# **CHAPTER 11**

## ROAD NETWORK DEVELOPMENT MASTER PLAN

### 11.1 FINANCIAL FRAMEWORK

Proposed future road network consists of various road projects which are required to be systematically implemented in accordance with priority and within the financial framework. At present, the Philippine Government is suffering the severe financial constraints. In this section, possible amount for road investment to the Study Area is discussed for the following terms:

Short Term : 2005 - 2010 (6 years) Medium Term : 2011 - 2016 (6 years) Long Term : 2017 - 2022 (6 years)

### 11.1.1 National Road

1) Procedure to Estimate Possible Investment Amount for Road Development

The procedure to estimate possible investment amount for road development is shown in Figure 11.1-1.

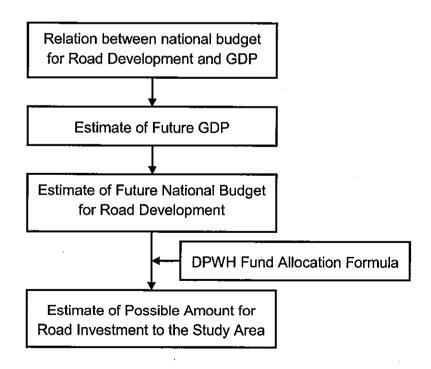



FIGURE 11.1-1 PROCEDURE TO ESTIMATE POSSIBLE INVESTMENT AMOUNT

## 2) Estimate of Possible Investment Amount for Road Development

### a) Relation between National Budget and GDP

Past capital outlay for road development in relation with GDP is shown in Table 11.1-1. Past trend was as follows:

### % share of road investment to GDP

Max. 1.12% (year 1998) Min. 0.40% (year 2002)

### b) Future GDP

GDP growth rate was estimated as follows:

Years 2003 and 2004 : Philippine Medium - Term Development Plan

2001-2004

2005 - 2010 : 5% per annum by the Study Team and

accepted by NEDA.

2011 - 2022 : 4.5% per annum by the Study Team and

accepted by NEDA.

### c) Future % share of Capital Outlay to GDP

Amount of capital outlay for year 2004 was given by DPWH. It is also informed that year 2004 budget level will continue at least for the next 5 years.

From year 2009 to 2022, it was assumed that % share of capital outlay to GDP will increase from 0.45% in 2009 to 0.65% in 2022.

## d) DPWH Fund Allocation to the Study Area

DPWH has developed the Fund Allocation Formula to each congressional district. According to the formula, budget allocation to the Study Area will be as follows:

Metro Iloilo : 0.60 ~ 0.70% of national capital outlay for road

development

### e) Estimated Possible Amount for Road Development

Possible amount for road development to Metro Iloilo was estimated as shown in Table 11.1-2, and summarized as follows:

| Term                     | Possible Investment Amount (Million P) |
|--------------------------|----------------------------------------|
| Short Term (2005 ~ 2010) | 830 ~ 970                              |
| Medium Term(2011-2016)   | 1,490 ~ 1,740                          |
| Long Term (2019-2022)    | 2,190 ~ 2,550                          |
| Total (2005 ~ 2022)      | 4,510 ~ 5,260                          |

Part-B (Metro Iloilo)

|                                                          | 2003 | Ι                                 | · I                                      | 5.20                                       | 21,014                                                                     | . 1                                 |
|----------------------------------------------------------|------|-----------------------------------|------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|
|                                                          | 2002 | 3,977,380                         | 9.27                                     | 4.56                                       | 15,980                                                                     | 0.40                                |
| :                                                        | 2001 | 3,639,980                         | 10.03                                    | 3.22                                       | 21,469                                                                     | 0.59                                |
| PMENT                                                    | 2000 | 3,308,318                         | 11.13                                    | 4.38                                       | 21,469                                                                     | 0.65                                |
| TABLE 11.1-1 GDP AND CAPITAL OUTLAY FOR ROAD DEVELOPMENT | 1999 | 2,976,905                         | 11.70                                    | 3.40                                       | 24,220                                                                     | 0.81                                |
| AY FOR RO                                                | 1998 | 2,665,060                         | 9.82                                     | 85.0-                                      | 29,733                                                                     | 1.12                                |
| TAL OUTLA                                                | 1997 | 2,426,743                         | 11.73                                    | 5.19                                       | 22,723                                                                     | 0.94                                |
| P AND CAP                                                | 1996 | 2,171,922                         | 13.95                                    | 5.85                                       | 15,428                                                                     | 0.71                                |
| 11.1-1 GD                                                | 1995 | 1,905,951                         | 12.58                                    | 4.68                                       | 11,789                                                                     | 0.62                                |
| TABLE                                                    | 1994 | 1,692,932                         | 14.82                                    | 4.39                                       | 10,925                                                                     | 0.65                                |
|                                                          | 1993 | 1,474,457                         | 60.6                                     | 2.12                                       | 10,436                                                                     | 0.71                                |
|                                                          |      | GDP (Current Price,<br>Million P) | GDP Nominal Growth<br>Rate (% per annum) | GDP Growth Rate in real term (% per annum) | Capital Outlay for<br>Highway Development<br>(Current Price, Million<br>P) | % share of Capital<br>Outlay to GDP |

Possible Investment 830~970 1,490~1,740 2,190~2,550 4,510~5,260 (0.60%-0.70%)(Million Pesos) Metro Iloilo Amount to 364,170 751,558 138,514 248,874 (Million Pesos) 6 Year Total TABLE 11.1-2 ESTIMATED POSSIBLE INVESTMENT AMOUNT **Estimated Capital** Outlay to Highway 20,400 20,400 36,813 45,829 51,882 15,980 20,400 20,400 20,400 26,268 38,470 43,855 21,014 30,646 32,025 54,217 56,657 59,206 61,871 67,564 Development (Million Pesos) 64,655 Total % share of Capital Outlay for Highway 0.45 0.65 0.40 0.48 0.42 0.40 0.39 0.45 0.50 0.50 0.55 09.0 0.60 0.65 0.65 0.65 0.65 0.65 0.37 Development 2003 Constant Prices **Estimated GDP at** (Million Pesos) 4,335,300 4,802,429 5,294,678 6,693,296 7,309,246 7,981,879 9,518,540 9,946,874 3,977,380 4,573,742 5,042,550 5,559,412 5,837,383 6,405,068 6,994,494 8,716,412 10,394,483 6,129,252 7,638,162 8,341,064 9,108,651 GDP Growth (5.20)5.00 5.00 4.50 4.50 5.50 5.00 5.00 5.00 5.00 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 Rate % 2002 2003 2004 2005 2006 2008 2009 2010 2011 2012 2013 2014 2015 2016 2018 2019 2007 2017 2020 2021 2022 Year

# 11.1.2 Investment Capacity of LGUs

Investment capacity of LGUs for local road development was estimated for the following two (2) cases:

Case - 1 : Development Fund = 20% of Internal Revenue Allotment (IRA)

Investment for local road development = 30% of Development Fund

Case - 2 : Investment for local road development = 25% of Borrowing Capacity

Loan term = 12 years. After initial borrowing, one half of above is

borrowed at every 6 years.

Table 11.1-3 shows IRA and borrowing capacity of the Province of Iloilo and Iloilo City.

TABLE 11.1-3 IRA AND BORROWING CAPACIT

(Unit: Million Pesos)

|            |                       | Province of Iloilo | Iloilo City |
|------------|-----------------------|--------------------|-------------|
| Revenues   | Local Income          | 57.9               | 250.5       |
| i tevenues | IRA (2003)            | 687.4              | 309.7       |
|            | Total                 | 745.3              | 560.2       |
| D.         | ebt Service Ceiling   | 149.1              | 112.0       |
| Net [      | Debt Service Capacity | 149.1              | 87.3        |
| В          | orrowing Capacity     | 923.3              | 540.7       |

Investment capacity of LGUs for local road development was estimated as shown in Table 11.1-4.

**TABLE 11.1-4 INVESTMENT CAPACITY OF LGUS** 

|             | _                             | IRA or<br>Borrowing<br>Capacity | 2005-2010<br>(6 years) | 2011-2016<br>(6 years) | 2017-2022<br>(6 years) | Total<br>(2005-<br>2022) |
|-------------|-------------------------------|---------------------------------|------------------------|------------------------|------------------------|--------------------------|
| Province of | Case-1<br>(50% to Study Area) | (687.4)<br>343.7                | 123.7                  | 123.7                  | 123.7                  | 371.1                    |
| lloilo      | Case-2                        | 923.3                           | 230.8                  | 115.4                  | 115.4                  | 461.6                    |
| Iloilo City | Case-1                        | 309.7                           | 111.5                  | 111.5                  | 111.5                  | 334.5                    |
| HORO CITY   | Case-2                        | 540.7                           | 135.2                  | 67.6                   | 67.6                   | 270.4                    |

Investment capacity of LGUs was estimated as follows:

|   | Province of Iloilo | lioilo city                                 |
|---|--------------------|---------------------------------------------|
|   | (Million Pesos)    | (Million Pesos)                             |
| : | 123.7~230.8        | 111.5~135.2                                 |
| : | 115.4~123.7        | 67.6~111.5                                  |
| : | 115.4~123.7        | 67.6~111.5                                  |
|   | ;                  | (Million Pesos) : 123.7~230.8 : 115.4~123.7 |

### 11.2 PRIORITY OF ROAD PROJECTS

Alternative-2(B) was selected as the most appropriate and preferable future road network for Metro Iloilo. Based on the selected future road network, road projects were identified. Implementation priority order of the road projects is determined in this section.

## 11.2.1 Basic Policy and Prioritization Procedure

The following prioritization factors for the road projects were set up in line with the objectives of the road network development;

- a) Reduction of traffic congestion in the city proper area
- b) Road project will guide and support the planned urban development
- c) Formation of **flexible road network** which will provide alternative routes to road users
- d) Road project which will contribute to the economic development
- e) Road project which will enhance international and domestic investment
- f) Road project which will realize expected investment effects of related projects
- g) Road project with environmental and social considerations

In addition, the following three (3) more factors were selected:

- h) Upgrade of traffic efficiency
- i) Traffic safety considerations
- j) Urgency for road improvement

The procedure for prioritization of the road projects is shown in Figure 11.2-1.

The indicators of each factor were selected. Indicators for individual road project were measured and scored following the procedure illustrated in Figure 11.2-1.

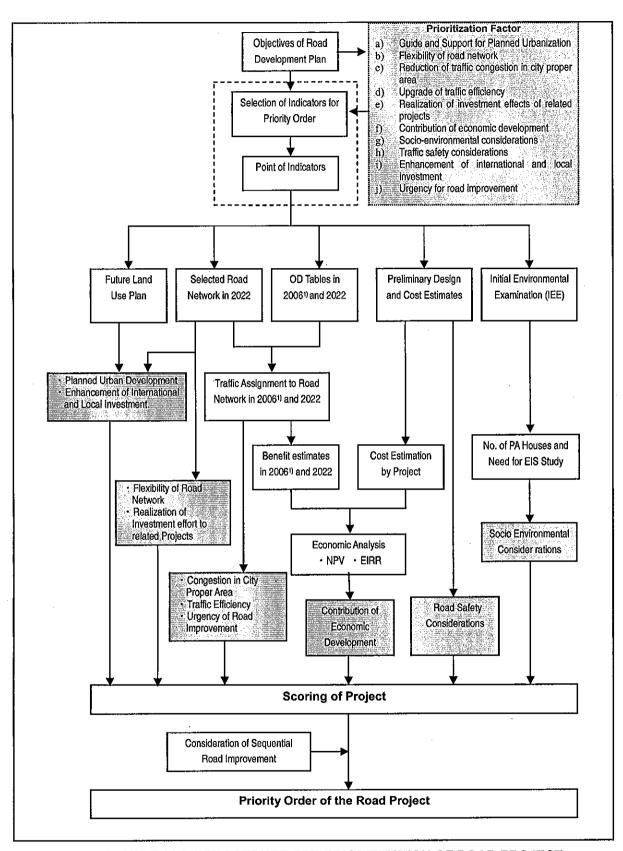



FIGURE 11.2-1 PROCEDURE FOR PRIORITIZATION OF ROAD PROJECT

<sup>1)</sup> Opening year of the road project is assumed to be 2006.

## 11.2.2 Prioritization Criteria

# 1) Selection of Prioritization Factors

In order to prioritize the road projects, the following prioritization factors which consist of ten (10) factors and fourteen (14) indicators were selected as shown in Table 11.2.-1.

TABLE 11.2-1 PRIORITIZATION FACTORS AND INDICATORS

|    | Factors                                                       | Indicators                                                                    | How to Measure                                                                                                                                                                                                                   |
|----|---------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Guide and Support<br>Planned Urban<br>Development             | Planned Urban Road<br>Section Ratio (year 2022)                               | Section Length along the planned urban area per Total Length RUA = RLu / RLw Where : RUA = Section ratio of planned urban area RLu = Section length in planned urban area RLw = Whole road length                                |
| 2  | Flexibility of Road Network                                   | Function as an Alternative Road                                               | •The road functions as an alternative route or not.                                                                                                                                                                              |
| 3  | Reduction of Traffic<br>Congestion in City Proper             | Averge VCR within C-1 in 2022                                                 | <ul> <li>VCR of road link within C-1 in 2022 based on<br/>traffic assignment.</li> </ul>                                                                                                                                         |
| 4  | Traffic Efficiency                                            | PCU-Hour in 2022                                                              | •PCU-Hour in 2022 with and without project based on traffic assignment                                                                                                                                                           |
| 5  | Accessibility Improvement for Related Projects                | Function as an Access Road to related Projects                                | The road functions as an Access Road to New<br>Airport and Marine Port directly or indirectly                                                                                                                                    |
| 6  | Contribution to Economic<br>Development                       | Net Present Value                                                             | •Economic analysis of each road project.                                                                                                                                                                                         |
|    |                                                               | EIRR                                                                          | •Economic analysis of each road project.                                                                                                                                                                                         |
| 7  | Social-Environmental Impact                                   | No. of Project Affected Houses                                                | No. of Houses affected by the Project                                                                                                                                                                                            |
|    |                                                               | Necessity of EIS Study                                                        | Need of EIS Study or Initial Environmental<br>Examination(IEE)                                                                                                                                                                   |
| 80 | Traffic Safety<br>Considerations                              | Provision of Sidewalk                                                         | Length of Sidewalk provided in the design In case of partially sidewalk provided, computation is made as follows:  SSW = SWL w / TRL x 5  Where:  SSW = Score of side walk  SWLw = Length with sidewalk  TRL = Total road length |
| 9  | Enhancement of<br>International / Local<br>Investment         | Accessibility to Industrial,<br>Commercial and Housing<br>Developments        | Judgment wheather direct access road or<br>indirect access road to industrial, commercial<br>and housing development sites                                                                                                       |
| 10 | Urgency for Road<br>Construction, Widening and<br>Improvement | For widening project, year when VCR of existing road becomes 0.9.             | ·Identify year when VCR of existing road becomes 0.9                                                                                                                                                                             |
|    |                                                               | For improvement project, year when traffic volume exceeds 1,000 pcu/day       | Identify year when traffic volume exceeds 1,000 pcu/day.                                                                                                                                                                         |
|    |                                                               | For new construction road, year when it will attract more than 10,000 pcu/day | Identify year when a new road attract more than 10,000 pcu/day.                                                                                                                                                                  |

# 2) Weight of Factor and Score

Weight of factors and scores was established as shown in Table 11.2-2.

TABLE 11.2-2 POINTS OF EACH INDICATOR

| No. | Factor                                                           | Range of Indicator                                                                                                                            | Weight of<br>Factors | Score                           |
|-----|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------|
| 1   | Guide and Support<br>Planned Urban<br>Development                | Planned urban section ratio (RUA)  • 80% < RUA <100%  • 60 % < RUA < 80%  • 40 % < RUA < 60 %  • 20 % < RUA < 40 %  • 0 % < RUA < 20 %        | 15                   | 15<br>12<br>9<br>6<br>3         |
| 2   | Flexibility of Road<br>Network                                   | Function as an alternative road  · Yes  · Yes, but indirectly  - No                                                                           | 10                   | 10<br>6<br>3                    |
| 3   | Reduction of Traffic<br>Congestion in City<br>Proper             | Average volume-capacity ratio (VCR) within C-1  • VCR < 0.5  • 0.5 < VCR < 0.75  • 0.75 < VCR < 1.00  • 1.00 < VCR < 1.25  • 1.25 < VCR       | 10                   | 10<br>8<br>6<br>4<br>2          |
| 4   | Traffic Efficiency                                               | Reduction of vehicle hours - 100,000 < PCU Hr - 10,000 < PCU Hr < 100,000 - 5,000 < PCU Hr < 10,000 - 2,500 < PCU Hr < 5,000 - PCU Hr < 2,500 | 10                   | 10<br>8<br>6<br>4<br>2          |
| 5   | Accessibility<br>Improvement for<br>Related Projects             | Direct access     Indirect access     No Access                                                                                               | 15                   | 15<br>9<br>3                    |
| 6   | Contribution to<br>Economic<br>Development                       | Amount of NPV computed is classified as - 10,000 < NPV - 1,000 < NPV < 10,000 - 500 < NPV Hr < 1,000 - 250 < NPV Hr < 500 - NPV Hr < 250 EIRR | 5                    | 5<br>4<br>3<br>2<br>1           |
|     |                                                                  | • 50 % < EIRR<br>• 15 % < EIRR < 50 %<br>• EIRR < 15 % •                                                                                      | 5                    | 5<br>(EIRR-15)/7<br>1           |
| 7   | Social-Environmental                                             | No. of project affected houses:  No PAH  O < PAH < 50  50 < PAH < 100  100 < PAH < 200  200 < PAH < 300                                       | 2.5                  | 2.5<br>2.0<br>1.5<br>1.0<br>1.5 |
| ·   | Impact .                                                         | Needs for EIS study  No EIS or IEE  IEE Check List  IEE  EIS Regional  EIS National                                                           | 2.5                  | 2.5<br>2.0<br>1.5<br>1.0<br>0.5 |
| 8   | Traffic Safety<br>Considerations                                 | Provision of sidewalk  Both side sidewalk  Partial sidewalk  No sidewalk                                                                      | 5                    | 5<br>5 x (L w / Lt)<br>1        |
| 9   | Enhancement of<br>International / Local<br>Investment            | Direct access to development area     Indirect access to development area     No direct access                                                | 5                    | 5 ·<br>3<br>1                   |
|     |                                                                  | For widening project, year of VCR becomes 0.9                                                                                                 |                      | 15<br>12<br>9<br>6<br>3         |
| 10  | Urgency for Road<br>Construction,<br>Widening and<br>Improvement | For improvement project, year of traffic volume exceeds, 1,000 pcu/day                                                                        | 15                   | 15<br>12<br>9<br>6<br>3         |
|     |                                                                  | Year exceeded more than 10,000 ADT is classified as                                                                                           |                      | 15<br>12<br>9<br>6<br>3         |

Part-B (Metro Iloilo)

## 11.2.3 Priority Ranking of Road Projects

In accordance with the prioritization criteria, all road projects were evaluated their implementation priority as shown in Table 11.2-3 and supporting data for evaluation are presented in Table 11.2-4.

### 11.2.4 Specific Consideration in Implementation Sequence

### 1) Opening of New Iloilo Airport

New Iloilo airport is scheduled to open in 2007. R-3 Iloilo - Sta. Barbara - Kalibo Road will function as a primary access road to new airport, therefore, it preferably be widened before or soon after the opening of new airport.

## 2) Progress of Urban Development

C-1, C-2 and C-3 will be constructed as circumferential roads and the roads will guide and orient expansion of urban area into the suburban area of Iloilo City. Order of the implementation is C-1,C-2, and C-3. Construction of C-2 can start after completion of C-1, and C-3 after C-2.

## 3) Construction Sequence

B-1: R-1 Bypass and B-2: R-4 Bypass are connected to C-1, therefore, these must be constructed after the completion of C-1.

### 11.2.5 Order of Implementation

Table 11.2-6 summarizes the order of implementation, in due consideration of priority order and construction sequence.

TABLE 11.2-6 PRIORITY ORDERS OF THE ROAD PROJECTS

| -                | Code | Project Name               | Ranking | Sequence  |
|------------------|------|----------------------------|---------|-----------|
| First Priority   | C-1  | Circumferential Road No. 1 | 1       |           |
| rust Phonty      | R-3  | Iloilo-Sta.Barbara Road    | 2       |           |
|                  | B-2  | R-4 Bypass Road            | 3       | After C-1 |
|                  | C-2  | Circumferential Road No. 2 | 4       | After C-1 |
| Second Priority  | R-4  | Iloilo-Roxas Road          | 4       |           |
|                  | S-2  | Jaro-Sta. Barbara Road     | 6       |           |
|                  | R-5  | Iloilo-Coastal Road        | 6       |           |
|                  | R-2  | Iloilo-San Miguel Road     | 8       |           |
| Third Priority   | B-1  | R-1 Bypass Road            | 9       | After C-1 |
| Tillio Fliolity  | R-1  | Iloilo-Antique Road        | 10      |           |
|                  | C-3  | Circumferential Road No. 3 | 11      | After C-2 |
| Fourth Priority  | B-3  | Cabatuan Bypass Road       | 12      |           |
| T Out IT FINDING | S-1  | Oton Bangcal Road          | 13      |           |

TABLE 11.2-3 PRIORITY SCORES FOR EACH INDICATOR BY PROJECTS IN METRO ILOILO

|    |                                                    |                                                                 | C-1                                | C-2                                | c-3                                | R-1                        | R-2                          | R-3                             | R-4                      | R-5                       | B-1                | B-2                | B-3                        | S-1                      | S-2                          |
|----|----------------------------------------------------|-----------------------------------------------------------------|------------------------------------|------------------------------------|------------------------------------|----------------------------|------------------------------|---------------------------------|--------------------------|---------------------------|--------------------|--------------------|----------------------------|--------------------------|------------------------------|
|    | Objectives                                         | Indicators & Weighted Score                                     | Circum-<br>ferential<br>Road No. 1 | Circum-<br>ferential<br>Road No. 2 | Circum-<br>ferential<br>Road No. 3 | Iloilo-<br>Antique<br>Road | Iloilo-San<br>Miguel<br>Road | Sta.Barbara<br>-Kalibo<br>-Road | Iloilo-<br>Roxas<br>Road | Iloilo<br>Coastal<br>Road | R-1 Bypass<br>Road | R-4 Bypass<br>Road | Cabatuan<br>Bypass<br>Road | Oton-<br>Bangcal<br>Road | Jaro-<br>Sta.Barbara<br>Road |
|    |                                                    | Road Length                                                     | 12.8                               | 27.1                               | 25.5                               | 22.2                       | 14                           | 41.3                            | 20.5                     | 20                        | 8.6                | 11.5               | 2.1                        | 12                       | 10.6                         |
|    |                                                    | Administrative Classification                                   | •                                  | NR & PR                            | PR                                 | NR                         | NR                           | NR                              | NR                       | NR                        |                    | ,                  |                            | NR                       | P.R                          |
|    | Drofile of Road                                    | Function of Road                                                | Arterial Road                      | Arterial Road                      | Arterial Road                      | Arterial Road              | Arterial Road                | Arterial Road                   | Arterial Road            | Arterial Road             | Arterial Road      | Arterial Road      | Arterial Road              | Arterial Road            | Arterial Road                |
|    |                                                    | No. of Lanes                                                    | 4                                  | 2                                  | 2                                  | 2                          | 2                            | 2                               | 2                        | 2                         | 2                  | 2                  | 2                          | 2                        | 2                            |
|    |                                                    | Type of Improvement                                             | New                                | Improve /New                       | Improve /New New/Improve           | Rehabilitation             | Rehabilitation               | Widening                        | Widening                 | Widening                  | New                | New                | New                        | Improvement              | Improvement                  |
|    |                                                    | Project Cost                                                    | 1606.2                             | 811.5                              | 654.5                              | 176.5                      | 145.9                        | 461.3                           | 327                      | 160.7                     | 372                | 504.4              | 62.5                       | 193.2                    | 123.2                        |
| п  | Guide and Support for Planned<br>Urban Development | Planned Urban Road Section 15<br>Ratio                          | 15                                 | 25                                 | 5                                  | 7.5                        | 10                           | 12.5                            | 10                       | 7.5                       | 10                 | 10                 | 5                          | 5                        | 10                           |
| 7  | Flexibility of Road Network                        | Funciton as Alternative Road 10                                 | 10                                 | φ.                                 | 9                                  | 4                          | 72                           | 4                               | 4                        | 9                         | æ                  | 10                 | 9                          | 2                        | 9                            |
| ٣  | Reduction of Traffic Congestion<br>in City Proper  | Average VCR in CBD in 2022 10                                   | 8                                  | 4                                  | 2                                  | 2                          | 2                            | 2                               | 2                        | 2                         | 2                  | 2                  | 2                          | 2                        | 2                            |
| 4  | Traffic Efficiency                                 | PCU-Hour in 2022                                                | 10                                 | 10                                 | 9                                  | 9                          | 9                            | v                               | 9                        | 9                         | 9                  | so.                | 9                          | 4                        | 9                            |
| 22 | Accessibility Improvement for Related Projects     | Provision of Accessible Road 15                                 | 10                                 | 7.5                                | . 5                                | 2                          | 10                           | 15                              | 10                       | 15                        | 5                  | 10                 | 25                         | 2.5                      | 10                           |
| ď  | Contribution of Economic                           | Net Present Value 5                                             | 2                                  | 3                                  | 3                                  | 3                          | 3                            | 3                               | 3                        | 3                         | 3                  | 3                  | 0                          | ю                        | ъ                            |
| ·  |                                                    | EIRR 5                                                          | 2                                  | 2                                  | 4                                  | 2                          | 4                            | 4                               | ın                       | 25                        | 4                  | 4                  | 1                          | 4                        | 5                            |
|    | Social-Froimmental Impacte                         | No. of PA Houses 2.5                                            | 1                                  | 1.5                                | 1                                  | 2.5                        | 1                            | 0.5                             | 2                        | 1.5                       | 2                  | 2                  | 2                          | 2.5                      | 2.5                          |
|    |                                                    | Type of EIA 2.5                                                 | H                                  | 1.5                                | н                                  | 2.5                        | 1.5                          | 1.5                             | 2                        | 2                         | 1                  | 1                  | 1                          | 2.5                      | 1.5                          |
| 80 | Traffic Safety Considerations                      | Provision of Sidewalk<br>/ Paved Shoulder                       | . 2                                | 3                                  | Ħ                                  | ٣                          | т                            | m                               | m                        | т                         | ю                  | м                  | m                          |                          | 1                            |
| თ  | Enhancement of International / Local Investment    | Accessibility to Industrial, Commercial and Housing Development | 3                                  | 2                                  | 3                                  | 1                          | 3                            | 7.                              | 3                        | 1                         | 1                  | т                  | т                          | -                        | 2                            |
| 유  | Construction, Widening and Improvement             | Order of Year 15                                                | 15                                 | 6                                  | 6                                  | 6                          | 12                           | 15                              | 15                       | 6                         | 12                 | 15                 | 9                          | 6                        | 6                            |
|    | Score Total                                        | 100 Istal                                                       | 88                                 | 65                                 | 46                                 | 51                         | 28                           | 77                              | <u> 29</u>               | 79                        | 25                 | 77                 | 40                         | 33                       | 79                           |
|    | Ranking                                            | 5.                                                              | 1                                  | 4                                  | 11                                 | 10                         | 8                            | 2                               | 4                        | 9                         | 6                  | ю                  | 12                         | 13                       | 9                            |
|    | Timing                                             | 4                                                               | †S                                 | +W+                                | +7                                 | .W.                        | .W-                          | 3                               | - W+                     | ##                        | ¥                  | ķ                  | +7                         | -7                       | H+                           |
|    |                                                    |                                                                 |                                    |                                    |                                    |                            |                              |                                 |                          |                           |                    |                    |                            |                          | Ì                            |

Part-B (Metro Iloilo)

TABLE 11.2-4 BASIC DATA FOR EACH INDICATOR BY PROJECT IN METRO ILOILO

|                     |                                                          |           | מטומים ליביון ששפרו                | 12.                                |                                    | ום אסומטוווואד אס ואוא     |                              |                                           | LUCATION                 | IN METRO LEGIES           | C IEOIL            | )                  |                            |                          |                              |
|---------------------|----------------------------------------------------------|-----------|------------------------------------|------------------------------------|------------------------------------|----------------------------|------------------------------|-------------------------------------------|--------------------------|---------------------------|--------------------|--------------------|----------------------------|--------------------------|------------------------------|
|                     |                                                          |           | 5-1                                | C-2                                | C-3                                | R-1                        | R-2                          | R-3                                       | R-4                      | R-5                       | B-1                | B-2                | B-3                        | S-1                      | S-2                          |
| Effects /<br>Impact | Indicators                                               | Unit      | Circum-<br>ferential<br>Road No. 1 | Circum-<br>ferential<br>Road No. 2 | Circum-<br>ferential<br>Road No. 3 | Iloilo-<br>Antique<br>Road | Iloilo-San<br>Miguel<br>Road | Iloilo-<br>Sta.Barbara<br>-Kalibo<br>Road | Iloilo-<br>Roxas<br>Road | Iloilo<br>Coastal<br>Road | R-1 Bypass<br>Road | R-4 Bypass<br>Road | Cabatuan<br>Bypass<br>Road | Oton-<br>Bangcal<br>Road | Jaro-<br>Sta.Barbara<br>Road |
|                     | Road Length                                              | km        | 12.8                               | 27.1                               | 25.5                               | 22.2                       | 14.0                         | 41.3                                      | 20.5                     | 20.0                      | 8.6                | 11.5               | 2.1                        | 12.0                     | 10.6                         |
|                     | Administrative Classification                            | 1         | •                                  | NR & PR                            | PR                                 | NR                         | NR                           | NR                                        | NR                       | NR                        | ı                  | •                  | ,                          | NR                       | R                            |
| Profile             | Function of Road                                         | ì         | Arterial Road                      | Arterial Road                      | Arterial Road                      | Arterial Road              | Arterial Road                | Arterial Road                             | Arterial Road            | Arterial Road             | Arterial Road      | Arterial Road      | Arterial Road              | Arterial Road            | Arterial Road                |
| of Road             | No. of Lanes                                             | Lanes     | 4                                  | 2                                  | 2                                  | 2                          | 2                            | 2                                         | 2                        | 2                         | 2                  | 2                  | 2                          | 2                        | 2                            |
|                     | Type of Improvement                                      | 1         | New                                | Improve /New                       | Improve /New New/Improve           | Rehabil                    | Rehabil                      | Widening                                  | Widening                 | Widening                  | New                | New                | New                        | Improvement              | Improvement                  |
|                     | Project Cost                                             | M Pesos   | 1,606.2                            | 811.5                              | 654.5                              | 176.5                      | 145.9                        | 461.3                                     | 327.0                    | 160.7                     | 372.0              | 504.4              | 62.5                       | 193.2                    | 123.2                        |
|                     | Traffic Volume in 2022                                   | ADT       | 49,600                             | 13,000                             | 11,900                             | 26,100                     | 23,600                       | 35,300                                    | 22,000                   | 31,400                    | 19,300             | 20,500             | 8,000                      | 1,100                    | 12,800                       |
| Traffic             | Traffic Volume in 2006                                   | ADT       | -15,600                            | 2,200                              | 2,200                              | 10,400                     | 15,000                       | 29,400                                    | 20,200                   | 12,000                    | 006'2-             | -19,000            | 4,900                      | 200                      | 4,900                        |
| Demand              | Trip Length in 2022                                      | km / trip | 20.3                               | 42.5                               | 42.0                               | 26.2                       | 17.4                         | 26.2                                      | 9.5                      | 34.8                      | 36.2               | 37.6               | 46.0                       | 23.2                     | 28.6                         |
|                     | Pcu-Hour Saving in 2022                                  | pcu-hr    | 127,700                            | 132,900                            | 2,800                              | 4,100                      | 3,800                        | 2,600                                     | 6,300                    | 000′6                     | 4,800              | 28,200             | 2,900                      | 400                      | 4,800                        |
| Traffic             | Congestion Degree in 2022                                | VCR       | 0.56                               | 0.47                               | 0.68                               | 89'0                       | 0.68                         | 0.68                                      | 99'0                     | 0.67                      | 69:0               | 0.63               | 0.67                       | 69'0                     | 0.68                         |
| Efficiency          | Congestion Degree in CBD in 2022                         | VCR       | 0.74                               | 0.74                               | 1.05                               | 1.06                       | 1.04                         | 1.04                                      | 1.06                     | 1.05                      | 1.07               | 1.01               | 1.05                       | 1.07                     | 1.06                         |
| Economic            | Net Present Value                                        | M Pesos   | 11,354                             | 12,339                             | 411                                | 312                        | 199                          | 550                                       | 740                      | 1,044                     | 398                | 457                | -15                        | 165                      | 723                          |
| Feasibility         | EIRR                                                     | %         | 56.4                               | 76.5                               | 25.1                               | 36.4                       | 30.7                         | 32.4                                      | 44.8                     | 81.6                      | 32.9               | 27.8               | 6.6                        | 26.7                     | 57.2                         |
| Traffic Safety      | Cirpowalk                                                | -         | Both side                          | NO                                 | NO                                 | Yes                        | NO                           | Yes                                       | Yes                      | Yes                       | NO                 | ON                 | ON                         | ON                       | ON                           |
|                     |                                                          | Ŕ         | 12.8                               | •                                  | 1                                  | 5.9                        | •                            | 9.4                                       | 5.7                      | 3.3                       | •                  | 1                  | -                          | -                        | I+                           |
| Environmental       | No. of PA Houses                                         | No.       | 103                                | 74                                 | 179                                | •                          | 101                          | 272                                       | 27                       | 66                        | 31                 | 48                 | 20                         | •                        | ı                            |
| Impact              | Type of EIA                                              | •         | EIS Regional                       | IEE Checklist<br>EIS Regional      | EIS Regional                       | No Need                    | IEE                          | IEE                                       | IEE Checklist            | IEE Checklist             | EIS Regional       | EIS Regional       | EIS Regional               | No Need                  | IEE                          |
| 1 Iranov for        | More than 0.9 of VCR<br>in case of widening              |           | ,                                  | -                                  |                                    | 2016                       | 2012                         | 2006                                      | 2006                     | 2017                      | •                  | 1                  | 1                          | -                        | 2017                         |
| Road                |                                                          | Year      | ,                                  |                                    | •                                  | -                          | 1,                           | •                                         | ı                        | -                         | •                  | -                  | -                          | 2020                     | -                            |
|                     | More than 10,000 ADT in case<br>of new construction road |           | 5006                               | 2021                               | 2020                               |                            | '                            | '                                         |                          | -                         | 2015               | 2006               | 2025                       | -                        |                              |
|                     |                                                          |           |                                    |                                    |                                    |                            |                              |                                           |                          |                           |                    |                    |                            |                          |                              |

Part-B (Metro Iloilo)

### 11.3 ROAD NETWORK MASTER PLAN

The Master Plan was formulated for the following three terms:

Short-Term : 2005 to 2010 Medium-Term : 2011 to 2016 Long-Term : 2017 to 2022

Financial framework (or possible investment amount) for each term is summarized as follows:

### **Financial Framework**

|             |               |                      | Million ₽   |
|-------------|---------------|----------------------|-------------|
| <u> </u>    | National Road | Provincial Road      | City Road   |
| Short Term  | 830~970       | 123.7~230.8          | 111.5~135.2 |
| Medium Term | 1,470~1,740   | 115.4~123.7          | 67.6~111.5  |
| Long Term   | 2,190~2,550   | 11 <u></u> 5.4~123.7 | 67.6~111.5  |
| Total       | 4,510~5,260   | 371.1~461.6          | 270.4~334.5 |

In due consideration of above financial framework and priority of road projects, the implementation schedule was established as shown in Table 11.3-1. Due to financial constraint of the period of Short-Term, the scale of the project is limited.

C-1 should be ideally constructed as a 4-lane divided road, however, it needs to be constructed by stages, i.e., a 2-lane road at the initial stage, then widened to a 4-lane divided road in the ultimate stage due to fund availability.

Figure 11.3-1 shows progress of road network development by each tem.

TABLE 11.3-1 IMPLEMENTATION PROGRAM FOR METRO ILOILO FUTURE ROAD NETWORK PLAN

|          |                               |          |                  |                             |       |           |                |                    |              |        |      |               |                                         |             | Detailed Design |             | Bidding        |             | 2000        | ROW A  | ROW Acquisition/Resettlement | settlement   |            | Constru       | Construction/Const. Supervision | Supervision  | 5        |
|----------|-------------------------------|----------|------------------|-----------------------------|-------|-----------|----------------|--------------------|--------------|--------|------|---------------|-----------------------------------------|-------------|-----------------|-------------|----------------|-------------|-------------|--------|------------------------------|--------------|------------|---------------|---------------------------------|--------------|----------|
| 3        | Road Name                     | Road     | Length           | Type of Work                |       | Project C | 受し             | - 1                |              |        |      |               | Short-Term                              | _           |                 |             | Ž              | Medium-Term | E           |        |                              |              | Long-Term  | Æ             |                                 | <u> </u>     | I.—      |
|          |                               | - 1      |                  |                             | 8     | S         | Chaft Res      | Resettle Cost      | 2003         | 82     | 3005 | 2006          | 2007 2008                               | 300g        | 2040            | 38,11       | 2042 28        | 2013 2014   | 14 2015     | 3046   | 2 kg                         | 8105         | 8008       | 2020 2021     | 302                             | \$2<br>2     |          |
| <u>ა</u> | Circumferendal Road No. 1     | œ<br>œ   | 64               | New construction            | 88    | 626       |                |                    |              |        |      |               | <b>*</b>                                | -8          |                 |             | 17<br>12<br>12 | _           | -           | ļ      |                              | -            | -          | -             |                                 | -            | 7-       |
|          |                               |          | Т                | (2-lane)                    |       | -         |                | 27.8               |              |        |      | ¥1            | 58.1 125.1                              | .1 125.1    | 1 238.0         | 238.0       | 238.2          |             |             |        |                              |              |            |               |                                 |              |          |
|          |                               | ¥        | 5.<br>5.         | Widening to 4-fane          |       | 83.3      | 791.8          | 9.0                |              |        |      | •             |                                         |             |                 |             |                |             |             | _      |                              |              |            |               |                                 |              | 1        |
| ال       |                               |          |                  | divided                     |       |           |                | 0.0                |              |        |      |               |                                         |             |                 |             |                |             | ·           |        |                              |              | **         | 285.0 285.0   | 0 285.1                         | Γ            |          |
| ပိ       | Circumferential Road No. 2    | S.       | 7.8              | Improvement                 | 34.1  | 48.1      | 801.8          | 7.67               | L            | _      |      | -             | -                                       |             |                 |             |                |             | # H H       |        |                              |              | +          | +-            | ┿                               | +            | T        |
|          |                               |          | 11.5             | New construction            |       |           | L              | 7.<br>1.18<br>1.18 |              |        |      |               | _                                       |             |                 |             | **             | 24.1 43.5   | 2000        | 218.8  | 216.6                        | 218.7        |            |               |                                 |              |          |
| _        |                               | Prov.    | 7.8              | Improvement                 | 5.0   | 10.0      | 125.2          | D.B                | -            |        |      | $\vdash$      | _                                       | -           | -               |             |                | -           |             | -      |                              | -            | +          | +             | -                               | $\downarrow$ | Т        |
|          |                               |          |                  |                             |       |           | $\perp$        | 3.9                |              | -      |      |               |                                         |             |                 |             |                | 5.0 \ 3.9   | 57.6        | 67.6   | -3.                          |              |            |               |                                 |              |          |
| 3        | Circumfurenttal Road No. 3    | Prov.    | 10.6             | New construction            | 25.5  | 51.0      | 637.4          | 16.3               | -            |        |      | -             | +                                       | -           | -               |             |                | +-          | ╁╌          | 4-     |                              | - 888<br>- 1 | ***        |               |                                 |              |          |
|          |                               |          | 14.9             | Improvement                 |       |           |                | 17.9               | ••           |        |      |               |                                         |             |                 |             |                |             |             |        |                              | <b>8</b>     | 25.5       | 17.1 17.1     | 180.0                           | 528.4        | Т        |
| ď.       | R-1 Mollo-Antique Road        | æ        | 10.2             | Rehabilitation              | 17    | 14.1      | 176.4          | 0.0                | L            | -      |      | $\vdash$      | <u> </u><br>                            | -           |                 |             |                | H           | -           | _      |                              | †            | Т.         | - I           |                                 | -            | Τ.       |
|          |                               |          |                  |                             |       |           |                | 0.0                | •            |        | ·    |               | *************************************** |             |                 |             |                |             |             |        |                              |              | <b>8</b>   |               | 190.5                           |              |          |
| R-2      | Holto-San Miguel Road         | R.       | 12.1             | Rehabilitation              | 6.9   | 11.7      | 146.3          | 0.0                |              |        |      | -             | _                                       | L           | -               |             | -              | -           |             | _      |                              |              |            | - K 2         |                                 |              | Т        |
|          |                               |          | **               | & shoulder widening         | _     |           |                | 10.1               |              |        |      | <del></del> . |                                         |             |                 | _           |                |             |             |        |                              |              | <b>a</b> " | 5.0           | 158.7                           | T.           | _        |
| 2        | Noilo-Sta Barbara-Kailbo Road | N.       | 13.1<br>N        | Minor improvement &         | 17.71 | 35.4      | 441.9          | 0,0                | L            |        |      | ×             |                                         | = # #       |                 |             | +              | H           | 1           | ļ      |                              | +            |            | +             |                                 | +            | 7        |
|          | (Hollo-Sta. Barbara Section)  |          | _5               | widening                    |       |           | L              | 77.2               |              |        |      | <b>3</b> -    | 17.7 36.8                               | 38.6        | 238.6           | 238.7       |                | _           |             |        |                              | ·            |            |               |                                 |              |          |
| 4        | Hollo-Roxas Road              | S.       | V 4.01           | Widening                    | 9.5   | 19.0      | 237.0          | 27 268.2           | _            |        |      | $\frac{1}{1}$ |                                         | _           | -               |             |                |             | _           | 1      |                              |              |            |               | +                               | _            | 1        |
| _        |                               |          | >                | Widening within C-1         | 3.6   | 7.2       | 0,06           | 100.8              |              |        |      |               |                                         |             |                 | 3.6         | <b>1</b> 6     | 97.2        |             |        |                              |              | 128.0      | 178.0         |                                 |              |          |
| 8        | Ikollo Coastal Road           | ž        | 11.8             | Widening from International | 5.4   | 12.9      | 160.8          | L                  |              |        |      | -             | -                                       | -           |                 | 1000        | 8 8 8 8        |             |             |        |                              | ╁            | +          | 3             | +                               | 1            | $\neg$   |
|          |                               |          |                  | Sta Ci                      |       |           |                | 6.06               |              |        |      |               |                                         |             |                 |             | 30000          | 380         |             |        |                              |              |            |               |                                 | _            |          |
| <u>~</u> | 8-1 R-1 Bypass Road           | g        | 4 8              | Contractor contract         | 15    | 1         |                | 1 3                | +            | -      |      | +             | +                                       | _           | -               | 3           | +              | +           |             |        |                              | 1            | -          |               | _                               | 4            | Т        |
|          | :                             | ¥        |                  | New construction            | 672   | 80        | 323.1          | 486                |              |        |      |               |                                         |             |                 |             |                |             |             |        | 1111                         | 쒸            |            |               |                                 |              |          |
| į        | 1                             | 4        | T                | Z-kalme)                    | 1     |           |                | 3.1                | $\downarrow$ |        |      | -             |                                         | 4           | _               |             |                |             | _           |        | 12.9                         | 25.8         | 25.9 17.   | 174.4 174.5   |                                 |              |          |
| 7        | K. Bypass Road                | ž        | o: 1             | New construction            | 20.9  | 6.19      | 523.5          | 118.7 713.2        |              |        |      |               |                                         |             |                 | 888         | •₩             |             |             |        |                              |              |            |               |                                 |              | <u> </u> |
| 1        |                               | 1        | T                | (5-806)                     | +     | +         |                | 8.2                | -            | $\int$ |      | -             | -                                       |             |                 | e<br>e<br>e | 63.4 62.5      | 5 188.4     | 4 188.4     | 188.5  |                              |              |            |               |                                 |              |          |
| 3        | D-3 Capanian bypass Kond      | ž        | 2<br>2<br>2<br>2 | New construction            | 2.4   | 4.<br>80. | 28             | 71.6               |              |        |      |               |                                         |             |                 |             | •              |             |             |        |                              |              |            |               |                                 |              |          |
|          |                               | +        | Т                |                             | 1     | 1         |                |                    | +            | $\int$ |      | 1             | +                                       | +           | 1               |             | -              | -           | _           |        |                              |              |            |               |                                 | 71.6         | ø,       |
| ,        | DEOX INDEED CONT              | ž.       | 0.77             | Improvement                 | 22    | 4.5       | 192.6          | 215.7              |              |        |      | ·~            |                                         |             |                 |             |                |             | ·           |        |                              |              |            | -             |                                 | 715.7        | 4        |
| 3        | Jaro-Sta Barbara Road         | æ.       | 7.7 In           | Improvement                 | 4.9   | 9.9       | 123.2          | 0.0                | _            |        |      |               | _                                       |             |                 |             | 2              |             |             |        |                              | $\parallel$  | ╁          | -             | 1                               | _            |          |
|          |                               | $\dashv$ | 1                |                             | -     | 1         | -              | l                  |              |        |      |               |                                         |             |                 | 4.9         | 86.5           | 5 66.5      |             |        |                              |              |            |               |                                 |              |          |
| 1        | Total                         | +        | £.1              |                             | 211.7 | 423.4     | 5282.5 654.1   | 11 (SBH.7          | $\dashv$     | 0.0    |      | 0.0           | 75.8 161                                | 161.7 161.7 | .7 476.6        | 512.5       | 311.5 3        | 343.1 39    | 389.3 289.6 | 87778  | 239.0                        | 2652         | 179.4      | 817.5 48      | 486.71 793.6                    | .6 8HS.7     | 15       |
|          |                               | L        |                  | HWAD                        |       |           | ۲              | Total              | 8            | 0.0    | 98   | 0.0           | 75.8 161.7                              | 1,7 (61,7   | 7 476.6         | 5.792       | 311.5 27       | 27.1.5      | 318.8 232.0 | 405.2  | 0'662                        | 245.2        | 153.9      | 800.4         | 469.6 633.6                     | 6. 287.3     | 'n       |
| ·        |                               | _1       |                  |                             |       |           | Total for Term | W.                 |              | 0.0    |      |               |                                         | <b></b>     | 875.8           |             |                | _           |             | 2046.7 |                              |              | -          | ŀ             | 2341.7                          | _            | 1=       |
|          | Funding Demarkation           | _]       | <u>«</u>         | Provincial Government       |       |           | ř.             | Total              | 0.0          | 0.0    | 0.0  | 0.0           | 0.0                                     | 0.0         | 0.0             | 67          | 7 0.0          | 71.5        | 70.5 67.6   | 67.8   | 0.0                          | 0.0          | 25.5       | 17.4          | 17.1 \$60.0                     |              | 1        |
|          |                               |          |                  |                             |       |           | Total for Term | Ę                  |              | 0.0    |      |               |                                         |             | 0.0             |             |                | _           | _           | 282.1  |                              |              | H          |               | 219.7                           | ↓            | T-       |
|          |                               | -        |                  |                             |       |           | Grand Total    | otal 6581.7        |              | 0.0    |      |               |                                         | -           | 875.8           | -           |                |             | _           | 23288  |                              |              | -          |               | 255.4                           | A 845.7      | ٦.       |
|          |                               |          |                  |                             |       |           |                |                    |              |        |      |               |                                         |             |                 |             |                | 1           | 1           |        |                              | 1            |            | $\frac{1}{2}$ |                                 |              | 7        |

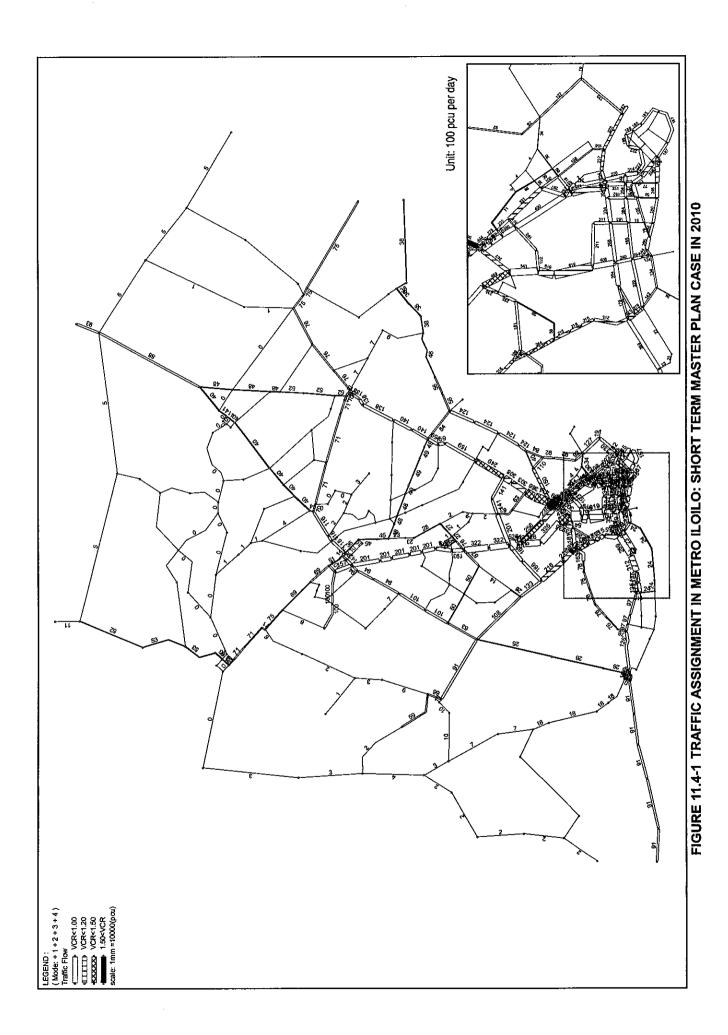
FIGURE 11.3-1 ROAD NETWORK MASTER PLAN: ILOILO

# 11.4 EVALUATION OF ROAD NETWORK DEVELOPMENT MASTER PLAN

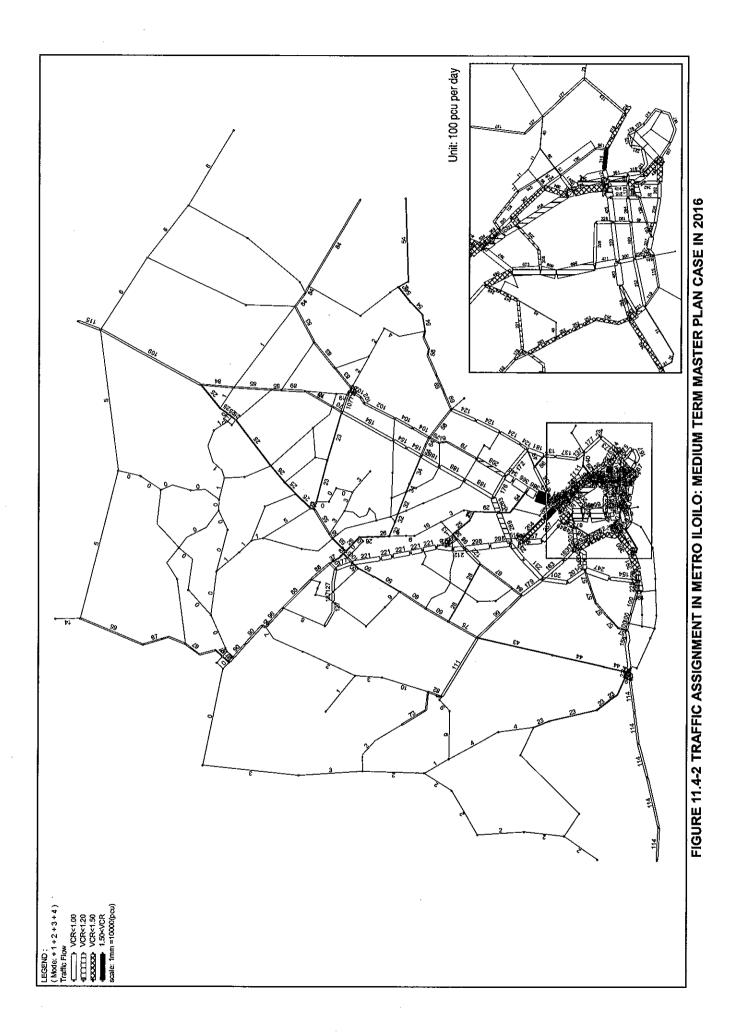
The Master Plan was evaluated from the following factors;

- Improvement of transport efficiency
- Economic viability
- Achievement of road network development objectives by the Master Plan

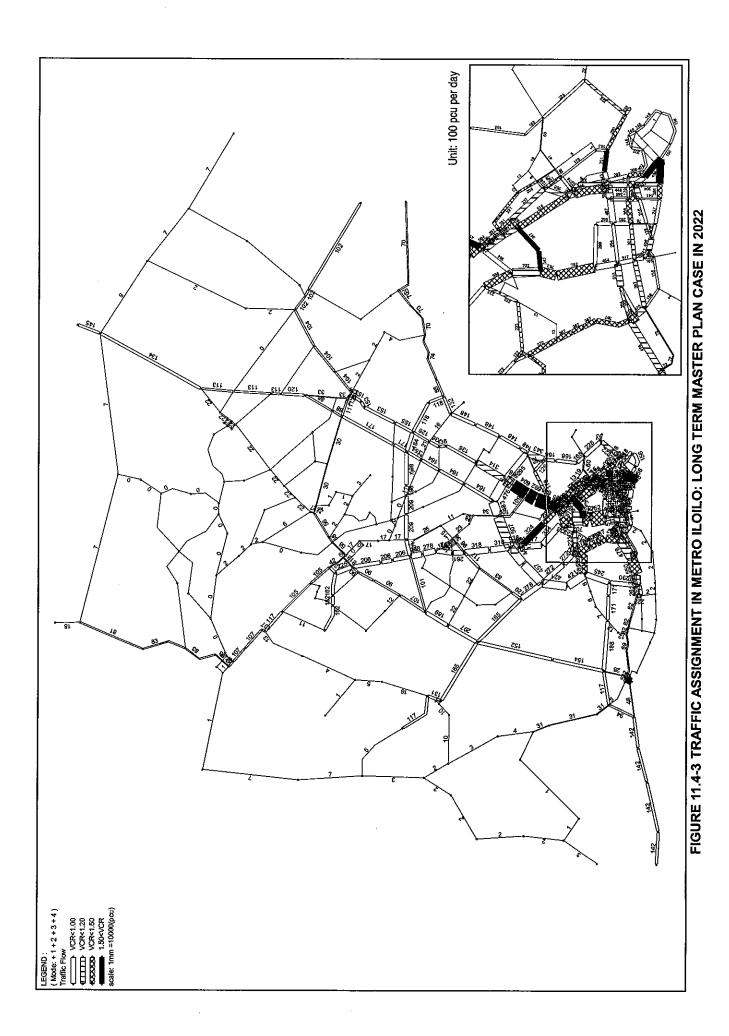
# 11.4.1 Improvement of Transport Efficiency By Master Plan


Transport efficiency was evaluated on the following indicators by comparing "Do Nothing" Case with the Master Plan;

- PCU Km (vehicle travel distance)
- PCU hour (vehicle travel time)
- Average travel speed
- · Congested road section length
- Vehicle operating cost


Traffic assignment was carried out for the final year of each term and shown in Figure 11.4-1 to 11.4-3.

Evaluation results of transport efficiency are shown in Table 11.4-1 and Figure 11.4-4, and concluded as follows:


- a) Although reduction in PCU-Km is minimal, pcu-hours will be drastically reduced by about 70 to 75% in 2022, thus time saving is achieved by the Master Plan.
- b) Average travel speed will be increased by about 25 to 33% in 2022 by the Master Plan.
- c) Congested road section will be reduced by about 80% in 2022 by the Master Plan.
- d) Drastic reduction in vehicle operating cost (VOC) is expected. VOC will be reduced to about 67% in 2022 by the Master Plan.



-219-



-220-



-221-

TABLE 11.4-1 TRANSPORT EFFICIENCY IMPROVEMENT BY MASTER PLAN

| Indicators     | Area                                      | Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Short Term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Medium Term                   | Long Term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|----------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Indicators     | Alca                                      | Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (in 2010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (in 2016)                     | (in 2022)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|                |                                           | Do-Nothing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,950<br><i>(1.00)</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3,750<br>(1.00)               | 4,800<br>(1.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| * *            | Whole Area   Case   (in 2010)   (in 2016) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| •              |                                           | Master Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (in 2010)         (in 2016)         (in 2022)           2,950         3,750         4,800           (1.00)         (1.00)         (1.00)           2,930         3,570         4,770           (0.99)         (0.95)         (0.99)           1,700         2,100         2,630           (1.00)         (1.00)         (1.00)           1,650         1,880         2,290           (0.97)         (0.90)         (0.87)           101.7         145.7         213.9           (1.00)         (1.00)         (1.00)           (1.00)         (1.00)         (1.00)           92.7         113.7         159.5           (0.91)         (0.78)         (0.75)           63.9         90.4         133.9           (1.00)         (1.00)         (1.00)           57.6         70.3         93.1           (0.90)         (0.78)         (0.70)           29.0         25.8         22.5           (1.00)         (1.00)         (1.00)           31.6         31.4         29.9           (1.09)         (1.22)         (1.33)           26.5         23.3         19.6 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| kilometer      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| (000)          |                                           | Do-Nothing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Paryonalias ing gas sarenti i si ti tulik 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Care New Prince of Alberta    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|                | Inside C-1                                | A PARTICIPATION OF THE PROPERTY OF THE PROPERT |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|                |                                           | Master Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|                |                                           | Do-Nothing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (1.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1.00)                        | (1.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                | Whole Area                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| pcu-hour       |                                           | Master Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0.91)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.78)                        | (0.75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90,4                          | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
|                | Tueide C 1                                | Do-Nothing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (1.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1.00)                        | (1.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                | Inside C-1                                | Master Dless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 57.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70.3                          | 93.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|                |                                           | Master Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0.90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.78)                        | (0.70)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25.8                          | 22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|                | verage<br>Travel<br>Speed<br>km/hr)       | le∰a, cheir ich "Tilb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1.00)                        | (1,00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| Average        |                                           | Magter Dlan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31.4                          | 29.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| Average Master | Master Plan                               | (1.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1.22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1.33)                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|                | Travel Speed                              | De Nothine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23.3                          | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| (km/hr)        | Incide C-1                                | Do-Nothing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (1.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1.00)                        | (1.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| ·              | Inside C-1                                | Inside C-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Macter Dian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28.7                          | 26.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.6 |
|                |                                           | Master Flatt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1.08)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1.15)                        | (1.25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                |                                           | Do Nothino                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 41.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 72.1                          | 84.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|                | Whole Area                                | DO-NOU III G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1.00)                        | (1.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| Congested      | WHOLE ALEA                                | Mactor Dian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44.8                          | 68.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| Section        |                                           | - Master Flatt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.81)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.62)                        | (0.81)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                |                                           | Do-Nothing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52.2                          | 58.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| (VCR>0.9)      | Inside C-1                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1.00)                        | (1.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                | 1110100001                                | Master Dian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37.2                          | 46.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|                |                                           | Tidocor Tidit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.82)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.71)                        | (0.80)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| 4              |                                           | Do-Nothing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5,120                         | 7,430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|                | Whole Area                                | 138 30 97 97 0 159 97 1 40 7561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| Vehicle        | THOIS MICH                                | Master Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                             | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| Operation      |                                           | 10 12 12 12 12 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|                |                                           | Do-Nothina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOMEST WILL WINDS AND SPECIAL | Take the second of the second |      |
| (14. 2650)     | Inside C-1                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|                |                                           | Master Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · ·                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.89)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.76)                        | (0.67)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |

Note: Figures in the ( ) are Transport Efficiency Improvement Index vs. Do-Nothing Case in Each Target Year

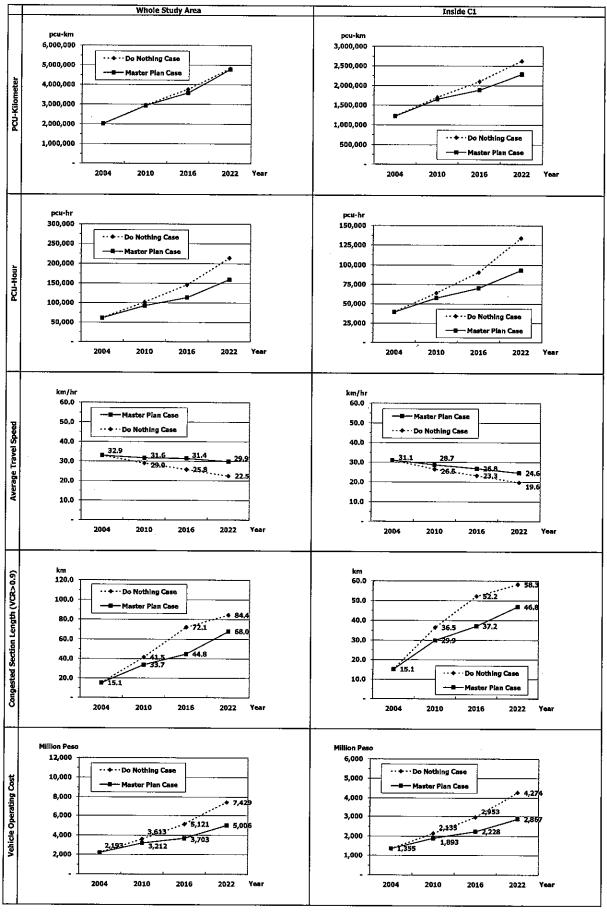



FIGURE 11.4-4 TRANSPORT EFFICIENCY IMPROVEMENT BY MASTER PLAN

### 11.4.2 Economic Viability

Economic viability of the Master Plan was evaluated in accordance with the assumptions and procedure presented in Appendix 11.4-1. Economic evaluation results were as follows:

|                   | Net Present Value<br>(Million Pesos) | B/C Ratio | EIRR (%) |
|-------------------|--------------------------------------|-----------|----------|
| Short Term Plan   | 2,070                                | 3.44      | 45.3     |
| Medium Term Plan  | 1,105                                | 3.40      | 50.6     |
| Long Term Plan    | 85                                   | 1.27      | 21.0     |
| Whole Master Plan | 3,882                                | 3.34      | 46.1     |

Notes:

- 1) Project life was assumed to be 20 years
- 2) Discount rate at 15%

As shown above, the Master Plan was evaluated highly economically feasible.

# 11.4.3 Achievement of Road Network Development Objectives By the Master Plan

Prior to formulation of future road network development plan, road network development objectives were established. Whether the established objectives can be achieved by the Master Plan in each term was evaluated and summarized in Table 11.4-2.

It can be concluded that the Master Plan will successfully achieve the objectives of road network development.

|   | -          | , |
|---|------------|---|
|   | 2          |   |
|   | =          |   |
|   |            | l |
|   | Ü          | ľ |
|   | 끈          |   |
|   | Ū          |   |
|   | <          | į |
|   | -          |   |
|   | >          |   |
|   |            |   |
|   | U          |   |
|   | ĥ          |   |
|   | É          |   |
|   | 5          | • |
| • | ũ          |   |
|   | Ξ          |   |
|   | 6          |   |
|   | _          |   |
|   | ţ          |   |
|   | ū          |   |
|   | 2          |   |
|   | õ          |   |
|   | C          |   |
|   | Ę          |   |
|   |            | • |
|   | Ļ          |   |
|   | ווי<br>ווי |   |
|   | ¥          |   |
|   | ō          |   |
|   | ٤          |   |
|   | ۶          |   |
|   | П          |   |
|   | Z          |   |
|   |            | 1 |
|   | ₹          | ĺ |
|   | Ç          |   |
|   | Ω          |   |
|   | Щ          |   |
|   | Ċ          | 2 |
|   | 5          |   |
|   | ű          | Ī |
|   | 2          |   |
|   | Ū          | Į |
|   | ?          |   |
|   | ۳          |   |
|   | ļ          | • |
|   | ۲          |   |
|   | _          | • |
|   | ٩          | ١ |
|   | 4          |   |
|   | Ξ          |   |
|   | Ů.         | ı |
|   | _          | ĺ |
|   |            |   |
|   | Ţ          | ļ |
|   | 7AB        |   |

|                                                                                            | A SOUTH TOOLS                                                                                                                            |                                                                                                                                                        |                                                                                               |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Road Network Development Objectives                                                        | (2005-2010)                                                                                                                              | (2011-2016)                                                                                                                                            | (2017-2022)                                                                                   |
| Physical Target                                                                            | <ul> <li>New construction of C-1 (2-lane)</li> <li>Widening of R-3 from Iloilo City to</li> </ul>                                        | <ul> <li>Improvement and new construction of C-2</li> </ul>                                                                                            | <ul> <li>New construction of R-1 bypass (2-<br/>lane)</li> </ul>                              |
|                                                                                            | Sta. Barbara                                                                                                                             | R-4 bypass (2-lane)     Widening of inside C-1 section of R-5                                                                                          | <ul> <li>Widening of C-1 to a 4-lane divided<br/>road.</li> </ul>                             |
|                                                                                            |                                                                                                                                          |                                                                                                                                                        | Widening of R-4                                                                               |
|                                                                                            |                                                                                                                                          |                                                                                                                                                        | <ul> <li>Minor improvement of R-1</li> <li>Minor improvement of R-2</li> </ul>                |
|                                                                                            |                                                                                                                                          |                                                                                                                                                        | <ul> <li>Improvement of S-2</li> </ul>                                                        |
| Reduction of traffic congestion in the City Proper area.                                   | <ul> <li>Such traffic as Oton-pavia, Oton-<br/>Leganes etc.,will utilize C-1, thus<br/>traffic congestion in City Proper Area</li> </ul> | Such traffic as Oton-Sta.Barbara,     Oton-Leganes/Zarraga, Sta.Barbara- Leganes/Zarraga etc.,will utilize C-2, thus traffic congestion in lloilo City | Widening fo C-1 will contribute to<br>mitigation of traffic congestion in Iloilo<br>City.     |
| Dood potation withing                                                                      | -11-11 -17 -1-11 - 1                                                                                                                     | will be illingated.                                                                                                                                    |                                                                                               |
|                                                                                            | <ul> <li>Utbanized along C-1 where the Iloulo<br/>City Government identified for future</li> </ul>                                       | Planned urbanization along K-4 will be quided and accelerated by a B-4                                                                                 | Planned urbanization along R-1 will     bo guided and accolomized by a B-4                    |
|                                                                                            | urban area will be guided and accelerated.                                                                                               | bypass.                                                                                                                                                | bypass.                                                                                       |
| <ul> <li>Formation of flexible road network</li> </ul>                                     | <ul> <li>C-1 will increase possibility of route</li> </ul>                                                                               | <ul> <li>With completion of C-1 and C-2, road</li> </ul>                                                                                               | <ul> <li>In addition to Medium-Term situation.</li> </ul>                                     |
| which provide alternative routes to                                                        | selection by road users, thus road                                                                                                       | users are provided with several                                                                                                                        | R-1 and R-3 corridors will have two                                                           |
| road users.                                                                                | network becomes highly flexible.                                                                                                         | routes to choose, thus road network                                                                                                                    | routes for selection.                                                                         |
|                                                                                            |                                                                                                                                          | becomes highly flexible.  R-4 corridor will have two routes for                                                                                        |                                                                                               |
| - 1                                                                                        |                                                                                                                                          | selection.                                                                                                                                             |                                                                                               |
| <ul> <li>Road network which contribute to the economic development in the Study</li> </ul> | <ul> <li>Due to improvement of accessibility<br/>and less transport cost, economy</li> </ul>                                             | <ul> <li>In addition to R-3 corridor, R-4<br/>corridor's economy will be stimulated.</li> </ul>                                                        | <ul> <li>Overall transport efficiency in the<br/>Study Area will be improved which</li> </ul> |
| Area as well as its hinterland.                                                            | along the corridor of R-3 will be                                                                                                        |                                                                                                                                                        | will contribute to economic                                                                   |
|                                                                                            | stimulated.                                                                                                                              |                                                                                                                                                        | development in the Study Area as well as its hinterlands.                                     |
| <ul> <li>Road network which enhance</li> </ul>                                             | <ul> <li>Due to improvement of accessibility</li> </ul>                                                                                  | <ul> <li>C-2 will provide another route of</li> </ul>                                                                                                  | Efficient transport linkage between                                                           |
| international and domestic                                                                 | to the Pavia Industrial Estates, more                                                                                                    | access to the Pavia Industrial                                                                                                                         | industrial estates and transport                                                              |
| Investment in the Study Area as well                                                       | local / international investors will be                                                                                                  | Estates, more local / international                                                                                                                    | facilities (an airport and a port) will                                                       |
|                                                                                            | auracied.                                                                                                                                | Investors will be attracted.                                                                                                                           | attract more local / toreign investors.                                                       |
| expected investment effects of                                                             | Due to improvement or accessibility to new light Airport by R-3 intended                                                                 | <ul> <li>Widening of R-5 will improve<br/>accessibility to the ligity international</li> </ul>                                                         | Accessibility to new Airport and the International Doctarill be improved.                     |
| related project.                                                                           | effects and investment return of the                                                                                                     | Port.                                                                                                                                                  | thus economic return of investment to                                                         |
|                                                                                            | new airport project will be realized as planned.                                                                                         |                                                                                                                                                        | these project will be realized.                                                               |
| Road network development with                                                              | Relocation of affected families and                                                                                                      | Same as Short-Term                                                                                                                                     | Same as Short-Term                                                                            |
| consideration.                                                                             | KOW acquisition must be so undertaken that adverse social impact will be minimized.                                                      |                                                                                                                                                        |                                                                                               |
|                                                                                            |                                                                                                                                          |                                                                                                                                                        |                                                                                               |

# 11.5 PROPOSED ADMINISTRATIVE ROAD CLASSIFICATION AND IMPLEMENTING AGENCY

As discussed in "Section 11.1 Financial Framework", funding capacity for road development of LGUs is quite limited, thus LGUs can not make investment for large scale projects such as circumferential road construction. It is recommended that new road construction be implemented by DPWH. Widening, improvement and rehabilitation of existing roads should be implemented by presently responsible agency.

| Present Classification | Proposed Administrative Classification | Proposed Implementing<br>Agency |
|------------------------|----------------------------------------|---------------------------------|
| None (new road)        | National Road                          | DPWH                            |
| National Road          | National Road                          | DPWH                            |
| Provincial Road        | Provincial Road                        | Provincial Government           |
| City Road              | City Road                              | City Government                 |

As an exceptional case, development of C-2 needs to be implemented by DPWH. Present administrative classification of C-2 is as follows:

| C-2: | Oton - Sta. Barbara Road                                   |
|------|------------------------------------------------------------|
|      | Section from R-1 to R-2 National Road                      |
|      | Section from R-2 to Sta. Barbara Provincial Road           |
| C-2: | New Road                                                   |
|      | Section from Oton - Sta. Barbara Road to R-5 National Road |

In order to systematically develop C-2, section from R-2 to Sta. Barbara is recommended to be converted to National Road.

Instead, S-1: Oton - Bancal Road should be turned over to Provincial Government to reduce financial burden of DPWH.

Similarly, it is also recommended that the following sections be turned over to local government after completion of a bypass:

| R-1 from Iloilo City to Oton: | Turn over to Iloilo City and Municipality of Oton   |
|-------------------------------|-----------------------------------------------------|
| R-4 from C-1 to Zarraga :     | Turn over to Iloilo City, Municipalities of Leganes |
|                               | and Zarraga.                                        |

These sections will function as an urban street when a bypass is completed.

# 11.6 ROAD MAINTENANCE PLAN

# 11.6.1 Unit Rate of Maintenance

Unit rate of maintenance is shown in Table 11.6-1.

TABLE 11.6-1 UNIT RATE OF MAINTENANCE ACTIVITY

| Maintenance<br>Definition | Activity                                   | Unit Rate<br>(Economic) | Unit Rate<br>(Financial) |
|---------------------------|--------------------------------------------|-------------------------|--------------------------|
| i. Routine                |                                            |                         |                          |
| Maintenance               | Vegetable control                          | 21,279.10 P/km          | 25,950.62 P/km           |
|                           | 2. Clearing and repair of culverts         | 6,845.27 <i>P/km</i>    | 10,792.68 <i>P/km</i>    |
|                           | 3. Replace, clean and repair traffic signs | 4,808.83 P/km           | 6,282.67 P/km            |
|                           | 4. Clearing side ditches                   | 11,273.51 P/km          | 15,418.86 <i>P/km</i>    |
|                           | Total per Annum                            | 44,206.71 P/km          | 58,444.83 P/km           |
| II. Periodic              |                                            |                         | -                        |
| Maintenance               | 1. Gravel (Surface)                        | 2,485.27 <i>P/m3</i>    | 2,968.48 <i>P/m3</i>     |
|                           | 1.1 Regrade and reshape gravel             | 12.00 <i>P/m2</i>       | 16.41 <i>P/m2</i>        |
|                           | a. Traveled way (carriage way)             | 20.17 <i>P/m2</i>       | 27.61 <i>P/m2</i>        |
|                           | b. Shoulder                                | 83.75 P/m2              | 107.73 P/m2              |
|                           | 2. Resurfacing                             | 248.35 P/m2             | 316.51 <i>P/m2</i>       |
|                           | a. DBST (SST)                              | 389.73 <i>P/m2</i>      | 495.00 <i>P/m2</i>       |
|                           | b. AC (3cm)                                | 575.92 <i>P/m2</i>      | 728.17 <i>P/m2</i>       |
|                           | 3. Overlays                                | 711.06 <i>P/m2</i>      | 897.74 P/m2              |
|                           | a. AC (5cm)                                | 3,626.50 P/m2           | 4,732.20 P/m2            |
|                           | b. AC (8cm)                                | 3,336.24 <i>P/m2</i>    | 4,353.45 <i>P/m2</i>     |
|                           | c. AC (10cm)                               | 2,901.20 P/m2           | 3,785.76 <i>P/m2</i>     |
|                           | Replacement of failed bays                 | 2,766.86 P/m2           | 3,595.90 P/m2            |
|                           | a. t=250mm                                 | 2,610.87 <i>P/m2</i>    | 3,406.91 <i>P/m2</i>     |
|                           | b. t=230mm                                 | 31,785.12 P/km          | 42,818.06 P/km           |
|                           | c. t=200mm                                 | 2,386.81 <i>P/m3</i>    | 2,834.42 P/m3            |
|                           | d. t=190mm                                 | 687.75 P/m2             | 842.90 <i>P/m2</i>       |
|                           | e. t=180mm                                 | 127.80 <i>P/m2</i>      | 168.54 <i>P/m2</i>       |
|                           | 5. Repair cracks/joints                    | 188.60 P/m2             | 245.52 P/m2              |
|                           | 6. Patching and potholes repair            | 856.32 P/m2             | 1097.98 P/m2             |
|                           | a. Pothole repair (Gravel)                 | 107.62 <i>P/m2</i>      | 140.25 <i>P/m2</i>       |
|                           | b. Pothole repair (DBST)                   | 602.15 <i>P/m2</i>      | 785.09 <i>P/m2</i>       |
|                           | b.1 Repair (DBST)                          | 588.93 P/m2             | 767.08 P/m2              |
|                           | b.2 Sealing (DBST)                         | 1026.13 <i>P/m2</i>     | 1,302.10 <i>P/m2</i>     |
|                           | b.3 Patching (DBST)                        | 28.63 <i>P/lm</i>       | 34.60 <i>P/lm</i>        |

Source: DPWH, April 2003

### 11.6.2 Routine Maintenance and Minor Repair Cost

Maintenance cost by pavement type is estimated by adopting the above cost estimate. Table 11.6-2 presents the annual maintenance costs including routine maintenance and minor repair cost.

TABLE 11.6-2 ANNUAL ROUTINE AND MINOR REPAIR COST

Unit: Peso/km/year

| Pavement (PCC) |         | Pavement (AC) |         | Un-Paved (Gravel) |         |
|----------------|---------|---------------|---------|-------------------|---------|
| Good           | Bad     | Good          | Bad     | Good              | Bad     |
| 84,482         | 153,545 | 94,850        | 221,104 | 98,002            | 169,298 |

The cost estimate is mostly same as base cost of Equivalent Maintenance Kilometer (EMK) estimated by DPWH (EMK = 82,000 Pesos in 2003). Since new maintenance cost estimate has not been established, the Study will apply the above cost.

### 11.6.3 Rehabilitation Cost

Overlay on the new road is considered as rehabilitation after 10 year opening. The following cost will be adapted.

**TABLE 11.6-3 OVERLAY COST** 

| Overlays     | Unit | Economic Cost<br>(Peso) | Financial Cost<br>(Peso) |
|--------------|------|-------------------------|--------------------------|
| a. AC (5cm)  | P/m2 | 389.73                  | 495.00                   |
| b. AC (8cm)  | P/m2 | 575.92                  | 728.17                   |
| c. AC (10cm) | P/m2 | 711.06                  | 897.74                   |

# 11.6.4 Increase of Maintenance Expenditure

In progress of implementing the master plan, maintenance cost will be increased by additional length of new roads. Table 11.6-4 summarizes the annual increase of maintenance cost by administration.

**TABLE 11.6-4 MAINTENANCE EXPENDITURE** 

Unit: '000 Pesos

| Term                      | Year | DPWH | Term Total |
|---------------------------|------|------|------------|
| Chart Tour                | 2006 | 0    |            |
|                           | 2007 | 0    |            |
| Short-Term<br>(2005~2010) | 2008 | 0    |            |
| (2000 2010)               | 2009 | 0    |            |
|                           | 2010 | 0    | 0          |

| Term                        | Year | DPWH  | Term Total |
|-----------------------------|------|-------|------------|
|                             | 2011 | 0     |            |
|                             | 2012 | 0     |            |
| Medium-Term                 | 2013 | 1081  |            |
| (2011~2016)                 | 2014 | 1081  |            |
|                             | 2015 | 1081  |            |
|                             | 2016 | 1081  | 4325       |
| . "                         | 2017 | 2053  |            |
|                             | 2018 | 2053  |            |
| Long –Term                  | 2019 | 2712  |            |
| (2017~2022)                 | 2020 | 2712  | · ·        |
|                             | 2021 | 2712  |            |
|                             | 2022 | 47790 | 60,032     |
| After 2023<br>(Annual cost) | 2023 | 4520  |            |

# 11.6.5 Requirement of Total Maintenance Expenditure

# 1) Requirement of Total Maintenance Expenditure

Requirement for total maintenance expenditure for the road network in Metro Iloilo is estimated.

TABLE 11.6-5 REQUIREMENT OF TOTAL MAINTENANCE EXPENDITURE

Unit: '000 Pesos

|                | Annual Cost |        | Maint                     | Annual Cost                |                          |         |
|----------------|-------------|--------|---------------------------|----------------------------|--------------------------|---------|
| Administration | Road        | Bridge | Short Term<br>(2005~2010) | Medium Term<br>(2011~2016) | Long Term<br>(2017~2022) | (2023~) |
| National       | 20,407      | 612    | 126,113                   | 130,438                    | 186,145                  | 25,539  |
| Province       | 8,446       | 253    | 52,199                    | 52,199                     | 52,199                   | 8,700   |
| City           | 4,631       | 139    | 28,619                    | 28,619                     | 28,619                   | 4,770   |
| Barangay       | 6,534       | 196    | 40,380                    | 40,380                     | 40,380                   | 6,730   |
| Total          | 40,018      | 1,201  | 247,311                   | 251,636                    | 307,343                  | 45,738  |

## 2) Maintenance Capacity Building for LGU

Besides budgetary arrangement, capacity building for road and bridge maintenance to LGU is required by organizing periodic seminar and training for technical staff in the province, city and municipality engineer's offices from DPWH staff. Major training issues are;

- · Maintenance operation management;
- · Contract management; and
- · Engineering technology update.

### 11.7 TRAFFIC MANAGEMENT PLAN

Traffic management issues are identified and recommended measures are presented in the preceding sections. Some of the improvement measures require time to implement and some take time before tangible effect is observed. Among the recommended measures, those that can be implemented immediately are presented here with the tentative list of target intersections and road sections. They cover the following works:

- Geometric improvement at intersection and road section
- Traffic signal
- Pavement marking and traffic sign

These measures are intended to enhance the efficiency and safety of traffic by regulating the flow. Most of the works are to be done in City Proper where traffic concentrates and traffic management issues are more serious.

### 1) Geometric Improvement

Intersection geometric improvement work modifies intersection geometry. Basic objectives of the work are to:

- Regulate and guide traffic movement at intersection by such facilities as median and island
- Provide left turn lane to the intersection where left turn volume is high and intersection geometry permits it.
- Provide or improve sidewalk for better pedestrian environment

A total of 28 intersections are tentatively selected for the work as listed below and shown in Figure 11.7-1. Intersection inventory survey and turning volume count survey must be conducted. Then geometric improvement work can be designed based on the analysis of the collected data.

**Geometric Improvement Intersections** 

|      | Intersection |              | Median | Island | Left turn | Side-walk | Pavement | Others |
|------|--------------|--------------|--------|--------|-----------|-----------|----------|--------|
| 1    | Gen Luna     | Diversion    |        |        | 0         |           |          |        |
| 2    | Gen Luna     | San Agustin  | 0      |        | 0         | 1         |          |        |
| 3    | Gen Luna     | Mabini       | 0      |        | 0         |           |          |        |
| 4    | Gen Luna     | Quezon       | 0      |        | 0         |           |          |        |
| 5    | Delgado      | San Agustin  | 0      |        |           | l         |          |        |
| 6    | Delgado      | Mabini       | 0      |        |           | l         |          |        |
| 7    | Delgado      | Quezon       | 0      |        |           |           | i i      |        |
| 8    | Delgado      | Valeria      | 0      |        |           |           |          |        |
| 9    | Ledesma      | Tanza        |        | 0      |           |           |          |        |
| 10   | Ledesma      | Jalandoni    | 0      |        | 0         |           |          |        |
| 11   | Ledesma      | Fuentes      |        |        | 0         |           |          |        |
| 12   | Ledesma      | Mabini       |        |        | 0         |           |          |        |
| 13   | Ledesma      | Quezon       | 0      |        |           |           |          |        |
| 14   | Ledesma      | Valeria      |        |        | 0         |           |          |        |
| 15   | Ledesma      | Iznart       |        | 0      |           |           |          |        |
| 16   | Bonifacio    | Hueriana     |        | 0      |           |           |          |        |
| 17   | Rizal        | Hueriana -   |        | 0      | Ì         |           |          |        |
| 18   | Luna         | Bonifacio    |        | 0      |           |           |          |        |
| 19   | Luna         | Jalandoni    |        |        | l''''     |           | 0        |        |
| 20   | Jaro Plaza   | South corner |        | 0      |           | . 0       |          |        |
| 21   | Jaro Plaza   | East corner  |        | 0      |           | 0         |          |        |
| . 22 | Jaro Plaza   | North comer  |        | 0      |           | 0         |          | • • •  |
| 23   | Jaro Plaza   | West corner  |        | 0      |           | 0         |          |        |
| 24   | Diversion    | Jalandoni    | 0      | 0      | 0         | 0         |          |        |
| 25   | Diversion    | Rizal        | 0      | 0      |           | 0         |          |        |
| 26   | Diversion    | Airport      | 0      | 0      |           | 0         |          |        |
| 27   | del Pilar    | Locsin       |        | 0      |           |           |          |        |
| 28   | Avacena      | Quezon       |        |        | 0         | 0         | 0        |        |

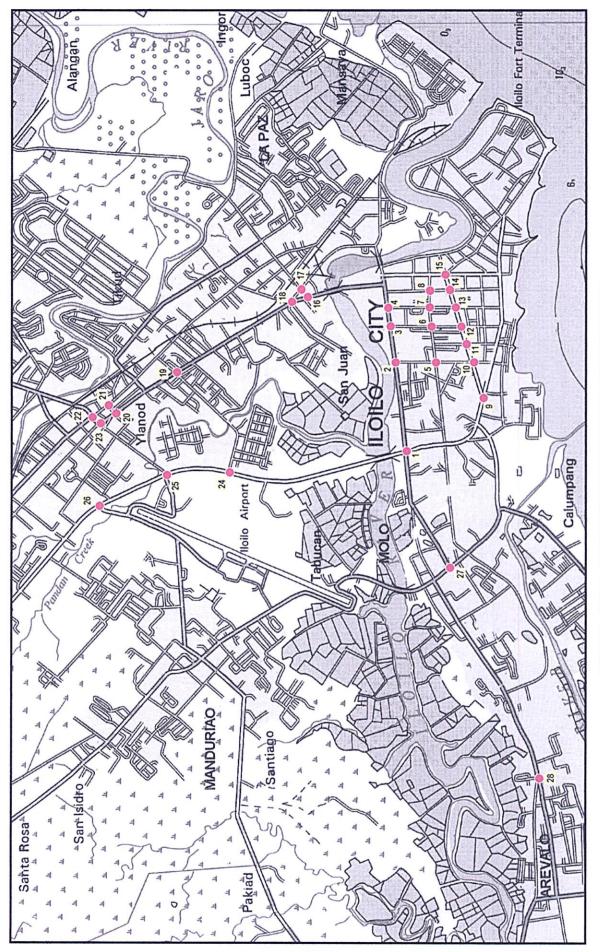



FIGURE 11.7-1 GEOMETRIC IMPROVEMENT INTERSECTION

## 2) Traffic signal

Traffic signal is a basic tool to control right-of-way at intersection, where conflicting movements cross each other. There are at the moment ten (10) traffic signals in lloilo City but all of them but one is operating. The proposed work will repair or replace the malfunctioned signals and signal timing will be adjusted for the working signal. In addition, ten (10) signals will be newly installed (see Figure 11.7-2). It is noted, however, these new signal intersections are selected without signal warrant analysis. Turning movement count survey must be conducted and signal warrant must be checked before the final selection of intersections for signalization.

**Traffic Signal Intersections** 

|    | Tranic Signal Intersections |                |     |        |              |  |  |
|----|-----------------------------|----------------|-----|--------|--------------|--|--|
|    | Intersection of             |                |     | Signal |              |  |  |
|    | Street 1                    | Street 2       | New | Repair | Modification |  |  |
| 1  | Gen Luna                    | Diversion Road | l   |        | 0            |  |  |
| 2  | Gen Luna                    | San Agustin    |     | 0      |              |  |  |
| 3  | Gen Luna                    | Mabini         |     | 0      |              |  |  |
| 4  | Gen Luna                    | Valeria        |     | 0      |              |  |  |
| 5  | Gen Luna                    | Bonifacio      |     | 0      |              |  |  |
| 6  | Delgado                     | Valeria        |     | 0      |              |  |  |
| 7  | Delgado                     | Iznart         |     | 0      |              |  |  |
| 8  | Ledesma                     | Mabini         |     | 0      |              |  |  |
| 9  | Ledesma                     | Valeria        |     | 0      |              |  |  |
| 10 | JM Basa                     | Aldequer       |     | 0      |              |  |  |
| 11 | Delgado                     | West Ave.      | 0   |        |              |  |  |
| 12 | Delgado                     | San Agustin    | 0   |        |              |  |  |
| 13 | Delgado                     | Mabini         | 0   |        |              |  |  |
| 14 | Ledesma                     | Rizal/Tanza    | 0   |        |              |  |  |
| 15 | Ledesma                     | Jalandoni      | 0   |        |              |  |  |
| 16 | Ledesma                     | Fuentes        | 0   |        |              |  |  |
| 17 | Iznart                      | Rizal          | 0   |        |              |  |  |
| 18 | MH del Pilar                | Locsin         | 0   |        |              |  |  |
| 19 | Diversion Road              | Jalandoni      | 0   |        |              |  |  |
| 20 | Luna                        | Jalandoni      | 0   |        |              |  |  |

## 3) Pavement Markings

Pavement markings are almost non-existent in metro Iloilo area. Such situation seems to contribute disorder of the traffic in the area. Most of the streets in City Proper and some arterial streets outside of city center are selected as target road for their relatively high traffic volume covering 43 road sections and 81 intersections with the total road length of 33.6 km as listed in the table below and shown in Figure 11.7-3. Center line, lane line, stop line, directional arrow and pedestrian crossing will be drawn. Reflective thermoplastic pavement marking materials shall be applied with the standard thickness of 2.0 mm.

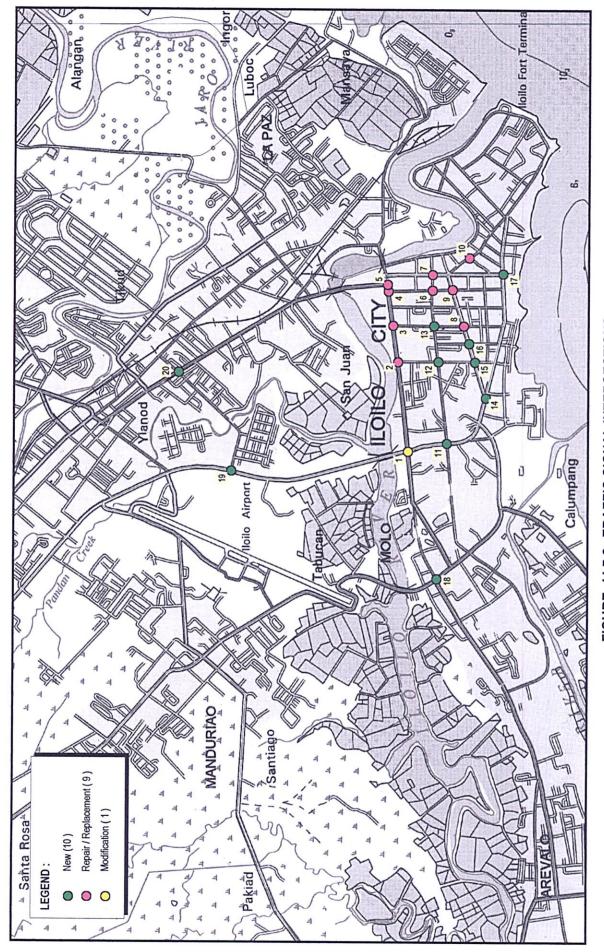



FIGURE 11.7-2 TRAFFIC SIGNAL INTERSECTIONS

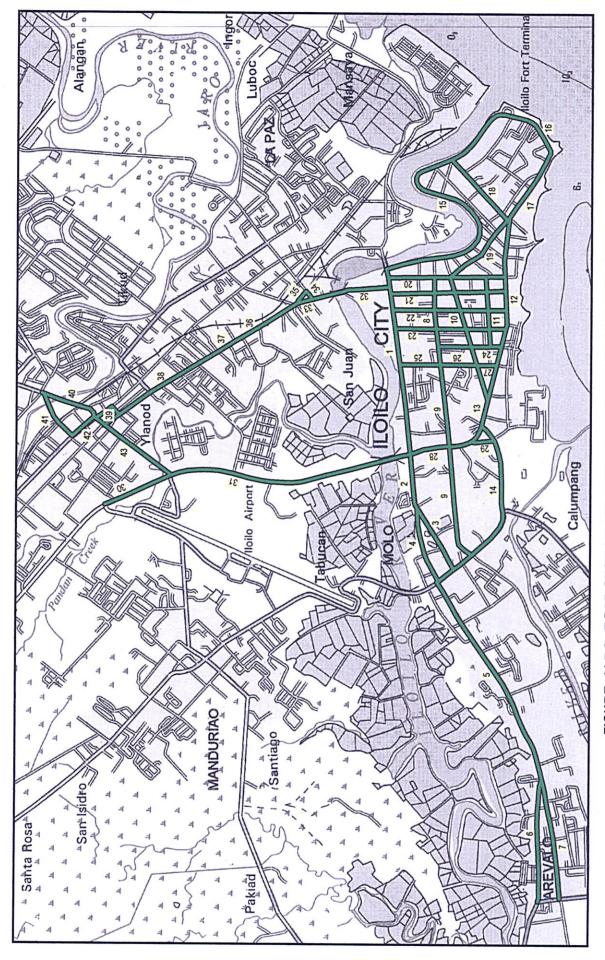



FIGURE 11.7-3 ROAD SECTION FOR PAVEMENT MARKINGS & TRAFFIC SIGNS

# **Road Sections for Pavement Marking Work**

|          | Street Name            | From              | То                   | Length      | Lane | Median    | One-         |
|----------|------------------------|-------------------|----------------------|-------------|------|-----------|--------------|
|          |                        |                   |                      | (m)         |      | 1115 4117 | way          |
| 1        | Gen Luna               | Quirino<br>Bridge | Diversion            | 1700        | 4    | Y         |              |
| 2        | MH del Pilar           | Diversion<br>Road | San Marcos           | 315         | 4    | Y         | ·            |
| 3        | MH del Pilar           | San Marcos        | Locsin               | 675         | 3    |           | Y            |
| 4        | San Marcos             | MH del Pilar      | Locsin               | 665         | 2    |           | Υ            |
| 5        | Avacena                | Locsin            | Quezon               | 820         | 2    |           |              |
| 6        | JV Jocson              | Quezon            | Rizal                | 520         | 2    |           | <del>-</del> |
| 7        | Quezon                 | Avacena           | Rizal                | 560         | 2    |           |              |
| 8        | Delgado                | Iznart            | San Agustin          | 800         | 4    |           |              |
| 9        | Timawa                 | San Agustin       | Lopez Jaena          | 1800        | 2    |           |              |
| 10       | Ledesma                | Iznart            | Tanza                | 1170        | 4    | Υ         |              |
| 11       | De Laon                | Iznart            | Jalandoni            | 800         | 4    |           |              |
| 12       | Rizal                  | Gen Hughes        | Ledesma              | 1700        | 2    |           |              |
| 13       | Tanza                  | Ledesma           | West Ave             | 450         | 4    | Υ         |              |
| 14       | Lopes Jaena            | Tanza             | MH del Pilar         | 1520        | 2    |           |              |
| 15       | Muelle Loney           | Quirino Bridge    | Rotary Park          | 3200        | 2    |           |              |
| 16       | Fort San<br>Pedro      | Rotary Park       | Sto Rosario          | 840         | 2    | Υ         |              |
| 17       | Gen Hughes             | Sto Rosario       | Rizal                | 130         | 2    |           |              |
| 18       | Zamora                 | JM Basa           | Muelle Loney         | 770         | 4    |           |              |
| 19       | JM Basa                | Rizal             | Iznart               | 720         | 4    | Υ         |              |
| 20       | Iznart                 | Gen Luna          | Rizal                | 1030        | 4    | Υ         |              |
| 21       | Valeria                | Gen Luna          | Rizal                | 1040        | 2    |           | Υ            |
| 22       | Quezon                 | Gen Luna          | Rizal                | 1030        | 4    |           |              |
| 23       | Mabini                 | Gen Luna          | Rizal                | 1000        | 4    |           |              |
| 24       | Fuentes                | Delgado           | Rizal                | 570         | 2    |           | Υ            |
| 25       | San Agustin            | Gen Luna          | Delgado              | 360         | 4    |           |              |
| 26       | Jalandoni              | Delgado           | Ledesma              | 320         | 2    |           |              |
| 27       | Jalandoni              | Ledesma           | Rizal                | 70          | 2    | - ,,      | Υ            |
| 28       | West Ave               | Gen Luna          | Tanza                | 570         | 4    | Y         |              |
| 29       | West Ave               | Tanza             | Lopes Jaena          | 180         | 2    |           | Υ            |
| 30<br>31 | Diversion<br>Diversion | Airport<br>Rizal  | Rizal                | 580<br>2200 | 4    | Y         |              |
| 32       | Bonifacio              | Gen Luna          | Gen Luna<br>Hueriana | 680         | 4    | Ť         |              |
| 33       | Bonifacio              | Luna              | Hueriana             | 140         | 3    |           | Y            |
| 34       | Hueriana               | Bonifacio         | Rizal                | 90          | 3    |           | Y            |
| 35       | Rizal                  | Hueriana          | Luna                 | 110         | 4    |           | Y            |
| 36       | Luna                   | Bonifacio         | Mission              | 810         | 4    | Υ         | I            |
| 37       | Luna                   | Mission           | Jalandoni            | 400         | 2    | <u> </u>  |              |
| 38       | Lopes                  | Jalandoni         | Jaro Plaza           | 610         | 2    |           |              |
| 39       | Jaro Plaza             | Jaianaom          | Jaio i iaza          | 680         | 3    | -         | Y            |
| 40       | Rizal                  | Jaro Plaza        | Balabag              | 550         | 2    |           | <u>'</u>     |
| 41       | Ledesma                | Balabag           | Lopes Jaena          | 480         | 2    |           | Y            |
| 42       | Lopes Jaena            | Ledesma           | Jaro Plaza           | 250         | 2    |           | Y            |
| 43       | Rizal                  | Jaro Plaza        | Diversion            | 690         | 2    |           | •            |
|          | ·                      | - 3. 0 . 100.00   |                      | 300         |      |           |              |

## 4) Traffic Sign

Another shortcoming in terms of traffic management facility in Iloilo area is that there are only few standard traffic regulatory signs. Temporary and make shift signs, which are less visible and less effective in enforcement, are often used instead. Whether on-street parking is allowed or not is not clear at many road sections, for example. Traffic signs for parking regulation, speed limit, one-way, no entry, turn restriction, loading/unloading zone, etc. must be extensively installed. The target road sections and intersections will be same as those for pavement markings.

### 5) Cost Estimates

Cost for implementing these improvement works is estimated. The table below presents the estimated costs. It is pointed out that the cost at this stage is very rough as the target intersections and road sections are tentative and scope of work is not defined.

**Estimated Cost for Traffic Management Improvement Works** 

|    | Improvement Measure   | Cost<br>('000 Pesos) | Remarks                                                            |
|----|-----------------------|----------------------|--------------------------------------------------------------------|
| 1. | Geometric improvement | 11,160               | 28 intersections                                                   |
| 2. | Traffic signal        | 42,373               | 10 existing signals and 10 new signals                             |
| 3. | Pavement marking      | 21,675               | 43 road sections and 81 intersections with total length of 33.6 km |
| 4. | Traffic sign          | 1,347                | 526 traffic signs. Project sites are same as pavement marking      |
|    | Total                 | 76,554               |                                                                    |

### 11.8 Measures to be Taken for Inside Area of C-1

New road construction as well as widening of existing roads inside area of C-1 is extremely difficult due to expansion of built-up areas and heavy roadside development. Master Plan recommended measures other than road development. If other measures are not implemented, some road sections within C-1 area will suffer heavy traffic congestion as shown in Figure 11.4-3, even after completion of the Master Plan. Some of measures to be undertaken are discussed hereunder.

- 1) Control of further urban development within the presently urbanized area and shifting urbanization towards the area along C-1
  - The City Government should control further development within the presently urbanized area
    - control of high-rise building
    - control of new commercial establishment
  - The City Government should accelerate urbanization along C-1 corridor
    - some government / public facilities should be transferred to the C-1 corridor
    - bus / jeepney terminals together with public market should be developed along the C-1 corridor
    - the City Government should guide investors to promote urbanization along the C-1 corridor.
- 2) Full Utilization of Existing Road Stocks

As presented in 11.7 "Traffic Management Plan", efficient traffic management should be implemented and strict enforcement of traffic rules and regulations should be exercized.

3) Gradual Modal Shifting from Jeepney to Bus

Modal shifting from jeepney to bus transport should be implemented. Jeepneys should be gradually shifted to feeder transport services.

If all jeepney services are converted to bus services along major arterial roads, traffic congestion will be drastically reduced as shown in Figure 11.8-1.



-238**-**

### 11.9 SELECTION OF ROAD PROJECTS FOR F/S

Road projects subjected to a feasibility study under this Study are selected in this section.

## 1) Selection Criteria

Selection criteria were established as follows:

- Implementation priority is high and the project is planned to be implemented in the Short Term or early part of Medium Term.
- Proposed road right-of-way needs to be determined as early as possible, so that any development within the proposed road right-of-way can be controlled, then future ROW acquisition can be done without affecting structures and houses.
- The road project is vitally needed to support on-going related projects.
- The road project is expected to be implemented by DPWH.

## 2) Selection of Road Projects for F/S

Candidate road projects selected based on above criteria were as follows:

### Candidate Projects for F/S

- Circumferential Road No. 1 (C-1)
- Iloilo-Sta. Barbara Road (R-3)
- R-4 Bypass (B-2)
- Iloilo-Roxas Road (R-3) within C-1
- Iloilo Coastal Road (R-5) within C-1

### a) Circumferential Road No. 1 (C-1)

- Core (or backbone) road for the future road network
- Urbanization is planned towards this corridor. Proposed road right-of-way must be urgently determined and implemented at the earliest possible time.
- Recommended for F/S

### b) Iloilo-Sta. Barbara Road (R-3)

- Provides access to New Iloilo Airport which is scheduled to be opened in 2007, thus must be improved / widened urgently.
- Recommended for F/S

### c) R-4 Bypass (B-2)

- Urbanization is planned towards east area of this road. Proposed road right-of-way must be urgently determined and any development within the proposed ROW must be strictly controlled.
- To relieve traffic problem of R-4, the Project is urgently needed, though its completion is required to be scheduled after C-1 is built.
- Recommended for F/S

- d) Iloilo-Roxas Road (R-3) within C-1
  - The Project is scheduled after completion of C-1.
  - Proposed widening is planned to be done within the property line without affecting existing buildings and houses, therefore, full scale feasibility study is not needed.
  - Not recommended for F/S
- e) Iloilo Coastal Road (R-5) within C-1
  - The Project is scheduled after completion of C-1.
  - Proposed widening is planned to be done within the property line without affecting existing buildings and houses, therefore, full scale feasibility study is not needed.
  - Not recommended for F/S

In view of the above, it is recommended following three road projects are subjected to a feasibility study under this Study (see Figure 11.9-1):

| Recommended Road Projec                                                                          | ets for F/S           |
|--------------------------------------------------------------------------------------------------|-----------------------|
| Circumferential Road No. 1 (C-1)                                                                 | L = 13 km             |
| <ul> <li>Iloilo-Sta.Barbara Road from Jct. R-4 to Jct.<br/>Road to New Iloilo Airport</li> </ul> | . Access<br>L = 14 km |
| R-4 Bypass                                                                                       | L = 12 km             |
|                                                                                                  | Total L = 39 km       |

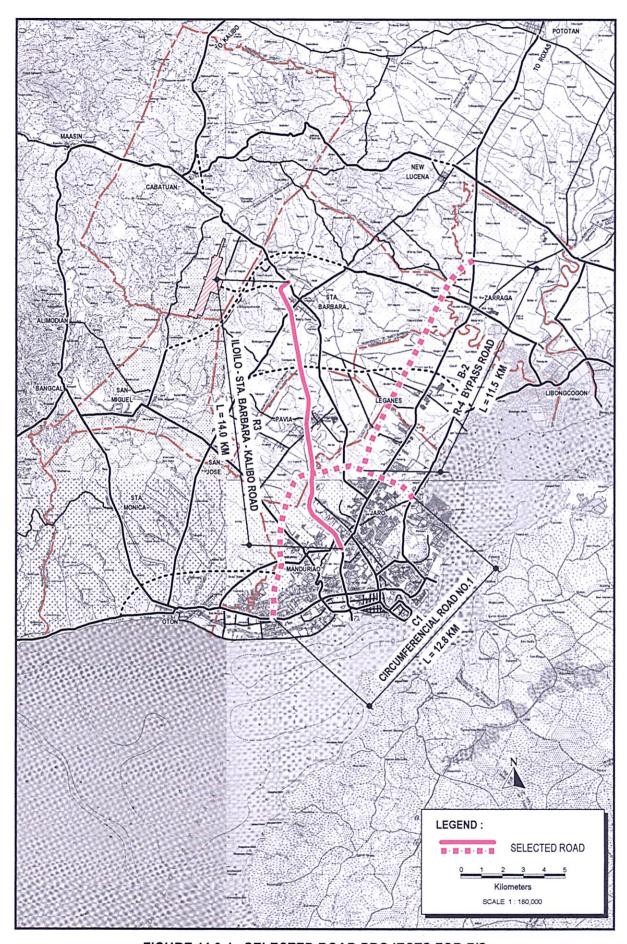



FIGURE 11.9-1 SELECTED ROAD PROJECTS FOR F/S