JAPAN INTERNATIONAL COOPERATION AGENCY (JICA) STATE WORKING GROUP FOR CLEANING UP, CONSERVATION AND DEVELOPMENT FOR THE HAVANA BAY (GTE) THE REPUBLIC OF CUBA

THE DEVELOPMENT STUDY ON THE IMPROVEMENT OF SEWERAGE AND DRAINAGE SYSTEM FOR THE HAVANA BAY IN THE REPUBLIC OF CUBA

FINAL REPORT VOLUME II MAIN REPORT

MARCH 2004

NIHON SUIDO CONSULTANTS CO., LTD.

THE DEVELOPMENT STUDY ON THE IMPROVEMENT OF SEWERAGE AND DRAINAGE SYSTEM FOR THE HAVANA BAY IN THE REPUBLIC OF CUBA

TABLE OF CONTENTS

VOLUME I EXECUTIVE SUMMARY VOLUME II MAIN REPORT VOLUME III SUPPORTING REPORT

IN SPANISH

VOLUMENIVRESUMEN EJECTIVO (EXECUTIVE SUMMARY)VOLUMENVINFORME PRINCIPAL (MAIN REPORT)

VOLUME II MAIN REPORT

PART -I MASTER PLAN

TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES ABBREVIATIONS

CHAPTER 1 INTRODUCTION

1.1	BACKG	ROUNDS	M1-1
1.2	REPORT	[•] S	M1-2
1.3	STUDY	AREA	M1-3
1.4	STUDY	ORGANIZATION AND STAFFING	M1-4
	1.4.1	STUDY ORGANIZATION	М1-4
	1.4.2	COUNTERPART STAFF	М1-4
	1.4.3	Study Team	М1-5
1.5	STUDY	SCHEDULE	M1-6
	1.5.1	OVERALL STUDY SCHEDULE	М1-б
	1.5.2	PHASE I AND PHASE II STUDY SCHEDULE	M1-6
CHA	APTER 2	PHYSICAL AND SOCIO-ECONOMIC CONDIT THE STUDY AREA	IONS IN
CHA 2.1	PTER 2	PHYSICAL AND SOCIO-ECONOMIC CONDIT THE STUDY AREA AL CONDITIONS	IONS IN M2-1
CHA 2.1	PTER 2 PHYSIC 2.1.1	PHYSICAL AND SOCIO-ECONOMIC CONDIT THE STUDY AREA AL CONDITIONS Geology and Topography	IONS IN M2-1 M2-1
CHA 2.1	PTER 2 PHYSIC 2.1.1 2.1.2	PHYSICAL AND SOCIO-ECONOMIC CONDIT THE STUDY AREA AL CONDITIONS Geology and Topography Meteorology	IONS IN M2-1 M2-1 M2-1
CHA 2.1	PTER 2 PHYSIC 2.1.1 2.1.2 2.1.3	PHYSICAL AND SOCIO-ECONOMIC CONDIT THE STUDY AREA AL CONDITIONS GEOLOGY AND TOPOGRAPHY METEOROLOGY Hydrology	IONS IN M2-1 M2-1 M2-1 M2-2
CHA 2.1 2.2	PHYSIC: 2.1.1 2.1.2 2.1.3 SOCIO-H	PHYSICAL AND SOCIO-ECONOMIC CONDIT THE STUDY AREA AL CONDITIONS Geology and Topography Meteorology Hydrology ECONOMIC CONDITIONS	IONS IN M2-1 M2-1 M2-1 M2-2 M2-3
CHA2.12.2	PHYSIC 2.1.1 2.1.2 2.1.3 SOCIO-H 2.2.1	PHYSICAL AND SOCIO-ECONOMIC CONDIT THE STUDY AREA AL CONDITIONS GEOLOGY AND TOPOGRAPHY METEOROLOGY HYDROLOGY ECONOMIC CONDITIONS POPULATION	IONS IN M2-1 M2-1 M2-1 M2-2 M2-3 M2-3
CHA2.12.2	APTER 2 PHYSIC: 2.1.1 2.1.2 2.1.3 SOCIO-H 2.2.1 2.2.2	PHYSICAL AND SOCIO-ECONOMIC CONDIT THE STUDY AREA AL CONDITIONS	IONS IN M2-1 M2-1 M2-1 M2-2 M2-3 M2-3 M2-5

2.3	URBAN	INFRASTRUCTURE	M2-13
	2.3.1	URBAN PLANNING AND LAND USE	М2-13
	2.3.2	WATER SUPPLY CONDITIONS AND FUTURE PLAN	М2-13
	2.3.3	SOLID WASTES MANAGEMENT	м2-14
~			
CH	APTER 3	ENVIRONMENTAL CONDITIONS, LAWS AND	
31	GENER		M3-1
3.1	TRIBUT	ARY RIVERS	M3-1 M3-1
0.2	3.2.1	EXISTING DATA OF RIVER WATER OUALITY	M3-1
	3.2.2	WATER AND SEDIMENT OUALITY SURVEY OF RIVERS	M3-3
3.3	HAVANA	A BAY	M3-9
	3.3.1	EXISTING DATA	МЗ-9
	3.3.2	WATER AND SEDIMENT OUALITY SURVEY OF HAVANA BAY	МЗ-15
3.4	INDUST	RIAL WASTEWATER	M3-22
	3.4.1	PREVIOUS SURVEYS	МЗ-22
	3.4.2	RESULTS OF INDUSTRIAL WASTEWATER SURVEYS	МЗ-25
	3.4.3	SUMMARY OF SURVEYS	МЗ-ЗЗ
3.5	LAWS AN	D STANDARDS ON WATER POLLUTION CONTROL	МЗ-34
	3.5.1	ENVIRONMENTAL LAW (GENERAL LAW)	МЗ-34
	3.5.2	WATER POLLUTION CONTROL	МЗ-35
	3.5.3	STANDARDS	МЗ-35
	3.5.4	DISCHARGE QUALITY STANDARDS TO SEWERS	МЗ-37
	3.5.5	EFFLUENT QUALITY STANDARDS	МЗ-39
	3.5.6	ENVIRONMENTAL QUALITY STANDARDS FOR FISHING WATERS	МЗ-39
СН	APTER 4	PRESENT POLITION LOAD ANALYSIS AND	
CIII		WATER OUALITY SIMULATION MODEL OF	
		HAVANA BAY	
4.1	GENERA	ALS	M4-1
	4.1.1	POLLUTION LOAD ANALYSIS	м4-1
	4.1.2	WATER QUALITY SIMULATION MODEL OF HAVANA BAY	М4-1
4.2	POLLUT	TON LOADS	M4-1
	4.2.1	METHODOLOGY	М4-1
	4.2.2	POLLUTION LOAD GENERATED	м4-2
	4.2.3	POLLUTION LOAD DISCHARGED	М4-3
	4.2.4	FURTHER WORK	М4-4
4.3	WATER	QUALITY SIMULATION MODEL	M4-5
	4.3.1	METHODOLOGY	M4-5
	4.3.2	HYDRODYNAMIC SIMULATION OF HAVANA BAY	М4-5
	4.3.3	WATER QUALITY SIMULATION OF HAVANA BAY	М4-24
	4.3.4	CALIBRATING AND VERIFYING THE WATER QUALITY MODEL	М4-31
4.4	TIDAL C	CURRENT SURVEY	M4-41
	4.4.1	RESULTS OF TIDAL CURRENT SURVEY	м4-43

CHAPTER 5	EXISTING SEWERAGE SYSTEM AND FUTURE PLANS

5.1	GENERA	λL	M5-1
5.2	EXISTIN	IG SEWERAGE SYSTEM	M5-1
	5.2.1	PRESENT SEWER SERVICE AREA/DISTRICTS	М5-1
	5.2.2	SEWERS	М5-1
	5.2.3	CROSS CONNECTION SURVEY	М5-4
	5.2.4	WASTEWATER PUMPING STATION	М5-7
	5.2.5	REHABILITATION PLAN OF EXISTING WASTEWATER TRANSMISSION	
		FACILITIES	М5-9
	5.2.6	WASTEWATER TREATMENT PLANT	м5-10
5.3	PRESEN	T SEWERAGE DEVELOPMENT PLANS	M5-12
	5.3.1	GEF/UNDP PROJECT	М5-12

CHAPTER 6 EXISTING DRAINAGE SYSTEM

6.1	GENER A	۸L	M6-1
6.2	EXISTIN	IG DRAINAGE SYSTEM	M6-1
	6.2.1	PRESENT DRAINAGE SERVICE AREA	Мб-1
	6.2.2	INUNDATION AREA AND DAMAGES	Мб-3
	6.2.3	PHYSICAL CONDITIONS OF DRAINAGE SYSTEM	Мб-4
	6.2.4	HYDRAULIC CAPACITY OF DRAINAGE SYSTEM	Мб-5
	6.2.5	OTHER FINDINGS	Мб-8
6.3	FUTURE	E PLANS	M6-9
6.4	WASTEV	VATER DISCHARGE FROM DRAINAGE CHANNELS	M6-11
	6.3.1	EXISTING DATA	Мб-11
	6.3.2	WATER QUALITY SURVEYS IN DRAINAGE CHANNELS AND SEWER .	Мб-11

CHAPTER 7 PRESENT ORGANIZATION

7.1	GENER	AL	M7-1
7.2	INSTITU	JTIONS RELATED TO HAVANA BAY WATER ENVIRONM	MENTM7-1
	7.2.1	CENTRAL GOVERNMENT INSTITUTIONS	М7-1
	7.2.2	OTHER INSTITUTIONS	м7-4
7.3	GTE		М7-4
	7.3.1	OBJECTIVES AND POLICIES	М7-4
	7.3.2	ORGANIZATIONAL STRUCTURE	М7-5
	7.3.3	ROLES AND RESPONSIBILITIES	М7-5
7.4	INRH (N	ATIONAL INSTITUTE OF WATER RESOURCES)	М7-5
	7.4.1	OBJECTIVES AND POLICIES	М7-5
	7.4.2	ORGANIZATIONAL STRUCTURE	М7-5
	7.4.3	ROLES AND RESPONSIBILITIES	М7-6
7.5	CITMA	(MINISTRY OF SCIENCE, TECHNOLOGY AND ENVIRONMENT)	М7-9
	7.5.1	OBJECTIVES AND POLICY	М7-9
	7.5.2	ENVIRONMENTAL STRATEGY	М7-9
7.6	WATER	AND SEWERAGE CORPORATIONS	м7-10
	7.6.1	GENERAL	м7-10
	7.6.2	AGUAS DE LA HABANA	М7-12
	7.6.3	WATER & SEWERAGE CORPORATION DEL ESTE	м7-18

CHAPTER 8 CURRENT FINANCIAL SITUATION

8.1	CENTRA	AL GOVERNMENT	M8-1
8.2	LOCAL	GOVERNMENT	M8-2
	8.2.1	HAVANA CITY GOVERNMENT	М8-3
	8.2.2	MUNICIPAL GOVERNMENT	М8-4
8.3	INRH (N	ATIONAL INSTITUTE OF WATER RESOURCES)	M8-14
8.4	WATER	SUPPLY AND WASTEWATER CORPORATIONS	M8-14
	8.4.1	AGUAS DE LA HABANA (HAVANA WATER)	М8-15
	8.4.2	ACUEDUCTO DEL ESTE (EAST WATER)	М8-21
	8.4.3	ACUEDUCTO SUR (SOUTH WATER)	М8-21
8.5	USER CI	HARGES	М8-22
	8.5.1	WATER AND SEWERAGE TARIFF	М8-22
	8.5.2	BILLING AND COLLECTION	м8-24
CHA	APTER 9	ENVIRONMENTAL EDUCATION PROGRAMS	
9.1	GENERA	AL	M9-1
9.2	CURREN	NT STATUS OF ENVIRONMENTAL EDUCATION IN CUBA	M9-3
	9.2.1	NATIONAL PROGRAMS	М9-3

	9.2.2	PROGRAMS SUPPORTED INTERNATIONAL ORGANIZATIONS AND
		DONOR COUNTRIES
9.3	PROPOS	ED ENVIRONMENTAL EDUCATION PROGRAM
	9.3.1	GENERALM9-4
	9.3.2	PROPOSED ENVIRONMENTAL EDUCATION PROGRAM
	9.3.3	IMPLEMENTATION PLAN OF ENVIRONMENTAL EDUCATION PROGRAMM9-7
9.4	EVALUA	ATION OF EXECUTED ENVIRONMENTAL EDUCATION
	PROGRA	AMS
	9.4.1	EXECUTED ENVIRONMENTAL EDUCATION PROGRAMS
	9.4.2	OVERALL EVALUATION OF THE EXECUTED PROGRAMS

CHAPTER 10 STRATEGY FOR WATER POLLUTION CONTROL IN HAVANA BAY

10.1	GENERAL	M10-1
	10.1.1 EXISTING USES OF HAVANA BAY	М10-1
	10.1.2 PERCEPTION OF EXISTING WATER ENVIRONMENT	М10-1
	10.1.3 Future Uses	М10-2
10.2	WATER ENVIRONMENT GOALS	M10-2
	10.2.1 FUTURE WATER ENVIRONMENT	М10-2
	10.2.2 WATER QUALITY GOALS	м10-2
10.3	SCENARIO OF POLLUTION CONTROL	M10-5
	10.3.1 ROLE OF STAKEHOLDERS OR POLLUTERS	М10-5
	10.3.2 WASTEWATERS MANAGED BY SEWERAGE SCHEME	М10-5
	10.3.3 INDUSTRIAL WASTEWATER	м10-5
10.4	WATER QUALITY MONITORING SYSTEM	M10-6
	10.4.1 EXISTING WATER QUALITY MONITORING SYSTEM	м10-б

	10.4.2 RECOMMENDATION FOR FUTURE WATER QUALITY MONITORING SY	YSTEM
		М10-б
СНА	APTER 11 PLANNING AND DESIGN BASES OF SEWERAGE	
CIII	SYSTEM	
11.1	TARGET YEAR FOR PLANNING	M11-1
11.2	SEWERAGE PLANNING AREA	M11-1
11.3	POPULATION	M11-1
	11.3.1 POPULATION IN THE STUDY AREA	M11-1
	11.3.2 SEWER SERVICE POPULATION	М11-2
11.4	WASTEWATER GENERATION	M11-3
	11.4.1 General	M11-3
	11.4.2 PER CAPITA WATER CONSUMPTION	M11-4
	11.4.3 PER CAPITA WASTEWATER GENERATION	M11-4
	11.4.4 WASTEWATER GENERATION	M11-6
	11.4.5 Design Pollution Load	М11-7
11.5	INFLOW /INFILTRATION	M11-8
11.6	REQUIRED LEVEL OF WASTEWATER TREATMENT	M11-9
	11.6.1 INTRODUCTION	M11-9
	11.6.2 LEVEL OF WASTEWATER TREATMENT REQUIRED FOR DISCHARGE	
	TO BAY	M11-9
	11.6.3 LEVEL OF WASTEWATER TREATMENT REQUIRED FOR DISCHARGE T	O SEA
		M11-20
11.7	SEWERAGE SYSTEM DESIGN CONSIDERATIONS	M11-21
	11.7.1 WASTEWATER COLLECTION SYSTEM	M11-21
	11.7.2 PUMPING STATIONS	M11-22
	11.7.3 WASTEWATER TREATMENT PLANT	M11-23
СНА	APTER 12 STUDIES ON IMPROVEMENT AND DEVELOPMEN	Л
CIII	OF SEWERAGE SYSTEM	
12.1	GENERAL	M12-1
12.2	IMPROVEMENT OF THE EXISTING SEWERAGE SYSTEM	M12-3
	12.2.1 General	М12-3
	12.2.2 CROSS CONNECTION PROBLEMS AND SOLUTION MEASURES	М12-6
	12.2.3 REHABILITATION AND IMPROVEMENT OF THE COLECTORS	М12-11
	12.2.4 ALTERNATIVE STUDY ON THE EXISTING SEWERAGE SYSTEM	М12-16
	12.2.5 PROPOSED IMPROVEMENT PLAN OF	
	EXISTING CENTRAL SEWERAGE SYSTEM	М12-26
12.3	DEVELOPMENT PLAN OF NEW SEWERAGE SYSTEM	M12-28
	12.3.1 General	М12-28
	12.3.2 ALTERNATIVE STUDY OF NEW SEWERAGE SYSTEM	М12-28
	12.3.3 DEVELOPMENT PLAN OF NEW SEWERAGE SYSTEM UP TO THE YEAR	R 2020 12-53

CHAPTER 13 SEWERAGE SYSTEM MASTER PLAN

13.1	GENERALN	113-1
13.2	PROPOSED SEWERAGE SYSTEMN	113-1
	13.2.1 PROPOSED EXISTING SEWERAGE SYSTEM IMPROVEMENTM	13-1

	13.2.2 PROPOSED NEW SEWERAGE SYSTEM DEVELOPMENT	М13-4
13.3	OPERATION AND MAINTENANCE PLAN	M13-8
	13.3.1 FACILITIES REQUIRED O/M	М13-8
	13.3.2 OPERATION AND MAINTENANCE TASKS	М13-8
13.4	STAGED IMPLEMENTATION PROGRAM	
	0	M13-1
	13.4.1 GENERAL IMPLEMENTATION SCHEDULE	М13-10
	13.4.2 STAGED SEWERAGE SYSTEM COMPONENT	М13-10
	13.4.3 PROPOSED IMPLEMENTATION SCHEDULE FOR EACH STAGE PROJECT	гм13-11
13.5	INSTITUTIONAL STRENGTHENING	M13-16
	13.5.1 General	М13-16
	13.5.2 SEWERAGE SYSTEM OPERATION & MAINTENANCE STAFF	М13-17
	13.5.3 OTHER HUMAN RESOURCES DEVELOPMENT PLANS	М13-19
13.6	CAPITAL INVESTMENT	M13-23
	13.6.1 General	М13-23
	13.6.2 BASIS OF COST ESTIMATE	М13-23
	13.6.3 DIRECT CONSTRUCTION COST	М13-24
	13.6.4 INDIRECT CONSTRUCTION COST	М13-25
	13.6.5 CAPITAL INVESTMENT	М13-25
	13.6.6 OPERATION AND MAINTENANCE COST	М13-28
13.7	PROJECT EFFECTS ON WATER QUALITY IMPROVEMENT	M13-30
	13.7.1 POLLUTION LOAD REDUCTION	М13-31
	13.7.2 WATER QUALITY IMPROVEMENT	М13-31
13.8	FINANCING CAPACITY	M13-32
	13.8.1 PAYERS OF THE PROJECT	М13-32
	13.8.2 ABILITY TO PAY	М13-34
	13.8.3 External Finance	М13-39
	13.8.4 COMMUNITY MOBILIZATION	М13-41
13.9	FINANCIAL AND ECONOMIC EVALUATIONS	M13-42
	13.9.1 FINANCIAL EVALUATION	М13-42
	13.9.2 ECONOMIC EVALUATION	М13-48
13.10	PRIORITY PROJECTS FOR FEASIBILITY STUDY	M13-61
	13.10.1 SELECTION CRITERIA	M13-61
	13.10.2 SELECTION OF PRIORITY PROJECTS FOR FEASIBILITY STUDY	М13-61
13.11	INITIAL ENVIRONMENTAL EXAMINATION (IEE) OF THE SEWERAG	E
	SYSTEM MASTER PLAN	M13-62
	13.11.1 GENERAL	M13-62
	13.11.2 INITIAL ENVIRONMENTAL EXAMINATION	M13-63

CHAPTER 14 CONCLUSIONS AND RECOMMENDATIONS

14.1	CONCLUSIONS	M14-1
14.2	RECOMMENDATIONS	M14-1
	14.2.1 IMPROVEMENT OF THE EXISTING SEWERAGE SYSTEM	м14-1
	14.2.2 DEVELOPMENT OF THE NEW SEWERAGE SYSTEM	м14-1
	14.2.3 BAY WATER ENVIRONMENT	м14-2

14.2.4 OTHER RECOMMENDATIONS	4-	-3	3
------------------------------	----	----	---

LIST OF TABLES

TABLE 1.1	LISTS OF STUDY REPORTS	M1-2
TABLE 1.2	MEMBER OF STEERING COMMITTEE	M1-4
TABLE 1.3	COUNTERPART STAFF	M1-5
TABLE 1.4	MEMBER OF ADVISORY COMMITTEE AND STUDY TEAM	M1-6
TABLE 2.1	DRAINAGE BASINS AND AREAS OF HAVANA BAY	M2-2
TABLE 2.2	CHARACTERISTICS OF TRIBUTARY RIVERS TO HAVANA BAY	M2-2
TABLE 2.3	POPULATION CENSUS DATA AND ESTIMATES	M2-3
TABLE 2.4	POPULATION WITHIN THE HAVANA BAY BASIN, YEAR 2000	M2-5
TABLE 2.5	TOTAL EMPLOYEES IN THE ECONOMY	M2-5
TABLE 2.6	SALARIES IN MIXED AND STATE ENTITIES	M2-5
TABLE 2.7	GROSS DOMESTIC PRODUCT	M2-8
TABLE 2.8	EXPORT AND IMPORT COMPOSITION	M2-9
TABLE 2.9	SHIPPING ARRIVALS, HAVANA HARBOR	M2-9
TABLE 2.10	NO. OF TOURISTS AND TOURIST INCOME	M2-10
TABLE 2.11	STATISTICS FOR TOURIST ACCOMMODATION	M2-10
TABLE 2.12	INCIDENCE OF DISEASES RELATED TO WATER SUPPLY AND SEWERAGE	M2-11
TABLE 2.13	MORBIDITY OF DISEASES RELATED TO WATER SUPPLY AND SEWERAGE	M2-11
TABLE 2.14	Present Land Use	M2-13
TABLE 2.15	PRODUCTION AND CHARACTERISTICS OF SOLID WASTES IN THE PORT	
	ENCLOSURE	M2-14
TABLE 2.16	FEATURES AND CHARACTERISTICS OF MAIN SOLID WASTES LAND	
	DISPOSAL SITES IN THE HAVANA CITY	M2-15
TABLE 2.17	DISTANCE OF PUBLIC WASTES DISPOSAL SITES FROM	
	MUNICIPALITIES CONCERNED	M2-15
TABLE 3.1	MAJOR CHARACTERISTICS OF TRIBUTARY RIVERS	M3-1
TABLE 3.2	WATER QUALITY OF TRIBUTARY RIVERS IN YEAR 2000-2002	M3-2
TABLE 3.3	WATER QUALITY OF TRIBUTARY RIVERS 1985-2002	M3-2
TABLE 3.4	HEAVY METAL CONCENTRATION IN RIO LUYANO	M3-3
TABLE 3.5	WATER AND SEDIMENT QUALITY SURVEY OF TRIBUTARY RIVERS	M3-3
TABLE 3.6	HEAVY METALS CONTENTS OF RIVERS SEDIMENTS	M3-8
TABLE 3.7	SURFACE SEDIMENT QUALITY OF HAVANA BAY 1991-2001	M3-14
TABLE 3.8	FECAL COLIFORM CONCENTRATIONS IN HAVANA BAY WATER, 1991-2001	.M3-10
TABLE 3.9	CLOSTRIDIUM PERFRINGENS IN SEDIMENTS IN HAVANA BAY, 1991-2001	M3-15
TABLE 3.10	HEAVY METAL CONCENTRATION IN SEAWATER OF HAVANA BAY	M3-17
TABLE 3.11	SUMMARY OF SEDIMENT QUALITY IN HAVANA BAY	M3-21
TABLE 3.12	CONCENTRATIONS OF MAJOR HEAVY METALS IN SEDIMENTS OF HAVANA	
	BAY	M3-21
TABLE 3.13	SUMMARY OF FACTORIES IN THE STUDY AREA	M3-23
TABLE 3.14	MAJOR 20 FACTORIES SELECTED AS CANDIDATE FOR DETAILED SURVEY	M3-25
TABLE 3.15	GENERAL INFORMATION OF 10 SELECTED FACTORIES	M3-27
TABLE 3.16	INDUSTRIAL WASTEWATER QUALITY PARAMETERS ANALYZED	M3-29
TABLE 3.17	THE MAIN FEATURES OF 10 SELECTED FACTORIES	M3-30
TABLE 3.18	THE RESULTS OF INDUSTRIAL WASTEWATER SURVEY	M3-31
TABLE 3.19	PERMISSIBLE LEVEL FOR DISCHARGES TO PUBLIC SEWERS	M3-37
TABLE 3.20	DISCHARGE STANDARDS TO INLAND SURFACE WATER, NC27	M3-39
TABLE 3.21	ENVIRONMENTAL QUALITY STANDARDS FOR FISHING WATERS,	
	NC93-105	M3-39
TABLE 4.1	POPULATION WITH THE HAVANA BAY BASIN, YEAR 1996 & 2000	M4-2

TABLE 4.2	DOMESTIC POLLUTION LOAD GENERATION, YEAR 1996 & 2000	M4-2
TABLE 4.3	TOTAL BOD ₅ LOAD GENERATION, YEAR 1996 & 2000	M4-3
TABLE 4.4	POLLUTION LOAD THROUGH RIVERS AND DRAINS IN YEAR 1996/97 2002	& M4-3
TABLE 4.5	TOTAL POLLUTION LOAD DISCHARGED TO THE BAY IN YEAR 1996/97	& M4_4
		IVI4-4
TABLE 4.0	RELATIONSHIP BETWEEN GENERATION AND DISCHARGE	WI4-4
TABLE 4.7	INITIAL CONDITIONS FOR THE HYDRODYNAMICS SIMULATION	M4-8
TABLE 4.8	SPECIFICATION OF THE SOURCE CONDITIONS FOR THE HYDRODYNAMI	C
	SIMULATION	NI4-12
TABLE 4.9	CALIBRATED PARAMETERS OF THE HYDRODYNAMIC MODEL	WI4-12
TABLE 4.10	SUMMARIZATION OF THE CALCULATION CONDITIONS	WI4-15
TABLE 4.11	RESULTS OF TEMPERATURE AND SALINITY OBSERVATION	WI4-15
TABLE 4.12	KANGE OF TEMPERATURE AND SALINITY FOR HAVANA BAY	M4-15
TABLE 4.13	I EMPERATURE DISTRIBUTION IN VERTICAL DIRECTION	M4-15
TABLE 4.14	SALINITY DISTRIBUTION IN VERTICAL DIRECTION	M4-15
TABLE 4.15	POLLUTANT SOURCE INPUT SPECIFICATION FOR THE WATER QUALITY	244.00
-	SIMULATION	M4-30
TABLE 4.16	WATER QUALITY IN BOUNDARY AND INITIATION	M4-30
TABLE 4.17	PARAMETERS OF THE WQ MODEL	M4-31
TABLE 4.18	SPECIFICATION FOR THE TIDAL CURRENT SURVEY	M4-41
TABLE 4.19	SALINITY OF HAVANA BAY IN OCTOBER AND DECEMBER 2002	M4-43
TABLE 4.20	CURRENT VELOCITY IN OCTOBER AND DECEMBER 2002	M4-47
TABLE 5.1	COLECTORS IN THE CENTRAL SEWERAGE SYSTEM	M5-3
TABLE 5.2	RESULTS OF CROSS CONNECTION SURVEY	M5-7
TABLE 5.3	ALTERNATIVES OF REHABILITATION PLAN FOR EXISTING WASTEWATER	
	TRANSMISSION FACILITIES	M5-10
TABLE 5.4	FEATURES OF TWO WWTPS SURVEYED	M5-11
TABLE 5.5	DESIGN CRITERIA FOR ZONE 4 TREATMENT PLANT	M5-14
TABLE 5.6	WASTEWATER TREATMENT ZONES AND THEIR DEVELOPMENT PLANS	M5-15
TABLE 6.1	EXISTING DRAINAGE FACILITIES IN THE HAVANA CITY	M6-3
TABLE 6.2	ANALYZED RAINFALL DATA	M6-5
TABLE 6.3	WATER QUALITY OF DRAINAGE CHANNELS 1985-2002	M6-11
TABLE 6.4	WATER QUALITY SURVEY IN DRAINAGE CHANNELS AND SEWER	M6-11
TABLE 6.5	WATER QUALITY IN DRAINAGE CHANNELS AND SEWER	M6-13
TABLE 7.1	STATISTICS-AGUAS DE LA HABANA & ACUEDUCTO DEL ESTE	M7-12
TABLE 8.1	STATE FINANCE	M8-2
TABLE 8.2	PRODUCTION OF HAVANA CITY	M8-3
TABLE 8.3	PRODUCTION OF MUNICIPALITIES	M8-4
TABLE 8.4	PRODUCTION OF PLAZA DE LA REVOLUCIÓN	M8-5
TABLE 8.5	PRODUCTION OF CENTRO HABANA	M8-6
TABLE 8.6	PRODUCTION OF LA HABANA VIEJA	M8-7
TABLE 8.7	PRODUCTION OF REGLA	M8-8
TABLE 8.8	PRODUCTION OF LA HABANA DEL ESTE	M8-9
TABLE 8.9	PRODUCTION OF GUANABACOA	M8-10
TABLE 8.10	PRODUCTION OF SAN MIGUEL DEL PADRÓN	M8-11
TABLE 8.11	PRODUCTION OF DIEZ DE OCTUBRE	M8-12
TABLE 8.12	PRODUCTION OF CERRO	M8-13
TABLE 8.13	PRODUCTION OF ARROYO NARANJO	M8-14

TABLE 8.14	POPULATION DISTRIBUTION AND SERVICE COVERAGE OF 3 WAY	TER M8 15
Тарі е 8-15	BALANCE SHEETS OF ACUAS DE LA HABANA	W10-15 M8-16
TABLE 0.15	INCOME STATEMENTS OF A GUAS DE LA HABANA	N10-10 M8_17
TABLE 0.10 TABLE 8 17	Sources and Addition of Funds of Acuas de La Hadana	W10-17 M8 18
TABLE 0.17	Kev Financial Pation of Acuas de La Hadana	W10-10 M8 10
TABLE 0.10 TABLE 9.10	MAIN EINANCIAL DATA OF A CHEDUCTO DEL ESTE	W10-19 MQ 21
TABLE 0.19 TABLE 9.20	MAIN FINANCIAL DATA OF ACUEDUCTO DEL ESTE	IVI0-21
TABLE 0.20	WATER AND SEWERAGE TARGE FOR CURAN LOCAL SAND DESC FARM	$\frac{1}{100} \frac{1}{100} \frac{1}{21}$
TABLE 0.21	WATER AND SEWERAGE TARIFF FOR CUBAN LOCALS AND FESO EARNE	2K5.1V10-25
TABLE 0.22	WATER AND SEWERAGE TARIFF FOR FOREIGNERS AND HARD CURREN	
Тарге 9.22	CUSTOMED CLASSIFICATION OF A CUAS DE LA HADANA	IV10-24
TABLE 0.23	CUSTOMER CLASSIFICATION OF AGUAS DE LA HABANA	W10-24
TABLE 10.1	DRAFT CUASTAL AND BAY WATER QUALITY STANDARDS	W110-5
TABLE 10.2	GUALS AND RESPONSIBILITIES OF SECTOR	WI10-3
TABLE 10.3	EXISTING WATER QUALITY MONITORING SYSTEM	WIIU-/
TABLE 10.4	CURRENT STATE OF WATER QUALITY ANALYSIS ORGANIZATION	WI10-8
TABLE 10.5	MAJOR PROBLEMS OF EXISTING WATER QUALITY MONITORING SYSTE	MM10-8
TABLE 10.6	RECOMMENDED FUTURE WATER QUALITY MONITORING SYSTEM	M10-9
TABLE 11.1	SEWERAGE PLANNING AREA (YEAR:2020)	MII-I
TABLE 11.2	POPULATION IN HAVANA CITY	M11-1
TABLE 11.3	POPULATION OF TEN MUNICIPALITIES RELATED TO HAVANA BAY BASI	NM11-2
TABLE 11.4	POPULATION PROJECTION WITHIN HAVANA BAY BASIN	M11-2
TABLE 11.5	SEWER SERVICE POPULATION (YEAR : 2020)	M11-3
TABLE 11.6	WATER DEMAND BY CATEGORY	M11-4
TABLE 11.7	PRESENT PER CAPITA WASTEWATER GENERATION	M11-5
TABLE 11.8	FUTURE PER CAPITA WASTEWATER GENERATION	M11-6
TABLE 11.9	SUMMARY OF WASTEWATER GENERATION	M11-7
TABLE 11.10	PER CAPITA POLLUTANT LOAD	M11-7
TABLE 11.11	PER CAPITA POLLUTANT LOAD IN TOILET WASTEWATER AND GI	REY
	WATER	M11-8
TABLE 11.12	UPSTREAM WATER QUALITY	M11-11
TABLE 11.13	WASTEWATER TREATMENT EFFICIENCY (ASSUMED)	M11-11
TABLE 11.14	INFLUENT AND EFFLUENT QUALITY FOR ZONE 6 WWTP (UNDP)	M11-11
TABLE 11.15	INFLUENT AND EFFLUENT QUALITY FOR ZONE 4 WWTP (ITALIAN)	M11-12
TABLE 11.16	CASE 2 – FUTURE (2020) WITH GEF PROJECTS ONLY	M11-12
TABLE 11.17	CASE 4 : SECONDARY TREATMENT	M11-13
TABLE 11.18	CASE 5 : PRIMARY TREATMENT	M11-13
TABLE 11.19	CASE 6 : ADVANCED TREATMENT	M11-13
TABLE 11.20	EFFLUENT STANDARDS TO SEA OUTFALL	M11-20
TABLE 11.21	PIPE MATERIALS AND DIAMETERS USED IN DESIGN	M11-21
TABLE 11.22	DESIGN CAPACITY ALLOWANCE FOR COLECTORS	M11-22
TABLE 11.23	WASTEWATER TREATMENT PRINCIPLE OF SELECTED METHODS	M11-24
TABLE 11.24	COMPARISON OF FIVE WASTEWATER TREATMENT METHODS	M11-25
TABLE 11.25	COMPARISON OF SLUDGE DEWATERING PROCESS	M11-29
TABLE 12.1	PROBLEMS AND IMPROVEMENT MEASURES	M12-3
TABLE 12.2	DESIGN BASES FOR THE EXISTING CENTRAL SEWERAGE SYST	Ъ
	(TARGET YEAR 2020)	M12-6
TABLE 12.3	COLECTORS RECOMMENDED FOR FURTHER STUDY	M12-11
TABLE 12.4	CAPACITY OF THE COLECTOR SUR AND SUR 2	M12-14
TABLE 12.5	REHABILITATION PLAN FOR EACH ALTERNATIVE ON CENTRAL SYSTEM	IM12-19

TABLE 12.6	COMPARISON OF ALTERNATIVES FOR CENTRAL SYSTEM IMPROVEMENTM12-21
TABLE 12.7	EVALUATION OF ALTERNATIVE SYSTEMS FOR EXISTING CENTRAL
	SYSTEM IMPROVEMENT
TABLE 12.8	PROPOSED IMPROVEMENT PLAN OF THE EXISTING CENTRAL SEWERAGE
	System
TABLE 12.9	TREATMENT EFFICIENCY
TABLE 12.10	DESIGN BASES FOR THE NEW ALTERNATIVE SEWERAGE SYSTEMS
	(TARGET YEAR 2020) M12-33
TABLE 12-11	FEATURES OF THE ALTERNATIVES OF WASTEWATER DISCHARGE TO THE
1110EE 12.11	HAVANA BAY M12-37
Тарі е 12-12	Sewed MAIN FOR FACH Sewed District in the Alternatives $M12-39$
TABLE 12.12 TABLE 12.13	COMPADISON OF OVER ALL SEWER DISTRICT IN THE ALLERNATIVES
TABLE 12.13	The ated Wastewated Discharge to Havana Ray M12.46
Тарі д 12.14	COMPARISON OF AN IMPLEMENTATION DI AN UR TO THE VEAR 2020 SET
TADLE 12.14	COMPARISON OF AN IMPLEMENTATION FLAN OF TO THE TEAK 2020 SET
	FOR EACH ALIERNATIVE OF TREATED WASTEWATER DISCHARGE TO
T	HAVANA BAY
TABLE 12.15	A PRELIMINARY CAPITAL COST ESTIMATE FOR THE ALTERNATIVE N-6M12-50
TABLE 12.16	RELATIONSHIP OF PROPOSED AREA WITH SEWER DISTRICTS OF
	NEW FOUR ZONAL SEWERAGE SYSTEMS
TABLE 12.17	COMPARISON OF ALTERNATIVES FOR DISPOSAL OF WASTEWATER
	GENERATED FROM THE LEFT BANK OF RIO LUYANÓM12-61
TABLE 12.18	OUTLINE OF NEW SEWERAGE DEVELOPMENT PLAN UP TO THE YEAR 2020 M12-64
TABLE 12.19	REQUIRED COLECTOR SYSTEM FOR THE ALTERNATIVE
TABLE 13.1	IMPROVEMENT PLAN OF THE CENTRAL SEWERAGE SYSTEMM13-2
TABLE 13.2	SEWER NETWORKS FOR THE LUYANÓ-MARTÍN PÉREZ ABAJO SEWER
	DISTRICTM13-4
TABLE 13.3	Colectors Required in the Luyanó-Martín Pérez Abajo Sewer
	DISTRICTM13-5
table 13.4	MAJOR WWTP FACILITIES TO BE CONSTRUCTED BY THE SEWERAGE MPM13-6
TABLE 13.5	NEW TREATMENT PLANT PERSONNEL
TABLE 13.6	PUMPING STATION PERSONNEL
table 13.7	TOTAL CAPITAL INVESTMENT REQUIRED TO IMPLEMENT THE PROPOSED
	SEWERAGE MASTER PLANM13-26
TABLE 13.8	TOTAL CAPITAL INVESTMENT FOR THE FIRST STAGE PROJECTM13-26
TABLE 13.9	TOTAL CAPITAL INVESTMENT FOR THE SECOND STAGE PROJECTM13-26
TABLE 13.10	TOTAL CAPITAL INVESTMENT FOR THE THIRD STAGE PROJECT
TABLE 13.11	CAPITAL INVESTMENT FOR THE CENTRAL SYSTEM IMPROVEMENT
TABLE 13.12	CAPITAL INVESTMENT FOR THE NEW SEWERAGE SYSTEM DEVELOPMENT.M13-28
TABLE 13.13	ANNUAL OPERATION AND MAINTENANCE COST FOR THE PROPOSED
	SEWERAGE SYSTEM COMPONENTS OF THE SEWERAGE MPM13-29
TABLE 13.14	POLLUTION LOAD REDUCTION WITH THE M/P OF NEW SEWERAGE
	DEVELOPMENT
TABLE 13.15	POLLUTION LOAD REDUCTION WITH THE M/P OF CENTRAL SEWERAGE
	IMPROVEMENT
TABLE 13.16	CASE 1- EXISTING CONDITIONS (YEAR 2002)
TABLE 13.17	CASE M/PM13-31
TABLE 13.18	ANALYSIS OF POLLUTERS AND BENEFICIARIES
TABLE 13.19	CAPITAL INVESTMENT IN ENVIRONMENTAL PROTECTION (CLASSIFIED BY
	INVESTMENT SECTOR)
TABLE 13.20	CAPITAL INVESTMENT IN ENVIRONMENTAL PROTECTION (CLASSIFIED BY
•	

xi

	INDUSTRY TYPE)	M13-35
TABLE 13.21	AVERAGE HOUSEHOLD INCOME AND SPENDING	M13-36
TABLE 13.22	BASIC PRICES IN HAVANA CITY	M13-36
TABLE 13.23	COMMERCIAL SIZE OF MAJOR FACTORIES IN STUDY AREA	M13-37
TABLE 13.24	TOURISM PRICE DATA	M13-38
TABLE 13.25	HARD-CURRENCY EXTERNAL DEBTS OF CUBA	M13-39
TABLE 13.26	DONORS OF DEVELOPMENT ASSISTANCE TO CUBA	M13-40
TABLE 13.27	TYPE OF DEVELOPMENT ASSISTANCE TO CUBA	M13-40
TABLE 13.28	REFERENTIAL LENDING RATE OF MULTILATERAL LENDING AGENCIES	M13-41
TABLE 13.29	CHANGES IN PESO/US\$ EXCHANGE RATE	M13-44
TABLE 13.30	CHANGE IN THE NUMBER OF TOURISTS VISITING THE CITY OF HAVANA	M13-46
TABLE 13.31	MASTER PLAN PROJECT CASH FLOW AT FINANCIAL VALUE	M13-47
TABLE 13.32	FINANCIAL SENSITIVITY ANALYSIS OF MASTER PLAN PROJECT	M13-48
TABLE 13.33	CULTIVABLE CROPS IN THE PROJECT SITES	M13-51
TABLE 13.34	ECONOMIC VALUES OF LAND	M13-51
TABLE 13.35	RESULTS OF INHABITANT SURVEY	M13-54
TABLE 13.36	MASTER PLAN PROJECT CASH FLOW AT ECONOMIC VALUE	M13-58
TABLE 13.37	ECONOMIC SENSITIVITY ANALYSIS OF MASTER PLAN PROJECT	M13-59
TABLE 13.38	LOSS CAUSED BY CONTRACTION OF DIARRHEA	M13-60

LIST OF FIGURES

FIGURE 1.1	STUDY AREA	M1-3
FIGURE 1.2	ORGANIZATION CHART OF THE STUDY	M1-4
FIGURE 1.3	STAFF ASSIGNMENT SCHEDULE	M1-7
FIGURE 2.1	HAVANA BAY BASIN	M2-4
FIGURE 2.2	TENDENCY OF MORBIDITY OF SEWERAGE RELATED DISEASES	M2-12
FIGURE 3.1	LOCATION MAP FOR WATER AND SEDIMENT QUALITY SURVEY OF	
	RIVERS AND WASTEWATER	M3-4
FIGURE 3.2	RESULTS OF FLOW RATES MEASUREMENT AT RIVER MOUTHS	M3-6
FIGURE 3.3	VARIATIONS OF DO, ORGANICS AND NUTRIENTS IN TRIBUTARY RIVERS	M3-7
FIGURE 3.4	BAY WATER AND SEDIMENT QUALITY MONITORING LOCATIONS	M3-10
FIGURE 3.5	VERTICAL VARIATION OF DO AND NUTRIENTS IN HAVANA BAY IN	
	NOVEMBER 30, 2001	M3-11
FIGURE 3.6	VARIATIONS OF DO AND NUTRIENTS IN HAVANA BAY, 1986-2001	M3-12
FIGURE 3.7	VARIATION OF HEAVY METALS IN SEDIMENTS IN HAVANA BAY,	
	1991-2001	M3-13
FIGURE 3.8	VERTICAL VARIATIONS OF DO, ORGANICS AND NUTRIENTS IN HAVANA	
	BAY IN WET SEASON	M3-18
FIGURE 3.9	VERTICAL VARIATIONS OF DO, ORGANICS AND NUTRIENTS IN HAVANA	
	BAY IN DRY SEASON	M3-19
FIGURE 3.10	VERTICAL VARIATIONS OF CHLOROPHYLL-A AND FECAL COLIFORMS IN	
	HAVANA BAY IN WET AND DRY SEASON	M3-20
FIGURE 3.11	PROCEDURE OF INDUSTRIAL WASTEWATER SURVEY	M3-26
FIGURE 3.12	LOCATION OF FACTORIES SELECTED FOR INDUSTRIAL WASTEWATER	
	SURVEY	M3-28
FIGURE 3.13	SUMMARY OF INDUSTRIAL POLLUTION LOAD FROM THE 10 SELECTED	
	FACTORIES	M3-32
FIGURE 3.14	ENVIRONMENTAL LAW –STRUCTURES AND FUNCTIONS	M3-36
FIGURE 4.1	FLOW CHART FOR THE WATER QUALITY SIMULATION OF HAVANA BAY	M4-6

FIGURE 4.2	SKETCH OF THE MODEL APPLIED IN THE SIMULATION	M4-7
FIGURE 4.3	OBJECTIVE AREA OF HYDRODYNAMIC AND WATER QUALITY	
	SIMULATION OF HAVANA BAY	M4-9
FIGURE 4.4	LOCATION OF THE OPEN BOUNDARY AND POINT SOURCES	M4-10
FIGURE 4.5	WATER DEPTH DISTRIBUTION OF HAVANA BAY	M4-11
FIGURE 4.6	OBSERVATION RESULTS OF CURRENTS IN HAVANA BAY	M4-14
FIGURE 4.7	SIMULATION RESULTS OF THE CURRENTS IN HAVANA BAY (SURFACE	
	LAYER)	M4-18
FIGURE 4.8	SIMULATION RESULTS OF THE CURRENTS IN HAVANA BAY (SECOND	
	LAYER)	M4-19
FIGURE 4.9	SIMULATION RESULTS OF WATER TEMPERATURE IN HAVANA BAY	
	(SURFACE LAYER)	M4-20
FIGURE 4.10	SIMULATION RESULTS OF WATER TEMPERATURE IN HAVANA BAY	
	(SECOND LAYER)	M4-21
FIGURE 4.11	SIMULATION RESULTS OF SALINITY IN HAVANA BAY (SURFACE LAYER)	M4-22
FIGURE 4.12	SIMULATION RESULTS OF SALINITY IN HAVANA BAY (SECOND LAYER)	M4-23
FIGURE 4.13	WATER QUALITY OBSERVATION RESULTS OF HAVANA BAY (A)	M4-25
FIGURE 4.14	WATER QUALITY OBSERVATION RESULTS OF HAVANA BAY (B)	M4-26
FIGURE 4.15	WATER QUALITY OBSERVATION RESULTS OF HAVANA BAY (C)	M4-27
FIGURE 4.16	SCHEMATIC OF THE PROCESSES INCLUDED IN THE WQ MODEL APPLIED	
	IN THIS STUDY	M4-29
FIGURE 4.17	CONCENTRATION DISTRIBUTION OF DISSOLVED BOD (BOD _d) in	
	HAVANA BAY (SURFACE LAYER)	M4-33
FIGURE 4.18	CONCENTRATION DISTRIBUTION OF SUSPENDED BOD (BOD _s) in	
	HAVANA BAY (SURFACE LAYER)	M4-34
FIGURE 4.19	CONCENTRATION DISTRIBUTION OF DISSOLVED OXYGEN (DO) IN	
	HAVANA BAY (SURFACE LAYER)	M4-35
FIGURE 4.20	CONCENTRATION DISTRIBUTION OF AMMONIA IN HAVANA BAY	
	(SURFACE LAYER)	M4-36
FIGURE 4.21	CONCENTRATION DISTRIBUTION OF NITRITE NITROGEN IN HAVANA	
	BAY (SURFACE LAYER)	M4-37
FIGURE 4.22	CONCENTRATION DISTRIBUTION OF NITRATE NITROGEN IN HAVANA	
	BAY (SURFACE LAYER)	M4-38
FIGURE 4.23	CONCENTRATION DISTRIBUTION OF ORTHOPHOSPHATE IN HAVANA	
	BAY (SURFACE LAYER)	M4-39
FIGURE 4.24	CONCENTRATION DISTRIBUTION OF CHLOROPHYLL-A IN HAVANA BAY	
	(SURFACE LAYER)	M4-40
FIGURE 4.25	LOCATION MAP FOR TIDAL CURRENT SURVEY IN THIS STUDY	M4-42
FIGURE 4.26	VERTICAL VARIATION OF TEMPERATURE AND SALINITY DURING FLOOD	
	TIDE -OCTOBER 2002	M4-44
FIGURE 4.27	VARIATION OF SURFACE WATER SALINITY IN HAVANA BAY (OCTOBER	
	2002-WET SEASON)	M4-45
FIGURE 4.28	VARIATION OF SURFACE WATER SALINITY IN HAVANA BAY (DECEMBER	
	2002-DRY SEASON)	M4-46
FIGURE 4.29	CURRENT PATTERN IN HAVANA BAY DURING FLOOD TIDE (OCTOBER	
.	2002-WET SEASON)	M4-48
FIGURE 4.30	CURRENT PATTERN IN HAVANA BAY DURING EBB TIDE (OCTOBER	
.	2002-WET SEASON)	M4-49
FIGURE 4.29	CURRENT PATTERN IN HAVANA BAY DURING FLOOD TIDE (DECEMBER	
	2002-DRY SEASON)	M4-50

FIGURE 4.30	CURRENT PATTERN IN HAVANA BAY DURING EBB TIDE (OCTOBER	N/4 51
	2002-DRY SEASON)	M4-51
FIGURE 5.1	COLECTORS IN THE CENTRAL SEWERAGE SYSTEM	M5-2
FIGURE 5.2	SELECTED 10 LOCATIONS FOR THE CROSS CONNECTION SURVEY	M5-5
FIGURE 5.3	PROCEDURE OF CROSS CONNECTION SURVEY, DYE-COLORED TEST	N5 (
Freump 7 4		M5-0
FIGURE 5.4	SEVEN WASTEWATER TREATMENT ZONES WITHIN HAVANA BASIN	M5-13
FIGURE 6.1	OVERVIEW OF DRAINAGE AREA AND EXISTING DRAINAGE SYSTEM	M6-2
FIGURE 6.2	EXISTING MAJOR DRAINAGE FACILITIES	M6-6
FIGURE 6.3	RELATIONSHIP BETWEEN RAINFALL INTENSITY AND RAINFALL	
	DURATION BASED ON RAINFALL DATA AT CASABLANCA	
	METEOROLOGICAL OBSERVATORY FOR 78 YEARS BETWEEN 1908 AND	
	1985	M6-7
FIGURE 6.4	RAINFALL INTENSITY EXPRESSED BY TALBOT-TYPE	M6-10
FIGURE 6.5	SAMPLING LOCATIONS OF WATER QUALITY SURVEY FOR DRAINAGE	
	CHANNELS AND SEWER (S1, S2, S3)	M6-12
FIGURE 6.6	RESULTS OF FLOWRATES MEASUREMENT AT DRAINAGE CHANNELS	
	AND SEWER	M6-14
FIGURE 7.1	WATER AND SANITATION SECTOR,GENERAL ORGANIZATION CHART	
	FOR OPERATION	M7-2
FIGURE 7.2	EXTRA-SECTORAL AGENCIES TO THE WATER AND SANITATION SECTOR	M7-3
FIGURE 7.3	ORGANIZATION CHART OF GTE	M7-7
FIGURE 7.4	ORGANIZATION CHART OF INRH	M7-8
FIGURE 7.5	ORGANIZATION CHART OF AGUAS DE LA HABANA	M7-15
FIGURE 7.6	ORGANIZATION CHART FOR THE TECHNICAL DEPARTMENT OF AGUAS DE	
	LA HABANA	M7-16
FIGURE 7.7	ORGANIZATION CHART FOR THE ENGINEERING & CONSTRUCTION	
	DEPARTMENT OF AGUAS DE LA HABANA	M7-17
FIGURE 7.8	ORGANIZATION CHART OF ACUEDUCTO DEL ESTE	M7-19
FIGURE 9.1	NATIONAL ENVIRONMENTAL EDUCATION SYSTEM	M9-2
FIGURE 9.2	IMPLEMENTATION PLAN – ENVIRONMENTAL EDUCATION PLAN	M9-8
FIGURE 9.3	EXECUTED ENVIRONMENTAL EDUCATION PROGRAMS	M9-17
FIGURE 10.1	COMPARISON OF DO LEVELS IN HAVANA BAY (YEAR 2002) TO DRAFT	
	STANDARDS	M10-4
FIGURE 11.1	RESULTS OF DO LEVELS FOR DIFFERENT LEVELS OF WASTEWATER	
	TREATMENT	M11-15
FIGURE 11.2	RESULTS OF BODD LEVELS FOR DIFFERENT LEVELS OF WASTEWATER	
	TREATMENT	M11-16
FIGURE 11.3	RESULTS OF NH ₄ -N LEVELS FOR DIFFERENT LEVELS OF WASTEWATER	
	TREATMENT	M11-17
FIGURE 11.4	RESULTS OF PO ₄ -P LEVELS FOR DIFFERENT LEVELS OF WASTEWATER	
	TREATMENT	M11-18
FIGURE 11.5	RESULTS OF Chl-a LEVELS FOR DIFFERENT LEVELS OF WASTEWATER	-
	TREATMENT	M11-19
FIGURE 12.1	FLOWCHART OF FORMULATING SEWERAGE SYSTEM MASTER PLANM	.M12-2
FIGURE 12.2	CROSS CONNECTION OF SEWER MANHOLE OF HOUSING APARTMENT	
	TO THE NEARBY DRAIN	M12-8
FIGURE 12.3	CROSS CONNECTION OF SEWER MANHOLE TO DRAIN DUE TO	0
	INADEOUATE SEWER CAPACITY OR MISTAKE	M12-9
FIGURE 12.4	CROSS CONNECTION OF SEWER MANHOLE TO DRAIN DUE TO	/

	INADEQUATE SEWER CAPACITY	.M12-10
FIGURE 12.5	CENTRAL SYSTEM – SEWER SUB-DISTRICTS	.M12-12
FIGURE 12.5	PROPOSED COLECTOR SYSTEM FOR IMPROVE THE CENTRAL	
	SEWERAGE SYSTEM	.M12-15
FIGURE 12.7	ALTERNATIVES FOR IMPROVEMENT OF EXISTING CENTRAL SEWERAGE	
	System	.M12-17
FIGURE 12.8	PROFILE OF THREE ALTERNATIVES FOR IMPROVEMENT OF EXISTING	
	CENTRAL SEWERAGE SYSTEM	.M12-18
FIGURE 12.9	ALTERNATIVE N-1 FOR NEW SEWERAGE SCHEME: FIVE ZONAL	
	SEWERAGE SYSTEM	.M12-30
FIGURE 12.10	ALTERNATIVE N-2 TO N-5 FOR NEW SEWERAGE SCHEME: FOUR ZONAL	
	SYSTEM TO INTEGRATED SYSTEM	.M12-31
FIGURE 12.11	ALTERNATIVE N-6 FOR NEW SEWERAGE SCHEME: OCEAN DISCHARGE	
	SEWERAGE SYSTEM	.M12-32
FIGURE 12.12	Alternative N-1 IPP2020 Possible Sewer Service Area to be	
	COVERED UP TO 2020	.M12-40
FIGURE 12.13	Alternative N-2 IPP2020 Possible Sewer Service Area to be	
	COVERED UP TO 2020	.M12-41
FIGURE 12.14	ALTERNATIVE N-3 IPP2020 POSSIBLE SEWER SERVICE AREA TO BE	
	COVERED UP TO 2020	.M12-42
FIGURE 12.15	Alternative N-4 IPP2020 Possible Sewer Service Area to be	
	COVERED UP TO 2020	.M12-43
FIGURE 12.16	ALTERNATIVE N-5 IPP2020 POSSIBLE SEWER SERVICE AREA TO BE	
	COVERED UP TO 2020	.M12-44
FIGURE 12.17	SELECTED SEWERAGE PLAN- FOUR ZONAL SEWERAGE SYSTEM	.M12-52
FIGURE 12.17	SELECTED SEWERAGE PLAN- FOUR ZONAL SEWERAGE SYSTEM	.M12-52
FIGURE 12.18	SCHEMATIC DIAGRAM OF AGUAS DE LA HABANA PROPOSAL	.M12-56
FIGURE 12.19	RELATIONSHIP OF PROPOSED AREA WITH SEWER DISTRICTS OF FOUR	
	ZONAL SEWERAGE SYSTEM	.M12-57
FIGURE 12.20	PLANNING AND DESIGN FIGURES FOR COLECTORS AND AND LUYANÓ	
	WWTP IN LUYANÓ-MARTÍN PÉREZ ABAJO SEWER DISTRICT	.M12-59
FIGURE 12.21	SCHEMATIC DIAGRAM OF ALTERNATIVE FOR WASTEWATER DISPOSAL	
	FROM THE LUYANÓ LEFT BANK AREA	.M12-60
FIGURE 12.22	SCHEMATIC STAGED CAPACITY DEVELOPMENT PLAN OF THE LUYANÓ	
	WWTP	.M12-62
FIGURE 12.23	DESIGN FIGURES OF SUB-SEWER AREA	.M12-63
FIGURE 12.24	ROUTE OF COLECTOR SUR A	.M12-67
FIGURE 12.25	LONGITUDINAL SECTION OF COLECTOR SUR A	.M12-68
FIGURE 12.26	MATADERO PUMPING STATION – LOCATION MAP	.M12-69
FIGURE 13.1	SEWERAGE SYSTEM GENERAL MAP	.M13-3
FIGURE 13.2	FLOW SHEET OF THE PROPOSED TREATMENT FACILITIES OF LUYANÓ	
	WWTP	.13-7
FIGURE 13.3	GENERAL IMPLEMENTATION SCHEDULE	.M13-12
FIGURE 13.4	PROPOSED IMPLEMENTATION SCHEDULE FOR FIRST STAGE PROJECT	.M13-13
FIGURE 13.5	PROPOSED IMPLEMENTATION SCHEDULE FOR SECOND STAGE PROJECT	.M13-14
FIGURE 13.6	PROPOSED IMPLEMENTATION SCHEDULE FOR THIRD STAGE PROJECT	.M13-15
FIGURE 13.7	ORGANIZATION CHART FOR ADDITIONS TO THE TECHNICAL	
	DEPARTMENT OF AGUAS DE LA HABANA	.M13-22

PART –II FEASIBILITY STUDY

CHAPTER 1 INTRODUCTION

1.1	PROJECT GENESIS	.F1-1
1.2	SCOPE OF FEASIBILITY STUDY	.F1-1
1.3	STUDY ORGANIZATION AND MANAGEMENT	.F1-1

CHAPTER 2 PRIORITY PROJECT

2.1	PROPOSED PRIORITY PROJECT	F2-1
2.2	DESIGN FUNDAMENTALS	F2-1
	2.2.1 DESIGN POPULATION	F2-1
	2.2.2 WASTEWATER QUANTITIES	F2-2
	2.2.3 DESIGN FLOWS	F2-2
2.3	REHABILITATION AND IMPROVEMENT OF EXISTING SEWERAGE	
	SYSTEM	F2-3
	2.3.1 Design of Sewer	F2-3
	2.3.2 DESIGN OF WASTEWATER PUMPING STATIONS	F2-9
2.4	DEVELOPMENT OF NEW SEWERAGE SYSTEM	F2-16
	2.4.1 DESIGN OF SEWERS	F2-16
	2.4.2 DESIGN OF NEW WASTEWATER TREATMENT PLANT	F2-23
2.5	OPERATION AND MAINTENANCE PLAN	F2-26
	2.5.1 OPERATION AND MAINTENANCE TASKS	F2-26
	2.5.2 Sewer Main (Colector)	F2-26
	2.5.3 WASTEWATER PUMPING STATION	F2-27
	2.5.4 WASTEWATER TREATMENT PLANTS (WWTPS)	F2-28
	2.5.5 STAFF REQUIREMENT	F2-30

CHAPTER 3 PRIORITY PROJECT IMPLEMENTATION

3.1	IMPLEMENTATION SCHEDULE	F3-1
	3.1.1 General	F3-1
	3.1.2 IMPLEMENTATION SCHEDULE FOR PRIORITY PROJECT	F3-1
3.2	PROJECT COST ESTIMATES FOR PRIORITY PROJECT	F3-1
	3.2.1 BASIS OF CAPITAL COST ESTIMATE	F3-1
	3.2.2 Project Cost	F3-3
	3.2.3 OPERATION AND MAINTENANCE COST	F3-6
3.3	ORGANIZATIONS AND INSTITUTIONS	F3-8
	3.3.1 General	F3-8
	3.3.2 WATER SUPPLY AND SEWERAGE SECTOR	F3-8
	3.3.3 Environmental Sector	F3-8
	3.3.4 INSTITUTIONAL ARRANGEMENT FOR HAVANA BAY	F3-13
	3.3.5 INSTITUTIONAL STRENGTHENING	F3-14
	3.3.6 INSTITUTIONAL ARRANGEMENTS FOR PROJECT IMPLEMENTATION	F3-17
CHA	APTER 4 FINANCIAL AND ECONOMIC ANALYSIS	

4.1	FINANCIAL ANALYSIS	F4-	1

4.1.1 Methodology	F4-1
4.1.2 BASIC CONDITIONS	F4-1
4.1.3 EVALUATION OF FINANCIAL VIABILITY	F4-2
4.1.4 Sensitivity Analysis	F4-3
4.1.5 LOAN REPAYMENT PROJECTION	F4-4
ECONOMIC ANALYSIS	F4-7
4.2.1 Methodology	F4-7
4.2.2 ECONOMIC COST/BENEFIT VALUATION	F4-8
4.2.3 EVALUATION OF ECONOMIC VIABILITY	F4-11
4.2.4 Sensitivity Analysis	F4-12
	 4.1.1 METHODOLOGY 4.1.2 BASIC CONDITIONS

CHAPTER 5 ENVIRONMENTAL CONSIDERATIONS

5.1	GENERAL	F5-1
5.2	MATADERO PUMPING STATION	F5-1
5.3	COLECTOR SUR NUEVO, PUMPED MAIN AND BY_PASS PIPE	
	FOR COLECTOR CERRO AND COLECTOR SUR	F5-3
5.4	LUYANÓ WASTEWATER TREATMENT PLANT	F5-5
5.5	LUYANÓ-MARTÍN PÉREZ RIGHT COLECTOR	
	AND LUYANÓ LEFT COLECTOR	F5-8
5.6	CASABLANCA PUMPING STATION	F5-10
5.7	SCREENS AT CABALLERIA	F5-11
5.8	EVALUATION OF MEASURES DURING EMERGENCY	F5-12
	5.8.1 MATADERO PUMPING STATION	F5-13
	5.8.2 CASABLANCA PUMPING STATION	F5-13
	5.8.3 LUYANÓ WWTP	F5-13
5.9	RECOMMENDATIONS	F5-13

CHAPTER 6 PROJECT EVALUATION

6.1	GENERAL	F6-1
6.2	TECHNICAL EVALUATION	F6-1
	6.2.1 General	F6-1
	6.2.2 PROPOSED FACILITIES	F6-1
	6.2.3 LAND ACQUISITION AND RIGHTS	F6-1
	6.2.4 Procurement	F6-2
	6.2.5 PROJECT EFFECTS ON THE IMPROVEMENT OF ENVIRONMENT .	F6-2
	6.2.6 OVERALL TECHNICAL EVALUATION	F6-2
6.3	ECONOMIC AND FINANCIAL EVALUATION	F6-2
	6.3.1 FINANCIAL EVALUATION	F6-2
	6.3.2 ECONOMIC EVALUATION	F6-4
6.4	ENVIRONMENTAL EVALUATION	F6-4
	6.4.1 POLLUTION LOAD REDUCTION	F6-4
	6.4.2 WATER QUALITY IMPROVEMENT	F6-6
	6.4.3 SUMMARY OF EVALUATION AND WAY FORWARD	F6-12
6.5	OVERALL PROJECT EVALUATION	F6-12

CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS

7.1	CONCLUSIONS	F7-1
	7.1.1 Soundness of the Project	F7-1
	7.1.2 BENEFITS OF THE PROJECT	F7-1
7.2	RECOMMENDATIONS	F7-2
	7.2.1 IMPLEMENTATION OF THE PROJECT	F7-2
	7.2.2 IMPLICATIONS OF FURTHER ACTIONS AND STUDIES	F7-2

LIST OF TABLES

TABLE 2.1	POPULATION COVERED BY THE PRIORITY PROJECT	F2-2
TABLE 2.2	WASTEWATER QUANTITIES RELATED TO THE PRIORITY PROJECT	F2-2
TABLE 2.3	PROPOSED WORK FOR THE IMPROVEMENT OF THE CENTRAL SEWERAGE SYST UNDER THE PRIORITY PROJECT	ГЕМ F2-3
TABLE 2.4	REHABILITATED MAJOR FACILITIES AND EQUIPMENT OF THE CASABLANCA P STATION	UMPING F2-10
TABLE 2.5	REHABILITATED EQUIPMENT LIST OF SCREEN FACILITIES AT CABALLERIA	F2-11
TABLE 2.6	INFLOW CONDITIONS TO MATADERO PUMPING STATION	F2-11
TABLE 2.7	PUMPS REQUIRED AT THE MATADERO PUMPING STATION	F2-12
TABLE 2.8	SUMMARY OF THE MATADERO PUMPING STATION	F2-12
TABLE 2.9	SEWER NETWORKS DEVELOPMENT PLAN UNDER THE PRIORITY PROJECT	F2-16
TABLE 2.10	COLECTORS REQUIRED UNDER THE PRIORITY PROJECT	F2-17
TABLE 2.11	DESIGN TREATED WASTEWATER QUALITY	F2-23
TABLE 2.12	MAJOR WWTP FACILITIES TO BE CONSTRUCTED UNDER THE PRIORITY	F2-25
TABLE 2.13	MAINTENANCE SCHEDULE FOR SEWER MAINS	F2-27
TABLE 2.14	MAINTENANCE SCHEDULE FOR PUMPING STATIONS	F2-28
TABLE 2.15	MAINTENANCE SCHEDULE FOR WWTP'S	F2-29
TABLE 2.16	SEWER MAINTENANCE BRANCH OFFICE	F2-30
TABLE 2.17	PUMPING STATION PERSONNEL	F2-31
TABLE 2.18	NEW TREATMENT PLANT PERSONNEL	F2-31
TABLE 2.19	HEADQUARTERS STAFF FOR PRIORITY PROJECT	F2-32
TABLE 3.1	PROJECT COST FOR THE PRIORITY PROJECT	F3-4
TABLE 3.2	PROJECT COST FOR THE CENTRAL SEWERAGE IMPROVEMENT UNDER THE PR PROJECT	iority F3-4
TABLE 3.3	PROJECT COST FOR THE NEW SEWERAGE DEVELOPMENT UNDER THE PRIORI	TY
	PROJECT	F3-5
TABLE 3.4	ANNUAL OPERATION AND MAINTENANCE COST REQUIRED UNDER THE PRIOR PROJECT	rity F3-7
TABLE 3.5	OTHER STATE AGENCIES & BODIES IN ENVIRONMENTAL MANAGEMENT	F3-10
TABLE 4.1	PRIORITY PROJECT CASH FLOW AT FINANCIAL COST	F4-3
TABLE 4.2	FINANCIAL SENSITIVITY ANALYSIS OF PRIORITY PROJECT	F4-4
TABLE 4.3	FOREIGN LOAN REPAYMENT SCHEDULE	F4-6
TABLE 4.4	PESO LOAN REPAYMENT SCHEDULE	F4-6
TABLE 4.5	CHANGES IN DEBT SERVICE COVERAGE RATIO UNDER PRIORITY PROJECT	F4-7
TABLE 4.6	PRIORITY PROJECT CASH FLOW AT ECONOMIC COST	F4-11
TABLE 4.7	ECONOMIC SENSITIVITY ANALYSIS OF PRIORITY PROJECT	F4-12

TABLE 6.1	ESTIMATED POLLUTION LOAD REDUCTION IN NEW SEWERAGE SYSTEM-PRIO	RITY
	PROJECTS	F6-5
TABLE 6.2	ESTIMATED POLLUTION LOAD REDUCTION IN CENTRAL SYSTEM-PRIORITY	
	PROJECTS	F6-5
TABLE 6.3	CASE F/S	F6-6

LIST OF FIGURES

FIGURE 2.1	GENERAL MAP OF THE PRIORITY PROJECT	
FIGURE 2.2	ROUTE OF COLECTOR SUR NUEVO	
FIGURE 2.3	LONGITUDINAL SECTION OF COLECTOR SUR NUEVO	
FIGURE 2.4	ROUTE OF THE PROPOSED INTERCONNECTION PIPE FOR COLECTOR CERRO AND COLECTOR SUR F2-8	
FIGURE 2.5	LONGITUDINAL SECTION OF THE BY-PASS PIPE FOR COLECTOR CERRO AND COLECTOR SUR	
FIGURE 2.6	PLAN OF THE SCREEN FACILITIES TO BE REHABILITATED AT CABALLERIA . F2-1	3
FIGURE 2.7	PLAN OF THE EQUIPMENT TO BE REHABILITATED AT CASABLANCA PUMPING STATION	4
FIGURE 2.8	MATADERO PUMPING STATION	5
FIGURE 2.9	ROUTE OF THE LUYANÓ MARTIN PERÉZ RIGHT BANK COLECTOR	8
FIGURE 2.10	LONGITUDINAL SECTION OF THE LUYANÓ MARTIN PERÉZ RIGHT COLECTOR IN VIA BLANCA	9
FIGURE 2.11	LONGITUDINAL SECTION OF THE LUYANÓ MARTIN PERÉZ RIGHT COLECTOR IN ANILO DEL PUERTO	1
FIGURE 2.12	ROUTE OF THE LUYANÓ LEFT COLECTOR	1
FIGURE 2.13	LONGITUDINAL SECTION OF THE LUYANÓ LEFT COLECTOR	2
FIGURE 2.14	TREATMENT FACILITIES DEVELOPED UNDER THE PRIORITY PROJECT -GENERAL LAYOUT PLAN OF THE LUYANÓ WWTP PLANT	4
FIGURE 3.1	IMPLEMENTATION SCHEDULE OF THE PRIORITY PROJECT	
FIGURE 3.2	INRH-ORGANIZATION CHART FOR THE CITY OF HABANA	1
FIGURE 3.3	ENVIRONMENTAL SECTOR AND WATER SUPPLY & SEWERAGE SECTOR CITY OF HAVANA	2
FIGURE 3.4	PROJECT INSTITUTIONAL FRAMEWORK -PROPOSED STEERING COMMITTEE F3-1	9
FIGURE 3.5	PROPOSED INSTITUTIONAL ARRANGEMENT FOR DESIGN AND CONSTRUCTION SUPERVISION	0
FIGURE 6.1	RESULTS OF DO LEVELS FOR M/P AND F/S	
FIGURE 6.2	RESULTS OF BOD LEVELS FOR M/P AND F/S	
FIGURE 6.3	Results of $\rm NH_4-N$ Levels for $\rm M/P$ and $\rm F/S$	
FIGURE 6.4	Results of PO_4 -P Levels for M/P and F/S	0
FIGURE 6.5	Results of Chl-a Levels for M/P and F/S $\hfill for M/P$	1

VOLUME III SUPPORTING REPORT

APPENDIX-1	LIST OF REFERENCES	AP1-1
APPENDIX-2	SEWER CROSS CONNECTION SURVEY	A2-1
APPENDIX-3	EXISTING SEWER SURVEY	A3-1
APPENDIX-4	WATER AND SEDIMENT QUALITY SURVEY	A4-1
APPENDIX-5	INDUSTRIAL POLLUTION SOURCE SURVEY	A5-1
APPENDIX-6	TIDAL CURRENT MEASUREMENT AND SOUNDING SURVEY	A6-1

Appendix-7	WATER QUALITY SIMULATION	A7-1
APPENDIX-8	SEWERAGE PLANNING FRAMEWORK	A8-1
APPENDIX-9	TOPOGRAPHIC SURVEY AND GEOTECHNICAL INVESTIGATION	A9-1
APPENDIX-10	WASTEWATER COLLECTION SYSTEM	A10-1
APPENDIX-11	WASTEWATER TREATMENT PLANTS AND PUMPING STATIONS	A11-1
APPENDIX-12	COST ESTIMATES	A12-1
APPENDIX-13	ECONOMIC AND FINANCIAL CONSIDERATIONS	A13-1
APPENDIX-14	ENVIRONMENTAL IMPACT ASSESSMENT SURVEY	A14-1
APPENDIX-15	ENVIRONMENTAL EDUCATION MATERIALS	A15-1
APPENDIX-16	DRAINAGE SYSTEM IMPROVEMENT PROPOSALS	A16-1

ABBREVIATION

Administrative Council
onvention
Committee of the Council of Ministers
nter for Hydrology and Water Quality
ter for Engineering and Environmetal
nt of Bays and Coastal Zones
of the Ministry for Science, Technology and
ment in Havana City
of Marine Security and Protection
Delegation of Resources of Havana City of the
stitute for Hydraulic Resources
of Hydraulic Usage
ntal Impact Assessment
nternal Rate of Return
ternal Rate of Return
estic Product
ironmental Facility
ional Product
t of the Republic of Cuba
t of Japan
ng Group for Cleaning Up, Conservation and
nt for the Havana Bay
can Development Bank
l Monetary Fund
stitute of Water Resources
l Standards Organization
of International Cooperation
national Cooperation Agency
Sources
Agriculture
Basic Industry
the Interior
Health
Transport
Foreign Investment and Economic
n
Fisheries
Association of Coastal Zanas

Norma Cubanas (National Standard)				
Non-Governmental Organization				
Net Present Value				
Operation and Maintenance				
National Office of Tax Administration				
Cuban Peso				
Return on Assets				
National Company for Port Sanitation				
Standard Conversion Factor				
Shadow Exchange Rate Factor				
Standard Wage Rate Factor				
United Nations Development Programme				
United Nations Environment Programme				
United Nations Education and Scientific Organization				
United Nations Children's Fund				
United States of America				
Wider Caribbean Region				
Water Supply & Sewerage				
Willingness to Accept				
Willingness to Pay				
Wastewater Treatment Plant				

PART I

MASTER PLAN

CHAPTER 1 INTRODUCTION

1.1 BACKGROUNDS

Ciuda de La Habana Province where Study Area is situated, the largest city in the Caribbean, is Cuba's political, cultural and economic center. The total estimated population is about 2,188,000 in year 2000, which represents about 20 % of the total population of 12,000,000 in Cuba.

Havana Bay with an area of 5.0 km^2 , an average water depth of 9 meters, and a capacity of 47 million m³, plays very important role as commercial seaport and tourist attractions. The extent of the basin is 68 km^2 . The estimated population within the Havana Bay basin is about 800,000 in 2000, which represents 37% of population of Ciudad de La Habana Province. Due to the Bay characteristics of closed water environment, the water of the Bay is not exchanged easily with seawater in the ocean. The pollutants originated from domestic and industrial wastewaters are discharged into the Bay without proper or enough treatment, which resulted in contaminating the water and accumulating the pollutants at the bottom of the Bay. Recently the water quality of the Bay becomes worse and nutrients levels are high enough to show an eutrophication phenomenon.

Without improved water pollution control measures, the water quality becomes worse and the eutrophication phenomena will be revealed to cause damage to the aquatic ecosystem of the Bay and to the tourism of Havana and the economy of Cuba.

To solve the water pollution and improve water environment of the Bay, GOC established the State Working Group for Cleaning up, conservation and development for the Havana Bay (GTE) to coordinate the government agencies concerned the Havana Bay. GTE is the state authority for planning, organizing, coordinating and controlling the program for the cleaning up and environmental management at local level. During 1995 to 1997, under the cooperation of Global Environmental Facility/UNDP (GEF), who proposed the establishment of GTE, GTE has conducted a study on Water Pollution Control Measures of the Havana Area.

Under the circumstances, to decrease the pollutants loads discharging into the Havana Bay from various pollution sources and to improve the water environment in the Havana Bay, GOC has requested GOJ for technical assistance for formulating the Sewerage and Drainage System Master Plan (M/P) and the Feasibility Study (F/S) for selected sewerage projects in the M/P.

In response to the request of the GOC, the JICA has dispatched the Preparatory Study Team headed by Ms. Keiko Yamamoto, to the Republic of Cuba from February 17 to March 8, 2002 to discuss the Scope of Work for the Development Study on the Improvement of Sewerage and Drainage System for the Havana Bay in the Republic of Cuba. The Scope of Work (S/W) was finally concluded between GTE and JICA.

The objectives of the Study are set as follows:

- To formulate a master plan for improving sewerage and drainage system for the Havana Bay to the target year of 2020;
- To conduct a feasibility study for the priority project(s) selected in the master plan; and
- To pursue technology transfer to the Cuban counterpart personnel in the course of the Study.

Based on the S/W of Study, a Japanese consultants team was selected and authorized as the JICA Study Team, headed by Dr. Harutoshi Uchida of Nihon Suido Consultants Co. Ltd., has started the first work in Cuba since the beginning of July 2002.

The Study is conducted in three phases; "Phase I - Basic Study", "Phase II - Formulation of Sewerage and Drainage System Master Plan", and "Phase III – Feasibility Study on Priority Projects".

All the three phases have been carried out by the JICA Study Team with collaboration work of Cuban counterpart members.

1.2 REPORTS

In the course of Study, the following five (5) reports are prepared and submitted to JICA and GTE as shown in the Table 1.1. The Inception report has been submitted before starting the Study at the beginning of July 2002. The Inception Report presented basic methodologies and plan of operation to be adopted to achieve the objectives of the Study; time schedule, proposed organization, composition of the JICA Study Team, and undertaking.

The Progress Report presented the progress of the Study made during the course of "the Phase I – Basic Study" in the Republic of Cuba conducted from July 3 through October 31, 2002. This report includes and incorporates the results of field investigations, surveys, collected data and information, which intend to broadly establish the basis of a sewerage and drainage system master plan to improve the water environment of the Havana Bay and related tributary areas within the Study Area.

The Interim Report summarizes the work done during Phase I and Phase II Study. It presents the proposed sewerage and drainage master plan (MP) up to the year 2020 to improve the water environment in the Havana Bay and the priority projects identified for feasibility study. A further discussion will be still required to finalize the MP and the proposed priority projects before commencement the study work for the Feasibility Study on priority projects.

No	Name of Report /	Number of Copies		Main Contents							
•	Time of Submission										
1)	Inception Report, submitted		English 25	Basic approach and method							
	to GTE on July 4, 2002.		Spanish 25	Time schedule of the Study							
				Staffing schedule of the Study							
2)	Progress Report		English 25	Study results up to the end of							
	At the end of Basic Study		Spanish 25	Basic Study in Cuba.							
3)	Interim Report		English 25	Study results up to the end of							
	At the end of Master Plan Study, by March 2002		Spanish 25	Master Plan Study in Cuba							
4)	Draft Final Report	Summary	English 25	All the study results.							
			Spanish 25								
	At the end of Feasibility	Main	English 25								
	Study in Cuba		Spanish 25								
		Supporting	English 25								
		Data and	English 25								
		drawings									
5)	Final Report	Summary	English 50	All the study results with							
			Spanish 30	modifications based on the							
	February, 2004	Main	English 50	of Depublic of Cube							
			Spanish 30	or Republic of Cuba.							
		Supporting	English 50								
		Data and	English 50								
		drawings									

Table 1.1 List of Study Reports

1.3 STUDY AREA

The Study Area is limited to the Bay of Havana and its watershed area, as shown in the Figure 1.1.

1.4 STUDY ORGANIZATION AND STAFFING

1.4.1 STUDY ORGANIZATION

The First Phase Work in Cuba has been undertaken keeping close cooperation with the counterpart staff of GTE, INRH and DPRH/Havana-city and other concerned agencies. The organizational structure for the Study is shown in the following:

Figure 1.2 Organization Chart of the Study

The function of JICA Advisory Committee is to give necessary advice on the Study to JICA. The STEERING COMMITTEE consists of the following members and institutions:

Name of Members	Position	Institutions							
1) Mr. Armando Choy Rodriguez	President	GTE							
2) Mr. Angel Valdés Mujica	Vice President	GTE							
3) Mr. Daniel Alvarez Zamora	Vice President	GTE							
4) Ms. Dolores Merás Morejón	Representative	Division of the Developed Countries, MINVEC							
5) Ms. Ileana Rodríquez	Representative	Division of Asia, Middle East and Oceania, MINVEC							
6) Mr. Jorge Kalaf Maluf Potts	Executive Director	DPRH/Havana-City							
7) Mr. Juan Herrera Cruz		CITMA/Havana-City							
8) Ms. Dalgys Casaña	Specialist	CITMA/Havana-City							
9) Ms. Marilyn Fernandéz	Vice Director	GTE							
10) Ms. Nelida Pérez	Specialist	Department of Physical Planning, Havana City							
11) Ms. Olga E. Alvarez Sánchez	Specialist	GTE							
12) Ms. Maricarmen Vásquez	Specialist	Ministry of Economy and Planning							
13) Mr. José Lara Paz	Vice Director general	GTE							

Table 1.2	Member	of Steering	Committee
-----------	--------	-------------	-----------

1.4.2 COUNTERPART STAFF

Throughout the study period the following counterpart staff have been attached to the Study:

Tasks	Name	Organization
1) Study Coordinator	Mr. Jorge Kalaf Maluf Potts	DPRH/Havana-City
2) Study Coordinator	Mr. Angel Valdés Mujica	GTE
 Water Pollution Analysis, Water Pollution Source, Water Quality Analysis 	Mr. José Fransico Santiago	DPRH/Havana-City
4) Water Quality Analysis, Water Pollution Source Control	Ms. Tamara del Castillo	GTE
5) Water Quality Analysis, Water Pollution Source Control, Legal and Social Consideration, Organization and Human Resource Development	Ms. Antonia Lozano	DPRH/Havana-City
6) Water Pollution Analysis, Environmental Impact Assessment	Mr. Reinaldo Regadera	GTE
7) Water Pollution Analysis, Environmental Impact Assessment	Ms. Marlen Pérez	GTE
8) Environmental Education, Legal and Social Consideration	Ms. María de los A. Hernandez	GTE
9) Wastewater Treatment Facilities Planning,, Water Pollution Analysis	Mr. Valdimir Iglesias	DPRH/Havana-City
10)Wastewater Collection Facilities Planning, Drainage Facilities Planning	Ms. Nancy Chávez	DPRH/Havana-City (Empresa Havana)
11)Wastewater Collection Facilities Planning, Drainage Facilities Planning	Ms. Lourdes M. Aguiar	DPRH/Havana-City (Empresa Oeste)
12)Wastewater Collection Facilities Planning, Drainage Facilities Planning	Ms. Maylín Mardone	DPRH/Havana-City
13)Wastewater Collection Facilities Planning, Drainage Facilities Planning, Map Information	Mr. Yosvany Simón	GTE
14)Construction Planning, Cost Estimate	Mr. Sergio Gómez	DPRH/Havana-City
15)Physical Planning	Ms. Maribel Pérez	DPPFA

Table 1.3	Counterpart	t Staff
1 <i>ab</i> i <i>c</i> 1 <i>is</i>	Counter part	Duan

1.4.3 STUDY TEAM

The Study has been implemented with all the assigned for the Phase I, Phase II and Phase III Study in the Republic of Cuba. Members of the Advisory Committee and the Study Team are shown in the Table below.

Name	Designated Task					
Advisory Committee						
1) Ms. Keiko YAMAMOTO	Chairperson					
2) Mr. Takesi SANNOMIYA	Member					
3) Mr. Yukihiro YAMAGUTI	Member					
Study Team						
1) Dr. Harutoshi UCHIDA	Team Leader/ Sewerage Planning					
2) Dr. Sivapragasam	Water Pollution Analysis/ Environmental Impact					
KUGAPRASATHAM	Assessment					
3) Dr. Ryunan MATSUE	Water Quality Analysis/ Water Pollution Source Control					
4) Mr. Jack BANNISTER	Environmental Education/ Legal and Social					
	Consideration/ Organization and Human Resources					
	Development					
5) Mr. Yasuo MOTO	Wastewater Treatment Facilities Planning					
6) Mr. Motoo YANAI	Wastewater Collection Facilities Planning					
7) Mr. Kazuzi SASAKI	Drainage Facilities Planning/Wastewater Collection Facilities Planning					
8) Mr. Masamichi HATTA	Construction Planning/ Cost Estimate					
9) Mr. Mituhiro DOYA	Socio-economy/ Financial Analysis					
10) Mr. Zyouzi YOKOKAWA	Interpreter					
11) Dr. Genyong Liu	Study Coordination (/ Water Quality Simulation Model Specialist)					
12) Mr. Shozo MORI	Environmental Education/Study Coordination					

Table 1.4	Member	of Advisory	Committee and	d Study Team
-----------	--------	-------------	---------------	--------------

1.5 STUDY SCHEDULE

1.5.1 OVERALL STUDY SCHEDULE

The Study is extended for a period of approximately 19 months, starting from June 2002 to February 2004 and is carried out in both Japan and Cuba. The Study in the Republic of Cuba is executed in three phases in the following:

- Phase I, Basic Study; from July to October, 2002
- Phase II, Master Plan Study, from November 2002 to March 2003
- Phase III, Feasibility Study, from May to October 2003

The results of the three phases are all presented in the Work Shop in January 2004 in Cuba.

1.5.2 Phase 1 and Phase II Study Schedule

All member of the JICA Study Team have done the tasks in Cuba to collect the data and information, to conduct field surveys to understand the present situation in the Study Area, and prepare sewerage and drainage master plan (MP) up to the year 2020, and proposed priority projects for the Feasibility Study. The assigned staff of JICA Study Team for the Phase I and Phase II Study Work is presented in Figure 1.3, "Staff Assignment Schedule".

2004 Jan Feb Mar	0.47 0.50				0.47 0.50					0.47		0.47			E/R F/R
2003 Jun Jul Aug Sep Oct Nov Dec	4.2	323		2.97					0;	88	02 (123)	4.20		2.0	
2 b Oct Nov Dec Jan Feb Mar Apr May	ai	2.5		5.0	3.5 	2.5		5.0	5.3						PR/R PHASE 2 IT/R
Jun Jul Aug Sep	0.5		0.5	0.5	1.5	5.0									
NAME	Harutoshi UCHIDA	Sivapragasam KUGAPRASATHAM	Ryuran MATSUE	Jack BANNISTER	Yasuo MOTO	Motoo YANAI	Kazuzi SASAKI	Kazuzi SASAKI	Masamichi HA TTA	Mituhiro DOYA	Shozo MORI	Zyouzi YOKOKAWA	Genyong LIU	Shozo MORI	A A A A A A A A A A A A A A A A A A A
DESIGNA TED TASK	Tearn Leader / Sewerage Planning	Water Pollution Analysis / Environmental Impact Assessment	Water Quality Analysis / Water Polution Source Control	Etwironmental Education / Legal and Social Corsideration / Organization and Hurnan Resources Development	Wastewater Treatment Facilities Planning	Wastewater Collection Facilities Planning		Drairage Facilities Planning	Construction Planning / Cost Estimate	Socio-economy / Firancial Analysis	Environmental Education (2)	Interpreter	Study Coordination		Work in the Republic of CUI Work in JAPAN Selfpay work in CUBA
THE DEVELOPMENT STUDY ON THE IMPROVEMENT OF SEWERAGE AND DRAINAGE SYSTEM FOR THE HAVANA BAY							ule								
JAPAN INTERNATIONAL COOPERATION AGENCY															

Г

CHAPTER 2 PHYSICAL AND SOCIO-ECONOMIC CONDITIONS IN THE STUDY AREA

2.1 PHYSICAL CONDITIONS

2.1.1 GEOLOGY AND TOPOGRAPHY

The Study Area is predominantly plain ranging from 0.7 m in the lowest areas of the basin (Triscornia Cove shoreline) to about 100 m above mean sea level in the southern parts (around Río Hondo dam).

Bordering on most of the bay is a partially marshy low plain, ranging from 0.7 to 10m, occasionally flooded, seated upon Quaternary deposits, extremely modified clay, silt clay, clayey sand and peat. Most of these lowlands have been artificially filled. The Triscornia area is permanently covered with mangrove.

Skirting these lowlands on the northeast and the west is a terraced plain gently sloping into the sea and composed mainly of coralline limestone dating from the Neógeno and friable deposits from the Quaternary.

Both the central and the southern parts of the basin are formed by a hilly plain crossed by a number of streams feeding the tributary rivers. Geologically it is made of argyrose, arenite, aleurolitas, tufa and marl. A number of hills 60 to 80 meters high rise on sandstone.

On the east there is a plain seated on clayey sand, limey clays and sandstone forming a flish terrígeno dating back from the Higher Cretaceous along with hills ranging from 35 to 70 meters made of serpentine rocks.

The area to the northeast is formed by a denuded cliff carved on limestone, marl and clayey limestone abruptly sloping to the south reaching up to about 60 meters high.

2.1.2 METEOROLOGY

The subtropical climate in the Republic of Cuba is strongly influenced by the gentle Northeast Trade winds, which shift slightly to the east in summer. Because of the island's long, tapered shape, few places are far from these moderating sea breezes, and there are no obvious seasonal variations in temperature. The seasons can be divided into two seasons, rainy summer season and drier winter season. The "rainy summer" starts in May lasting until October. And the "drier winter" is from November to April with relatively low precipitation and humidity.

Except in mountain areas, eastern Cuba is slightly warmer than the west. The mean annual temperature is 25.5°C. The humidity ranges from 81% in summer to 79% in winter. The humidity makes it feel hotter than it actually is. The mean annual rainfall is 1,375mm; in the rainy season the island receives 1,059mm, in the dry season 316mm. The rainiest months are September and October. The rainstorms are often short and heavy.

Hurricane season runs from June to November, with the worst storms in September and October. Hurricanes usually form over the Atlantic east of the Lesser Antilles, then move northwest toward Cuba and north into Florida and the Bahamas. Havana and Pinar del Río are generally hit harder and more frequently than the provinces to the east. Such storms are characterized by winds of over 250km an hour and torrential rain.

In the following sub-section, the climate and weather conditions in the Study Area are summarized.

(1) **Temperatures**

The annual highest average temperature in Havana City is 28.8° C and the annual lowest average is 21.4° C. The highest and lowest temperature recorded was 35.8° C and 8.5° C, respectively. The mean average temperature in the warmest months, August, is 27.3° C, while in the coolest month, February, it is 21.6° C.

(2) **Precipitation and Humidity**

The mean annual rainfall is 1,411mm; in the rainy season, May to October, the Havana receives 70% of the total annual rainfall. The rainiest months are September and October. Relative humidity in general is high with an annual average of 79.5%.

2.1.3 HYDROLOGY

Figure 2.1 shows the basin of Habana Bay. Extent of the basin is 68 km^2 . Area of the bay is 5.0 km². Table 2.1 shows the extent of the drainage basins and areas.

Name of Basin	Area, km ²
Habana Vieja	2.6
Dren Arroyo Matedero	6.8
Dren Aqua Dulce	6.5
Rio Luyano	30.0
Rio Martin Perez	13.1
Arroyo Tadeo	2.6
Refinery Area	3.4
Casa Blanca Area	2.6
Cabaña Area	0.4
Total	68.0

 Table 2.1 Drainage Basins and Areas of Havana Bay

Three rivers namely Rio Luyano, Rio Martin Perez and Arroyo Tadeo drain to the bay from southern part of basin with combined river basin area of 45.7 km^2 . Rio Luyano is the largest in terms of basin area, river length and river flow.

There are no permanent river gauging stations in these rivers. Table 2.2 shows the characteristics of rivers.

Item	Rio Luyano	Rio Martin Perez	Arroyo Tadeo	Total						
Basin area, km ²	30.0	13.1	2.6	45.7						
Length of River, km	10.1	6.4	2.3							
Flow in year 2002*, m^3/d	114,860	62,105	8,004	184,969						
Average Yield, L/km ² /s	0.1214	0.1503	0.0976	0.1283						

 Table 2.2 Characteristics of Tributary Rivers to Habana Bay

Source : CIMAB, August 2002

Rio Luyano originates from an altitude of approximately 90 m whereas Rio Martin Perez originates from an altitude of 55 m above MSL (mean sea level). Arroyo Tadeo is an urban stream receiving domestic wastewater.

2.2 SOCIO-ECONOMIC CONDITIONS

2.2.1 POPULATION

The present population of Cuba is approximately 12 million. The area of Cuba is $110,860 \text{ km}^2$ giving an overall population density of 101.2 persons/km2 (Source: National Statistics Office May 2001) which is roughly the same as France. Statistics for year 2000 give a total population of 11, 217,100 of which, 8,445,036 (75%), live in urban areas. Cuba is highly urbanized; hence the rural areas are sparsely populated with quite higher densities in urban areas.

Due to colonization, slavery, and waves of immigration, Cuba has a mingling of different races. There are native Cubans, Europeans (mainly Spanish), and Africans. It is officially estimated that about 66% of the population is of European origin, 22% are of mixed race, and 12% African.

Unlike many other Caribbean and Latin American countries, Cuba has the profile of an advanced country. Cuba has a free and advanced education and healthcare system, hence infant mortality is low (7.2 per 1000 born alive in 2000), life expectancy high (74.83 years both male and female) (1994-1995), and fertility low (1.9 children per female). One third of the population is between the ages of 14 and 27 years. (Source: Annual Demography of Cuba 2000)

The City of Havana has a total population of 2,186,632 inhabitants (National Statistics Office, May 2001), which represents about 20% of the total population of Cuba and approximately 26% of its total urban population. The average population density in the City varies from a little over 1,000 persons/ha in the central area, and less than 50 persons/ha in the peripheral zones.

From 1997, the population of the City of Havana has decreased slightly and is getting close to an aging process. It is expected that by the year 2005, the population in the province will be about 2,168,404, which reflects the tendency of a population decrease.

With the exception of the municipality of Plaza de la Revolucion, the population over the period 1996-1999 decreased in the central municipalities (La Habana Vieja, Centro Habana, Cerro, Dies de Octubre and Playa), while in the periphery municipalities and the middle zone the population has increased due to immigration from the central municipalities. (Source: PGOTU 2000. DPPF City of Havana).

Tuble 2.6 T optimiton consus data and commutes							
Year	1981 census	1995	1996	1997	1998	1999	2000
Population	1,929,432	2,184,990	2,204,333	2,197,706	2,192,321	2,189,716	2,186,332
% change			0.885	-0.301	-0.245	-0.119	-0.155

 Table 2.3 Population census data and estimates

DPPFA has estimated the population within the basin of Havana Bay at 795,144 as of 1996. Table 2.4 shows the estimated population within the Havana Bay basin for the year 2000. The study area contains about 35% of population of Ciudad de la Habana Province and 51.6% of the ten municipalities which falls within the basin area. Average population density within the basin is approximately $11,250/\text{km}^2$.

Municipality	Total Municipal Population	Population within Basin		
Plaza de la Revolucion	173,416	18,359		
Centro Havana	153,878	73,684		
Havana Vieja	99,499	97,026		
Regla	42,870	40,764		
Havana del Este	184,634	17,675		
Guanabacoa	106,618	24,848		
San Miguel del Padron	154,675	145,803		
Diez de Octubre	230,865	217,038		
Cerro	135,729	97,889		
Arroyo Naranjo	199,317	31,676		
Total	1,481,501	764,762		

 Table 2.4 Population within the Havana Bay Basin, Year 2000

2.2.2 ECONOMIC CONDITIONS

(1) **Employment and Salaries**

The following table shows the total employees in the economy, including the number of people employed in the various sectors, whether of labor age or not. The figures include employees of state organizations and all other sectors of the economy. The table shows the trend since 1996, and compares total employment in mixed and state organizations between Cuba and the City of Havana.

Categories	1996		2000	
		%		%
Cuba				
Total Employees	3,626.7	100.0	3,843.0	100.0
State entity	686.0	80.8	2,978.2	77.5
Non-state entity	20.7	9.2	864.8	22.5
Mixed enterprises		0.4	26.8	0.7
Mixed & State Organizations				
Total for Cuba	2,961.4	100.0	3005.0	100.0
Total for City of Havana	777.3	24.9	800.5	26.6

 Table 2.5 Total Employees in the Economy (x 1000 workers)

Source: National Statistics for year 2000

As can be seen, the City of Havana with about 20% of the total population has 26.6% of employees in mixed and state organizations.

Regarding salaries, the following table shows the comparison between Cuba and the City of Havana in mixed and state organizations.

Tuble 210 Suluries in Mixed and State Entitles (A minibils of Tesos)						
Location	1996	1996	2000	2000		
	Accrued	Monthly	Accrued	Monthly		
Cuba	6,578.4	194	7,859.8	234		
City of Havana	1,756.7	203	2,396.8	246		

 Table 2.6 Salaries in Mixed and State Entities (x millions of Pesos)

Source: National Statistics for year 2000

The total number of employees in Cuba was estimated to be 3.843 million in 2000, with an average monthly salary of Ps 243. About 77.5% of employees work in state organizations. For

the Whole of Cuba, the ratio of male to female workers is 62%/38%, with 47% of males and 66% of females having received high school/college level education.

In the City of Havana, with about 20%, of the total population of Cuba, accrued salaries are about 30% of the total accrued salaries, and Havana has a slightly higher than average monthly salary at Ps 246. In Havana, the ratio of male to female workers is 56%/44%. 64% of males and 75% of females reached high school/college level education.

(2) Urban Life in the Study Area

With a population approaching 2 million, the City of Havana is a prime example of an overcrowded Cuban urban complex. The study area covers a large slice of the inner city where it is usual for grandparents, parents and children to share accommodation due mainly to the acute housing shortage.

Due to the housing crisis, young people live with their parents up to and after their marriage. Overcrowding and lack of privacy may be a contributory factor to the high rate of divorce in urban populations. Children are often looked after by their grandmothers when both parents are working, and it is usual for women to carry out all domestic work.

Much of a Cuban's life is led outdoors, creating a lively urban atmosphere. Cubans are also fond of the beach, but the inadequate transport system means long waits for the crowded "Camello" (Ps 0.20 per trip), or other buses (Ps 0.40 per trip), and it is usual to see many people waiting at strategic places for a lift from motorists.

All Cubans have a "libreta", or ration book, through which basic foodstuffs and other necessities such as rice, beans, salt, sugar, oil, eggs, coffee, soap, toothpaste etc. may be bought, depending upon availability, at special markets at prices much lower than other markets. All workers receive benefits of one kind or another in addition to their basic salaries, most are provided with lunch (sometimes at a nominal cost). Other benefits may include uniforms, transport, recreational trips, soap etc. Public Utilities provide water, electricity, gas and telephone services at affordable prices, and there are multi-channel radio and TV facilities available.

Because of the transport difficulties, many Cubans spend their leisure time with friends and neighbors. Television is very popular with most Cubans, and the women also listen to the radio, whereas the favorite male pass time is dominoes. Culture and music are also popular at the "Casa de la Culture, and "Casa de la Trova". Cubans love music and dancing, and it takes little to start up a party where all age groups join in the special Cuban style of dancing.

(3) Urban Structure of the Study Area

Out of the 15 municipalities composing Havana City, 10 are either partially or totally within the Study Area. The technical condition of buildings in 1996 was as follows: Good: 37.3 %, Fair: 34.2 %, Poor: 28.5 %. Thus it is estimated that approximately 63 % of buildings are either in a fair or poor condition, deterioration being concentrated mainly in Centro Habana, Regla and Habana Vieja municipalities.

Deterioration is associated both to the old age of buildings and to the lack of adequate maintenance, whereas in other areas it is mainly derived from the characteristics of buildings themselves, including makeshift houses in areas which have ultimately grown to become slums.

Both the pace of construction of new houses by the Government and the availability of materials for maintenance or construction by the population were seriously affected as of 1990. Consequently, deterioration has become evident not only in houses, but in public places as well.

Habana Vieja Historical Center has for some years been involved in a restoration and rehabilitation plan aimed at recovering public places, hotels, houses and services that form part
of the tangible memory and the built heritage of the city. Despite all the efforts made, a great number of monuments and buildings valuable from a historical point of view are seriously deteriorated. Thus, urgent measures are required to preserve them.

According to the Plan General de Ordenamiento Territorial y Urbanismo passed by the Provincial Assembly of the People's Power for 2001-2005, it is envisaged to implement an integral rehabilitation of a number of residential areas in Habana Vieja, Centro Habana, Cerro and Diez de Octubre municipalities where deterioration is more serious. To this effect, a number of houses are proposed to be built to replace those beyond repair to be demolished up to the year 2005, while simultaneously rehabilitate and preserve the rest, including the technical infrastructure and the services.

Habana Vieja and Centro Habana municipalities and the historical parts of Cerro and Diez de Octubre municipalities are located in the central area of the city where most of the population within the Study Area lives. There is also a high concentration of equipment and services, as well as high soil occupancy. Old residential buildings are predominant in this area where the population density is high and green areas scarce. In Habana Vieja and Centro Habana municipalities the gross population density in residential areas does not exceed 800 persons/ha, among the highest in the city.

In Cerro and Diez de Octubre municipalities there are a few industrial groups and scattered industries in urban areas, as well as some hospitals.

The shoreline of Habana Vieja municipality, an old commercial port, is undergoing a rehabilitation process to replace its present use with a tourist-recreational use. There is also an industrial area within this municipality historically linked to the port where there stand warehouses and old industries such as Otto Parellada power plant, a gas plant and Hacendados fish processing factory.

Plaza de la Revolución municipality, although also located in the central area, differs from the other three municipalities in the sense that large lots with gardens and public gardens are predominant here along with a mix of one- and two-story houses and taller buildings of a more recent date.

Most of Diez de Octubre municipality and the whole of Arroyo Naranjo, San Miguel del Padrón, Regla y Guanabacoa municipalities are located in the intermediate part of the city characterized by an average soil occupancy and a lower population density, as well as a low concentration of services and a predominance of single houses generally having a porch, a garden and a backyard. In San Miguel del Padrón there are a number of industries located along the banks of Luyanó River.

Regla municipality has lost of late the waterfront area due to the presence of port-related facilities built in public places that degrade the shoreline. In Guanabacoa municipality, on the other hand, there are scattered production facilities and a large area devoted to the long-term industrial development.

Some empty lots, mainly in Arroyo Naranjo, San Miguel del Padrón and Guanabacoa municipalities, are being successfully used for urban agriculture.

(4) Economic Scale and Growth Rate of the City of Havana

The fall of the Berlin Wall in 1989 and the collapse of the Soviet Union in 1991 dealt a severe blow to the economy of Cuba. 1990 saw the inauguration of the "Special period in Time of Peace", heralding hard times for all Cubans. Factories were forced to close as investment was cut back, causing unemployment. Necessary energy saving actions led to power supply cuts by the electricity authority and a cut back in public transport.

In the first half of the 1990's, Cuba adopted more liberal policies with some degree of free market activities and found economic partners other than the old soviet block, to form joint ventures with foreign capital. Previously 80% of trade was with the soviet block countries. Capital flowed mainly from Canada, Mexico and Europe and joint ventures were initially formed in the oil industry, tourism and the telecommunications and mining sectors.

In the early 1990's Cuba's GNP shrunk by 37%, however, by the middle of the 1990's the economy showed signs of recovery, albeit slow, with increases in the GNP of around 1% between 1994 and 1998. The opening up of all sectors of the economy to foreign investment in 1995 (except defense, health and education), led to the current upward trend. However, external forces, particularly the USA's Helms-Burton Act has restrained willing investors with the threat of the loss of their markets in the USA. Should this threat be removed the Cuban economy is in a position to rapidly expand. The GDP data are summarized as follows:

	Year 1996	Year 1997	Year 1998	Year 1999	Year 2000
Total GDP (Million pesos)					
At current prices	22,815	22,952	23,901	25,504	27,635
At constant (1981) prices	14,218	14,572	14,754	15,674	16,556
% change, year on year	7.8%	2.5%	1.2%	6.2%	5.6%
By expenditure (Million pesos at	constant 19	81 prices)			
Private consumption	6,085	6,120	6,315	6,599	6,904
Government consumption	4,749	4,809	4,957	5,000	5,133
Gross fixed investment	1,166	1,180	1,254	1,615	2,185
External balance	2,403	2,375	2,302	2,586	2,467
Statistical discrepancy	-185	87	-74	-125	-132
Total	14,218	14,572	14,754	15,674	16,556
By sector (Million pesos at consta	unt 1981 pri	ces)			
Agriculture	1,075	1,074	1,018	1,123	1,253
Industry	4,949	5,314	5,490	5,843	6,168
Mining	177	182	184	186	213
Construction	539	556	588	632	694
Electricity, gas & water sup	398	422	427	430	468
Manufacturing	3,835	4,155	4,291	4,595	4,794
Services	8,193	8,185	8,247	8,708	9,135
Total	14,218	14,572	14,754	15,674	16,556

Table 2.7 Gross Domestic Product

Sources: Banco Central de Cuba

With almost one in five Cubans being residents of Havana, the poor national economic situation was reflected even more so in Havana. There are 5 industrial areas, approximately 13 industrial groups and 2 free zones in Havana City. There are in general 1,961 facilities in the industrial sector covering 21 branches of the economy, among the most important of which are power generation, chemicals, food, fishing, textiles, and liquor production.

The industrial sector was seriously hit in the early 90's. It was then that foreign investment was introduced allowing to boost the industrial sector with the setting up of free zones and the implementation of technological changes.

(5) Trade Trend

Big export items of Cuba are nickels and sugars. In 2000, export earnings from nickel overtook sugar earnings for the first time. Those two items together account for around 60 percent of total export earnings. Fuel and foodstuffs have been major import items. These two items still account for about one third of total imports. However the recent fall in their shares signifies the diversification of import items.

						(Millio	n Pesos)
	1994	1995	1996	1997	1998	1999	2000
Export							
Sugar	760	714	976	853	599	463	453
Nickel and other mineral products	201	331	423	416	345	410	599
Tobacco products	71	102	109	161	192	205	166
Fish	100	123	126	128	104	97	92
Agricultural products	41	45	39	39	59	43	41
Other products	158	177	192	222	214	278	326
Total	1,331	1,492	1,866	1,819	1,512	1,496	1,676
Import							
Foodstuffs	467	611	718	725	704	722	672
Fuel	773	873	976	990	687	731	1,158
Chemicals	166	308	296	399	420	429	419
Machinery & equipment	196	427	562	856	1,130	1,144	1,202
Other imports	414	664	1,017	1,018	1,240	1,323	1,378
Total	2,017	2,883	3,569	3,987	4,181	4,349	4,829

Table 2.8 Export and Import Composition

Source: Anuario Estadistico de Cuba 2000

The trade trend can be also demonstrated by the number of ships arriving at Havana harbor. Arrivals reduced dramatically from 1989 to 1992, coinciding with the international political changes in that period. Annual arrival of ships was halved from 1865 to 905 over this four year period as trade with the Soviet Union collapsed, factory operations were scaled back, and production of export goods, particularly sugar were reduced. Arrivals started picking up in 1993, and by year 2000 had increased by about 70%. However this figure is still about 25% lower than the 1989 total. The figure for 2001 and the information to date for 2002 shows that arrivals have declined to the mid 1990 level. The following table shows the accumulated annual total of ship arrivals:

						0				-			
Year	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
No. of													
annual	1,865	1,631	1,303	905	922	1,018	1,103	1,135	1,093	1,064	1,217	1,382	1,152
arrivals													
C													

 Table 2.9 Shipping Arrivals, Havana Harbor

Source: GTE

(6) Tourism Industry Trends

The Tourism industry was one of the first sectors of the economy to be involved with foreign capital. Since the creation of the Ministry of Tourism in 1994, and the passing of the Foreign Investment Law in 1995, 13 major organization, including mixed enterprises and international operators have been formed, including Cubanacan Corporation SA, Turism Group Gaviota SA, Hotel Group Gran Caribe, and Horizon Hotels.

Tourism has become a priority area in the Cuban economy with its ability to generate foreign currency and to expanding employment opportunities. Varadero provides for "sun and sand" holidays but Havana provides its World Heritage Center and other tourist areas, namely Marina Hemingway, Monte Barreto, Vedado and Playas del Este.

The following tables show the statistics for tourist arrivals, accommodation, and income:

Cuba	1994	1995	1996	1997	1998	1999	2000
International Arrivals	0.619	0.745	1.004	1.170	1.416	1.603	1.774
Total Tourists	0.617	0.742	0.999	1.153	1.390	1.561	1.741
Tourism Income (US\$)	0.850	1.100	1.333	1.515	1.759	1.901	1.948
Source: National Statistics for year 2000)						

· · · · · · · · · · · · · · · · · · ·

urce: National Statistics for year 2000

Cuba	1994	1995	1996	1997	1998	1999	2000
No. of Tourist Hotels etc.	191	222	237	252	269	285	288
Total No. of Rooms	27 401	30 387	31 952	33 338	38 156	39 890	40 303
Total No. of Beds	56 108	63 006	65 543	66 813	76 514	82 368	83 753
Occupancy Rate %	52.7	55.9	64.9	77.9	78.3	73.1	74.3
Havana							
Total No. Tourist Hotels etc.	50	54	58	64	69	69	70
Total No. of Rooms	9 374	10 666	10.208	10 661	11 770	11 781	11 947
Total No. of Beds	19 538	21 277	20 274	21 038	23 454	23 770	23 839

Table 2.11 Statistics for Tourist Accommodation

Source: National Statistics for year 2000

The majority of tourists are from Canada and Europe and in consideration of the past trend, the total number of tourist arrivals is likely to continue to increase, with a corresponding increase in revenue which will, by now, have exceeded US\$ 2 billion per year.

Havana has about 28% of the rooms/beds in Cuba, compared to Varadero, which has about 30%. Tourism revenue has increased by 230% from 1994 to 2000, with a corresponding 150% increase in the number of beds. The current occupancy rate of about 75% leaves some room for a further increase in tourist revenue as the accommodation expands.

2.2.3 PUBLIC HEALTH CONDITIONS

Cuba is a healthy country. Yellow fever. Polio, malaria, diphtheria, measles and mumps, and leprosy were eradicated. Same as in developed countries, the main causes of death are heart disease, strokes, and malignant tumors.

One of the high-risk potentials to the public health may be air pollution. The emissions of particles, smokes, gases from the factories and vehicles may cause air pollution and give risks to the public health. A continuous air pollution monitoring system has not been established in the Study Area.

Data of diseases whose morbidities are relevant to the development of water supply and sewerage were collected. Acute diarrhea, typhoid fever, viral hepatitis, and acute respiratory disease are traceable among those diseases. Table 2.12 shows comparative incidence data of Cuba, the Havana City, and 10 municipalities in the study area. The morbidities in the same areas are presented in Table 2.13. The tendencies are depicted in Figure 2.2. Collected data covers the years 1999 through 2001. It should be noted that nationwide incidences of all those disease show a decrease in the year 2001 compared with the year 1999 despite the population increase. In the Havana City however, the population has decreased over that period. On the contrary, the incidence of acute respiratory disease in the same area has increased. Municipality-wise, Regla stands out from others in a sense that the incidences of acute diarrhea, viral hepatitis, and acute respiratory disease have increased although the population has decreased. During this period Cuba has been recovering the industrial activity in general. A likely reason is that the population of Regla has been more exposed to environmental contamination than other areas because of the proximity to various industrial activities. It can be said that the development of sewerage system would be helpful in reducing the incidences of those diseases.

		Total Cuba											
Disease	Year		Total Havar	na City									
				Habana	Pagla	Habana del	Dlozo	Centro	Guanahaaaa	Son Migual	Diez de	Carro	Arroyo
				Vieja	Regia	Este	Flaza	Habana	Guanabacoa	Sall Wiguel	Octubre	Cello	Naranjo
Acute diarrhea	1999	953,696	261,412	10,121	2,435	21,063	13,762	13,197	7,830	13,082	19,926	8,981	21,414
	2000	862,580	244,574	10,767	2,274	16,209	10,807	9,588	6,259	11,156	18,181	8,356	20,159
	2001	868,477	249,329	9,360	2,994	16,326	11,001	8,751	5,794	10,733	18,887	8,717	23,842
Typhoid fever	1999	131	7	1	0	3	0	2	1	0	0	0	0
	2000	37	1	1	0	0	0	0	0	0	0	0	0
	2001	24	5	0	0	0	0	2	0	1	1	0	0
Viral hepatitis	1999	18,119	4,327	125	122	233	251	130	141	219	272	215	401
	2000	18,317	3,264	97	55	226	119	150	161	402	266	208	355
	2001	14,850	2,210	83	144	206	93	157	183	253	161	140	156
Acute respiratory	1999	5,216,286	1,125,798	41,936	12,456	106,128	61,297	55,501	44,780	58,634	99,762	46,348	100,615
Disease	2000	4,823,831	1,140,390	45,292	13,250	97,700	57,748	51,061	39,224	56,712	99,983	44,869	91,524
	2001	4,873,390	1,175,258	45,031	19,763	99,162	61,346	47,430	38,039	53,468	95,771	50,571	94,781
Population	1999	11,180,099	2,189,716	96,479	42,988	183,857	173,479	156,152	106,838	154,791	232,828	135,809	199,206
	2000	11,217,100	2,186,632	95,499	42,870	184,634	173,416	153,878	106,618	154,675	230,865	135,729	199,317
	2001	11,243,358	2,181,535	94,966	42,390	185,468	172,045	150,877	106,374	154,323	229,626	135,261	199,720

 Table 2.12 Incidence of Diseases Related to Water Supply and Sewerage

Source: Havana City

Table 2.13 Morbidity of Diseases Related to Water Supply and Sewerage

					0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	,					
		Total Cuba											
Disease	Year		Total Havar	na City									
				Habana	Regla	Habana del	Plaza	Centro	Guanabacoa	San Miguel	Diez de	Cerro	Arroyo
Acute diarrhea	1999	85,303	119,382	104,904	56,644	114,562	79,329	84,514	73,289	84,514	85,582	66,130	107,497
	2000	76,899	111,850	112,745	53,044	87,790	62,318	62,309	58,705	72,125	78,752	61,564	101,140
	2001	77,244	114,291	98,562	70,630	88,026	63,943	58,001	54,468	69,549	82,251	64,446	119,377
Typhoid fever	1999	12	. 3	10	0	16	0	13	9	0	0	0	0
	2000	3	0	10	0	0	0	0	0	0	0	0	0
	2001	2	. 2	0	0	0	0	13	0	6	4	0	0
Viral hepatitis	1999	1,621	1,976	1,296	2,838	1,267	1,447	833	1,320	1,415	1,168	1,583	2,013
	2000	1,633	1,493	1,016	1,283	1,224	686	975	1,510	2,599	1,152	1,532	1,781
	2001	1,321	1,013	874	3,397	1,111	541	1,041	1,720	1,639	701	1,035	781
Acute respiratory	1999	466,569	514,130	434,665	289,755	577,231	353,340	355,429	419,139	378,795	428,479	341,273	505,080
Disease	2000	430,043	521,528	474,267	309,074	529,155	333,003	331,828	367,893	366,653	433,080	330,578	459,188
	2001	433,446	538,730	474,180	466,218	534,658	356,570	314,362	357,597	346,468	417,074	373,877	474,569

(figures per 1,000,000 inhabitants)

Note: Bold and italic figures denote that the morbidity increased in the year 2001 compared with the year 1999.

Source: Havana City

2.3 URBAN INFRASTRUCTURE

2.3.1 URBAN PLANNING AND LAND USE

Present land use in the Study is summarized in the table below.

Land use	Area (km ²)	Ratio (%)									
1. Residential and commercial areas	40.55	61									
2. Industrial area	13.20	20									
3. Agriculture	6.25	10									
4. Parks and green areas	4.00	6									
5. Reserved area	2.00	3									
Total	66.00	100									

Table 2.14	Present	Land	Use

Source: Estudio de caso: Bahía de La Habana, Cuba, under "Proyecto GEF/RLA/93/G41Proyecto Regional Planificación y Manejo de Bahías y Areas Costeras Fuertemente Contaminadas del Gran Caribe"

The ratio of residential, commercial and industrial areas reached more than 80%, indicating high urbanization.

2.3.2 WATER SUPPLY CONDITIONS AND FUTURE PLAN

Water supply conditions and future plans are described below based on a series of interview survey and the report of the city of Havana prepared by INRH.¹

Present public water supply system provide the service to about 2.2 million people of 15 municipalities in the city of Havana.

There are 53 water sources for water supply and their total intake volume is about 480.7 million m^3 /year (1.317 million m^3 /day). Forty water sources are appropriate for drinking water having intake volume of 475 million m^3 /year (1.30 million m^3 /day), and 13 water sources are brackish having intake volume of 5,694 x 1,000 m^3 /year (15,600 m^3 /day). Thirty-seven out of forty water sources are groundwater of deep wells and the remaining three water sources are surface water of reservoirs.

The groundwater is treated by chlorine gas or sodium hypochlorite for disinfections, and then conveyed by transmission main and buster pumping stations and distributed directly by pumps or through high-elevated distribution tanks. The surface water is treated at the water purification plant, Planta de Filtros, by the rapid sand filtration process, using aluminum sulfate as a coagulant, lime as for pH adjustment and chlorine gas as disinfectant. The design capacity of the plant is 600 l/sec (51,840 m³/day) and actual production capacity is 500 l/sec (48,400m³/day). Thus the daily water volume taken or produced at water resources is summarized as follows: the total water volume of 1,317,000m³/day, the treated surface water volume of 1,268,600m³/day. The percentage of groundwater source is more than 96.6%, thus the almost all of water supplied to the city is groundwater origin.

The water taken and treated is conveyed through transmission main and distributed water distribution networks. The water transmission main developed are 374 km in total length, having the diameter of 12"" to 78" (300 mm to 2,000 mm). The distribution pipes installed are 3,594 km in total length. Pipe materials are cast iron and center-steel used for transmission main and cast iron and asbestos cement used for distribution pipes.

¹ Estudio sobre los ciclos del agua en la Habana,1997

From the total intake volume of 4,806 million $m^3/year$ (1.32 million m^3/dy), the unit water volume supplied by capita can be calculated as 604 liter per capita per day (lpcd) with the service population of 2,180,000. The figure of unit supply volume is not small compared the same scale of cities. However, in the actual situation, the intake water is lost through the production process, transmission mains, pumps and water distribution networks. A hearing survey estimates about 50% of intake water is lost through transmission mains due to the lack of capacity and age.

Water supply conditions in the city of Havana, 24 hours continuous water supply is limited, intermittent water supply, averagely about 10 hours supply, is commonly practiced. Thus individual water storage tanks are commonly used.

The Cuban water supply standards (Norm) set a per capita water supply volume: 220 lpcd of domestic water in the city having 500,000 population and 470 lpcd including water for institutional and public purposes parks, roads.

A future plan for improving the water supply conditions and water supply system is prepared for the city of Havana by INRH under the finance of Europa-Union.¹

2.3.3 SOLID WASTES MANAGEMENT

The solid wastes management is responsible for Havana City. An appropriate solid wastes management is essential for healthy urban life and for tourist industry.

A study on solid wastes management "MANEJO DE RESIDUOS SÓLIDOS URBANOS, RECINTO PORTUARIO DE LA HABANA, Ciudad de La Habana, diciembre 2001" reports estimated solid wastes production in an area of Havana Bay and proposes an efficient solid wastes management to solve the ever increasing solid wastes.

The study report estimated the solid wastes production and characteristics as shown in the table below:

Generating	Population Equivalent	Unit production rate, (kg./ capita/day)	Weight (ton/day)	Volume (m ³ /day)	Density (kg/m ³)	Percentage in weight (%)
Port facilities	3,267	0.4	1.3	9.9	131	25
Chemical industry	1,122	0.4	0.4	3.8	104	8
Petroleum industry	2,184	0.4	0.9	7.4	121	17
Food industry	1,748	0.4	0.7	4.5	156	13
Other indutry	3,381	0.4	1.4	12.3	114	27
Domestic	1,331	0.4	0.5	4.0	126	10
TOTAL	13,033		5.2	41.9		100

 Table 2.15 Production and Characteristics of Solid Wastes in the Port Enclosure

Source: "MANEJO DE RESIDUOS SÓLIDOS URBANOS, RECINTO PORTUARIO DE LA HABANA, Ciudad de La Habana, diciembre 2001"

Table 2.16 summarizes characteristics of main land disposal sites in Havana City. Table 2.17 shows distance of land disposal sites from the municipalities concerned. The figures in these tables were prepared in 1990, these figures needs to be updated but the magnitudes may be

¹ Estudio sobre los ciclos del agua en la Habana,1997

useful to consider. disposal plans of sludge produced in the wastewater treatment plans to be constructed in the Havana Bay basin. The table 2.16 presents that the location of the sites are closed to the municipalities concerned and the expected usage time is very limited. Therefore, to secure the prominent land disposal sites is very important for the city authority.

The study on solid wastes management "MANEJO DE RESIDUOS SÓLIDOS URBANOS, RECINTO PORTUARIO DE LA HABANA, Ciudad de La Habana, diciembre 2001" proposes: an introduction of selective collection of solid wastes, valuable and possible to use recycled, and construction of primary treatment facilities aiming recycle use of solids wastes.

			in the	Havana City		
Name of Disposal Site	Time limits (year)	Number of year used	Soil type	Depth of ground water level	Daily Disposal Capacity (ton/day)	Equipments installed
Guanabo East	2000	22 yrs	Rocky	8 m	154.1	4 Bulldozer
8 Vias East	2003	22 yrs	Clay	10 m	32.6	3 Bulldozer
Jaimanitas West	2005	20 yrs	Rocky	7 m	20.0	3 Bulldozer
Barrera Este	2005	20 yrs	Rocky	8 m	20.0	2 Bulldozer
Calle 100 West	2010	20 yrs	Clay	4 m	615.0	5 Bulldozer

 Table 2.16 Features and Characteristics of Main Solid Wastes Land Disposal Sites in the Havana City

Source: Dilección Provincial de Servicios Comunales, 1990, Ministry of Public Health

Table 2.17	Distance of	of Public	Wastes Dis	posal Sites	from N	Municipa	lities	concerned

Name of Disposal Site	Municipality, discharging solid wastes	Distance (km)
	Guanabacoa,	0 - 5
Guanabacoa (Este)	Habana del Este,	6 -12
	San Miguel del Padrón,	6 -10
	Regla	4 - 7
8 Vias(East)	Industries from the 15 Municipalities	0 -20
	Playa	0 - 8
Jaimanitas (West)	La Lisa	3 - 7
	Marianao	3 - 5
	Plaza	7 -10
	Habana del Este	0 - 9
Barrera (East)	Guanabacoa	3 - 9
	Regla	4 - 6
	Habana Vieja	14-17
Calle 100 (west)	Centro Habana	10-15
	Cerro	4 - 8
	Plaza	5 - 8
	10de Octubre	5 -10
	Arroyo Naranjo	6 -12
	Boyeros	3 -14
	La Lisa	5 -10
	Marianao	2 - 6
	Playa	6 -10

Source: Dirección Provincial de Servicios Comunales, 1990, Ministry of Public Health

CHAPTER 3 ENVIRONMENTAL CONDITIONS, LAWS AND STANDARDS

3.1 GENERAL

Quality of tributary rivers and the bay is briefly reviewed in this chapter based on information available in annual reports of GTE and GEF Project Reports for which investigations were carried out by CIMAB.^{1) to 4) and 8) to 11)} Results of the surveys carried out by JICA Study Team on tributary rivers and the bay are summarized. Current situation of the industrial wastewater, one of major pollution source to the Havana Bay, is also studied and reported through an industrial wastewater survey in this Study. Laws and standards on water pollution control in Cuba are also summarized in this chapter.

3.2 TRIBUTARY RIVERS

There are three (3) tributary rivers flowing into Havana Bay. Table 3.1 shows major characteristics of these tributary rivers.

Item	Rio Luyano	Rio Martin Perez	Arroyo Tadeo
Length (km)	10.1	6.4	2.3
Catchment Area of the	30	13.1	2.1
Basin (km ²)			
Population in the Basin	242,000	73,000	14,000
(person, in 2000))			
Flow Rate (m^3/d)	71,970 (1985)	26,093 (1981-1985)	5,247 (1981-1985)
(at river mouth)	79,666 (1990)	35,597 (1996)	8,004 (2002)
	120,960 (1996)	39,819 (Sep., 2001)	
	114,860 (2002)	62,105 (May, 2002)	
Major Pollution Sources	Domestic wastewater,	Domestic wastewater,	Domestic wastewater,
	industrial wastewater	industrial wastewater	and rain water (in
	and rain water (in	and rain water (in	case of rainfall)
	case of rainfall	case of rainfall	

 Table 3.1 Major Characteristics of Tributary Rivers

Source: CIMAB 1), 2),4)

3.2.1 EXISTING DATA OF RIVER WATER QUALITY

There is no periodic monitoring system for monitoring water quality of tributary rivers, however, CIMAB and CENHICA etc. have analyzed the rivers water quality in some projects financed by GTE, GEF and Enterprise of Hydraulic Usage (EAH).

<u>Organics and Nutrients</u>: Results reported by CIMAB for Rio Luyano, Rio Martin Perez and Arroyo Tadeo (Reference1, 2 and 3) are summarized in Table 3.2 for observations carried out in the year 2000/2002.

		L L		J		Cuban	Iananese
_	Rio L	uyano	Rio Mar	tin Perez	Arroyo	Standard	Environ.
Parameter	Wet season	Drv Season	Wet season	Dry Season	Tadeo	NC-27	Standard for
	(n=29)	(n=30)	(n=27)	(n=27)	(n=1)	(C)	Rivers (E)
Temp.,	29.0	26.6	29.0	29.5	-	< 50	-
°C	(27.0-32.0)	(23.5-29.4)	(24.4-33.0)	(25.9-34.4)			
лU	7.58	7.83	7.91	7.51	-	6 - 9	6.0 - 8.5
рп	(7.30-7.82)	(7.65-8.04)	(7.03-8.64)	(6.44-8.02)			
DO,	-	-	2.82	1.15	-	-	>2.0
mg/L			(0.0-5.4)	(0.63-4.25)			
BOD ₅ ,	53	46	16	22	192	< 60	<10
mg/L	(6-205)	(16-80)	(8-26)	(8-48)			
COD,	90	72	25	45	320	< 120	-
mg/L	(16-1,116)	(35-117)	(14-47)	(18-81)			
SS,	21	46	19	18	10	-	No floating
mg/L	(6-80)	(5-97)	(6-62)	(10-47)			wastes
T-N,	-	-	5.55	-	12.4	< 20	-
mg/L							
TKN,	6.72	12.88	4.48	4.48	-	-	-
mg/L	(1.12-15.68)	(6.72-19.04)	(2.24-17.92)	(2.24-7.84)			
NH ₃ -N,	4.66	7.14	1.77	-	-	-	-
mg/L	(0.93-9.42)	(5.22-8.68)	(0.28-3.08)				
Organic-	2.15	5.75	2.05	-	-	-	-
N, mg/L	(0.1-10.08)	(0.28-11.95)	(0.02-16.52)				
Т-Р,	0.36	4.09	0.59	0.69	5.1	< 10	-
mg/L	(0.07-0.81)	(0.71-15.89)	(0.07-2.04)	(0.21-4.8)			
Oil and	2.6	0.74	0.06	0.3	0.02	<30	-
Grease,	(0.30-18.0)	(0.04-1.73)	(0.0-70.1)	(0.02-2.35)			
mg/l							

Note: 1 Median value is shown along with maximum and minimum values in parenthesis, when available and n is the number of data.

2 Sampling periods for Rio Luyano were Jun./Jul. 2000 for wet season and Feb./Mar. 2001 for dry season, and for Rio Martin Perez were Sep./Oct. 2001 for wet season and May/Jun. 2002 for dry season. For Arroyo Tadeo it was in 2002.

3 NC-27 is the discharge standard to inland surface waters, and Class C is applied for the receiving water for industrial water supply purpose. Comparison is made considering rivers as a discharge and not be construed as an environmental standard for river.

- 4 Japanese water environmental standard for rivers (E), the lowest level, is applied for Class 3 of industrial water supply and environmental protection.
- 5 TKN (Total Kjeldahl Nitrogen) is at times reported as T-N.

As shown in Table 3.2, the concentrations of BOD and COD in Luyano, Martin Perez and Arroyo Tadeos show very high values. The concentrations of T-N and T-P are also considered to be a relative high level. Water quality of the rivers shows serious organic and nutrient pollution.

Table 3.3 shows general trend of organic and nutrient quality of rivers. Water quality improvement from 1985 to 1996 may be attributed to economic slowdown. Between 1996 and 2002, water quality degradation is evident except in Rio Luyano, which was mainly due to decreased industrial discharge of distillery wastewater through process modifications in the distillery.

Parameter		Rio Luyano)	Rio	Martin Per	Arroyo Tadeo		
1 arameter	1985	1996	2002	1985	1996	2002	1985	2002
Flow, m ³ /d	71,970	120,960	114,860	26,093	35,597	62,105	5,247	8,004
BOD ₅ , mg/L	546	236	83	22	10	20	36	192
COD, mg/L	1,205	402	138	56	27	43	88	320
T-N, mg/L	-	39.7	9.3	-	9.0	3.8	61.0	12.4
T-P, mg/L	-	-	-	-	5.1	0.8	34.3	5.1
SS, mg/L	117	94	33	14	35	17	54	10

 Table 3.3 Water Quality of Tributary Rivers 1985-2002

Source: CIMAB ^{1) and 3)}

<u>Heavy Metals</u>: Table 3.4 shows heavy metal concentrations measured in Rio Luyano over a period of 30 days in Jun./Jul 2000 and the maximum limits set for discharge to sewers in Cuban standard NC27 and NC93-105 which set environmental quality for sea water used for fishing. For reference, Japanese standards for the wastewater discharging to sewers and on environmental quality are also shown. None of the measured heavy metals exceeded the NC27, however it should be noted that NC27 as shown in the table is pertinent to discharge to sewers and therefore not construed as acceptable environmental level.

		Cuban S	tandards	Japanese	Standards	
Parameter	Rio Luyano	NC93-105,	NC27,	Discharge to	Environmental	
1	(n=36)	Sea water	Discharge	Sewers	Quality	
		for fishing	to Sewers	Seweis	Quanty	
Cadmium (Cd), mg/L	< 0.005 - 0.018	0.01	< 0.3	0.1	0.01	
Chromium (Cr), mg/L	< 0.020 - 0.054	-	2.0	2	-	
Copper (Cu), mg/L	< 0.010 - 0.034	-	< 5.0	3	-	
Mercury (Hg), mg/L	< 0.02	0.005	< 0.01	0.005	0.0005	
Nickel (Ni), mg/L	< 0.013 - 0.093	-	-	-	-	
Lead (Pb), mg/L	< 0.10	0.1	1.0	0.1	0.01	
Zinc (Zn), mg/L	< 0.013 - 0.234	-	5.0	5	-	

Table 3.4 Heavy Metal Concentration in Rio Luyano

Source: CIMAB¹, Sampling period was Jun./Jul. 2000 for wet season and the number of samples was 36.

<u>Pathogenic Indicators</u>: Fecal coliform concentration in Rio Martin Perez was in the range of 3.3×10^5 to 7.6×10^5 MPN/100 ml in the year 2000,²⁾ which indicates high level of sewage pollution. Similar or higher values are expected in Rio Luyano and Arroyo Tadeo which also receive domestic wastewater discharges.

3.2.2 WATER AND SEDIMENT QUALITY SURVEY OF RIVERS

Water and sediment quality survey of rivers was carried out during October to December 2002 in tributary rivers by CENHICA/CIMAB under the contract with JICA Study Team. Sampling locations are shown in Figure 3.1. Water quality sampling locations were selected to compare the water quality along the river. Sediment quality locations were selected immediately downstream of major industrial discharges along the river reaches in order to understand the effects of industrial wastewater. Table 3.5 shows the details of sampling.

River and	Water Sampling	Locations and Date	Sediment Sample
Drainage Pipes	Wet Season	Dry Season	Locations and Date
Rio Luyano	3 locations (LW1, LW2 and LW3) 17 October 2002 (8:00 to 19:00)	3 locations (LW1, LW2 and LW3) 22 December 2002 (8:00 to 20:00)	5 locations (LS1, LS2, LS3, LS4 and LS5) 17 October 2002
Rio Martin Perez	3 locations (MW1, MW2 and MW3) 18 October 2002 (8:00 to 19:00)	3 locations (MW1, MW2 and MW3) 21 December 2002 (8:00 to 20:00)	3 locations (MS1, MS2 and MS3) 18 October 2002
Arroyo Tadeo	3 locations (TW1, TW2 and TW3) 19-20 October 2002 (8:00 to 7:00)	3 locations (TW1, TW2 and TW3) 23-24 December 2002 (8:00 to 7:00)	2 locations (TS1 and TS2) 18 October 2002
Total	9 locations	9 locations	10 locations

 Table 3.5 Water and Sediment Quality Survey of Tributary Rivers

One composite sample was made at each location combining samples taken at hourly proportional to the river flow. Analytical parameters are as follows:

- Water samples: pH, Water Temperature, conductivity, COD, BOD₅, DO, SS, SO₄²⁻, T-N, NH₄⁺-N, NO₂⁻-N, NO₃⁻-N, T-P, PO₄³⁻-P, SiO₂, Petroleum Hydrocarbon, Fecal Coliform, Phenol, Arsenic (As), Cadmium (Cd), Cobalt (Co), Copper (Cu), Iron (Fe), Total Mercury (Hg), Manganese (Mn), Nickel (Ni), Lead (Pb), Vanadium (V), and Zinc (Zn)
- Sediment samples: Water Content, Grain Size Distribution, Total Volatile Solids, T-N, Total Organic Matter, T-P, Petroleum Hydrocarbon, Clostridium Perfringens, Arsenic (As), Cadmium (Cd), Cobalt (Co), Copper (Cu), Iron (Fe), Total Mercury (Hg), Manganese (Mn), Nickel (Ni), Lead (Pb), Vanadium (V), and Zinc (Zn)

(1) Survey Results of Water

<u>Flowrates</u>: Results of flow measurement at mouth of tributary rivers are shown in Figure 3.2. Comparing with the existing data (see Table 3.1), the average flowrates in Rio Luyano and Rio Martin Perez show higher values, especially in Rio Luyano. The reasons are presumed as following:

- Average flowrates are calculated by the results measured in daytime. Considering the fact that wastewater (especially domestic wastewater) contributes the greater part of river flowrate, and that minimum flow usually occurs during the early morning hours, calculated average flowrates in rivers may have higher values than that of 24-hour average.
- The delayed inflow of stormwater has to be considered because there was a rainfall a few days ago when rivers flowrates were measured in Oct. and Dec. 2002.

In addition, hourly variations of flowrates in Rio Luyano and Rio Martin Perez show a peak value in the morning (10:00 to 12:00), while the peak flowrate in Arroyo Tadeo is presented in the evening (20:00 to 21:00) indicating a similar pattern with domestic wastewater.

<u>**DO**</u>: Variations of DO, organics (BOD and COD) and nutrients (T-N and T-P) in downstream, midstream and upstream of three tributary rivers are illustrated in Figure 3.3. DO is important to aquatic life because detrimental effects can occur when DO levels drop below 4 to 5 mg/l. As shown in Figure 3.3, DO is reduced sharply from 6 mg/l in upstream to 2 mg/l in downstream of Rio Luyano and Rio Martin Perez, which indicates higher level of pollution in downstream of two rivers. For Arroyo Tadeo, DO in all of sections shows a lower level (1 to 3 mg/l) because domestic wastewater contributes the majority of flowrate.

<u>Organics</u>: BOD and COD concentrations of Rio Luyano and Rio Martin Perez show a increasing trend from upstream to downstream, which results in decrease of DO levels. However, comparing with the existing data of BOD concentration of 46 to 53 mg/l and COD concentration of 72 to 90 mg/l shown in Table 3.2, the survey results of BOD and COD concentrations at the mouth of Rio Luyano show lower, 7 to 11 mg/l and COD of 26 to 34 mg/l, respectively. In Arroyo Tadeo and Rio Martin Perez, similar results are observed. These results may indicate the wastewater diluted by delayed inflow and with stormwater.

<u>Nutrients</u>: As shown in Figure 3.3, T-N and T-P concentrations of Rio Luyano and Rio Martin Perez show an increasing trend from upstream to downstream, which means that water quality is getting worse from upstream to downstream due to inflow of industrial and domestic wastewater along Rio Luyano and Rio Martin Perez.

However, this trend is not observed in Arroyo Tadeo. Actually, even at upstream of Arroyo Tadeo domestic wastewater is discharged into the river without any treatment, which results in higher nutrients concentration. Unlike BOD and COD, T-N (5 to 8 mg/l) and T-P (0.5 to 1.8 mg/l) concentrations at the mouth of three rivers show same levels as existing data shown in Table3.2.

In addition, nutrients concentrations in the effluent of rivers have exceeded by far Class IV (T-N<1.0 mg/l; T-P<0.09 mg/l), which is the lowest level of Japanese seawater environmental standards for eutrophication of seawater. Therefore, the influent of river water polluted by T-N and T-P may cause eutrophication of Havana Bay.

Heavy Metals: Analysis results of heavy metals indicate that the concentrations of heavy metals in almost samples are below the detection limit, and no abnormal values are detected. A preliminary survey results on industrial wastewater under the Study will also explain the survey results that there are no factories currently using heavy metals for production in three river basins.

<u>**Pathogenic Indicators</u>**: Fecal coliform concentrations at mouth of Rio Luyano, Rio Martin Perez and Arroyo Tadeo are measured to be 2.4 to 30×10^5 , 0.8 to 17×10^5 , 13 to 160×10^5 MPN/100 ml, respectively. Same as the results of previous monitoring, it is considered that these three rivers are polluted by raw sewage, especially for Arroyo Tadeo.</u>

(2) Survey Results of Sediment Quality

Very limited data are available on sediment quality of the tributary rivers. A unique study on river sediment quality (only heavy metals at three locations) was carried out by Havana University between 1999 and 2000. However, analysis method of heavy metals used by Havana University is different with that of this Study, therefore, it is impossible to compare the results of this Study with the results of Havana University.

In order to identify current situations of sediment quality in the tributary rivers, especially to grasp the effects of heavy metals from industrial wastewater on sediment of rivers, 10 samples were taken in immediately downstream of industrial wastewater discharging outlets. The resulted concentrations of heavy metals in rivers sediments are summarized in Table 3.6. Since no Cuban standards for river sediment or soil are available, EU soil standard for heavy metals are shown in the table for the reference.

	Unit: mg/kg dry weight											
Motal		R	io Luyan	10		Rio	Martin P	erez	Arroyo Tadeo		EU Soil	
wictai	LS1	LS2	LS3	LS4	LS5	MS1	MS2	MS3	TS1	TS2	Standard*	
As	0.3	0.4	0.3	0.3	0.3	0.2	0.3	< 0.2	< 0.2	0.2	_	
Cd	3.0	5.3	5.4	4.1	9.9	3.5	4.6	5.1	5.1	4.3	1 – 3	
Co	15.4	15.3	14.2	14.9	13.5	15.7	16.3	23.8	24.2	14.9	_	
Cu	141	94	105	136	168	87	161	89	146	135	50 - 140	
Hg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	1 – 1.5	
Ni	43.9	42.9	45.5	48.8	47.9	53.5	65.6	286.0	381.0	68.9	30 - 75	
Pb	96	144	124	189	227	131	190	479	134	189	50 - 300	
Zn	168	211	286	359	414	202	422	333	326	304	150 - 300	

Table 3.6 Heavy Metals Contents of Rivers Sediments

Max. Admissible Concentration for EU, 86/278/EC Appendix 1A

As shown in Table 3.6, for all of samples As and Co are detected in the range of 0.2 to 0.4 mg/kg, 13.5 to 24.2 mg/kg, respectively, which is considered to be normal level because common concentration of As and Co in soil is 1 to 50 mg/kg.

Concentrations of Cd, Cu, Ni, Pb and Zn are detected as high concentrations in downstream of Rio Luyano (LS5), Rio Martin Perez (MS2 and MS3) and Arroyo Tadeo (TS1), however, no extraordinary high values are detected. As for the mercury, the detection limit of total mercury (Hg) of 5.0 mg/kg is higher than the value of EU soil standard, it is difficult to evaluate Hg concentration in rivers sediments.

3.3 HAVANA BAY

3.3.1 EXISTING DATA

Water and sediment quality of Havana Bay is monitored by CIMAB twice a year during wet season and dry season at five locations as shown in Figure 3.4. Two locations outside the Bay, one near the existing sewer outfall at Playa del Chivo and the other at Caleta de San Lázaro, are also monitored for water quality. Atares, Marimelena and Guasabacoa are located in where polluted water from urban drains, industries and rivers are discharged and tidal circulation is poor comparing to Centro de la Bahía and Canal Entrada.

<u>DO</u> and Nutrients</u>: Figure 3.5 shows vertical variations of the DO and nutrients in dry season of year 2001. Low DO and high nutrients indicate higher level of pollution. Comparing with Playa del Chivo and Caleta de San Lázaro, pollution level is high at Atares, Marimelena and Guasabacoa. At Centro de la Bahía and at Canal Entrada, DO and mineral nitrogen levels are similar to that outside the Bay but PO₄-P and T-P levels are higher than that outside the bay. Ratio of mineral nitrogen (NH₃-N+NO₂-N+NO₃-N) to mineral phosphorous (PO₄-P) is between 0.7- 4.8 within the Bay compared to 6.4 - 11.7 at Caleta de San Lázaro. Optimal N/P ratio by weight is around 7 and the N/P ratio suggests nitrogen limitation in the bay.

Figure 3.6 shows the variations of DO and major nutrients during year 1986-2001. Pollution level decreased between 1986-90 and 1996 showed by increase in DO and decrease in nutrients (T-P). Between 1996 and 2001, there is a slightly increasing trend in the concentration of nutrients.

Suspended solids data reported were in the range of 98-285 mg/L during year 1986-2001 which is considered to be rather high and contradictory compared with visual observation and the observed transparency (1-4 m) during the sampling in October 2002.

<u>Chlorophyll-a</u> : Variation of chlorophyll-a which is an indicator of eutrophication is 31.2 (1980-83), 6.5(1996) and 25.7 (1999) mg/m³ which shows that eutrophication is on the increasing trend from a low registered in 1999.

Heavy Metals: Figure 3.7 shows the variation at Atarés, Guasabacoa and at Marimelena in comparison with the "reference heavy metal content" which is that of sediment obtained within 3-4 m from the Bay bed at respective location. At all locations, heavy metal content is higher than reference heavy metal content and there is gradual increase of heavy metal content at all locations except for lead (Pb) at Atarés and Nickel (Ni) at Marimelena. Higher than reference level shows external input from urban activities including industries.

Table 3.7 shows variation of heavy metal content in the surface sediments in Havana Bay between 1991-2001. It also shows the standards adopted in Netherlands and Canada for sediments which is considered to be polluted. Zinc (Zn) at Atarés, copper (Cu) at Atarés and Centro de la Bahía has exceeded the Dutch standard values requiring intervention.

Parameter	At	arés		Gua	sabacoa		Marimelena		
r aranneter	1991-1996	1999	2001	1991-1996	1999	2001	1991-1996	1999	2001
Nickel (Ni), mg/kg	19 – 61	53	59	27 - 72	55	61	60 - 244	153	178
Lead (Pb), mg/kg	109 - 405	328	205	26 - 88	15	120	11 - 65	135	116
Zinc (Zn), mg/kg	497 – 969	635	918	107 - 260	230	263	80 - 192	343	340
Chromium (Cr), mg/kg	-	63	73	_	65	82		148	159
Copper (Cu), mg/kg	209 – 329	128	166	65 – 122	78	92	66 – 146	190	170
Cobalt (Co), mg/kg	5 - 8	20	24	8 – 13	18	26	11 – 29	23	24
Iron (Fe), %	0.87 - 2.15	1.04	2.23	2.01 - 3.59	2.04	3.75	2.65 - 4.88	1.98	3.47
Manganese (Mn), %	252 - 308	415	380	252 - 308	415	510	432 - 473	500	510
Organic Content, %	20.3 - 30.2	15.8	21.2	14.3 – 24.7	13.8	14.6	13.3 – 19.9	18.0	16.2

Table 3.7 Surface Sediment ()uality of Havana Bay 1991-2001

Daramatar	Centro de la Bahía			Canal	l Entrada	Dutch	Canada	
rarameter	1991-1996	1999	2001	1991-1996	1999	2001	Std.	Std.
Nickel (Ni), mg/kg	13 – 29	63	61	15 - 44	60	-	210	-
Lead (Pb), mg/kg	31 - 69	238	236	68 – 95	138	-	530	112
Zinc (Zn), mg/kg	64 – 189	698	550	217 - 333	248	-	720	271
Chromium (Cr), mg/kg	-	90	103	-	65	-	380	160
Copper (Cu), mg/kg	28 - 84	238	259	146 – 286	85	-	190	108
Cobalt (Co), mg/kg	4 – 11	18	24	2 - 4	15	-		
Iron (Fe), %	1.44 – 3.76	1.5	2.92	1.52 – 2.41	0.90	-	-	
Manganese (Mn), %	241 - 462	253	365	137 - 241	158	-	-	
Organic Content, %	8.7 – 18.6	17.7	15.1	16.2 – 18.1	9.8	-		

Note: All concentrations are based on dry weight.

Dutch standard, the Netherlands (2000) assuming 10% organic matter and 25% clay shows the intervention value. Canada standard shows the probable effect level of Canadian Sediment Quality Guidelines for Protection of Aquatic Life (1999). Values shown as **238** are above Dutch Intervention Value.

Source: CIMAB and JICA Specialist Report, 2002

Pathogenic Indicator: Variation of fecal coliform is shown in Table 3.8. Fecal coliform concentrations at all of five locations are decreased gradually from 1996 to 2001, but even so fecal coliform at Atarés shows a very high level indicating a remarkable effect of domestic wastewater.

However, the data on *Clostridium Perfringens* in sediments as shown in Table 3.9 shows an increase of their content. Unlike fecal coliforms, Clostridium Perfringens attached to fecal matter and settles as sediment indicating fecal contamination.

		iccinti ation n	i mavana Daj	, <i>match</i> , 1771	
Location	1991-1994	1995-1996	1999	2000	2001
Atarés	$1.0 \ge 10^6$	$4.6 \ge 10^6$	$4.4 \ge 10^6$	$1.6 \ge 10^6$	2.8×10^5
Guasabacoa	4.3×10^4	4.3 x 10 ⁵	$2.4 \text{ x } 10^4$	2.5×10^4	$8.0 \ge 10^3$
Marimelena	2.0×10^3	2.8 x 10 ⁵	3.6×10^3	$1.0 \ge 10^3$	$1.1 \ge 10^3$
Centro de la Bahía	$1.5 \ge 10^5$	$1.2 \ge 10^6$	$5.6 \ge 10^4$	$1.6 \ge 10^4$	$3.1 \ge 10^3$
Canal Entrada	$1.5 \ge 10^5$	2.2×10^6	$2.7 \text{ x } 10^4$	2.1×10^3	6.3×10^3
Source: CIMAP					

Table 3.8 Fecal Coliform Concentration in Havana Bay Water, 1991-2001

Source: CIMAB

Location	1991	1999	2001
Atarés	7.3×10^5	3.6×10^4	2.4×10^{6}
Guasabacoa	1.1×10^{5}	3.6×10^3	2.4×10^5
Marimelena	9.3×10^3	1.1×10^{3}	4.6×10^4
Centro de la Bahía	9.3×10^4	2.3×10^4	2.4×10^5
Canal Entrada	1.5×10^{3}	9.1x10 ¹	-
Course CIMAD		•	

Table 3.9 Clostridium Perfringens in Sediments of Havana Bay, 1991-2001

Source: CIMAB

Petroleum Hydrocarbons: One of the most visible pollution affecting the Bay is due to petroleum hydrocarbons discharged to the Bay and its yearly variation in the surface of the Bay is as shown below. Following the increasing trend until 1995, it is decreasing mainly due to improvements made at the refinery.

3.3.2 WATER AND SEDIMENT QUALITY SURVEY OF HAVANA BAY

Water quality survey of the Bay was carried out by CIMAB during October 3-12, 2002 for wet season and December 18-20, 2002 for dry season under this Study. Figure 3.4 shows six sampling locations. Water samples were taken at three depths (0, 5 and 10 m) at each location. Sediment samples were taken from four locations within the bay. Analysis parameters are as follows:

- Water samples: pH, Water Temperature, conductivity, salinity, COD, BOD₅, DO, SS, SO₄²⁻, T-N, NH₄⁺-N, NO₂⁻-N, NO₃⁻-N, T-P, PO₄²⁻-P, SiO₃-Si, Petroleum Hydrocarbon, Fecal Coliform, Chlorophyll-a, Plankton, Phenol, Cadmium (Cd), Cobalt (Co), Copper (Cu), Iron (Fe), Manganese (Mn), Nickel (Ni), Lead (Pb), Vanadium (V), Zinc (Zn), Total Mercury (Hg) and Arsenic (As),
- Sediment samples: Water Content, Grain Size Distribution, Total Volatile Solids (TVS), T-N, TON, Total Organic Matter, T-P, Petroleum Hydrocarbon, *Clostridium Perfringens*, Cadmium (Cd), Cobalt (Co), Copper (Cu), Iron (Fe), Manganese (Mn), Nickel (Ni), Lead (Pb), Vanadium (V), Zinc (Zn), Total Mercury (Hg) and Arsenic (As)

(1) Survey Results of Water Quality

Cuban Standard NC93-105, 1987 stipulates water quality standards for marine and fresh water used for fishing as shown in Table 3.29. However, there are no standards for seawater environmental protection, especially for the prevention of eutrophication. In the following, Japanese seawater environmental quality standard (DO and COD) related to water pollution, and standards (T-N and T-P) to protect eutrophication are used to evaluate the results of water quality.

<u>**DO**</u>: Concentrations of DO, organics (BOD and COD) and nutrients (T-N and T-P) at three deferent depths in six sampling locations are shown in Figure 3.8 for wet season and Figure 3.9 for dry season, respectively. As shown in Figure 3.8, in wet season DO concentrations inside of the bay (Atares, Guasabacoa, Marimelena and Centro) are very low, especially those in the surface and middle layers. The results are lower than the lowest level of Japanese seawater standards of Class C, DO>2.0 mg/l, which is applied only for conservation of living environment.

However, Figure 3.9 shows that DO concentrations inside of the bay are relatively high in dry season except at Atares and also shows that DO concentrations in the bottom layers and middle layers are lower than those of surface layers. The existing and survey results confirmed that Atares is the worst within the bay.

<u>**Organics</u>**: Figure 3.8 shows BOD concentrations within the bay in wet season are relatively high, especially at Atares, indicating high level pollution. However, in dry season BOD concentrations are lower at all locations except in the surface layer of Atares.</u>

Concentration of COD within the bay both in wet and dry seasons are lower than the Japanese environmental standard of Class C, COD<8.0 mg/l, except in the surface layers of Atares and Centro in wet season.

<u>Nutrients</u>: As shown in Figure 3.8 and Figure 3.9, T-N concentrations in all of samples exceeded 1.0 mg/l of Class IV set as the lowest level of Japanese environmental standard to prevent eutrophication of seawater. Atares shows highest in T-N concentration among other locations. Such a high level of T-N may stimulate algal and aquatic growth and cause eutrophication of Havana Bay. Figures also show that T-N concentrations both in wet and dry seasons are increased gradually from surface to bottom. This trend may indicate nutrients are released from sediments (see the section of survey results of sediment quality).

In wet season T-P concentrations in all of samples are lower than 0.09 mg/l of Class IV, which is lowest level of Japanese environmental quality standard for the prevention of eutrophication of seawater. In dry season, however, T-P concentrations in almost of locations are over 0.09 mg/l, which may cause eutrophication of Havana Bay.

<u>Chlorophyll-a and Plankton</u>: Figure 3.10 shows vertical variations of Chlorophyll-a in wet season and dry season. At Atares in wet season, a very high level (42 to 65 mg/m³) of Chlorophyll-a concentration is observed at three depths, which indicates that eutrophication at Atares area is at high level in wet season.

On the other hand, in dry season high Chlorophyll-a concentration $(9.4 \text{ to } 93.8 \text{ mg/m}^3)$ are observed in surface layers of all locations. High values $(4,048 \text{ to } 12,256 \text{ x} 10^3 \text{ cell/l})$ of plankton biomass observed in the surface layers at all locations within the bay support that eutrophication are being occurred in the upper layer.

<u>Heavy Metals</u>: The concentrations of heavy metals at all locations (wet season and dry season) are briefly summarized in Table 3.10. Heavy metals of As, Cd, Co, Cr, Hg and Pb are not detected in the analytical methods used. A certain level of Cu, Ni and Zn concentrations are

Table 3.10 Hea	Table 3.10 Heavy Metal Concentration in Seawater of Havana Bay									
Parameter	Five locations Inside the Bay	Cuban Standard (NC93-105)								
	(Three Depths)	for Seawater for Fishing								
Arsenic (As), mg/L	<0.080	1								
Cadmium (Cd), mg/L	< 0.005	0.01								
Cobalt (Co), mg/L	<0.010	0.05								
Chromium (Cr), mg/l	<0.020	-								
Copper (Cu), mg/l	< 0.010 - 0.041	-								
Mercury (Hg), mg/L	<0.020	0.005								
Nickel (Ni), mg/l	< 0.010 - 0.022	-								
Lead (Pb), mg/L	< 0.10	0.1								
Zinc (Zn), mg/L	< 0.010 - 0.172	-								

identified at some samples, however, it is considered to be within the range of permissible.

Pathogenic Indicator: Vertical variations of Fecal Coliform at each location both in wet season and dry season are sumarized in Figure 3.10. Similar to the previous results, Fecal Coliform at Atares shows a very high level particularly in the surface layer, indicating effect of domestic wastewater discharge.

Petroleum Hydrocarbons (HC): In the wet season, the resulted concentrations of petroleum hydrocarbons in the surface layers of Atares and Marimelena are 0.84 mg/l and 0.73 mg/l, respectively, which is similar to existing monitoring results in 2001. Nico Lopez, an oil refinery factory, plays an important role in petroleum hydrocarbon pollution.

(2) Survey Results of Sediment Quality

<u>Organics</u>: The survey results of sediment quality in four locations are summarized in Table 3.11. Table 3.11 shows COD concentrations in all sediment samples are very high as 24,000 to 170,000 mg/kg, which indicates that eutrophication in Havana Bay presents severe state. Because typical COD concentrations in eutrophication water are in the range of 5,000 to 30,000 mg/kg. It also shows that high concentrations of organics (COD and TOC) at Atares show the worst situation.

Parameter	Atares	Guasabacoa	Marimelena	Centro				
COD, mg/kg-dry weight	170,000	94,000	24,000	70,000				
TOC, mg/kg-dry weight	128,800	34,400	41,900	67,700				
T-N, mg/kg-dry weight	5,000	1,400	1,100	1,600				
T-P, mg/kg-dry weight	664.2	94.8	40.3	194.5				
HC, mg/kg-dry weight	1,759	1,230	1,660	1,290				
Clostridium Perfringens,	20×10^3	$11_{\rm w}10^3$	40 v 10	40×10^2				
MPN/100 ml	20110	11X10	40X10	40X10				

Table 3.11 Summary of Sediment Quality in Havana Bay

Source: JICA Study Team

<u>Nutrients</u>: As shown in Table 3.11, T-N and T-P concentrations are very high at Atares. The high T-N concentration in the sediment may cause the higher T-N concentration in the bottom layer compared to that of surface layer water at Atares, as mentioned in the previous section on water quality.

<u>**Heavy Metals**</u>: Table 3.12 shows the resulted concentrations of major heavy metals in the sediments. The concentrations at all locations present a relatively low level except Zn at Atares, where Zn concentration (764 mg/kg) exceeds slightly Dutch Intervention Value.

Tuble 2.12 Concentrations of Major Meavy Means in Seaments of Mavana Day									
Parameter	Atares	Guasabacoa	Marimelena	Centro	Dutch				
					Standard				
Arsenic (As), mg/kg	6	3	11	15	-				
Cadmium (Cd), mg/kg	1	< 0.005	< 0.005	< 0.005	-				
Cobalt (Co), mg/kg	23	25	26	21	-				
Chromium (Cr), mg/kg	63	55	46	41	380				
Copper (Cu), mg/kg	149	82	73	49	190				
Mercury (Hg), mg/kg	< 5.00	< 5.00	< 5.00	29	-				
Nickel (Ni), mg/kg	63	63	63	52	210				
Lead (Pb), mg/kg	194	40	2	304	530				
Zinc (Zn), mg/kg	764	160	107	133	720				

 Table 3.12 Concentrations of Major Heavy Metals in Sediments of Havana Bay

Source: JICA Study Team

<u>Pathogenic Indicator</u>: No significant difference for *Clostridium Perfringens* is observed comparing with the existing monitoring data as shown in Table 3.9.

<u>Petroleum Hydrocarbons (HC)</u>: As shown in Table 3.11, the concentration of petroleum hydrocarbons at each location presents a relatively uniform distribution, and shows similar value comparing with the results (1,043 to 1,623 mg/kg) of existing data.³⁾

3.4 INDUSTRIAL WASTEWATER

3.4.1 PREVIOUS SURVEYS

It is reported that there are 110 factories of various sizes and types in the Study area⁵⁾. Among these factories, 55 of them discharge the wastewaters directly into Havana Bay area and 23 discharge the wastewaters into Havana Bay through Rio Luyano. The others discharge the wastewaters into Havana Bay through Rio Martin Perez, Arroyo Tadeo, as well as existing sewers and drainage channels.

The main industrial pollution sources in the Study area are oil refinery and food processing factories, especially, Nico Lopez, an oil refinery plant, plays an important role in pollution sources.

No periodical monitoring system for industrial wastewater has been established due to financial constraints. However, on a study basis industrial wastewater characteristics have been investigated. CIMAB and CENHICA have analyzed the industrial wastewater quality of the major factories in the Study area under some projects such as CUB/80/001, GEF/RLA/93/G41 and GTE-Bahia Habana etc. ^{4 and 5)}. The results of pollution sources survey conducted in 1997 indicated that industrial wastewater contributed one third of total BOD load ⁵⁾.

The previous surveys analyzed the following water quality parameters: BOD, COD, TS, TSS, T-N, T-P, Total Hydrocarbons and Heavy Metals.

Table 3.13 summarizes available information of industrial wastewater on the factories related to the Study Area by receiving water bodies.

Table 3.13 Summary of Factory in the Study Area (1/2) **Receiving Water Body: Havana Bay**

No.	Name of Factories	Type of Industry	Flow Rat (m^3/d)	e Workin g Hour	Treatment Process	Relocatin o Plan	Remarks
1	Muelles Sierra Maestra 1, 2 y 3	Dock	Low	8	1100055	5 i iun	
2	Muelle lancha Habana-Regla	Dock	Low				
3	Muelle de homberos	Fire fighting	2011				
4	Muelle Flota camaronera	Dock	Low	Closed			GTF 2002
5	Muelle Margarito Iglesias	Dock	Low	Closed			0112 2002
6	Muelle Aracelio Iglesias	Dock	Low	_			
7	Muelle Juan Manuel Díaz	Dock	Low				
8	Muelle La Coubre	Dock	Low				
0	Servicios marítimos	Sorvice company	Low				
10	Asociación flota cubana de pesca (Pesport)	Fish processing	LOW	,			
11	Central Termoeléctrica Otto Parellada	Thermoelectric Plant	317	2 2 24H	No	Year 2005	1 Outlet CIMAB 2002
12	Muelle de Tallaniedra	Custom office	Low	- 2-111	110	1001 2000	1 Outlet, Chin ID 2002
12	Muelle de la Pesca (Pesport)	Washing	Low				
14	Muelle de cemento a granel	Cement	Low	-			
15	T N F Juan Ronda	Electricity	LOW	3			
16	Puerto pesquero de la Habana (numped to sewer)	Fish processing	40) 24H	No		GEE Report
17	Empresa industrial pesquera Hacendados (Indal)	Fish processing	40) <u>8</u> H	No		2 Outlets GFF1996
18	Empresa de laboratorios farmacéuticos Mario Muñoz	Medicine		5	110		GEE Report
10	Planta de gas Evelio R. Curbelo	Gas	1 010) 16H	Lagoon		1 Outlet GEE Report
20	Terminal Hainhong	Dock	L ow	1011	Lagoon		i outier, olli Report
20	Terminal de contenedores (MELEI)	Dock	Low				
21	Empresa de Recuperación de Materias Primas	Recycling	Low				
22	Organización Desmanteladora de equipos	Recycling	Low				
23	Empresa recuperadora (CUREE)	Recycling	Low				
25	Destañadora Alfredo Gamonal	Metal recycling	LOW	Closed			GTE 2002
25	Talleres de grúas terrestres ETMH	Truck repairing		Closed			GTE, 2002 GTE, 2002
20	Vertedero de Cavo Cruz	Garbage incineration		Closed			GTE, 2002 GTE 2002
27	Obras Marítimas 1	Construction	Low	Closed			GTL, 2002
20	Instalación TRANSCARGO	Office (bus)	Low				
30	Molinos de trigo José A Echevarría	Food	Low				
31	Almacenes de la Empresa Química (USEQUI)	Health Public	Low	_			
32	Fábrica de fertilizantes, Gerardo Granda	Heavy industry	20				
33	Empresa distribuidora de combustible Habana	Service company	Low	, 			
34	Muelle Manuel Porto Pena	Dock	Low				
35	Terminal portuaria Andrés González Lines	Dock	Low				
36	Molinos de granos Turcios Lima	Dock	Low				
37	Fábrica de pienso Habana 12	Dock	Low				
38	Refinadora de aceites Alberto Alvarez	Food oil processing	20	5 24H	Bio-treatment		2 Outlets GEE Report
39	Atraques 21 22 y 23	Dock	Low	2	Dio treatment		2 Outlets, OEF Report
40	Derretidora de sebo (Alse)	Food	10) Closed	1		GEF Report CIMAB
41	Central termoeléctrica Antonio Maceo.	Power generation	88	Closed	·		CIMAB. 2002
42	Embarcadero de lanchas de Regla	Dock	Low	010500			Chill 1D, 2002
43	Terminal de ómnibus de Regla	Bus terminal	3	5			GEF Report
44	Obras Marítimas 2	Construction	Low	-			chi impon
45	Entidades del Poder Popular	Office	2011	Closed			
46	Empresa industrial pesquera de Regla (Prodal)	Food processing	36) 24H	No		3 outlets GEF Report
47	Varadero de embarcaciones de Regla	Custom office	Low	2.11	110		5 outlets, GEI Report
48	Empresa de transporte de la Pesca (DIMER)	Fish processing	4)			
49	Obras Marítima 3.	Construction	Low	-			
50	Refinería de petróleo Ñico López	Petrochemistry	62.134	4 24H	APL Lagoon		7 outlets GEF Report
51	Central Termoeléctrica Frank País	Thermoelectric Plant		Closed			GTE, 2002
52	Incinerador del puerto y atraque de SAMARP	Garbage incineration	10-15		No		Study team. 2002
53	Empresa Nacional de Astilleros (ENA)	Ship repairing	26	5	No		Study team, 2002
54	Empresa militar industrial (EMI) Granma	Military factory	Low	-			2.1.45 10411, 2002
55	Astilleros Galainena (ASTIGAL)	Dock	Low				
	······································			1	1	1	1

No.	Name of Factories	Catalogue	Flow Rate	Working	Treatment	Relocating	Remarks
1	Destilaria da alaskal Uskana	4111	(m ² /d)	Hour	Process	Plan	CEE Damant
1	Destrierta de alconol Habana	Alconol	0/3	Closed	INO		GEF Report
2	Fabrica de Levadura Heroes de Bolivia	Food	432	Closed	N 7		GEF Report
3	Fabrica de ron Ronera Occidental	Rum	156	8H	No		1 Outlet, GEF Report
4	Establecimiento Antonio Maceo	Fish packing	1,000	Closed	No		GEF Report
5	Matadero Jesus Menendez?	Food (milk)	156	Closed			GEF Report
6	Pasteurizadora Lucero	Food (milk)	500	24H	No		1 Outlet, GEF Report
			500				CIMAB, 2001
7	Licuadora Luis Pauste	Food	100	Closed			GTE, 2002
8	Empacadora Julio A. Mella	Food	173	Closed			GEF Report
9	Funicion Miguel Suarez	Light industry	26				GEF Report
10	Fabrica de toallas ANTEX	Dye		Closed			CIMAB, 2002
11	Empressa Central de Laboratorio (LACEMI)	Laboratory	78				GEF Report
12	Terminal de Omnibus Lawton	Bus washing					
13	Empresa de herramentaje Miguel Saavedra	Metal plating					
14	Taller principal de Vagones Fco. Vega Saanche	Train repair	203				CIMAB, 2000
15	Taller Central de la Empresa Geofisica	Machinery repair					
	Unidad Basica de Produccion Empresarial	Chamistry	~5				
16	Paquito Rosales	Chemisuy	\sim				GEF Report
17	Planta Andres Lujan Vazquez	Metal plating		Closed			CIMAB, 2002
18	Empresa Portuaria (PORTRANS)	Washing					
19	Fca. Vietnam Heroico		16				GEF Report
20	Constructora de Motores Taino	Machine	13		No		Study Team, 2002
21	Empresa Inoxidable Emrique Jose Varona	Tank manufacture	55		No		Study Team, 2002
22	ICIDCA	Laboratory					
23	Fabrica de Siphorex Camilo Cienfuegos	Construction					
24	Fabrica Beatriz	Food (milk)	370		No		Close in 2002 Oct.

Table 3.13 Summary of Factory in the Study Area (2/2)Receiving Water Body: Rio Luyano

Receiving Water Body: Rio Martin Perez

No	Name of Factories	Catalogue	Flow Rate	Working	Treatment	Relocating	Remarks
140.	Name of Pactories	Catalogue	(m^{3}/d)	Hour	Process	Plan	Kelliarks
1	Emp. Fundicion No Ferrosa Sergio Gonzalez	Metal plating	<5				GTE, 1993
		Construction					
2	Establecimiento Martires de Panama	materials	<5	Closed			CIMAB, 2002
3	Emp. Semiremolque Ramon Pefia	Truck washing	<10				
4	Taller Emilio Perez Olivera	Metal plating	<5	Closed			CIMAB, 2002
5	Establecimiento Habana	Bottle washing	<5	Closed			CIMAB, 2002
6	Tenerfa Cesar Escalante	Tanning	216	Closed			GEF Report

Receiving Water Body: Arroyo Tadeo

No.	Name of Factories	Catalogue	Flow Rate (m^3/d)	Working Hour	Treatment Process	Relocating Plan	Remarks
1	Fbea de calzado Aracelio Iglesias	Shoe making	<5	Closed	No		Closed; GTE 2002
		Aluminum					
2	Fb Elio Llerena	processing	5-10		No		GTE, 2002

Receiving Water Body: Drainage Channels

No	. Name of Factories	Catalogue	Flow Rate (m^3/d)	Working Hour	Treatment Process	Relocating Plan	Remarks
1	DEBON-Suchel Plant (to Matadero)	Detergent produce	60	14H	No		1 Outlet, CIMAB
2	JAIPER-Suchel Plant (to Agua Dulce)	Detergent produce	40	12H	No		1 Outlet, CIMAB

3.4.2 INDUSTRIAL WASTEWATER SURVEYS

(1) **Objective**

The objectives of industrial wastewater survey are:

- To identify current situations and problems of industrial wastewater management in the Study Area based on existing information;
- To grasp industrial wastewater pollution loads to the Havana Bay based on a survey of 10 selected factories

(2) Methodology

The procedure of industrial wastewater survey is illustrated in Figure 3.11. These survey works are carries out by the Study Team and counterpart members with hired technical assistants from CIMAB, and water quality analysis is conducted at the laboratory of CIMAB.

1) Collection and analysis of existing information

The following information is collected: type of industry, operation situation, receiving water body, wastewater quantity, wastewater quality, treatment process, and relocation plan etc.

2) Selection of 10 factories

To select major factories, the following selection criteria are taken into account:

- Larger pollution load (BOD, T-N, T-P, Hydrocarbon etc.);
- Representative factory for local industry;
- Heavy metals in effluent, and
- Possibility of sampling and flow-rate measurement

Based on existing information and discussion with GTE and DPRH/Havana-City, the following 20 factories, as shown in Table 3.14, are selected firstly as candidate.

Factory Name	Type of Industry	Receiving Body	Factory Name	Activities	Receiving Body
1. Nico Lopez	Oil Refinery	Havana Bay	11. Ronera Occidental	Rum	Rio Luyano
2. Curbelo	Gas Production	Havana Bay	12. Alcohol Habana	Alcohol	Rio Luyano
3. Prodal	Food	Havana Bay	13. Antonio Maceo	Fish Packing	Rio Luyano
4. Indal	Fishery Processing	Havana Bay	14. Motores Taino	Machie	Rio Luyano
5. Alberto Alvarez	Food Oil Processing	Havana Bay	15. Vaga Saanchez	Train Repairing	Rio Luyano
6. Otto Parellada	Electricity	Havana Bay	16. Fabrica Beatriz	Milk Processing	Rio Luyano
7. Puerto Pesquero	Fishery Processing	Havana Bay	17. Debon- Suchel	Detergent Production	Matadero Drainage Channel
8. SAMARP	Garbage Incineration	Havana Bay	18. Jaiper- Suchel	Detergent Production	Agua Dulce Drainage Channel
9. ENA	Ship Repairing	Havana Bay	19. Aracelio Iglesias	Shoe Making	Arroyo Tadeo
10. Lucero	Milk Processing	Rio Luyano	20. Fb Elio Llerena	Aluminum Processing	Arroyo Tadeo

 Table 3.14 Major 20 Factories Selected as Candidate for Detailed Survey

A preliminary survey was carried out by the Study Team, counterpart members from GTE and DPRH/Havana-City to confirm the possibility of sampling and flow-rate measurement. Finally 10 factories were selected for industrial pollution sources survey, based on the results of above preliminary survey and discussion with GTE and DPRH/Havana-City. The general information of the 10 selected factories is summarized as Table 3.15, and the location of the 10 selected factories is shown in Fig. 3.12.

Factory Name	Type of Industry	Flowrate	Major Pollutants	Receiving
	Type of multip	(m^3/d)	Major i onutants	Body
1. Nico Lopez	Oil Refinery	62,000	Oil, BOD	Havana Bay
2. Curbelo	Gas Production	1,010	Oil, BOD	Havana Bay
3. Prodal	Food	360	BOD, SS, N, P, oil and grease	Havana Bay
4. Indal	Fishery Processing	400	BOD, SS, N, P, oil and grease	Havana Bay
5. Alberto Alvarez	Food Oil Processing	205	SS, BOD, N, P	Havana Bay
6. Otto Parellada	Electricity	312	Cu, Zn, Pb, Cr etc. heavy metals	Havana Bay
7. Lucero	Milk Processing	500	BOD, SS, N	Rio Luyano
8. Vaga Saanchez	Train Repairing	200	COD, SS, Oil	Rio Luyano
9. Debon-Suchel	Detergent Production	60	BOD, SS, N	Matadero Drainage Channel
10. Jaiper-Suchel	Detergent Production	40	BOD, N, SS	Agua Dulce Drainage Channel

Table 3.15 General Information of 10 Selected Factories

3) Questionnaire survey of the 10 selected factories

A questionnaire survey is implemented by the Study Team, GTE and DPRH/Havana-City. This questionnaire includes following contents:

- Outline of the factory (number of employees, working hours, site area, main raw materials, main products and production capacity etc.);
- Sources of water (river, groundwater, pipe water and circulating water etc.);
- Water consumption (cooling water, flushing water and daily life water etc.);
- Wastewater quantity (flowrate and time zone of discharging wastewater etc.);
- Wastewater quality (pH, Temp., SS, color, BOD, COD, T-N, T-P and heavy metals etc.), and
- Treatment process and future plan (treatment process, capacity, number of outlet, receiving water body and major problems in operation and maintenance etc..

The questionnaire survey for the 10 selected factories identified that almost every factory does not measure the daily water consumption and wastewater production/discharge quantity. Thus, the information of wastewater quality is very limited.

Among the 10 selected factories, only one factory (Alberto Alvarez, food oil processing) possesses a secondary-treatment system (physical, chemical and biological treatment process), other 9 factories discharge the wastewater into receiving bodies after primary-treatment or without any treatment.

4) Wastewater quality survey

The wastewater quality survey includes a flow measurement, sampling and wastewater quality analysis.

The following flow measuring methods are used:

- ٠ Flow meter method;
- Dye and floats method, and
- ٠ Capacity method

The flow measuring frequency is at 1-3 hours intervals in each point of the sampling stations for one working day (8 to 24 hours).

Three to four grab wastewater samples are taken on the same day at the outlet (discharging point), then one composite sample is made for each factory by combining the grab samples based on the ratio of measured flowrate.

Twenty three (23) water quality parameters are analyzed as shown below:

Table 3. 16 Industrial Wastewater Quality Parameters Analyzed							
Classification	Parameters						
General Items	pH, Temperature						
Organic Substances	BOD, COD						
Nutrients	T-N, NH ₄ -N, NO ₂ -N, NO ₃ -N, T-P, PO ₄ -P						
Toxic Items	Phenol, Cd, Co, Cu, Ni, Pb, V, Zn, Hg, As						
Other Items	SS, SO4, Hydrocarbon						

Analysis methods are according to "Standard Method for the Examination of Water and Wastewater, APHA, 1998."

(3) **Results**

The main features of 10 selected factories and the results of water quality survey are summarized in Table 3.17 and Table 3.18, respectively. Based on the results of water quality survey, pollution loads of major pollutants are calculated and illustrated in Figure 3.13.

	Nico Lopez	Curbelo	Prodal	Indal	Alberto Alvarez	Parellada	Lucero	Vega Saanchez	Debon Suchel	Jaiper Suchel
Type of Industry	Oil refinery	Gas production	Food processing	Fishery processing	Food oil	Electricity	Milk processing	Train repairing	Detergent	Detergent
Main Raw Materials	Crude oil	Naphtha and natural gas	Fresh fish, shrimp and chicken meat	Fresh fish	Raw oil	Fuel oil	Fresh Milk, Powder Milk and Soybean	-	Sulfonic Acid, Sodium Tripolyphosphate and Sodium Sulfate	-
Main Products and Volume of Production	Gasoline and derivates, 1.6 Mton/year	Gas, 125.4 Mm ³ /year	Sausage and various deep-fried foods, 6,500 ton/year	Canned fish, 4 to 5 ton/day	Vegetable oil, 100 ton/day	64 MW/h	Pasteurized milk, 40 m ³ /d; soy milk, 30 m ³ /day	-	Detergent, 13,000 ton/year	Soap, shampoo and toothpaste etc., 11,700 ton/year
The Number of Employees	1,326	137	926	300	180	243	350	350	270	600
Operation Time	24 hours continuous operation	24 hours continuous operation	24 hours continuous operation	8 hours	24 hours continuous operation	24 hours continuous operation	24 hours continuous operation	12 hours	16 hours	12 hours
Total Water Consumption (m ³ /d)	156,804	708	About 800	214	About 200	About 300	-	About 200	460	About 40
Water Consumption of Production (m ³ /d)	150,425	330	-	-	-	-	-	-	47	-
Other Water Consumption (m ³ /d)	6,379	378	-	-	-	-	-	-	413	-
Wastewater Treatment Process	Gravity separator etc.	Gravity separator and lagoon	No treatment facilities	No treatment facilities	Biological treatment process	No treatment facilities	No treatment facilities	No treatment facilities	No treatment facilities	No treatment facilities

Table 3.17 The Main Features of 10 Selected Factories

Factory	Nico Lopez	Curbelo	Prodal	Indal	Alberto Alvarez	Parellada	Lucero	Vega Saanchez	Debon Suchel	Jaiper Suchel
Parameters										
Flowrate, m ³ /d	139,381	175	217	43	350	1,000	667	259	380	39
рН	6.9 - 7.4	7.8 - 8.2	8.47	7.7 - 8.1	-	8.1	7.4	7.5	8.9 - 10.6	8.3 - 8.4
Water Temp,	28.2	36.2	29	29.6	-	25	31.0	30.5	28.8	29.3
COD, mg/L	38.39	234	4284	455	863	16	1632	490	81	184
BOD ₅ , mg/L	18	175	800	200	240	6	500	235	10	130
SS, mg/L	260	11	356	72	533	82	945	30	13	52
SO ₄ ²⁻ , mg/L	527.87	4.41	8.88	10.86	-	16.08	1.81	6.74	12.34	1.81
T-N, mg/L	3.41	7.21	26.14	18.54	18.7	7.19	15.88	9.39	9.32	9.32
Organic-N, mg/L	0.28	1.4	10.83	11.95	4.3	2.06	13.54	7.38	3.18	3.08
NH4 ⁺ -N, mg/L	1.96	0.84	1.49	1.49	12.50	0.18	2.14	1.58	0.18	0.28
NO_2 -N, mg/L	0.07	0.07	0.22	0.20	0.10	0.41	0.20	0.03	0.07	0.07
NO_3 -N, mg/L	1.10	4.90	13.60	4.90	1.80	4.54	8.48	0.40	5.89	5.89
T-P, mg/L	31.56	5.53	31.49	8.94	5.3	4.03	7.92	9.37	1.37	11.14
PO_4^{3-} -P, mg/L	0.06	1.02	2.84	0.84	-	2.28	1.15	0.42	0.39	0.35
Hydrocarbon, mg/L	42	0.48	56	5.8	236	0.09	13.4	3.7	8	13.5
Phenol, mg/L		62	32.00	61.00	-	<0.1	1.00	5.00	8.00	3.00

Table 3.18 The Results of Industrial Wastewater Quality Survey

3.4.3 SUMMARY OF SURVEYS

Major findings of the survey results are highlighted in the followings:

- (1) The main industrial pollution sources in the Study Area are the oil refinery factory (Nico Lopez) and the food processing factories (Prodal and Lucero).
- (2) The wastewater quantity discharged from Nico Lopez is 139,381 m³ per day which contributes 97.8% of total wastewater quantity of the 10 selected factories (142,511 m³/d). Therefore, Nico Lopez contributes the greater part (68% to 99%) of pollutant (BOD, COD, T-N, T-P, SS and HC) loads although the concentrations of these pollutants in the effluents have declined sharply comparing with the results measured by GEF in 1997.
- (3) The wastewater quantity discharged from Lucero is 667 m³ per day which contributes 0.5% of total wastewater quantity of the 10 selected factories (142,511 m³/d). The concentrations of BOD and COD in the effluent of Lucero are 500 mg/l and 1,632 mg/l, respectively, which is considered to be a relative high level. Therefore, Lucero contributes 10.4% of total BOD load and 13.8% of total COD load.
- (4) The wastewater quantity discharged from Prodal is 217 m3 per day which contributes 0.2% of total wastewater quantity of the 10 selected factories (142,511 m³/d). The concentrations of BOD and COD in the effluent of Prodal are 800 mg/l and 4,284 mg/l, respectively, which is considered to be a relative high level. Therefore, Prodal contributes 5.4% of total BOD load and 11.7% of total COD load.
- (5) Taking account of the survey results and existing situation, it is recommended to install a second-stage treatment facility (such as coalescing gravity separator or dissolved air flotation system) at Nico Lopez to remove emulsified oil, and install a pretreatment process at Prodal and Lucero to remove pollutants before discharging into municipal sewerage system.

3.5 LAWS AND STANDARDS ON WATER POLLUTION **CONTROL**

3.5.1 **ENVIRONMENTAL LAW (GENERAL LAW)**

Cuba has a hierarchy of legal provisions more complex than a simple division into "Laws" and "Regulations". The legal provisions are as follows:

- Full implementing laws (leyes) presented to and passed by the full National Assembly, whose members are elected from candidates proposed by labor, farm, and other citizen organizations
- Decree Law (Decreto Ley) which may be proposed by CITMA or another ministry but ٠ is presented to and approved by the Council of State (Consejo del Estado), the executive body of the Assembly which sits in permanent session
- Decree (Decreto) proposed by a single ministry but approved by the Council of ٠ Ministers (Consejo de Ministros), the executive ministry heads
- Resolution, adopted by an agency on its own initiative, and with, as a rule, effect • limited to the agency itself

Cuba gives special attention to the protection of the environment within the context of its development policy. Article 27 of the constitution of 1976 declares that:

"The state protects the nation's environment and national resources and recognizes their close relationship with sustainable economic and social development to make human life more rational and ensure the survival, well being and security of present and future generations. It is the responsibility of proper governmental agencies to apply this policy. It is the duty of the citizens to contribute to the protection of the water, atmosphere, and the conservation of the soil, wild flora and fauna and all the rich potential of nature".

Decree Law No. 138 of 1st July 1993 sets out the responsibility of INRH regarding terrestrial waters, with the objective of developing the basic principles stated in the constitution of the Republic of Cuba and in the Environment Protection and National Resources Natural Use Law on surface and underground waters.

Provincial Delegations of INRH, for example, the Provincial Delegation of Resources of The City of Havana of the National Institute of Hydraulic Resources (DPRH), have the role of implementing the law and the legal base on water resources, environment and optimization in the substructure exploitation.

Law No. 81 of 1999 is the Law of the Environment. The purpose of the Law is to establish the legal principles to govern environmental policy and the basic legal requirements to regulate environmental management.

The State's Authority under this law and other environmental legislation in matters of environmental management will be exercised by the governmental bodies of the Central Administration of the State, other state bodies and the Local Bodies of the Popular Power, in accordance with this law and environmental legislation in general.

The Ministry of Science, Technology and Environment (CITMA) is the governmental agency of the Central Administration of the State in charge of proposing environmental policy and guiding its execution through the coordination and control of the nation's environmental management, promoting its coherent integration in order to contribute to sustainable development.

3.5.2 WATER POLLUTION CONTROL

(1) General

In the Law of the Environment (No. 81), Chapter IV – Waters and Aquatic Ecosystems it is stated that:

"All discharges of substances into watercourses, bays, coastal waters, lacustrine waters, reservoirs, underground waters or any other type, that are capable of causing contamination, of affecting other foreseen or unforeseen uses or of altering the balance of the ecosystem, should be the object of proper treatment".

As previously states INRH in coordination with other related agencies and bodies, controls the management of terrestrial waters. CITMA in coordination with the Ministries of the Fishing Industry, Transport, and Agriculture has overall responsibility for marine waters and resources. The Structures and Functions of CITMA and INRH, are given in Figure 3.15.

(2) Industrial Wastewater

Law No 81, Law of the Environment, does not have a specific chapter on pollution from industrial wastewater but there are many general references that clearly apply to industry.

All discharges of substances into watercourses, bays, coastal waters, lacustrine waters, reservoirs, underground waters etc., should be the object of proper treatment. In addition it is also stated that wastewater from economic activities, before being released into the environment, must receive the appropriate treatment so that they will not pollute reservoirs or terrestrial or maritime bodies of water.

Law No. 81 also provides for the issue of Environmental Licenses for all activities capable of producing significant environmental effects, and CITMA has the authority to temporarily or permanently suspend any activity that does not comply with the license. New projects, including industrial development are subject to an Environmental Impact Assessment (EIA) and the subsequent issue of an Environmental License.

3.5.3 STANDARDS

Standards for water supply and sanitation are many and varied, and cover all aspects within the sector. Standards may be divided into State, or National Standards (Normas Cubanas), which are mandatory in areas of the national economy, and Area Standards that are technical specifications and are mandatory in the specific area in question.

The main (State) National Standards concerning this study are:

(1) **Community Hygiene**

- NC 93-02 Drinking Water; Sanitary requirements and sampling
- NC 93-03 Public Water Supply System; Sanitary requirements
- NC 93-11 Public Water Supply Source; Sanitary quality and inspection
- NC 93-12 Water Treatment Installations; Sanitary requirements

(2) Standards for the Environmental Protection System

- NC 93-01-102 Classification of Water Related Objects
- NC 93-01-103 Classification of Domestic Waters
- NC 93-01-208 Requirements for the Protection of Groundwater
- NC 93-01-209 Requirements for the Calculation of Sanitary Protection Areas for Groundwater Sources
- NC 93-01-210 General Requirements for the Protection of Surface and Groundwater from Contamination by Petroleum and its Derivatives
- NC 93-01 Final Disposal of Liquid Wastes in Domestic Water Bodies; Authorization Procedures
- NC 93-01 Requirements for the Selection and Assessment of the Sources of Supply of Potable Groundwater to Communities and Industries

Many more National Standards have been created (NC 22: 1999 – NC 39: 1999), plus the adoption of certain ISO-14000 standards

Among these, NC 27: 1999 governs the discharge of wastewater into sewers and is described in section 3.5.5 of this report.

A National Standard (NC) for the discharge of wastewater into seawater is in preparation and details of this standard, which are particularly relevant to this study, will be described in the Draft Final Report.

Regarding Area Standards relevant to industrial wastewater, the Ministry of Basic Industry has issued two standards to industries in the City of Havana on wastewater quality pending the finalizing of the National Standard for discharge of wastewater into seawater.

3.5.4 DISCHARGE QUALITY STANDARDS TO SEWERS

Table 3.19 shows permissible levels for discharges to public sewers as stipulated in Cuban Standard NC27, 1999 and that stipulated by Havana City. The latter include several parameters and stricter than national standard.

Parameter	Limits			
	National Standard	Havana City		
	(NC27, 1999)			
pH	6 - 9	6 - 9		
Temperature, °C	50	40		
Conductivity, S/m	0.4	-		
BOD ₅ , mg/L	300	300		
COD, mg/L	700	700		
Total nitrogen (T-N), mg/L	-	50		
Organic nitrogen (Org-N), mg/L	-	20		
Ammonium nitrogen (NH ₄ -N), mg/L	-	30		
Nitrite nitrogen (NO ₂ -N), mg/L	-	0.05		
Nitrate nitrogen (NO ₃ -N), mg/L	-	0.2		
Total Phosphorous (T-P), mg/L	-	10		
Phosphates, mg/L	-	1		
Oil and grease, mg/L	50	20		
Methylene blue reactive substance(surfactant), mg/L	25	20		
Settleable solids, mg/L	10	4		
Total solids (TS), mg/L	-	500		
Total volatile solids (TVS), mg/L	-	350		

 Table 3.19 Permissible Level for Discharges to Public Sewers

Total non-volatile residue, mg/L	-	150
Suspended solids (SS), mg/L	-	300
Volatile suspended solids (VSS), mg/L	-	250
Non-volatile suspended solids residue, mg/L	-	50
Total dissolved solids (TDS), mg/L	-	200
Volatile dissolved solids (VDS), mg/L	-	100
Non-volatile dissolved solids, mg/L	-	100
Total dissolved salts, mg/L	-	10,000
Chlorides (Cl ⁻), mg/L	-	100
Aluminum (Al), mg/L	10	10
Iron (Fe), mg/L	-	5
Arsenic (As), mg/L	0.5	0.5
Cadmium (Cd), mg/L	0.3	0.3
Cyanide (CN ⁻), mg/L	0.5	0.5
Copper (Cu), mg/L	5	5
Total Chromium (Cr), mg/L	2	2
Hexavalent chromium (Cr), mg/L	0.5	0.5
Trivalent chromium (Cr^{3+}), mg/L	-	2.5
Mercury (Hg), mg/L	0.01	0.01
Lead (Pb), mg/L	-	1
Zinc (Zn), mg/L	-	5
Nickel (Ni), mg/L	-	0.5
Cobalt (Co), mg/L	-	1
Manganese (Mn), mg/L	-	1
Hydrogen sulfide (H_2S), mg/L	-	1
Sulfate base dyes, mg/L	-	25
Synthetic dyes, mg/L	-	25
Phenols, mg/L	5	5
Hydrocarbons (C _n H _n), mg/L	-	25
Formaldehyde (CH ₂ O), mg/L	-	25
Aniline ($C_6H_6NH_2$), mg/L	-	6
Acetaldehyde (CH ₃ CHO), mg/L	-	20
Acetone ((CH_3) ₂ CO), mg/L	-	40
Butric Acid (C ₆ H ₅ COOH), mg/L	-	15
Butanol, mg/L	-	10
Methanol, mg/L	-	30
Propanol, mg/L	-	12
Ethanol,	-	14
Glycerin, mg/L	-	90
Toluene, mg/L	-	15
Acetic acid (CH ₃ COOH), mg/L	-	25
Diethyl-hexane (C_6H_{14}), mg/L	-	6
Aluminum oxide (Al ₂ O ₃), mg/L	-	0

3.5.5 EFFLUENT QUALITY STANDARDS

Cuban Standard NC-27, 1999 stipulates effluent quality depending on the receiving water.

	Receiving Water and its Water Use									
Parameter	River and Dams			Partial	Saturatio	on Area	Saturation Area			
	А	В	С	Α	В	С	А	В	С	
рН	6.5-8.5	6 - 9	6 - 9	6 - 9	6 - 9	6 - 10	6 - 9	6 - 9	6 - 10	
Temperature, °C	40	40	40	40	40	50	40	40	50	
Conductivity, S/m	0.14	0.20	0.35	0.15	0.20	0.40	0.15	0.20	0.40	
BOD ₅ , mg/L	30	40	60	40	60	100	30	50	100	
COD, mg/L	70	90	120	-	-	-	-	-	-	
Total nitrogen (T-N), mg/L	5	10	20	5	10	15	5	10	15	
Total Phosphorous (T-P), mg/L	2	4	10	5	5	10	5	5	10	
Oil and grease, mg/L	10	10	30	5	10	30	ND	10	20	
Flotable solids	ND	ND	-	ND	ND	ND	ND	-	ND	
Settleable solids, mg/L	1	2	5	1	3	5	0.5	1	5	

Table 3.20	Discharge	Standards	to Inland	Surface	Waters.	NC27
	Discharge	oranaan ab	to mana	Juliace	· · · · · · · · · · · · · · · · · · ·	

Note: Water uses: A - water supply, B - irrigation and C - industrial water supply, ND-not detectable.

3.5.6 Environmental Quality Standards for Fishing Waters

Cuban Standard NC93-105, 1987 stipulates environmental quality standards for marine and fresh water used for fishing as shown in Table 3.25.

Parameter	Limits			
	Freshwater	seawater		
pH	6.5 - 8.5	8 - 9.5		
,%	10 - 100	20 - 100		
Salinity, %		1 – 3.5		
BOD ₅ , mg/L	3 – 8	1 – 2		
COD _{Mn} , mg/L	15 - 30			
DO, mg/L	2-5	3 – 5		
Ammonium nitrogen (NH ₄ -N), mg/L	1 – 3	0.03 - 0.05		
Nitrite nitrogen (NO ₂ -N), mg/L	0.1 – 3	0.05 - 1.5		
Nitrate nitrogen (NO ₃ -N), mg/L	10 - 80	0.01 - 0.6		
mg/L	0.1 – 3	0.05 - 0.20		
Suspended solids (SS), mg/L	100 - 300	100 - 300		
Total coliforms, No/100 mL	$5x10^3 - 5x10^4$	$2x10^2 - 1x10^3$		
Fecal coliforms, No/100 mL	-	$7x10^2 - 1x10^3$		
Arsenic (As), mg/L	-	1		
Cadmium (Cd), mg/L	-	0.01		
Mercury (Hg), mg/L	-	0.005		
Lead (Pb), mg/L	-	0.1		
Cobalt (Co), mg/L	-	0.05		

 Table 3.21 Environmental Quality Standards for Fishing Waters, NC93-105

References :

- 1. Muestreo y Caracterización de las Aguas del Río Luyanó, Informe Final, 16th April 2001
- 2. Muestreo y Caracterización del Río Martín Pérez, Informe Final, Julio 2002
- 3. Control y evolución de la calidad ambiental de la Bahía de La Habana y el litoral adyacente, Enero 2000, Enero 2001 and Febrero 2002
- 4. Aportes contaminantes a la Bahía de La Habana y su evolución, Informe Final, Agosto 2002
- 5. Proyecto Regional Planificación y Manejo de Bahías y Areas Costeras Fuertemente Contaminadas del Gran Caribe, Proyecto GEF/RLA/93/G41, INFORME FINAL, Octubre, 1997.
- 6. Law of the Environment 1999 Ministry of Science, Technology and Environment
- 7. Legislacion: Una Herramienta 1999 (Spanish)
- 8. CIMAB: Estudio Topobatimeterico del Proyecto Emergente del Rio Luyano, Informe Final, Julio 2002. (Spanish)
- 9. CIMAB, Prueba de JAR TEST para la Solucion Emergente al Rio Luyano, Informe Final, Julio 2002. (Spanish)
- 10. INRH: Contribucion al Estudio Sanitario de la Cuenca del Rio Luyano, Proyecto Regional GEF/RLA/93/G41, Septimbre de 1997. (Spanish)
- 11. Felix C. Dominguez, Joelis Rodriguez, Cristina Diaz y Ramon Pomes: Caracterizacion quimica y de fases de los sedimentos del rio "Martin Perez", 2001.

CHAPTER 4 PRESENT POLLUTION LOAD ANALYSIS AND WATER **OUALITY SIMULATION MODEL OF HAVANA BAY**

4.1 **GENERAL**

4.1.1 POLLUTION LOAD ANALYSIS

Deterioration of water quality of Havana Bay is due to pollution load received by rivers, wastewater collectors and urban drains discharging to the bay or through direct discharges from sources located along the shore of the bay. Pollution load generated undergo transformation processes during treatment prior to discharge and during their transport between the point of generation and to the point of discharge to the bay. Pollution load discharged to the bay further undergoes transformation within the bay through several physical and bio-chemical processes and dilution by tidal exchange with the outlying sea. Understanding the mechanism beginning from the sources of pollution load generation, pollution load discharge to the bay and its transformation within the bay is a basic requirement to undertake any pollution control measures effectively.

4.1.2 WATER QUALITY SIMULATION MODEL OF HAVANA BAY

Water quality of Havana Bay is influenced by complex processes within the bay and thus behavior of water quality of the bay is also complex. Water quality simulation model to describe these complex processes is an effective tool to characterize the water pollution of the bay and to evaluate the pollution control measures such as reduction in pollution load to the bay through improvement of sewerage system. Constructing a water quality simulation model can also be used as a management tool for decision making in the future.

Water quality simulation model based on MIKE3 has been developed and will be transferred to WASP6/DYNHYD5. Description of the development of model in this chapter is based on available data. Model is being updated with the results of current measurement survey and water quality surveys carried out in this Study.

4.2 POLLUTION LOADS

4.2.1 METHODOLOGY

Pollution sources : Pollution load generation is classified as due to wastewater generated through domestic, institutional and industrial activities.

Pollution load: Pollution load is estimated at the point of generation and at the point of discharge to the bay. Estimates of pollution load generation are made based on unit pollutant load. Pollutant load discharge to the bay is estimated based on the monitoring data at the most downstream end of drains and rivers draining to bay. Industries along the periphery of the bay and discharging directly is also estimated based on monitoring data. Figure 2.1 shows nine basins constituting the Havana Bay basin and the estimation of loads are made for each of the nine basins for the year 1996 and year 2000.

Relationship between pollution load generation and pollution load discharge in each basin will be utilized to estimate the future pollutant loads discharged to the bay.

Unit Pollution load: Results of the investigation carried out on the unit pollution load generation of domestic origin indicate that the unit per capita BOD₅ generation was 43 gpcd (Ref. 1) in 1978 and 29.3 gpcd in 1996 (Ref. 2) respectively investigated for a vocational training school and for a small community in outskirts of Havana City. The decrease was explained due to the economic slowdown during "special period". There are no recent investigations on the unit pollutant load and an estimate is made at 40 gpcd to reflect the present conditions.

4.2.2 POLLUTION LOAD GENERATED

Estimates are made for the year 1996 and year 2000. Table 4.1 shows the population estimate for the basin for the year 1996 and 2000. Table 4.2 shows the domestic pollution load generation based on unit pollutant loads. Table 4.3 shows domestic, institutional and industrial pollutant load generation in terms of BOD₅. Institutional pollutant load is estimated as a percentage of total domestic load generated in proportion to domestic and institutional water consumption. Total institutional load will be distributed among the basins following the identification of 'grand consumers' (more than 900 m³ of average monthly water consumption). Industrial load is based on monitoring data of CIMAB.

Basin	Area, ha	Population 1996, GEF/ DPPFA	Population Density 1996, person/ha	Population 2000	Population Density 2000, person/ha
Habana Vieja	257	110,641	430	101,015	392
Dren Arroyo Matadero	679	128,160	189	120,189	177
Dren Agua Dulce	648	148,581	229	139,185	215
Rio Luyano	2,995	252,223	84	241,927	81
Rio Martin Perez	1,309	72,797	56	72,916	56
Rio Tadeo	256	14,059	55	13,966	55
Refinery Area	342	21,946	64	22,793	67
Casa Blanca	259	12,991	50	14,231	55
Cabaña	44	639	15	671	15
Total	6,790	762,037*	106	726,893	107

 Table 4.1 Population within the Havana Bay Basin, Year 1996 & 2000

Note: * Population estimate revised based on the limits of Havana Bay Basin

		Year 1996		Year 2000				
Basin	BOD ₅	BOD ₅ T-N T-P		BOD ₅	T-N	T-P		
	kg/d	kg/d	kg/d	kg/d	kg/d	kg/d		
Habana Vieja	4,426	819	210	4,041	748	192		
Dren Arroyo Matadero	5,126	948	244	4,808	889	228		
Dren Agua Dulce	5,943	1,099	282	5,567	1,030	264		
Rio Luyano	10,089	1,866	479	9,677	1,790	460		
Rio Martin Perez	2,912	539	138	2,917	540	139		
Rio Tadeo	562	104	27	559	103	27		
Refinery Area	878	162	42	912	169	43		
Casa Blanca	520	96	25	569	105	27		
Cabaña	26	5	1	27	5	1		
Total	30,481	5,639	1,448	29,076	5,379	1,381		

Table 4.2 Domestic Pollution Load Generation, Year 1996 & 2000

Note: Unit pollutant loads for BOD5, T-N and T-P are assumed at 40, 7.4 and 1.9 gpcd.

		Year	1996		Year 2000			
Basin	Domestic	Inst./com	Industrial	Total	Domestic	Inst./com	Industrial	Total
	kg/d	kg/d	kg/d	kg/d	kg/d	kg/d	kg/d	kg/d
Habana Vieja	4,426		29	4,455	4,041		29	4,070
Dren Arroyo Matadero	5,126		0	5,126	4,808		0	4,808
Dren Agua Dulce	5,943		0	5,943	5,567		0	5,567
Rio Luyano	10,089		26,505	36,594	9,677		3,010	12,688
Rio Martin Perez	2,912		273	3,185	2,917		820	3,737
Rio Tadeo	562		1,719	2,281	559		340	899
Refinery Area	878		22,823	23,701	912		21,723	22,634
Casa Blanca	520		23	542	569		23	592
Cabaña	26		0	26	27		0	27
Total	30,481	15,241	51,372	81,853	29,076	14,538	25,946	55,021

Note: Institutional and commercial load is preliminary and will be distributed among the basins following the analysis of water consumption and location data.

4.2.3 POLLUTION LOAD DISCHARGED

Table 4.4 shows the pollutant load discharged directly to the bay through rivers and drain. Table 4.5 shows the total pollution load discharged directly to the bay which includes the pollutant load discharged by the industries on the periphery.

		U						
		1996	/97			200)2	
Basin	Flow	BOD ₅	T-N	T-P	Flow	BOD ₅	T-N	T-P
	m ³ /d	kg/d	kg/d	kg/d	m ³ /d	kg/d	kg/d	kg/d
Habana Vieja	7,516	801	16	13	8,554	1,291	144	77.5
Dren Arroyo Matadero	78,126	20,015	3,918	1,326	77,760	8,942	610	1,053
Dren Agua Dulce	46,152	5,630	1,099	356	43,226	6,770	529	1,171
Rio Luyano	120,960	28,500	4,800	N/A	114,860	9,476	1,068	N/A
Rio Martin Perez	35,597	356	320	180	62,105	1,245	239	49
Rio Tadeo	8,004	1,537	99	41	8004	1,537	99	41
Refinery Area	-	-	-	-	-	-	-	-
Casa Blanca	-	-	-	-	-	-	-	-
Cabaña	-	-	-	-	-	-	-	-
Total	296,355	56,839	10,252	4,616	314,509	29,261	4,622	2,391

Table 4.4 Pollution Load through Rivers and Drains in Year 1996/97 & 2002

Note: Total load includes that discharged directly to bay by the industries. Load data for the industries discharging directly is not available for all major industries in 1996/97 and the data for 2002 is assumed. Data shown as 610 indicates unbalanced concentration of nitrogen and phosphorous. N/A indicates data not available. The total is obtained by assuming similar proportion of BOD:N as Rio Martin Perez for data N/A. Unbalanced values are adjusted with 96/97 data. Totals shown with underline 4,616 are adjusted values for unbalanced values and N/A.

		1996	/97		2002				
Basin	Flow	BOD ₅	T-N	T-P	Flow	BOD ₅	T-N	T-P	
	m ³ /d	kg/d	kg/d	kg/d	m ³ /d	kg/d	kg/d	kg/d	
Habana Vieja	7,619	830	86	15	8,657	1,320	214	79	
Dren Arroyo Matadero	78,126	20,015	3,918	1,326	77,760	8,942	610	1,053	
Dren Aqua Dulce	46,152	5,630	1,099	356	43,226	6,770	529	1,171	
Rio Luyano	121,955	29,803	6,738	N/A	115,417	9,784	1,627	N/A	
Rio Martin Perez	36,070	629	838	186	62,578	1,518	757	55	
Rio Tadeo	8,585	3,256	2,396	156	8,517	1,812	595	46	
Refinery Area	475	22,823	54	1	475	21,723	54	1	
Casa Blanca	80	23	54	1	80	23	54	1	
Cabaña	0	0	0	0	0	0	0	0	
Total	299,062	83,009	15,184	4,820	316,710	51,893	6,373	2,433	

Note: Total load includes that discharged directly to bay by the industries. Load data for the industries discharging directly is not available for all major industries in 1996/97 and the data for 2002 is assumed.

4.2.4 FURTHER WORK

Table 4.6 shows the preliminary results of the relationship between BOD₅ generation and discharge. Pollution load generated in Habana Vieja basin, Dren Arroyo Matadero basin and and Dren Agua Dulce basin is intended to be collected by Colector Principal and discharged outside the bay near Playa del Chivo. However, due to illegal connections to stormwater drains and interconnection/overflow between Principal Colector and stormwater drains, pollution load generated in those areas are discharged to the bay through stormwater drains. In addition, the Colector Paralelo Orengo (Figure 5.1) serves areas outside the Havana Bay Basin and connected to Principal Colector, from which part of wastewater is discharged to the bay through stormwater drains. Further investigation will be necessary to quantify wastewater discharge from collectors to stormwater drains in these areas. Further, estimated pollutant load generation is smaller than the discharged load for Arroyo Tadeo which also needs further investigation.

Basin	Estimated BOD ₅ Generation, kg/d		Intended Discharge	Actual Discharged BOD ₅ , kg/d		Remarks	
	1996	2000	to Bay	1996/97	2002		
Habana Vieja	4,455	4,070	0	830	1,320	Wastewater is intended	
Dren Arroyo Matadero	5,126	4,808	0	20,015	8,942	to be collected by	
Dren Agua Dulce	5,943	5,567	0	5,630	6,770	Colector Principal.	
Rio Luyano	36,594	12,688		29,803	9,784		
Rio Martin Perez	3,185	3,737		629	1,518		
Rio Tadeo	2,281	899		3,256	1,807	Requires investigation	
Refinery Area	23,701	22,634		22,823	21,723		
Casa Blanca	542	592		23	23		
Cabaña	26	27		0	0		
Total	81,853	55,021		83,009	51,888		

 Table 4.6 Relationship between Generation and Discharge (Preliminary)

4.3 WATER QUALITY SIMULATION MODEL

4.3.1 METHODOLOGY

Figure 4.1 shows the flowchart of the water quality simulation for Havana bay. The water quality simulation is divided into two phases; one of which is model establishment and another one is future water quality prediction. In the phase of model establishment, identifying and analyzing the most important hydraulic phenomenon and water pollution characteristics of the bay is carried out prior to the construction of the hydrodynamic (hereinafter referred to as HD) and water quality (hereinafter referred to as WQ) model respectively. In the calibration of the models, parameters are identified to reproduce measured conditions for the calibration period. With the application of the calibrated models, allowable load to reach the water environment target is estimated. Finally, future water quality of the bay respondent to the alternatives will be predicted and evaluated.

4.3.2 HYDRODYNAMIC SIMULATION OF HAVANA BAY

(1) Setting up the Model

Before setting up of the hydrodynamic models, it is necessary to identify the most important hydraulic phenomena and factors that affect the pollutant transportation in the bay. Generally, current in estuarine and coastal region consists of tidal stream, tidal residual flow, drift current (wind generated current), density driven flow, slope current and wave, etc. Among these currents, tidal and density flow play an important role in the transportation of pollutants in the seawater of bay. Especially for the shallow water area of the bay, inflow of fresh water from rivers and other sources usually causes a remarkable density flows occurring, which promote the resuspension and release of sediment pollutants. According to the investigation results in the past, important hydraulic characteristics of Havana bay can be concluded as follows.

- Tidal currents inside the bay is relatively little, due to the narrow entrance (270m in width) and low tidal amplitude (0.29m in average) in the bay.
- Retention time of the fresh water in the bay is approximately 4 months and water exchange between the bay and the open sea is relatively small.
- The average and maximum water depth of the bay is 9 and 17 meters respectively. Therefore, water temperature stratification would be broken up easily by wind blown or strong currents. On the other hand, density flow both in horizontal and vertical directions could be strong in some estuaries such as Atares and Guasabacoa, due to a large quantity of fresh water inflow from rivers and drainage.
- Heat exchange between seawater and atmosphere would be one of the most important factors to the water temperature inside the bay.
- Precipitation, especially in the rain season, could promote the generation of the density currents in the bay.

Basing upon the hydraulic characteristics mentioned above, a three-dimensional hydrodynamic model is selected in this simulation. Three main current components as tidal stream, drift current and density driven flows are taken into account in the model. Figure 4.2 shows the sketch of the model applied in the simulation.

The fundamental equations applied in the hydrodynamic model are shown in the Appendix at the end of this chapter.

(2) Calculation conditions for the Hydrodynamic Simulation

Calculation conditions for the hydrodynamic simulation includes bathymetry, boundary, initiation, source, as well as the parameters of the model. Specifications for each condition will be described as follows.

<u>Bathymetry</u> : Calculation area for the hydrodynamic simulation is whole water area of Havana bay. Referred to the sea chart of La Habana port ⁽³⁾, the calculation area is illustrated in Figure 4.3. The area of the bay is 5.2 km^2 and the volume is $47 \times 10^6 \text{ m}^3$. Mesh division for the area is shown in Figure 4.4 and the mesh size is $30 \times 30 \text{ m}$ in horizontal direction. In vertical direction, the area is divided into 3 levels (layers) with each level 4 m. Distribution of water depth for the area is shown in Figure 4.5. Average water depth for the area is 9 m and the maximum is 17 m respectively.

<u>Open boundary</u>: Open boundary is determined considering the objective of the simulation, current characteristics of Havana bay as well as the locations of current and water quality observation stations. In the HD and WQ simulations, boundary is positioned at the mouth of the bay shown as in Figure 4.4.

<u>Height of Tide</u> : Tidal observation station of Havana bay is located at Punta Santa Catalina with the latitude of $23^{\circ}08.6$ 'N and longitude of $82^{\circ}20.3$ 'N (Figure 4.2). The predicted height of tide is used as the water level of the boundary ⁽²⁾.

<u>Meteorological Conditions</u> : Air temperature, precipitation, wind velocity and direction are specified using observed meteorological data provided by Havana meteorological observatory. Daily averaged temperature, precipitation, wind velocity and wind direction are used in the hydrodynamic simulation.

<u>Initial Conditions</u> : It is needed to specify the initial water level, temperature and salinity before the simulation. These conditions are specified according to the existed observation data. The values for these parameters are shown in Table 4.7.

Items	Rain season	Dry season
Water level (m)	0.16	0.20
Temperature ()	28.5	26.8
Salinity (psu)	33.3	33.1

 Table 4.7 Initial conditions for the hydrodynamic simulation

<u>Source</u> : Ten sources are take into accounted in the hydrodynamic simulation, in which 4 industrial wastewater, 3 rivers as well as 3 drainage channels are included. Location of the sources is shown in Figure 4.4. Usually, source conditions are specified based upon the proper monitoring data, which represents the typical state of the sources. Because of the limitations in the number of source data and large variation in the results of the different observation, it is difficult to grasp the outflow characteristics of the sources. Therefore, the latest surveyed results are directly utilized here to specify the source condition, although the observation period is different from the simulation. Table 4.8 shows the results of the source specification.

Classifi-	Sources	NO	In	flow poi	nt	Flowrate	Temperature	Salinity
cation	Sources	NO.	Х	Y	Z	(m3/s)	()	(‰)
Rivers	Luyano	S1	80	19	3	1.329	27	1
	Martin Perez	S2	129	19	3	0.719	27	1
	Tadeo	S3	116	82	3	0.093	27	1
Drainage	San Nicolas	S4	41	12	3	0.099	27	1
channels	Arroyo Matadero	S5	43	10	3	0.900	27	1
	Agua Dulce	S6	51	1	3	0.500	27	1
Industrial	Refinería de	S7	115	91	3	0.010	27	1
wastewater	petróleo Ñico	S8	112	99	3	0.037	27	1
	López*	S9	112	101	3	0.037	27	1
		S10	110	115	3	0.010	27	1

 Table 4.8
 Specification of the Source condition for the Hydrodynamic Simulation

* Net discharge of fresh water is take into accounted here.

<u>Parameters of the Model</u> : Model parameter, eddy viscosity, bed roughness, slip factors, dispersion factors of temperature and salinity need to be specified. Table 4.9 shows the calibrated values of the parameters for the hydrodynamic model.

Parameters	value	Parameters	value
Eddy viscosity (m^2/s)	3.0	Constants in Dalton's law	0.5
Bed roughness (m)	0.05	Wind coefficient in Dalton's law	0.9
Slip factors for the water surface	1.0	Relative humidity (%)	71
Slip factors for the sea bottom	1.0	Clearness coefficient (%)	0.7
Slip factors for the wall	1.0	Beta in Beer's law	0.3
Dispersion factors of temperature	0.1	Light extinction coefficient	1.0
Dispersion factors of salinity	0.1		

Table 4.9 Calibrated Parameters of the Hydrodynamic model

<u>Numerical calculation conditions</u>: Considering the stability of numerical calculation, accuracy of the results and the time used in the calculation, time step is set to be 120 seconds. Periods of simulation for the rain season and dry season are two months respectively.

Conditions described above are summarized in the Table 4.10.

Classification	Items	Specified values
Bathymetry	Objective area	Havana bay
	Mesh division $(X \times Y)$	130 × 130
	Mesh size $(X \times Y)$	30m
	Level(layers) in vertical direction	3
	Layer height	First layer
		(surface layer) :4.0 m
		second layer: 4.0 m
		third layer: remaining depth
Boundary	Boundary location (X1 to X2):(Y1 to Y2): (Z1 to Z2)	(0,0):(72,91):(0,3)
	Height of tide	predicated
	Salinity	Observation data
	Water temperature	Observation data
	Air temperature	Observation data
	Precipitation	Observation data
	Wind velocity and direction	Observation data
Initiation	Water level	0.16m (Rain season); 0.20m (Dry season)
	Salinity	33.3psu (Rain season); 33.1psu (Dry season)
	Water temperature	28.5 (Rain season); 26.8 (Dry season)
Others	Simulation period	2 months (Rain season and dry season
		respectively)
	Time step	120 seconds

 Table 4.10 Summarization of the Calculation Conditions

(3) Calibrating and verifying the hydrodynamic model

<u>Data used in the calibration and verification</u> : Two kinds of data will be used in the calibration and verification of the HD model. One of them is existed data before this study and another one is the survey results of this study.

Because there is no data on current observation is available for recent years, results investigated by PNUD-PNUMA-UNESCO in 1985 are utilized in the current calibration ⁽⁴⁾. Current velocity and direction of Havana bay in the tidal fall are illustrated in the Figure 4.6.

Temperature and salinity are measured by CIMAB in their regular survey on the water quality of Havana bay ⁽³⁾. However, the survey is carried out only once in the rainy season and dry season respectively, it is difficult to grasp the characteristics of spatial and temporal variation of temperature and salinity. Therefore, parts of the results reported by PNUD-PNUMA-UNESCO are also used here as an assistant verification data ⁽⁵⁾. In the Tables 4.11 to 4.14, available data on temperature and salinity data are summarized.

		200	1/6	High tide	(2001/11)	Low tide(2001/11)		
Locations	Positions	Temp.	Sali.	Temp.	Sali.	Temp.	Sali.	
		()	(‰)	()	(‰)	()	(‰)	
Canal de Entrada	surface	28.3	33.37	27.0	35.46	26.2	34.53	
	middle	28.2	35.33	26.8	36.27	27.0	36.41	
	bottom	28.6	36.41	26.4	36.25	27.0	36.29	
Atares	surface	28.3	29.93	27.0	27.11	26.4	21.37	
	middle	28.6	35.86	27.0	36.09	26.8	36.33	
	bottom	28.1	36.21	27.0	36.19	27.0	35.16	
Guasabacoa	surface	28.1	34.12	27.2	36.03	27.0	35.57	
	middle	28.6	36.00	27.0	36.19	26.8	35.52	
	bottom	28.7	36.13	27.0	36.33	26.6	35.87	
Marimelena	surface	28.3	35.15	27.0	36.15	26.8	35.77	
	middle	28.4	35.55	27.0	36.22	27.0	36.00	
	bottom	28.8	35.46	27.0	36.11	27.0	36.26	
Centro de la Bahía	surface	28.7	33.57	27.0	35.02	26.8	34.87	
	middle	28.9	33.99	26.8	36.00	27.0	35.97	
	bottom	28.6	36.13	26.8	35.92	26.8	36.32	
P. del Chivo	surface	28.3	35.56	-		27.0	35.46	
	middle	28.4	33.09	-		26.8	36.35	
	bottom	28.5	36.74	-		26.8	36.41	
Caleta de San Lázaro	surface	28.3	36.00	-		27.0	36.10	
	middle	28.6	36.41	-		27.0	36.33	
	bottom	28.8	36.36	-		27.0	36.43	

Table 4.11 Results of Temperature and Salinity observation

Data source: CIMAB reports-a

Table 4.12 Range of Temperature and Salinity for Havana bay

Position		Femperature()		Salinity(‰)	
1 Osttion	Maximum	Minimum	Average*	Maximum	Minimum	Average*
Surface	32.2 (Sep.)	24.6 (Jan.)	28.2	34.3 (Dec.)	27.4 (Jan.)	32.4
Bottom	28.8 (Sep)	24.3 (Feb.)	26.5	36.4 (Apr.)	34.4 (Sep.)	35.7
*Note: annuall	y average.					

Data source: UNESCO reports

Table 4.13 Temperature Distribution in Vertical Direction

Water depth	Atares	Guasabacoa	Marimelena	Centro	Canal	Litoral
zone						
0-5	3.1	3.3	2.9	2.5	2.1	0.6
5-bottom	0.6	0.6	0.8	0.8	0.6	0.2
0-bottom	3.7	3.8	3.7	3.3	2.7	0.8

Data source: UNESCO reports

Table 4.14 Salinity Distribution in Vertical Direction

Tuble 111 Summey Distribution in Vertical Direction										
Water depth	Atares	Guasabacoa	Marimelena	Centro	Canal	Litoral				
zone										
0-5	12.9	13.3	3.3	4.9	3.8	0.9				
5-bottom	1.1	0.9	0.8	0.9	0.7	0.1				
0-bottom	14.0	14.2	4.1	5.8	4.5	1.0				

Data source: UNESCO reports

<u>Calibration of the HD model</u> : Hydrodynamics simulation of Havana bay is conducted with the input conditions and the calibrated parameters presented in Table 4.9. Simulation results of the currents are illustrated in Figure 4.7 and 4.8. According to the reproductive performance of the currents, effectiveness of the hydrodynamic model is evaluated as follows.

- With a comparison of the calculated currents with the observed results (Figure 4.6), it can be seen that the calibrated model gives a good result to reproduce the current velocity and direction both in the entrance and inside of the bay.
- Current direction varies periodically along with the variation of the tide height in the bay. Both calculation and observation results show that current direction is towards the bay during tidal rise and reverse flow occurs during tidal fall.
- For the location of Canal de Entrada and Centro de la Bahia, surface current velocity and direction are approximately same with the observed data. In the period of tide rise and tide fall, approximately 0.05 to 0.15m/s current occurred with a direction of SE and NW respectively. Current in middle (second) layer is reverse to the surface and the velocity is slightly lower compared with the surface.
- For the current velocity near to the estuarine of Luyano river, several discrepancies between the calculation results and the observations exist. One of the main reasons of these discrepancies would be attributed to the inflow velocity specification of the river. Inflow velocity of the rivers will be surveyed in this study and the reproductive performance of the currents for these areas will be improved with the application of these survey results.

Water temperature and salinity in the bay are dependent upon a lot of factors such as the fresh water discharges from the sources, air temperature, precipitation, temperature/salinity of boundary (open sea) and etc. It is considerable that temperature and salinity vary along with the passage of time. Because detail measurement data for the temperature and salinity is only available for June in the rain season shown in Table 4.11, while simulation result is for the August and September. On the other hands, from the observation data shown in Table 4.12 to 4.3.14, it is possible to grasp the characteristics of spatial and temporal variation of temperature and salinity is indirectly evaluated based upon the comparison of the simulation result both with the detail data (Table 4.11) and summarized results (Table 4.12 through Table 4.14).

Calculation results of the temperature and salinity in the tidal rise and tidal fall are illustrated in Figure 4.9 to 4.12. Reproduce trends in time and spatial gradients for temperature and salinity are shown as follows.

- Trend of temperature and salinity variation in horizontal and vertical directions is approximately agreed with the observation data.
- For the results of surface layer (Figure 4.9), shallow water area such as Marimelena (the east of the bay) and Guasabacoa (the south of the bay) shows a higher temperature than other areas. On the contrary, area near to the boundary and center of the bay shows a lower temperature. For the shallow water area, water temperature is more easily influenced by the heat exchange with atmosphere, and the water temperature is sensitive to the variation of air temperature. Another reason for the higher temperature of these areas could be contributed to that they are far from the boundary, in which a low temperature is specified.
- Water temperature in the high tide shows a lower value than the low tide, duo to a lower temperature water inflow from the boundary in the tide rise. For the surface layer, temperature in the most area of the bay increase from 29.5 to 30 as tide vary from the high tide to low tide.
- Water temperature decreases along with the water depth. Temperature difference between the surface layer and second layer is nearly 2 , which is larger than the temperature differences in horizontal direction.

- Salinity gradient both in horizontal and vertical direction occurs, due to the inflow of fresh water from the rivers and drainage channels. Area near to the entrance of the bay shows a higher salinity concentration compared with the estuaries of Luyano river, Martin Perez rivers as well as the drainage channels.
- Salinity varies periodically along with the tide conditions. Salinity difference between the high tide and low tide is nearly 1.0 psu for the surface layer, while the difference for the second layer is negligible. It means that second layer is less influenced by the fresh water discharged from the sources.

4.3.3 WATER QUALITY SIMULATION OF HAVANA BAY

(1) Characteristic of Water Pollution in Havana bay

In the investigation of marine environment by CIMAB, water quality of Havana bay was reported. Figure 3.2 shows the monitoring locations of CIMAB. Playa del Chivo and Caleta de San Lázaro are located outside the bay. Based upon the observation results of 2001, variation water quality of Havana bay is illustrated in Figure 4.13 through 4.15. Water quality data for the two recent sampling events, during tidal rise (Nov. 28, 2001) and tidal fall (Nov. 30, 2001) were available. According to these results of water quality and other reported data, characteristic of water pollution in Havana bay can be concluded as follows.

- DO concentrations is different significantly for the five sampling locations. Generally, water areas adjacent to the estuaries within the bay and source inflows show lower DO concentration. Particularly for the locations of Atares and Marimelena, in which drainage of sewage and industrial wastewater are discharged, DO depletion is remarkable. In the rainy season, DO drops very much and DO level for the two locations are as low as 2.0 mg/L. Low DO condition particularly in the seabed would results in excess release of nutrients from the sediments, as well as suffocation of living resources. These nutrients would promote the growth of phytoplankton and cause eutrophication of the waterbody.
- Phosphorous concentration in the bay varied seasonally and spatially. Both for the phosphate and total phosphorous, the dry season shows a high concentration than the rain season. In the areas of Atares, Marimelena and Guasabacoa, a high concentrations of phosphorous are observed. From the concentration gradient, it can be deduced that the main external source of phosphorous is the discharge from the rivers and drainage channels.
- High concentration of ammonia was observed in the bay's inner parts such as Atares, Marimelena and Guasabacoa. Particularly in the area of Atares, NH₄-N concentration both in the surface and second layer is as high as 0.5 mg/L. Concentration of NO₂-N and NO₃-N and their variation among the locations are comparatively small. Therefore, it can be considered that ammonia distribution is more dependent on the pollutant load of the source inflow and the release from sediment, while the nitrite and nitrate are more relied on the nitrification process occurring within the bay.
- High SS concentration is observed at Atares and Guasabacoa compared to other areas. This is similar to other parameters and can be attributed to the inflow of the suspended water via the rivers and drainage channels.
- Although phytoplankton and chlorophyll-a, as two very important parameters to evaluate the eutrophication level, were measured, inconsistency in the results of the two parameters makes it difficult to grasp the characteristics of the primary production in the bay. As a general tendency, Canal de Entrada and Centro de la Bahia show a higher concentration of chlorophyll-a. Phytoplankton concentrations at Canal de Entrada and Atares are relatively high. Comparing with the nutrient (inorganic nitrogen and phosphate) level in the bay, it can be said that the chlorophyll-a concentration is relatively low.

(2) Setting up the model

Based upon the characteristics of water pollution analyzed above, it is necessary to build a model, in which following sub-models of transportation and transformation are composed.

- Advection and dispersion of the pollutants
- Biological degradation and chemical reaction processes
- Eutrophication

In these sub-models, following transformation processes are incorporated.

- Degradation of organic matters exited as dissolved and suspended state.
- Sedimentation of suspended organic matters and resuspension of the sediments
- Exchange of oxygen between the atmosphere and seawater
- Oxygen demand in the degradation of dissolved and suspended organic matters
- Oxygen production in the photosynthesis and photosynthetic respiration
- Ammonification and nitrification as well as denitrification process
- Release of nitrogen and phosphorous in the degradation of organic matters
- Uptake of nitrogen and phosphorous by bacteria and plants
- Release of inorganic nitrogen and phosphorous from the sediments

In order to simulate and calibrate these processes, nine water quality items are selected as the state variables in the model, which are dissolved BOD (BOD_d), suspended BOD (BOD_s), BOD in the sediment (BOD_b), DO, ammonia (NH₄-N), nitrite (NO₂-N), nitrate (NO₃-N), phosphate (PO₄-P) and chlorophyll-a. The principles of the WQ model applied in this study are illustrated in Figure 4.16.

(3) Calculation Conditions for the Water Quality Simulation

Water quality simulation is carried out simultaneously with the hydrodynamic simulation. Except for the items described in follows, the calculation conditions are basically same with the hydrodynamic simulation.

<u>Loading condition from the Sources</u> : Ten point sources including three rivers and three drainage channels as well as an industry discharging at four locations are considered in the water quality simulation. Water quality of the source is specified based upon the loading rate for BOD₅, total nitrogen and total phosphorous, which are calculated from the latest monitoring data by CIMAB. Table 4.15 shows the specified results for the water quality of the sources.

Tuble nie Tonutunt Source input Speemeuton for the Water Quanty Simulation								
Name of Source	Source	Flowrate,	BOD ₅ ,	DO,	NH ₄ -N,	NO ₂ -N,	NO ₃ -N,	PO ₄ -P,
	No.	m ³ /s	mg/l	mg/L	mg/L	mg/L	mg/L	mg/L
Rio Luyano	S1	1.329	83	3.0	2.1	0	1.0	0.17
Rio Martin Perez	S2	0.719	20	1.6	2.0	0	1.5	0.59
Arroyo Tadeo	S 3	0.093	192	2.0	2.2	0	0.6	3.20
Dren San Nicolas	S4	0.099	151	1.0	7.4	0	1.9	0.29
Dren Arroyo Matadero	S5	0.900	115	1.0	1.7	0	0.4	3.10
Dren Agua Dulce	S 6	0.500	190	1.0	2.2	0	0.5	6.30
Ñico López	S 7	0.010	1,810	0	50	0	0	10
	S 8	0.037						
	S 9	0.037		0				
	S10	0.010						

 Table 4.15
 Pollutant Source Input Specification for the Water Quality Simulation

Source : Based on monitoring data of CIMAB

<u>Nutrient Loading from Sediments</u>: There is no experimental data available for the nutrient release from the sediments of Havana bay. Inorganic nitrogen and phosphorous release rates are estimated indirectly based on the relationship of organic content of sediments with the nutrient release rate. The following rates are used.

Release rate of inorganic nitrogen =94.0 mg/m²/d

Release rate of phosphate= $6.6 \text{ mg/m}^2/\text{d}$

<u>Boundary and Initial Conditions</u> : Boundary and initial conditions are specified based upon the water quality measurement results of Havana bay implemented by CIMAB in 2001(Table 4.16).

								(in mg/L)
	BODd	BODs	DO	NH ₄ -N	NO ₂ -N	NO ₃ -N	PO ₄ -P	Chloa*
Boundary	2	2	8	0.015	0.01	0.002	0.004	0.002
Initiation	5	5	5	0.15	0.05	0.02	0.05	0.005

Table 4.16	Water	Onality	in Rounda	rv and	Initiation
1ault 4.10	vvalti	Quanty	III DUullua	n y anu	IIIIIIauvii

*chlo.-a:chlorophyll-a

<u>Parameters of the Model</u> : Parameters for the water quality model are identified according to the calibration results of the model. Table 4.17 shows the values of the parameters for each reaction processes.

Others : Same as the hydrodynamic simulation, time step of the numerical calculation is set to

be 120 seconds and periods of simulation is two months both for the rains season and dry season.

Process	parameter	Unit	Value
COD/DO	Degradation constant for BODd	1/day	0.05
related	Degradation constant for BOD ₈	1/day	0.02
	Sedimentation rate for BODs	1/day	0.2
	Nitrification rate	1/day	0.05
	Photosynthetic product rate	mgO ₂ /l/d	3.5
	Light extinction coefficient	1/m	7.4
Nutrient	Uptake rate of nitrogen by plankton	gN/gO ₂	0.066
related	Uptake rate of nitrogen by bacteria	gN/gO_2	0.109
	Halfsaturation concentration of NH ₄ -N	gN/m ³	0.05
	(NO ₂)Nitrification rate	1/day	1.0
	Denitrification rate	1/day	0.1
	Uptake rate of phosphorous by plankton	gP/gO ₂	0.0091
	Uptake rate of phosphorous by bacteria	gP/gO ₂	0.015
	Halfsaturation concentration of PO ₄ -P	g P/m ³	0.005
Chlorophyll-a	Death rate of phytoplankton	1/day	0.01
related	Sedimentation rate of phytoplankton	m/day	0.15
	Carbon ratio of chlorophyll and phytoplankton	mg/l	0.02
	Carbon to oxygen ratio at primary product	gC/gO_2	0.0133
	Halfsaturation concentration for inorganic nitrogen	mg/l	0.05
	Halfsaturation concentration for phosphorous	mg/l	0.01

 Table 4.17 Parameters of the WQ model

4.3.4 CALIBRATING AND VERIFYING THE WATER QUALITY MODEL

(1) Data used in the Calibration and Verification

Observation results of water quality described in section 4.3.3(1) are used as verification data in the model calibration. Six items including DO, ammonia, nitrite, nitrate, phosphate, phosphorous and chlorophyll-a are used to calibrate the model. Because there is no observation data available for the simulation period of August and September 2001, data observed in June 2001 is utilized as a substitute for the rain season. For the dry season, data which was measured in the end of November (28 Nov.2001 and 30 Nov. 2001) are used in the verification.

(2) Comparison of Calculated Results with Observed Data

Water quality simulation results in high tide and low tide are illustrated in Figure 4.17 to 4.24. Because of the large fluctuation in source data and the inconsistent period between the source and water quality data in the bay, the calibration here is performed primarily based upon the levels of water quality rather than the exact concentration values. According to the comparison of the simulation results with the observations, the reproductive performance of the water quality model could be concluded as follows.

- DO concentration levels are approximately reproduced for the five observation locations in the bay (Figure 4.21). Same as the observed data, Atares and Marimelena locations show lower DO concentration compared with other locations. At the low tide, surface DO level of the two locations drops below 2.0mg/L and the DO depletion occurred in the lower layer of the water column. It means that extremely high level organic matters would exist, as well as some organic substance would be resuspended from sediments in these areas.
- Distribution of ammonia concentration in the bay is also agreement with the observation results approximately (Figure 4.20). Water areas near to the inflow location of the sources

show a high concentration of ammonia. Comparing the results of DO and ammonia would find that location with a lower DO is correspondent to a high level of ammonia. It could be estimated that the low DO level for the areas is mainly caused by the degradation of organic matters as well as the nitrification of ammonia.

- For the nitrite and nitrate, although calculated results seem to be little high than the observed data, the concentration levels are almost reproduced (Figure 4.21 to Fig4.22).
- Reproducing phosphate concentration for the location of Atares (Figure 4.23) was not complete. Comparing the phosphate concentrations for the location of Atares could find that simulation results give a high value than the observed data. According to the phosphorous cycle indicated in Figure 4.16, phosphate concentration is relied upon the two opposite processes of generation and uptake after it is discharged into the seawater. For the generation process, phosphate is released both from the BOD degradation reaction and from the sediments. And for the uptake process, phosphate is consumed in the growth of plankton and bacteria. Based upon the reaction and stoichiometric parameter of these processes, it was failure in the feting of the simulation results with the observed data. As one of the possibilities, the low phosphate concentration could be contribute to some other reaction process such as adhesion to the suspended solid and sedimentation, etc.
- The reproductive performance of chlorophyll-a is different for the five locations. For the location of Atares, Guasabacoa and Centro de la Bahia, the level of chlorophyll-a predicted is generally in agreement with the measurement results. However for the location of Canal de Entrada and Marimelena, several discrepancies between the calculation and the observation was founded. Comparing the nutrient level and chlorophyll-a concentration for the five locations would find that the chlorophyll-a concentration is inconsistent with the nutrient level. Therefore, there is a possibility that the light extinction coefficient were different from location to location and the locations like Canal de Entrada shows a low extinction coefficient than other locations.

