Slides 3: Aerial triangulation

Objects of Aerial triangulation

- Solution for orientation parameters of each photo
- Less number of GCP
- Densification of ground controls

Principal of Stereo mapping

Observation by restitution of condition that aerial photos have been taken

Orientation Parameters included position and inclination of Camera

Orientation Parameters

Position of aerial camera and inclination of axes as (Xo , Yo ,Zo), (ω, φ, κ)

Procedure of Aerial triangulation

Inner Orientation

Conformal transformation or Affine transformation is applied

$$
\left.\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
X o \\
Y o
\end{array}\right]=\left[\begin{array}{l}
X \\
Y
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
X o \\
Y o
\end{array}\right]=\left[\begin{array}{l}
X \\
Y
\end{array}\right]
$$

(, y) :Image coord., (X,Y):Photo coord.

Relative Orientation

3D models are performed by coplanarity condition equation Four points of $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{P}_{1}$ and P_{2} are lied on the same plane.

X, Y and Z are components of each point.

Absolute Orientation

Absolute orientation is performed
by 3D conformal transformation

Model connection and Absolute orientation

Orientation of single photo

Orientation parameters are solved by colinearity condition equation.
$\mathrm{X}=\mathrm{C} \frac{\left.\mathrm{a}_{11} \mathrm{X}-\mathrm{X}_{0}\right)+\mathrm{a}_{12}(\mathrm{Y}-\mathrm{Yo})+\mathrm{a}_{13}\left(\mathrm{Z}-\mathrm{Zo}_{0}\right)}{\left.\mathrm{a}_{31} \mathrm{X}-\mathrm{Xo}_{0}\right)+\mathrm{a}_{32}(\mathrm{Y}-\mathrm{Yo})+\mathrm{a}_{33}(\mathrm{Z}-\mathrm{Zo})}$
$\mathrm{y}=\mathrm{C} \frac{\left.\mathrm{a}_{21} \mathrm{X}-\mathrm{Xo}\right)+\mathrm{a}_{22}(\mathrm{Y}-\mathrm{Yo})+\mathrm{a}_{23}(\mathrm{Z}-\mathrm{Zo})}{\left.\mathrm{a}_{31} \mathrm{X}-\mathrm{Xo}_{0}\right)+\mathrm{a}_{22}(\mathrm{Y}-\mathrm{Yo})+\mathrm{a}_{23}(\mathrm{Z}-\mathrm{Zo})}$
C : Focal distance of camera
a : Components of rotation matrix
(x, y): Photo coordinates
(Xo ,Yo ,Zo) : Psition of camera center ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) :Coordinates of ground controls

Pass-points and Tie-points

Pass-point and Tie-points are used to connect photos or models.

Trail of airplane by GPS

Airborne GPS support aerial triangulation

Accuracy of adjustment of aerial triangulation

Theoretical error of adjustment
Plane position : σ x, $\mathrm{y}=\mathbf{6} \mu$ (on photo)
$=300 \mathrm{~mm}$ (on ground)
Elevation :

$$
\begin{aligned}
\sigma \mathrm{z} & =0.006 \% \text { of altitude } \\
& =450 \mathrm{~mm}(\text { on ground })
\end{aligned}
$$

Precision of Plane Position

Periphery of block has larger errors
Inside of block has small errors
Therefore, plane ground controls should be distributed peripherally.

In case of $\mathrm{P} 2: \sigma=\left(0.83+0.02\right.$ п) σ_{0}

Adjusted errors

	Axis	Mean Error	Max. Error
Zone46	X	0.602	1.686
	Y	0.628	1.547
Zone47	X	0.375	0.678
	Y	0.585	1.058

$\sigma=@ .83+0.02 \cdot 24) \sigma_{\mathrm{o}}=1.31 \sigma_{\mathrm{o}}=590 \mathrm{~mm}$
Theoretical estimated error on ground is 590 mm

Estimated precision of vertical position

Bridge Dis. $=58 / 4=15$

