APPENDIX-11

WASTEWATER TREATMENT PLANTS AND PUMPING STATIONS

Contents

A11.1	INTRODUCTION	A11-1
A11.2	PUMPING STATIONS AND SCREENS	A11-1
	A11.2.1 MATADERO PUMPING STATION	A11-1
	A11.2.2 CABALLERIA SCREEN FACILITY	A11-7
	A11.2.3 CASABLANCA PUMPING STATION	A11-7
	A11.2.4 REPUMPING STATION	A11-8
A11.3	NEW WASTEWATER TREATMENT PLANTS	A11-10
	A11.3.1 LUYANÓ WWTP	A11-10
	A11.3.2 TADEO WWTP	A11-27
	A11.3.3 GUANABACOA WWTP	A11-28
	A11.3.4 LA CUMBRE WWTP	A11-29

Figures:

FIGURE A11.1	Layout of Matadero Pumping Station	A11-30
FIGURE A11.2	Rehabilitation of Caballeria Screen Facility	A11-31
FIGURE A11.3	Rehabilitation of Casablanca Pumping Station (1/2)	A11-32
FIGURE A11.4	Rehabilitation of Casablanca Pumping Station (2/2)	A11-33
FIGURE A11.5	Repumping Station, Sedimentation and Sludge Treatment	Facilities
		A11-34
FIGURE A11.6	Layout of Luyano WWTP	A11-35
FIGURE A11.7	Hydraulic Profile of Luyano WWTP	A11-36
FIGURE A11.8	Primary Sedimentation Tank in Luyanó WWTP	A11-37
FIGURE A11.9	Aeration Tank in Luyano WWTP	A11-38
FIGURE A11.10	Final Sedimentation Tank in Luyano WWTP	A11-39
FIGURE A11.11	Sludge Thickener in Luyano WWTP	A11-40
FIGURE A11.12	Digestion Tank in Luyano WWTP	A11-41
FIGURE A11.13	Layout of Tadeo WWTP	A11-42
FIGURE A11.14	Layout of Guanabacoa WWTP	A11-43
FIGURE A11.15	Layout of La Cumbre WWTP	A11-44

A11.1 INTRODUCTION

In this appendix, the design concepts and design calculations of the wastewater treatment facilities and pumping stations are shown. The designs of these facilities are separately explained in Section A11.2 Pumping Stations and Screens (Matadero Pumping Station, Caballeria Screen Facility, Casablanca Pumping Station, Repumping Station) and Section A11.3 New Waste Water Treatment System (Luyanó WWTP, Tadeo WWTP, Guanabacoa WWTP, La Cumbre WWTP). All the designs are outline designs, which aim at approximate calculations of the sizes, required areas and costs of the facilities. Therefore, when more detailed design work will be carried out in the next step of the project, the baseline data will need to be reaffirmed.

A11.2 PUMPING STATIONS AND SCREENS

A11.2.1 MATADERO PUMPING STATION

The layout and profile of Matadero Pumping Station are shown in Figure A11.1. The design calculation of Matadero Pumping Station and the list of its equipment are shown in the following.

Matadero Pumping Station will need to cope with three different inflow conditions which occur 1) during and 2) after the rehabilitation of Colector Sur, and 3) in case Luyanó Left Colector (Area A) is connected to Matadero Pumping Station (an alternative plan of the Master Plan that need to be reviewed after the first stage of the project implementation). Therefore this pumping station is designed to deal with these different flow rates. The maximum hourly flow and required numbers of screens, grit chambers and pumps for the operation in each condition are shown in the following table.

The number of pumps in Matadero Pumping Station will be up to five. During the rehabilitation of Colector Sur, three pumps will be installed as temporary ones. Therefore any standby pump will not be instilled during the rehabilitation. The numbers of screens and grit chambers to be constructed are designed based on the flow rate in the third condition which includes the wastewater discharged form Area A. However, the numbers of screens and grit chambers to be operated vary depending on the flow in each condition.

	Unit	During the Rehabilitation	After the Rehabilitation	Including Area A
Q maximum hourly flow	m ³ /sec	2.283	0.676	1.271
	m ³ /min	137.0	40.6	76.3
Coarse Screen	number	3	2	3
Fine Screen	number	3	2	3
Grit Chamber	number	3	2	3
Pumping Equipment				
Pump No.1 (20m ³ /min)	number	3	3(1)	2
Pump No.2 (40m ³ /min)	number	2	-	2(1)

Required Numbers of Screens, Grit Chambers and Pumps for Operation

Note ; (1) means that one standby pump is included

(1) Design Calculations

1) Pump Capacities and the Numbers of Pump Units

The operation of the pumps is planned in view of different flow rates of influent as shown in the following tables.

	Capacity	During the Rehabilitation	After the Rehabilitation	Including Area A
	m ³ /min	Number	Number	Number
Pump No.1	20	3	3(1)	2
Pump No.2	40	2	-	2(1)
Total Capacity		140	40	80

Note; () standby

a. Pump Operation Plan during the Rehabilitation

	Design Flow m ³ /sec m ³ /min		Capacity	Number of	Pump Units
			m ³ /min	Pump No.1	Pump No.2
Q average daily flow	1.473	88.38	100	3	1
Q maximum daily flow	1.738	104.28	100	3	1
Q maximum hourly flow	2.283	136.98	140	3	2

b. Pump Operation Plan in the case including Area A

	Design Flow		Capacity	Number of	Pump Units
	m ³ /sec m ³ /min		m ³ /min	Pump No.1	Pump No.2
Q average daily flow	0.797	47.82	40	2	0
Q maximum daily flow	0.949	56.94	60	1	1
Q maximum hourly flow	1.271	76.26	80	2	1

c. Pump Operation Plan after the Rehabilitation (not including Area A)

	Design Flow		Capacity	Number of	Pump Units	
	m ³ /sec m ³ /min		m ³ /min	Pump No.1	Pump No.2	
Q average daily flow	0.346	20.76	20	1	0	
Q maximum daily flow	0.408	24.48	40	2	0	
Q maximum hourly flow	0.676	40.56	40	2	0	

2) Conditions of the Incoming and Discharge Sewers

6	0
Size of the incoming sewer	1,500 mm
Bottom level of the incoming sew	-5.55 M
Pressure Pipe Bottom level	1.65 M
Diameter	1,350 mm
Length	1,020 m
Gravity Flow Pipe	
Bottom level	-2.10 M
Diameter	1,500 mm

3) Pump Diameter

Pump No.1		
D = 146 (Q / v)		
= 146 (20 /2.5) =	413.0	400
		0.4
where D : Diameter(mm)		
Q : Pump Cpacity (m ³ /min)		
v :Velocity(m/sec)	2.5 m/sec	
Pump No.2		
D = 146 (Q / v)		
= 146 (40 /2.5) =	584.0	600
		0.6
4) Water Head	5 55) (
a. Suction water level =	-5.55 M	
b. Pressure Pipe Pipe Bottom level	1.650 M	ual Diamat
Discharge water level	-	
=	1.650 +	1.35
—	3.000 M	
c. Actual Head; H		
H = 3.000 -	-5.550	
= 8.55 m		
d. Total head loss by pump equipment		
Pump No.1		
V = q / A / 60 =		
$A = \frac{1}{4} \times \pi \times D^2$	$0.126 m^2$	
Loss coefficients H1		
Inlet	0.10	
Sluice valve	0.15	
Check valve	1.20	
Outlet	1.00	
Bend	0.28	
Friction los: 0.047 x L/D=	1.18	
Sum	3.91	

H1 = $3.91 \times v^2/2g$	Assume	ed Pipe Length=	10	m
= 1.40 m		D=	0.4	m
Pump No.2				
	V=	2.359	m/sec	
	A =	0.283	m^2	
Loss coefficients H1				
Inlet		0.10		
Sluice valve		0.15		
Check valve		1.20		
Outlet		1.00		
Bend		0.28		
Friction los: $0.047 \times L/D=$		0.78		
Sum		3.51		
H1 = $3.51 \times v^2/2g$	Assume	ed Pipe Length=	10	m
= 1.00 m		D=	0.6	m
e. Pressure Water Head Loss				
Length of the Pressure Pipe L =	1,020	m	D =	<u>1.35</u> m
		During the	Including	After the
		Rehabilitation	-	Rehabiliation
$Q (m^3/min)$		140	80	40
V = Q / A/60 ('m/sec)		1.63	0.93	0.47
$A = 1/4 \times \pi \times D(m^2)$		1.431	1.431	1.431
H2 = $6.82 \times (L/D^{1.17}) \times (V/C)$	$(2S)^{1.85}$			
(m)		2.02	0.72	0.20

f. Total Water Head Required

> During the Rehabilitatiion

					<u>Unit:</u> m
Pump	Н	H1	H2	Total Head	
No.1	8.55	1.40	2.02	11.98	12.0
No.2	8.55	1.00	2.02	11.57	12.0

> Including Area A

					Unit:m
Pump	Н	H1	H2	Total Head	
No.1	8.55	1.40	0.72	10.67	12.0
No.2	8.55	1.00	0.72	10.27	12.0

> After the Rehabilitation (Except for Area A)

		· 1			Unit: m
Pump	Н	H1	H2	Total Head	
No.1	8.55	1.40	0.20	10.15	12.0

5) Pump Equipment

Pump specific	cations	No.1	No.2	
		Submerged Pump		
Diameter (mn	n)	400	600	
Capacity (m ³ /	min)	20	40	
Total Dynami	c Head (m)	12.0	12.0	
Motor Output	(kw)	75	120	
Number of	During the Rehabilitation	3	2	
Pump Units	Including Area A	5(1)	0	
Fump Omits	After Rehabilitation	3(1)	0	

Pump No.1

Shaft power Shaft power of mixed flow contrifugal pumps

$$L = \frac{\mathbf{k} \cdot \boldsymbol{\gamma} \cdot \mathbf{Q} \cdot \mathbf{H}}{\eta}$$

where	L : Shaft power of a pump	
	k : kw	0.163
	Q : Discharge (m^3/min)	20
	H : Total dynamic head(m)	12.0
	γ : Specfic gravity of water	1
	η : Pump efficiency	0.76

= 51.47 kw

Outputs of pump drivers

 $P = L(1+\alpha)/\eta$

where	P : Pump power (kw)	
	L: Pump shaft power (kw)	51.47
	α : Allowance for motor	0.15 for electric
	η: Transmission efficiency	1.0 for direct connection
	η: Transmission efficiency	1.0 for direct connection

75 kw

Pump No.2

Shaft power

Shaft power of mixed flow contrifugal pumps

$$L = \frac{\mathbf{k} \cdot \boldsymbol{\gamma} \cdot \mathbf{Q} \cdot \mathbf{H}}{\eta}$$

where

where

L : Shaft power of pump	
k : kw	0.163
Q : Pump discharge (m^3/min)	40
H : Pump total dynamic head(m)	12.0
γ : Specfic gravity of water	1
η : Pump efficiency	0.79

= 99.04 kw

Outputs of pump drivers

$\mathbf{P} =$	$L(1+\alpha)/\eta$	
ere		
	P : Pump power (kw)	
	L:Pump shaft power (kw)	99.04
	α : Allowance for motor	0.15 for electric
	η: Transmission efficiency	1.0 for direct connection

(2) List of Mechanical Equipment

1) Screen System Equipment

No.	Equipment	Туре	Size and	Qt'y	Output	Total out-
			Specifications		kW/unit	put(kW)
1	Screen channel influent	Cast iron made, manuall	1,500W x 1,500H	3	-	—
	gates	operated sluice gate				
2	Coarse screens	Manually screened	Clear opening 100 mr	3	-	-
		(removable type)	1.4mW x1.0mH x 60°			
3	Fine screens	Mechanically-cleaned,	Clear opening 20 mm	3	0.75	2.25
		(intermittently operated)	1.4mW x 1.0mH x 75°	,		
4	Grit collector	with bucket conveyor	1.7mW x 12.0mL	3	1	3
5	Grit chamber effluent gates	Cast iron made, manuall operated sluice gate	700W x 700H	3	_	-
6	Screenings conveyors	Trough belt conveyor		2	1.5	3
7	Screenings skip hoist	Wire rope operated		1	2.2	2.2
8	Screenings hopper	Steel made, motor operated		1	1.5	1.5
9	Screening hoist	Motor operated hoist with trolley		1	2.6	2.6
10	Gritting conveyors	Trough belt conveyor		3	1.5	4.5
11	Gritting skip hoist	Wire rope operated		1	2.2	2.2
12	Screenings hopper	Steel made, motor operated		1	1.5	1.5
13	Screening hoist	Motor operated hoist with trolley		1	2.6	2.6
Tota	l motor outputs of (1)					25.4

No.	Equipment	Туре	Size and	Qt'y	Output	Total out-
			Specifications		kW/unit	put(kW)
1	No.1 Pumps	Submersible pump	400mmΦ x20m ³ /min.	3	75	225
			x 12m			
2	Check valves	Slow-closing check valve		3	_	_
3	Discharge valves	Motor-operated butterfly		3	0.2	0.6
		valve				
4	No.2 Pumps	Submersible pump	600mmF x 40m ³ /min.	2	120	240
			x12m			
5	Check valves	Slow-closing check valve		2	_	_
6	Discharge valves	Motor-operated butterfly		2	0.2	0.4
	0	valve		1		
/	Crane for pumps	Manually-operated crane with chain block		1	_	_
8	Flow measurement	Electro-magnetic flow		1	-	
	equipment	meter				
9	Generator Equipment		700KVA	1	_	-
Tota	l motor outputs of (2)					466.0
Gran	nd Total of Motor Ou	itputs		1		491.4

2) Pumping Equipment

A11.2.2 CABALLERIA SCREEN FACILITY

The Layout of Caballeria Screen Facility is shown in Figure A11.2. The equipment list of Caballeria Screen Facility is shown in the following table.

No.	Equipment	Туре	Size and	Quantity	-	Total out-	Remarks
			Specifications		kW/unit	put(kW)	
1	Coarse screen	Cleaned manually	Clear opening 100 mm	1	1		Existing
		(removable type)					
2	Screen	Cleaned mechanically	Clear opening 50 mm	3	0.75	2.25	One unit
		(intermittently operated)					Existing
3	Effluent gate of a grit	Steel plate manually operated	1200W x 1200H	1	-		Existing
	chamber						
4	Bypath gate	Steel plate manually operated	1200W x 1200H	1	-		
5	Air lift pump		150F x 1.0m ³ /min	6	_		
6	Blower	Root type	65mm×3.2m ³ /min	2(1)	5.5	5.5	Standby
							excluded
						7.75	kw
Grou	und Total of Motor Output						

A11.2.3 CASABLANCA PUMPING STATION

Figure A11.3 and Figure A11.4 show the layout and profile of Casablanca Pumping Station that are designed for its rehabilitation. The equipment list of Casablanca Pumping Station is shown in the following table.

No.	Equipment	Туре	Size and	Qť'y	Output	Total out-	Remarks
			Specifications		kW/unit	put(kW)	
1	Influent gates	Cast iron made, manually	1200W x 1200H	4	-	-	
		operated sluice gate					
2	Pump	Submersible pump	900mmF x 1.75m ³ /min.	4	200	600	Standby
			200kw x 60Hz	(1)			excluded
3	Check valves	Slow-closing check valve	900F	4	-		Standby
				(1)			excluded
4	Water level gage	Immension type		2	_	-	
5	Flow measurement	Ultra-sonic type		1	_	_	Settled in
	equipment						tunnel
6	Flower drain pumps	Submersible pump	65Φ x 0.3m ³ /min	2	1.5	1.5	Standby
				(1)			excluded
13	Generator	Diesel engine type	1500KVA	1			
						601.5	k w
Ground	d Total of Motor Output						

A11.2.4 REPUMPING STATION

The water head loss occurred for the discharge of effluent into the open see will increase after the renewal f the outfall sewer. Therefore a pumping station is necessary after the tunnel to pump up again and discharge the effluent into the open sea through the outfall sewer. This Repumping Station is planned along with sedimentation basins and sludge treatment facilities in case the sedimentation treatment of the effluent will be required in the future. Supposed that the sedimentation and sludge treatment facilities are constructed in the same site as the repumping station, the layout of those facilities are shown in Figure A11.5.

The outlines of the repumping station, sedimentation and sludge treatment facilities are shown in the following tables.

1.Design Flow:								
Q hourly maximum flow	5.2m ³ /se	ec Same as Casablanca Pumping Station						
2.Main Facilities								
Facility	Quantity	Size, C	Capacity, Specification	Remark				
1.Influent gate	3 Units	Cast iron made, manually Operated						
2.Fine screen	3 Units	Cleane	ngs of 20mm ad mechanically nittently operated)					
3.Submersible pump	4 (1) Units	900mmF x 1.75m ³ /min. x 8m		Same as Casablanca Pumping Station				
4.Generator	1 Unit	Diesel engine type 1500KVA		6 51		0 11		

(1) Outline of the Repumping Station

(2) Outline of sedimentation and sludge treatment facilities

1) Design Flow

Q daily maximum flow (Q d)	272,000 m ³ /day
Q hourly maximum flow (Q h)	329,000 m ³ /day

2) Wastewater Quality

Parameter	Raw Wastewater (mg/l)	Removal Efficiency (%)	Treated Wastewater (mg/l)	The Great Caribian
BOD ₅	190	30-50	133-95	< 150
SS	190	40-60	114-76	< 150

3) Main Facilities

Facility	Quality	Size, Capacity, Specification	Remarks
1.Sedimentation tank	8 Units	12.0mWx 41.0mLx 3.0mH 69 m ³ /m ² /day (: Qd) 84 m ³ /m ² /day (: Qh)	Surface loading 70m ³ /m ² /day
2.Mechanical dewatering Belt filter press	12 Units	Filter width :3m	Filter loading rate 140kg/m/hour Daily operation time ;6hour/day Working days /week ;5day

Solid Production= Qd x SS x 10^{-6} x 0.4 (Removal rate) = 272,000m³/day x 190 x 10^{-6} x 0.4=20.7t/day

A11.3 NEW WASTEWATER TREATMENT PLANTS

A11.3.1 LUYANÒ WWTP

The layout and hydraulic profile of Luyanó WWTP are shown in Figures A11.6 and A11.7. The designs of the main facilities in Luyanó WWTP are shown in Figures A11.6 to 12. The design calculation and equipment lists of Luyanó WWTP are shown in the following tables.

(1) Design Calculation

Design Basi	S					
Design Wast	e wate r Inflow	7				
				Unit :m ³ /d		
		То	tal	Colle	ector	
		Design Inflow	Estimated	Luyano	Luyano	
			Inflow	Martin Perez	Left Bank	
Q average daily	y flow	60,000	59,650	26,423	33,227	
Q maximum da		71,000	70,924	31,419	39,505	
Q maximum ho	_	119,000	118,572	53,732	64,840	
Design Wast	e wate r Quali	ty				
	mg/l					
BOD ₅	200					
TSS	200					
	Dom	oval Efficiency (9/)	West	ewater Quality (m	g/l)
Parameter	Primary	Secondary	Overall	Raw	Primary	Secondary
1 arameter	Treatment	Treatment	Removal Rate	Wastewater	Effluent	Effluent
BOD ₅	30	86	90.2	200	140	19.6
TSS	40	84	90.4	200	120	19.2
Flow Sheet						
Influent						
•	Screen	Ir	fluent Pump	→ Grit	Chamber	
Prim						Effluent
Sedimentat	-		ation ank	→	Final tation Tank	
<u> </u>		4		J		Dianaal
Sludge Thic	ekener•	Sludge Digester		Mechanical Dew	atering	Disposal
		(Non Heating)				
		→ Water	Flow			
		Sludge	Flow			

2) Sludge Volume

a. Raw Sludge

Raw sludge production	volume is ca	lculate	d by the	followi	ng equita	tion.	
Solid Production	Qd	×	TSS	×10 ⁻⁶	×	0.4	
=	71,000	×	200	×10 ⁻⁶	×	0.4	= 5.68
Assumed sludge concer	tration is		3	%			
Sludge Volume	5.68	/	3	×	100	=	$189 \text{ m}^3/\text{day}$
0							2
b. Excess Sludge							
Solid Production	Qd × (120	-	19.2) × 10 ⁻⁶	=	7.16 t/day
Assumed sludge concer	tration is		0.8		,		2
Sludge Volume	7.16	/	0.8	×	100	=	895 m ³ /day
0							5
c. Thickened Sludge							
Thickened sludge produ	ction volum	e is cal	culated l	by the f	owing ea	uation	
Sludge Solid	5.68	+	7.16	=	12.84		
e	Raw Sludge		Excess	Sludge		2	
Assumed sludge concer	tration is		1	%			
Sludge Volume	12.84	/	1	×	100	=	1,284 m ³ /day
Assumed sludge concer	tration is		3	%			
Sludge Volume	12.84	/	3	×	100	=	$428 \text{ m}^3/\text{day}$
d. Digestioned Sludge							
Input solids		12.84	t/day				
Input sludge volume		428	m ³ /day				
Volatile solid	l contents of	sludge				70 9	%
Solid destruc						50 9	%
Digested sludge solids	=	12.84		(1-0.7 ×	(0.5)		
	=	8.34	t/day				
e. Sludge Dewatered Mech	anically						
(Digested Sludge)							
Assumed sludge concer	tration is		20	%			
	8.34	+	0.083		8.43	t/dav	
Sludge Volume =	8.43	/	20	×	100	=	$42.14 \text{ m}^{3}/\text{day}$
Sludge Weight =	42.14	×		t/m ³	100	=	42.14 t/day
Shudge weight -	72.14	~	1	v/ 111		_	72.17 Vuay
Polymer addition rate			1	%			
- ,			8.34	×	0.01	=	0.083 t/day

3) Coarse Screen

Design Flow

	Luyano Martin Perez Colector		Luyano Left Ban	k Colector
	m/sec	m ³ /min	m/sec	m ³ /min
Qhour	0.622	37.3	0.751	45.1
Inlet Pipe Bottom Level (M)		-6.82		-1.00

Channel Width	1.2 m	
Screen Openings	100 mm	
No. of Screens	4 unit	
Slope of Screens	60 degrees	from horizontal
Screen Bottom Level	-7.00 M	Low stage (L,M,P,C)
	-1.20 M	Hight Stage (L,L,B,C)

Grit Pit

Grit pits are set up to subsidence gravel and sand of large size. Grab buckets etc. are used to remove them from the grit pits.

Pit Width	1.2 m
Pit length	1.2 m
number	4 unit

4) Fine Screen

Channel Width	1.2 m
Depth	0.7 m
Bar Screen Clear Opening	20 mm
Thickness of Screen Bar	8 mm
Slope of Screens	75 degrees from horizontal
Out Put	1.5 kw
No. of Screen Bar	4 units

5) Influent Pumping Station

a. Design Flow

	Luyano Martin Perez Colector		Luyano Left Bank Colector	
	m/sec	m ³ /min	m/sec	m ³ /min
Q hour	0.622	37.3	0.751	45.1

b) Submerged Pump

Luyano Martin Perez Colector (Lower water level)

> Design Flow		
Q hour 37.3 m^3	/min	
> Pump Capacity		
No.1		
Pump Capacity	19 m ³ /min	
Diameter	450 mm	$d=146(Q/v)^{0.5}$
Total Dynamic Head	17.0 m	v = 2.0
Motor Output	90 kw	
Number of Pumps	2 units	(1standby)
No.2		
Pump Capacity	9.5 m ³ /min	
Diameter	300 mm	$d=146(Q/v)^{0.5}$
Total Dynamic Head	17.0 m	v = 2.0
Motor Output	45 kw	
Number of Pumps	2 units	
> Water Head		
Suction water level: a) (P	ipe Bottom level=)	-7.00 M
Discharge water level: b)		9.00 M
Actual Water Head; H1 =	b) - a) =	16.00 m
Total water head loss at pu	mp equipment:	

			Pump No.1	Pump No.2
Pump Velocity	q/A/60=	m/sec	1.992	2.241
Area	$1/4x xD^2 =$	m ²	0.159	0.071
Diameter		m	0.450	0.300

Loss coefficients H1

		Pump No.1	Pump No.2	Remark
Inlet		0.10	0.10	
Sluice valve		0.15	0.15	
Check valve		1.2	1.2	
Outlet		1	1	
Bend		0.28	0.28	assumed
Friction loss	0.047 x L/D=	1.044	1.567	L=10m
Sum	(S)	3.77	4.30	
H1	(S) x $V^2/2g^2$	= 0.77	m 0.983	m

Total head required

	Pump No.1		Pump No.2	
H1	16.00 m		16.00 m	
H1	0.77 m		0.98 m	
H1 + H1	16.77 m		16.98 m	
	use	17.0	m	

Shaft	power
-------	-------

Pump No.1

Shaft power of mixed flow contrifugal pumps

$$L = \frac{k \cdot \gamma \cdot Q \cdot H}{\eta}$$
where L : Shaft power of pump
k : kw 0.163
Q : Pump discharge (m³/min) 19
H : Pump total dynamic head(m) 17.0
 γ : Specific gravity of water 1
 η : Pump efficiency 0.76

= 69.28 kw

 $P = L(1+\alpha)/\eta$

P ∶Pump power (kw)	
L:Pump shaft power (kw)	69.28
α: Allowance for motor	0.15 for electric
n: Transmission efficiency	1.0 for direct connection
	L: Pump shaft power (kw) α: Allowance for motor

Pump No.2

Shaft power of mixed flow contrifugal pumps

$$L = \frac{\underline{k \cdot \gamma \cdot Q \cdot H}}{\eta}$$

where

L : Shaft power of pump	
k :kw	0.163
Q : Pump discharge (m^3/min)	9.5
H : Pump total dynamic head(m)	17.0
γ : Specfic gravity of water	1
η : Pump efficiency	0.76

Outputs o	f pump drivers		
P =	$L(1+\alpha)/\eta$		
where			
	P : Pump power (kw)		
	L: Pump shaft power (kw	<i>י</i>)	34.64
	α: Allowance for motor		0.15 for electric
	η: Transmission efficient	сy	1.0 for direct connection
=	39.83	45	kw

Luyano Left Bank Colector (Higher Water Level)

> Design Flow			
Q hour	45.1 m ³ /min		
> Pump Capacity			
No.3			
Pump Capacity		23 m ³ /min	
Diameter		450 mm	$d=146(Q/v)^{0.5}$
Total Dynamic Hea	d	11.0 m	v = 2.5
Motor Output		55 kw	
Number of Pumps		2 units	

> Head

Suction water level: a)	(Pip	e Bottom level=)	-1.20 M
Discharge water level: b)			9.00 M
Actual Head; H1	=	b) - a)=	10.20 m
Total head loss at pump equipment:			

		unit	Pump No.3
Pump Velocity	q/A/60=	m/sec	2.411
Area	$1/4x xD^2 =$	m ²	0.159
Diameter		m	0.450

Loss coefficients H1

		Pump No.3	Remark
Inlet		0.10	
Sluice valve		0.15	
Check valve		1.2	
Outlet		1	
Bend		0.28	assumed
Friction loss	0.047 x L/D=	1.044	L=10m
Sum	(S)	3.77	
H1	(S) x $V^2/2g=$	0.93	m

Total head required

1000000		
	Pump No.3	
H1	10.2 m	
H1	0.93 m	
H1+ H1	11.13 m	
	use 11.0	m

6) Grit, Oil/Sand Removal Equipment

a. Design Flow

	m ³ /day	m ³ /hour	m ³ /sec
Qaverage	60,000	2,500	0.694
Qday (max)	71,000	2,958	0.822
Qhour (dry)	119,000	4,958	1.377

b. Tank Geometry

Grit Chamber

Surface Load sand specific gravity	$1,800 \text{ m}^3/\text{m}^2/\text{day}$ 2.65
Required Surface Area	66.1 m^3
Trains	4 Channels
Width	1.5 m
Height	0.7 m
Length	10 m
Velocity	0.33 m/sec
Detention Time	30.5 sec

Oil Separator (if necessary)

Required Retention Time	5 min (5-30min)Quib WWTP
Required Volume	413 m ³

Trains	4 Channels
Width	4.0 m
Height	2.0 m
Length	11.6 m

7) Flow Measurement

Select 3ft (91.44cm) flume,	the range of measurable flow	0.0173-1.43 m ³ /s
No. of Flow Measurs	1 unit	

8) Primary Sedimentation Tank

Design Flow	
Qday (max) 71,000 m ³ /day	
	- 3, 2, 1
Overflow Rate	$50 \text{ m}^3/\text{m}^2/\text{day}$
Tanks	16 basins
Influent to Each Tank	4,438 m ³ /day/basin
Required Surface Area of Each Tank	89 m ²
Retention Time	1.5 hour
. Tank Geometry	
Width	5.0 m

Width	5.0 m		
Tank Length	88.8 ÷ 5	.0 =	17.75 m
Effective Depth	3.0 m	use	17.8 m
Number of Basins	16 basins		

Tank Geometry					
W	5.0 m	× H 3.0	$m \times$	16	basins
L	17.8 m			(8	tanks)

Check

Basin Capacity	4,272	m ³
Retention Time	Qday (max)=	1.44 hour
Overflow Rate		$50 \text{ m}^3/\text{m}^2/\text{day}$

b. Raw Sludge Pumping Equipment

Sludge Volume	$1,284 \text{ m}^3/\text{day} =$	0.891 m ³ /min
Pump Type	Centrifugal Screw Pump	
Pump Bore Size	100 mm	
Delivering Capacity	$0.5 \text{ m}^3/\text{min}$	
Total Dynamic Head	10 m	
Motor Output	3.7 kw	
Number of Pumps	8 units (including 4	4 standby)

9) Aeration Tank

Design Flow			
Qday (max)	71,000 m ³ /day		
BOD-SS load		0.35	kg BOD/kgSS/day
MLSS		1,600	mg/l

	Return Sludge Solid Concentra Sludge Return Ratio Inflow BOD to Reactors	tion =	1,600 0.25 71,000	÷ (× ×	8,000 8,000 0.25 200 (1-0.3)	mg/l ×10 ⁻³	1,600 9,940) kgBOD/day
	Reactor Tanks SS Required Tank Capacity		V 9,940	× ÷	1,600 1.6 ÷	×10 ⁻³ 0.35 =	kgMLSS 17,750	m ³
a. T	Aeration Time Retention Time Required Volume ank Geometry			hour hour m ³		_	17,750	111
	Width Effective Depth Cross Sectional Area		5.0 5.0 5.0	m m ×	5.0	-1/2×1.0 ² ×2 -1/2×	2 •0.6 ² ×2	
	= Number of Tanks Capacity of One Tank Tank Length	=	23.75 16 1,109 46.71	tanks m ³	or 47.0	m		
	Tank GeometryW5.0 mH5.0 m	× ×		L 16	47.0 tanks	m		
	Check Volume Retention Time			m ³ hour	17,750 6.00]		
b. B	lower Blower Volume	5 Q	assuming 355,000	m ³ /da	y = use		m ³ /min m ³ /min	
	Blowers Size and Specification Output Unit	М	300/250 90	mm kw	63	ed by steel boa m ³ /min/uni g 1 standby)		

10) Secondary Sedimentation Tank

Design Flow

Qday (max) 71,000 m^3/day

Overflow Rate	$25 \text{ m}^3/\text{m}^2/\text{day}$	
Total tank number is	16 tanks	
Influent to Each Tank	4,438 m ³ /day/tank	
Required Surface Area of Each Tank	177.5 m	1 ²

a. Tank Geometry

Width	5.0 m			
Tank Length	177.5 ÷	5.0	=	35.50 m
Effective Depth	3.0 m		use	35.5 m
Number of Basins	16 basins			

Tank Geometry					
W	5.0 m	× H 3.0	$m \times$	16	basins
L	35.5 m			(8	tanks)

Check

Surface Area	m ²	2,840		
Surface Load Rate	m ³ /m ² /day	25.0	= 25	m ³ /m ² /day
Retention Time	hour	3.4		

b. Excess Sludge Pumping Equipment

Excess Sludge Volume	895 $m^{3}/day=$	0.62 m ³ /min
Pump Type	Submersible pump	
Delivering Capacity	$0.5 \text{ m}^3/\text{min}$	
Total Dynamic Head	6.0 m	
Motor Output	3.7 kw	
Number of Pumps	4 units (including	g 2 standby)

c. Return Sludge Pumping Equipment

Average Sludge R	eturn	25 %			
Return Sludge Vol	ume	71,000 ×	0.25	=	17,750 m ³ /day
(Average)				=	12.33 m ³ /min
(Max)	50 %	71,000 ×	0.5	=	24.65 m ³ /min
Pump Type		Submersible pump	1		

i unip i ype	Submersible pump
Diameter	250 mm
Capacity	$3 \text{ m}^3/\text{min}$
Total Dynamic Head	6.0 m
Motor Output	11 kw
Number of Pumps	8 units

11) Sludge Thickeners

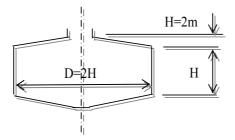
Hydraulic Capacity of Tanks

	units	
Solids Input	t/day	12.84
Input Sludge Volume	m ³ /day	1284
		1.0 %assume
Output Sludge Volume	m ³ /day	428
		3.0 %assume
Floor Loading		60 kg/m ² /day
		2

Required Surface Area 213.9 m²

a. Tank Geometry

Pump Type	Circular Flow Type
Internal Diameter	12.0 m
Effective Depth	3.0 m
Number of Tanks	2 unit


Check

	units	
Water Surface Area	m ²	288.0
Floor Loading	kg/m²/day	44.6

b. Sludge Digester

	units	
Solids Input	t/day	12.84
Input Sludge Volume	m ³ /day	428
		3.0 %assume
Output Sludge Volume	m ³ /day	428
		3.0 %assume
Retention Time		20.0 day
Required Volume		8,558 m ³

Pump Type	Circular Radial Flow Type
Internal Diameter	17.8 m
Effective Depth	8.9 m
Number of Tanks	4 units

Volume of Tanks
$$3.14/4 \times D^2 \times H =$$

2,214 m³/tank

Check

	unit	
Volume of Tanks	m ³	8,854
Retention Time	day	20.7

13) Mechanical Sludge Dewatering

Filter Capacity Calcu	ilation					
	unit					
Solids Input	t/day		8.4	3		
Yield per Unit Lengt	h		11	0 kg/m/hr		
Filter Width				3 m		
Daily Operation Tim	e			6 hr		
Working Days/Week				5 day		
Solid Load per Hour						
	=	8.43	× 7 /	5	$\times 10^3$ /	6
	=	1,966 k	g/hour			
Required Number of	Belt Pre	ss				
	=	1,966	/	110	/	3
	=	6.0 u	se		6 unit	
Туре	Belt	Filter Pres	22			
Filter Loading Rate	Den		g/m/hr			
Filter Width		3 n	•			
Motor Output		2.2 k				
Number of Filters			nits			

(2)List of Mechanical Equipment

1) Screen System Equipment

No.	Equipment	Туре	Size and	Qt'y	Output	Total out-	
			Specification			put(kW)	Remarks
1	Screen channel	Cast iron made, manually	700W x 700H	4	_	-	
	influent gates	operated sluice gate					
2	Coarse screens	Manually screened	Clear opening 100 mn	4	-	-	
		(removable type)	1.4mW x1.0mH x 60°				
3	Fine screens	Mechanically-cleaned,	Clear opening 20 mm,		0.75	3	
		(intermittently operated)	1.4mW x 1.0mH x 75°	5			
4	Grab bucket			2	-	-	
5	Grit chamber	Cast iron made, manually	700W x 700H	4	_	-	
	-	operated sluice gate					
6	Screenings	Trough belt conveyor		2	1.5	3	
	conveyors						
7	Screenings skip hois	Wire rope operated		1	-	2.2	
				_			
8	Screenings hopper	Steel made, motor		1	_	1.5	
		operated					
9	Screening hoist	Motor operated hoist		1	_	-	
		with trolley					
10	water level gage	Immension type		2	_	-	
11	Floor drain pumps	Submersible pump	$65 \text{mm}\Phi \ge 0.3 \text{m}^3/\text{min}.$	2	1.5		Standby
		• (x10m	(1)			excluded
	Total motor outputs	of (1)				11.2	kW

2) Grit Chamber, Flow measurement Equipment Gravity Tyoe Grit Chamber 1.5mWx0.7mHxL10.0mx4Channels

-									
No.	Equipment	Туре	Size and	Qt'y	Output	Total out-	Remarks		
			Specifications		kW/unit	put(kW)			
1	Grit channel Influen	Manually operated,	700mmWx700mmH	4	-	-			
	channel gates	cast iron sluice gate	design hydraulic depth;2m						
2	Grit collector	Trolley with grit lifting	125mm x 15m ³	2	-	-			
		pump							
3	Blowers	turbo blower		1	15	15			
4	Grit channel effluent	Manually operated,	700mmWx700mmH	4	_	-			
	channel gates	cast iron sluice gate	design hydraulic depth	;2m					
5	Flow measurement	Parshall flume	3 ft,ype	1	_	-			
	equipment								
	Total motor outputs	of (2)				15	kW		

3) Pumping Equipment

No.	Equipment	Туре	Size and	Qt'y	Output	Total out-	Remarks
			Specifications		kW/unit	put(kW)	
1	No.1 Pumps	Submersible pump	300mmF x 9.5m ³ /m	2	45	90	
			x17m				
2	Check valves	Slow-closing check valve		2	-	-	
3	Discharge valves	Motor-operated butterfly		2	0.2	0.4	
	C C	valve					
4	No.2 Pumps	Submersible pump	450mmF x 19m ³ /mi	2	90	90	Standby
	-		x17m	(1)			excluded
5	Check valves	Slow-closing check valve		2	-	_	
6	Discharge valves	Motor-operated butterfly valve		2	0.2	0.4	
7	No.3 Pumps	Submersible pump	450mmF x 23m ³ /mi x11m	2	55	55	
8	Check valves	Slow-closing check valve		2	-	-	
9	Discharge valves	Motor-operated butterfly valve		2	0.2	0.4	
10	Crane for pumps	Manually-operated crane with chain block		1	-	_	
	Total motor outpu	uts of (3)				236.2	kW

4) Primary Sedimentation Tanks(8Tanks) W5m x L18m x 16Channels(8Tanks)

No.	Equipment	Туре	Specifications	Qt'y	Output	Total	Remarks
	* *	~ *	*	~ •	kW/unit	ouput	
1	Distribution tank gate	Sluice gate, manual operati	300W x 300H.Design	4	-		
		cast iron, rectangular	hydraulic depth,0.7m				
2	Inlet gates	Sluice gate, manual operati	300W x 300H.Design	16	-	_	
		cast iron, rectangular	hydraulic depth,0.7m				
3	Sludge collector	Chain flight method	W10m x L18m	8	0.75	6	
		2 units 1 drive	x H3.0m				w10=w5x2channels
4	Sludge draw-off valve	Motor operated eccentric	200mmF	16	0.2	3.2	
5	Raw sludge pumps	Non-clog centrifugal pump	100mmFx1m ³ /min	4	3.7	7.4	Standby excluded
			.x10m	(2)			
6	Bypass gates	Manually operated, cast iro	F1,000mm.Design	2	-	-	
		made, circular sluice gate	hydraulic depth,1.5m				
7	Raw sludge flow meter	Electro-magnetic flow meter	100mmF	2	-	-	In electric works
8	Raw sludge	Ultra-sonic type		2	-	-	
	densitometer						
	Total motor output of	(4)				16.6	kW

5) Aeration Tanks (16 tanks) <u>W5m x L55mx H5mx16Tanks</u>

No.	Equipment	Туре	Specifications	Qt'y	Output	Total	Remarks
			-		kW/unit	ouput	
1	Inflow control weirs	Manually operated movable	400W x 600H.Design	16	-	-	
		weirs	hydraulic depth,0.7m				
2	Movable weirs for	Cast iron made, movable	400W x 600H.Design	64	-	-	
	control of step inflow	weirs	hydraulic depth,0.7m				
3	Return sludge inflow	Cast iron made, movable	600W x 600H.Design	16	-	-	
	control weirs	(separate type)	hydraulic depth,0.7m				
4	Aeration diffusers	Ceramic made diffuser	0.82m ³ /min.		-	-	SUS holder headers,
		(fine bubble, 300µ)	8plates/holder header				& butterfly valves
5	Air control valves	Air operated butterfly valve	250mmF	16	-	-	Electro-magnetic
							box
6	Froth spray nozzles	Cast iron made movable	15mmFx 8l/min.	592	-	-	1.5 m interval
		type	x 1kg/cm ²				55/1.5=37units./tank
7	Air flow meters	Oriffice	250mmF	4	-	-	Included in electric
							works
	Total motor output of	(5)				0	kW

6) Final Sedimentation Tanks (8 tanks)

W5m x L35.5m x H3.0m×16Channels(8Tanks)

Equipment	Туре	Size and	Qt'y	Output	Total	Remarks
		Specifications		kW/unit	output	
Inlet gates	Sluice gate, manual	300W x 300H Design	16	-	-	
	operation, cast iron	hydraulic depth,0.7m				
Sludge collector	Chain flight method	W10m x L35.5m x H3.0m	8	1.5	12.0	w10=
	2 units 1 drive					w5x2channels
Telescope pipe		200mmF	16	-	_	
Return sludge pumps	Submersible pump	250mmF x 3.0m ³ /min, x 6m	8	11	77.0	
Excess sludge pumps	"	100mmF x 0.5m ³ /min. x 6m	8 (4)	3.7	14.8	Standby excluded
Return sludge flow	Electronic-magnetic	250mmF	4	-	-	Included in electric
meters	flow meter					works
Excess sludge flow	Electronic-magnetic	100mmF	4	-	-	"
meters	flow meter					
Return sludge	Ultra-sonic type	250mmF	4	-	_	"
densitometers						
Total motor output of	(6)				103.8	kW
	Inlet gates Sludge collector Telescope pipe Return sludge pumps Excess sludge pumps Return sludge flow meters Excess sludge flow meters Return sludge flow meters Return sludge densitometers	Inlet gates Sluice gate, manual operation, cast iron Sludge collector Chain flight method 2 units 1 drive Telescope pipe Return sludge pumps Return sludge pumps " Return sludge flow meters Electronic-magnetic flow meter Excess sludge flow Electronic-magnetic flow meter Return sludge flow Electronic-magnetic flow meter Excess sludge flow Electronic-magnetic flow meter Return sludge flow meter	Inlet gatesSluice gate, manual operation, cast iron hydraulic depth,0.7mSludge collectorChain flight method 2 units 1 driveW10m x L35.5m x H3.0m 2 units 1 driveTelescope pipe200mmFReturn sludge pumpsSubmersible pump 2 units 1 drive250mmF x 3.0m³/min, x 6mExcess sludge pumps"Return sludge flow metersElectronic-magnetic flow meter250mmFExcess sludge flow metersElectronic-magnetic flow meter250mmFReturn sludge flow metersElectronic-magnetic flow meter250mmFReturn sludge densitometersUltra-sonic type250mmF	Inlet gatesSluice gate, manual operation, cast ironSluice depth, 0.7 mSludge collectorChain flight method 2 units 1 driveW10m x L35.5m x H3.0m 2 00mmF8Telescope pipe200mmF16Return sludge pumpsSubmersible pump 	Inlet gatesSluice gate, manual operation, cast iron hydraulic depth,0.7mkW/unit kW/unitInlet gatesSluice gate, manual operation, cast iron hydraulic depth,0.7m16-Sludge collectorChain flight method 2 units 1 driveW10m x L35.5m x H3.0m 2 00mmF81.5Telescope pipe200mmF16-Return sludge pumpsSubmersible pump 2 sommF x 0.5m³/min, x 6m811Excess sludge pumps"100mmF x 0.5m³/min, x 6m83.7Return sludge flow metersElectronic-magnetid flow meter250mmF4-Excess sludge flow metersElectronic-magnetid flow meter100mmF4-Return sludge densitometersUltra-sonic type 250mmF250mmF4-	Inlet gatesSluice gate, manual operation, cast ironSlow x 300H Design hydraulic depth,0.7m16-Sludge collectorChain flight method 2 units 1 driveW10m x L35.5m x H3.0m 2 00mmF81.512.0Telescope pipe200mmF16Return sludge pumpsSubmersible pump 2 00mmF x 0.5m³/min, x 6m81177.0Excess sludge pumps"100mmF x 0.5m³/min, x 6m83.714.8Return sludge flow metersElectronic-magnetid flow meter250mmF4Excess sludge flow metersElectronic-magnetid flow meter100mmF4Return sludge densitometersElectronic-magnetid flow meter250mmF4Excess sludge flow metersElectronic-magnetid flow meter250mmF4Excess sludge flow metersElectronic-magnetid flow meter250mmF4Return sludge densitometersElectronic-magnetid flow meter250mmF4

7) Sludge Thickeners (2 tanks) D12.0 m xH3.0m x2Tanks

No.	Equipment	Туре	Size and	Qt'y	Ouput	Total	Remarks
			Specifications		kW/unit	output	
1	Sludge thickeners	Rotating scraper,	12.0mF x3.0mH	2	0.4	0.8	
		with pickets					
2	Distribution tank,	Manually operated, cas	300mmW	2	-	-	
	movable weirs	iron weir					
3	Sludge draw-off pump	Non-clog centrifugal	100mmF x 0.5m ³ /min	2	15	15	Standby
		pump	x 10m	(1)			excluded
4	Sludge draw-off valve	Air operated eccentric	100mmF	2	0.2	0.4	
		valve					
	Total motor outputs of (7)					16.2	kW

8) Sludge Digestion Facilities (4 digesters)

No.	Equipment	Туре	Size and	Qt'y	Ouput	Total	Remarks
			Specifications		kW/unit	output	
1	Scum draw-off valves	Motor operated	100mmF x 0.5m ³ /min	4	15	30	Standby
		eccentric valve.	x 10m	(2)			excluded
2	Digested sludge draw	Motor operated eccent	100mmF	4	0.2	0.8	
	off valves	valve.					
3	Sludge mixer	Gas stirring device.		4	-	1	
4	Compressor for gas			4	1.5	3	Standby
	stirring.			(2)			excluded
	Total motor outputs of	f (8)				33.8	kW

No.	Equipment	Туре	Size and Specifications	Qt'y	Output kW/unit	Total	Remarks
	~					output	
1	Sludge storage tank mixers	Vertical paddle type	2,000mmF	2	7.5	15	
2	Sludge feed pumps		$100 \text{mmF} \ge 20 \text{m}^3/\text{hr}.$	(5 5	33	
2	Sludge feed pumps	ment pump	x 20m	6	5.5	33	
3	Sludge dewatering		3 m effective belt width	6	4.85	29.1	
			per hour load in dry soli	id basis			
4	No.1Cake conveyor	Trough belt	600mmW x 8,500mmL	2	1.5	3	
5	No.2 Cake conveyo	Horizontal trough belt conveyor	600w x5,500L	2	1.5	3	
6	Cake hoppers	Motor operated	10m ³	2	3.7	7.4	
7	Chemical container	Cylinder type	700 L	2	-	_	
8	Chemical feeders	Volumetric dry feeder	4L/min.	2	0.4	0.8	
9	Chemical dosage ta	Cylinder type	10m ³ capacity	2	5.5	11	
10	Chemical feed pum	Positive displace- ment pump	50mmF x 3m ³ /hr x 20m	2	1.5	3	
11	Chemical container hoists	Motor operated	1 ton	1	1.5 0.4	1.5	
12	Pumps for belt filte	Centrifugal nump	50 mmF x 0.3 m ³ /min.	2	7.5	75	Standby excluded
	cleaning water	e en an agus pump	x 60 m	(1)	7.0	,	Stando y eneradea
13	Maintenance crane	Suspension type	2 ton	1	-	-	
14	Chain block	Geared trolley type	2 ton	1	-	_	
15	Floor drain pumps	Submersible non- clog pump	65mmF x 0.3m ³ /min. x 10 m	1	5.5	5.5	
	Total motor outputs	e				119.8	kW

9) Sludge Dewatering Equipment

10) Aeration Tank Blower System

No.	Equipment	Туре	Size and	Qt'y	7	Output	Total	Remarks
			Specifications			kW/unit	output	
1	No.1 Blowers	Multiple step blower			5	-	-	
		manufactured by the steel bo	62m ³ /min	(1)				
2	Electric motors for				5	90	360	Standby excluded
	No.1 blowers			(1)				
3	No.1 blower valves	Electric-operated	250mm		5	0.4	1.6	Standby excluded
		valve		(1)				
4	Maintenance crane	Geared trolley type	3 tons		1	-	-	
	Total motor outputs	of (10)					361.6	kW
Grand Total of Motor Outputs							914.2	kW

A11.3.2 TADEO WWTP

The Outline of Tadeo WWTP is shown in the following and the layout of Tadeo WWTP is shown in Figure A11.13.

(1) **Design Flows** (m^3/day)

Qaverage	9,400
Qdaily maximum flow	11,200
Qhoury maximum flow	22,900

(2) Wastewater rand Sludge Treatment Process

Wastewater Treatment: Conventional activated sludge process Sludge Treatment: Sludge thickening →Anaerobic Digestion without any heating system→Mechanical Dewatering (70%)+Drying bed (30%) → (Sanitary Landfill)

(3) Design Wastewater Quality

Parameter	Treatment	Efficiency (%)	Design Treated Wastewater Quality (mg/L)			
	Primary	Secondary	Overall	Influent	Primary Effluent	Secondary Effluent	
BOD ₅	30	86	90.2	210	147	20.6	
SS	40	84	90.4	210	126	20.2	

(4) Main Facilities

Facility Facility Type	Quality	Size, Capacity, Specs	Remarks
1.Submersible pumps	3(1)units	300mmFx8m ³ /min	1 standby
2.Primary sedimentation tank	4units	6.0mWx9.5mLx3.0mH	Surface loading 50m ³ /m ² /day
3.Aeration tank	4units	6.0mWx25.0mL x5.0mH	BOD-SS loading: 0.35kgBOD/kgSS/day Retention time 6hours
Rotary Blower	3(1)units	F150mmx19m ³ /min	1standby, 5Q
4.Final sedimentation tank	4units	6.0mWx18.7mL x3.0mH	Surface loading: 25m ³ /m ² /day
5.Sludge thickener	2units	4.5mWx4.5mLx4.0mH	Floor loading: 60kg/m ² /day
6.Sludge digester	2units	13.5mWx13.5mLx4.0mH	Retention time: 20days
7.Mechanical dewatering Belt filter press	2units	Filter width: 1.5m	Filter loading rate: 90kg/m/hour
8.Drying bed	1,300m ²	Water depth 0.2m	Retention time: 11days

A11.3.3 GUANABACOA WWTP

The Outline of Guanabacoa WWTP is shown in the following and the layout of Guanabacoa WWTP is shown in Figure A11.14.

(1) **Design Flows** (m³/day)

Qaverage	24,300
Qdaily maximum flow	28,900
Qhoury maximum flow	50,300

(2) Wastewater and Sludge Treatment Process

Wastewater Treatment: Conventional activated sludge process Sludge Treatment : Sludge thickening →Anaerobic Digestion without any heating system→Drying Bed→ (Sanitary Landfill)

(3) Design Wastewater Quality

Parameter	Treatment Efficiency (%)			Design Treated Wastewater Quality (mg/L)		
	Primary	Secondary	Overall	Influent	Primary Effluent	Secondary Effluent
BOD ₅	30	86	90.2	210	147	20.6
SS	40	84	90.4	210	126	20.2

(4) Main Facilities

Facility	Facility Type	Quality	Size, Capacity, Specs	Remarks
1.Submersible pumps		2(1)units	400mmF x 16m ³ /min	1standby
			300mmF x 8m ³ /min	
2.Primary tank	2.Primary sedimentation tank		6.0mWx12.5mLx3.0mH	Surface loading 50m ³ /m ² /day
3.Aeration	n tank	8units	6.0mWx32.0mLx5.0mH	BOD-SS loading: 0.35kgBOD/kgSS/day Retention time 6hours
	Rotary Blower	5(1)units	F200mmx26m ³ /min	1standby, 5Q
4.Final sec	dimentation tank	8units	6.0mWx24.2mLx4.0mH	Surface loading: 25m ³ /m ² /day
5.Sludge t	hickener	2units	6.8mWx6.8mLx4.0mH	Floor loading: 60kg/m ² /day
6.Sludge o	ligester	2units	21.5mWx21.5mLx4.0mH	Retention time: 20days
8.Drying b	bed	11,100m ²	Water depth 0.2m	Retention time: 11days

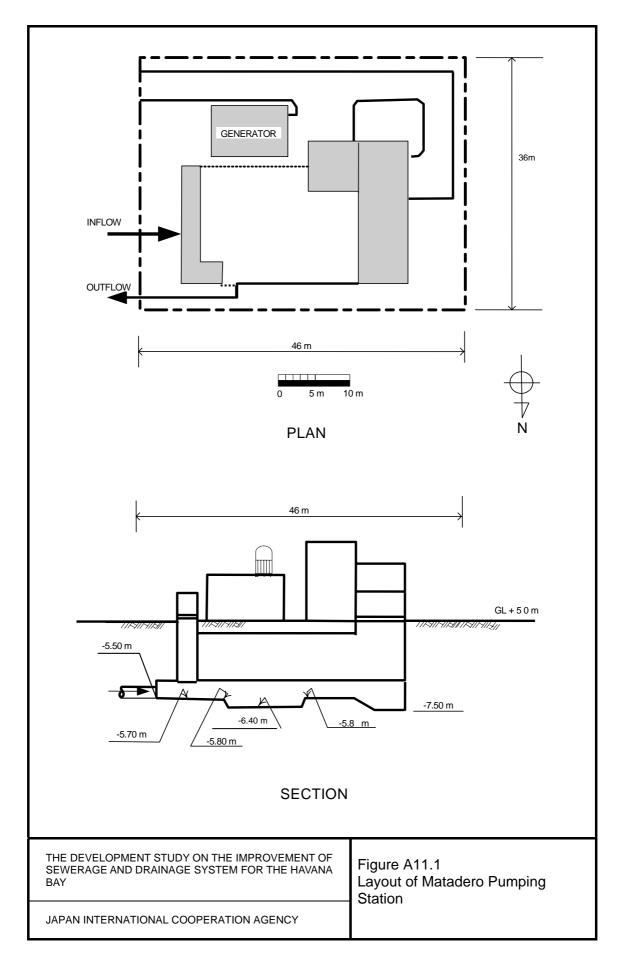
11.3.4 LA CUMBRE WWTP

The Outline of La Cumbre WWTP is shown in the following and the layout of La Cumbre WWTP is shown in Figure A11.15.

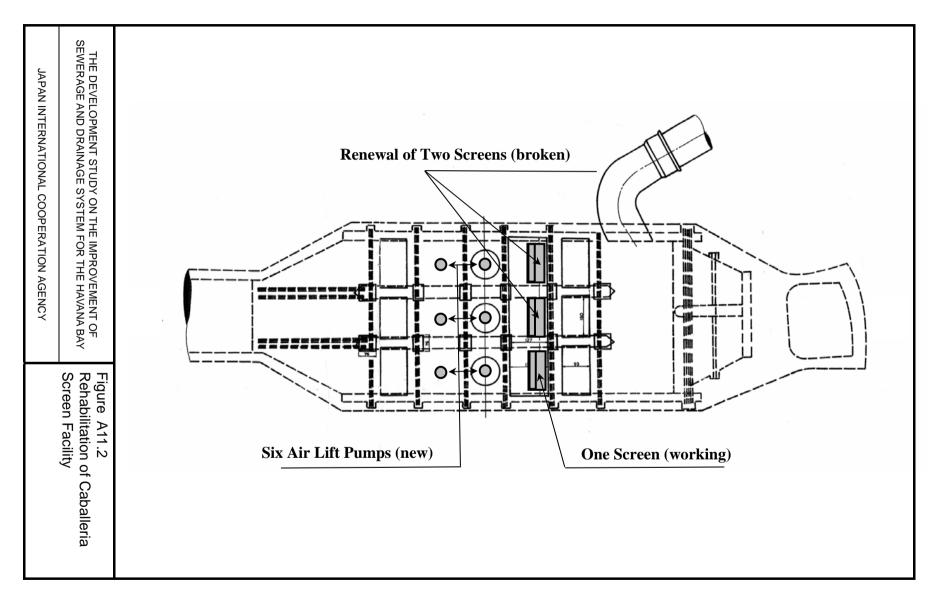
(1) **Design Flows** (m^3/day)

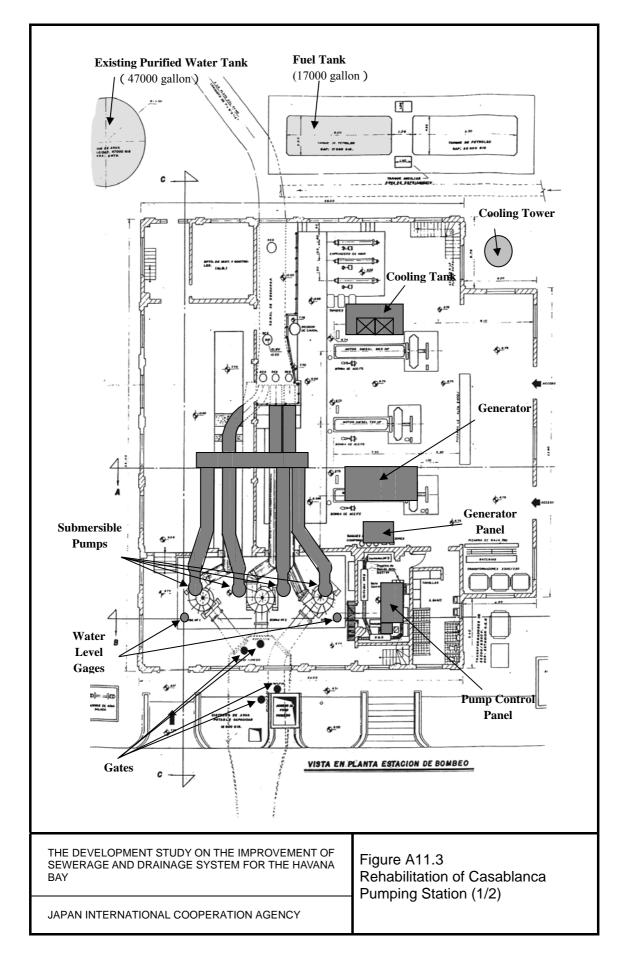
Qaverage	21,400
Qdaily maximum flow	25,400
Qhoury maximum flow	45,000

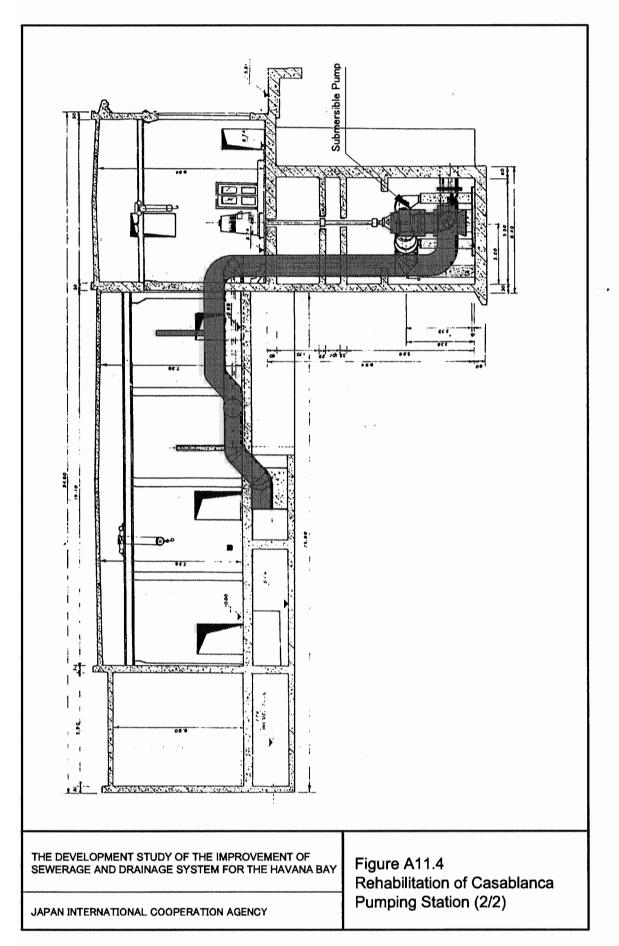
(2) Wastewater and Sludge Treatment Process

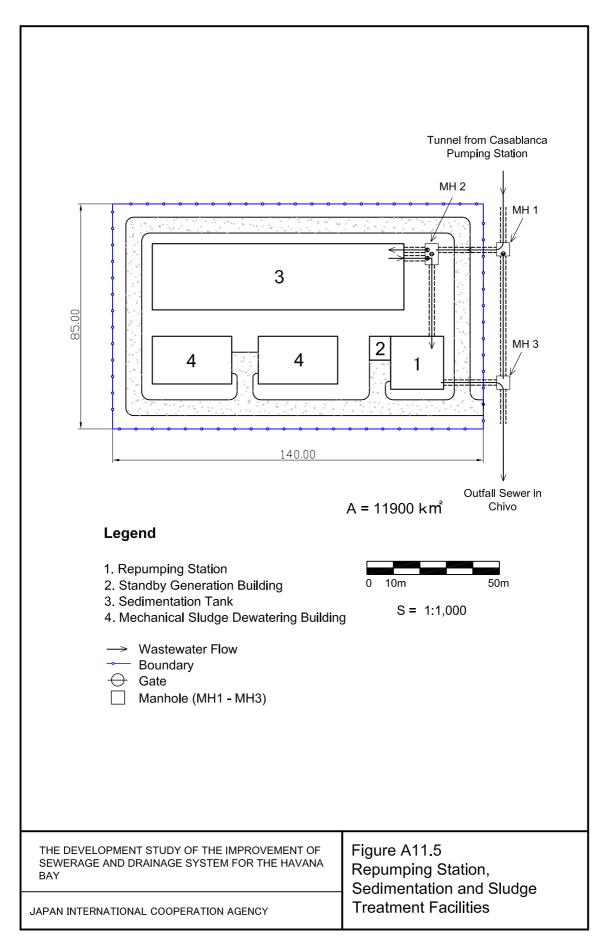

Wastewater Treatment: Conventional activated sludge process Sludge Treatment : Sludge thickening →Anaerobic Digestion without any heating system→Mechanical Dewatering→ (Sanitary Landfill)

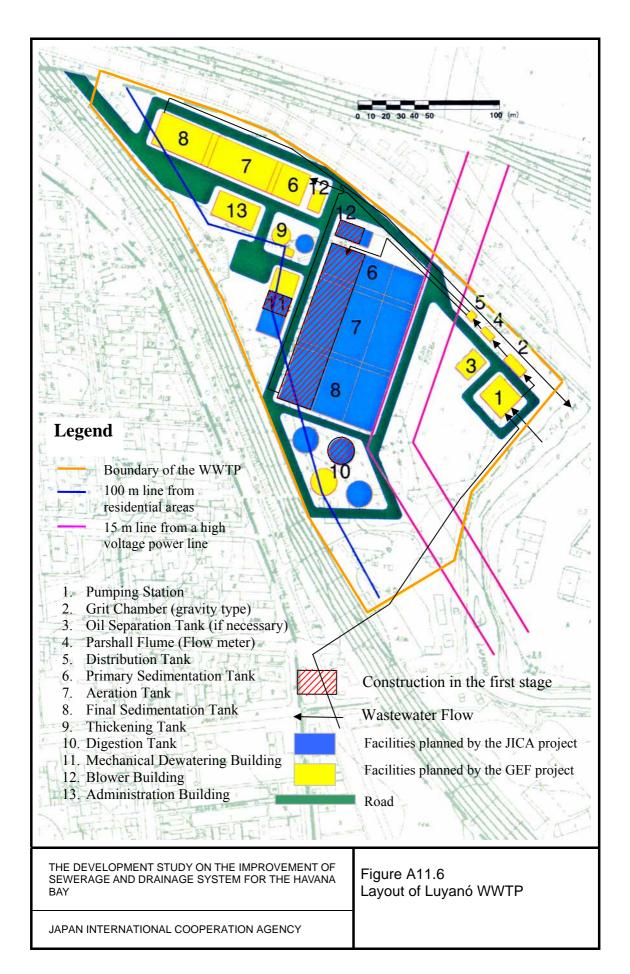
(3) Design Wastewater Quality


Parameter	Treatment Efficiency (%)			Design Treated Wastewater Quality (mg/L)		
	Primary	Secondary	Overall	Influent	Primary Effluent	Secondary Effluent
BOD ₅	30	86	90.2	200	140	19.6
SS	40	84	90.4	200	120	19.2


(4) Main Facilities


Facility	Facility Type	Quality	Size, Capacity, Specs	Remarks
1.Submer	1.Submersible pumps		400mmF x 16m ³ /min 1standby	
		2units 300mmF x 8m ³ /min		
2.Primary sedimentation tank		8units	5.0mWx12.8mLx3.0mH	Surface loading 50m ³ /m ² /day
3.Aeration	3.Aeration tank		5.0mWx35.0mLx5.0mH	BOD-SS loading: 0.35kgBOD/kgSS/day Retention time 6hours
Rota	ary Blower	3(1)units	F200mmx22m ³ /min	1standby, 5Q
4.Final se	4.Final sedimentation tank		5.0mWx25.5mLx3.0mH	Surface loading: 25m ³ /m ² /day
5.Sludge	thickener	2units	6.3mWx6.3mLx4.0mH	Floor loading: 60kg/m ² /day
6.Sludge	digester	2units	19.7mWx19.7mLx4.0mH	Retention time: 20days
7.Mechanical dewatering Belt filter press		4units	Filter width: 2m	Filter loading rate: 90kg/m/hour




Volume III Supporting Report

