CHAPTER 10

FUTURE ROAD NETWORK DEVELOPMENT PLAN

10.1 SUMMARY OF PROBLEMS OF EXISTING ROAD NETWORK

Problems of existing road network were discussed in Chapter 5 and summarized hereunder:

Problems of Existing Road Network

Study Area

- A comb type of road network is formed. Along the coastal line, Bacolod Coastal Road (NS-1) runs in the north-south direction, which functions as a base of road network.
- Bacolod-Murcia-San Carlos Road which is the inter-city road connecting the west coast with the east coast in the Island branches off from NS-1.
- Another east-west direction roads branch off from NS-1, however, these are not connected with each other except by NS-1, therefore, all inter-city or inter-municipal traffic has to pass on NS-1.
- Road density is still very low.
- There are 5 sugar mills, 4 within the Study Area and 1 adjacent to the Study Area. Heavily loaded sugar trucks moving at slow speed travel on NS-1, thus affecting travel speed of other vehicles.
- Trip desire line shows that the majority of trips concentrates to Bacolod City from the rest of areas in Metro Bacolod.

Inside Bacolod City Circumferential Road (BCCR)

- A mesh type road network is formed. Most of component roads of a mesh have 4-lanes.
- Roadsides have been densely built-up, thus possibility of further widening is less due to anticipated social impact.
- Bacolod City identified three priority areas for urban development. Two areas are located along BCCR and the other is at outside BCCR, where a new road is required to guide the planned urbanization.
 - LOS E : Short section of coastal road
 - LOS D : North and South Extension of the above short section of the Coastal Road
 - Bacolod Circumferential Road
 - Bacolod-Granada Road
 - Roads in CBD of Bacolod

10.2 FUTURE PROBLEMS OF EXISTING ROAD NETWORK (Analysis of "Do Nothing" Case)

In order to identify future problems of the existing road network, "Do Nothing" case analysis was undertaken. "Do Nothing" case means that if no investment is made for road network improvement, but traffic grows as predicted, what would be the traffic situation on the road network. In other words, traffic demand in year 2022 was assigned to the 2003 road network. Traffic assignment result is shown in Figure 10.2-1. Level of service of roads in Bacolod City under "Do Nothing" case in is shown in Figure 10.2-2.

Future Problems of Existing Road Network -

- Due to effect of new Airport, Bacolod-Silay Section of NS-1, Silay-Guimbalaon Road (NS-1-New Airport Section) will carry heavy traffic, exceeding traffic capacity.
- Two-lane section of Bacolod City Circumferential Road (BCCR) will attract more traffic than its capacity.
- Priority area for urban development outside BCCR will generate heavy traffic, thus new roads are required.
- Bacolod-Granada Road will attract heavy traffic. Section outside BCCR will exceed its traffic capacity.
- Within Bacolod Circumferential Road, most of roads will exceed their capacity and level of service will be aggrevated to D, E and F. However, further widening of the existing 4-lane road is difficult.

FIGURE 10.2-1 FUTURE TRAFFIC VOLUME (Do Nothing) IN 2022

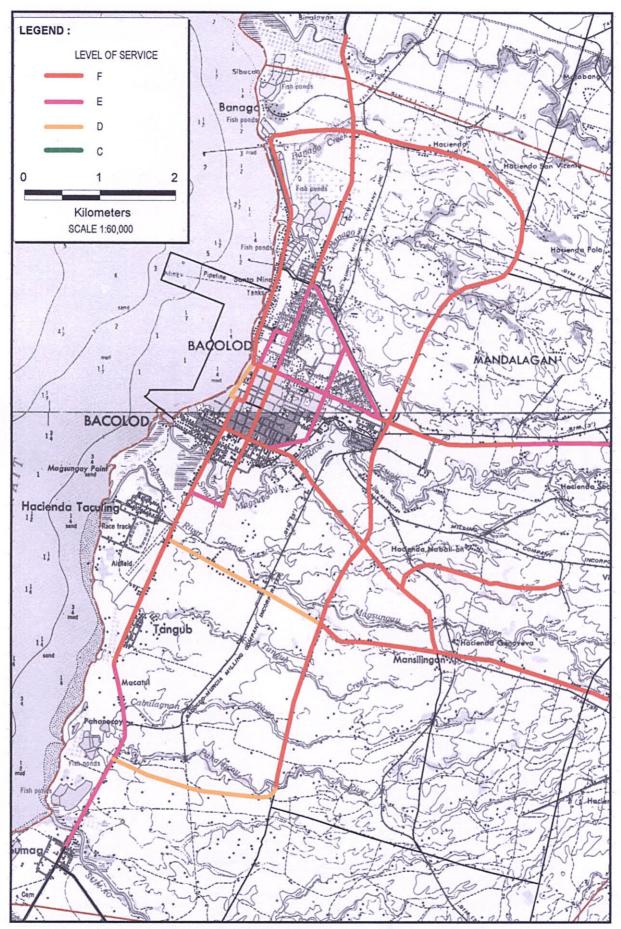


FIGURE 10.2-2 LEVEL OF SERVICE OF ROADS IN BACOLOD CITY : DO NOTHING CASE IN 2022

10.3 DEVELOPMENT OBJECTIVES AND STRATEGIES

10.3.1 Development Objectives

Objectives of the approaches are summarized as follows.

a) Reduction of traffic congestion in the city proper area. b) Road network which will guide and support planned urban development. c) Formation of flexible road network which will provide alternative routes to road users. d) Road network which will contribute to the economic development of the Study Area as well as its hinterland. e) Road network which will enhance international and domestic investment in the Study Area as well as its hinterland. f) Road network which will realize expected investment effects of related

- projects. a) Road network development with environmental and social
- g) Road network development with environmental and social considerations.

10.3.2 Development Strategies

To formulate the project of a master plan, the following strategies are considered.

- Removal of unnecessary traffic to pass through the city proper area;
- Full utilization of existing road stock in the city proper area;
- Providing new roads at the strategic areas;
- Improvement of transport efficiency of the routes that connect production to consumer zones, agricultural production to agro-industry area, and production and export facilities;
- · Securing of accessibility to a new airport and sea ports; and
- Avoiding road network development in the environmentally and socially critical areas.

Road network development objectives, strategies and measures to be adopted are shown in Table 10.3-1.

TABLE 10.3-1 ROAD NETWORK DEVELOPMENT OBJECTIVES, STRATEGIES AND MEASURES

<u>Measures To Be Taken</u>	Construction of Parallel Road.	Construction of bypass roads.	Strengthening of traffic management.	Improvement and/or widening of existing roads.	Improvement of existing road , which connect agricultural production area with port	Proper selection of road	alignment and proper road design.
		Ż	<				?
Development Strategies	Removal of unnecessary traffic to pass through the City Proper area.	Full utilization of existing road stock in the City Proper area.	Providing new roads at the strategic areas.	Improvement of transport efficiency of the routes which connect agricultural production area, agro-industry area and export	Strengthening of accessibility to new airports, and ports.	Avoiding road network development in the environmentally and socially critical areas.	
		//					
Development Objective	Reduction of traffic congestion in the City Proper area.	Formulation of flexible road network which will provide alternative routes to road users.	Formulation of flexible road network which will provide alternative routes to road users.	Road network which will contribute to the economic development of the Study Area as well as its hinterland.	Road network which will enhance international and domestic investment in the Study Area as well as its hinterland.	Road network which will realize expected investment effects of related projects.	Road network development with environmental and social considerations.

10.4 FUTURE ROAD NETWORK ALTERNATIVES

10.4.1 Basic Road Network Planning Concept

The following concepts were adopted to formulate the road project of a master plan.

(1) Inside of Bacolod City Circumferential Road

 Present road network is maintained, since existing road sides have been fully developed, widening of existing roads and/or construction of new roads are not practical due to negative social impacts.

(2) Outside of Bacolod City Circumferential Road

- Road network type is to be converted from a present comb type to a ladder type to realize flexible road network for road users.
- To form a ladder type of road network, one or two parallel roads to NS-1 in the north-south direction is to be constructed.
- Urbanization in Talisay and Silay is planned along NS-1 towards the east with the width of about 3 to 3.5 km. A road which will guide the planned urban expansion is to be provided.
- A road which will support and guide the planned urbanization Bacolod City outside BCCR is to be provided.
- A road which will efficiently connect sugar mills with sugar cane production area is to be provided to support the sugar industry which is the major and the most important industry of the Island.
- A road which provides efficient access to a new airport is to be provided.

10.4.2 Road Network Development Alternatives

Alternatives depend on where and to what extent north-south direction roads parallel to NS-1 be placed.

- 1) Alternative 1 (Figure 10.4-1)
 - Additional two parallel roads are provided to form flexible road network which will provide alternative routes to road users.
 - NS-2 is provided by extending BCCR up to Silay in the north and up to Sum-ag-Abuanan Road in Bago City in the south.
 - to support urbanization of Talisay City, Silay City and adjacent area of Bacolod City in Bago City.
 - to provide efficient access to new airport in Silay City.
 - NS-3 is a so-called "Sugar Road". Inside Bacolod City, an alignment follows the one proposed in the "Comprehensive Land Use Plan, 2010", then is extended up to proposed Victorias Bypass. In the south, the existing road is extended up to Maao.
 - to support the economic development of the Study Area, particularly sugar industry.
 - to support planned/urbanization in Bacolod City
 - NS-4 is provided to link Murcia Conception.

2) Alternative – 2 (Figure 10.4-2)

- Same concept as Alternative 1 is adopted.
- NS-2 is further extended up to Victorias City in the north.
- NS-3 is planned to provide efficient access to sugar mills. In Bacolod City and Talisay City, a mesh type network is planned to be formed.

3) Alternative – 3 (Figure 10.4-3)

- Instead of providing two parallel roads, only <u>one</u> parallel road is provided, which runs throughout the Study Area.
- Access to a new airport from Bacolod City is provided at the backside of a new airport.

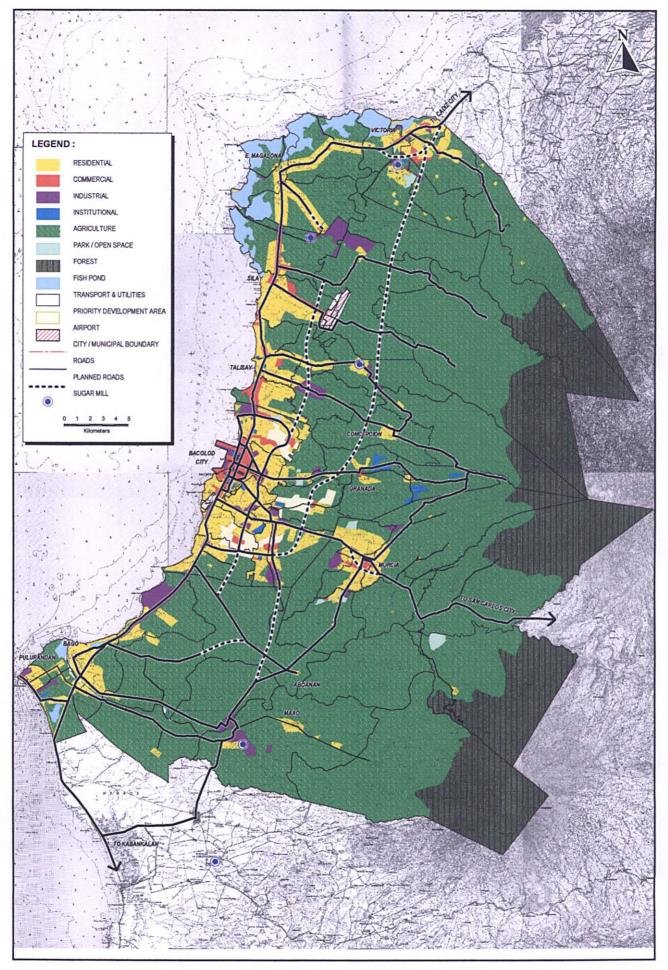


FIGURE 10.4-1 FUTURE ROAD NETWORK : ALTERNATIVE - 1

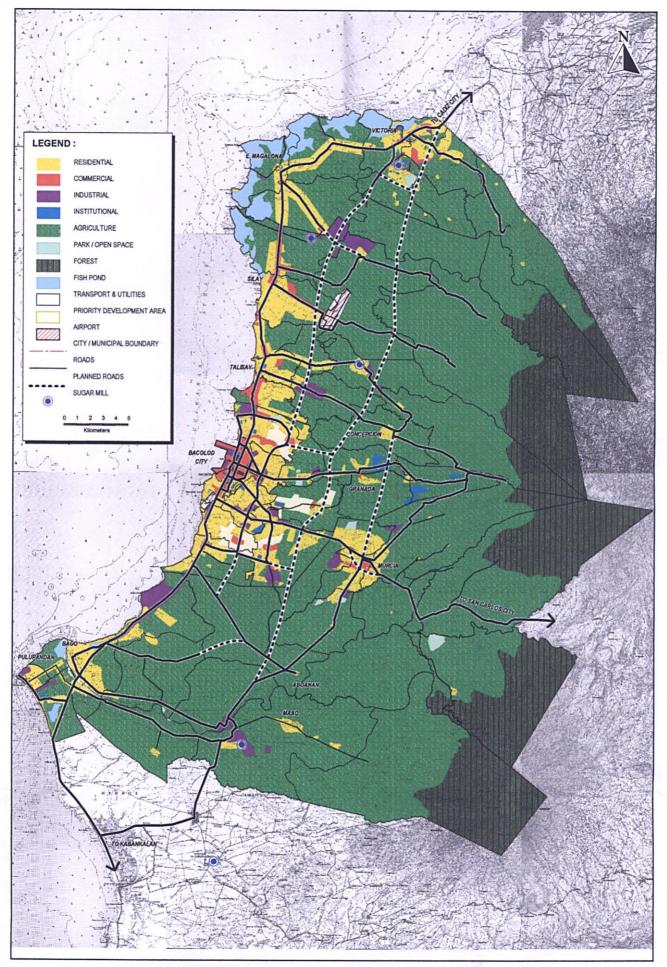


FIGURE 10.4-2 FUTURE ROAD NETWORK : ALTERNATIVE - 2

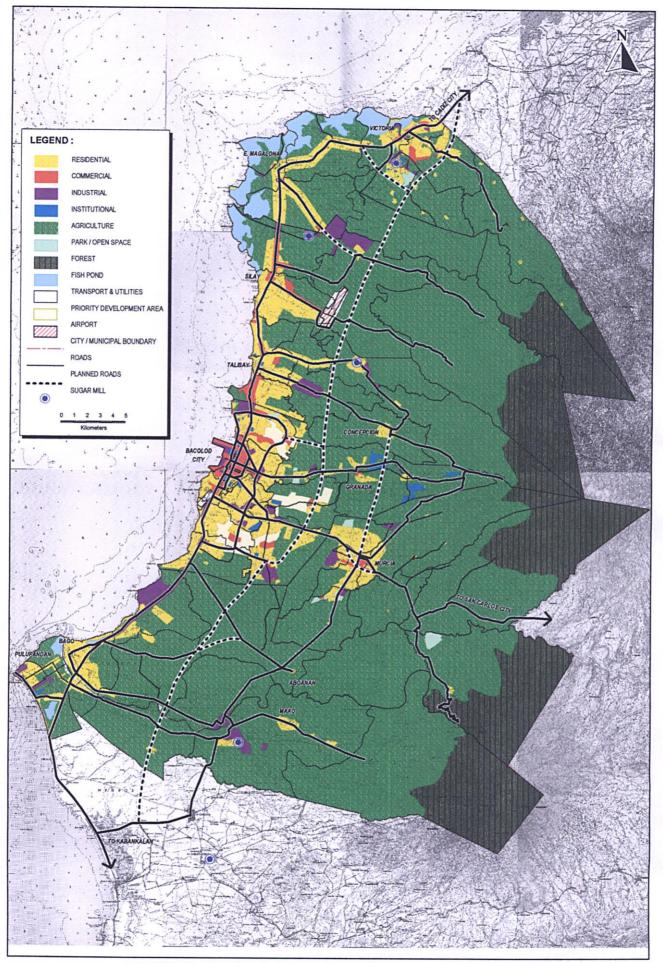


FIGURE 10.4-3 FUTURE ROAD NETWORK : ALTERNATIVE - 3

10.5 EVALUATION AND SELECTION OF FUTURE ROAD NETWORK

10.5.1 Traffic Assignment Results

Traffic demand in 2022 was assigned to road network of each Alternative, and results are shown in Figure 10.5-1 to Figure 10.5-3. Traffic efficiency of each Alternative is discussed in the succeeding section.

10.5.2 Evaluation of Road Network Alternatives

Evaluation of road network alternatives is shown in Table 10.5-1.

Alternative-2 was recommended for the future road network in Metro Bacolod in view of the following:

- Best scheme in terms of traffic efficiency.
- Planned urbanization will be properly guided.
- Sugar industry will be vitally supported.
- Requires the highest investment, however, compensated by traffic cost savings.
- New Airport Access Road and NS-3 Sugar Road are strategically placed by connecting urban centers

FIGURE 10.5-1 TRAFFIC ASSIGNMENT IN METRO BACOLOD -2022- [ALTERNATIVE-1]

FIGURE 10.5-2 TRAFFIC ASSIGNMENT IN METRO BACOLOD -2022- [ALTERNATIVE-2]

FIGURE 10.5-3 TRAFFIC ASSIGNMENT IN METRO BACOLOD -2022- [ALTERNATIVE-3]

			Do Nothing Case	Alternative - 1		Alternative -2		Alternative - 3	
Basic Concept 1 A Is for net net net net net net net fiff	of for Road Network Fo A ladder type of networ formed to realize flexib network for road users. Road network to suppo rubanization. Road network to suppo industry. Efficient access to a ne	 Basic Concept for Road Network Formation A ladder type of network is formed to realize flexible road network for road users. Road network to support planned urbanization. Road network to support sugar industry. Efficient access to a new airport. 	1	 Two parallel roads NS-2 up to Silay in the north and up to Sum-ag-Abuanan Road in Bago in the south. NS-3 Inside Bacolod City, an alignment follows City's recommendation. Victorias Bypass proposed by the City Government, 	frage p	 Two parallel roads NS-2 extended up to Victorias in the north. NS-3 NS-3 Planned to provide efficient access to sugar mills. In Bacolod City and Talisay City, a mesh type network to be formed. 	< City,	• One parallel road • NS-2 is provided throughout the Study Area.	
Road Component Ex	New Roads Existing Roads	<u>s</u>		61.40 (1.00) 411.10 (1.00)		106.80 (1.74) 411.10		97.60 (1.59) 411.10	
Estimated Cost		Civil Work	1 1	5,556.00 (1.00)		7,036.30 (1.27)		508.70 (1.08) 6.811.90 (1.21)	
(Million P)		ROW Acquisition	-	178.40 (1.00)		228.30 (1.28)		182.70 (1.03)	
	PCU-Km	Iotal Inside RCCR	- 1 832	5,734.40 (1.00) 1 566	><	7,264.60 (1.23)	⊲¢	6,994.60 (1.21) - 1.454	00
		Outside BCCR	5,253	4,905		4.716		4.677	
]	- 1	Whole Study Area	7,085	5,471		6,133)	6,131	Ø
<u>د</u>	PCU-Hour	Inside BCCR	74	41	Δ.	36	0	37	
	(000,1X)	Whole Study Area	213 287	132 173	۵	114	0	120 157	bc
	Volume/Capacity below 1.0	below 1.0	31	51	0	53	Ø	51	
- <u>-</u>	Ratio inside BCCH	1.0 - 1.5	12	3		0		3	0
2022)		above 1.5	12	-				1	
	Volume/Capacity	below 1.0	344	489	۵	499	0	475	0
141	(in Km)	above 1.5	29	+7				13	
	6	Inside BCCR	24.8	38.2		39.4		39.3	T
Tre	8	Outside BCCR	24.7	37.2		41.4		39.1	
	(km / hr)	Whole Study Area	24.7	37.4	٩	41.1	0	39.1	0
0 1 1 1 0 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1		VOC	14,259	11,199		10,209		10,130	
I rame cost (1,000 P/day)		Total	6,023 20.282	3,639	<	3,064 13,273	¢	3,209	C
Economic Return		Single Year B/C Ratio		7.01		7.17		7.04	
				NS-3 alignment in Bacolod		Best scheme in terms of		Access to a new airport	
				City is not so good for urbanization. • Victorias Bypass needs to pass through the area		traffic efficiency. - Planned urbanization will be property guided. - Sugar industry will be	Ø	is not improved. Planned urbanization in Bacolod City, Talisay City and Silay City is not sumorted	C
				further than proposed one.		vitally supported.))
Other Factors						 Requires the highest investment, but compensated by traffic cost savings. Implementation schedule must he son hanned to 		 NS-2 in the south passes through rice fields in Bago, where urbanization should be controlled. 	
						meet possible fund allocation.			
Ranking and Recommended Alternative	commender	d Alternative		2	۵	1 (Recommended)	0	3	⊲
Note: Com	npensation cc	Note: Compensation cost is not included yet.		:					

-164**-**

10.6 FUNCTIONAL ROAD CLASSIFICATION AND STANDARD ROAD CROSS-SECTIONS

10.6.1 Present Road Classification in the Philippines

1) Administrative Classification

In the Philippines, the present road classification has been established by a series of Executive Orders, Republic Acts and/or Presidential Decrees. Of these the most fundamental was the Republic Act No.917 or "The Philippine Highway Act", which provided five categories of classification of roads.

- National Highway/Roads
- Provincial Highway/Roads
- City Roads
- Municipal Roads
- Barangay Roads

In 1955, the classification was more clearly re-defined by the Executive Order No.113 (EO). Under this EO, the Department of Public Works and Highways (DPWH) has responsibility of National Roads in terms of planning, construction and maintenance; whereas Local Government Units (Province, City, and Municipality) are responsible for provincial roads, city roads, municipality roads, barangay roads within their jurisdictions, respectively. The Provincial, City, or Municipality Engineers Offices execute the road planning, construction, and maintenance. Thus the administrative road classification is clearly defined and shown in Table 10.6 -1.

Road	Level of	Definition
Category	Responsibility	
National Road	DPWH	Road continuous in extent that form part of the main trunk link system; all roads leading to national air ports, national seaports, parks or coast-to-coast roads.
Provincial Road	Provincial Government	Roads connecting one municipality with another; all roads extending from a municipality or from a provincial or national road to a public wharf or railway station; and any other roads to be designated by the Province.
City Road	City Government	Road/streets within the urban area of the city to be designated by the City.
Municipal Road	Municipal Government	Roads /streets within the poblacion (populated) area of a municipality to be designated by the Municipality.
Barangay Road	Barangay Road	Rural roads located either outside the urban area of city or outside industrial, commercial, or residential subdivisions that act as feeder farm-to-market roads, and which are not otherwise classified as national, provincial, city, or municipality road. Roads located outside the poblacion area of municipality and those roads located outside the urban area of a city to be designated as such by the Barangay Council concerned.

TABLE 10.6-1 ADMINISTRATIVE CLASSIFICATION

Source: DPWH, JICA, Roads in the Philippines 2003

2) Functional Classification for National Road

The DPWH adopts a functional road classification of the national roads; National Arterial roads and Secondary roads. The national arterial roads are sub-classified into three groups:(1) North –South Backbone; (2) East-West Laterals; and (3) Other Strategic Roads. These classifications are summarized in Table 10.6-2

Fund	ctional Classification	
	North-South Backbone	A backbone road network in consideration of road and sea (ferry) linkages. This covers also interconnection of primary centers and road leading to growth corridor.
Arterial Road	East-West Laterals	Arterial roads which inter-link the North-South Backbone road network in an east-west lateral orientation across the country with an interval of 50 to 200 kilometers.
Arte	Strategic Road	Roads which connect other primary entries and all secondary and tertiary centers. These also interconnect the above category roads in an appropriate interval as well as forming a closed network and alternative roads. It includes also island circumferential and cross-island road.
Secondary National Road	National Roads Other than At	ove

 TABLE 10.6-2
 FUNCTIONAL CLASSIFICATION OF NATIONAL ROADS

Source: DPWH, JICA, Roads in the Philippines 2003

As for the Provincial, City, Municipal, and Barangay roads, there is no clear functional road classification.

10.6.2 Functional Classification of Roads in the Study Area

1) Functional Road Classification Criteria

The Study Area consists of urban and rural areas. Majority area in Iloilo City is urban and the rest of the Study Area is predominantly rural. Thus, most of roads pass through both urban and rural areas. Under such situation, functional road classification criteria under this Study were established as shown in Table 10.6-3.

			Responsibility
Road Classification	Criteria	DPWH	Provincial/City Government
Primary Arterial Road	 Constitute a backbone in overall road network. Primarily carries through traffic with long trip length. Provides direct access to major transport facilities such as an airport and/or a port 	Ø	_
Arterial Road	 Connects major sources of traffic generation with primary arterial roads. Carries relatively long trip traffic. 	Ø	_
Collector Road	 Connects arterial roads with local roads for collection and distribution of traffic. Carries relatively short trip traffic. 	Ø	Ø
Local Road	 Provides access to roadsides and local communities. Primarily carries local traffic and limits through traffic. 	_	Ø

TABLE 10.6-3 FUNCTIONAL ROAD CLASSIFICATION CRITERIA AND ADMINISTRATIVE RESPONSIBILITY

Based on the criteria, roads in the Study Area were classified by function as shown in Figure 10.6-1.

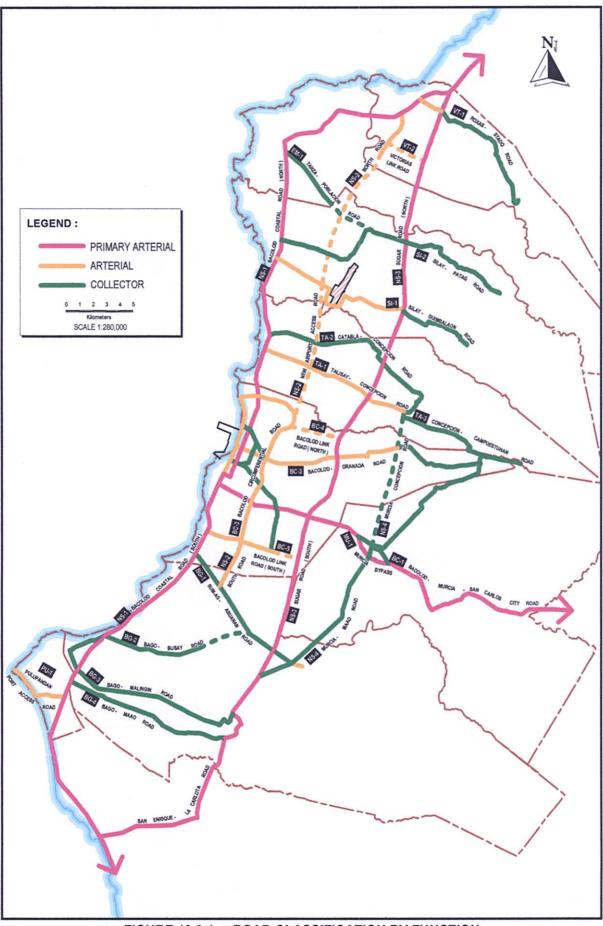
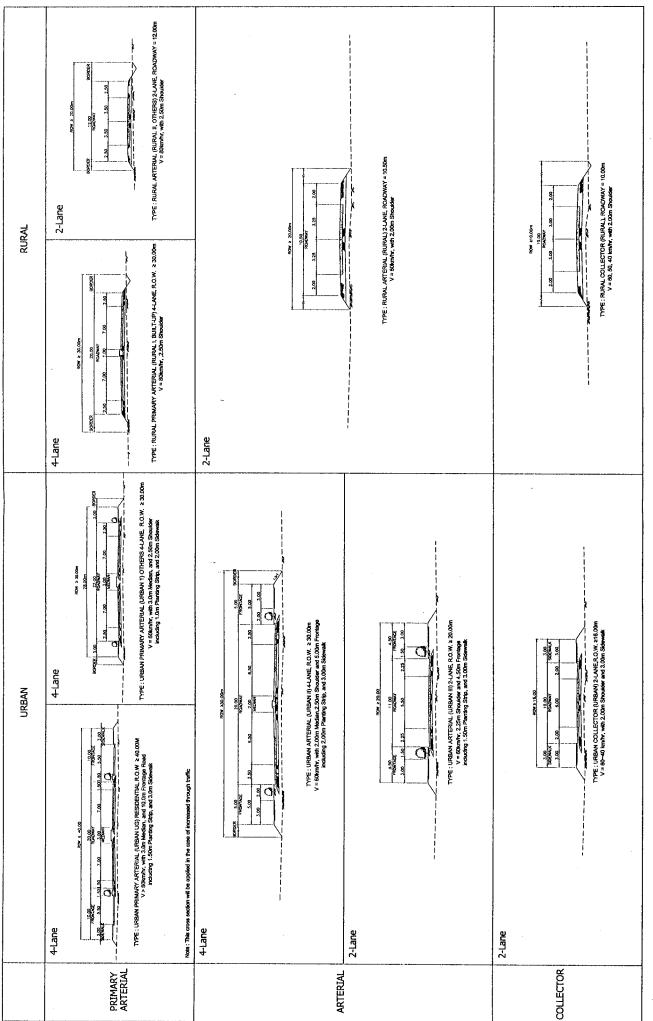


FIGURE 10.6-1 ROAD CLASSIFICATION BY FUNCTION

10.6.3 Proposed Design Criteria and Standard Road Cross-Section by Function


Table 10.6-11 presents proposed design criteria and Figure 10.6-2 shows standard road cross-section.

Road Function	Area	a	Design Speed	Lane Width	Right-of-Way
		UG	80	3.50	40
Primary Arterial	Urban	I	80	3.50	30
Thinary Attendi		1	80	3.50	30
	Rural	11	80	3.50	20+
	Urban	11	60	3.25	30
Arterial		111	60	3.25	20
	Rura	al	60	3.25	20+
Collector	Urba	n	60,50,40	3.00	16
	Rura	al	60,50,40	3.00	10+

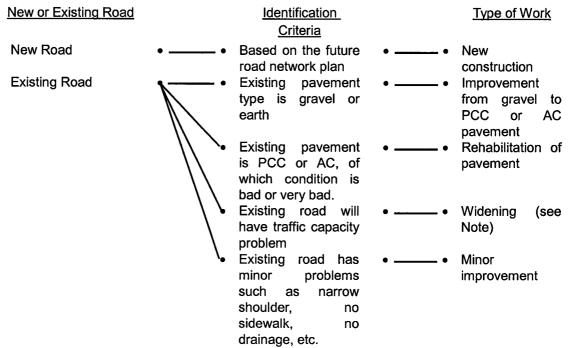
TABLE 10.6-11 RECOMMENDED ROAD CLASSIFICATION AND CROSS-SECTION

Note: The above cross-section will be adopted taking the existing existing and possible ROW into consideration. Some variation in shoulder, sidewalk, median except lane width be applicable.

.

-170-

.


FIGURE 10.6-2 STANDARD CROSS SECTION

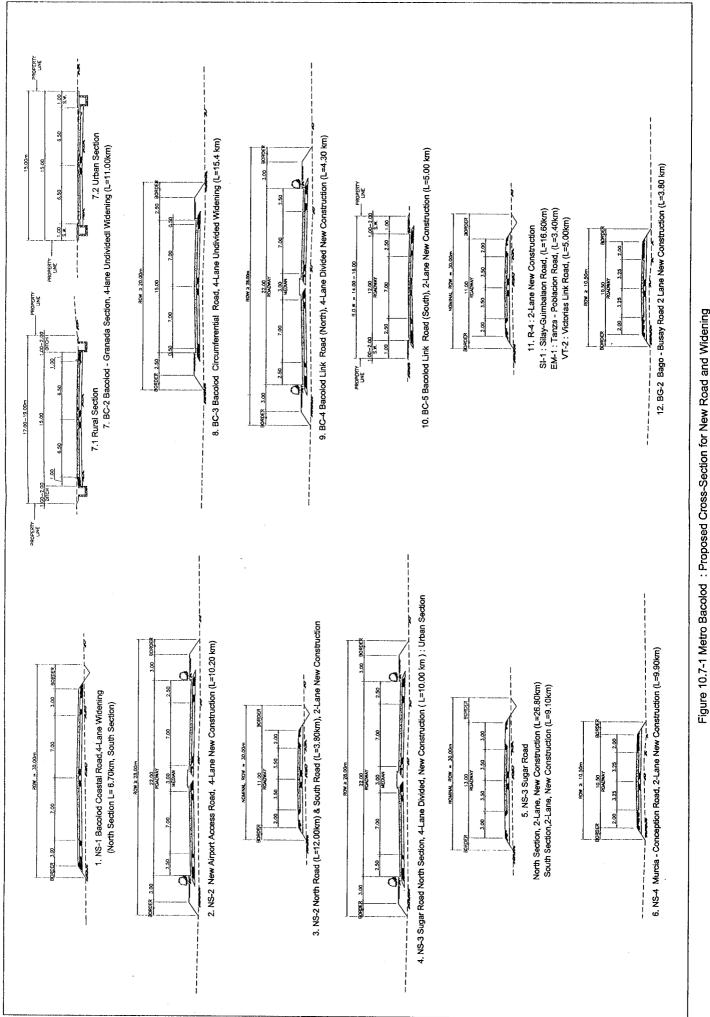
10.7 ROAD PROJECTS AND COST ESTIMATE

10.7.1 Road Projects

1) Road Project Identification Criteria

Road project identification criteria were established as follows:

Note: Roadsides of most of existing roads in the urbanized area have been densely developed or built-up, therefore, widening needs to be planned to minimize adverse social impacts.


2) Identified Road Projects

Identified road projects are shown in Table 10.7-1. Type of road cross-section to be adopted is shown in Figure 10.7-1, together with applied cross-section to the future road network in Figure 10.7-2, and proposed bridge location map in Figure 10.7-3.

										() existing ROW: m
Road	Road Name		Admi.	Road Length		Existing Condition	Time of Imminiant	Additional		
o Z			Classi.	(km)	No. of Lane	Pavement Condition		ROW	Type of Cross	Kemarks
I-SN	Bacolod Coastal North Section	ion	NR	28.9	4	AC (Fair)	No work	0 (30)	344401	
			-	15.8	2	PCC (Fair)	Widening to 4-lane (undivided)	0 (30)	1	
	South Section		¥	C. 02	4/2	PCC (Good), 4-lane = 15.6m, 2-lane = 4.9km of which widening is on-acing.	No work	0 (30)		
		up to Study Brdy.	RN	9.0	2	PCC (Good)	No work	0 (30)		
NS-2	New Airport Access Road	-	I	10.2			New construction (4-lane divided)	30	2	
	North Road		1	14.5			New construction (2-lane)	30	m	
	South Road		1	3.8	1		New construction (2-lane)	U ^c	~	
0								2	۰	
			I	26.8			New construction (2-lane)	30	5	
	South Secti	ion	1	9.1	1	F	New construction (T-haile divided)	5	4 U	
NS-4	Murcia-Conception Road		1	6'6	1		New construction (2-lane)	20	9	
	Murcia-Maao Road		NR	18.5	2	PCC (Good)	No work	0 (20)		
BC-1	Bacolod-Murcia-			8.9	4	PCC (Gmd)	No work			
	San Carlos City Bacolod-Murcia	urcia	an					(n7) n		
			Í	3.7	2	PCC (Good)	No work	0 (20)		
	Murcia-Stuc	Murcia-Study Area Bdry.Section	NR	14.5	2	PCC (Good)	No work	0 (20)		
BC-2	Bacolod-Granada Jct. Bacolod	Jct. Bacolod Coastal Road-Jct. Bacolod	R	0.8	4	PCC (Good)	No work	0 (20)		
		nnai koad section d Circiimfarantial Doad-Granada	dN	20	,					
	Proper Sect	Proper Section	Y.	0.0	7	Pur (6000)	Widening to 4-lane	0 (20)	7.1, 7.2	Removal of encroached structures needed.
	Granada Pr	oper-End of the Road	NR	12.7	7	PCC (Good) L=4.9km, Gravel (Bad) L=2.4km	Improvement from gravel to PCC/AC pavement	0 (20)	12	
BC-3	Bacolod Circumferential Road		NR	2.7 (Aaar. Lenath)	4	PCC (Good)	No work	0 (30)		
		u	NR	15.4	7	PCC (Good)	Widening to 4-lane	0 (30)	8	Removal of encroached
BC-4	Bacolod Link Road (North)		1	(Aggr, Length)	-		Nous contract (A local divided)			structures needed.
				2			New construction (4-lane divided)	DE DE	6	
r 2	bacolog link koad (South)		1	5.0	0	1	New construction (2-lane)	30	10	
	Talisay-Conception Road		Cđ	11.7	2	PCC (Good) L=0.5km; AC (Good) L=11.2km	No work	0 (15)		
TA-2	Catabla-Conception Road		G	15.9	2	PCC (Good) L=10.7km, AC (Bad) L=5.2km	Pavement (AC) Rehabilitation	0 (15)		
TA-3	Conception-Campuestuhan Road	ad	Cty	7.7	2	PCC (Good) =5.0km, AC (Bad)=1.0km, G	Improvement from gravel to PCC/AC pavement L=1.2km	0 (15)	11.4	
5	cilor. Crimbolica Bard		1	16.6	2	PGC (Good)=3.4km, AC (Bad)=12km, G (Bad) 1.3km	Improvement from gravel to PCC/AC pavement(G) L=15.6km	0 (20)	11.1,11.2,11.3,	
1-70			È 5	3.0	1		Do officiency due to similar to the office		11.4	
SI-2	Silav-Patao Road		ł	3.0	1	PCC (Fair)		20 0 (20)		Component of Airport Proj.
			h.,	16.2	2	PCC (Fair) L=12.7 km, G (Bad) L=3.5km	Improvement from gravel to PCC pavement L=3.5km	0 (20)	11.4	
1			Provincial	2.5	- ² /1	PCC (Good) 1-lane L=4.0km, 2 lane L=1.3km	Naw rooth choo	20	11	
1-1-	Roxas-Stado Road		Provincial	3.5		AC (Good)	No work	(20)	2 2	
VT-2	Victorias Link Road		Private	12.3	~ 0	Gravel (Bad)	Improvement from gravel to PCC/AC pavement		11.4	
				,		44	New construction (2-lane)	70	~	
1-5g	Sum-ag-Abuanan Road		NR	12.2	5	PCC (Fair)	No work	(20)		
BG-2	Bago-Busay Road		City City	7.5	ا ہے	PCC (Good) L=4.35km, Gravel (Bad) L=3.25km	No work . New condension	(15)	ļ	
8G-3	Bago-Malingin Road		ŝ	13.4	2	PCC (Good) L=10km, Gravel (Good) L=3.4km	Improvement from gravel to PCC / AC pavement L=3.4km	(12)	11.4	
BG-4	Bago-Maao Road		R	28.0	2	PCC (Bad) L=9.7km, AC (Bad) L=8.9km	Pavement rehabilitation (PCC & AC)	(02)		
1-U9	Putupandan Port Access Road		an	56	- -	AC (Greet)	Not routined			
	Mercia Breast			;;	1	the (second)	Not required	(07)		
1-0M			1	3.5	I		New construction (2-lane)	90	e	
Note:	 Road pavement condition was surveyed in March 2003. 	eyed in March 2003.								

TABLE 10.7-1 ROAD PROJECTS FOR METRO BACOLOD

-172-

—173—

~

ms 2211-E005 ga2 15.162/2wb bolo30d/znoi1352 zzon3 lexqq1/13NR/1AL/3

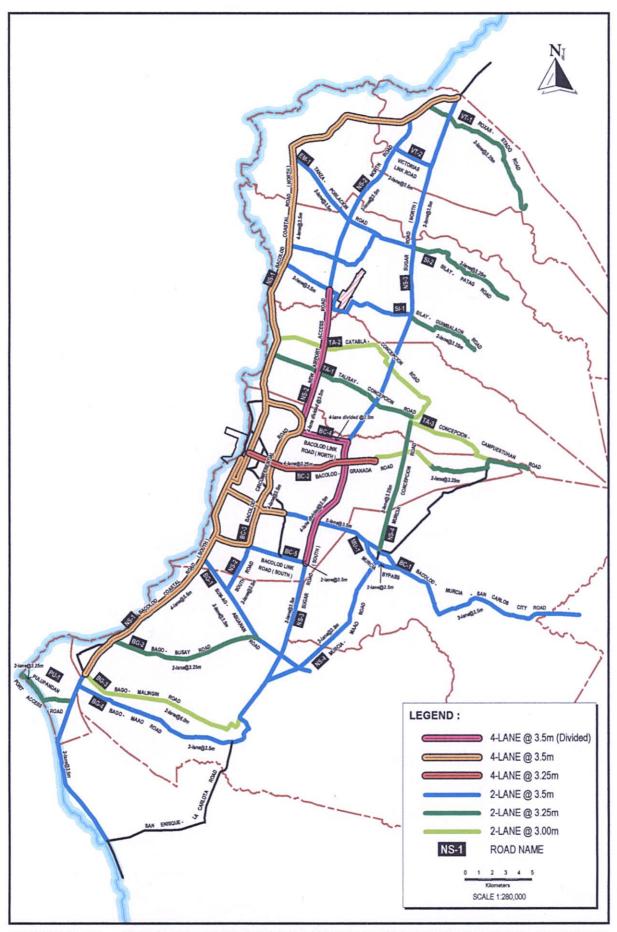


FIGURE 10.7-2 METRO BACOLOD APPLIED CROSS-SECTION TO FUTURE ROAD NETWORK

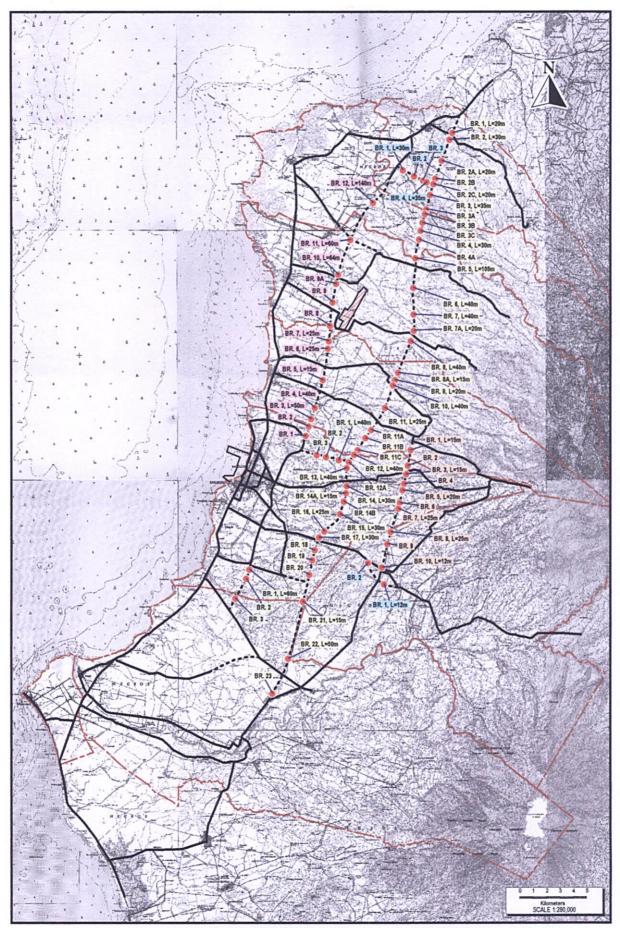


FIGURE 10.7-3 METRO BACOLOD PROPOSED ROADS BRIDGE LOCATION MAP

10.7.2 Cost Estimate

1) Procedure of Project Cost Estimate

The procedure of project cost estimate is shown in Figure 10.7-4. Based on the collected unit prices of construction materials, labor costs and equipment costs, unit costs of major construction items were examined and compared with latest prices of on-going projects. Quantity estimate for each type of work was conducted and each construction cost per km (or per meter for bridges) was estimated for each type of cross section based on the determined unit cost of major construction items.

Engineering service cost was estimated by using the percentage (%) of construction cost. ROW acquisition costs for new roads and widenings were estimated by the prevailing land cost.

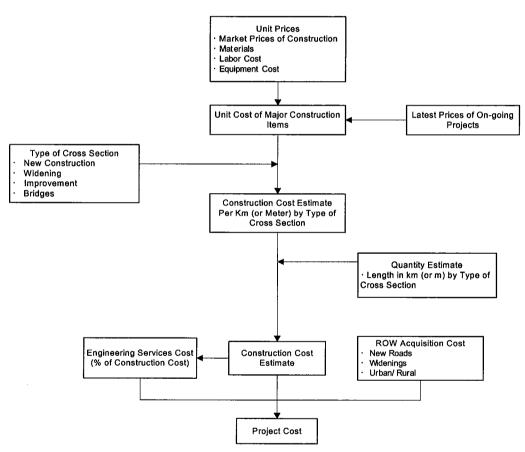


FIGURE 10.7-4 PROCEDURE OF PROJECT COST ESTIMATE

2) Unit Cost

Unit cost of construction Items is shown in Table 10.7-2.

DESCRIPTION	UNIT	UNIT COST	FOREIGN	%	LOCAL	1%	TAXES	1.
EARTHWORK		0111 0031	COMPONENT	219) 	COMPONENT	/*	IAAES	%
Clearing and Grubbing	P/na.	51,000,00	29,019.00	57	13,719.00	27	8262.00	ः २२२ ः २१ ह
Removal of Existing Asphalt Pavement Removal of Existing Concrete Pavement	P/m ²	35,00 120,00	9.49	27	19.57	56	5.95	17
Removal of Existing Pipe Culverts & Other Drainage Str.	P/m ² P/m	1,320.00	32.52 726.00	27 55	67.08 237.60	56 18	356.40	27
Unsuitable Excavation Surplus Common Excavation	P/m ³ P/m ³	165,00 165,00	97.52 99.50	59 60	28,55 40,26	17	38.94 25.25	
Structure Excavation Bridge Excavation (AWL)	P/m ³	310.00 200.00	178.25 105.60	58 53	83.70 62.80	27	48.05	16
Bridge Excevation (BWL)	P/m ² P/m ²	750.00	382.50	61	252.00	34	31.60 115.50	16
Foundation Fill (Granular Materials) Pipe Culverts and Drain Excavation	P/m ³	780.00	266.76 160.44	34 57	387.66	50	125.58 43,12	
Embankment from Roadway Excavation Embankment from Borrow	P/m ³	200.00	116.00	58	52.60	26	31,40	16
Selected Borrow for Topping	P/m ³ P/m ³	460.00 500.00	257.60 120.00	56 24	135.70 295.00	30 59	66.70 85.00	
Subgrade Preparation (Common Material) Breaking of Existing Concrete Pavement	P/m ² P/m ²	17.00	9.76 20.33	57 27	4,51 41,93	27	2.74 12.75	
SUBBASE AND BASE COURSE	6 6377692236	aanna kaantaa ka	U.S. WERRAN	9986			eveles en carves	3 (23)) (13)
	i ani	รารกรณ์เหตุเหตุเมืองอยู่เจ้	eronan normaan an	58/A	alaalatta Minasii		wineereen een een	8 <i>62</i> 78
Aggregate Subbase Course Aggregate Base Course	P/m ³ P/m ³	660.00 700.00	355.08 369.60	54 53	209.88	32	95.04 98,00	
Crushed Aggregate Base Course Portland Cement Stabilized Road Mix Base Course	P/m ³	750.00	405.75	54	236.25	32	108.00	14
Asphall Stabilized Road Mix Base Course	P/m ³ P/m ³	940.00 1,320.00	678.10 840.84	62 64	221.84 248.16	24 19	140.06 231.00	
SURFACE COURSE	A DERENSER		THE STATES	月2003	67360000000000000	6273	CORENNAL AND	93039
Bituminous Prime Coat (MC-70 Cut-Back Asphait)	P/t	25,000,00	16,175.00	65	4,350.00	17	4475.00	18
Bituminous Tack Coat (Emulsified Asphait Grade SS-1) Bituminous Concrete Surface Course, Hot Laid	РЛ	25,000.00 3,600.00	16,150.00	65	4,375.00	18	4475,00	18
Portland Cement Concrete Pavement			2,229.50	64	644.00	18	626.50	18
Thickness=0.10m Thickness=0.18m	P/m ² P/m ²	450.00 620.00	280,60	62 62	101.70	23	67,50 93,00	15
Thickness=0.23m Thickness=0.25m	P/m ²	770.00	480.48	62	174.02	23	115.50	15
	P/m²	820.00	611.68	62	185.32	23	123.00	15
BRIDGE CONSTRUCTION	100,000,00			028X	an a	利用		1222
Precast Concrete Piles, Furnished and Driven (0.4m x 0.4m) Cast-in Place Concrete Bored Piles	P/m	3,200.00	1,568.00	49	1,184.00	37	448.00	13
φ1000 φ1500	P/m P/m	16,500,00	6,270.00	38	7,425.00	45	2805.00	17
Railings	P/m	30,000,00 2,500,00	11,400.00 800.00	38 32	13,500.00 1,375,00	45 55	5100.00 325.00	17
Reinforcing Steel, Grade 60 Reinforcing Steel, Grade 40	P/kg P/kg	35.00 33.00	17.50	50 50	12.95 12.21	37 37	4.65	13
Structural Concrete Class "A" (for Heavily Reinforced) Structural Concrete Class "A" (for Substructure)	P/m ³ P/m ³	5,200,00 3,500,00	1,768.00 1,190.00	34 34	2,600,00 1,750.00	50 50	832.00 560.00	16 16
Structural Concrete Class "B" (for Plain or Lightly reinforced)	P/m ³	4,500.00	1,530.00	34	2,250.00	50	720,00	16
Structural Concrete Class "C" (for thin member) Structural Concrete Class "P" (for Prestressed Concrete)	P/m ³ P/m ³	4,300.00 5,600.00	1,462.00 2,030.00	34 35	2,150.00 2,842.00	50 49	688.00 928.00	16 16
Lean Concrete Prestressed Structural Concrete Members	P/m ³	2,750.00	1,182.50	43	1,017.50	37	650.00	20
AASHTO Type IV Prestressed I-Girder, 26-meter span	P/ca.	400.000.00	284,000.00	Zh	68,000.00	17	48000.00	12
AASHTO Type IV-A Prestressed I-Girder, 30-meter span AASHTO Type IV-A Prestressed I-Girder, 35-meter span	P/ea, P/ea.	550,000.00	390,500.00 553,800,00	71	93,500.00 132,600.00	17	66000.00 93600.00	12 12
AASHTO Type IV-A Prestressed I-Girder, 40-meter span Elestomeric Bearing Pads	P/ea.	1,050,000.00	745,500.00	71	178,500,00	17	126000.00	12
400 x 300 x 50 500 x 310 x 50	P/ea. P/ea.	15,000.00 23,000.00	3,150.00	21	9,600.00	64	2250.00	15
DRAINAGE AND SLOPE PROTECTION STRUCTURES	1 /ca.	25,000,00	4,830,00	21	14,720.00	64	3450,00	15
Reinforced Concrete Pipe Culvert, 610mmp (Extra, Str.)	a na serie a company. A na serie a company	a sa marana ang mangan Tang mangang man		936392 Consta		94(3)() 	el electronice (1993) (1997)	25404
Reinforced Concrete Pipe Culvert, 910mmg (Extra, Str.)	P/m P/m	2,030.00 4,650.00	1,142.89 2,631.90	68 57	574,49 1,297,35	28 28	312.62 720.75	15 16
Reinforced Concrete Pipe Culvert, 1070mmø (Extra, Str.) Reinforced Concrete Headwall, 1-610mmø RCPC	P/m P/ea.	6,660,00 7,800.00	3,796.20 2,184.00	57 28	1,638,16 4,446.00	28 57	1025.64 1170.00	15
Reinforced Concrete Headwall, 1-910mmg RCPC Reinforced Concrete Headwall, 1-1070mmg RCPC	P/ea. P/ea.	19,300.00	5,404,00 6,600,00	28 30	11,001.00 12,100.00	57 55	2895.00 3300.00	18 15
Reinforced Concrete Box Culvert 1.5m x 1.5m Reinforced Concrete Box Culvert 1.0m x 1.5m	P/m P/m	8,400.00	3,536.40	42	3,578.40	43	1285.20	15
Reinforced Concrete Headwall, Box Culvert 1.5m x 1.5m	P/ea.	3,500,00 22,500.00	1,473.60 9,945.00	42 44	1,491.00 9,112.50	43	535.50 3442.50	15 15
Catch Basin for RCPC φ610 Catch Basin for RCPC φ910	P/ea. P/ea.	18,000.00 24,700.00	6,912.00 9,484.80	38 38	8,298.00	46	2790.00 3828.50	16 16
Calch Basin for RCPC @1,070 Drop Intel Manhole for RCPC @610	P/ea.	28,900.00	11,097.60 2,852.00	38 31	13,351,80 4,968.00	46 54	4450.60 1380.00	15 16
Drop Inlet Manhole for RCPC φ910 Drop Inlet Manhole for RCPC φ1,070	P/ea, P/ea,	13,500.00 15,200.00	4,185.00 4,712.00	31 31	7,290.00 8,208.00	54 54	2025.00	15 15
Grouted Riprap, Class "A"	P/m ^a	2,250.00	1,086,75	48	816.75	36	2280.00 346.50	15
Stone Masonry Sabions	P/m ⁹ P/m ³	2,360.00	1,300,36 1,791,79	65 51	700,92	30 34	358.72 536.48	16 15
MISCELLANEOUS STRUCTURES	perila d		un gehändet fo	ŵ.		sēji		1
Concrete Curb (200*450)	P/m	640,00	371.84	58	174.72	27	93.44	
Combination Concrete Curb and Gutter (675*364)	P/m	1,095,00	636.20	58	298,94	27	159.87	15
Metal Guardrail (Metal Beam) Suardrail End Pleces	P/m P/ea.	7,800.00 7,700.00	4,531.80 4,473.70	58 58	2,129,40 2,102.10	27 27	1138.80 1124.20	15 15 15
Concrete Post for Guardrall Narning Signs	P/ea. P/ea.	1,400.00	813.40 9,760.80	58 58	382.20 4,586,40	27	204.40 2452.80	15 14
Regulatory Signs nformatory Signs	P/ea. P/ea	14,000.00 15,400.00	8,134.00 8,947.40	58 58	3,822,00 4,204,20	27	2044.00 2248.40	15 15 15
Reflectorized Thermoplastic Pavement Markings	12/m ²	590,00 181,95	342.79	58	161,07	27	86.14	15
			105.71	58	49,67	27	26.56	15
Sodding Frees (Furnishing and Transplanting)	P/m² P/ea.	800.00	464.80	58	218.40	27	116.80	15
Sodding	P/ea. P/ea. P/ea.	800.00 62,500.00 78,000.00	464.80 36,312.50 45,318,00					15 16 15

TABLE 10.7-2 UNIT COST OF CONSTRUCTION

Part-C (Metro Bacolod)

3) Construction Cost per Km.

Construction cost per km for each type of cross section was estimated (refer to Appendix 10.7-1) and summarized as shown in Table 10.7-3.

TYPE OF CROSS-SECTION	COST PER KM
Bacolod TYPE-1	20.3
Bacolod TYPE-2	67.2
Bacolod TYPE-3	26.0
Bacolod TYPE-4	68.1
Bacolod TYPE-5	29.1
Bacolod TYPE-6	25.0
Bacolod TYPE-7-1	38.3
Bacolod TYPE-7-2	27.2
Bacolod TYPE-8	31.2
Bacolod TYPE-8	67.2
Bacolod TYPE-10	26.0
Bacolod TYPE-11.1	5.8
Bacolod TYPE-11.2	14.3
Bacolod TYPE-11.3	14.4
Bacolod TYPE-11.4	14.4
Bacolod TYPE-11.12	25.0

TABLE 10.7-3 CONSTRUCTION COST PER KM.

4) Project Cost

Estimated civil work cost and the ROW acquisition cost were estimated for the identified road projects and shown in Table 10.7-4. (Estimated costs of other road network development alternatives are presented in Appendix 10.7-2).

Engineering services cost was estimated as follows:

• De	tailed Design		4.0% of civil work cost
------	---------------	--	-------------------------

Construction Supervision - - - 8.0% of civil work cost

Project cost of selected future road network plan is summarized as follows:

Project Cost of Selected Future Road Network Plan

Civil Work Cost	 7,104.9
ROW Acquisition Cost	 856.3
Engineering Services Cost	 852.5
- Detailed design	 284.1
- Construction Supervision	 568.4
Total Project Cost	 8,813.7

1 1	F											Local Manual																		
Matrix Matrix<				Ц			Road			\vdash								T		1	Ì					ł				
	Read			, mar		Tanger Roak				ş.	-	F				Cost (Miles	n Peso)	 		Cert work	đ	L	_	toed Length (to		Cost Per m2 (Perco)		Cost (Million		ן ד
Multi contractioned by a series of a series	ź									r 	I		New Construction 2-Lane (m)	New New Construction 4-Lane (m)	Widening	New onstruction 2-Lane		Project Total Cost INANCIAL	REG	18		<u> </u>							Total	§ §
Inclusione Inclusio Inclusione Inclusion	NS-1			¥	28,9 8,21	5			1361			624.7						218.6	154.1	6821	53	354.7						-	-	-
Minimum Minimum <t< th=""><th></th><th></th><th>up to Bago Bypers</th><th>ž</th><th>20.5</th><th>-</th><th></th><th></th><th>_</th><th></th><th></th><th></th><th></th><th></th><th>6.6</th><th></th><th></th><th>662</th><th>28.7</th><th>с M</th><th>16.0</th><th>o g</th><th></th><th></th><th>-</th><th></th><th></th><th>-</th><th></th><th></th></t<>			up to Bago Bypers	ž	20.5	-			_						6.6			662	28.7	с M	16.0	o g			-			-		
Markatalia and a consistent and a		_	Ц	¥	9.0														1			2		_						
Market Market	NS-2	North Road		+-	10.2	12.0	~~~~		312.4				315.0	200.0		141.8	180.0	141.8	705.6	377.9	193.1 28.4	865.2	30.0	0.0	10.2					
 Martine for the second for the second					3.8	200	- -				H		90.0			40.5		4 2 2	153	171	8.1	139.4	30.0	00	3.8					
unitational i <th< th=""><th>2</th><th></th><th></th><th>1</th><th>10.0</th><th>10.0</th><th>0 4</th><th></th><th></th><th></th><th></th><th></th><th>1.678</th><th>230.0</th><th></th><th>303.8</th><th>0.702</th><th>207.0</th><th>1,195.5</th><th>97069</th><th>348.5</th><th>1,874.2</th><th>35.0</th><th>00</th><th>8.0</th><th></th><th></th><th></th><th></th><th></th></th<>	2			1	10.0	10.0	0 4						1.678	230.0		303.8	0.702	207.0	1,195.5	97069	348.5	1,874.2	35.0	00	8.0					
unumericant i <th< th=""><th>J.</th><th>Nurcla-Conception Road</th><th></th><th>+</th><th>12.4</th><th></th><th>2</th><th></th><th>2603</th><th></th><th></th><th></th><th>0.08</th><th></th><th></th><th>36.0</th><th></th><th>36.0</th><th>13.6</th><th>15.2</th><th>22</th><th>596</th><th>30.0</th><th>00</th><th>12.4</th><th></th><th></th><th></th><th></th><th></th></th<>	J.	Nurcla-Conception Road		+	12.4		2		2603				0.08			36.0		36.0	13.6	15.2	22	596	30.0	00	12.4					
Market Markt Markt Markt <th></th> <th></th> <th></th> <th></th> <th>6.6</th> <th></th> <th>۔ ب</th> <th></th> <th>247.0</th> <th></th> <th></th> <th></th> <th>175.0</th> <th></th> <th></th> <th>78.6</th> <th></th> <th>78.8</th> <th></th> <th>4 101</th> <th>1.5</th> <th>a TCT</th> <th>20.0</th> <th>00</th> <th>6.6</th> <th></th> <th></th> <th></th> <th></th> <th></th>					6.6		۔ ب		247.0				175.0			78.6		78.8		4 101	1.5	a TCT	20.0	00	6.6					
Were were were were were were were were		Murcle-Maso Road		¥	18.5										77			12	7617	01101	1-10				-					а Г
Matrix Matrix<	5				6.8				 	-	_						T	ŀ			-			╞		-			-	
Weak in the formation of the control of the				Ĺ ž	3.7					0.0			201.3			906		9.06	34.2	28.2	18.1	90.6								
The contract co		Murcas-Study Are		ž	14.5	┝			ľ												-									-
The frequency of the control o	~ 28			¥		╀	╞	╞		╀	+			Ť		+	T		$\left \right $	╉		╉	+	+		+		-		+
The state interface of the state interf				M	3																									
Matrix B V <th></th> <th>Proper Section</th> <td></td> <td></td> <td>13</td> <td>-</td> <td>12</td> <td></td> <td></td> <td>3613</td> <td></td> <td></td> <td>25.7</td> <td></td> <td></td> <td>9.11</td> <td></td> <td>11.6</td> <td>206.8</td> <td>110.3</td> <td>53.7</td> <td>372.9</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>÷</td>		Proper Section			13	-	12			3613			25.7			9.11		11.6	206.8	110.3	53.7	372.9								÷
Image:					22		22	27.2													l									i
image: sector		Granada Proper-		NR.	12.7		ä	25.0	6.62																					
Matrix Matrix<	853				2.7 Y. Lendth		╞									-										-				-
Image: decisioned and the decisioned andot and the decisioned andot and the decisioned and the decisione			<u> </u>		15.4 r. Leneth)		80		864	8.6/1					817		_	71.8	308.6	E091	82.6	551.6								
Image: description Image:	Ϋ́	Becolod Link Road (North)			Ţ	Ş				288.9				70.0			63.0	63.0	191.2	106.4	3	351.9	30.0	01	2				L	
The concretance of the contract of the c	BC-S	Eacolod Link Road (South)			5.0					130.2			40.0			18.0		18.0	0.68	43.1	22.0	148.2	0.05	3.0	2					L
Oppositionationationationationationationation		Talissey-Conception Road		ð	11.7					0.0					-			8	00	0.0	0.0	0.0					-	-		
Anoment-ment free Cr 11	14-2	Catabla-Conception Road		ð	6.21		╞		┡	0.0	Ļ				-	-		0.0	91	0.0	90	0.0								
	TA-3	Conception-Campuedtahan Road		ð	22	1	14	14.4	273	173	L							93	201	\$	2.4	17.3		.		-	-			
$ \left $	i.	Silay-Guimbalaon Ruad		ð	16.6		1111								1			EIZ	136.9	62.7	E.	0 EE	20.0	88	9.61		35.0			,
$ \ $	5-13	Silay-Pateg Road		ð	3.0	Ш							E 861		┨	62.7	┢	62.7	24	£.8£	19.5	132		+	+-		+-	+		
$ \begin{array}{l lllllllllllllllllllllllllllllllllll$	E	Tarza Poblacion Road	Ĕ	Townote	53				, a	88.5								6.0	\$18	242	251	88.5								
Vertain like like 30 10	1-14	Room-Stado Road	ι Έ	Tivete	35				598				15.0			3		6.8	552	24.6	51	533			, , , ,		1400			
State 10 12	<u>ч-</u> 2	Victories Link Road			3.D		-		78.1	İ.			95.0	ſ		r a		55	18	35.6	2.21	111.4	0.0£	ی ۲	\$	500.0				
Operation Op 13 13 14 943 141 1 20 12 142 143 143 141 20 13 143	1-58	Sum-eg-Abusenan Road		ž	77				_	8								6.0	0.0	0 -D	90	90	_		-	-		-		
Deprindent bial Or 114 R4 6.0 F.0 <	25	Bago-Busay Road		ð	3.5					141.7					92	-		0.7	86.7	40.5	213	1					4 20			1
opportant No 2.02 0 1 1 6.3 1.2 <th1.2< th=""> <th1.2< th=""> <th1.2< th=""></th1.2<></th1.2<></th1.2<>	3	Bego-Malingin Road		ð	13.4		1		0.6*	49.0				 ,				8	562	12.4	8.8	0.6*	-							
Matche for the constrated Ms Jag Jag <th>107</th> <th></th> <th></th> <th>NR</th> <th>26.0</th> <th></th> <th> </th> <th></th> <th></th> <th>3</th> <th></th> <th></th> <th>205</th> <th></th> <th> </th> <th>18.2</th> <th></th> <th>16.2</th> <th>6.9</th> <th>2.2</th> <th>3.6</th> <th>18.2</th> <th></th> <th>-</th> <th></th> <th></th> <th>-</th> <th>-</th> <th></th> <th>-</th>	1 07			NR	26.0					3			205			18.2		16.2	6.9	2.2	3.6	18.2		-			-	-		-
Marche Prise 35 32 32 320 911 2 2 320 132 236 134 236 136 136 33 36 26 136 33 26 26 23 <th>ž</th> <th></th> <th></th> <th>AR A</th> <th>66</th> <th></th> <th></th> <th></th> <th></th> <th>0.0</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>0.0</th> <th>0.0</th> <th>0.0</th> <th>0.0</th> <th>0.0</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	ž			AR A	66					0.0								0.0	0.0	0.0	0.0	0.0								
Card: Card: <th< th=""><th>1-DM</th><th>Murch Bypass</th><th></th><th></th><th>35</th><th></th><th>3.0</th><th></th><th>91.1</th><th></th><th></th><th></th><th>0.0E</th><th></th><th></th><th>261</th><th></th><th>581</th><th>282</th><th>30.6</th><th>15.6</th><th>104.6</th><th>20.0</th><th>9</th><th>3.5</th><th></th><th></th><th></th><th></th><th></th></th<>	1-DM	Murch Bypass			35		3.0		91.1				0.0E			261		581	282	30.6	15.6	104.6	20.0	9	3.5					
		Too:		_		170.9		•			_		8.152.1	20005	400.7	£.228	450.0	1,706.0	2,727,5	2,165.6	5,091.3	6,984.2		3	125.4	•				

2-Lane am bridge = -55,000 P/m -Lane new bridge = -500,000 P/m Hitlewing of 2-Lane bridge = -350,000 P/m

-179-

10.8 IEE OF ROAD PROJECTS

1) **Project Screening**

The Project Screening Table for the Metro Iloilo Study Area indicates the type of environmental study that the proposed development/rehabilitation of the road sections would require in order to merit the issuance of an Environmental Compliance Certificate. (ECC). For projects that will not entail any significant adverse impacts to the environment, a Certificate of Non-Coverage (CNC) is recommended. The criteria used for assessing the type of EIA report to be prepared are based on the documents of Memorandum of Agreement between DPWH and DENR, and the Initial Environmental Examination (IEE) Checklist Guide to Proponents.

A summary of the results of project screening undertaken for Metro Bacolod Area is shown in Table 10.8-1.

Road	Road Name	No. of	Type of EIA Study	
No.		PAH	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Improvement of Existing Roads				
NS-1	Bacolod Coastal Road North Section	44	IEE	
BC-2 Bacolod-Granada Section		75		
	Jct. Bacolod Circumferential Road-Granada Proper		IEE	
BC-3	Bacolod Circumferential Road	698	EIS Regional	
Proposed New Construction				
NS-2	New Airport Access Road	5	EIS Regional	
NS-2	North Road	5	EIS Regional	
NS-2	South Road	17	EIS Regional	
NS-3	Sugar Road-North Section	29	EIS Regional	
NS-3	Sugar Road-South Section	5	EIS Regional	
NS-4	Murcia-Conception Road	44	EIS Regional	
BC-4	Bacolod Link Road (North)	0	EIS Regional	
BC-5	Bacolod Link Road (South)	22	EIS Regional	
EM-1	Tanza-Poblacion Road	16	EIS Regional	
VT-2	Victorias Link Road	10	EIS Regional	
BG-2	Bago-Busay Road	9	EIS Regional	

TABLE 10.8-1 SUMMARY RESULT OF PROJECT SCREENING FOR THE METRO BACOLOD AREA

Note: PAH : Project Affected Houses

2) Type of EIA Study

Type of Environmental Impact Assessment (EIA) are summarized in Table 10.8-2.

Environmental Study	Major Criteria		
1) Certificate of Non-Coverage (CNC)	The study area is outside ECA		
	No resettlement is required.		
2) IEE Checklist	The study area is outside ECA.		
- Project Description Checklist	New road construction		
	- Road length is less than 10km		
	 Improvement or Rehabilitation 		
	 ROW acquisition is required for more than 50% of the present ROW 		
3) IEE	ECA values are less than 5		
	 Required resettlement population is less than 200 or 40 families. 		
4) Environmental Impact Statement	ECA values are 5 and more		
	 Required resettlement population is 200 or 40 families and more 		

Note: ECA: Environmentally Critical Area

Rating for Environmentally Sensitive/Critical Areas Values

National Parks / watersheds / sanctuaries	
Aesthetic potential tourist spots	
Endangered species	4
Unique historic / archeological / scientific areas	3
Indigenous culture communities	5
High Incidence of natural hazards	1
Critical slopes>40%	5
Prime agricultural land	3
Recharge areas for aquifer	2
Protected water bodies	2
Mangrove areas	4
Coral reefs	5