Japan International Cooperation Agency

Department of Energy Affairs,
Ministry of Mines, Natural Resources and Environment, Republic of Malawi

The Feasibility Study Implementation Manual for Grid Extension

September 2004

Table of Contents

1. Objectives 1
2. Process on Implementation for Rural Electrification 2
3. Process on Feasibility Study 3
4. Review on the Master Plan (preliminary study) completed by JICA in March 2003 4
4.1 General 4
4.2 Voltage classes of distribution lines 4
4.3 System configuration 4
4.4 Distribution system facilities 4
4.5 Construction cost 5
5. Description on each activity 6
5.1 Preparation 6
5.2 Map Study 7
5.3 Field Survey 7
5.4 Electricity Demand Forecast Method 10
5.4.1 Preface 10
5.4.2 Ordinary Electricity Demand Forecast Methods 10
5.4.3 New Electricity Demand Forecast Method 12
5.4.4 Check Sheet 14
5.4.5 Example of Demand Forecast Sheet 15
5.5 How to Revise Demand Forecast System 16
5.5.1 File Structure 16
5.5.2 Revision of Existing File 17
5.5.3 Making of New TC File 18
5.6 Prioritization of Non-Electrified TCs 18
5.7 How to Revise TC Priority System. 21
5.7.1 Prioritization for Phase 7 21
5.7.2 Addition of New TCs 21
5.8 Voltage drop calculation 23
5.8.1 General 23
5.8.2 Calculation method 23
5.9 Cost Estimation 26
5.10 Calculation of an Internal Rate of Return(IRR) 27
5.10.1 Data sheet 29
5.10.2 FIRR sheet 30
5.10.3 EIRR sheet 31
6. Management on progress 32
7. Reporting 33

Attachment 1

a. Check Sheet on Equipment Preparation
b. Check Sheet on Field Survey
c. The Basic Time Schedule and each Role in Field Survey
d. Check sheet for Demand Forecast

Attachment 2

a. Demand Forecast in TC
b. Voltage Drop Calculation Sheet
c. Cost Estimation Calculation Sheet
d. Internal Return Rate Calculation Sheet

Attachment 3

a. Progress Management Sheet

Attachment 4

a. Format of Report
b. Sample of Report

1. Objectives

The Feasibility Study (hereinafter referred to as FS) at each candidate Trading Center (hereinafter referred to as "TC") is carried out for two objectives.
(1) To confirm an actual route and arrangement of equipment considering technical issues below:
(a) Selection of routes for middle voltage lines such as 33 kV and 11 kV lines
(b) Selection of routes to extend 400/230V distribution lines to public facilities in TCs
(c) Demand forecast if necessary
(d) To study if electricity supply is possible or not under the voltage regulation
(2) To estimate costs and viability in order to check the bill of constructor and analyze the possibility of enterprise.

2. Process on Implementation for Rural Electrification

The FS will be carried out after the Master Plan (Pre-Feasibility Study) which is based on a criterion as well as a demand forecast. Not viable sites (TCs) should be in the field of rural electrification to be managed by the Government of Malawi. The process of implementation is shown in the Figure 1.

Figure 1 : Process for Implementation of Rural Electrification

3. Process on Feasibility Study

FS consists of five activities such as Preparation, Map Study, Field investigation, Voltage Drop Study, Cost Estimation and Economical Analysis. The process of FS is shown in the Figure 2.

Figure 2 : Process on Feasibility Study

4. Review on the Master Plan (preliminary study) completed by JICA in March 2003

4.1 General

The cost of each Phase was estimated mainly based on map study at the Master Plan. Before carrying out the FS, some assumptions of the Master Plan listed below should be put in mind.

4.2 Voltage classes of distribution lines

- Class of the existing distribution line to trading centers shall be 33 kV
- 3-phase 3-wire system

4.3 System configuration

- A radial system with no reserve line is adopted for cost reduction
- Disconnecting Switches (DS) shall be installed every 10km to separate faulty section
- A circuit Breaker (CB) shall be installed at each starting point of new lines

4.4 Distribution system facilities

Conductor	33 kV	AAAC $100 \mathrm{~mm}^{2}$
	11 kV	AAAC $100 \mathrm{~mm}^{2}$
	$400 \mathrm{~V} / 230 \mathrm{~V}$	AAC100 mm^{2}
	Dip	5% of distance
Supporting Structure	Wooden poles	
Span Length	33 kV	100 m
	11 kV	100 m
	400 V	50 m
Distribution Transformer	3 phase, 100 kVA, max load shall be 80% of rated capacity	

4.5 Construction cost

(a) Definition

- Lengths of 33 kV and 11 kV lines are estimated at 120% of straight distance of maps.
- Extensions must be planed in line with priority. Estimate does not incorporate all TCs.
- Number of $33 \mathrm{kV} / 0.4 \mathrm{kV}$ transformers per TC
$n=\frac{\text { total load of } T C(k V A)}{\text { rated capaticity }(k V A) * \text { loading } 80 \%}$
where
total load of $T C(k V A)$
$=\frac{\text { demand of maize } \operatorname{mill}(\mathrm{kW})}{\text { power factor } 80 \%}+\frac{\text { demand of others }(\mathrm{kW})}{\text { power factor } 90 \%}$
*maximum loading is 80% of rated capacity
*standard power factors are 80% for maize mills and 90% for the rest
- 400V/230V lines
- Length between a transformer and a household plug of is 500 m

Two lines are extended from each transformer

- Circuit breaker

A circuit breaker is installed at the starting point of new lines

- Disconnecting Switch

Disconnecting switches are installed every 10km
(b) Unit cost and total cost

- Unit cost

Unit cost of 33 kV line, transformers and $400 \mathrm{~V} / 230 \mathrm{~V}$ are calculated using (latest total cost / total quantity)

- Total cost

A total cost was estimated to the sum of costs on 33 kV lines, transformers, circuit breakers, disconnection switches and 400/230V lines. Then, 8% of an engineering service fee, 2% of an administrative fee for DOE and 10% of an surtax are added.

5. Description on each activity

5.1 Preparation

(a) Data collection

Before a FS, some data listed below should be collected in advance.

- Existing lines and future planning of ESCOM
- Cost data per km including local cost such as labors, transport, fuels, etc.
- Technical data for voltage drop calculation
- Tariff, energy cost, O\&M cost per kWh
(b) Equipment/materials for the FS (Refer to Attachment 1-a)

For FS, some equipment/materials listed below should be prepared in advance.

- $1 / 250,000$ scale maps, hopefully more detailed maps
- Roller measure
- Plane board for drawings
- White papers and section papers
- Rulers
- Calculators
- GPS
- Laser binoculars
- Magnet compass

And the objectives, directions of main equipment are shown in the Table 1.

Table 1 : Objectives, Directions of Main Equipment

Equipment	Objectives	Directions (how to use)
GPS	To confirm the current position during driving and drawing.	Push the "page" button after turning on the source switch.
Laser binoculars	To measure the long distance or distance with obstacle. Mainly vertical direction along the main load.	Depress the source switch after aligning the reticule with the target.
Roller measure	To measure the short distance exactly. Mainly horizontal direction along the main load.	Roll after pushing button to reset.
Magnet compass	To confirm the current direction during driving and drawing.	Put in the horizontal place.

(c) Scheduling on field survey

Time and cost effectiveness should be considered for scheduling on the field survey. However, long duration of survey trip is not practical. One-week field survey, one-week desk work and re-planning for the next trip would be recommended.

5.2 Map Study

An objective of carrying out map study is to decide the tentative routes for the 33 kV or 11 kV lines from the starting point to the candidate TC. The 1:250,000 maps that are already put information obtained by data collection will be used, and standard routes are drawn along the roads on these maps.

5.3 Field Survey (Refer to Attachment 1-b,1-c)

(a) Identification on starting point of 33 kV or 11 kV lines

An end pole, substation or power station selected in the map study will be identified. If other distribution lines are found to have been extended near the TC, the tentative routes decided by the map study will be revised.
(b) Identification on the of 33 kV or 11 kV lines

This survey is conducted to investigate a route from the identified starting point to TC.
If any obstacles such as large rivers and/or steep terrain are identified during the survey, and the route of distribution has to be changed considerably, the map study will be repeated.
(c) Distribution transformer and $400 \mathrm{~V} / 230 \mathrm{~V}$ lines

The tentative locations of distribution transformer and $400 \mathrm{~V} / 230 \mathrm{~V}$ lines are studied. The procedure is the followings
a. Draw an outline map of the candidate-trading center.
b. Select the appropriate area sites where pole-mounted transformer will be installed with consideration of the position of maize mills.
c. Draw the most appropriate route between the distribution transformer and public facilities on the outline map. Route distances will be measured.
(d) Standard symbols

Standard symbols for making drawing are as shown in Table 2.

Table 2 Standard Symbols
(1/2)

Item		Example	
Scale	Choose a suitable reduced scale fitting A4 size paper		1/500, $1 / 1000,1 / 5000$ etc
Symbol	Transformer	$0^{\text {Tx10okVA }}$	
			33kV HV
	33 kV HV line		Blue dotted-line means "proposed." Green dotted-line marked by fluorescent pen means "planned." Green solid line marked by fluorescent pen means "existing."
			11 kV HV
	11kV HV line	$\begin{array}{r} 11 \mathrm{kV} \\ \ldots . . \mathrm{H}^{11 \mathrm{kV}} \\ \ldots . \mathrm{H}^{11 \mathrm{kV}} \end{array}$	Blue dotted-line means "proposed." Red dotted-line marked by fluorescent pen means planned." Red solid line marked by fluorescent pen means "existing."
	LV line		$3 \varphi: 3$-phase 4 -wire system (400V) $1 \varphi: 1$-phase 2 -wire system (230V)
		$\underline{19}$	Blue solid line means "proposed."
	Existing Extra High Voltage Line	_ 66 kV	Red solid line
	Existing Telecommunication Line	Tele	Red solid line
	Direction	$4 N$	
	Maize Mill	$\mathrm{MM}_{\text {Sh }}$	Sh means "Maize Mill with Sheller"
	Shop	SH	
	House	H	H in square is not necessary to be shown.
	Secondary School	SS	
	Primary School	PS	
	Church	CH	
	Mosque	MO	
	Court	CO	
	Health Center	HC	
	Hospital	HO	
	Clinic	CL	

Table 2 Standard Symbols

Item		Example	
Symbol	Police Station	POL	
	Police Unit	PU	
	Police Post	PP	
	Agriculture Office	AG	
	Government Office	GO	
	Post Office	PO	
	Admarc	AD	
	Teacher's Training Center	TTC	
	Government Office	GO	
	Agriculture Office	AG	
	Staff House	STA	
	Other Public Facility	OPF	Write the concrete type of facility
	Market	MA	Solid line means "the area."
	Restaurant	RE	
	Rest House	RH	
	Battery Charge Station	BCS	
	Tree	Tree	Solid line means "the area."

5.4 Electricity Demand Forecast Method (Refer to Attachment 1-d,2-a)

5.4.1 Preface

To electrify a non-electrified TC, a demand forecast is significant for designing appropriate distribution facilities and estimating accurate distribution costs because a demand forecast of a TC is a basic in a plan for electrification.

In the present condition in Malawi, however, the main role of the Government of Malawi is to raise the electrification ratio to the level that the nation can have access to electricity as at least basic human needs and the Government of Malawi is not responsible for power sector as business. Therefore, the targets to electrify that the Government of Malawi has a responsibility is public facilities and maize mills in TC and electrification of other facilities such as business entities and households are under the control of private power companies. In this circumstance, a demand forecast in each TC is only an indicator for reference or could be data for comparison with demand forecasts submitted by private power companies. In addition, an estimated distribution system for a TC in FS implemented by DOE is set to satisfy the present power demand in public facilities and maize mills in the TC. Although the present demand is calculated for determination of facilities for the distribution system, the demand forecast is not used in FS.

The demand forecast for each non-electrified TC was examined in "The Master Plan Study on Rural Electrification Plan in Malawi." In this FS Manual, the ordinary electricity demand forecast methods, the problems in the demand forecast in the Master Plan, and the new demand forecast method are explained. Since this is only a manual, however, the "how to" is focused on and the theoretical aspects are not deeply explained. Please refer the report of the Follow-up Study for the theoretical details.

5.4.2 Ordinary Electricity Demand Forecast Methods

In electricity demand forecast methods, there are two major approaches; the macro approach and the micro approach. These both have their characters, advantages and disadvantages. In Japan, we use both approaches to estimate future demand forecasts.

Figure 3 : The Example of the simplest demand forecast

(1) Macro Approach

The Macro Approach is a method in electricity demand forecasts using statistics of the macro economic data such as population growth, GNP growth, and IIP (Index of Industrial Production) growth. The simplest way is that, based on the actual data of demands in MW and GWh, we estimate the growth of both demands by the averages of these growths. The longer terms for calculation of the averages are, the better it is. The example is shown in Fig. V-1. These macro economic data can be obtained from organizations like a national statistic agency.

In addition that this approach is used for electrified areas since the past demand data is needed for estimation, however, it is usually used for estimation in grid system. The reason is that grid-connected areas usually have a good correlation with macro economic indicators because an electricity demand in industries excels in grid-connected areas comparing with other customers. However, the demand in non-electrified areas does not always fit with economic movements since electricity has not been needed for their life.

The advantages and the disadvantages of the macro approach are as follows;

$<$ Advantages $>$

- Since macro economic indicators are considered, the results of demand forecast match to the national economic conditions.
- The calculation is not complicated comparing with the micro method.

<Disadvantages>

- The result depends on how long the terms of economic indicators are.
- In especially developing countries, it is difficult to acquire accurate economic indicators.
- The longer forecast terms, the worse accuracy since it is impossible to forecast future economic and political issues.

(2) Micro Approach

The Micro Approach (End-user Approach) is a method in electricity demand forecasts using unit demands which is estimated from power consumptions in customers such as households, business units, schools, and hospitals. The electricity demand is calculated with piling up these unit demands.

A unit demand is estimated from actual consumptions and its power usage hours referring already electrified areas. For example, when estimating a unit demand in a household, we research actual power consumption hour by hour through interviews in electrified houses and assume an ordinary power usage form as a unit demand. Then we pile up the unit demand multiplying the number of household in the area.

The end-user approach is especially good for the estimation in non-electrified areas which demands are difficult to estimate and are not along with macro economic movements like TCs.

The advantages and the disadvantages of the macro approach are as follows;

<Advantages>

- Since a unit demand which is a base of a demand forecast in micro approach is assumed based on actual power consumption, the forecasted demand is nearly right.
- Relatively accurate analyses can be expected because the unit demands in types such as households, industries, shops are calculated
- Not only quantitative data but also qualitative data in both electrified and non-electrified areas such as willingness to pay, capacity to pay can be acquired through socio-economic survey.
$<$ Disadvantages $>$
- The needed data for assuming a unit cost is great in quantity and collecting data takes much time.
- The data analyses from interviews are complicated.
- A unit demand changes depending on the target year to forecast.

5.4.3 New Electricity Demand Forecast Method

Based on the demand forecast method in the Master Plan, the new demand forecast method was developed.
(1) Policies

The basic policies for the DOE demand forecast are as follows.

- The demand forecasts for non-electrified TCs in the Master Plan indicate electricity demand until 2020 according to the Master Plan.
- The micro method was adopted in order to grasp more accurate electricity demand in a non-electrified TC.
(2) Preconditions
(a) The facilities in each TC which DOE targets to are as follows.

- Public Facilities

1) Secondary School
2) Primary School
3) Teacher's Development Center
4) Staff House
5) Hospital
6) Health Center
7) Clinic
8) Post Office
9) Police Station
10) Police Post
11) Police Unit
12) Admarc
13) Other Government Offices
14) Church
15) Mosque
16) Court
17) Other Public Facilities

- Business Entities

1) Maize Mill
2) Shop

- Households

1) Ordinary Household
2) Rich Household
(b) The electricity demand forecasts are made based on the analyses of the Socio-Economic Survey in the Master Plan
(c) The electricity demand is calculated multiplying the unit demand in each facility and the number of the facility
(d) The power consumption of each electric device is calculated from average of the consumption data acquired through the Socio-Economic Survey.
(e) The preconditions for each facility are as follows.
> Public Facility
3) Electric device(s) is (are) provided from ministries concerned every 3 years.
4) After 17 years from electrification all assumed devices will have been set.
> Maize Mill
5) After electrification, existing maize mills in a TC are immediately connected.
6) Increase of the number of maize mill is along with the equation of the Master Plan.
7) An electric device is bought every year.
> Business Entity
8) The ratio that business entities connect to distribution lines is 50%.
9) An electric device is bought every year.
10) Increase of the number of business entity is to be calculated based on the correlation between the household population and the number of business entity.
> Household
11) The ratio that ordinary households connect to distribution lines is 40%.
12) Households are separated in two, ordinary household and rich household. The ratio between ordinary households and rich households is 95:5.
13) An electric device is bought every three years in ordinary households and every year in rich households.
14) The number of electric device matures 17 years after electrification.
15) The total household demand in a TC considers the household growth rate indicated in the Master Plan. (1.27\%)
16) The growth rate of electric demand after 17 years depends on the household growth rate.
(3) Necessary Data

In order to calculate an electricity demand forecast in a TC, following data should be collected in FS.

- Number of each existing public facility
- Number of existing maize mill
- Number of existing business entity
- Number of existing household inside the TC

5.4.4 Check Sheet

In a FS, a check sheet is useful for a smooth implementation and an avoidance of oversights. Though all data is significant for calculation of a demand forecast in a TC, the data to acquire can be reduced depending on allowed time in a site survey. The least data that should be absolutely needed is written in bold. Also, since the check sheet made by DOE was based on the rural electrification database created in the Master Plan Study, the check sheet recommended in this FS Implementation Manual follows the format.

After inputting the necessary data to a check sheet, the electricity demand in a TC until 2020 is automatically calculated.

Note) Do not delete the file named "Unit Demand Forecast Sheet" since data in each TC is linked to the file. linked to the file.

5.4.5 Example of Demand Forecast Sheet

The unit demand in an ordinary secondary school is shown bellow as an example.
a) Daily Load in an Ordinary Secondary School

Basic Assumption: INumber of Classroom _4

Electrical Devices	Number	${ }_{\text {capacity }}^{\text {(w) }}$	0:00	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00	18:00	19:00	20:00	21:00	22:00	23:00
1) ${ }^{\text {1/ Incandesesent Lioght }}$ 2)	4	$\begin{array}{r}100 \\ \hline 10 \\ \hline\end{array}$																								
3) cooking pevice	\bigcirc	1.600																								
${ }^{\text {4) }}$ (Rearaioerator	\bigcirc	280 10																								
	$\stackrel{1}{0}$	$\begin{array}{r}30 \\ 80 \\ \hline\end{array}$									1		1	1						1						
93) videocasasette Recorder	$\stackrel{0}{0}$																									
901 Eletricteater	$\stackrel{0}{0}$	1,200																								
11) Electric Fan	2	$\begin{array}{r}\text { L } \\ \hline 1.00 \\ \hline 1\end{array}$																								
	$\stackrel{0}{2}$	$\xrightarrow{20.000}$																								
15) Others	${ }^{2}$	200																								

Electrical Devices	Number	$\begin{gathered} \text { Capacity } \\ \text { (W) } \end{gathered}$	0:00	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00	18:00	19:00	20:00	21:00	22:00	23:00
			200	200	200	200	200	200												400	400	${ }_{3}^{400}$	200	200	200	
3) cooking Device	\bigcirc	1.600																								
${ }^{4}$) Refrigerator																										
${ }^{6} 5$ Cosassette/ CD Player		${ }_{30}$							30	30	30	30	30	30	30	30	30	30	30	30						
	0	80 20																								
9) Eleatic iron	\bigcirc																									
		1,2000											100	100	100	100	100	100	100	100						
123) Ar Conditioner																										
194) Computer	2	200									400	400	400	400	400	400	400	400	400	400						
15 Others ${ }^{\text {Max Capactiv (}}$ (1)		200 1.200	200	200	200	200	200	200								530	530	530	85	1.250	720	720				
Total Consumption (Wh)		9.640	200																							

The electricity demand forecast until 2020 in Kapoka in Chitipa District is shown as follow.

ear	Secondary School	Primay	$\begin{gathered} \hline \text { Teacher's } \\ \text { Developme } \\ \text { nt Center } \end{gathered}$		Hosptal		clinc	Postofice	${ }_{\substack{\text { Police } \\ \text { Station }}}^{\substack{\text { a }}}$	mince Post	Poice Unit	Admarc	toffice	church	Mosule	court	$\begin{aligned} & \text { Other } \\ & \text { Public } \\ & \text { Facilities } \end{aligned}$	$\begin{aligned} & \text { Prollices } \\ & \text { Tolltes } \\ & \text { ofat } \end{aligned}$		r_{kw}		$\xrightarrow[\substack{\text { Orinas } \\ \text { Husuer } \\ \text { Numer }}]{ }$		Rich Housenold		
2007	0.4000	0.4000	0.0000	0.000	0	0.310	0.000	0.000	0.3000	0.0000	0.000	0	b,0000	0.1000	0.000	0.0000	0.4000	1900	1200200				2000	612000	2000	
2008	0.4000	0.400	0.000	0.000	0.000	0.3100	0.000	0.000	0.300		0.000	0.000			0.000		04000						23200			
2009	0.4000	0.400	0.000	0.000	0.000	0.3100	0.000	0.000	0.300	0.000	0.000	0.0000	0.0000	0.100	0.000	0.000	04000	$\underline{900}$	20.550	3.8300		17	234000		25.300	
2000	0.7200	0.800	0.000	0.000	0.000	0.790	0.00	0.000	0.500	0.0000	0.000	0.000	0.000	0.44	0.000	0.000	0.000	3,300	20.550	3.8300	20,800	19		$\checkmark 2$	358200	60,1000
2011	0.720	0.8300	0.000	$0^{0.000}$	0.0000			0.0000			0.000			0.140												
2012	0.720	0.830	0.000	$0^{0.000}$	$0^{0.000}$	0.73				0.0000	0			${ }^{0.14}$					0.10							
2013	0.750	0.910	$0^{0.000}$	0.000	${ }^{0.000}$	0.79			0.510			0.000		0.140	0.000	0.000	0.400	${ }^{35000}$	40.100	3.1 .850	$4{ }^{4880}$	${ }^{123}$		714.000	48400	
2014	0.7500	0.910		0.00	0.0000	0.790	0.000	0.000	0.510	0.0000	0.0000	0.0000	0.0000	0.140		${ }^{0.0000}$	0.4000	${ }^{35000}$								
2015	0.7500	0.9100	0.0000	0.0000	0	0.7900	0	0.000	0.5100	0.0000	0.0000	0.0000	0.000	0.1000	-0,000	${ }^{0.0000}$	-0,000	${ }^{3.500}$	${ }^{20.1000}$	3 1.16000	21780	${ }_{\substack{126}}^{120}$	35280	${ }^{12.4200}$	4942	
${ }^{2016}$	O.950	1.010	$\xrightarrow{0.0000}$	${ }^{\text {o.ase }}$	${ }^{0.0000}$	$\xrightarrow{0.7300}$	0	0	O.5600	-	0	O.0.000	O.ano	(0.100	-0.000	-	0.400	-	20.100		-		(66000			
${ }^{2018}$	${ }_{0}^{0.850}$	10100	0.0000	0	0	0.7800	0.0000	0.0000	0.5500		0	0.0000	0.000	${ }_{0} 0.1400$	0.0000	0	0	3,7500	20000	31.18000	417800		${ }^{\text {72, } 6000}$	71.4 .400	61.3000	
2019	12500	1.4100	0.0000	0.0000	0.000	0.790	0.000	0.000	0.700	0.000	0.000	0000	0.000	0.1200	0.000	0.0000	0000	4750	0.1000	1.680	127800		55.1200	12.4200	92200	
020	2500	100	0000	0.000	0000		0.000	0.000	2700		0	.omo	000	0.1400	0,000	0.000			0.100							

5.5 How to Revise Demand Forecast System

5.5.1 File Structure

File Structure is shown in Figure 4.

Figure 4 : File Structre (Demand F orecast System)

Unit Demand Analyses: Calculation of unit demand for facilities Place: Desktop - JICA MP Followup Demand Forecast

TC Demand Condition files: Calculation of electricity demand from 2007 to 2020 in a TC Place: Desktop - JICA MP Followup Demand Forecast - Phase 6

TC Priority: Prioritization of non-electrified TCs for Phase 6
Place: Desktop - JICA MP Followup Demand Forecast

5.5.2 Revision of Existing File

(1) TC Data Revision

If you want to revise number of facilities, following procedure shows how to revise.
(Step 1) Start up EXCEL
(Step 2) Open the file you want to revise
$c f$ the file name, "Demand Condition Sheet for Phase6(Chitipa Kameme)"
(Step 3) In the "TC DATA FORM" sheet, revise corresponding cells such as "Number of Secondary School." All you can revise is only pink cells.
(Step 4) The demand forecast results will be automatically revised based on your input.
(Step 5) Save the file.
(2) Unit Demand Data Revision

If you want to revise unit demand data of facilities, following procedure shows how to revise.
(Step 1) Start up EXCEL
(Step 2) Open "Unit Demand Analyses" file in "JICA MP Followup Demand Forecast" folder on Desktop.
(Step 3) Revise corresponding cells. (From D7 cell to AA21 cell)
Note) • The data sheets you can revise are from "Demand Forecast in Sec. School" sheet to "Demand Forecast in Rich HH" sheet since each TC data file is linked to these "Demand Forecast \sim " sheets. It does not make any sense if you revise "a) Secondary School" sheet to "u) Rich Household" sheet.

- On inputting number data in upper rows, power consumptions are automatically calculated.
- In from "Demand Forecast in Sec. School" sheet to "Demand Forecast in Rich HH," yearly growth of electric device purchase is chronically expressed. Therefore, if you revise unit demand, you also have to revise chronicle data.
(Step 4) Save the file.
Note) Do not move the file to other directory because the file is linked to other TC data files.

5.5.3 Making of New TC File

If you want to add a new TC for demand forecast, following procedure shows how to add.
(Step 1) Start up EXCEL
(Step 2) Open a file in the same district in the directory "Phase 6"
(Step 3) Save the file as the new TC name
(Step 4) Input necessary data such as TC name, number of facility.
(Step 5) The electricity demands (kW and kWh) are automatically calculated.
(Step 6) Save the file.

5.6 Prioritization of Non-Electrified TCs

The prioritization method was also revised based on the Master Plan.
(1) Policies

The basic policies of the DOE prioritization method are as follows.

- DOE electrifies two non-electrified TCs in each District in every phase.
- After determination of two TCs in a district in a phase, the rest TCs are to be prioritized again for subsequent phases.
(2) Preconditions

1. The criteria used in the prioritization are as follows.
> Amount of Electricity Demand
$>$ Distance from a tapping point, which is equal to distance from the existing distribution line
> Public Electricity Demand Ratio (PEDR: Electricity demand in Public facilities in a TC divided by all electricity demand in the TC)
2. Regarding each criterion, a weight as follow was given. TCs are prioritized in each criterion and points in and a TC which gets higher total points is prioritized.

Criteria	Weight
Amount of Electricity Demand	10
Distance from a tapping point	2
PEDR	1

Although the weights of criteria were determined in the Follow-up Study as above, they should be changed by DOE depending on situation changes.
<Example>

Criteria		A TC	B TC	C TC
Amount of Electricity Demand	Value	200kWh	250kWh	180kWh
	Rank	$2^{\text {nd }}$	$1^{\text {st }}$	$3{ }^{\text {rd }}$
	Point	$$	30 points(3 points $\times \quad 10=30$ points)	(1 points $\times \quad 10=10$ points)
Distance from a tapping point	Value	12 km	20km	3 km
	Rank	$2^{\text {nd }}$	$3{ }^{\text {rd }}$	$1{ }^{\text {st }}$
	Point	4 points (2 points $\times 2=4$ points)	2 points (1 points $\times 2=2$ points)	6 points (3 points $\times 2=6$ points)
PEDR	Value	10\%	12\%	6\%
	Rank	$2{ }^{\text {nd }}$	$1{ }^{\text {st }}$	$3{ }^{\text {rd }}$
	Point	(2 points $\times \quad 1=2$ points)	$\left.\begin{array}{l}\text { (3 points } \\ \text { points) }\end{array}\right) \quad 1=2$	$$
Total Point		26	35	17
Priority		2	1	3

(3) Necessary Data

In order to prioritize TCs to electrify, distance from a tapping point in each TC should be collected in FS. Other data, amount of demand and public electricity demand ratio are calculated through the demand forecast in the TC.
(4) Prioritization Sheet

The prioritization sheet for Chitipa District is shown as follow. All data except distance from tapping point is automatically calculated through the demand forecast sheet.

[Points]

1) Input a value of distance from tapping point in the TC's cell " 3 . Distance from the Existing Distribution Line."
2) If there is no data of number of facility like Chesenan in the example, use the data in the Master Plan. From the analysis, a kWh calculated by the new demand forecast method is 32.2% less than that in the Master Plan.
3) If it is impossible to collect data such as distance from a tapping point and Public Electricity Demand Ratio of a TC, you can use an average data of other TCs in the district.
4) If there are the same total score TCs, Choose a TC which has a higher amount of electricity demand.
5) After determination of two TCs to electrify, delete the two and input new distances from tapping points since the distances may change because of expanding distribution lines.

5.7 How to Revise TC Priority System

5.7.1 Prioritization for Phase 7

If you want to prioritize non-electrified TCs for Phase 7, following procedure shows how to make.
(Step 1) Start up EXCEL
(Step 2) Open the "TC Priority" file
(Step 3) Save as TC Priority (Phase 7)
(Step 4) Go to the district sheet you want to make
(Step 5) Delete TC cells which are in Phase 6
Note) Do not delete all columns because there may be needed cells in down rows. Delete only corresponding cells.
(Step 6) Input new data of "Distance from existing distribution line"
Note) The distance from distribution line will be changed since if you expand lines, the distance may be changed.
(Step 7) New prioritized TCs are shown in "Priority"
(Step 8) Save the file
Note) Even if you want to make the Phase 8 and later, the procedure is the same.

5.7.2 Addition of New TCs

If you want to add non-electrified TCs and prioritize them, following procedure shows how to make. Please be careful since it is a little complicated.
(Step 1) Start up EXCEL
(Step 2) Open the corresponding "TC Priority(Phase \bigcirc)" file to the phase you want to make
(Step 3) Go to the district sheet you want to make
(Step 4) Copy the all columns of a TC data
(Step 5) Paste the data to the end of lines
(Step 6) Input necessary data to the new pasted columns
(Step 7) Expand the calculation range of the equations "=Rank(...)" of the first TC’s cells in Ranking section to the added TC.

$$
c f=\mathrm{RANK}(\mathrm{D} 54, \$ \mathrm{D} \$ 54: \$ \mathrm{R} \$ 54) \rightarrow=\mathrm{RANK}(\mathrm{D} 54, \$ \mathrm{D} \$ 54: \$ \mathrm{U} \$ 54)
$$

Note) This is about "Ranking" section.
(Step 8) Expand the calculation range of the equations "=Rank(...)" of the first TC’s cells in Priority section to the added TC.

$$
c f=\mathrm{RANK}(\mathrm{D} 54, \$ \mathrm{D} \$ 54: \$ \mathrm{R} \$ 54) \rightarrow=\mathrm{RANK}(\mathrm{D} 54, \$ \mathrm{D} \$ 54: \$ \mathrm{U} \$ 54)
$$

Note) This is about "Priority section.
(Step 9) Expand all data in Rank section and Priority section to right side
(Step 10) Replace the old TC file name to new TC file name in each cell $c f$ [Demand Condition Sheet for Phase6(Chitipa Kameme).xls]
\downarrow Encircled part has to be changed [Demand Condition Sheet for Phase6(Chitipa OO).xls]

Note) Do not input any data in cells in which there are equations.
(Step 11) New prioritized TCs are automatically ranked in the Priority part

5.8 Voltage drop calculation (Refer to Attachment 2-b)

5.8.1 General

Voltage drops after installation of lines are assumed based on a demand forecast, distance of distribution lines and the current voltage condition. The current voltage conditions are collected from ESCOM.

If any problems occur with respect to the voltage of 33 kV lines, a discussion with ESCOM regarding the below listed issues related to voltage compensation is necessary.

- Re-evaluation of route (ex. new feeder from substation)
- Installation of facilities to compensate for voltage drop (ex. static capacitors, step voltage regulators, load ratio control transformer)
As for $400 \mathrm{~V} / 230 \mathrm{~V}$ lines, the following measures are considered.
- Change of the pole-mounted transformer location

5.8.2 Calculation method

The voltage criterion under the regulation in Malawi is $\pm 6 \%$ against rated voltages. The following table shows the range and limits of voltage for each voltage grade.

Rated Voltage	Range	Limitation
33 kV	$\pm 1.980 \mathrm{kV}$	$34.98 \mathrm{kV}-31.02 \mathrm{kV}$
11 kV	$\pm 0.660 \mathrm{kV}$	$10.34 \mathrm{kV}-9.34 \mathrm{kV}$
$400 \mathrm{~V} / 230 \mathrm{~V}$	$\pm 24(400 \mathrm{~V})$	$424 \mathrm{~V}-376 \mathrm{~V}$
	$\pm 13.8(230 \mathrm{~V})$	$243 \mathrm{~V}-216 \mathrm{~V}$

(a) 33 kV and 11 kV lines

A voltage of 33 kV and/or 11 kV lines is generally estimated using the following equation (1).

$$
\begin{equation*}
V_{r}=V_{s}-1.732 I(R \cos \varphi+X \sin \varphi) \tag{1}
\end{equation*}
$$

where

```
V}\quad\mathrm{ Voltage at sending point of distribution line
    V
    I Load current
    R Resistance of line
    X Reactance of line
cos\varphi Power factor of load at receiving point
```

The following parameters are applied in Equation (1)
$V_{s} \quad 35 \mathrm{kV}$ for systems with a rated voltage of 33 kV and 11.5 kV with 11 kV system according to operation data from ESCOM
$V_{r} \quad$ Rated voltage (33 kV or 11 kV)
I Demand of public facilities in each TC
$\cos \varphi \quad 0.9$ (including Maize Mill)
R, X

Conductor type	Resistance $(\mathbf{\Omega} / \mathbf{k m})$	Reactance $(\mathbf{\Omega} / \mathbf{k m})$
Hazel	0.616	0.380
Oak	0.311	0.358

Source: ESCOM, Pole type "A", None earth wire

The simplified calculation procedure is as follows.

- Calculation of $\mathrm{V}_{\mathrm{r} 1}$ (voltage at the first load point) using Equation (1)
- Replacement of V_{s} by $\mathrm{V}_{\mathrm{r} 1}$ of Equation (1) and calculation of $\mathrm{V}_{\mathrm{r} 2}$ (voltage at the second load point) by Equation (1)
- This procedure is repeated until the terminal point

(b) $400 \mathrm{~V} / 230 \mathrm{~V}$ lines

In case of low voltage lines, Equation (2) is generally used for voltage drop calculation, since the load power factor at the receiving point is almost 1.0, except for motors.

$$
V_{r}=V_{s}-2 I R
$$

equation (2)

A calculation procedure is the same as for the 33 kV lines.

Equation (1) should be applied for this calculation in the case that a connection of a maize mill is expected. And 0.8 is applied for power factor because that of maize mills in Malawi is usually 0.8.

The following table shows the calculated voltage drop for $400 \mathrm{~V} / 230 \mathrm{~V}$ by using equation (1) when a maize mill is connected to the end point of the line. "ANT" and "WASP" are the name of typical conductors in Malawi.

Conductor	Resistance ${ }^{\mathbf{1}}(\mathbf{\Omega} / \mathbf{k m})$	Reactance ${ }^{\mathbf{1}}(\mathbf{\Omega} / \mathbf{k m})$	Voltage drop *2 $\mathbf{(V)}$
ANT	0.6638	0.2750	31.50
WASP	0.3309	0.2530	17.79

$*_{1}$	Equations are shown in reference2		
	Conductor temperature	$75^{\circ} \mathrm{C}$	
$*_{2}$	Capacity of maize mill	$25 \mathrm{kVA}(20 \mathrm{~kW})$	
	Power factor	0.8	
	Vs	Rated (Equipment is selected such that the tap of the mole-mounted transformer maintains the voltage of the secondary at the rated value)	

According to regulations in Malawi, the voltage criterion is $\pm 6 \%$ against rated values. This means that $\pm 24.0 \mathrm{~V}$ (three phase), $\pm 13.8 \mathrm{~V}$ (single phase) are the limitation for $400 \mathrm{~V} / 230 \mathrm{~V}$ line. The above table shows that any conductor cannot meet this voltage regulation for a length of 1.3 km .

In case of maize mill, the limited lengths are approximately 700 m for ANT and 1300 m for WASP conductors. Therefore, when the length of $400 \mathrm{~V} / 230 \mathrm{~V}$ lines is less than 700 m and the demand is smaller than standard for a maize mill ($20 \mathrm{~kW} \mathrm{)}$, calculation is not always necessary.
In case of not maize mill, when the length of $400 \mathrm{~V} / 230 \mathrm{~V}$ lines is less than 500 m and the demand is smaller than 4.6 kW , voltage calculation is not always necessary.

5.9 Cost Estimation (Refer to Attachment 2-c)

The scope of work for MAREP is the construction of distribution lines to public facilities in the TC. The installation cost of electrification for public facilities within each TC is estimated in this section.

The installation cost of grid extension to satisfy the total demand of each TC is estimated based on a field survey to public facilities, since the extension of distribution lines to private sectors, such as households, retail shops and maize mills, shall be done by other parties who will manage the distribution by their own financial resources. Economical and financial evaluations are carried out for the total demand of each TC. The equipment to be extended includes the pole-mounted transformer and $400 \mathrm{~V} / 230 \mathrm{~V}$ lines.

Cost data should be based on construction cost per km for 33 kV lines and $400 \mathrm{~V} / 230 \mathrm{~V}$ lines, and construction cost per unit for transformers using ESCOM's latest data including materials, labors, transportations and fuel together with coming up with Bill of Quantities (BOQ).

Total cost is estimated to the sum of costs on 33 kV lines, transformers, and $400 \mathrm{~V} / 230 \mathrm{~V}$ lines.

5.10 Calculation of an Internal Rate of Return(IRR) (Refer to Attachment 2-d)

There are two methods of calculating an internal rate of return. One is an economic internal rate of return (EIRR), and another is a financial internal rate of return (FIRR). In the feasibility study, users can calculate both IRRs using the EIRR and FIRR calculation sheets.

Difference of financial and economic analyses

Financial analysis of a project is similar in form to economic analysis because both appraise the profit of an investment. The concept of financial profit is, however, not the same as in economic analysis. The financial analysis of a project estimates the accrued profit of the project-owner (i.e., investor), while the economic analysis evaluates the effect of the project on the national economy.

Both analyses are conducted in monetary terms, but big differences exist in respect of the definition of cost and benefit. In financial analysis, all expenditures incurred in the project and revenues resulting from it are taken into account. In contrast, economic analysis attempts to assess the overall impact of a project for improving the economic welfare of the citizens of the country concerned.

For this reason, analysts use current value in monetary terms for financial analysis, but real value for economic analysis. Furthermore, they take account of government subsidies in financial analysis but not in economic analysis, because such subsidies increase the revenue for the project-owner but do not contribute directly to national economic growth.

Purpose of using the calculation sheet

To judge whether a project fulfills the legally required condition of rural electrification (RE), the EIRR sheet must be used because the EIRR of the RE project must not be more than 6% as stipulated in the Implementing Rules and Regulations of the Rural Electrification Act.

On the other hand, to evaluate project viability, the FIRR sheet must be used. Using this sheet, users can simulate not only the profitability of the project from a Concessionaire's standpoint but also financial conditions including annual income and cash flow.

General conditions

- Monetary terms: The US dollar was used in both calculation sheets, because estimation of the current value of the Malawi kwacha during the project term would be too difficult, due to the country's high inflation. The only difference between the "Economic Analysis" and "Financial Analysis" sheets is that the former is in real terms and the latter is in nominal (current terms).
- Deflator: The GDP deflator for the USA is used (i.e, 1.7\% p.a. between 1995 and 2002).
- Effective income tax: It is necessary to apply the common figure in commercial business operations of Malawi.
- Power retail price: The personnel using this spreadsheet may set it as a precondition of simulation.
- Annual power sales: The result of the demand forecast is used. On the "Economic Analysis" and "Financial Analysis" sheets, values calculated on the demand forecast sheet-"Transformer Calculation"-are automatically retrieved.
- Power loss: The personnel using this spreadsheet may set it based on the technical evaluation.
- Year of starting construction work: The personnel using these calculation sheets may decide this year.
- Project term: 20 years
- O\&M cost: The personnel using these calculation sheets may set it based on the technical evaluation. Tentatively, 2% of the investment cost is used.
- Monetary value: It must be the year when the user estimates the project cost.
- Direct capital cost: Value is retrieved from the linked "Cost Estimation" sheet.
- Inventory \& startup cost: Tentatively, 5% of the investment cost is used.
- Depreciation: Straight line method is used.
- Concession fee: The personnel using these calculation sheets may set it as a precondition of simulation.
- Equity portion of the concessionaire: Automatically calculated.
- Power wholesale price: For the time being, the rate applied by ESCOM is used, but in the future, the wholesale price in market transactions will be used.

5.10.1 Data sheet

Data input in the column of "Premises"
The personnel using the calculation sheet must input data for the following items: GDP Deflator, Effective Income Tax, Power Wholesale and Retail Prices, Year of Starting Construction Work, Project Term, and O\&M Cost

Only the input data on the wholesale and retail prices are in terms of kwacha per kWh, but they are automatically converted into US cents per kWh using currency conversion rate in the "Cost Estimation Sheet."

Depreciation Base/Schedule

The user must input data for only three items: "Value in," "Inventory \& Startup Cost," and "Concession Fee." Other values (i.e., data) are linked to other calculation sheets.

5.10.2 FIRR sheet

Two types of project schemes are shown: One is applied to the program up to Phase 4 where ESCO take over the project, and another, to the concessionaire.

The only value to be input is "O\&M Subsidy." The user changes the value and evaluates a reasonable FIRR. Tentatively, the value of the O\&M subsidy is constant during the project life (i.e., it is not escalated.)

The user must be careful about the following points:

- If the value of cash flow of each year becomes minus, it means that the business operation faces a cash shortage, and an additional capital injection is needed.
- In this calculation, therefore, this situation must be avoided by increasing the O\&M subsidy or decreasing the leasing fee.

FIRR Sheet

5.10.3 EIRR sheet

This sheet is completely automatically calculated if necessary data in the data sheet are input.

EIRR Sheet

6. Management on progress (Refer to Attachment 3-a)

As mentioned in Section 5.1 (c) Scheduling on field survey, One-week field survey and one-week deskwork for reviewing the progress would be recommended. Progress on a FS should be checked and next survey schedule should be reviewed together with analyses.

7. Reporting (Refer to Attachment 4-a, 4-b)

Report on the result of each and every TC should be made immediately after field surveys together with drawings and results of calculation. It should include some important information listed below and be described as simply as possible.

Check Sheet on Equipment Preparation

Name of the Trading Center:

Equipment	Check
1/250,000 scale maps, hopefully more detailed maps	
Feasibility Study Manual	
Case study report on MAREP Master Plan	
Copies of the maps around the TC (At least 2/TC) (TC should be at the center of the map)	
Data sheet on public facilities	
More than 30m measuring tape	
Roller measure	
Results on Demand Forecast (as of master plan)	
Plane board for drawings	
White papers (more than 30 for each trip)	
Section papers	
Pencils	
Eraser	
Colored pens	
Rulers	
Calculators (at least 1 per team)	
GPS	
Batteries for GPS	
Magnet compass	
Laser binocular	
Diskette(s) (except one day trip)	
Lap top (except one day trip)	
Watch	Check sheet on the Field Survey (at least one per TC)
(Umbrellas)	
(Caps)	

Check Sheet on Field Survey

Name of the Trading Center:

No	Activities	CheC k
	Map Study (Using 1/250,000 maps)	
1	Put existing/planned lines on the map	
2	Decide estimated route distance from branch points on existing line to the target TC on the map	
	Field Survey - Outside TC	
3	Confirm GPS position at each and every relevant corner of the road	
4	Confirm relevant TCs, bridges etc on the route to the target TC	
5	Confirm the target TC	
6	Confirm existing line and end pole with GPS	
7	Confirm planned line or relevant TCs with GPS if any	
8	Confirm distance from branch points on existing line to the target TC by odometer	
9	Confirm voltage level of existing line (ESCOM engineer)	
10	Check size "square mm" and condition of conductor on existing line (ESCOM engineer)	
	Field Survey - Inside TC (Sketching)	
11	* The TC's name of, date, start and finish time, drawer's name, direction (North), scale and GPS position should be included on the drawings	
12	Confirm public facilities by interviewing responsible person(s)	
13	Confirm private entities	
14	Confirm daily activities inside/outside of the TC	
15	Measure each person's step length if no digital roller measure	
16	Measure radius (length and width) of the TC	
17	Measure width of the main road through the TC and branches	
18	Measure distance from the main road to existing public facilities	
19	Include major features such as shops in the sketch	
20	Confirm maize mill(s) and measure distance	
21	Confirm obstacles for the proposed line	
22	Decide the transformer position (normally load center) considering the voltage drop	
23	Measure GPS position of the transformer	
24	Put tentative 400/230V lines on the sketch considering the voltage drop	
25	Cross check proposed/planned/existing lines for the TC	

The Basic Time Schedule and each Role in Field Survey

*After finishing your survey, cooperate with and help other member.
*The numbers in bar show ones in [Check sheet on field survey]

Check Sheet for Demand Forecast (Public Facility and Business Entity)

Demand Forecast in TC

var			（eatememen	star	Hoppat	$\underbrace{\substack{\text { neater }}}_{\text {neater }}$	cinc	Postofice	$\underset{\substack{\text { Patiee } \\ \text { spatien }}}{\substack{\text { a }}}$	Poluce post	Polce ont	atmar	comment	cuuch	mosue		Paunde	come	${ }_{\text {maxa mun }}$	Businss			Oritary tousenolal		mat	
2007	${ }^{\text {®an }}$	${ }^{\text {axa }}$				1.09			${ }^{2} 200$				${ }^{78}$	${ }^{43}$				29.9	${ }_{2}{ }^{214459}$			238	${ }^{2 m a t e r}$		B5saed	
${ }^{208}$	${ }^{\text {820 }}$					20			${ }_{\text {L200 }}$				${ }_{78}^{78}$	43							2002			108 845	Bamo	－
2000		，							，				，	（137		\％		，	${ }^{122727}$		$\xrightarrow{\text { c2eat }}$		为	（1030		
201	127	${ }^{1288}$				523			${ }^{3,000}$				${ }^{2}, 14$	${ }^{31}$			2,29	${ }^{1589}$	12720		595	2 am 2	${ }^{186} 156829$	55.00	${ }^{2979}$	3627
${ }^{2012}$	${ }^{122}$	${ }^{2288}$				5238			${ }^{3,000}$				${ }^{1.44}$	${ }^{37}$			1.29	${ }^{15029}$	12772		595	2 am	180 19.929	${ }^{223} 2$		35.48
	$\underset{\substack{2.03 \\ 1208}}{\substack{\text { a }}}$					${ }_{5} 5$			边				$\xrightarrow{1.1 .26}$	${ }_{\text {siv }}$			208		127728		Smses	2an				（en
2015	2.98	${ }^{2,4}$	。			5 sam			${ }^{3}$	－	。		${ }^{2} .1 .6$	${ }^{\text {sr }}$		${ }^{1,1.68}$	2028	27，065	${ }^{20350}$		5 sas	${ }^{26313}$	$1{ }^{18,94}$			
${ }^{2016}$	2.51	${ }_{\text {L }}^{1.382}$				${ }_{\text {cosem }}^{5.59}$								（1）		${ }^{1227}$	23920	${ }^{12238}$	${ }^{2030}$		\％os	${ }^{2020 a s}$	${ }^{212275}$	8，30		5as
边	${ }_{\text {L，}}^{1.51}$	${ }_{1,58}^{1.58}$							4				3	，			－	边								
${ }^{299}$	2551								23．				${ }_{137}$	${ }^{37}$		${ }^{127}$	20，	2128	20.35		，0，66	${ }^{200065}$	96	3，38		

VOLTAGE DROP CALCULATION FOR HV DISTRIBUTION LINES

TAKE NOTE

* In case of 11 kV , [syst.volt. (kV)] should be changed from 33 kV into 11 kV , and $[\mathrm{Vs}(\mathrm{kV})$] also should be changed.

VOLTAGE DROP CALCULATION FOR LV DISTRIBUTION LINES

Input figures in green cell.					
ANT CONDUCTORS (50mm^2)					
	R/km	X/km	dist.of line-(km)	demand-(w)	No.of Facility
	0.6638	0.275	0.5	4600	1
	I(A)	supply voltage	Vr	VD	\% VD
	20	230	216.724	13.276	5.772
WASP CONDUCTORS (100mm^2)					
	R/km	X/km	dist.of line-(km)	demand-(w)	No.of Facility
	0.3309	0.253	1	4600	1
	I(A)	Vs (V)	Vr (V)	VD (V)	\% VD
	20	230	216.764	13.236	5.755
Equation :	$\mathrm{Vr}=\mathrm{Vs}-\mathbf{2 I R}$	$\mathrm{I}=($ Demand*No.of Facility)/voltage			$\% \mathrm{VD}=(\mathrm{Vs}-\mathrm{Vr}) / \mathrm{Vs}$
	$\begin{aligned} & \text { Vs = Supply Vo } \\ & \text { Vr = Received } \\ & \text { VD = Voltage } \\ & \text { I = Current } \end{aligned}$	Itage Voltage rop		$\begin{aligned} & \mathrm{R}=\text { Resitanc } \\ & \mathrm{X}=\text { Reactanc } \end{aligned}$	

TAKE NOTE

* In case of a maize mill connection, voltage drop calculation should be done using equation3 below.

VOLTAGE DROP CALCULATION FOR LV LINE WITH A MAIZE MILL AS LOAD

Equation 3

CALCULATION FOR BILL OF QUANTITIES FOR 33kV OVERHEAD LINE

NOTE: Enter length of line in column C3
33.75 km
(unit:MK)

QUANTITY/km	MATERIAL DESCRIPTION	TOTAL QUANTITY	UNIT PRICE	TOTAL PRICE
3150	100mm2 AAAC 'OAK'	106312.5	75.39	8,014,899
90	7/8 GMSW	3037.5	97.29	295,518
18	7/8 guy grips	607.5	182.54	110,893
77	Barbed wire	2598.75	24	62,370
1	33kV 200Kg spindles	33.75	166.05	5,604
48	Binding stirrups (33kV)	1620	0.65	1,053
25	Pilot spindles	843.75		0
25	33 kV pin insulators	843.75	607	512,156
6	HV stay insulators	202.5	539.75	109,299
27	Disc insulators	911.25	1,117.32	1,018,158
40	Aluminium binding tape	1350	3.31	4,469
16	M12/150 nuts \& bolts	540	29.66	16,016
16	M16/150 bolts \& nuts	540	58.07	31,358
8	M16/260 bolts \& nuts	270	68.81	18,579
10	M16/300 bolts \& nuts	337.5	115.13	38,856
66	M16 flat washers	2227.5	0.47	1,047
32	M16 spring washers	1080	0.02	22
4	18 mm stay rods	135	868.44	117,239
2	M20/400 bolts \& nuts	67.5	134.75	9,096
10	M20 flat wahers	337.5	5.18	1,748
28	M20 spring washers	945	0.04	38
6	M20/400 eye bolts \& e/nuts	202.5	145.95	29,555
9	100mm2 Snail clamps	303.75	809.23	245,804
16	Tie straps	540	231.41	124,961
9	Clevis adaptors	303.75	131.38	39,907
9	Insulator hooks	303.75	274.11	83,261
3	Danger plates	101.25	249.76	25,288
1	9.0m wood pole	33.75	853.88	28,818
8	10.8m(s) wood pole	270	5664.32	1,529,366
2	$12.3 \mathrm{~m}(\mathrm{H})$ wood pole	67.5	1975.24	133,329
4	X11 cross arms	135	1610.95	217,478
6	Stay baulk	202.5	717.75	145,344
6	SP 10 spacer block	202.5	111.65	22,609
8	X49 cross arm	270	1988.23	536,822
1	33kV Air Break Switch	33.75	65726	2,218,253
1	33kV Auto-recloser	33.75	79860	2,695,275
SUB-TOTAL				18,444,489
1	Manhrs for gang and Cost	33.75	77,767.00	2,624,636
1	Manhrs for OHL Supervisor \&Cost	33.75	14,274.10	481,751
1	km + Hiring for Gang	33.75	66,154.00	2,232,698
1	km + Hiring for Supervisor	33.75	19,795.00	668,081
1	km + Allowed for fuel for gang	33.75	7,817.00	263,824
1	km + Allowed for fuel for Supervisor	33.75	1,868.00	63,045
1	compensation fee	33.75	unknown	
SUB-TOTAL				6,334,035

CALCULATION FOR BILL OF QUANTITIES FOR 400V OVERHEAD LINE
NOTE: Enter length of line in column C48
3.3 km
(unit:MK)

QUANTITY/km	MATERIAL DESCRIPTION	TOTAL QUANTITY	UNIT PRICE	TOTAL PRICE
4200	100mm2 AAC 'WASP'	13860	53.53	741,926
154	7/12 GMSW	508.2	36.61	18,605
4	70mm2, 4 core MV Cu Cable	13.2	612.56	8,086
32	MO-O line taps	105.6	128.38	13,557
4	MO-5/5 line taps	13.2	258.4	3,411
4	70 mm 2 bimetal pin terminals	13.2	11.84	156
88	Bobbin insulators	290.4	44.44	12,905
14	LV stay insulators	46.2	46.07	2,128
14	12 mm 2 stay rods	46.2	793.85	36,676
32	M16/200 bolts \& nuts	105.6	58.28	6,154
40	M16/260 bolts \& nuts	132	68.81	9,083
48	D' irons	158.4	88.14	13,961
16	9.0m wood pole	52.8	853.88	45,085
14	Stay baulk	46.2	717.75	33,160
SUB-TOTAL				944,894
1	Manhrs for gang and Cost	3.3	77,767.00	256,631
1	Manhrs for OHL Supervisor \&Cost	3.3	14,274.10	47,105
1	km + Hiring for Gang	3.3	66,154.00	218,308
1	km + Hiring for Supervisor	3.3	19,795.00	65,324
1	$\mathrm{km}+$ Allowed for fuel for gang	3.3	7,817.00	25,796
1	km + Allowed for fuel for Supervisor	3.3	1,868.00	6,164
1	compensation fee	3.3	unknown	
SUB-TOTAL				619,328
TOTAL				1,564,222

COST ESTIMATION CALCULATION SHEET

TC name:	Nthalire
Region	NORTHERN
District	Chitipa
Date:	

*(HV COST/km) depend on types of HV

Types of HV	HV COST/km
11kV overhead line constructed with 50mm² AAAC (HAZEL)	572,670
11kV overhead line constructed with 100mm² AAAC (OAK)	685,957
33kV overhead line constructed with 50mm² AAAC (HAZEL)	632,662
33kV overhead line constructed with 100mm² AAAC (OAK)	749,687

Premises

GDP Deflator	$\% / Y r$	1.7	
Effective Income Tax	$\%$	30	
Power Wholesale Price	US Φ / kWh	2.6	2.9121
Power Retail Price	$\mathrm{US} \Phi / \mathrm{kWh}$	6.0	6.6
Power Loss	$\%$	6	
Year of Start of Construction Work		2006	
Project Term	Year	20	
O\&M Cost	$\%$	2	

Depreciation Base/Schedule

Value in	Year	2006	<=	5% of direct capital cost, and paid by the concessionaire
Direct Capital Cost	US\$	242,472		
Inventory \& Startup Cost	US\$	12,124		
Total Project Capitalized Cost	US\$	254,596		
Depreciable Portion of Capitalized Cost	US\$	242,472		
Concession Fee	US\$	100	<=	<=paid by the concessionaire
Equity Portion of the Concessionaire	US\$			

Depreciation Base/Schedule

Direct Capital Cost	US\$	242,472	242,472	<=paid by the government
Inventory \& Startup Cost	US\$	12,124	12,124	<= 5% of direct capital cost, and paid by the concessionaire
Total Project Capitalized Cost	US\$	254,596	254,596	
Depreciable Portion of Capitalized				
Cost	US\$	242,472	242,472	
Concession Fee	US\$		100	<=paid by the concessionaire
Equity Portion of the Concessionaire	US\$		12,224	
Depreciation	\%	5.00		<=straight line method

Income Statement under the Current Scheme Applied to ESCOM

		Year																				
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Power Sales	USS		5,663	5,762	7,495	7,701	8,741	10,413	11,059	11,946	12,349	14,105	15,318	15,642	16,002	30,087	32,510	35,009	37,585	40,239	42,974	45,792
O\&M Subsidy	US\$		4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Total Revenue	US\$		9,663	9,762	11,495	11,701	12,741	14,413	15,059	15,946	16,349	18,105	19,318	19,642	20,002	34,087	36,510	39,009	41,585	44,239	46,974	49,792
Power Purchased	US\$		2,658	2,704	3,518	3,615	4,103	4,888	5,191	5,607	5,797	6,621	7,190	7,342	7,511	14,123	15,260	16,433	17,642	18,888	20,172	21,494
O\&M Cost	US\$		4,849	4,934	5,019	5,106	5,195	5,285	5,377	5,470	5,565	5,662	5,760	5,860	5,962	6,065	6,170	6,277	6,386	6,497	6,610	6,725
Depreciation of Asset	US\$		12,124	12,124	12,124	12,124	12,124	12,124	12,124	12,124	12,124	12,124	12,124	12,124	12,124	12,124	12,124	12,124	12,124	12,124	12,124	12,124
Taxable Income	US\$		-9,968	-10,000	-9,166	-9,144	-8,680	-7,884	-7,633	-7,255	-7,136	-6,301	-5,756	-5,684	-5,594	1,776	2,956	4,175	5,433	6,730	8,069	9,449
Income Tax	US\$		0	0	0	0	0	0	0	0	0	0	0	0	0	533	887	1,253	1,630	2,019	2,421	2,835
Income After tax			-9,968	-10,000	-9,166	-9,144	$-8,680$	-7,884	-7,633	-7,255	-7,136	-6,301	-5,756	-5,684	-5,594	1,243	2,069	2,923	3,803	4,711	5,648	6,615
Cash Flow	US\$	-254,596	2,156	2,124	2,958	2,980	3,443	4,240	4,491	4,868	4,988	5,823	6,368	6,440	6,529	13,367	14,193	15,046	15,927	16,835	17,772	18,738
FIRR to Equity	-2.77\%																					

Note 1: Initial capital investment paid by the government is a sort of equity financing measure.

		Year																				
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Power Sales	USS		5,663	5,762	7,495	7,701	8,741	10,413	11,059	11,946	12,349	14,105	15,318	15,642	16,002	30,087	32,510	35,009	37,585	40,239	42,974	45,792
O\&M Subsidy	US\$		2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000
Total Revenue	US\$		7,663	7,762	9,495	9,701	10,741	12,413	13,059	13,946	14,349	16,105	17,318	17,642	18,002	32,087	34,510	37,009	39,585	42,239	44,974	47,792
Power Purchased	US\$		2,658	2,704	3,518	3,615	4,103	4,888	5,191	5,607	5,797	6,621	7,190	7,342	7,511	14,123	15,260	16,433	17,642	18,888	20,172	21,494
O\&M Cost	US\$		4,849	4,934	5,019	5,106	5,195	5,285	5,377	5,470	5,565	5,662	5,760	5,860	5,962	6,065	6,170	6,277	6,386	6,497	6,610	6,725
Depreciation of Concession Fee Leasing Fee Paid Back to the RE	US\$		5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	
Fund (= Depreciation of the Asset)	Us\$		12,124	12,124	12,124	12,124	12,124	12,124	12,124	12,124	12,124	12,124	12,124	12,124	12,124	12,124	12,124	12,124	12,124	12,124	12,124	12,124
Taxable Income	US\$		-11,973	-12,005	-11,171	-11,149	-10,685	-9,889	-9,638	-9,260	-9,141	-8,306	-7,761	-7,689	-7,599	-229	951	2,170	3,428	4,725	6,064	7,444
Income Tax	US\$		0	0	0	0	0	0	0	0	0	0	0	0	0	0	285	651	1,028	1,418	1,819	2,233
Income After tax	US\$		-11,973	-12,005	-11,171	-11,149	-10,685	$-9,889$	-9,638	-9,260	-9,141	-8,306	$-7,761$	-7,689	-7,599	-229	666	1,519	2,399	3,308	4,245	5,211
Cash Flow	US\$	-12,224	-11,968	-12,000	-11,166	-11,144	-10,680	-9,884	-9,633	-9,255	-9,136	-8,301	-7,756	-7,684	-7,594	-224	671	1,524	2,404	3,313	4,250	5,216
FIRR to Equity	\#DIV/0!																					

Power Wholesale Price Power Retail Price Power Loss O\&M Cost	US $¢ / \mathrm{kWh}$ US $\ddagger / k W h$ \%	$\begin{gathered} 2.6 \\ 6.0 \\ 6.0 \\ 6 \\ \hline \end{gathered}$																						
Value of 2006 US\$																								
Years			0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
Power Sales (kWh)				94,388	94,388	120,695	121,890	135,995	159,240	166,234	176,504	179,354	201,362	214,937	215,742	216,949	400,941	425,847	450,752	475,658	500,563	525,469	550,374	
	Initial R amount p	Replacement period																						
Direct Capital Cost			242,472																					
	B. Working Capital (=Inventry and Startup Cost)			242,472	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
II. Working capital	12,124			12,124																			-12,124	
	Annual amount																							
C. Annual costs Powre Purcased O\&M				2,658	2,658	3,399	3,433	3,830	4,485	4,682	4,971	5,051	5,671	6,053	6,076	6,110	11,292	11,993	12,695	13,396	14,098	14,799	15,500	
				4,849	4,849	4,849	4,849	4,849	4,849	4,849	4,849	4,849	4,849	4,849	4,849	4,849	4,849	4,849	4,849	4,849	4,849	4,849	4,849	
III. Total			0	7,508	7,508	8,249	8,282	8,680	9,334	9,531	9,820	9,901	10,520	10,903	10,925	10,959	16,141	16,843	17,544	18,246	18,947	19,648	20,350	
D. Benefits IV. Incremental output	Annual amount																							
				5,663	5,663	7,242	7,313	8,160	9,554	9,974	10,590	10,761	12,082	12,896	12,945	13,017	24,056	25,551	27,045	28,539	30,034	31,528	33,022	
E. Net benefits IV-I-II-III			-242,472	-13,968	-1,844	-1,007	-969	-520	220	443	770	861	1,561	1,993	2,019	2,057	7,915	8,708	9,501	10,294	11,087	11,880	24,796	
IV-III-III Discount rate	12\%																							
Net present value Internal rate of return	-243,392		-242,472	-12,471	-1,470	-717	-616	-295	112	200	311	310	503	573	518	472	1,620	1,591	1,550	1,499	1,442	1,379	2,571	
	\#NUM!		\#NUM!																					

Attachment 3-a-1

Progress Management Sheet (Results on MAREP Phase 5FS)

Region	District	$\begin{gathered} \text { Phase } \\ \text { by } \\ \text { M/P } \end{gathered}$	Name of TC	Num. of TC along the line	Length of 33 kV line (km)	Length of 400/230V line (m)	$\begin{aligned} & \text { Num.of } \\ & \text { Trans. } \\ & \text { (100kVA) } \end{aligned}$	Num.of Trans. (50kVA)	$\begin{aligned} & \text { Estimated } \\ & \text { cost } \\ & (1,000 \mathrm{MK}) \end{aligned}$	$\begin{aligned} & \text { Estimated } \\ & \text { cost } \\ & (1,000 \cup \$) \end{aligned}$	IRR	Remarks
Northern	Chitipa	5	Nthalire	3	33.75	3,284	1	1	26,677	242.5		
	Chitipa	6-1	Wenya	3	72.6	2,470	0	2	55,832	507.6		
	Karonga	7-2	Mulare	0	7.6	1,475	1	0	6,371	57.9		
	Karonga	9-1	Hara	0	5.8	1,320	0	1	4,901	44.6		
	Rumphi	5	Katowo	2	41	1,300	1	0	30,906	281.0		
	Rumphi	5	Chitimba	1	11	1,680	1	1	9,151	83.2		
	Nkhata Bay	5	Mpamba							0.0		
	Nkhata Bay	5	Kavuzi							0.0		
	Mzimba	5	Edingeni	0	11	2,400	1	1	9,358	85.1		
	Mzimba	7-1	Mnyamula	2	28	1,500	1	0	21,671	197.0		
Central	Kasungu	5	Chamama							0.0		
	Kasungu	5	Мрера							0.0		
	Nkhotakota	5	Mkaika							0.0		
	Nkhotakota	5	Dwambadzi							0.0		
	Ntchisi	5	Nthesa							0.0		
	Ntchisi	5	Khuwi							0.0		
	Dowa	5	Thambwe							0.0		
	Dowa	5	Bowe							0.0		
	Salima	5	Kandulu	0	1.8	240	0	1	1,292	11.7		
	Salima	5	Chilambula	0	1.6	1,780	0	2	2,059	18.7		
	Lilongwe	5	Chilobwe							0.0		
	Lilongwe	5	Nyanja							0.0		
	Mchinji	5	Mkanda							0.0		
	Mchinji	5	Chiosya							0.0		
	Dedza	5	Kabwazi							0.0		
	Dedza	5	Golomoti	0	17.8	3,770	3	0	13,782	125.3		
	Ntcheu	5	Ntonda							0.0		
	Ntcheu	5	Kasinje	0	14	2,460	1	0	23,969	217.9		
Southern	Mangochi	5	Makanjira	4	80	1,830	2	1	61,175	556.1		
	Mangochi	5	Chilipa	0	11	750	1	0	8,712	79.2		
	Machinga	5	Chikwewu							0.0		
	Machinga	5	Nampeya							0.0		
	Balaka	5	Chendausiku							0.0		
	Balaka	5	Kwitanda							0.0		
	Zomba	5	Jenale							0.0		
	Zomba	5	Sunuzi							0.0		
	Chiradzulu	5	Kanje							0.0		
	Chiradzulu	6-1	Chimwawa							0.0		
	Blantyre	5	Chikuli							0.0		
	Blantyre	5	Mombo							0.0		
	Mwanza	6-1	Ligowe							0.0		
	Mwanza	5	Thambani							0.0		
	Neno	Iwanza	Chikonde							0.0		
	Neno									0.0		
	Thyolo	5	Nansadi							0.0		
	Thyolo	6-1	Lalakani	0	4.2	283	0	1	3,400	30.9		
	Mulanje	5	Chinyama	2	20.2	568	0	2	15,700	142.7		
	Mulanje	6-1	Nanthombozi	0	5.2	526	1	0	4,300	39.1		
	Phalombe	6-1	Phaloni	0	12.6	880	0	2	10,000	90.9		
	Phalombe	5	Mlomba	1	14.4	1,355	1	1	11,600	105.5		
	Chikwawa	5	Mitondo	2	10.2	919	1	1	8,335	75.8		
	Chikwawa	5	Linvunzu	2	7.9	2,141	1	1	7,000	63.6		
	Nsanje	5	Tengani	0	0.8	1,300	1	1	1,400	12.7		
	Nsanje	5	Mankhokwe	0	0.021	500	0	1	333	3.0		
	Total			22	412.47	34,731	18	20	337,924	3,072		
	Quantity of Foreign materials applied										\bigcirc	

Progress Management Sheet (on MAREP Phase 5 FS)

Region	Name	$\begin{gathered} \text { Phase by } \\ \text { MP } \end{gathered}$	$\underset{\text { Name }}{\text { Th }}$	complete	$\begin{aligned} & \text { Date of } \\ & \text { Survey } \end{aligned}$	Report	Rroute Map $1 / 250,000$	Rout Mapp Around TC	$\begin{gathered} \text { Map } \\ \text { Inside TC } \\ \text { (White) } \end{gathered}$		$\begin{gathered} \text { Table on } \\ \text { Socion } \\ \text { Sconomic } \end{gathered}$	Calculation Voltage Drop	$\begin{aligned} & \text { Calculation } \\ & \text { Cost } \end{aligned}$	Demand Forecast	$\begin{aligned} & \text { Calculation } \\ & \text { IRR } \end{aligned}$	воQ	$\begin{gathered} \text { Num, of } \\ \text { TCa } \\ \text { The oling } \\ \text { the ine } \end{gathered}$	Remarks and public facilities within about 1 km from the TC
Northem	Chitipa	5	Nthalire	1	51203	D, S	D,S	D, S	D	D,S	D, S	D, S	D, S				3	1 Primary School
	Chitipa	6-1	Wenya	1	4/12/03	D, S	D,S	D, S	D	D, S	D, S	D, S	D, S				3	No comment
	Karonga	7.2	Mulare	1	3/12/03	D,S	D,S	D,S	D	D,S	D,S	D,S	D, S				0	2 Secnodary schools (2 groups)
	Karonga	$9-1$	Hara	1	211203	d, S	d, S	D,S	D	d, S	d,s	d,s	D,S				0	No comment
	Rumphi	5	Katowo	1	10/1203	D, S	D,S	D, S	D	D, S	D, S	D, S	D, S				2	1 Agriculure offices
	Rumpli	5	Chitimba	1	11/12/03	D,S	D,S	D,S	D	D,S	D,S	D, S	D, S				1	No comment
	Nkhata Bay	5	Mpamba															
	Nkhata Bay	5	Kavui															
	Mzimba	5	Edingeni	1	12/12/03												0	
	Mzimba	${ }^{7-1}$	Mnyamula	1	13/1203	D,S	D,S	D,S	D	D,S	D,S	D,S	D,S				0	
Central	Kasungu	5	Chamama															
	Kasugu	5	мpepa															
	Nkhotakota	5	Mkaika															
	Nkhotakota	5	Dwambadi															
	Nethisi	5	Nitesa															
	Nechisi	5	Khuwi															
	Dowa	5	Thambwe															
	Dowa	5	Bowe															
	Salima	5	Kandulu	1	4/1203	D, S	D,S	D,S	D	D, S	D,S	D, S	D, S				0	No comment
	Salima	5	Chilambula	1	1/12/03	D,S	D,S	D,S	D	D, S	D, S	D, S	D,S				0	No comment
	Lilonge	5	Chilobwe															
	Lilonge	5	Nyanja															
	Mchinji	5	Mkanda															
	Mchini	5	Chiosya															
	Dedza	5	Kabwai															
	Dedza	5	Golomoi	1	3/12/03	D,S	D,S	D,S	D	D,S	D,S	D,S	D,S				0	No comment
	Ntcheu	5	Ntond															
	Nitheu	5	Kasinje	1	212003	D, S	D,S	D,S	D	D, S	D,S	D, S	D, S				0	1 Secondary school
Southem	Mangochi	5	Makanjira	1	12/11/03	D, S	D, S	D, S	D	D, S	D, S	D, S	D, S				4	1 Police unit must be electrified
	Mangochi	5	Chilipa	1	11/11/03	D,S	D,S	D, S	D	D, S	D,S	D, S	D, S				0	1 Primary Axhool, 1 Secondary school (1 group), 1 ADMARK and 1 Office (1group)
	Machinga	5	Chikwewu															
	Machinga	5	Nampeya															
	Balaka	5	Chendausiku															
	Balaka	5	Kwitanda															
	Zomba	5	Penale															
	Zomba	5	Sunui															
	Chiradzulu	5	Kanje															
	Chiradzulu	6-1	Chimwawa															
	Blantye	5	Chikuli															
	Blantye	5	Mombo															
	Mwara	6-1	Ligowe															
	Mwaza	5	Thambani															
	Neno	Mwana 5	Chikonde															
	Neno																	
	Thyolo	5	Nansadi															
	Thyolo	6-1	Lalakani	1	$6 / 1103$	D,S	D,S	D,S	D	D,S	D,S	D,S	D, S				0	1 primary school
	Mulaje	5	Chinyma	1	771103	D, S	D, S	D, S	D	D,S	D, S	D, S	D, S				2	No comment
	Mulanje	6-1	Namthombozi	1	8/1103	D, S	D,S	D,S	D	D,S	D,S	D, S	D, S				0	No comment
	Phalombe	6-1	Phaloni	1	2011103	D,S	D, S	D, S	D	D,S	D, S	D, S	D, S				0	No comment
	Phalombe		Mlomba	1	1911103	D,S	D,S	D, S	D	D,S	D, S	D, S	D, S				1	1 Agriculture offices
	Chikwwa	5	Mitondo	1	1811103	D,S	D, S	D, S	D	D,S	D, S	D, S	D, S				2	No comment
	Chikwawa	5	Linumzu	1	1711/03	D,S	D,S	D,S	D	D,S	D,S	D,S	D,S				2	1 Primary school
	NSanje	5	Tengai	1	${ }_{\text {4/11103 }}$	$\frac{\mathrm{D}, \mathrm{S}}{\text { D. }}$	$\frac{\mathrm{D}, \mathrm{S}}{\text { D. }}$	$\frac{\mathrm{D}, \mathrm{S}}{\mathrm{D}, \mathrm{S}}$	D	D, S	D, S	D, S	D,S				0	Part of the TC is electrified, 1 Police unit
	Nsanje	5	Mankhokwe		5/1103	D,S	D,S	D,S	D	D,S	D,S	D,S	D,S				0	No comment

Format of Report

1. Name of the TC :
2. Date and time of the field survey:
3. Participants:
4. Outline of the TC

Region	
District	
Traditional Authority	
Scale/Size of the TC	
Public facilities ():Number of buildings	
Number of maize mill(s)	
Demand in 2001,2020(kW)	
Activities inside TC	
Activities outside TC	
Public facilities outside TC	
GPS position	
Location of the TC	
Location of existing line	

5. Recommended route

33kV line	Total : 7.6km from Recommended 33kV route is
Step down transformer(s)	Number and capacity of transformer(s): Place of transformer
$400 / 230 \mathrm{~V}$ line	Total length of 400V (3phases): m Total length of 230V (single phase): m

6. Voltage drop calculation (Refer to Result)

33 kV	
$400 / 230 \mathrm{~V}$	

7. Cost estimation (Refer to BOQ)

Total cost (MK)	
Total cost (U\$)	(Exchange rate: $1 U \$=$ MK)

8. Economical Analysis(Refer to the results)

Internal Rate of Return	$\%$

Sample of Report (Report on the MAREP Phase V Feasibility Study)

1. Name of the TC: Mulare
2. Date and time of the field survey: From 13.58 hrs to $15.53 \mathrm{hrs}, 2$ Dec 2003
3. Participants: Mr. K. Lungu, Mr. D. Kalimba, Mr. Y. Kawakami, Mr. G. Moya
4. Outline of the TC

Region	North
District	Karonga
Traditional Authority	K yungu
Scale/Size of theTC	Medium
Public facilities (): Number of buildings	1 Primary School (16), 1 SEDOM Office (1), 1 Health Centre (3), 1 POst Office (1).
Number of maize mill(s)	3
Demand in 2020(kW)	38
Activities inside TC	Vending of groceries, foodstuffs and alcoholic beverages
Activities outside TC	F arming
Public facilities outside TC	1 Secondary School about 1 km to the East of TC 1 Secondary School about 0.75 km to the west of TC.
GPS position	S10¹3'01.6" E03405'41.5"
Location of theTC	Along the M1 Road, 7.6 km North of Ngara TC (or 15.5 km North of Nyungwe TC) in Karonga.
Location of existing line	An 11KV line following the road from Wovwe to Uliwa and ending at Ngara TC along the M1 Road. GPS Position of end pole is $510^{\circ} 13^{\prime} 01.6^{\prime \prime}$ E034 ${ }^{\circ} 05^{\prime} 41.5^{\prime \prime}$
Trading Centres between end pole and TC	None

5. Recommended route

33 kV line	Total: 7.6 km from Ngara TC Recommended 33 KV route is from Ngara TC to Mlare TC along the M1 Road				
Step down transformer(s)	Number and capacity of transformer(s): $1 \times$ (100K VA)				
	GPS	Position	of	transformer:	S10 ${ }^{\circ} 10^{\prime} 26.1{ }^{\prime \prime}$

	E034 $02^{\prime} 30.6^{\prime \prime}$
$400 / 230 \mathrm{~V}$ line	Total length of 400 V (3phases): 1475m Total length of 230V (single phase): Not applicable

6. Voltage drop calculation (Refer to Result)

$33 k \mathrm{~V}$	0.011295447
$400 \mathrm{~V} / 230 \mathrm{~V}$	N ot necessary

7. Cost estimation (Refer to BOQ)

Total cost (MK)	$6,552,217$
Total cost (U\$)	(Exchange rate: $1 \mathrm{U} \$=110$ MK) 59,566

8. Economical Analysis (Refer to the results))
```
Internal Rate of Return
18.32%
```

