jan.13.

The geology is mainly Paleozoic pelitic schist etc. And pyrrhotite - calcite deposits or veins are often observed. The rock core is more friable in deeper part so that rock fragment stuffed the inner tube with reducing the drilling .
(2) MJTK - 4 Direction 325 ДInclination 55 ДLength :601.20m)

The drilling period is from December 5 to January 15.
Setting up was carried since December 2 until December 4. Tricone drilling was started on December 5.

Percussion drilling (101 mm diameter) was carried out from 3 m depth to 223.70 m depth till Dec. 16 . Cementation was carried out to stop the lost circulation at 37.40 m depth on Dec.7. And just after the percussion drilling, the order of drill pipes was arranged in order to execute HQ wire-line drilling. And also, the order was arranged for NQ wire-line drilling, just after the hole was drilled to 348.70 m on Dec.24. The drilling was stopped at 701.00 m depth on Jan. 15 .

The geology is mainly Paleozoic pelitic schist. And pyrrhotite - calcite deposits or veins are often observed. Pyrite spots are sometimes observed in the schist.
(3) MJTK -5 Direction 270 ด Inclination 70 ด Length 502.10 m)

The drilling period is from December 9 to December 31.
Setting up was carried since December 6 until December 8. Tricone drilling was started on December 9.

And the order of drill pipes was arranged in order to execute HQ wire-line drilling at 109.20 m depth on Dec.12. Cenozoic conglomerate etc. had been drilled to 142.5 m depth. And also, the order was arranged for NQ wire-line drilling at 318.00 m depth on Dec.21. The drilling was stopped at 502.10 m depth on Dec. 31 .

The geology is mainly Paleozoic pelitic schist from 142.5 to the bottom hole. And pyrrhotite calcite deposits or veins are often observed.
(4) MJTK-6 Direction 325 Д Inclination 70 Ц Length 301.90 m)

The drilling period is from January 7 to February 9. Setting up was carried since January 2 until February 6 . Tricone drilling was started on Jan. 24th. HQ wire-line drilling was started at 3 m depth. The drilling had a rest from Jan. 19 to Jan.25, around Eid Al Adha (Feast of Sacrifice).

After then, the drilling bit was stuck at 273.1 m depth in a sheared zone. It was not promising to recover the bit and the drill pipes immediately even though variable methods were executed, therefore BQ drill pipes were inserted into HQ drill pipe, and TBW drilling was started on Feb.5. And then, BQ wire-line drilling was started on Feb.7.
The drilling was stopped at 301.90 m depth on Feb.9.
The geology is mainly Paleozoic pelitic schist. And pyrrhotite - calcite deposits or veins are often observed. However the rock was friable under 144.0 m depth, and faults were at 204.5 m and 211.7 m depth. fractured or sheared zones were at $215.0-216.8 \mathrm{~m}$ and $219.0-229.0 \mathrm{~m}$ depth. Therefore the drilling had to be slower than ordinary drillings. Fractures appeared even in the deeper part, and a sheared zone was at 270.1-276.6m depth.

Table II-3-1 Drilling Schedule

Table II-3-2 Drilling summary MJTK-3)

WORKING PERIOD											
CLASS	WORKING	G PERIOD	DAY BREAK DOWN				WORKERS				
	PERIOD		TOTAL DAYS	ACTUAL WORKING	DAY OFF						
	2004/11/21 - 200	2004/11/27	6 days	6 days		0 days	72 workers				
DRILLING	2004/11/28-2005/1/13		35	DRILLING 33		2	396				
			REPAIR etc. 2		0	24					
TEAR DOWN	2005/2/20-200	2005/2/24		5	5		0	60			
TOTAL	2004/11/21 -	2005/2/24	46	46		2	552				
DRILLING DEPTH etc.				CORE RECOVERY PER EACH 100 m							
PLOPOSED DEPTH	500.00 m	OVERBURDEN	3.0 m	$\begin{aligned} & \text { DEPTH } \\ & (\mathrm{m}) \\ & \hline \end{aligned}$		CORE LENGTH(m)	CORE RECOVERY(\%)				
ADDITIONAL DEPTH	201.00 m	CORE LENGTH	698 m			SECTION	CUMULATIVE				
INSPECTED DEPTH	701.00 m	RECOVERY	99.14 \%	0 - 100.00			97.00	100.00	97.00		
TIME ANALYSIS				100.00 - 200.00		100.00	100.00	98.50			
CATEGORY	(hr.)	(\%)	(\%)	200.00 - 300.00		100.00	100.00	99.00			
DRILLING TRIP, CORE RECOVER, CASING, etc	792	94.3	71.7	300.00 - 400	400.00	100.00	100.00	99.25			
	48	5.7	4.3	400.00 - 500	500.00	100.00	100.00	99.40			
				500.00 - 592	592.70	100.00	100.00	99.50			
REPAIR, FISHING	0	0.0	0.0	600.00	701.00	98.00	101.00	99.14			
SUB TOTAL	840	100.0	-	TOTAL DEPTH/TOTAL WORKING DAYS			15.24 m/day				
RIG UP	144		13.0	TOTAL DEPTH/ACTUAL WORKING DAYS			$15.24 \mathrm{~m} /$ day				
TEAR DOWN	120		10.9	TOTAL DEPTH/ACTUAL DRILLING DAYS			21.24 m/day				
TOTAL	1104		100.0	ACTUAL DRILLING WORKERS/TOTAL DEPTH			0.56 worker/m				
CASING				REMARKS A: TOTAL DEPTH B: SET DEPTH							
SIZE	$\begin{aligned} & \text { SET DEPTH } \\ & (\mathrm{m}) \end{aligned}$	$\begin{gathered} B / A \times 100 \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \text { RECOVERY } \\ \text { (\%) } \\ \hline \end{gathered}$								
HW	3.00	0.43	100								
NW	386.55	55.14	100								

Table II-3-2 Drilling summary MJTK-4)

Table II-3-2 Drilling summary MJTK-5)

Table II-3-2 Drilling summary MJTK-6)

Table II-3-3 List of Drilling Equipment and Consumption Goods

Item	Specifications	Quantity		Unit
		MJTK-3	MJTK-4	
Drilling Machine	Bonne Esperance	1		
	L44/I		1	
Drilling rod HQ	3.05 m	129	116	u
Drilling rod NQ	3.05 m	232	196	u
Swivel head	25 / 8	1	1	
Core barrel	HQ	1	1	
Core bit	HQ	1	1	
Core bit	NQ	2	1	
Reaming Shell	HQ	1	1	
Outer tube	HQ	1	2	
Inner tube	HQ	1	1	
Core barrel	NQ	1	1	
Reaming Shell.	NQ	1	1	
Inner tube	NQ	1	1	
Inner tube head	HQ	1	1	
Inner tube head	NQ	1	1	
Inner tube head	BQ			
Overshot	HQ	1	1	
Overshot	NQ	1	1	
Wireline rope	Diameter: 6 mm	300	300	m
Casing pipe (HW)	3.05 m	1	1	u
Casing pipe (NW)	3.05 m	128	116	u
Casing pipe (BW)	3.05 m			u
Core lifter case	HQ	3	2	
Core lifter case	NQ	2	3	kg
Core lifter case	BQ			
Bentonite	GS550	104	74	kg
Polymer		100	90	kg
Cement	GS550	100	950	kg
Diesel oil		12520	2470	ℓ
Engine oil	HDI40	92	76	ℓ
Gear oil	EP-90	56	58	ℓ
Hydraulic oil	AZ32	120	45	ℓ
Core box	5.6-6.4m	146	110	u

Item	Specifications	Quantity		Unit
		MJTK-5	MJTK-6	
Drilling Machine	L38/13	1		
	L44/5		1	
Drilling rod HQ	3.05 m	106	91	u
Drilling rod NQ	3.05 m	167	-	u
Drilling rod BQ	3.05 m		101	u
Swivel head	$25 / 8$	1	1	
Core barrel	HQ	1	1	
Core bit	HQ	3	1	
Core bit	TBW		1	
Core bit	NQ	3	1	
Reaming Shell	HQ	1	1	
Outer tube	HQ	1	-	
Inner tube	HQ	1	1	
Core barrel	NQ	1	1	
Reaming Shell.	NQ	1	1	
Inner tube	NQ	1	1	
Inner tube head	HQ	1	1	
Inner tube head	NQ	1		
Inner tube head	BQ		1	
Overshot	HQ	1	1	
Overshot	NQ	. 1		
Wireline rope	Diameter: 6 mm	600	300	m
Casing pipe (HW)	3.05 m	36	1	u
Casing pipe (NW)	3.05 m	106		u
Casing pipe (BW)	3.05 m		91	u
Core lifter case	HQ	2		
Core lifter case	NQ	1		
Core lifter case	BQ			
Bentonite		52	35	kg
Polymer		90	60	kg
Cement	GS550	200	250	kg
Diesel oil		1925	1770	
Engine oil	HDI40	19	38	
Gear oil	EP-90	10	15	
Hydraulic oil	AZ32		55	
Core box	5.6-6.4m	73	71	u

Table II-3-4 Result of measurement of Hole deviation

MJTK-3

	degree	
depth(m)	inclination	direction
0	70	0
20	71	30
50	70.5	50
100	68.25	100
150	66	150
200	65.5	200
250	64	250
300	63	300
350	63	350
400	63	400
450	61	450
500	60	500
550	59	550
600	59	600
650	59	too magnetic
700	collapse	

MJTK-5

	degree	
depth (m)	inclination	direction
0	70	175
50	66	too magnetic
120	67	272
150	67	272
200	66	270
250	65	268
300	63	270
350	61.5	266
400	61	270
450	59	266
500	58	268

MJTK-4

	degree	
depth(m)	inclination	direction
0	55	325
20	54	325
50	53	325
100	52	322
150	52	320
200	52	317
250	51.5	315
300	51	313
350	50	too magnetic
400	50	too magnetic
450	49	too magnetic
500	49	too magnetic
550	49	311
600	47	313

MJTK-6

	degree	
inclination	inclination	direction
0	70	328
50	69	330
100	69	330
150	68	329
200	67	329
250	67.5	327
300	67.5	too magnetic

3-4 Result of Drilling

3-4-1 Geology, Mineralization and Alteration

The result of this survey (MJTK-3, 4,5 and MJTK-2) is as follows, with Fig.II-3-2 Geological Section, and Fig.II-3-3 Geological Columnar Figures (appendix).
(1)MJTK - 3 Direction 325 ДInclination 70 ДLength 701.00 m)

The geology consists of Calcareous schist, with pelitic schist layers, foliation ($\angle 40-\angle 50 \square$ dip), , lamination ($\angle 0-\angle 50 \square \mathrm{dip}$) and carbonate veinlet. And also with fractures and calcite -dolomite (?) quartz veinlets are dominant.

Fine tuff thin layer ($\angle 40 \square \mathrm{dip}$) is $31.7-32.0 \mathrm{~m}$ depth. Quartz (- calcite) vein is $39.1-39.55 \mathrm{~m}$ depth, with $\angle 45 \square$ dip, A fine tuff thin layer is 40.0 m depth, with $\angle 40 \square$ dip and 1.5 cm thickness.

Calcite (- quartz) vein, with pyrrhotite, sphalerite and chalcopyrite, is 40.4 m depth. It has $\angle 30-$ $\angle 50 \square$ dip and 4 cm width, partly with pyrite? A calcite vein has $\angle 55 \square$ dip and 10 cm width at 40.5 m depth. A calcite (- pyrite - pyrrhotite - chalcopyrite - sphalerite) vein is at 41.0 -41.1m depth, with $\angle 25 \square$ dip and 11 cm width. It is with barren calcite veins under. Calcite (- chlorite) vein, with $40 \square$ dip is at $42.7-43.1 \mathrm{~m}$ depth. Pale greenish gray fine sandy tuff is at $43.4-44.3 \mathrm{~m}$ depth, with $\angle 40 \square$ dip,

Calcareous schist and black pelitic schist include quartz (- calcite) network- veinlets discordant with foliation, partly with fine sandy schist layers (lamination. $\angle 20-40 \square$ dip). Calcite - pyrrhotite vein, $40 \square \mathrm{dip}$ and 15 cm width is at 52.9 m in black calcareous- pelitic schist. The rock core is not so fragile as MJTK-1, even though the color is due to graphite. And calcite is dominant.

Calcite veins are $56.2-56.6 \mathrm{~m}$ depth. with $\angle 45 \square$ dip and $3-20 \mathrm{~mm}$ width. Calcite (-dolomite?) vein is at 63.0 m depth, with sphalerite with parallel calcite veins and calcite veins along foliation.

5 chalcopyrite - pyrrhotite - calcite veins along foliation are under 72.4 m depth, with $6-10 \mathrm{~cm}$ intervals and $6-15 \mathrm{~mm}$ widths. Calcareous schist, with foliation ($\angle 30-40 \square \mathrm{dip}$) is bedded or lamination micro-folded. Pyrrhotite - calcite (- chalcopyrite) veins along foliation are at 70.0, 70.15, and 73.35 m with $\angle 45 \square$ dip and $3-30 \mathrm{~mm}$ width. And pyrrhotite - calcite veins (width :12-110mm depth. $\angle 40 \square$ dip) under. Pyrrhotite - calcite vein with $\angle 40 \square$ dip and $35-40 \mathrm{~cm}$ width is at 80.0 -80.6 m depth. It may be in a fault, and it is with chalcopyrite, sphalerite and galena (rare). The schist is micro-folded at $84 \mathrm{~m} \pm$ depth. Calcite veins are under there along foliations, with 40 cm intervals, with $\angle 40 \square$ dip, and $2-9 \mathrm{~mm}$ width. Some vein is in small faults (reverse faults). Pyrrhotite - calcite vein is under 95.5 m depth. It is concordant with foliation ($\angle 40 \square$ dip, $40-80 \mathrm{~m}$ width) and with sphalerite and chalcopyrite. And it also has 80 cm length accessory network. Pyrrhotite - calcite vein ($\angle 40 \square$ dip, width : 10 mm) is at 99.1 m depth. Calcite - pyrrhotite vein is at 99.6 m depth, ($\angle 40 \square$ dip, width : 130mm). It is with chalcopyrite and brecciated at edges. Pyrrhotite - calcite vein ($\angle 40 \square \mathrm{dip}$ and 20 mm width) is at 100.4 m depth. (Pyrrhotite -) calcite vein ($\angle 30-40 \square$ dip,13 -40 mm width) is at 100.7 m depth. It is with irregular pyrrhotite - chlorite - calcite vein ($\angle 50 \square \mathrm{dip}, 160 \mathrm{~mm}$). Pyrrhotite - chlorite - calcite vein is under 101.2 mdepth, with $\angle 50 \square$ dip and 160 mm width. Chalcopyrite pyrite - pyrrhotite vein ($\angle 30 \square \mathrm{dip}$) is at 101.6 m depth. Calcite and chlorite replace the upper rock. Dark gray calcareous schist is with calcite veinlets along foliation ($\angle 25 \square$ dip $-40 \square$ dip). Lamination
and bedding are micro-folded and have different dip to foliation. Chlorite - calcite - quartz vein (\angle $30 \square$ dip, width $: 35 \mathrm{~cm}$) is at $113.65-114.10 \mathrm{~m}$ depth. It is with pyrrhotite (p) and breccia-like with schist and tuff fragments.

Calcareous- pelitic schist, more altered (chlorite, silicified) has foliation ($\angle 40-45 \square \mathrm{dip}$) and is partly black with graphite. Pyrrhotite vein ($\angle 25 \square$ dip, width 7 mm) is at 140.5 m depth. Calcite pyrrhotite vein ($\angle 40 \square$ dip, width 30 mm) at 140.9 m depth. Pyrrhotite -clay mineral - calcite vein is along foliation with $\angle 40 \square$ dip and width 110 mm . (Pyrrhotite -) calcite vein ($\angle 40 \square$ dip, width 30 mm) is at $142.1-142.3 \mathrm{~m}$ depth, with white fine calcite at $143.5-143.9 \mathrm{~m}$ depth. Pyrrhotite - calcite network is at $144.6-144.7 \mathrm{~m}$ depth. Pyrrhotite - calcite vein (- network) with 15 cm mean-interval and generally $\angle 45 \square$ dip is at $145.0-150.6 \mathrm{~m}$ depth. It is along foliation, with chlorite. For example, chalcopyrite - sphalerite - pyrite - pyrrhotite - chlorite - calcite vein is at 147.8-148.0m depth with $\angle 45 \square$ dip and $80-100 \mathrm{~mm}$ width. Most sulfides are at edges. depth. pyrrhotite - chlorite - quartz calcite vein at $148.2-148.5 \mathrm{~m}$ depth , with chalcopyrite. It has $\angle 45 \square$ dip and 210 mm width. sphalerite - pyrrhotite - calcite vein is at $148.8-149.0 \mathrm{~m}$ depth, with chalcopyrite and $\angle 45 \square$ dip, Pyrrhotite - calcite vein. With $\angle 40 \square$ dip and sphalerite and rock fragments is at $149.3-149.6 \mathrm{~m}$ depth. Pyrrhotite - calcite vein ($\angle 45 \square$ dip, width 130 mm) 154.7 - 154.8 m depth. Mineralization weakens under.

Black-pale gray, pelitic- calcareous schist is partly dominant with graphite (foliation: $\angle 200-\angle$ $40 \square \mathrm{dip}$). Quartz - calcite vein is at 171.9 m depth ($\angle 25 \square$ dip, width 30 mm). It is with pyrrhotite (p) and pyrite dissemination along foliation. Pyrite has colloform structure even though it is in a fracture. Calcite replaces host rock with chlorite and pyrite (p) at 176.7 m depth. Pyrrhotite - (quartz -) calcite vein with sphalerite ($\angle 20 \square$ dip, width $9-20 \mathrm{~mm}$) is at 177.6 m depth.

Pelitic (partly calcareous) schist (foliation: $\angle 15 \square-40 \square$ dip, Lamination $\angle 0 \square-30 \square$ dip) is at 183 m depth. Pyrite - chlorite veinlet ($\angle 65 \square$ dip, width $<1 \mathrm{~mm}$) is at 182.6 m depth. Calcite veinlets along foliation with pyrrhotite ($\angle 30 \square$ dip, width $<10 \mathrm{~mm}$) is at 184.8 m depth. Pyrite - calcite vein ($\angle 40 \square$ dip, width $<3 \mathrm{~mm}$) is at 187.0 m depth. Pyrite crystallized after calcite. Chalcopyrite pyrrhotite - calcite vein ($\angle 30 \square$ dip, 3 mm width) is at 188.3 m depth. Calcite - pyrite - pyrrhotite veinlet ($\angle 40 \square$ dip, width $<3 \mathrm{~mm}$) is at $195.5-195.7 \mathrm{~m}$ depth. Calcite - pyrrhotite vein ($\angle 15 \square$ dip, width 16 mm) is at 196.75 m depth. Calcite and chlorite replaces rock is at 196.9 m depth. Peliticcalcareous schist (lamination $\angle 10-30 \square$ dip, foliation $20-40 \square$ dip) at 205 m depth with graphite. Pyrrhotite - calcite veinlet ($\angle 75 \square \mathrm{dip}, 2 \mathrm{~mm}$) is at 206.3 m depth.

Pyrite - chlorite veinlet ($\angle 45 \square$ dip, width $<1 \mathrm{~mm}$) is at 217.1 m depth. pyrite - calcite network in small fault (width 40 mm), generally $\angle 30 \square$ dip, is at 218.5 m depth. Pelitic- sandy- calcareous schist has lamination, $\angle 0-30 \square$ dip, foliation $\angle 10-40 \square$ dip, and is partly with graphite. Bedded (sandypelitic) schist is at 222.5 m depth, and $\angle 20 \square$ dip, sorted (Not reversed?). Pale greenish gray fine tuff that is silicified with chlorite is at $229.7 \mathrm{~m}-231.9 \mathrm{~m}$ depth. Sphalerite - chalcopyrite - pyrrhotite (quartz) - calcite vein. in tuff is at 230.1 m depth (with galena?, $\angle 40 \square$ dip,10-40mm). pyrrhotite chlorite - calcite veinlet ($\angle 50 \square$ dip,3mm) is at 231.4 m depth. Barren calcite veins are dominant. Pyrite - calcite veinlet. $\angle 20 \square$ dip,1mm is at 235.0 m depth. Black-pale gray, pelitic- sandycalcareous schist is with graphite (bedded : $\angle 20-30 \square$ dip, foliation: $\angle 10-30 \square$ dip). The formation is
sorted. is at 258 m depth, (Not reversed?). Barren calcite (vein. $5 \square$ dip) with rock fragments is at $259.7-259.9 \mathrm{~m}$ depth. Pelitic- sandy- calcareous schist with graphite is at 262 m depth (Foliation \angle $20-30 \square$ dip, bedded $\angle 20-40 \square$ dip). Chalcopyrite - pyrite - calcite vein ($\angle 35-40 \square$ dip, 11 mm) is at 272.1 m depth. Fault is at $277.3-281.3 \mathrm{~m}$ depth, also sheared under. Pelitic- (sandy-) calcareous schist is with graphite. Foliation $\angle 30-45 \square$ dip, bedded $\angle 30-50 \square$ dip, Pyrite and chalcopyrite in fault is at $277.3-281.3 \mathrm{~m}$ depth., and sheared. Calcite network is at 293.7 m depth with pyrite. Chlorite (-dolomite?) - calcite - quartz vein ($\angle 35 \square$ dip, 20 cm) is at $307.0-307.3 \mathrm{~m}$ depth. Fine tuff thin layer ($\angle 30 \square$ dip, chlorite) is at $307.3-307.4 \mathrm{~m}$ depth with pyrite dissemination. Pelitic- calcareous schist (foliation $\angle 40 \square$ dip, bedded $10-\angle 30 \square$ dip, partly calcite network) is at 309 m depth. Pyrrhotite calcite vein, with chalcopyrite, along foliation, is at $317.5-319.9 \mathrm{~m}$ depth. Fractured zone is under 322.3 m depth. Pelitic- calcareous schist (foliation $\angle 15-50 \square$ dip, bedded $15-40 \square$ dip, partly vertical by micro - folding) is at 327 m depth. Pyrrhotite vein. $\angle 35 \square$ dip (width :7-16mm. with calcite and pyrite along foliation along foliation) is at 326.85 m depth. Pyrrhotite - pyrite dissemination with calcite is at 327.05 m depth (Lens like). Pyrrhotite - calcite veinlet (with chalcopyrite. $\angle 15 \square$ dip, width 6 mm) is at 327.18 m depth. Pyrrhotite - calcite veinlet. $\angle 25 \square$ dip, 4 mm is at 327.60 m depth.

Pyrrhotite - calcite veinlet ($\angle 20 \square$ dip, 4 mm) is at 328.00 m depth. Chalcopyrite - pyrrhotite calcite network. (width $<8 \mathrm{~mm}$) is at $332.5-332.75 \mathrm{~m}$ depth. Chalcopyrite - (sphalerite -) pyrrhotite veinlet ($\angle 65 \square$ dip, width $<5 \mathrm{~mm}$) is around 333.5 m , and pinch out, with micro-faults (normal fault? $\angle 65 \square$ dip). (Marcasite? -) pyrite - pyrrhotite - calcite vein ($\angle 65 \square$ dip, 30 mm) is at 337.65 m depth.

Chalcopyrite - pyrrhotite vein. $\angle 30 \square$ dip, 40 mm .is at 339.8 m depth. Chalcopyrite - pyrrhotite network is at $340.2 \mathrm{~m}-340.4 \mathrm{~m}$ depth, and partly replaces schist. (sphalerite? -) chalcopyrite calcite - pyrrhotite vein is at 341.1 m depth, with $\angle 45 \square$ dip and 30 mm width. Calcite network and chalcopyrite - pyrrhotite lens are under. chalcopyrite - sphalerite - calcite - pyrrhotite vein ($\angle 40 \square$ dip, $20-30 \mathrm{~mm}$) is at 342.0 m depth. Pelitic- calcareous schist has. $5-40 \square$ dip foliation. bedded \angle $30-50 \square$ dip, micro-folded. Chalcopyrite - pyrite - calcite vein ($5 \square$ dip, 20 mm) is at 354.6 m depth. Pelitic (partly sandy) schist has foliation $20-\angle 30 \square$ dip, It is bedded (almost $\angle 20 \square$ dip) and with. graphite. Chlorite - calcite vein ($\angle 35 \square$ dip, 30 mm) is at $377.1-377.2 \mathrm{~m}$ depth, with pyrrhotite.

Pyrrhotite -Chlorite - calcite vein with $\angle 20 \square$ dip and 10 mm width is at 377.6 m depth. Pale greenish gray fine tuff is at 378.6-379.3m depth (compact. $\angle 20 \square$ dip?). It replaces to chlorite and calcite by half. Graphite decreases is under 382.3 m . Pyrrhotite - calcite vein with 15 cm interval (\angle $20 \square$ dip, width $<16 \mathrm{~mm}$) is at $382.4-386.0 \mathrm{~m}$ depth. Sandy (-pelitic) schist is partly with graphite, and with foliation (p) $30-45 \square$ dip, It is bedded $\angle 20 \square$ dip and dominant with graphite. Pyrrhotite - calcite vein ($\angle 10 \square$ dip, 40 mm) is at 386.85 m depth. Pyrrhotite - calcite dissemination is at 390.10 m depth. Calcite - pyrrhotite dissemination (striped along lamination? $\angle 10 \square$ dip) is at 390.20 m depth. Pelitic schist is dark gray-black with graphite, and friable. It has $\angle 20-30 \square$ foliation dip, Lamination is almost $\angle 20 \square$ dip, however unstable.

Pelitic schist is with graphite, dark gray-black and friable. It is with $\angle 10-30 \square$ dip foliation and $\angle 20 \square$ dip lamination (p). (Galena? -) sphalerite veinlet ($\angle 25 \square$ dip, 2 mm) is at $404.3 \mathrm{~m}-404.5 \mathrm{~m}$ depth. it is surrounded by pale gray rock (tuff?) and friable by graphite lower. Dark gray - black
pelitic schist is with graphite and friable (foliation $\angle 10-20 \square$ dip, Lamination(p)). Dark gray-black Pelitic schist is with graphite. Sheared zone (fault?) is at $449.5-459.4 \mathrm{~m}$ depth. The schist is brecciated, with dolomite ? Pyrite, calcite and quartz in matrix at $459.4-460.0 \mathrm{~m}$ depth. Carbonate vein is under.

Calcareous -silty schist (foliation (p). with lamination-bedding $\angle 35 \square \mathrm{dip}$) is under 464.6 m . Fine sandy schist layer is at $468.6-469.8 \mathrm{~m}$ depth, often with calcite vein, hard and with quartz and pyrrhotite. Chalcopyrite-sphalerite-pyrrhotite-calcite vein ($\angle 20 \square \mathrm{dip}, 23 \mathrm{~mm}$) is at 471.0 m depth. It is with parallel pyrrhotite-calcite veinlet. pyrrhotite-(dolomite ? -) calcite vein ($\angle 20 \square$ dip, 70 mm) is at 472.4 m depth. Galena-sphalerite-chalcopyrite-pyrrhotite-quartz vein is at $473.2 \mathrm{~m}-473.8 \mathrm{~m}$ depth. It has cavities without calcite, $\angle 25 \square$ dip 500 mm and parallel chalcopyrite-pyrrhotite-quartz veinlets. Pyrrhotite-quartz vein $(\angle 30 \square$ dip, 20mm) is at 475.6 m depth. Pyrrhotite-calcite vein ($\angle 30 \square$ dip, 25 mm) is at 476.4 m depth.

Pelitic -silty -sandy schist has $\angle 10-20 \square$ dip foliation, lamination-bedding, and $\angle 40 \square$ dip (average). Pyrite-calcite network is at 487.6 m depth. Sandy tuff is at $497.45-498.5 \mathrm{~m}$ depth, with calcite veinlet. Silty -fine sandy schist has $\angle 20-40 \square$ dip foliation and lamination $\angle 40 \square$ dip, It is partly friable with graphite. Silty tuff (tuffaceous schist) thin layers is at 519.4-519.6m depth, with $\angle 30 \square$ dip, Pelitic schist is at -532.2 m depth. Silty -finely sandy schist. Foliation $(\angle 40 \square$ dip, lamination $\angle 35 \square \mathrm{dip}$) is at 523.2 m depth. Pelitic schist with graphite is under 533.1 m . Fine sandy schist (lamination $\angle 30 \square \mathrm{dip}$) is at 534.9 m . pelitic schist has foliation $\angle 40-50 \square$ dip and lamination \angle 45 dip, Partly it is friable with graphite.

Pelitic -silty schist has $\angle 30 \square$ dip foliation and $\angle 45 \square$ dip lamination, with calcite veinlet and graphite. Small fault is 545.45 m depth. Pelitic schist has $\angle 45 \square$ dip foliation and $\angle 45 \square \mathrm{dip}$ (?) lamination. It is calcareous and with graphite. pelitic schist with foliation $\angle 30 \square$ dip, even though bedding and lamination are unclear. It is with graphite and fracture zone. Silty schist (foliation $\angle 20 \square$ dip, lamination $\angle 55 \square \mathrm{dip}$) is under 576.4 m . Galena-chalcopyrite-sphalerite-pyrrhotite-calcite vein $(\angle$ $35 \square$ dip, 150 mm) is at $581.3-581.5 \mathrm{~m}$ depth. Chalcopyrite-galena-pyrrhotite vein ($\angle 35 \square$ dip, 10mm) is at 581.7 m depth.

Sandy (tuffaceous ?) schist thin layer ($\angle 35 \square$ dip) is at $582.0 \mathrm{~m}-582.15 \mathrm{~m}$ depth. And silty schist has $\angle 40 \square$ dip foliation and $\angle 35 \square$ dip lamination. Fault is at 584.7 m depth, with $\angle 60 \square$ dip and 10 cm width. Silty-pelitic schist alternation has $\angle 40 \square$ dip foliation and $\angle 45 \square$ dip bedding. Galena-chalcopyrite-sphalerite-pyrrhotite-calcite vein is at 581.3-581.5m depth. Pyrite dissemination is at 593.9 m depth with calcite. Silty-pelitic schist has $\angle 35 \square$ dip foliation and $\angle 40 \square$ dip bedding. Silty-fine sandy schist alternation is around 607 m (foliation $\angle 30 \square \mathrm{dip}$, bedding $\angle 40 \square \mathrm{dip}$). Silty-fine sandy schists have alternation (foliation $\angle 40 \square$ dip, bedding $\angle 45 \square$ dip). Silty-pelitic schist alternation is under 609 m (foliation $\angle 40 \square$ dip , bedding 50-40 dip). Calcite vein ($\angle 10 \square$ dip, 100 mm) is at 619.9 m depth. Pelitic schist with graphite is friable under 621.2 m .

Pelitic-silty schists have $\angle 45 \square$ dip Foliation(p) and bedding with calcite veinlet. It is at 621.5-628.3m depth and friable with graphite. Pelitic-silty. foliation $\angle 30 \square$ dip, lamination $\angle 45 \square$ dip, It is at 650.20-650.65m depth, with sheared zone, calcite network and friable zone.

Pelitic-silty schist (foliation $\angle 40-\angle 50 \square \mathrm{dip}$, lamination $\angle 45 \square \mathrm{dip}$) is calcareous, and it is at
664.0-664.1m depth. Calcareous tuff ? Is at 665.0-665.8m depth. Pelitic schist (foliation30-40] dip, lamination $\angle 45 \square \mathrm{dip}$) is with graphite. Sandy schist ($\angle 70 \square \operatorname{dip}$? , Folded) is at 674.80 m . Sheared zone is at 676.70 m . Pelitic schist (foliation $\angle 45 \square$ dip $?(p)$. lamination $\angle 50-80 \square \operatorname{dip}(p)$) is with calcareous. pelitic-silty schist (foliation $\angle 25 \square$ dip, lamination $\angle 20 \square$ dip). Calcite vein ($\angle 10 \square$ dip) is at $694.3-695.1 \mathrm{~m}$ depth, with specularite. (Drilled to 701.1 m depth.)
(2) MJTK - 4 Direction 325 ДInclination 55 ДLength $: 601.20 \mathrm{~m}$)
-2.10 m depth. Tricon. Calcareous schist.
Calcareous schist -5.45 m depth. weathered and friable is at 2.10 m depth (foliation $\angle 45 \mathrm{dip}$, limonite along foliation).

Calcareous schist is with $\angle 30-45 \square$ dip lamination and $40-45 \square$ dip foliation. Oxidized zone is under 20.3 m depth. calcite veinlet is along foliation. Pyrite (euhedral - subhedral) spots are under 31.5 m depth. Calcite vein ($\angle 45 \square \mathrm{dip}, 10 \mathrm{~mm}$. with pyrite spots) is at 32.3 m depth. Pyrite - calcite network, with chalcopyrite, is at 36.4 m depth.

Dark gray-black calcareous schist is with foliation:15-45] dip and micro-folded, and often with calcite veinlets and networks. Pyrite ($<2 \mathrm{~mm}$) spots in calcareous schist (foliation $\angle 40-50 \square$ dip, lamination $\angle 20-45 \square$ dip). Calcite vein ($\angle 55 \square$ dip, width $30 \mathrm{~cm}+$. pyrite and pyrrhotite are at edges) is at $85.9-86.55 \mathrm{~m}$ depth. Sheared zone is under. Pyrite - calcite vein ($\angle 55 \square$ dip, width $4-20 \mathrm{~mm}$. and calcite network) is at 87.1 m depth.

Calcareous- pelitic schist is with foliation ($\angle 40-50 \square$ dip, bedded $\angle 15-45 \square$ dip). Calcite vein ($\angle 30 \square$ dip, width $40 \mathrm{~cm}+$) is at $98.5-99.1 \mathrm{~m}$ depth, with pyrrhotite and sphalerite (?). Chlorite calcite vein ($30-45 \mathrm{dip}$) is at $99.7-100.3 \mathrm{~m}$ depth, with sphalerite, chalcopyrite and pyrite. It is surrounded by calcite veinlets.

Fault is at $105.65-105.75 \mathrm{~m}$ depth (with clay. $\angle 65 \square$ dip, Sheared).
Calcite vein ($\angle 40 \square$ dip, with pyrite and rock fragments) is at 108.2-108.9 depth. Foliation is almost $\angle 30 \square$ dip,

Calcareous- pelitic schist has foliation and bedding ($\angle 40 \square \mathrm{dip}$), partly with calcite network. Pyrrhotite - calcite vein along foliation (alternating with several cm intervals) is at $124.7-126.0 \mathrm{~m}$ depth, and with averaging calcite veinlet with averaging 1 m interval. Calcareous - sandy - pelitic schist (foliation $\angle 35-40 \square$ dip, bedded $\angle 15-40 \square$ dip) is often with calcite veinlets. Chlorite - calcite vein $(\angle 40 \square \mathrm{dip}, 50 \mathrm{~cm})$ is at $143.75-144.40 \mathrm{~m}$ depth. Calcite vein is at 151.05 m depth, with pyrrhotite and sphalerite ($\angle 30 \square \mathrm{dip}, 30-40 \mathrm{~mm}$). Chlorite - calcite vein, (with pyrrhotite, sphalerite and chalcopyrite. $\angle 25-30 \square$ dip, 180 mm) is at $152.3 \mathrm{~m}-152.5 \mathrm{~m}$ depth. Calcite veinlet - network dominant is under158.7m depth, in calcareous schist (foliation20-45 dip, bedded 25-40 dip). Calcite vein $(\angle 25 \square$ dip, 40 mm) is at 171.3 m depth. Calcite vein. $\angle 55 \square \mathrm{dip}, 15-35 \mathrm{~mm}$ is at 174.4 m depth. Calcite vein ($20-40 \square$ dip, $<40 \mathrm{~mm}$ depth. with averaging 15 cm interval) is at $175.3-176.2 \mathrm{~m}$ depth in calcareous schist (foliation $\angle 35-45 \square$ dip, bedded 25-45 [dip). Chlorite - calcite vein. 30-45] dip,250mm is at $213.00-216.00 \mathrm{~m}$ depth. Calcite vein ($\angle 45 \square \mathrm{dip}, 10 \mathrm{~mm}$) is at 215.9 m depth. Pelitic-silty - calcareous schist (foliation $\angle 40 \square$ dip, Lamination) is micro-folded. Sphalerite pyrrhotite veinlet (. $0-\angle 20 \square$ dip,5mm, with calcite) is at 229.9-230.0m depth. Calcite vein. $(\angle 40 \square$
dip,30mm, with pyrrhotite) is at 233.1 m depth. Calcite- chlorite- pyrrhotite veinlet ($\angle 40 \square$ dip, along foliation) is at $233.3 \mathrm{~m}-233.5 \mathrm{~m}$ depth, partly with sphalerite, chalcopyrite.

Pelitic- sandy- calcareous schist has foliation ($\angle 40-60 \square$ dip). Lamination is unclear. And it is partly with calcite veinlet along foliation and with graphite, and also partly sheared.

The schist is with calcite veinlet along foliation at 241.1-246.2m depth, with pyrrhotite vein (\angle $60 \square$ dip, 4 mm). pyrrhotite veinlet ($\angle 65 \square \mathrm{dip}, 3 \mathrm{~mm}$) penetrates across foliation at 246.3 m depth.

Foliation becomes $\angle 20 \square$ dip at 247 m depth.
Pelitic-silty - sandy- calcareous schist (foliation $\angle 40-50 \square$ dip, Lamination vague, friable and partly with graphite) is with calcite veinlet along foliation. Pyrrhotite - calcite dissemination along foliation is at 246 m depth. Pelitic- calcareous schist, with $\angle 30 \square$ dip foliation and vague lamination, is at 266.9-269.6m depth and friable by graphite. It is harder with calcite veinlets along foliation.

Sheared zone is at $279.9-280.1 \mathrm{~m}$ depth.
Pyrrhotite - calcite vein, $\angle 30 \square$ dip, 30 mm , is at $280.69 \mathrm{~m}-280.73 \mathrm{~m}$ depth. Pelitic -silty -calcareous schist (foliation $\angle 40-\angle 50 \square \mathrm{dip}$, lamination20- $\angle 30 \mathrm{dip}$) is with calcite network dominant. Calcite along foliation is at $285.8-285.95 \mathrm{~m}$ depth.
(Galena-)sphalerite-chalcopyrite-pyrrhotite-pyrite-calcite vein is at $287.3-287.8 \mathrm{~m}$ depth, with $\angle 50 \square \mathrm{dip}$ and 30 mm width. Pyrrhotite is at the upper edge, and pyrite is at the lower edge. And calcite veinlet is near it. Chalcopyrite-pyrrhotite-calcite vein ($\angle 50 \square \mathrm{dip}, 8 \mathrm{~mm}$) is at 288.4 m depth. It is calcareous under 299.9 m depth.

It has clay and pyrite at 299.9-300.3m depth, with fault fragments and in silty -calcareous schist (foliation $\angle 25 \square \mathrm{dip}$, Lamination is vague.).

Calcite network-veinlet is with graphite in Pelitic -silty -calcareous schist (foliation $\angle 500 \mathrm{dip}$, bedding $\angle 10-30 \square$ dip).

Sandy schist, $\angle 10 \square$ dip bedded, is at $305.25-305.45 \mathrm{~m}$ depth.
Sheared zone is at 306.6 m . Sheared zone is at -312.3 m depth in pelitic -silty schist.
Tuffaceous-sandy schist. Calcite is at $312.4-313.8 \mathrm{~m}$ depth, and silicified. Pelitic -calcareous schist is at 313.8 depth. foliation $\angle 30 \square$ dip, lamination $\angle 25 \square$ dip,

Calcite vein $(\angle 70 \square$ dip, 10 mm) is at 317.85 m depth, with pyrite.
Dark gray pelitic -silty schist has foliation ($\angle 15-20 \square$ dip) and lamination(unclear, $\angle 100$ dip ?) with graphite, and often with calcite networks.

It has foliation, $\angle 35 \square$ dip, at 335.3 m depth.
In pelitic -silty schist, foliation has $\angle 45 \square \operatorname{dip}(p)$ and the lamination has averaging $\angle 100 \mathrm{dip}$, with graphite.

Fine tuff-silty tuff layer ($\angle 25 \square$ dip, Calcite dominant) is at $343.3-343.5 \mathrm{~m}$ depth.
Pelitic -silty schist (foliation $\angle 20 \square$ dip, lamination $\angle 20 \square$ dip) is under 370.6 m depth.
Calcite partly replaces fine tuffaceous schist.
Pelitic -sandy schist is under 374.2 m , with graphite.
Pyrite is disseminated along fracture at $374.7-375.0 \mathrm{~m}$ depth.
chalcopyrite - pyrrhotite - calcite vein ($\angle 40 \square \mathrm{dip}, 30 \mathrm{~mm}$) is at 378.95 m depth in pelitic -sandy (-calcareous) schist (foliation $\angle 40 \square$ dip, lamination, generally $\angle 30 \square$ dip).

And graphite becomes dominant. Foliation is nearly vertical. pyrite dissemination is at 387.7 m depth.

Calcite-pyrrhotite vein ($\angle 65 \square \mathrm{dip}, 4-11 \mathrm{~mm}$) is at 394.5 m depth.
Lamination is folded at $406-407 \mathrm{~m}$ depth, partly with $\angle 70 \square \operatorname{dip}(\rightarrow \angle 45 \square$ dip $)$ in pelitic -silty schist (foliation(p), lamination $\angle 45 \square$ dip ? , calcareous, with graphite).

Calcareous-pelitic schist (foliation \fallingdotseq bedding: $\angle 40 \square$ dip) is with dominant calcite and partly with calcite network.

Pyrrhotite-calcite vein along foliation is at 424.7-426.0m depth. Pelitic-calcareous schist is partly with graphite (foliation $\angle 40 \square$ dip, Lamination generally $\angle 25$ (folded)). Calcite-chlorite vein ($\angle 45 \square \mathrm{dip}, 90 \mathrm{~mm}$) is at 440.75 m depth.

Pyrrhotite dissemination and concentration is at 454.2 m depth, in medium sandy schist (tuffaceous ?). Galena-chalcopyrite-sphalerite-pyrrhotite-chlorite-calcite vein ($\angle 35 \mathrm{D}$ dip, 200cm) is at $455.30 \mathrm{~m}-455.60 \mathrm{~m}$ depth.

Fault ($\angle 30 \square$ dip) is at 456.5 m depth between silty schist (foliation(p). lamination $\angle 45 \mathrm{dip}$) and pelitic schist. Sheared zone is at $464.0-464.9 \mathrm{~m}$ depth.

Silty-pelitic schist is partly sandy and calcareous (foliation $\angle 30-50 \square$ dip, lamination $\angle 20-60 \square$ dip).

Chalcopyrite-sphalerite-pyrrhotite-calcite vein ($\angle 50 \square \mathrm{dip}, 160 \mathrm{~mm}$) along foliation is at $501.8-502.2 \mathrm{~m}$ depth, with parallel veinlets.

Sulfides are anhedral to calcite. Chalcopyrite-sphalerite-pyrite-pyrrhotite-calcite vein (w: 30 mm) along foliation is at 511.3 m depth in silty-pelitic schist (foliation $\angle 50 \square$ dip, lamination $\angle 35 \square$ dip). Chalcopyrite-sphalerite-pyrrhotite-pyrite-chlorite-calcite vein ($\angle 40 \square \mathrm{dip}, 35 \mathrm{~mm}$) is at 511.55 m depth. Sphalerite-pyrite-pyrrhotite-calcite vein ($\angle 25 \square \mathrm{dip}, 20 \mathrm{~mm}$) is at 511.7 m depth.

Fault ($\angle 45 \mathrm{dip}$?) is at $514.0-514.5 \mathrm{~m}$ depth, with pyrite dissemination.
The geology becomes silty-fine sandy schist (foliation $\angle 30 \square \operatorname{dip}(p)$, lamination $\angle 10-70 \square \mathrm{dip}$) and partly friable. Chlorite-calcite vein ($\angle 40 \square$ dip, 200mm) is at 553.9 m depth. Silty-pelitic schist (foliation $\angle 35 \square \mathrm{dip}$, lamination $\angle 10-60 \square \mathrm{dip}$) is calcareous. Chlorite-calcite vein ($\angle 40 \square \mathrm{dip}$, 200 mm) is at 553.9 m depth.

Pelitic-sandy schist (calcareous, foliation $\angle 30 \square$ dip, lamination $\angle 25 \square$ dip) is partly friable. Fine and calcareous tuff ? layer is at $583.85-584.15 \mathrm{~m}$ depth. Pyrrhotite-calcite vein ($\angle 25 \square$ dip, 20mm) is at 586.65 m depth. Pyrrhotite-calcite veinlet ($\angle 30 \square \mathrm{dip}, 6 \mathrm{~mm}$, along foliation) is at 588.0 m depth. Pyrrhotite-chlorite-calcite vein ($\angle 45 \square$ dip, 200m depth) is at $588.5-589.1 \mathrm{~m}$ depth. Pelitic schist is partly alternated with silty schist (foliation $\angle 25 \square$ dip, lamination $\angle 30 \square$ dip). Fine tuff layer ($\angle 30 \square$ dip) is at $594.2-594.35 \mathrm{~m}$ depth. (Drilled to 601.20 m depth.)
(3) MJTK -5 Direction 270 ด Inclination 70 Д Length 502.10 m)

The geology of the shallow layer is the Cenozoic sediments, that consist of Sand and gravels (-conglomerate) with soil and limonite (Gravels consist of pelitic schist, sandy schist and tuffaceous schist ($\varphi<35 \mathrm{~mm}$), Matrix is sandy and includes limonite.). And weathered basic igneous rock gravels are dominant at $120.3 \mathrm{~m}-142.5 \mathrm{~m}$ depth. They are brown, partly, dark greenish gray (gabbro or
diorite?) and partly magnetic or foliated. The matrix consists of limonite, calcite and clay.
Pelitic-silty schist (foliation: $\angle 60-70 \square \mathrm{dip}$) is under 142.5 m , and bedded and laminated unclearly. It is weathered to 148.6 m depth. Pyrrhotite - calcite veinlet ($\angle 55 \square$ dip, width $<5 \mathrm{~mm}$) is at 149.05 m depth. Chalcopyrite - pyrrhotite - pyrite - calcite network along foliation is at 151.20 m depth. Chalcopyrite - pyrrhotite - pyrite network is at 151.60 m depth. Quartz - calcite - pyrite pyrrhotite veinlet ($\angle 60 \square \mathrm{dip}, 6 \mathrm{~mm}$) is at 154.45 m depth. And the parallel calcite veinlets have 15 cm interval under. Pyrite - pyrrhotite veinlet ($\angle 60 \square$ dip, 5 mm , with branch veinlets) is at 162.3 m , $162.4 \mathrm{~m}, 162.8 \mathrm{~m}$ and 162.9 m depth. Pyrite dissemination along foliation is at $163.5 \mathrm{~m}-164.0 \mathrm{~m}$ depth. Chalcopyrite - pyrite vein ($\angle 50 \square$ dip, 6 mm . with chlorite) is at 164.7 m depth. 165.0 m depth. Pyrite calcite veinlet ($\angle 60 \square$ dip, width $\angle 3 \mathrm{~mm}$) is at 165.7 . And similar veinlets with almost 30 cm interval are with chlorite.

Pelitic-silty schist (foliation $\angle 45 \square$ dip (p), lamination (p) $\angle 45-65 \square$ dip) is partly sheared. Pyrite - calcite vein ($\angle 75 \square \mathrm{dip}, 15 \mathrm{~mm}$) is at 177.0 m depth. Pyrrhotite - calcite vein $(\angle 60 \square \mathrm{dip}, 3 \mathrm{~mm})$ is at 178.4 m depth. Pyrrhotite - calcite vein ($\angle 55 \square \mathrm{dip},<4 \mathrm{~mm}$) is at 181.8 m depth.

Pelitic- calcareous schist has foliation ($\angle 50 \square$ dip) and Lamination (unclear, $\angle 60 \square$ dip) at $186.7 \mathrm{~m}-196.7 \mathrm{~m}$ depth. It is altered (calcite, silicified) and dominant with calcite network. Pyrrhotite - calcite network is at 188.3 m depth. Quartz vein ($\angle 10 \square$ dip, 11 mm) is at 188.9 m depth. 3 pyrrhotite - calcite veinlets ($\angle 65 \square \mathrm{dip}, 3 \mathrm{~mm}$) are around 189.15 m depth. Pyrrhotite - calcite vein ($\angle 65 \square$ dip, $\mathrm{w}<6 \mathrm{~mm}$) is at 190.0 m depth. Pyrrhotite - calcite vein ($\angle 70 \square \mathrm{dip}, 1-12 \mathrm{~mm}$) is at $191.1 \mathrm{~m}-191.3 \mathrm{~m}$ depth. Pyrrhotite - calcite vein (90 dip,10-40mm) is at $194.8 \mathrm{~m}-195.6 \mathrm{~m}$ depth and 195.7 m depth.

Pyrrhotite - calcite vein ($90 \square \mathrm{dip}, 20-40 \mathrm{~mm}$) is at 196.1 m depth. Pyrrhotite dissemination (f) is at 196.6 m depth. Pyrrhotite - calcite vein ($5 \square \mathrm{dip}, 23 \mathrm{~mm}$) is at 201.2 m depth, with lamination ($\angle 70 \square$ dip). Pyrrhotite - calcite veinlet ($\angle 60 \square$ dip, 5 mm) is at 205.1 m depth.

It is in calcareous- silty schist (partly tuffaceous. Foliation (p) $\angle 45 \square$ dip,lamination20- $\angle 70 \square$ dip) and partly with graphite. Chalcopyrite - pyrrhotite dissemination (with calcite and silicified?) is along foliation at 210.7 m depth. Chalcopyrite - pyrrhotite - calcite network is at $213.0-213.3 \mathrm{~m}$ depth.

Tuffaceous-sandy schist is at $220.5 \mathrm{~m}-224.0 \mathrm{~m}$ depth. The foliation and lamination are unclear. Calcite vein ($\angle 55 \square$ dip, 12 mm) is at 220.6 m depth. Chalcopyrite - pyrrhotite - calcite vein ($\angle 40 \square$ dip, 40 mm) is at 221.0 m depth. Chalcopyrite - pyrite - calcite vein ($\angle 65 \mathrm{dip}, 40 \mathrm{~mm}$) is at 222.5 m depth. Chalcopyrite - sphalerite - pyrrhotite - calcite vein ($\angle 50 \square \mathrm{dip}, 90 \mathrm{~mm}$) is at $222.8 \mathrm{~m}-222.9 \mathrm{~m}$ depth. Pyrite dissemination and sphalerite - chalcopyrite - pyrrhotite network. are under it. Pyrrhotite dissemination is at 223.5-223.9m depth with Dolerite dyke ($\angle 60 \square$ dip nonmagnetic). Silty - fine sandy schist (tuffaceous? with chlorite) is under 224.0 m depth. Pyrite - pyrrhotite network is at 224.7 m depth. Pyrite - calcite veinlet along foliation ($\angle 50 \square$ dip) is at 234.0 m depth. Pyrite - calcite vein $(\angle 50 \square \mathrm{dip}, \mathrm{w}<30 \mathrm{~mm}$) is at 234.50 m depth, with pyrite - calcite network under.

The geology is calcareous-silty - sandy schist (foliation $\angle 50 \square$ dip, lamination $\angle 40-90 \square$ dip) with calcite veinlets along foliation. Pyrite - calcite veinlets with 20 cm interval ($\angle 60 \square \mathrm{dip}, 1 \mathrm{~mm}$) is under 244.0 m depth. Pyrrhotite - calcite network parallel to foliation is at $246.5-246.7 \mathrm{~m}$ depth. Calcite pyrite vein $(\angle 65 \square \mathrm{dip}, 5 \mathrm{~mm})$ is at 247.4 m depth.

Small fault ($\angle 60 \square$ dip, 20mm) is at 248.55 m depth, with breccia.

Pyrite - calcite veinlets, with $\angle 60 \square$ dip and 10 cm interval, is to 250.3 m depth. Chalcopyrite pyrrhotite - calcite vein ($\angle 40 \square$ dip, 50 mm) is at 252.9 m depth. Chalcopyrite - pyrrhotite vein (\angle $60 \square$ dip, width $<6 \mathrm{~mm}$) is at 253.5 m depth, and pinch out. Pyrite - pyrrhotite - calcite network is at 255.1 m depth, and also, pyrrhotite - calcite veinlets ($\angle 60 \square \mathrm{dip}$, width $<1 \mathrm{~mm}, 10 \mathrm{~cm}$ interval). Pyrrhotite dissemination (f), with chalcopyrite and silicified, is at $256.2 \mathrm{~m}-257.9 \mathrm{~m}$ depth. Chalcopyrite - pyrrhotite - calcite network silicified is under 259.1 m , partly with a slight chlorite. The schist is more silicified, and more calcite network.

Calcareous -silty schist (foliation $\angle 50-65 \square \operatorname{dip}(p)$) is hard with unclear lamination and with calcite network-veinlet. Chalcopyrite-calcite-pyrrhotite vein-network ($\angle 90 \square$ dip, width $<70 \mathrm{~mm}$, with cavities) is at $285.8 \mathrm{~m}-287.4 \mathrm{~m}$ depth. Pyrrhotite network is to 288.3 m depth, partly with chlorite. (Chalcopyrite-) pyrite-chlorite-calcite veinlet along foliation is in silty -calcareous schist, that is silicified, with calcite veinlets, foliation $\angle 50-70 \square \operatorname{dip}(p)$ and inconstant lamination(p). Pyrrhotite-calcite-quartz vein ($\angle 60 \square$ dip, 40 mm) is at $292.85-292.95 \mathrm{~m}$ depth. Calcite-quartz vein ($\angle 65 \square \mathrm{dip}, 120 \mathrm{~mm}$) is at $293.1-293.3 \mathrm{~m}$ depth.

Calcite-pyrite-quartz vein ($\angle 55 \mathrm{D}$ dip, 80 mm) is at $293.35-293.45 \mathrm{~m}$ depth. Pyrite-chlorite-calcite vein ($\angle 55 \square$ dip, 40 mm) is at 294.1-294.15m depth. 2 parallel calcite-pyrrhotite veinlets, with 10 cm interval, are at -294.8 m depth.

Fine sandy schist, bedding $\angle 70 \square$ dip, is under 295.00 m , with calcite-pyrite network. Pyrite-calcite-quartz vein ($\angle 60 \square \mathrm{dip}, 10 \mathrm{~mm}$) is at 297.8 m depth, with branch veinlets. Calcite-pyrrhotite vein (-network) ($\angle 50 \square$ dip, width $\angle 11 \mathrm{~mm}$) is at 303.1 m depth. Pyrrhotite vein (\angle $10 \square$ dip, 6 mm) is at 303.75 m depth. Pyrrhotite vein ($\angle 50 \square$ dip, width $\angle 4 \mathrm{~mm}$) is at 303.9 m depth and pinches out. Pyrrhotite vein ($\angle 40 \square$ dip, 3mm) is at 304.75 m depth. Calcite-pyrrhotite vein ($\angle 30 \square$ dip, 4 mm) is at 307.65 m depth. Pyrrhotite - pyrite dissemination along foliation ($\angle 50 \mathrm{dip}$) in sandy schist is under 308.5 m depth. The schist is silicified with very slight calcite. Calcite-pyrrhotite vein ($\angle 40 \square$ dip, $3-10 \mathrm{~mm}$) is at 311.0 m depth. Pyrite-calcite vein is at 311.05 m depth, with $\angle 45 \square$ dip and width10mm(changeable).

Silty schist has foliation ($\angle 65 \square \mathrm{dip}$) and lamination ($\angle 55 \square \mathrm{dip}$). It is with chlorite and tuffaceous ? Calcite-pyrrhotite vein ($\angle 30-50 \square$ dip, 10 mm) is at $315.5-315.9 \mathrm{~m}$ depth with pyrrhotite vein, $\angle 50 \square$ dip and 8 mm width. Pyrrhotite-chlorite-calcite network is at 316.75 m depth. with pyrite-pyrrhotite networks under. Chalcopyrite-pyrite vein ($\angle 50 \square$ dip, 4 mm) is at 318.0 m depth. Sheared zone is at 318.2-319.1m depth. Silty schist (foliation $\angle 50 \square$ dip, lamination $\angle 60 \square$ dip, partly chlorite) is under 319.1 m depth. Calcite vein ($\angle 70 \square$ dip, 32 mm . with dolomite ?) is at 321.8 m depth. Pyrite-calcite network is at 325.5 m depth.

Pyrite-calcite veinlet ($\angle 60 \square$ dip, 7 mm) is at 329.7 m depth, with pyrite dissemination along foliation. Foliation is steeper ($\angle 65 \square \mathrm{dip}$). (Pyrite-) pyrrhotite vein ($\angle 60 \square \mathrm{dip}, 8 \mathrm{~mm}$) is at 334.9 m depth. Pyrrhotite veinlet, along foliation ($\angle 60 \square$ dip, 3 mm) is at 337.75 m depth. Pyrrhotite-calcite vein ($\angle 50 \square \mathrm{dip}, 9 \mathrm{~mm}$) is at 339.1 m depth. Pyrite vein ($\angle 50 \square \mathrm{dip}, 8 \mathrm{~mm}$, chlorite) is at 340.5 m depth. Pyrite-pyrrhotite vein ($\angle 50 \square$ dip, 6 mm) is at 342.3 m depth, with calcite and chlorite.

Silty -fine sandy schist has foliation ($\angle 50 \square$ dip) and lamination ($\angle 70 \square$ dip) ? 2 calcite-pyrrhotite-pyrite veins ($\angle 50 \quad \square$ dip, 6 mm) are at $343.25 \mathrm{~m}-343.30 \mathrm{~m}$ depth.

Pyrrhotite-pyrite-calcite vein ($\angle 50 \square$ dip, 8 mm) is at 344.4 m depth. (Sphalerite-chalcopyrite-) pyrrhotite-pyrite vein ($\angle 55 \square$ dip, 12 mm) is at 345.1 m depth. Pyrite vein ($\angle 50 \square \mathrm{dip}, 6 \mathrm{~mm}$) is at 346.5 m depth. Calcite-pyrrhotite vein ($\angle 55 \square \mathrm{dip}, 30 \mathrm{~mm}$ and network-like) is at 346.7 m depth.

Chalcopyrite-calcite-pyrrhotite vein ($\angle 50 \square$ dip, 10 mm , network-like) is at 355.1 m depth. Chalcopyrite-calcite-pyrrhotite network (width: $6 \mathrm{~mm} \pm$) is at 355.3 m depth. Calcite-pyrrhotite network ($\angle 65 \mathrm{dip}, 10 \mathrm{~mm}$) is at 356.9 m depth. Chalcopyrite-pyrrhotite vein ($\angle 60 \square$ dip, 4 mm , with calcite) is at 357.3 m depth. Pyrrhotite vein (with calcite, $\angle 65 \mathrm{dip}, 5 \mathrm{~mm}$) is at 357.6 m depth. (Chalcopyrite-pyrite-) pyrrhotite vein, with calcite, is at 358.0 m depth ($\angle 65 \square \mathrm{dip}, 9 \mathrm{~mm}$, with branch veinlets). Silicified fine sandy schist is at $358.75-362.0 \mathrm{~m}$ depth, with mineralization zone. (Sphalerite-) chalcopyrite- pyrite- pyrrhotite network- dissemination has pyrite, pyrrhotite, chalcopyrite and quartz are euhedral in cavities.

Silty -fine sandy schist has foliation ($\angle 50 \square \mathrm{dip}$) and lamination ($\angle 60 \square$ dip ?). White altered chlorite-pyrrhotite-calcite network is to -373.5 m).

Micro-diorite dyke ($\angle 70 \square \mathrm{dip}$) is at $382.3 \mathrm{~m}-386.0 \mathrm{~m}$ depth (Green- white alteration, Nonmagnetic). Calcite-chlorite veins dominant in fine sandy schist -pelitic schist alternation, (foliation $\angle 65 \square \mathrm{dip}-\angle 70 \square$ dip, Bedding unclear). Fine secondary quartz is along foliation.

Silty -tuffaceous schist (foliation $\angle 45 \square$ dip, lamination $\angle 50 \square$ dip ?) Is with calcite and chlorite. Tuffaceous schist (coarse tuff- lappili tuff) is under 392.4m, with chlorite. Dolomite vein ($\angle 30 \square$ dip ? 190 mm ?) is at $398.4-398.6 \mathrm{~m}$ depth. Silty schist is at $398.6-399.4 \mathrm{~m}$ depth. Tuffaceous schist is under 399.4 m . Pyrite-calcite vein is at $406.2-406.3 \mathrm{~m}$ depth ($\angle 70 \square \mathrm{dip}, 100 \mathrm{~mm}$). It is with foliation ($\angle 60 \square \mathrm{dip}$) and (lamination $\angle 70 \square$ dip). Silty -tuffaceous schist alternation is at 406.3 m , and silty schist is dominant. It includes Dolomite-calcite veinlet. Chalcopyrite-pyrrhotite-calcite vein (\angle $65 \square \mathrm{dip}, 100 \mathrm{~mm}$) is under 421.4 m . Tuffaceous schist (lamination $\angle 55-60 \square$ dip), silty schist, and pelitic schist thin layer are under 423.7 m depth.

Fine sandy schist is at -431.7 m depth in tuffaceous schist. Silty -fine sandy schist (foliation \angle $45 \square$ dip, bedding $\angle 45 \square$ dip) is under 431.7 m . (Calcite-dolomite-)quartz vein ($\angle 10 \square$ dip, with pyrite and chlorite) is at $443.35-443.45 \mathrm{~m}$ depth. Lamination is steeper as deeper ($\angle 60-65 \mathrm{dip}$). Pyrite dissemination-network is at 446.7 m depth. Calcite-quartz vein ($\angle 10 \square \mathrm{dip}$) is at $448.2-448.8 \mathrm{~m}$ depth in silty -fine sandy schist with foliation ($\angle 60 \square$ dip), lamination $(\angle 45 \square$ dip $)$, and it may be Reverse-bedded under it. Pyrite dissemination is at 451.2 m depth. Chlorite-calcite vein ($\angle 20 \square$ dip, 60 mm) is at 459.35 m depth.
silty -fine sandy schist has foliation ($\angle 55 \square$ dip), unclear bedding-lamination. Pyrrhotite dissemination with calcite along foliation is at $463.4-468.6 \mathrm{~m}$ depth. Chlorite is concentrated at 472.3 m depth. Chalcopyrite-pyrite-pyrrhotite veinlet is at $473.35 \mathrm{~m}-473.80 \mathrm{~m}$ depth ($\angle 50 \square$ dip, width $<20 \mathrm{~mm}$, with calcite and chlorite). Pyrrhotite dissemination-network is dominant at 475.5 m depth (lamination $\angle 65 \mathrm{dip}$).

For example, pyrrhotite network is at 478.4-478.6m depth. pyrrhotite dissemination-network is at 479.2 m depth. (chalcopyrite-)pyrrhotite veinlet-network is at $479.4-480.8 \mathrm{~m}$ depth, with averaging 15 cm interval. (chalcopyrite-)pyrrhotite network is at $480.15-480.80 \mathrm{~m}$ depth. pyrrhotite network is at $481.4-481.6 \mathrm{~m}$ depth with averaging 10 cm interval. pyrrhotite dissemination-network is under
482.2 m depth, and silicified with calcite and chlorite. Quartz vein ($\angle 10 \square$ dip, 40 mm) is at 482.3 m depth, with pyrite, calcite and dolomite(?).

Silty - fine sandy schist has foliation(p), lamination ($\angle 50-80 \square \mathrm{dip}$), (chalcopyrite-)pyrrhotite dissemination, network and veinlet with calcite. Pyrite veinlet ($>\angle 75 \square \mathrm{dip}, 2 \mathrm{~mm}$) is at 483.30 m depth. it passes across quartz vein ($\angle 10 \square$ dip, 40 mm) with pyrrhotite dissemination(f).

Dolomite-calcite vein ($\angle 20 \square$ dip, 70 mm) is at 484.80 m depth. Chlorite is concentrated at the edges. Calcite vein ($\angle 35 \square$ dip, 250 mm) is at $486.0-486.3 \mathrm{~m}$ depth. Pyrrhotite and chlorite are at edges. Pyrrhotite network is dominant around 493.3m. Pyrrhotite-calcite irregular vein is at 501.25 m depth. pyrrhotite-calcite vein ($\angle 55 \square \mathrm{dip}, 9-15 \mathrm{~mm}$) is at 501.90 m depth. (Drilled to 502.1 m depth.)
(4) MJTK-6 Direction 325 ด Inclination 70 乌 Length 301.90 m)

The geology is pelitic schist (foliation $\angle 35 \square$ dip, lamination $\angle 20 \square$ dip).
Calcite vein with galena and sphalerite is at 34.0 m depth ($\angle 35 \square \mathrm{dip}, 40 \mathrm{~mm}$).
Pelitic-silty schist is calcareous (foliation $\angle 35 \square$ dip, lamination $10-\angle 25 \square$ dip) is at 28.5 m depth, with calcite vein. $\angle 35 \square$ dip, 140 mm . calcite vein ($\angle 35 \square \mathrm{dip}, 50 \mathrm{~mm}$) is at 30.5 m depth, with specularite. Sandy schist thin layer is at 50.2 m depth ($\angle 10 \square \mathrm{dip}, 50 \mathrm{~mm}$).

Coarse sandy schist layer is at $56.5-56.7 \mathrm{~m}$ depth ($\angle 20 \square$ dip, pyrite dissemination). Calcite vein ($\angle 35 \square$ dip, 15 mm . with specularite, sphalerite ?) is at 59.0 m depth.

Chalcopyrite-galena-sphalerite-pyrrhotite-calcite vein is at 69.55 m depth ($\angle 30 \square \mathrm{dip}, 50 \mathrm{~mm}$). Sheared zone is at 78.7-79.4m depth. Pelitic-silty schist. Alternation has foliation ($\angle 45-25 \square \mathrm{dip}$). bedding ($\angle 45-25 \square$ dip $)$. Pyrrhotite -calcite vein ($\angle 25 \square$ dip, 12 mm) is at 90.25 m depth.

Chalcopyrite-galena-sphalerite-pyrrhotite-calcite vein ($\angle 35 \square \mathrm{dip}, 200 \mathrm{~mm}$) is at 91.1 m depth.
Pyrite-calcite vein ($\angle 20 \square \mathrm{dip}, 40 \mathrm{~mm}$) is at 92.0 m depth.
Chalcopyrite-sphalerite-pyrite-chlorite-pyrrhotite-calcite vein is at $99.7-101.45 \mathrm{~m}$ depth and it is with $\angle 35-40 \square$ dip and dolomite-quartz ? Pyrrhotite network in silty schist is under.

Pelitic-silty schist with foliation (25-40 dip) and unclear lamination.
(Chalcopyrite-sphalerite-)pyrite-pyrrhotite-Calcite vein is under 111.6 m depth with $3 \mathrm{~cm}-50 \mathrm{~cm}$ interval ($\angle 15-25 \square \mathrm{dip}, 2-30 \mathrm{~mm}$). Pelitic schist is friable by foliation under 111.6 m depth (Foliation=lamination $=\angle 30 \square$ dip). Pyrrhotite-calcite vein is at 133.95 m depth, in silty - calcareous schist (foliation $\angle 20 \square$ dip, lamination $\angle 25 \square$ dip,).

Chalcopyrite-galena-sphalerite-pyrite-pyrrhotite-calcite vein ($\angle 20 \square \mathrm{dip}$) is at $134.25-134.80 \mathrm{~m}$ depth.

It is continuously changed to silty schist . (calcareous. foliation $\angle 25 \square$ dip, lamination $\angle 25 \square$ dip : parallel with foliation). Pyrrhotite-calcite vein is at 137.9 m depth ($\angle 25 \square$ dip, 9 mm). Calcite vein with pyrrhotite is at 138.5 m depth $(\angle 25 \square \mathrm{dip}, 30 \mathrm{~mm})$. Calcite vein with pyrrhotite is at 143.5 m depth ($\angle 35 \square$ dip, 25mm).

Silty-pelitic schist is calcareous with $\angle 25 \square$ dip foliation (lamination $\angle 25 \square$ dip (=foliation) with calcite veins along foliation).

Small fault ($\angle 80 \square \mathrm{dip}$) is at 204.50 m depth with pyrite-calcite vein (w:9-18mm). Fault is at 211.7m ($\angle 40 \square \mathrm{dip}$) .

Tuff layer is at $211.3 \sim 211.7 \mathrm{~m}$ depth $(\angle 15 \square)$. Sheared zone is at $215.0 \sim 216.8 \mathrm{~m}$ depth.
Pelitic schist is with foliation $\angle 20 \square$ and bedded ($\angle 20 \square$).
Fractured zone-sheared zone is at $219.0-229.0 \mathrm{~m}$ depth with quartz vein fragments.
Pelitic-sandy schist is with foliation $\angle 30 \square$ and lamina~bed $10 \square$.
Chlorite - calcite network is along fractures, with pyrite dissemination.
(Pyrite-) chlorite- quartz- calcite vein $(\angle 35 \square .120 \mathrm{~mm}$) is at $226.70 \sim 226.85 \mathrm{~m}$ depth, and pyrite is at edges.

Pyrite- calcite vein is at 230.90 m depth. $(\angle 30 \square .8 \mathrm{~mm}$.$) . pelitic \sim$ silty schist. foliation \angle 45 . bedded $\angle 45$.
pelitic (\sim sandy) schist is friable with foliation $\angle 30 \sim 45 \square$ and bedded $\angle 45 \square$. Fault(?) is at $243.6 \sim 256.5 \mathrm{~m}$ depth $(\angle 35 \square)$. Pyrite - pyrrhotite dissemination and replacement along foliation is at $257.1 \sim 257.85 \mathrm{~m}$ depth. (Silicified in the upper zone, and calcite network in the lower zone)

Sulfides are disseminated along foliation(p).
pelitic \sim sandy schist is with foliation $\angle 25 \square$ and bedded $\angle 25 \square$.
Chalcopyrite- pyrite- quartz- calcite network is at $260.65 \sim 260.70 \mathrm{~m}$ depth.
It is friable, and partly sheared.
The geology is pelitic \sim silty schist with foliation $(\angle 60 \square)$ and bedding $(\angle 60 \square)$.
Sheared zone is at 270.1 m (sheared pelitic schist, calcareous with graphite) and partly spotted pyrite. Pyrrhotite vein is at $276.85 \sim 277.40$ with chalcopyrite (p), silicified(p) and pyrrhotite network for 25 cm .

Silty - fine sandy schist has foliation ($\angle 30 \square$) and bedding ($\angle 0 \sim 50 \square$).
Calcite veins are with chlorite at $280.6 \sim 281.2 \mathrm{~m}$ depth with dominant pyrrhotite in the lower part ($281.0 \sim 281.2 \mathrm{~m}$), and with chalcopyrite, pyrite and chlorite. The schist is sorted to sandy schist (calcareous).

Calcite veins (w: $8 \sim 40 \mathrm{~mm}$) are with averaging 25 cm interval.
Silty schist is at 283.9 m depth (foliation $=$ bedding $\angle 20 \sim 30$). Sphalerite - pyrite - calcite vein is at 285.5 m depth. $(\angle 35 \square .20 \mathrm{~mm})$.

Fractured and friable is at 286.95 m depth. (Drilled to 301.9 m depth.)

Azzouz Area

Khefawna Area

Fig.II-3-2 Geological section

3-4-2 Analysis and Tests

3-4-2-1 Selection of samples

The samples for analysis were chosen into the following 16 parts with typical mineralization of sulfide among each rock cores. Such sulfides have not only vein structure but also stratified structure; therefore they are regarded as "sulfide concentration"

SP-1: MJTK-3 62.70-62.75m

Sulfides of around 1 mm thickness are included in stratified formation. Sulfides of the stratified formation continue from 62.7 m to 63.7 m . Pyrrhotite, sphalerite, galena and pyrite are seen with the naked eye.

SP-2: MJTK-3 76.30-76.40m

Vein-like or stratified sulfide concentration with calcite, sphalerite, pyrrhotite, pyrite and chalcopyrite with mainly 10 cm wide in pelitic schist. Alteration is not observed in border with host rock.

SP-3: MJTK-3 80.50-80.60m

Vein-like or stratified sulfides (mainly pyrrhotite) concentrate in pelitic schist with 50 cm wide. The sulfides contain chalcopyrite, sphalerite, galena and pyrite. Calcite is smashed irregularly. Wedge-shaped or irregularity-like fragments of non-altered pelitic rock and tuff are in pyrrhotite.

SP-4 : MJTK-3 99.50-99.60m

Turbidite-like sulfide of around 1 mm (partly 1 cm) is mainly included in pelitic schist. It mainly consists of pyrrhotite, sphalerite, chalcopyrite and galena. The stratified sulfide continues from 96.6 m to 103.3 m .

SP-5: MJTK-3 99.60-99.70m

10 cm wide vein-like or stratified sulfides (mainly pyrrhotite) concentrate in pelitic schist. It mainly consists of chalcopyrite, sphalerite, galena and pyrite. Calcite is smashed irregularly. Wedge-shaped or irregularity-like fragments of non-altered pelitic rock and tuff are in pyrrhotite, with same direction with boundary.

SP-6 : MJTK-3 148.20-148.30m

Vein-like or stratified sulfides concentrate in pelitic schist. The sulfides continue from 148.20 m to 150.20 m . Pyrrhotite, sphalerite, chalcopyrite and galena are seen with the naked eye.

SP-7 : MJTK-3 340.30-340.40m

Pyrrhotite concentrates in pelitic schist. sulfides concentrate into the matrix of brecciated pelitic rock like hydrothermal breccia. It consists of sphalerite, galena in pyrrhotite. The concentration is from 340.00 to 341.00 m .

SP-8 : MJTK-3 319.20-319.40m
Vein-like sulfides of 100 cm wide concentrate from 318.90 to 319.40 m . Pyrrhotite, chalcopyrite, sphalerite, galena and pyrite seem to fill up in calcite.

SP-9: MJTK-3 473.40-473.60m
Vein-like sulfides of 100 cm wide concentrate between $473.40-474.50 \mathrm{~m}$. It consists of pyrrhotite, chalcopyrite, sphalerite, galena and pyrite. The sulfide fill up in quartz and they are sometimes with cavities.

SP-10 : MJTK-6 90.70-90.80m
Stratified or vein-like sulfides concentrate into $90.70-93.00 \mathrm{~m}$. they consist of pyrrhotite, chalcopyrite, sphalerite, galena and pyrite. Calcite is smashed irregularly. Wedge-shaped or irregular fragments of non-altered pelitic rock and tuff are in calcite.

SP-11: 101.10-101.30m
Stratified or vein-like sulfides concentrate into 99.60-111.50m. They consist of idiomorphic pyrite, pyrrhotite and chalcopyrite.

SP-12: 125.20-125.30m
Stratified or massive sulfides concentrate into 125.20-127.00m. They consist of idiomorphic pyrite and chalcopyrite. Wedge-shaped or irregular fragments of non-altered pelitic rock and tuff are in sulfides.

SP-13: 134.60-134.70m
Stratified or massive sulfides concentrate into $134.60-135.00 \mathrm{~m}$. They consist of idiomorphic chalcopyrite, sphalerite, galena and chalcopyrite. Calcite is smashed irregularly. Wedge-shaped or irregular fragments of non-altered pelitic rock and tuff are in pyrrhotite.

SP-14 : MJTK-5 256.70-256.80m
Filling up-shaped sulfides concentrate into sheared pelitic between $255.50-258.20 \mathrm{~m}$.
They consist of pyrrhotite and chalcopyrite.

SP-15: MJTK-5 358.90-359.00m
Stratified or lamina-shaped sulfides concentrate between $355.00-372.40 \mathrm{~m}$. They consist of pyrrhotite and chalcopyrite.

SP-16 : MJTK-5 466.60-466.70m
Disseminated sulfides concentrate into $466.60-466.70 \mathrm{~m}$. They consist of pyrrhotite and chalcopyrite.

The conditions of these sulfides can be divided into following types.
(1) massive
(2) stratified
(3) thin-layered

These types are probably due to a series of mineralization.

3-4-2-2 Results of laboratory test

The result of Chemical analysis of rock samples is indicated to Table II-3-5.
Result of Chemical analysis of rock samples

(1) Chemical analysis

The results of chemical analysis (SP-1-SP-16) are indicated to Table II-3-5 Result of Chemical analysis of rock samples. The samples for analysis are chosen 10 cm length samples homogeneous as possible among each 10 cm sections.

SP-1 indicates typical analyzed values between $62.70-62.75 \mathrm{~m}$ of thin-layered sulfides with high zinc content. SP-4 also indicates analysis of thin-layered sulfides between $96.5 \mathrm{~m}-96.6 \mathrm{~m}$ of MJTK-3, with high zinc content

SP-5, SP-6 and SP-7 show contents of typical parts among stratified or vein-shaped sulfide concentrations (MJTK-3: 96.6m-103.3m, 148.20m - 150.20m, 340.00-341.00m), and indicate high lead contents.

SP-9 shows contents of $473.40-473.60 \mathrm{~m}$ of the vein-like sulfide concentration (MJTK-3 : $473.40-474.50 \mathrm{~m}$), and indicates high zinc and lead contents.

SP-10 shows contents of $90.70-90.80 \mathrm{~m}$ of stratified or vein-like sulfide concentrations formation of MJTK-6-90.70-9300m, and indicates high zinc and lead contents.

These ores contain so much lead and zinc as ($\mathrm{Cu}: 1 \%, \mathrm{~Pb}: 3 \%, \mathrm{Zn}: 10 \%$) Hajar deposit, that is around the survey area, despite the shortage of Cu .
Table II-3-5 Result of Chemical analysis of rock samples

	${ }_{10 \text { crat }}^{\text {Aut }}$			(1) ME.			${ }_{41}$ MEPA11		$\left.\right\|_{1 / \mathrm{ME} \mathrm{CP}_{11}} ^{\text {a }}$					${ }_{\text {\|cPay }} \mathrm{ME}$				${ }_{\text {ICPA1 }}^{\text {ME }}$ \|	\|ceme	${ }_{\text {cepal }}^{\text {MEF }}$		$\mathrm{A}_{1} \mid \mathrm{ME} \mathrm{CE} \mathrm{Al}_{1}$							${ }_{\text {\|cPat }} \mathrm{ME}$	${ }_{\text {ICP } 41}^{\text {ME. }}$	${ }_{\text {c\|celd }}^{\text {ME }}$		\|ceme		${ }_{\text {MEF }}^{1}$	${ }_{\text {A }}^{\text {Pb }}$ A6	2n 46
MPLE	Au	Ag	Al	As	B	Ba	Be	Bi	Ca	Cd	co	Cr	Cu	Fe	Ga	Hg	K	La	Mg	Mn	Mo	Na	Ni	P	Pb	s	Sb	Sc	Sr	Ti	TI	U	v	w	Zn	Pb	Zn
RIPTIO	ppm	ppm	\%	ppm	ppm	ppm	ppm	ppm	\%	ppm	ppm	ppm	ppm	\%	ppm	ppm	\%	ppm	\%	ppm	ppm	\%	ppr	ppm	ppm	\%	ppm	ppm	ppm	\%	ppr	ppm	ppm	ppm	ppm	\%	\%
2.7	0.03	2.4	0.72	2	10	020	<0.5	$5<2$	3.45	173	27	9	202	5.1	<10	2	0.15	10	0.35	135	1	0.01	16	420	205	4.3	$\stackrel{2}{ }$	1	94	8.0	<10	10	7	10			8.45
мUTK 376.376 .4	0.73	6	0.28	28-1000	<10	010	<0.5	515	24.1	11.7	721	2	91	4.45	<10	<1	0.04	30	0.3	2410	1	0.02	12	110	2580	3.6	26	1	566	0.01	10	10	3	10	582		
MUTK 3 80.5-80.6	0.022	6.8	0.03	311005	<10	- 10	-0.5	59	6.58	7.3	45	4	787	>50	<10	1	0.01	10	0.07	462	1	0.02	77	<10	3180	8.83	4	1	86	0.01	40	<10	8	<10	4050		
TK 399.599 .6	0.038	6.1	1.09	8287	10	020	<0.5	$5<2$	2.46	206	43	7	6460	19.8	410	ব	0.1	50	0.6	1425	1	<0.01	34	230	470	7.26	<2	1	64	<0.01	10	<10	13	10	10000		8.07
тK 39		6	0.08	8179	40	$0<10$	<0.5	5	1.32	51.1	1176	4	2470	- 75	<10	4	0.02	30	0.0	63	1	0.01	88	20	586	7.75	2	1	17	80.01	40	<10	10	40	-1000		
MTK 3 148.2-148.3	0.114	7.4	0.21	211095	40	010	<0.5	5	8.07	136	89	4	483	20.3	<10	4	0.04	10	0.17	6520	1	0.01	56	140	769	10.0	4	1	189	80.01	40	<10	2	10			
тK 319.2. 319.4	0.03	18.7	0.14	41380	<10	$0<10$	<0.5	59	7.59	48.6	61	4	1210	38.3	<10	1	0.03	10	0.0	483	1	0.01	158	80	-1000	9.32	10	1	169	0.01	40	<10	5	30	1000	1.51	
K 340.3 340.4	NSS	8.8	0.06	6510	<10	$0<10$	<0.5	521	1.66	2.4	52	4	792	>50	<10	4	0.02	40	0.02	95	1	<0.01	97	40	1450	7.12	5	1	27	<0.01	40	<10	6	40	220		
тК 3473.4473 .6	0.101	10.3	0.02	21075	10	< 40	<0.5	5	0.71	53.6	43	4	1530	31.8	<10	<1	0.01	40	0.04	409	<1	<0.01	50	10	1000	10.0	30	4	7	0.01	40	<10	2	20	1000	1.07	3.22
TK 690.7 - 90.8	0.042	18.2	0.38	847	40	010	<0.5	53	14.6	29.3	349	4	4900	23.9	<10	<1	0.01	20	0.5	3690	<1	0.01	34	350	-1000	>10.0	10	1	428	0.01	40	<10	5	40		2.41	
6 101.2-10	0.09	3	0.34	695	<10	020	<0.5	6	0.37	6.3	25	3	429	18.3	<10	<	0.09	40	0.1	196	1	80.01	24	180	2410	>10.0	3	1	10	80.01	40	<10	5	40	3300		
125.2-125	0.112	3.5	0.22	22338	40	$0<10$	<0.5	3	1.02	80.5	171	<1	2900	42.1	<10	<1	0.03	40	0.3	8230	1	0.01	44	40	452	>10.0	3	1	20	0.01	40	40	7	40	993		
MUTK 6 134.6-134.7	0.087	19.7	0.22	221055	40	$0<10$	<0.5	53	14.2	5.7	67	4	3210	25.7	40	<1	0.02	<10	0.2	1350	<1	0.01	28	10	8400	10.	7	3	434	80.0	40	10	5	10	346		
MUTK 6 146.6-146.7																																					
MTK 5 256.7-256.8	0.15	1	1.19	940	10	40	<0.5	5	0.41	<0.5	5168	6	5770	38	<10	4	0.08	10	0.48	2050	1	80.01	76	160	257	8.76	4	3	10	0.03	40	40	18	10	218		
TK 5 358.9 359.0	0.32	1	3.28	2819	40	050	0.6	28	0.63	<0.5	59	39	2160	29.6	10	4	0.14	10	1.42	1600	1	0.04	55	360	211	7.25	<2	6	26	0.1	40	40	58	10	82		
TK 5 466.6-666.7	0.03	0.5	1.27	27	40	090	<0.5	5	0.64	-0.5	5228	20	2020	25.5	10	4	0.29	10	0.45	637	1	0.01	219	280	70	7.57	2	4	11	0.08	40	<10	24	<10	106		

(2) Polished section

The result of observation of Polished sections shown in Table II-3-6. Result of microscopic observation of polish section of above mentioned SP-1 - SP-16.

Table II-3-6 Result of microscopic observation of polish section

			MINERALS											
NO.	DRILLING NO.	$\begin{array}{\|c} \text { Depth } \\ (\mathrm{m}) \end{array}$		$\begin{aligned} & \text { 『. } \\ & \stackrel{\rightharpoonup}{\sigma} \end{aligned}$		$\begin{aligned} & \mathscr{0} \\ & \stackrel{\ddot{\omega}}{\stackrel{2}{2}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 曹 } \\ & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & \overrightarrow{0} \\ & 0 \end{aligned}$			$\stackrel{\underset{E}{\pi}}{\stackrel{\pi}{0}}$	3 0 0 0 0 0 0 0 0		$\begin{aligned} & \text { O} \\ & \text { N } \\ & \text { N } \end{aligned}$	Remarks
1	MJTK-3	62.70	-			\triangle	\triangle		\bigcirc	\triangle		(0)		Veinlet-network
2	MJTK-3	76.30	-	-	-	\triangle	\bigcirc	-	\bigcirc		((0)		Network
3	MJTK-3	80.30	\bigcirc	-		\triangle	\triangle		(0)		\triangle	($)$		Veinlet, dissemination.
4	MJTK-3	99.50	\triangle	\triangle		-	\bigcirc		(0)	\triangle	-	(${ }^{\text {) }}$		Veinlet, dissemination.
5	MJTK-3	99.60	\triangle	-		\triangle	\bigcirc		(0)		\triangle	($)$		Massive
6	MJTK-3	148.20	-	(0)	-	-	\bigcirc		\bigcirc		\triangle	(0)		Veinlet-network
7	MJTK-3	319.20	-	-		\triangle	\bigcirc		(0)		\triangle	(0)		Veinlet
8	MJTK-3	340.30	\triangle	-		-	\triangle		(${ }^{\text {a }}$		\triangle	(Massive
9	MJTK-3	340.30		\triangle	\triangle	-	\triangle		(0)				(0)	
10	MJTK-6	90.70	\triangle	(0)	-	-	-		-			(${ }^{\text {O }}$		Sheared
11	MJTK-6	101.20	-	($)$		-	-		-			(Banded
12	MJTK-6	125.20	-	($)$		-	-		-					Massive
13	MJTK-6	146.60	\triangle	(0)		-	-		\bigcirc		\triangle	(0)		Massive
14	MJTK-6	256.70	-	-					(${ }^{\text {a }}$					Massive, with pelitic fragments
15	MJTK-5	358.90	\triangle	-			-		(${ }^{\text {a }}$					Banded
16	MJTK-5	466.60	-						(0)					Banded?
	Legend	© :Abu	dant		Me		\triangle	Mino		Ra				

The samples are chosen as homogeneously as possible among each sections.
Pyrrhotite is dominant with sphalerite, galena, chalcopyrite and pyrite. Pyrrhotite seems to be vein-like or network-like, however it can be thin-layered texture.

(3) X-ray diffraction analysis

The result is shown in Table II-3-7. Every sample are altered with sericite and chlorite. And some samples are silicified. Calcite is the main carbonate.

Table II－3－7 Result of mineral determination of X－ray diffraction test

			Silicate Minerals								Carbonate Minerals		Other Minerals		
No．	孔名	深度（m）		$\begin{gathered} 0 \\ \frac{0}{0} \\ .0 \\ 0 \\ \stackrel{\pi}{0} \\ \hline \end{gathered}$	$\begin{aligned} & \stackrel{y}{0} \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$		$\begin{aligned} & \stackrel{y}{0} \\ & \text { OU } \\ & \underset{\sim}{0} \end{aligned}$		$\begin{aligned} & \stackrel{y}{0} \\ & \stackrel{y}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \frac{0}{J} \end{aligned}$	$$	$\begin{aligned} & \text { O. } \\ & \text { O } \\ & 0 \end{aligned}$	$\stackrel{\text { ¢ }}{\substack{2 \\ 20}}$		
1	MJTK－3	50.00	16	2		＜1			6	7	11				With 3T sericite
2	MJTK－3	100.00	13	2		＜1			7	5	8				With 3T sericite
3	MJTK－3	149.30	30			＜1			3	1	4		＜1	1	With 3T sericite
4	MJTK－3	150.00	25			＜1			14	6	＜1				With 3T sericite
5	MJTK－3	200.00	23	3		＜1			6	10			＜1		With 3T sericite
6	MJTK－3	250.00	16	2		＜1			13	15	＜1		＜1		With 3T sericite
7	MJTK－3	300.00	18	2		＜1			6	＞17	＜1		＜1		With 3T sericite
8	MJTK－3	350.00	22	3		＜1			6	11	＜1				With 3T sericite
9	MJTK－3	400.00	17	2		＜1			6	9	2				With 3T sericite
10	MJTK－3	450.00	21	2		＜1			9	11	4				With 3T sericite
11	MJTK－3	473.70	23						＜1				1	2	
12	MJTK－3	500.00	17	2					7	13	1		<1		With 3T sericite
13	MJTK－3	550.00	26	2		＜1			9	11	＜1		＜1		With 3T sericite
14	MJTK－3	600.00	28	2		＜1			5	6	5				With 3T sericite
15	MJTK－3	650.00	22	3		＜1			4	6	8				With 3T sericite
16	MJTK－3	700.00	32	2		＜1			7	7	1				With 3T sericite
17	MJTK－4	50.00	20	2		＜1			8	8	7		＜1		With 3T sericite
18	MJTK－4	100.45	4	＜1		＜1			7	8	>17		＜1		With 3T sericite
19	MJTK－4	150.00	66	1		＜1			5	5	10		＜1		With 3T sericite
20	MJTK－4	200.00	22	2		<1			13	12	＜1				With 3T sericite
21	MJTK－4	250.00	37	＜1		＜1			2	2	12				With 3T sericite
22	MJTK－4	300.00	16	2		＜1			7	8	9				With 3T sericite
23	MJTK－4	350.00	19	2		＜1			12	9					With 3T sericite
24	MJTK－4	379.00	14	＜1		＜1			3	5	10			1	With 3T sericite
25	MJTK－4	400.00	17	4		<1			14	10	＜1		<1		With 3T sericite
26	MJTK－4	450.00	21	2					10	＞17	＜1				With 3T sericite
27	MJTK－4	500.00	50	2		＜1			2	4	＜1		＜1		
28	MJTK－4	514.40	11			＜1			6	2	<1	7	4		With 3T sericite． $25.9^{\circ}(?), 38.8^{\circ}(?)$
29	MJTK－4	550.00	41	5					4	5	＜1				With 3T sericite
30	MJTK－4	600.00	18	2					6	12			＜1		With 3T sericite
31	MJTK－5	150.00	14	4					2	6	2		＜1		With 3T sericite
32	MJTK－5	180.20	3	＜1					＜1	1	＜1	5	6		$30.6{ }^{\circ}$ Dolomite（？）
33	MJTK－5	200.00	17	5					6	2	＜1			$1 ?$	33.9° Pyrrhotite（？）
34	MJTK－5	250.00	27	2		＜1			5	9	＜1		＜1		With 3T sericite
35	MJTK－5	300.00	35	7					＜1	6					
36	MJTK－5	350.00	13	3					5	＜1	12				
37	MJTK－5	359.00	13	2		<1			1	8			1		With 3T sericite
38	MJTK－5	400.00	9	8		2			2	5	＜1				With 3T sericite
39	MJTK－5	450.00	30						5	7	＜1				With 3T sericite
40	MJTK－5	500.00	18	3		＜1			6	9	＜1				With 3T sericite

(4) measurement of resistivity and chargeability and magnetic susceptibility

The resistivity, chargeability and magnetic susceptibility of the core samples from MJTK-3,4 and 5 were measured. was the sample were immersed in $90 \Omega \square \mathrm{~m}$ resistivity water for 48 hours, and became filled with water. The number of the samples is 21 . The resistivity and the chargeability were measured by TDIP method.

The result of the measurement is shown in Table II-3-8. And related figures are shown in Fig.II-3-5 and Fig.II-3-6.

Table II-3-8 Result of measurement of resistivity and chargeability and magnetic susceptibility

Num	S.Num.	Bor. Num.	Depth(m)	Rock name	Resistivity $\operatorname{Rho}[\Omega \mathrm{m}]$	Chargeability $[\mathrm{mV} / \mathrm{V}]$	Magnetic susceptibility $* 10^{\wedge}-3 \mathrm{SI}$
1	1	MJTK-3	50.00	Pelitic-silty schist	9856.1	2.91	0.32
2	2	MJTK-3	150.00	Pelitic-silty schist	614.5	111.07	2.21
3				*	867.1	5.20	
4	3	MJTK-3	200.00	Pelitic-silty schist	14755.2	0.85	1.10
5					1579.5	3.49	
6	4	MJTK-3	250.00	Pelitic-silty schist	1396.4	282.59	1.10
7				*	10894.0	32.41	
8	5	MJTK-3	300.00	Pelitic-silty schist	27440.9	2.37	0.97
9				*	25320.3	1.90	
10	6	MJTK-3	325.00	Pelitic-silty schist	2226.4	39.17	2.44
11	7	MJTK-3	350.00	Pelitic-silty schist	9584.5	18.71	1.40
12	8	MJTK-3	375.00	Pelitic-silty schist	24639.9	6.95	0.88
13	9	MJTK-3	400.30	Pelitic-silty schist	14436.0	2.00	1.34
14	10	MJTK-3	425.10	Pelitic-silty schist	10591.3	1.18	1.48
15	11	MJTK-3	459.45	Pelitic-silty schist	232.1	54.06	2.80
16				*	223.2	22.80	
17	12	MJTK-3	460.20	Pelitic-silty schist	5991.4	15.41	0.91
18	13	MJTK-4	103.00	Pelitic-silty schist	12290.7	9.19	1.60
19				*	984.8	15.07	
20	14	MJTK-4	207.40	Pelitic-silty schist	11167.2	27.24	0.71
21				*	2502.0	16.16	
22	15	MJTK-4	301.90	Pelitic-silty schist	10115.8	8.99	0.19
23				*	2402.0	8.05	
24	16	MJTK-5	120.30	Tuffaceous schist (calcareous)	151.2	5.64	10.16
25				*	178.6	3.72	
26	17	MJTK-5	156.00	Pelitic-silty schist	7041.3	10.61	1.08
27				*	7273.6	7.70	
28	18	MJTK-5	200.00	Pelitic-silty schist	14257.3	1.18	0.58
29	19	MJTK-5	250.00	Pelitic-silty schist	1274.9	29.07	3.32
30	20	MJTK-5	299.90	Pelitic-silty schist	16818.8	4.48	1.02
31	21	MJTK-5	324.50	Pelitic-silty schist	15401.6	2.33	0.54

* an isotropic measurement or same position sample

The resistivity is generally high even though the pelitic - silty schist samples from MJTK-3,4 and 5 consist of graphite. The chargeability is higher in the samples that include foil-like sulfide, and the maximum is $280 \mathrm{mV} / \mathrm{V}$. However it is changeable with the kind of method. The magnetic susceptibility is high in the calcareous tuff in MJTK-5 (max: $10 \times 10^{-3} \mathrm{Si}$ unit).

The resistivity inversely correlates with the chargeability in general. And the chargeability slightly correlates with the magnetic susceptibility. Therefore the chargeability is due to pyrrhotite more than graphite.

Fig.II-3-6 Chargeability and magnetic susceptibility of rock core
(5) Fluid inclusion (homogenization temperature and Salinity)

The measurement of fluid inclusion was carried out about a sample (MJTK-3, 473.4-473.6m). the result is shown in Table II-3-9.

Most of fluid inclusions are with necking down. And gaseous phase is generally dominant. Homogenization temperature is higher and Salinity is lower than Hajar deposit.

Table II-3-9 The result of measurement of fluid inclusion

Mineral	Shape	Size $\mu \mathrm{m}$	Homogenization temperature ${ }^{\circ} \mathrm{C}$	Melting temperature ${ }^{\circ} \mathrm{C}$	Salinity $\mathrm{NaCl} \mathrm{eq}. \mathrm{\%}$
Quartz	Irregular	27	373	-5.2	9.2
Quartz	Irregular	15	341	-4.9	8.7
Quartz	Anhedral- Irregular	45	-	-5.1	9.0
Quartz	Irregular	5	310		
Quartz	Anhedral	5	290		
Quartz	Irregular	12	313		
Quartz	Irregular	6	324	-2.5	4.4
Quartz	Irregular	9	372		
Quartz	Anhedral	12	198	-2.8	5.0

(6) Isotope \$)

The result of measurement of sulfur isotope is shown in Table II-3-10 Result of measurement of S Isotope.

Table II-3-10 Result of measurement of S Isotope

Sample ID	Approx\%S	d34S(CDT)
1	26	-1.5
2	45	-1.5
3	38	-0.9
4	51	-0.3
5	41	-1.0
6	42	-2.4
7	35	-0.8
8	40	-0.4
9	40	-2.4
10	30	-0.1
11	54	-0.7
12	35	-0.4
13	51	-0.3
14	29	-3.1
15	34	-4.0
16	31	-2.5

The samples were chosen from homogeneous part as possible, among each 5 cm sections.
The values are generally as follows
MJTK-6:-0.1~-0.7\%
MJTK-3: -0.3~-2.4\%
MJTK-5: -2.5~-4.0\%。
Sulfur is comparatively heavy in MJTK-6, and light in MJTK-3 and MJTK-5.

The sulfur isotope ratio of sulfide in massive sulfide deposits is heavier near the hydrothermal deposit originated from volcanic rocks, and is lighter at distant place (JICA/MMAJ, 2002).

Therefore MJTK-6 is probably closer to a hydrothermal deposit originated from volcanic rocks than MJTK-3. MJTK-3 may be farther from it, and may contain more sedimentary (probably biological) sulfur isotope. These values are similar to Hajar deposit.

3-5 Discussions

MJTK-3,4,5 and 6 captured many concentrations of pyrrhotite and calcite with Sphalerite, chalcopyrite, arsenopyrite, and galena.

The magnetic anomaly around MJTK-5 (Khefawna-N district) is due to pyrrhotite in such a mineralization zone.

The magnetic anomalies around MJTK-3,4 and 6 are also probably due to such zones in Azzouz district.

The concentration of pyrrhotite seems to affect the distribution of resistivity and chargeability more than graphite in the survey area.

Chapter 4 Integrated Interpretation
4-1 Survey result

1) Airborne magnetic and ground magnetic survey

The result of the airborne magnetic survey and ground magnetic survey previously performed by BRPM has revealed that the anomalies in the Hbibi, Harch, Maouch, Khefawna, and Talzelt districts are of relatively monotonous magnetic variation, but the anomaly in the Azzouz district is of complicated variation.

In the Azzouz district, a tectonic line presumably exists in the northern a eastern district where great magnetic variation is seen.

No direct relation between the magnetic anomalies and mineralized zones has been found in the previously performed ground magnetic analysis.
2) Resistivity

The resistivity for the young sediments distributed the whole area of the districts is presumably lower than $50 \Omega \cdot \mathrm{~m}$. The sediments generally shows a horizontal stratiform structure, based on the resistivity structure analysis, and that of the Hbibi, Harch, Maouch, Khefawna, and Talzelt districts is more than 150 meters in thickness, and That of the Azzouz district is presumably thicker in the eastern part.

Other low resistivity structures, lower than $50 \Omega \cdot \mathrm{~m}$, in the Azzouz are recognized in the northern district around the survey lines (i,j,k), g(No.7), h(No.10), $\mathrm{I}(\mathrm{No.13}), \mathrm{j}(\mathrm{No.16)}$, and $\mathrm{k}(\mathrm{No.16)}$. The resistivity structure in the northern district is presumably correlated with the tectonic line, probably extending to the depth.

The low resistivity structure in the survey lines g(No.7), h(No.10), I(No.13), $\mathrm{j}(\mathrm{No.16)}$, and K(no.16) is presumably of a plate shape, extending northeast to southwest and dipping almost vertically to the depth.

3) Chargeability

The chargeability measured is maximum 20 mVN in the Hbibi, Harch, Maouch, Khefawna, and Talzelt districts, and no anomaly exists here. The chargeability is maximum $78 \mathrm{mV} / \mathrm{N}$ in the Azzouz district.

The relatively high chargeability structure is clearly seen around the No. 14 of the survey lines j and k at the depth of 50 meters and in the survey lines d to r at the depth of 80 meters, extending northeast to southwest. In deeper part below 110 meters, it tends to show higher value to the depth, and divided by complicated tectonic lines.
4) Metal factor

The low resistivity and high chargeability zone extracted in the area below 110 m level show the maximum value around the survey lines $g(N o .7), h(N o .10), i(N o .13)$, $j(N o .16)$, and k (No.16), trending its structure northeast to southwest.

The highest metal factor 1,222 is around seen around the survey line k, points

No. 15 and 16. The low resistivity and high chargeability zone is corresponded with a part of the northeast to southwest trending ground magnetic anomaly zone.
4) TEM

The target districts for the TEM survey are the Azzouz and Khefawna.

Azzouz district

In the district, the magnetic field inversion has been observed in the central and southern parts, simultaneously some data indicating some affection of the IP effect has been observed. Based on the result of the one dimensional analysis, it has revealed that the resistivity structure in the district is different in the northern side and southern side of the survey line 1000 N . The three continuous layer structure, the medium resistivity layer (around $150 \Omega \cdot \mathrm{~m}$), high resistivity layer ($1,000 \Omega \cdot \mathrm{~m}$), and slightly low resistivity layer ($100 \Omega \cdot \mathrm{~m}$) from the surface, exists in the northern side. The horizontally discontinuous structure, $200 \Omega \cdot \mathrm{~m}$ in the northwestern side and 100 $\Omega \cdot \mathrm{m}$ in the southeastern side, is recognized below 400 meters depth. In the southeastern side of the cross sections 400 N and 300 N , the low resistivity zone bel ow 50 $\Omega \cdot \mathrm{m}$ has been analyzed around the level 300 m in altitude. The conductive plate has been analyzed at the point, where the polarity inversion was observed.

Khefawna district

The gentle dome-like high resistivity layer higher than several hundreds Ω. m has been detected by the survey, and its extension to the southeast has been confirmed. The low resistivity layer lower than $50 \Omega \cdot \mathrm{~m}$ broadly overlies the high resistivity layer. The high resistivity layer is presumably correlated to the syncline folding structure trending east to west, however further investigation is needed to verify the hypothesis.

5) Drilling survey

Mineralization of calcite and pyrrhotite was mainly found at MJTK-3,4,5 and 6. Pyrrhotite is usually along schistosity (foliation).
Pelitic and silty schist is friable with graphite even though the schist is with calcareous and sandy schist.
However, the lithofacies do not change so much, and sometimes alternate with several mm unit. Therefore it is difficult to simply divide the lithofacies by the repetition of same lithofacies.
The schistosity (foliation) sometimes has a different direction from bedding. the schistosity was formed by structural movement metamorphism, and schistosity usually has similar direction to axis of a fold. Therefore bedding is often different to schistosity near anticline or syncline.

Pyrrhotite was metamorphosed from pyrite, however it is often along foliation. Metamorphism was not at a time.
Pyrite was formed more than twice, and the latter mineralization was much weaker.
In other words, most pyrite were brought by early mineralization. The earlier mineralization is with sphalerite, and a considerable part of pyrite changed to pyrrhotite through metamorphism.
The resistivity inversely correlates with the chargeability in general. And the chargeability slightly correlates with the magnetic susceptibility. Therefore the chargeability is due to pyrrhotite more than graphite.
Pyrrhotite concentrate at 360 m depth in MJTK-5 and this mineralization zone probably form the magnetic anomaly. The chargeability may be due to pyrrhotite even around other drilling holes. It is likely that there are a wide pyrrhotite zone around MJTK-3,4 and 6. Pyrrhotite is dominant with sphalerite, galena, chalcopyrite and pyrite in microscope. It can be regarded not only as vein-like and network-like but also as thin layered type. The ratio of sulfur isotope is similar to Hajar mine. Probably, MJTK-6 is near a volcanic hydrothermal ore deposit, and MJTK-3 is affected by biological isotope circulation.

4-2 Summary

Azzouz district
The IP anomaly, low resistivity and high chargeability, shows the highest value around the survey lines $g(N o .7), h(N o .10), i(N o .13), j(N o .16)$, and $k(N o .16)$, trending northeast to southwest. The magnetic field inversion is observed by the TEM survey around in this area, furthermore, the data reflecting the IP effect is also seen. In the plate model analysis, the conductive plate is analyzed in the point where the magnetic field inversion is observed.

The conductive plate is situated in the central district 090N 050 E , southern district 040 N 055 E and 030 N 060 E . The plate is apparently surrounded by the IP anomaly zone. Figure II-4-1 shows the summary of the ground magnetic, IP, and TEM anomaly zones.

The trend of the detected IP anomaly zone, the direction of the conductivity zone, and some part of magnetic anomaly distribute concordantly. The existence of some complicated tectonic lines have presumed in the analyzed resistivity and chargeability structure that distribute deep underground.

Khefawna district

The resistivity structure obtained by the IP and TEM surveys is the gentle dome-like structure in the deep part of the central district. The TEM survey has revealed the southeast extension of the resistivity structure to the depth. It is thought that the magnetic anomaly is related with the high resistivity structure. The high resistivity layer is supposed to be the anticline hol ding structure extending east to west,
however further investigation is necessary to verify it.
The low resistivity layer lower than $50 \Omega \cdot \mathrm{~m}$ broadly overlies the high resistivity layer.

The known existing ore deposits in the surrounding area of the districts are mainly composed of pyrrhotite, chal copyrite, arsenopyrite, and accompanied, therefore both the high magnetism and the low resistivity-high chargeability should be considered for the prospecting.

The magnetic anomaly, IP anomaly, and TEM anomaly zones exist concordantly each other, therefore it is hard to think that graphite is associated with the IP and TEM anomalies. However, the existence of graphite is not negligible due to the surrounding geological environment.

It is necessary to perform a drilling program to verify the geol ogical setting in the area around the IP and TEM anomaly zone.

Drilling survey

Sulfide concentrations that contain pyrrhotite, calcite, sphalerite, chal copyrite and galena are observed in the rock cores. They are vein-like or secondary sediment like ore deposits in the surrounding area.

100000

Fig.II-3-1 Integrated analysis map

Part III Conclusion and Recommendation

Chapter 1 Conclusion

1-1 Geophysical survey

The distributions of the shallow stratigraphic formation and magnetic rocks near the surface have been revealed by the first year's airborne magnetic and electromagnetic surveys.

The second and third year's programs have aimed to chose potential zones for strongly magnetic ores such as pyrrhotite ore within the airborne magnetic anomaly zones. Furthermore, the electric prospecting IP method has been applied for the magnetic anomaly zones detected by the detailed ground survey, then the resistivity and chargeability structures have been made clear, and low resistivity-high chargeability IP anomaly zones have been extracted. The electromagnetic prospecting TEM method has been successfully applied for the IP anomaly zones to clarify their conductivity, to narrow down anomaly zones, and to make clear their forms. The TEM method has been able to clarify the deep sitting low resistivity structure by the adoption of the adequate loop.

In the Azzouz district, a conductivity anomaly zone has been detected in the IP anomaly zone by the TEM survey, and the distribution of these anomaly zones are duplicated in the same part. The IP anomaly zone is coincident with a part of the magnetic anomaly zone detected by the ground survey, continuously extending northeast to southwest.

Azzouz district

The IP anomaly, low resistivity and high chargeability, shows the highest value around the survey lines such as $\mathrm{g}(\mathrm{No.7}), \mathrm{h}(\mathrm{No.10)}$, $\mathrm{i}(\mathrm{No.13}), \mathrm{j}(\mathrm{No.16)}$, and $\mathrm{k}(\mathrm{No.16)}$, trending northeast to southwest. The magnetic field inversion is observed by the TEM survey in this area, furthermore, the data reflecting the IP effect is also seen. In the plate model analysis, the conductive plate is analyzed in the point where the magnetic field inversion is observed.

The conductive plate is situate in the central district 090N 050E, southern district 040 N 055 E and 030 N 060 E . The plate is apparently surrounded by the IP anomaly zone.

The trend of the detected IP anomaly zone, the direction of the conductivity zone, and some part of magnetic anomaly distribute concordantly. The existence of some complicated tectonic lines have presumed in the analyzed resistivity and chargeability structure that distribute deep underground.

Khefawna district
The resistivity structure obtained by the IP and TEM surveys is the gentle dome-like structure in the deep part of the central district. The TEM survey has
revealed the southeast extension of the resistivity structure to the depth. It is thought that the magnetic anomaly is related with the high resistivity structure. The high resistivity layer is supposed to be the anticline hol ding structure extending east to west, however further investigation is necessary to verify it.

The low resistivity layer lower than $50 \Omega \cdot \mathrm{~m}$ broadly overlies the high resistivity layer.

The known existing ore deposits in the surrounding area of the districts are mainly composed of pyrrhotite, chal copyrite, arsenopyrite, and accompanied, therefore both the high magnetism and the low resistivity/high charge rate should be considered for the prospecting.

The magnetic anomaly, IP anomaly, and TEM anomaly zones exist concordantly each other, therefore it is hard to think that graphite is associated with the IP and TEM anomalies. However, the existence of graphite is not negligible due to the surrounding geological environment.

It is necessary to perform a drilling program to verify the geol ogi cal setting in the area around the IP and TEM anomaly zone.

1-2 Drilling Survey

(1) Drilling points

Judging from the various geophysical prospecting results, the geological structure and the status of the mineralized zones in the Azzouz and Khefawna districts would be as follows.

In the Azzouz district, it is possible that pyrrhotite rich massive sulfide ore bodies exist underneath the anomaly zones of the high chargeability parts of the electric prospecting IP method, the high conductivity parts of the electromagnetic prospecting TEM method, and magnetic anomaly zone. If it is of the kuroko type, acidic volcanic rocks such as rhyolite could be the foot wall side of those ores (Figure I-5-1 Concepts).

In the Khefawna-N district, some indications for metallic mineral potential has been obtained, however no magnetic body was found in the past drill hole HE1 conducted by BRPM. No evidence has been found telling the cause of the magnetic anomaly. There is some limitation for depth of prospecting ability because of the covered thick young sediments, therefore the potential for massive sulfide ores in the deep part is not negligible.

The intensity and scale of the IP anomalies and the high conductivity of the TEM method in theAzzouz district exceeds those of small scale dissemination.

Therefore, it is indicated that there is some potential for sulfide ores in the district. Several drill holes program is recommended to confirm the potential.

From the above mentioned reason, the fol lowing drilling survey was carried out

Table III-2-1 The scheme of the drilling

District	Hole	Drilling length	Dipping	Direction	Target
Azzouz	MJTK-3	701.0 m	-70 deg	325 deg	Mg., H- cond. H.C.R
	MJTK-4	601.2 m	-55 deg	325 deg	Mg., H-cond. H.C.R
	MJTK-6	301.9 m	-70 deg	325 deg	Mg., H.C.R
	MJTK-5	502.1 m	-70 deg	270 deg	Mg

Whereas Mg: magnetic anomaly
H-cond: high conductivity
H.C.R: high charge rate

MJ TK-3 and MJ TK-4 are to confirm the potential zones of highly concentrated pyrrhotite because of high conductivity, and high charge rate, accompanied with magnetic anomaly.

MJ TK-5 is to confirm the potential zone for pyrrhotite rich ores interpreted by BRPM.

Fig.III-2-1 Concepts of MJ TK-3 and MJ TK-4 (Azzouz)

Fig.III-2-2 Concepts of MJ TK-5 (K hefawna)
(2) Result

Metamorphic sedimentary rocks are distributed over the surface and in the drilling cores. The sedimentary rocks are mainly pelitic - silty, partly sandy and also calcareous. They are alternated with several mm unit layers and repeated.

The schistosity (foliation) sometimes has a different direction from bedding. the schistosity was formed by structural movement metamorphism, and schistosity usually has similar direction to axis of a fold. Therefore bedding is often different to schistosity near anticline or syncline.
As a result of drilling survey, sulfide concentration that mainly consist of pyrrhotite, calcite, sphalerite, chalcopyrite and galena was found in sedimentary rocks (pelitic silty schist. The ore minerals may be secondary sediments or vein-like. Although they are similar to surrounding ore deposits, the process of mineralization is not known well even now.
Wedge-shaped and irregular-shaped fragments (heterogeneous; pelitic rock, tuffaceous rock) are in concentrated sulfide.

Sulfide concentrations are linearly distributed or like trailing. And there are many parts where sulfides are observed in thin-layer in turbidite-like mudstone. This situation indicates the re-sedimentation of the host rock and mineralization may several secondary sediments. Sulfide concentrations are apt to be in firm rocks with plane fractures. And some sulfide is along foliation. Some pyrite was metamorphosed to pyrrhotite, as some mineralization preceded metamorphism.
Pyrrhotite is dominant with sphalerite, galena, chalcopyrite and pyrite. Pyrrhotite seems to be vein-like or network-like, however it can be thin-layered texture.

Sulfur isotope ratio in the survey area resembles to Hajar deposit. MJTK-6 is probably closer to a hydrothermal deposit originated from volcanic rocks than MJTK-3 in Azzouz district.

And the resistivity of rock cores inversely correlates with the chargeability in general. And the chargeability correlates with the magnetic susceptibility. Therefore the chargeability is due to the quantity of pyrrhotite. Pyrrhotite concentration around 360 m of MHTK-5 is regarded as the cause of the regional magnetic anomaly. Other mineralization zones probably occur IP anomalies. Low resistivity zone in deeper part of MJTK-3 is due to the sequence of sheared zones.
Therefore the characters of mineralization in MJTK-3,4,5 and 6 can be summarized as follows.

1. Mineralization zones dominant in pelitic - silty schist consist of second sedimentary or vein-like sequence of concentrated sulfide of pyrrhotite, calcite, sphalerite, chalcopyrite and galena
2. Alterations of the host rocks indicate that the rocks are hanging wall and surrounding parts.
3. Sulfur isotope ratio indicates the possibility hydrothermal activity originated from Volcanism. And blind volcanic massive sulfide deposits may be near this survey area.
4. Magnetic, resistivity and chargeability anomalies mean the concentration of sulfide and mineralization zones.

Chapter 2 Recommendation for the future

It is difficult to distinguish the main ore deposit and surrounding sulfide concentration only by magnetic anomalies. The existence of the volcanic rocks as the footwall may indicate main ore body, therefore it is necessary to know the underground structure by gravity survey. And the method of sulfide isotope is effective to consider the drilling survey method of the part under the Cenozoic sediments.

Isotope ratio indicates some past hydrothermal activity with volcanism in Azzouz area (MJTK-6). Some magnetic anomalies distribute even in west area from the Azzouz area, therefore the gravity survey in the expanded area may indicate volcanic rocks as the footwall of volcanic massive sulfide deposit.

The magnetic anomaly in Khefawna area is not large and the pyrrhotite concentration in MJTK-5 can be regarded as the cause of the anomaly. Therefore Khefawna area can hardly have any more promising part.

Reference

Reference

JICA and MMAJ(1988):Report on geological and geophysical survey in the Haouz Central are ,morocco.(Phase I)

JICA and MMAJ(1989):Report on geological and geophysical survey in the Haouz Central are ,morocco.(Phase II)

JICA and MMAJ(1988):Report on geophysical survey in the Haouz Central are ,morocco. (Phase III)
WATANABE Yasushi(2001):Chishitu News no.561,p.25-37
Metodes et Techniques d' Exploration Miniere et Principaux Gisements. BRPM,325p. El Bachir Barodi, Yasushi Watanabe, Abdellah Mouttaqi et M’ hamed Annich, (2002)

Coggon J.H(1971):Electromagnetic and Electrical Modeling by Finite Element Method. Geophysics, Vol.36,No.1,115-132

Geological Survey of Japan(1993):Cishitu News, No.467, 69P.
Rijo Luiz(1977):Modeling of Electric and Electromagnetic Data. PhD.Thesis. University of Utah.

Flis, M.F., Newman,G.A., and Hohmann, G. W., 1989, Induced polarization effects in time-domain electromagnetic measurements. Geophysics, 54, 514-523.

Figure and Table

Figures

Fig. 1 Location map of the project area in Morocco
Fig.I-1-1 Residual magnetic intensity and IP survey line 5
Fig.I-3-1 Existing geological map of the project area in Morocco 17
Fig.I-3-2 Geological stratigraphic columnar section of the project area in Morocco 19
Fig.I-3-3 Geological section of the project area in Morocco 21
Fig.I-4-1 Regional structure and distribution of ore deposits 27
Fig.I-5-1 Concepts (Azzouz) 31
Fig.I-5-2 Concepts of MJTK-3 and MJTK-4 (Azzouz) 31
Fig.I-5-3 Concepts of MJTK-5 (Khefayna) 31
Fig.II-2-1-1 Location map of survey area 37
Fig.II-2-1-2 Survey location map at Azzouz area 39
Fig.II-2-1-3 Survey location map at Hbibi-Harch-Maouch area 41
Fig.II-2-1-4 Survey location map at Khefawna-Talzelt area 43
Fig.II-2-1-5 Concept of operation- 46
Fig.II-2-1-6 Concept of the method of measurement 46
Fig.II-2-1-7 IP pseudo-sections at Azzouz area (a line) 55
Fig.II-2-1-8 IP pseudo-sections at Azzouz area (b line) 57
Fig.II-2-1-9 IP pseudo-sections at Azzouz area (c line) 59
Fig.II-2-1-10 IP pseudo-sections at Azzouz area (d line) 61
Fig.II-2-1-11 IP pseudo-sections at Azzouz area (e line) 63
Fig.II-2-1-12 IP pseudo-sections at Azzouz area (f line). 65
Fig.II-2-1-13 IP pseudo-sections at Azzouz area (g line) 67
Fig.II-2-1-14 IP pseudo-sections at Azzouz area (h line) 69
Fig.II-2-1-15 IP pseudo-sections at Azzouz area (i line) 71
Fig.II-2-1-16 IP pseudo-sections at Azzouz area (j line) 73
Fig.II-2-1-17 IP pseudo-sections at Azzouz area (k line) 75
Fig.II-2-1-18 IP pseudo-sections at Azzouz area (1 line) 77
Fig.II-2-1-19 IP pseudo-sections at Azzouz area (m line) 79
Fig.II-2-1-20 IP pseudo-sections at Azzouz area (n line) 81
Fig.II-2-1-21 IP pseudo-sections at Azzouz area (o line) 83
Fig.II-2-1-22 IP pseudo-sections at Azzouz area (p line) 85
Fig.II-2-1-23 IP pseudo-sections at Azzouz area (q line) 87
Fig.II-2-1-24 IP pseudo-sections at Azzouz area (r line) 89
Fig.II-2-1-25 Plane map of apparent resistivity at Azzouz area 91
Fig.II-2-1-26 Plane map of apparent chargeability at Azzouz area- 93
Fig.II-2-1-27 Plane map of metal factor at Azzouz area 95
Fig.II-2-1-28 IP pseudo-sections at Hbibi area (a line) 97
Fig.II-2-1-29 IP pseudo-sections at Harch area (a line) 99
Fig.II-2-1-30 IP pseudo-sections at Maouch area (a line) 101
Fig.II-2-1-31 IP pseudo-sections at Khefawna area (a line) 103
Fig.II-2-1-32 IP pseudo-sections at Khefawna area (b line) 105
Fig.II-2-1-33 IP pseudo-sections at Khefawna area (c line) 107
Fig.II-2-1-34 Plane map of apparent resistivity at Khefawna area- 109
Fig.II-2-1-35 Plane map of apparent chargeability at Khefawna area 111
Fig.II-2-1-36 Plane map of metal factor at Khefawna area- 113
Fig.II-2-1-37 IP pseudo-sections at Talzelt area (a line) 115
Fig.II-2-1-38 IP pseudo-sections at Talzelt area (b line) 117
Fig.II-2-1-39 IP pseudo-sections at Talzelt area (d line) 119
Fig.II-2-1-40 2D Analysis sections at Azzouz area (a line) 121
Fig.II-2-1-41 2D Analysis sections at Azzouz area (b line) 123
Fig.II-2-1-42 2D Analysis sections at Azzouz area (c line) 125
Fig.II-2-1-43 2D Analysis sections at Azzouz area (d line) 127
Fig.II-2-1-44 2D Analysis sections at Azzouz area (e line) 129
Fig.II-2-1-45 2D Analysis sections at Azzouz area (f line) 131
Fig.II-2-1-46 2D Analysis sections at Azzouz area (g line) 133
Fig.II-2-1-47 2D Analysis sections at Azzouz area (h line) 135
Fig.II-2-1-48 2D Analysis sections at Azzouz area (i line) 137
Fig.II-2-1-49 2D Analysis sections at Azzouz area (j line) 139
Fig.II-2-1-50 2D Analysis sections at Azzouz area (k line) 141
Fig.II-2-1-51 2D Analysis sections at Azzouz area (1 line) 143
Fig.II-2-1-52 2D Analysis sections at Azzouz area (m line) 145
Fig.II-2-1-53 2D Analysis sections at Azzouz area (n line) 147
Fig.II-2-1-54 2D Analysis sections at Azzouz area (o line) 149
Fig.II-2-1-55 2D Analysis sections at Azzouz area (p line) 151
Fig.II-2-1-56 2D Analysis sections at Azzouz area (q line) 153
Fig.II-2-1-57 2D Analysis sections at Azzouz area (r line) 155
Fig.II-2-1-58 2D Analysis plane map at Azzouz area (55m depth) 157
Fig.II-2-1-59 2D Analysis plane map at Azzouz area (80m depth) 159
Fig.II-2-1-60 2D Analysis plane map at Azzouz area (110m depth) 161
Fig.II-2-1-61 2D Analysis plane map of Azzouz area (140m depth) 163
Fig.II-2-1-62 2D Analysis plane map at Azzouz area (200m depth) 165
Fig.II-2-1-63 2D Analysis plane map of resistivity at Azzouz area 167
Fig.II-2-1-64 2D Analysis plane map of chargeability at Azzouz area 169
Fig.II-2-1-65 2D Analysis plane map of metal factor at Azzouz area• 171
Fig.II-2-1-66 2D Analysis sections at Hbibi area (a line) 173
Fig.II-2-1-67 2D Analysis sections at Harch area (a line) 175
Fig.II-2-1-68 2D Analysis sections at Maouch area (a line) 177
Fig.II-2-1-69 2D Analysis sections at Khefawna area (a line) 179
Fig.II-2-1-70 2D Analysis sections at Khefawna area (b line) 181
Fig.II-2-1-71 2D Analysis sections at Khefawna area (c line) 183
Fig.II-2-1-72 2D Analysis plane map of resistivity at Khefawna area 185
Fig.II-2-1-73 2D Analysis plane map of chargeability at Khefawna area 187
Fig.II-2-1-74 2D Analysis plane map of metal factor at Khefawna area 189
Fig.II-2-1-75 2D Analysis sections at Talzelt area (a line) 191
Fig.II-2-1-76 2D Analysis sections at Talzelt area (b line). 193
Fig.II-2-1-77 2D Analysis sections at Talzelt area (d line). 195
Fig.II-2-1-78 Ground mag and IP anomaly at Azzouz area- 197
Fig.II-2-2- Schematic diagram of TEM method by using central loop configuration 200
Fig.II-2-2-2 Observed stations of TEM in Azzouz 207
Fig.II-2-2-3 Normalized Voltage disribution map in Azzouz 209
Fig.II-2-2-4 Transient Curve which are influenced by IP in Azzouz 211
Fig.II-2-2-5 Resistivity structure sections by Occams inversion in Azzouz 213
Fig.II-2-2-6 Resistivity distribution maps by Occams inversion in Azzouz. 215
Fig.II-2-2-7 Resistivity structure sections by 1-D inversion in Azzouz 217
Fig.II-2-2-8 Normalized voltage profile by fixed loop configuration in Azzouz 219
Fig.II-2-2-9(1) The result of simple plate analysis (1) 221
Fig.II-2-2-9(2) The result of simple plate analysis (2) 223
Fig.II-2-2-10 The resistivity structure model by TEM in Azzouz 225
Fig.II-2-2-11 Normalized voltage profiles in Khefawna 227
Fig.II-2-2-12 Resistivity structure sections by TEM in Khefawna• 229
Fig.II-2-2-13 Resistivity distribution maps by TEM in Khefawna• 231
Fig.II-3-1 Locality map of survey area 235
Fig.II-3-2 Geological Section 264
Fig.II-3-3 Geological Columnar Figures. appendix
Fig.II-3-4 Resistivity and chargeability of rock core 275
Fig.II-3-5 Chargeability and magnetic susceptibility of rock core 275
Fig.II-4-1 Integrated analysis map 285
Fig.III-2-1 Concepts of MJTK-3 and MJTK-4 (Azzouz) 290
Fig.III-2-2 Concepts of MJTK-5 (Khefayna) 290
Tables
Table I-1-1 Survey contents and amount of works 4
Table I-2-1 Temperature and precipitation in Marrakech 8
Table I-3-1 Main ore deposits and gossans around area 15
Table I-5-1 The scheme of next drilling 30
Table II-2-1-1 List of survey amount 35
Table II-2-1-2 List of sampling time 46
Table II-2-1-3 Specification of IP survey instrument 47
Table II-2-1-4 Result of IP survey 52
Table II-2-2-1 Number of TEM survey stations 199
Table II-2-2-2 Parameter of plate model 233
Table II-3-1 Drilling Schedule 240
Table II-3-2 Drilling summary 241-247
Table II-3-3 List of Drilling Equipment and Consumption Goods 249-250
Table II-3-4 Result of measurement of Hole deviation 251
Table II-3-5 Result of Chemical analysis of rock samples 269
Table II-3-6 Result of microscopic observation of polish section 271
Table II-3-7 Result of mineral determination of X-ray diffraction test 272
Table II-3-8 Result of measurement of resistivity and chargeability and magnetic susceptibility 273
Table II-3-9 The result of measurement of fluid inclusion 277
Table II-3-10 Result of measurement of S Isotope 278
Table III-2-1 The scheme of the drilling 289

Appendix

IP Survey Li ne Data

al t_a. dat				
	ALT(m)	LAMBERT	E(X)	N(Y)
0.00	525.00	0	235415. 50	103176. 20
100. 00	537.00	1	235472. 98	103094. 38
200. 00	542. 00	2	235530. 48	103012. 55
300.00	545.00	3	235587. 97	102930. 73
400.00	551.00	4	235645. 45	102848. 91
500.00	550.00	5	235702. 94	102767. 09
600.00	544.00	6	235760. 44	102685. 26
700. 00	549.00	7	235817. 92	102603. 44
800.00	561.00	8	235875. 41	102521. 62
900.00	569. 00	9	235932. 89	102439. 79
1000. 00	578.00	10	235990. 39	102357.97
1100. 00	564.00	11	236047. 88	102276. 14
1200. 00	552.00	12	236105. 36	102194. 32
1300. 00	558.00	13	236162. 84	102112. 50
1400. 00	560.00	14	236220. 34	102030. 67
1500. 00	566.00	15	236277.83	101948. 85
1600. 00	564.00	16	236335. 31	101867. 02
1700. 00	568.00	17	236392. 80	101785. 20
1800.00	562.00	18	236450. 30	101703. 38
1900. 00	566.00	19	236507. 78	101621. 55
2000. 00	574.00	20	236565. 27	101539. 73
azz al t_b. dat				
0.00	515.00	0	235113. 09	103075. 90
100. 00	515.00	1	235170. 48	102994. 01
200. 00	519.00	2	235227. 89	102912. 13
300. 00	524.00	3	235285. 28	102830. 23
400.00	530.00	4	235342. 67	102748. 34
500.00	538.00	5	235400. 08	102666. 45
600.00	542.00	6	235457. 47	102584. 57
700.00	547.00	7	235514. 86	102502. 68
800.00	545.00	8	235572. 27	102420. 79
900.00	553.00	9	235629. 66	102338. 90
1000. 00	552.00	10	235687. 05	102257. 02
1100. 00	544.00	11	235744. 44	102175. 12
1200. 00	550.00	12	235801. 84	102093. 23
1300. 00	555.00	13	235859. 23	102011. 34
1400. 00	563.00	14	235916. 62	101929. 46
1500. 00	559.00	15	235974. 03	101847.57
1600. 00	564.00	16	236031. 42	101765. 68
1700. 00	567.00	17	236088. 81	101683. 79
1800. 00	570.00	18	236146. 22	101601. 91
1900. 00	568.00	19	236203. 61	101520. 02
2000. 00	575. 00	20	236261. 00	101438. 13
azz al t_c.dat				
$0.0 \overline{0}$	512.00	0	234788. 41	102972. 00
100. 00	503.00	1	234845. 72	102890. 05
200.00	519.00	2	234903. 05	102808. 12
300. 00	515. 00	3	234960. 36	102726. 17
400. 00	522. 00	4	235017.69	102644. 23
500.00	529. 00	5	235075. 00	102562. 29
600.00	535.00	6	235132. 33	102480. 35
700.00	538.00	7	235189. 64	102398. 41
800. 00	533.00	8	235246. 97	102316. 47
900.00	534.00	9	235304. 28	102234. 52
1000. 00	531.00	10	235361. 61	102152. 59
1100. 00	534.00	11	235418. 92	102070. 64
1200. 00	539.00	12	235476. 25	101988. 70
1300. 00	540.00	13	235533. 56	101906. 76
1400. 00	548.00	14	235590. 89	101824. 82
1500. 00	552.00	15	235648. 20	101742. 88
1600. 00	563.00	16	235705. 53	101660. 94
1700. 00	567.00	17	235762. 84	101578. 99
1800. 00	568.00	18	235820. 16	101497. 05
1900. 00	576.00	19	235877. 48	101415. 11
2000. 00	579. 00	20	235934. 80	101333. 16
2100. 00	582.00	21	235992. 13	101251. 23
2200. 00	584.00	22	236049. 44	101169. 28
azz alt_d				
$0.0 \overline{0}$	531.00	0	234589. 91	102865. 20
100. 00	539.00	1	234647. 20	102783. 25
200. 00	543.00	2	234704. 50	102701. 29
300.00	529.00	3	234761. 81	102619. 34
400. 00	537.00	4	234819. 11	102537. 38
500.00	522.00	5	234876. 41	102455. 43
600.00	536.00	6	234933. 70	102373. 47
700. 00	529. 00	7	234991. 02	102291. 52
800.00	542.00	8	235048. 31	102209. 56
900.00	541.00	9	235105. 61	102127.60
1000. 00	541.00	10	235162. 91	102045. 65
1100. 00	545.00	11	235220. 20	101963. 70
1200. 00	544.00	12	235277. 52	101881. 74
1300.00	544.00	13	235334. 81	101799. 78
1400. 00	551.00	14	235392. 11	101717. 83
1500. 00	552.00	15	235449. 41	101635. 88
1600. 00	552. 00	16	235506. 70	101553. 91
1700.00	558.00	17	235564. 02	101471. 96
1800. 00	558.00	18	235621. 31	101390. 01
1900. 00	557.00	19	235678. 61	101308. 05
2000. 00	569. 00	20	235735. 91	101226. 09

300.00	530.00	3	232772. 92	102292. 69
400. 00	536. 00	4	232830. 30	102210. 79
500.00	546.00	5	232887.67	102128.88
600.00	545.00	6	232945. 05	102046. 98
700.00	546.00	7	233002. 42	101965. 08
800.00	555.00	8	233059. 80	101883. 18
900.00	577.00	9	233117. 17	101801. 27
1000.00	586.00	10	233174. 55	101719. 37
1100.00	566. 00	11	233231. 92	101637. 47
1200. 00	540.00	12	233289. 30	101555. 56
1300. 00	549.00	13	233346. 67	101473. 66
1400. 00	584.00	14	233404. 05	101391. 76
1500. 00	594. 00	15	233461. 42	101309. 86
1600. 00	600.00	16	233518. 80	101227.95
1700. 00	586. 00	17	233576. 17	101146. 05
1800. 00	589.00	18	233633. 55	101064. 15
1900. 00	591. 00	19	233690. 92	100982. 24
2000. 00	590.00	20	233748. 30	100900. 34
2100. 00	604.00	21	233805. 69	100818. 44
2200. 00	619.00	22	233863. 06	100736. 54
2300.00	607.00	23	233920. 44	100654. 63
2400.00	602. 00	24	233977. 81	100572. 73
2500. 00	604. 00	25	234035. 19	100490. 83
2600.00	607.00	26	234092. 56	100408. 93
2700.00	616.00	27	234149. 94	100327. 02
2800. 00	617.00	28	234207. 31	100245. 12
2900. 00	613.00	29	234264. 69	100163. 22
3000. 00	614.00	30	234322. 06	100081. 31
azz al t_I.dat				
0.00	581. 00	0	233006. 80	101500. 30
100. 00	578.00	1	233064. 16	101418. 38
200.00	552. 00	2	233121. 53	101336. 48
300.00	557.00	3	233178. 89	101254. 56
400.00	562.00	4	233236. 25	101172. 66
500.00	567.00	5	233293. 61	101090. 74
600.00	572. 00	6	233350. 98	101008. 84
700.00	576. 00	7	233408. 34	100926. 92
800.00	585.00	8	233465. 70	100845. 01
900.00	608.00	9	233523. 08	100763. 10
1000. 00	588.00	10	233580. 44	100681. 19
1100.00	590.00	11	233637. 80	100599. 28
1200.00	600.00	12	233695. 16	100517. 37
1300. 00	609.00	13	233752. 53	100435. 45
1400. 00	608.00	14	233809. 89	100353. 55
1500. 00	612. 00	15	233867. 25	100271. 63
azz al t_mdat				
$0.0 \overline{0}$	534.00	0	232700. 80	101227. 10
100. 00	523.00	1	232758. 23	101145. 23
200.00	544.00	2	232815. 66	101063. 37
300.00	542. 00	3	232873. 09	100981. 51
400.00	552. 00	4	232930. 52	100899. 64
500.00	553.00	5	232987.95	100817. 78
600.00	563.00	6	233045. 37	100735. 91
700.00	549. 00	7	233102. 81	100654. 05
800.00	557.00	8	233160. 23	100572. 19
900.00	559.00	9	233217.67	100490. 32
1000. 00	551.00	10	233275. 09	100408. 45
1100.00	548.00	11	233332. 53	100326. 59
1200.00	544.00	12	233389. 95	100244. 73
1300. 00	553.00	13	233447. 39	100162. 86
1400. 00	554. 00	14	233504. 81	100080. 99
1500.00	553. 00	15	233562. 25	99999. 13
azz al t n. dat 000				
$0.0 \overline{0}$	556.00	0	232512. 30	100763. 40
100. 00	564. 00	1	232569. 69	100681. 50
200.00	556.00	2	232627. 08	100599. 61
300.00	567.00	3	232684. 45	100517. 71
400.00	571. 00	4	232741. 84	100435. 82
500.00	554. 00	5	232799. 23	100353. 92
600.00	569.00	6	232856. 63	100272. 03
700.00	560.00	7	232914.00	100190. 13
800.00	565. 00	8	232971. 39	100108. 24
900.00	560.00	9	233028. 78	100026. 34
1000. 00	566. 00	10	233086. 17	99944. 45
1100. 00	573.00	11	233143. 55	99862. 55
1200. 00	580.00	12	233200. 94	99780.66
azz alt_o.				
$0.0 \overline{0}$	535.00	0	235735. 02	103155. 80
100. 00	530.00	1	235792. 38	103073. 88
200.00	526. 00	2	235849. 73	102991. 97
300.00	528.00	3	235907. 09	102910. 05
400.00	536.00	4	235964. 44	102828. 13
500.00	543.00	5	236021. 80	102746. 22
600. 00	543.00	6	236079. 16	102664. 30
700.00	544.00	7	236136. 52	102582. 39
800.00	539.00	8	236193. 88	102500. 48
900.00	543.00	9	236251. 23	102418. 55
1000. 00	540.00	10	236308. 59	102336. 64
1100.00	542. 00	11	236365. 94	102254. 73
1200.00	542. 00	12	236423. 30	102172. 81
1300. 00	544. 00	13	236480. 66	102090. 90

Azzouz Area

Time-Response
Time-App.Resistivity

Khefawna Area

Time-Response
Time-App.Resistivity

Geological Columnar Figures

MJTK- 3

MJTK- 4

MJTK- 4

MJTK- 4

MJTK- 5

$\|\underset{(\mathrm{m})}{\mathrm{DEPTH}}\|$	COLUMN	ROCK NAME	DESCRIPTION	MINER.	Alter.	SAMPLE				CHEMICAL ANALYSIS						
						No.	$\begin{gathered} \hline \begin{array}{c} \text { FROM } \\ (\mathrm{m}) \end{array} \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { TO } \\ & (\mathrm{m}) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { WIDTH } \\ (\mathrm{cm}) \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{Au} \\ \text { (ppm) } \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{Ag} \\ (\mathrm{ppm}) \end{array}$	$\begin{aligned} & \hline \mathrm{Cu} \\ & \mathrm{c} \% \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{Pb} \\ & (\%) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{Zn} \\ & (\%) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Fe} \\ & \text { (\%) } \\ & \hline \end{aligned}$	S (\%)
205		Pelitic Schist	Calcareous- silty schist. graphite. Partly tuffaceous. foliation 45■ lamination 20-70] 201.2 m , pyrrhotite - calcite vein.5■ 23 mm . lamination70 205.1 m , pyrrhotite - calcite veinlet. 6005 mm . 210.7 m , chalcopyrite - pyrrhotite dissemination, along foliation. calcite. silicified? . 213.0-213.3m, chalcopyrite - pyrrhotite - calcite network. $220.5 \mathrm{~m}-224.0 \mathrm{~m}$, tuffaceous psamitic schist. Unclear foliation and lamination. 220.6 m , calcite vein. 55 l 12mm. 221.0 m , chalcopyrite - pyrrhotite - calcite vein. $40 \square 40 \mathrm{~mm}$. 222.5 m , chalcopyrite - pyrite - calcite vein. 65. 40 mm . $222.8 \mathrm{~m}-222.9 \mathrm{~m}$, chalcopyrite-sphalerite-pyrrhotite- calcite vein. $50 \square 90 \mathrm{~mm}$. in pyrite dissemination zone and sphalerite - chalcopyrite - pyrrhotite network. 223.5-223.9m, Dolerite dyke. 60 . Pyrrhotite - diss. Nonmagnetic. 224.0 m -,silty - fine sandy schist. tuffaceous? greenish by chlorite. 224.7 m , pyrite - pyrrhotite network. 234.0 m , foliation pyrite - calcite veinlets, along foliation. 50【 234.50 m , pyrite - calcite vein. $50 \square<30 \mathrm{~mm}$. with pyrite - calcite network. Calcareous-silty - sandy schist.foliation5 lamination40-90 Calcite veinlets along foliation. 244.0 m - , pyrite - calcite veinlet. 60 1 mm .20 cm interval. 246.5-246.7m, pyrrhotite - calcite netwo 247.4 m , calcite - pyrite vein. $65 \mathrm{5mm}$. 248.55 m , small fault. 60 L 20 mm . breccis -250.3 m , pyrite - calcite veinlet, 60 I 10 cm interval. 252.9 m , chalcopyrite - pyrrhotite - calcite vein. 40 C 50 mm . 253.5 m , chalcopyrite - pyrrhotite vein. 600 width $<6 \mathrm{~mm}$. 255.1 m , pyrite - pyrrhotite - calcite network. Pyrrhotite - calcite veinlet. 60 L width $<1 \mathrm{~mm} .10 \mathrm{~cm}$ interval. $256.2 \mathrm{~m}-257.9 \mathrm{~m}$, pyrrhotite disseminatio with chalcopyrite. silicified. 259.1 m -, chalcopyrite - pyrrhotite - calcite netwo silicified. Partly chlorite. More silicified. hard. calcite network. Calcareous \sim silty schist . hard. foliation $50 \square$). calcite network- $285.8 \mathrm{~m} \sim 287.4 \mathrm{~m}$, chalcopyrite - calcite - pyrrhotite vein 900 width $<70 \mathrm{~mm}$. cavity. -288.3m, Pyrrhotite network. partly chlo and ¢halcopyrite -)pyrite - chlorite along foliation 65[Silty \sim calcareous schist silicified. calcite veinlet. foliation50~7 lamination unstable p). $292.85 \sim 292.95 \mathrm{~m}$, pyrrhotite - calcite - quartz vein. $60 \square 40$ $293.1 \sim 293.3 \mathrm{~m}$,				256.7	256.8		0.15	(1)	0.577	0.0257	0.0218	38	8.76

MJTK- 5

MJTK- 6

MJTK- 6

MJTK- 6

MJTK-3

MJTK-3

MJTK-3

MJTK-3

MJTK-3

MJTK-3

					SAMPLE				CHEMICAL ANALYSIS						
$\underset{(\mathrm{m})}{\text { DEPTH }}$ COLUMN	ROCK NAME	DESCRIPTION	MINER.	ALTER.	No.	$\begin{gathered} \text { FROM } \\ (\mathrm{m}) \end{gathered}$	$\begin{aligned} & \text { TO } \\ & \text { (m) } \end{aligned}$	$\begin{gathered} \hline \text { WIDTH } \\ (\mathrm{cm}) \end{gathered}$	$\begin{gathered} \mathrm{Au} \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ (\mathrm{ppm}) \end{gathered}$	$\begin{aligned} & \mathrm{Cu} \\ & (\%) \end{aligned}$	Pb (\%)	$\begin{aligned} & \mathrm{Zn} \\ & (\%) \end{aligned}$	Fe (\%)	(\%)
	elitic Schis	Pelitic ~fine sandy schist alternation. foliation 20°. bedding $30 \sim 40^{\circ}$. with graphite. $519.4 \sim 519.6 \mathrm{~m}$, silty tuffaceous schist thin layer. 30°. (523.2 m , silty \sim fine sandy schist . foliation 40°. lamination 35°.) $\sim 532.2 \mathrm{~m}$. pelitic schist. $533.1 \mathrm{~m} \sim$, pelitic schist. with graphite. $534.9 \mathrm{~m} \sim$, fine sandy schist . lamination 30°. foliation $40 \sim 50^{\circ}$. lamination 45°. graphite. . Pelitic \sim silty schist . foliation $30-45^{\circ}$. lamination 45°. with calcite veinlets. graphite. 545.45 m , small fault. fructure zone (arround 570.10 m). 576.4 - . Silty schist. Foliation 20°, Lamina 55°. $581.3 \sim 581.5 \mathrm{~m}$, galena - chalcopyrite - sphalerite pyrrhotite - calcite vein. $35^{\circ}, 150 \mathrm{~mm}$. 581.7 m , chatcopyrite - galena pyrrhotite. $35^{\circ} .10 \mathrm{~mm}$. $582.0 \mathrm{~m} \sim 582.15 \mathrm{~m}$, psamitic (tuffaceous?) schist thin layer. 35°. 582.1 m - , silty schist. foliztion 40°, lamina 35°. 584.7 m , fault. $60^{\circ}, 10 \mathrm{~cm}$. 593.9 m . pyrite dissemination. with calcite.	(posp.cp.gn												

MJTK-3

MJTK-4

MJTK-4

					SAMPLE				CHEMICAL ANALYSIS						
(m) COLUMN	NAME	DESCRIPTION	MINER.	ALTER.	No.	$\begin{gathered} \text { FROM } \\ (\mathrm{m}) \end{gathered}$	$\begin{aligned} & \text { TO } \\ & \text { (m) } \end{aligned}$	WIDTH (cm)	$\begin{gathered} A u \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ (\mathrm{pom}) \end{gathered}$	Cu (\%)	$\begin{aligned} & \mathrm{Pb} \\ & (\%) \end{aligned}$	Zn (\%)	Fe (\%)	S (\%)
		Calcareous- pelitic schist. foliation $40-50^{\circ}$ bedded $15-45^{\circ}$. $105.65-105.75 \mathrm{~m}$, fault. argilizated. 65°. shered . 108.2-108.9, calcite vein. 40°. with pyrite. foliation $\rightarrow 30^{\circ} \rightarrow 40^{\circ}$. $124.7-126.0 \mathrm{~m}, 1 \mathrm{~cm}-6 \mathrm{~cm}$ interval, along foliation. pyrrhotite - calcite vein. $35-40^{\circ}$. Calcareous - sandy - pelitic schist. foliation $35-40^{\circ}$. bedded $15-40^{\circ}$. with calcite veinlets. 143.75-144.40m, chlorite - calcite vein. $40^{\circ}, 50 \mathrm{~cm}$. 151.05 m , calcite vein. with pyrrhotite and sphalerite. $30^{\circ} .30-40 \mathrm{~mm}$. $152.3 \mathrm{~m}-152.5 \mathrm{~m}$, chlorite - calcite vein, with pyrrhotite, sphalerite, chalcopyrite $25-30^{\circ} .180 \mathrm{~mm}$. calcite veinlet - network dominant (-158.7m). Calcareous schist.foliation 20-45 . bedded $25-40^{\circ}$. 171.3 m , calcite vein. $25^{\circ} .40 \mathrm{~mm}$. 174.4 m , calcite vein. $55^{\circ} .15-35 \mathrm{~mm}$. 175.3-176.2m, calcite vein.20-40. $<40 \mathrm{~mm}$. with averaging 15 cm interval.	po po,sp,cp	ch											

MJTK-4

MJTK-4

	ROCK NAME	DESCRIPTION	MINER.	ALTER.	SAMPLE				CHEMICAL ANALYSIS						
(m) COLUMN					No.	$\begin{gathered} \text { FROM } \\ (\mathrm{m}) \end{gathered}$	$\begin{aligned} & \text { TO } \\ & \text { (m) } \end{aligned}$	$\begin{gathered} \text { WIDTH } \\ (\mathrm{cm}) \end{gathered}$	$\begin{gathered} \mathrm{Au} \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ (\mathrm{pom}) \end{gathered}$	$\begin{aligned} & \mathrm{Cu} \\ & (\%) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Pb} \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{Zn} \\ & (\%) \\ & \hline \end{aligned}$	Fe (\%)	S
	Pelitic Schist	Pelitic \sim silty \sim calcareous schist. foliation 50°. bedding $10^{\sim} \sim 30^{\circ}$. calcite network \sim veinlets. with graphite. $305.25 \sim 305.45 \mathrm{~m}$, sandy schist. bedding 10°. $306.6 \mathrm{~m} \sim$, shered zone. Pelitic \sim silty schist. -312.3 m , shered zone. $312.4 \sim 313.8 \mathrm{~m}$, tuffaceous \sim sandy schist. calcite. silicified. $313.8 \sim$, pelitic \sim calcareous schist. foliation 30°. lamination 25°. 317.85 m . calcite vein. 70°. 10 mm , with pyrite. Pelitic \sim silty schist. foliation $15 \sim 20^{\circ}$. Unstable lamination (10° ?). with graphite calcite networks. \downarrow foliation steeper. ($335.3 \mathrm{~m} 35^{\circ}$). Pelitic \sim silty schist . foliation $45^{\circ}(\mathrm{p})$. lamination 10° in general. with graphite. $343.3 \sim 343.5 \mathrm{~m}$, fine tuffceous \sim silty layer. 25°. calcite dominant. Pelitic \sim silty schist . foliation 20°. lamination 20°. $370.6 \mathrm{~m} \sim$, fine tuffaceous schist. calcite dominant. $374.2 \mathrm{~m} \sim$, pelitic \sim sandy schist. with graphite. $374.7 \sim 375.0 \mathrm{~m}$, fructure . pyrite diss. Pelitic \sim sandy schist . calcareous . foliation $40-50^{\circ}$. lamination, generally $30-45^{\circ}$. 378.95 m , chalcopyrite-pyrrhotite -calcite vein. $40^{\circ} .30 \mathrm{~mm}$. with graphite. foliation almost vertical. 387.7 m . pyrite dissemination.													

MJTK-4

MJTK-4

COLUMN	ROCK NAME	DESCRIPTION	MINER.	AlTER.	SAMPLE				CHEMICAL ANALYSIS						
					No.	$\begin{gathered} \text { FROM } \\ (\mathrm{m}) \end{gathered}$	$\begin{aligned} & \text { TO } \\ & \text { (m) } \end{aligned}$	$\begin{gathered} \hline \text { WIDTH } \\ (\mathrm{cm}) \end{gathered}$	$\begin{gathered} \mathrm{Au} \\ (\mathrm{pom}) \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ (\mathrm{ppm}) \end{gathered}$	$\begin{aligned} & \mathrm{Cu} \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{Pb} \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{Zn} \\ & (y) \end{aligned}$	$\begin{aligned} & \mathrm{Fe} \\ & \text { (\%) } \end{aligned}$	S (\%)
		Silty-pelitic schist partly sandy, calcareous. foliation $\angle 30-50^{\circ} \mathrm{dip}$. lamination $20-\angle$ $60^{\circ} \mathrm{dip}$. 501.8-502.2m, chalcopyrite-sphalerite-pyrrhotitecalcite vein. along foliation. $\angle 50^{\circ}$ dip. 160 mm . Sultides are anhedral to calcite. With parallel veinlets. Silty-pelitic schist. foliation $\angle 50^{\circ} \mathrm{dip}$. lamination $\angle 35^{\circ} \mathrm{dip}$. 511.3 m , chalcopyrite-sphalerite-pyrite-pyrrhotite -calcite vein. along foliation. $\angle 35^{\circ}$ dip. 30 mm . 511.55 m , chalcopyrite-sphalerite- pyrrhotite -pyrite-chlorite-calcite vein. $\angle 40^{\circ} \mathrm{dip} .35 \mathrm{~mm}$. 511.7 m , sphalerite-pyrite-pyrrhotite- calcite vein. $\angle 25^{\circ} \mathrm{dip} .20 \mathrm{~mm}$. $514.0-514.5 \mathrm{~m}$, fault. $\angle 45^{\circ} \mathrm{dip}$? pyrite dissemination. silty-fine sandy schist. foliation $\angle 30^{\circ} \mathrm{dip}(\mathrm{p})$. lamination $10-\angle$ $60^{\circ} \mathrm{dip}$. silty-line sandy schist. foliation(p). lamination20- $\angle 70^{\circ}$ dip. partly friable. silty schist. calcareous. toliation $\angle 20^{\circ}$ dip. lamination $\angle 20^{\circ}$ dip. 553.9 m . chlorite-calcite vein. $\angle 40^{\circ}$ dip. 200 mm . silty-pelitic schist. foliation $\angle 35^{\circ}$ dip. lamination $60-30-\angle 10^{\circ} \mathrm{dip}$. calcareous. pelitic-sandy schist. foliation $\angle 30^{\circ} \mathrm{dip}$. lamination $\angle 25^{\circ} \mathrm{dip}$. calcareous. partly friable. $583.85-584.15 m$, tuff? layer. Fine and c 586.65 m , pyrrhotite-calcite vein. $\angle 25^{\circ} \mathrm{di}$ 588.0 m , pyrrhotite-calcite veinlet. $\angle 30^{\circ} \mathrm{C}$ 588.5-589.1m, pyrrhotite-chlorite-calcite pelitic schist. alternation with partly silty foliation $\angle 25^{\circ}$ dip. lamination $\angle 30^{\circ} \mathrm{dip}$. 594.2 .594 .35 m , fine tull layer. $\angle 30^{\circ}$ dip. Drilled to 601.20 m .	popyispicp py,po,sp,cp py	ch											

MJTK-5

MJTK-5

MJTK-5

MJTK-5

MJTK-5

MJTK-6

MJTK-6

MJTK-6

COLUMN	ROCK NAME	DESCRIPTION	miner.	Alter.	SAMPLE				CHEMICAL ANALYSIS						
					No.	$\begin{gathered} \text { FROM } \\ (\mathrm{m}) \end{gathered}$	$\begin{aligned} & \mathrm{TO} \\ & (\mathrm{~m}) \end{aligned}$	$\begin{gathered} \text { WIDTH } \\ (\mathrm{cm}) \end{gathered}$	$\begin{gathered} \mathrm{Au} \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ (\mathrm{ppm}) \end{gathered}$	$\begin{aligned} & \mathrm{Cu} \\ & (\%) \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{Pb} \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{Zn} \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{Fe} \\ & (\%) \end{aligned}$	S $(\%)$
		silty-pelitic schist. calcareous. Foliation (p). partly $\angle 20^{\circ} \mathrm{dip}$. bedding $\angle 10^{\circ} \mathrm{dip}$. partly with graphite. 204.50 m . small fault ($\angle 80^{\circ} \mathrm{dip}$) with pyrite-calcite vein (w:9-18mm). 211.7 m -fault. $\angle 40^{\circ} \mathrm{dip}$. $211.3 \sim 211.7 \mathrm{~m}$ tufl layer, $\angle 15^{\circ}$. $215.0 \sim 216.8 \mathrm{~m}$, sheared zone. pelitic schist. foliation $\angle 20^{\circ}$. bedded 20°. $219.0 \mathrm{~m} \sim$, sheared zone. With quartz vein fragments. pelitic \sim sandy schist. foliation $\angle 30^{\circ}$. lamina \sim bed 10°. Chlorite - calcite network along fractures. Pyrite dissemination. -229.0 m , tractured zone \sim sheared zone. $226.70 \sim 226.85 \mathrm{~m}$. (pyrite-) chlorite- quartz- calcite vein. $\angle 35^{\circ} .120 \mathrm{~mm}$. pyrite is at edge (p). 230.90 m , pyrite- calcite vein. \angle $30^{\circ} .8 \mathrm{~mm}$. pelitic \sim silty (partly sandy) schist. foliation $\angle 30-45^{\circ}$. bedded $\angle 45^{\circ}$. friable. $243.6 \sim 256.5 \mathrm{~m}$, fault? $\angle 35^{\circ}$. $257.1 \sim 257.85 \mathrm{~m}$, pyrite - pyrrhotite dissemination and replacement along foliation. (Silicified in the upper zone, and calcite network in the lower zone) sulfides disseminated along foliation(p). pelitic \sim sandy schist. foliation \angle 25°.bedded $\angle 25^{\circ}$. $260.65 \sim 260.70 \mathrm{~m}$, chalcopyrite- pyrite- quartz- calcite netw friable, partly sheared. pelitic \sim silty schist. foliation $\angle 60^{\circ}$.bedd 270.1 m -, sheared zone. (sheared pelitic schist, calcareous) partly spotted pyrite. pelitic schist. with graphite. $276.85 \sim 277.40$, pyrrhotite vein. With chalcopyrite (p). silicified (p). and pyrrhotite network for 25 cm . Silty - fine sandy schist. foliation $<30-3$ calcite veins with chlorite. partly graphite $280.6 \sim 281.2 \mathrm{~m}$, calcite vein. With dominant pyrrhotite in the lower p d and with chalcopyrite, pyrite and chlorit Sorted \rightarrow sandy schist (calcareous). Calcite veins (w: $8 \sim 40 \mathrm{~mm}$) with averag $283.9 \mathrm{~m} \sim$, silty schist. foliation $=$ beddin 285.5 m , sphalerite-pyrite-calcite vein. 286.95 m -, fractured and friable. Pelitic - silty -line sandy schist alternatio Foliation = bedding $\angle 10^{\circ}$. Partly friable with graphite and calcite v		ch											

