Slides 2: Presentation of Progress Report 1

The Establishment of Geographic Database for National Rehabilitation and Development Programme in The Union of Myanmar

Presentation of Progress Report 1

16 July 2002
Yangon, Myanmar

Fundamental Geodetic Element

- Reference Ellipsoid : Everest 1830

Semi major radius : $a=6,377,276.345 \mathrm{~m}$,
Flattening : $\mathrm{f}=1 / 300.8017$

- Horizontal Datum

1st-Order Control Point
Fixed control point : Yangon(Kaynathpo)

$$
\begin{array}{ll}
\text { Latitude } & \text { : N16-58-20.62762 } \\
\text { Longitude } & \text { : E96-07-36.99653 }
\end{array}
$$

- Vertical Datum

1st-Order Benchmarks

- Map projection

UTM Projection

Study of the first year

UTM Project

Work Items

- Ground Controls
- Signalization
- Aerial photography
- Leveling
- Field Identification
: Contact pints
Contact prints
eveling
- Digital plotting

DVP,Summit Evolution
: Summit Evolution

- Digital compilation
: TNTmips
: TNTmips
- Compilation for Print : TNTmips
- Printing
: 6-color Offset print
: 6-color Offset print

Aerial photography

Execution of aerial photography

Specifications of photography

- Photo scale : 1/50,000
- Length of photography: 4,548 line-km
- Area of photography : 44,700km2
- Over-lap
: 60\%
- Side-lap
: 30\%
- Type of photo
: Panchromatic
28 flight courses were taken to cover the whole study area.

Annotating on Negative Film

Negative film was annotated by Run No. and photo No after development.

Products of aerial photography

Contact printer

Contact prints

Print processor

2-times enlarged prints

Quality Control

Quality was evaluated by items as stated above

3-Dimentional Exposure Position

Exposure positions were calculated at 3-dimentional coordinates based on the reference ellipsoid.

Plan of GPS Observation

Following control points were planned to observe where taken local access into consideration.

Base Line Analysis

Acquired data were solved using the base line analysis program "PRIZM".

Quality Control 1

Quality control was carried out by checking differences of duplicated observed sides.

Baseline	Session		Bascline (km)	DX		DY		DZ		
from \rightarrow to	No .	alopes		(m)	diff.	(m)	diff.	(m)	diff.	
GCP24 - GCP25	9 P 10 8		35,256	14356.346	3 mm	- 8380.543	2 mm	31397.522	4 mm	
			14356.343	0.1ppm	-8380.541	0.1ppm	31397.518	0.1ppm		
GCP27 - GCP28	11	\bigcirc		22634	2437.788	1 mm	6863.009	18 mm	.22484.050	24 mm
			2437.789		Oppm	6862.991	0.8.ppm	-22484.074	1.0ppm	
GCP20 \rightarrow GCP28	78	\bigcirc	46785	46586.102	4 mm	4238.672	37 mm	780.824	9 mm	
				46586.106	0.1ppm	4238.635	0.8ppm	780.825	0.2ppm	

Difference error should be less than 1 ppm.

Quality Control 2

Result was checked by misclosure errors of peripheral sides composed of some sessions.

be less than 1 ppm .

Leveling Route

Quality Control of Leveling

Four leveling routes were added to keep vertical accuracy which bridging distances is 12 .

QUALITY CONTROL							
Project						Operated by	Than Kine
						Cheected by	Mang Maung Soe
Route	$\underbrace{\substack{\text { Nation }}}_{\text {Numbe of }}$	Type	Distance	${ }_{\text {ater }}^{\substack{\text { Alomabe } \\ \text { erore }}}$	Eror	${ }^{\text {opeatarar }}$	Comments
$6{ }_{6} 6$	${ }^{85}$	Leceam Masa	12.14	174	20	Thanslime	ок
${ }_{6} \mathrm{C} \mathrm{CP}_{13}$	2	Leam M M mas	0.1	${ }^{16}$	1	Thanktiom	ок
6CP14	2	Lecen M Masa	0.2	22	${ }^{-1}$	${ }_{\text {Thank }}^{\text {cimer }}$	ок
6 CP19	94	Lecan Mamas	12.11	174	${ }^{37}$	Thankime	ок
6CP22	14	Lecea Masas	1.48	${ }_{6} 6$	4	${ }_{\text {Thank }}^{\text {cimer }}$	ок
6CP24	${ }^{34}$	Leat mamas	4.98	${ }^{112}$	-13	Thankime	ок
6CP42	11	Leceanamas	0.93	${ }^{48}$	1	Thammine	ок

Quality of leveling was checked by residual erroers between go and return or closed benchmarks.

Geoid undulation map was prepared by interpolation
between observed points.
Orthometric height and Geoid height

Paint No	Ellip. height	Otha height	Geaidheight
GCP6	9.459	5.666	3.793
GCP 7	5.715	3.674	2041
GCP8	7.153	3.255	3.898
GCP9	9.286	4.091	5.195
GCP13	7.232	9.251	-2019
GCP14	1.923	3.280	-1357
GCP15	3.297	3.133	0.164
GCP16	2838	1.568	1270
GCP19	-0.177	1.533	-1710
GCP20	0.495	1855	-1.360

Geoid heights were derived from differences between Ellipsoidal height and Orthometric height.

Geoid and Ellipsoid Height

Final results of GPS Survey

Finally coordinates of Control points on the reference ellipsoid were determined corrected by Geoid map.

Observation \& Calculation of Eccentric Reference Points

Eccentric reference point of ground control were observed by plane table or compass transit, and then their coordinates were calculated.

Calculation by Table

Description of Pricking

Topographic feature was pricked on photo to identify ground controls and arranged on description of Pricking.

Quality Control of Leveling

Quality of leveling was checked by residuals errors of height difference between go and return.

Residual errors should be less than $5 \mathrm{~cm} x$ (Square) S .

Preparation of Digital Image Data

Digital image data was converted to from negative film by high precision scanner and stored on CD-ROMs.

Technology Transfer 1

Technology transfer was carried out OJT.

- Signalization
- GPS Survey

Work items of second year

Following work items will be carried out in the second year.

- Discussion of the technical specifications for Topographic data mapping and printing maps
- Airborne GPS supported aerial triangulation
- Digital plotting
- Field identification

Seminar 1

Seminar 1 will be held in February 2003.

- Explanation of this Study
- Explanation of the operation manual
- Discussion about step up digital mapping technology of SD
- Presentation of Digital map in the world
- Presentation of standardization for Geographic information

Seminar 1

Seminar 1 will be held in February 2003.

- Presentation of the Interim report
- Explanation of the draft of specifications for survey and mapping
- Explanation of the operation manual for Topographic mapping
- Discussion of technical enforcement to digital mapping in SD.
- Presentation of applications of GIS

Thank you for listening !

