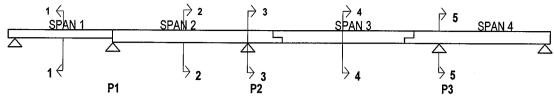

Appendix 24.1.4-3 (1/30) CALCULATION OF LOAD RATING - EXTERIOR GIRDER


PROJECT TITLE: PASIG-MARIKINA RIVER BRIDGE INSPECTION, VARGAS BRIDGE (UPSTREAM)

	P I			7 2			P3	
				CRETE CAP				
RA1	ING METH	IOD: S		ILITY LIMIT	STATE (A	LLOWABLE	STRESS)	
STRESSES	SECTIO	N	TYPE V GIRDER	TYPE	VI AASHTO (SIRDER (30.5	+7.5+35.6+7.5	+22.04)
			1	2	3	4	5	
TDL=PS+DL+SDL	TOP	Mpa	-2.89	-1.99	3.16	-9.53	3.14	
IDE-FOIDE GDE	BOTTOM	ivipa	-4.42	-10.37	-11.36	-3.89	-11.34	
LL (H\$20)	TOP	Mpa	-1.75	-2.47	3.15	-2.89	2.55	
EE (11020)	воттом		3.13	4.35	-4.21	5.10	-3.41	
Allowable Stress	Compression	Mpa	-23.40	-23.40	-23.40	-23.40	-23.40	
	Tension	····pu	3.12	3.12	3.12	3.12	3.12	
RATING FACTOR	TOP		11.75	8.68	0.000	4.80	0.000	
(RF=(Cap-TDL)/LL	BOTTOM		2.41	3.10	2.86	1.37	3.54	
Equivalent LL(HS20)	RF*(HS20)	tons	77.00	99.23	0.00	43.96	0.00	
PRESTRESSING STEEL CAPACITY								
Prestressing Yield	Stress, f*y	Мра	1582.70	1582.70	1582.70	1582.70	1582.70	
Unfactored Stress Dead Load		Мра	3.49	0.99	6.09	6.09	8.94	
Unfactored Stress d	Unfactored Stress due to LL+I, FI		2.84	2.91	2.44	4.68	1.97	
Unfactored Stress due to Prestress, Fp		Мра	1042.72	911.40	1054.85	1078.06	1054.85	
Unfactored Stress due to Secondary Prestress Force, Fs		Мра	0.00	0.00	0.00	0.00	0.00	
INVENTOR RF = 0.8f*y-(F	d+Fp+Fs)/F		77.55	121.48	84.24	38.92	102.60	
OPERATIN RF = 0.9f*y-(F	d+Fp+Fs) / F		133.35	175.83	149.21	72.77	182.84	
RA RA	TING MET	HOD:	STRENGTH	I LIMIT STA	TE (LOAD	FACTOR M	ETHOD)	
FORCES	SECTIO	N	TYPE V GIRDER	TYPE	VI AASHTO G	IRDER (30.5+	7.5+35.6+7.5+	22.04)
			1	2	3	4	5	
Moment, DL-		kN-m	1719.00	914.00	7031.00	5,692.00	7,024.00	
Moment, L		kN-m	1087.35	1913.32	2549.55	2,177.70	1,987.30	
Width of Flan	ge, b	mm	2170.00	2170.00	2170.00	2,170.00	2,170.00	
Depth of Composite		mm	2040.00	2040.00	2040.00	2,040.00	2,040.00	
Comp. Strength of		Мра	39.00	39.00	39.00	39.00	39.00	
Ultimate Stress of PS Strands., f _s '		Мра	1862.00	1862.00	1862.00	1,862.00	1,862.00	
Area of PS Strands, As*		mm ²	2370.00	4740.00	4740.00	4,740.00	4,740.00	
Steel Ratio, ρ*			0.00054	0.00107	0.00107	0.00107	0.00107	
f _{su} *		Мра	1838.20	1814.41	0.00	1,814.41	1,814.41	
Neutral Axis, NA Bottom		mm	1.16	1.32	1.18	1.32	0.88	
R =φMn=φAs*fsu*d(1-0.6ρ*f _{su} */fc') kl		kN-m	8752.79	17020.19	17020.19	17,020.19	-	
RF (INV. RF=(R-1.3(DL+S	DL))/1.3*1.67	LL	2.76	3.81	1.42	2.04	1.83	
RF (OPERAT RF=(R-1.3(DL+S	•	.L	4.61	6.37	2.38	3.40	3.05	

Appendix 24.1.4-3 (2/30) CALCULATION OF LOAD RATING - INTERIOR GIRDER

PROJECT TITLE: PASIG-MARIKINA RIVER BRIDGE INSPECTION, VARGAS BRIDGE (UPSTREAM)

P1				P2			P3	
				CRETE CAP			***	
RA	TING METH	OD: S	ERVICEAB	ILITY LIMIT	STATE (A	LLOWABLE	STRESS)	
STRESSES	SECTIO	ON	TYPE V GIRDER	TYPE VI AASHTO GIRDER (30.5+7.5+35.6+7.5+2			+22.04)	
			1	2	3	4	5	
TDL=PS+DL+SDL	TOP	Мра	-2.63	-1.87	2.31	-8.91	2.32	
101 10:001	воттом	Ivipa	-4.76	-10.54	-10.33	-4.73	-10.34	
LL (HS20)	TOP	Mpa	-1.66	-2.13	2.15	-2.43	2.12	
(***********************************	воттом	<u> </u>	2.73	3.43	-2.69	3.92	-2.65	
Allowable Stress	Compression	Мра	-23.40	-23.40	-23.40	-23.40	-23.40	
DATING FACTOR	Tension	<u> </u>	3.12	3.12	3.12	3.12	3.12	
RATING FACTOR	TOP		12.48	10.13	0.38	5.96	0.38	
(RF=(Cap-TDL)/LL	BOTTOM		2.89	3.98	4.85	2.00	4.92	
Equivalent LL(HS20)	RF*(HS20)	tons	92.41	127.44	12.10	64.03	12.08	
		F	PRESTRES	SING STEE	L CAPACIT	Υ		
	Prestressing Yield Stress, f*y			1582.70	1582.70	1582.70	1582.70	
Unfactored Stress Dead Load		Мра	2.97	0.97	6.05	6.05	8.87	
Unfactored Stress d	ue to LL+I, Fl	Мра	2.46	2.26	1.68	3.58	1.65	
Unfactored Stress due to Prestress, Fp		Мра	1042.72	911.40	1054.85	1078.06	1054.85	
Unfactored Stress due to Secondary Prestress Force, Fs		Мра	0.00	0.00	0.00	0.00	0.00	
INVENTOR RF = 0.8f*y-(F	d+Fp+Fs) / F	l	89.62	156.74	122.30	50.81	122.43	
OPERATIN RF = 0.9f*y-(F	d+Fp+Fs) / Fl		153.96	226.86	216.61	94.98	218.14	
RA	TING MET	HOD:		I LIMIT STA	TE (LOAD	FACTOR M	ETHOD)	
FORCES	SECTIO	N	TYPE V GIRDER	TYPE VI AASHTO GIRDER (30.5+7.5+35.6+7.5+22.0				22.04)
			1	2	3	4	5	
Moment, DL-		kN-m	1623.00	852.00	6534.00	5,386.00	6,541.00	
Moment, L		kN-m	924.94	1474.36	1575.78	1,636.25	1,494.64	
Width of Flan		mm	2170.00	2170.00	2170.00	2,170.00	2,170.00	
Depth of Composite		mm	2040.00	2040.00	2040.00	2,040.00	2,040.00	
Comp. Strength of		Mpa	39.00	39.00	39.00	39.00	39.00	
Ultimate Stress of PS		Mpa	1862.00	1862.00	1862.00	1,862.00	1,862.00	
Area of PS Strar		mm ²	2370.00	4740.00	4740.00	4,740.00	4,740.00	
Steel Ratio, f _{su} *	þ	Mes	0.00054	0.00107	0.00107	0.00107	0.00107	
Neutral Axis, NA	Rottom	Mpa	1838.20 1.12	1814.41 1.27	0.00	1,814.41	1,814.41	
R =φMn=φAs*fsu*d(1		mm kN-m	8752.79	17020.19	1.15 17020.19	1.27 17,020.19	0.91	
RF (INV.		WIA-III		*1		17,020.19	-	
RF=(R-1.3(DL+S	DL))/1.3*1.67I		3.31	4.97	2.49	2.82	2.63	
RF (OPERAT RF=(R-1.3(DL+S	•	L	5.52	8.30	4.16	4.71	4.38	

Appendix 24.1.4-3 (3/30) CALCULATION OF LOAD RATING - EXTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE V BRIDGE **USING ALLOWABLE STRESS**

FOR EXTERIOR GIRDER (AT MIDSPAN OF SPAN 1)

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of Inertia (m ⁴)	Y Bottom of Girder (m)	Y Top of Girder (m)
Basic Section				1
PSCG Type V	0.65613	0.21859	0.83694	0.76306
Deck Slab	0.528	N/A	N/A	N/A
Diaphragm	2.07	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.041	0.401	1.156	0.644
Live Load MS-18	1.041	0.401	1.156	0.644

TABLE B: MOMENT DEMAND FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE V (D=1.60m; L=19.30m)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	832.00
Due to Weight of Girder + Slab +	1441.00
Diaphragm	1441.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	278.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	857.00
With Impact	1087.35
Load Combination at Service Condition	
DL + (LL+I)	2806.35

I = 100*(15.24 / L + 38) = 27 %

TABLE C: STRESSES AT MIDSPAN FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE IV (D-1.60M; L=36.20M)

Prestressing Force, P = 2471.25 kN

(Data from As-built Plans; Drawing No. E-25)

Eccentricity:

For Basic Section =

0.737 m

For Composite Section: 1.056 m (Superimposed Loads)

For Composite Section: 1.056 m (Live Loads)

After Transfer:

f_c' = 39 MPa

Allowable Stress in Compression = 0.50 T_c = -23.40 MPa

Allowable Stress in Tension = $0.5 \sqrt{f_c}$ =

3.12 MPa

LOAD DESCRIPTION	STRESSES (MPa)				
LOAD BLOCKIF HON	Top Fibe	er	Bottom Fiber		
Sresses due Dead Loads (Girder+Slab+Diaphragm Weight+Prestressing)	-2.44	С	-5.22	С	
Sresses due to Superimposed Loads	-0.45	С	0.80	Т	
Sresses due to all Live Load + Impact	-1.75	С	3.13	Т	

RF = Allowable Stress - (Stress due to Dead Loads + Stress due to Superimposed Loads

Stress due to Live Load + Impact

RF = 11.75 -At top fiber RF = 2.41 -At bottom fiber

Appendix 24.1.4-3 (4/30) CALCULATION OF LOAD RATING - EXTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI BRIDGE **USING ALLOWABLE STRESS**

FOR EXTERIOR GIRDER (AT NEAR MIDSPAN OF SPAN 2)

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of Inertia (m ⁴)	Y Bottom of Girder (m)	Y Top of Girder (m)
Basic Section				
PSCG Type IV	0.707	0.322	0.965	0.895
Deck Slab	0.528	N/A	N/A	N/A
Diaphragm	2.07	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.092	0.57	1.315	0.745
Live Load MS-18	1.092	0.570	1.315	0.745

TABLE B: MOMENT DEMAND FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI (D=1.86m; L=30.50m)

DESCRIPTION	NEAR MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	414.00
Due to Weight of Girder + Slab +	740.00
Diaphragm	712.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	202.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	1543.00
With Impact	1886.29
Load Combination at Service Condition	
DL + (LL+l)	2800.29

i = 100*(15.24 / L + 38) = 22 %

TABLE C: STRESSES AT NEAR MIDSPAN FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI (D-1.86M; L=30.5M)

Prestressing Force, P = 4320.04 kN (Data from As-built Plans)

Eccentricity:

For Basic Section =

0.530 m

For Composite Section: 0.880 m (Superimposed Loads)

For Composite Section: 0.880 m (Live Loads)

After Transfer:

f_c' = 39 MPa

Allowable Stress in Compression = 0.60 t_c =

-23.40 MPa

Allowable Stress in Tension = 0.50 √f_c' = 3.12 MPa

LOAD DESCRIPTION	STRESSES (MPa)				
LOAD DECORN TION	Top Fibe	er	Bottom Fiber		
Sresses due Dead Loads (Girder+Slab+Diaphragm Weight+Prestressing)	-1.73	С	-10.84	С	
Sresses due to Superimposed Loads	-0.26	С	0.47	T	
Sresses due to all Live Load + Impact	-2.47	С	4.35	Τ	

RF = Allowable Stress - (Stress due to Dead Loads + Stress due to Superimposed Loads

Stress due to Live Load + Impact

RF = 8.68 -At top fiber RF = 3.10 -At bottom fiber

Appendix 24.1.4-3 (5/30) CALCULATION OF LOAD RATING - EXTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI BRIDGE **USING ALLOWABLE STRESS**

FOR EXTERIOR GIRDER (AT SUPPORT / PIER 2)

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of Inertia (m⁴)	Y Top of Girder (m)	Y Bottom of Girder (m)
Basic Section				
PSCG Type IV	1.39	0.42219	0.86752	0.96148
Deck Slab	0.528	N/A	N/A	N/A
Diaphragm	2.07	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.775	0.724	0.882	1.178
Live Load MS-18	1.775	0.724	0.882	1.178

TABLE B: MOMENT DEMAND FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI (D=1.86m; L=30.50m)

DESCRIPTION	NEAR MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	3260.00
Due to Weight of Girder + Slab +	6034.00
Diaphragm	0034.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	997.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	2085.55
With Impact	2586.09
Load Combination at Service Condition	
DL + (LL+I)	9617.09

I = 100*(15.24 / L + 38) = 22 %

TABLE C: STRESSES AT NEAR MIDSPAN FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI (D-1.86M; L=30.5M)

Prestressing Force, P = 5000.00 kN

(Data from As-built Plans)

Eccentricity:

For Basic Section =

0.668 m

For Composite Section: 0.682 m (Superimposed Loads)

For Composite Section: 0.682 m (Live Loads)

After Transfer:

f_c' = 39 MPa

Allowable Stress in Compression = 0.60 t_c = -23.40 MPa

Allowable Stress in Tension = 0.50 √f_c' =

3.12 MPa

LOAD DESCRIPTION	STRESSES (MPa)					
EOAD DESCRIPTION	Top Fiber		Bottom Fiber			
Sresses due Dead Loads (Girder+Slab+Diaphragm Weight+Prestressing)	1.94	Т	-9.74	С		
Sresses due to Superimposed Loads	1.21	Т	-1.62	С		
Sresses due to all Live Load + Impact	3.15	T	-4.21	С		

RF = Allowable Stress - (Stress due to Dead Loads + Stress due to Superimposed Loads Stress due to Live Load + Impact

RF = -0.0113 -At top fiber

RF = 2.86 -At bottom fiber

Appendix 24.1.4-3 (6/30) CALCULATION OF LOAD RATING - EXTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI BRIDGE **USING ALLOWABLE STRESS**

FOR INTERIOR & EXTERIOR GIRDER TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of Inertia (m ⁴)	Y Bottom of Girder (m)	Y Top of Girder (m)
Basic Section				
PSCG Type VI	0.707	0.322	0.965	0.864
Deck Slab	0.528	N/A	N/A	N/A
Diaphragm	2.07	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.092	0.57	1.315	0.745
Live Load MS-18	1.092	0.57	1.315	0.745

TABLE B: MOMENT DEMAND FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI (D=1.860m; L=36.00m)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	2645.00
Due to Weight of Girder + Slab + Diaphragm	4785.00
Composite Section	
Due to Weight of Superimposed Loads (railing, sidewalk, median and wearing surface)	907.00
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	1830.00
With Impact	2212.04
Load Combination at Service Condition	
DL + (LL+I)	7904.04

I = 100*(15.24 / L + 38) = 21 %

TABLE C: STRESSES AT MIDSPAN FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI (D=1.86M; L=36.0M)

Prestressing Force, P = 5110.00 kN

(Data from As-built Plans; Drawing No. E-25)

Eccentricity:

For Basic Section =

0.855 m

For Composite Section: 1.205 m (Superimposed Loads)

For Composite Section: 1.205 m (Live Loads)

After Transfer:

f_c' = 39 MPa

Allowable Stress in Compression = 0.50 T_c = -23.40 MPa

Allowable Stress in Tension = 0.5 √f_c' =

3.12 MPa

LOAD DESCRIPTION	STRESSES (MPa)			
EGAD DEGGRATION	Top Fibe	er	Bottom Fiber	
Sresses due Dead Loads (Girder+Slab+Diaphragm Weight+Prestressing)	-8.34	-8.34 C		С
Sresses due to Superimposed Loads	-1.19	С	2.09	T
Sresses due to all Live Load + Impact	-2.89	С	5.10	Т

RF = Allowable Stress - (Stress due to Dead Loads + Stress due to Superimposed Loads

Stress due to Live Load + Impact

RF = 4.80-At top fiber RF = 1.37 -At bottom fiber

Appendix 24.1.4-3 (7/30) CALCULATION OF LOAD RATING - EXTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI BRIDGE **USING ALLOWABLE STRESS**

FOR INTERIOR & EXTERIOR GIRDER (AT SUPPORT / PIER 3)

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of Inertia (m ⁴)	Y Top of Girder (m)	Y Bottom of Girder (m)
Basic Section			***	
PSCG Type VI	1.39	0.42219	0.86759	0.96141
Deck Slab	0.528	N/A	N/A	N/A
Diaphragm	2.07	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.775	0.724	0.882	1.178
Live Load MS-18	1.775	0.724	0.882	1.178

TABLE B: MOMENT DEMAND FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI (D=1.860m; L=22.04m)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	-
Due to Weight of Girder	3256.00
Due to Weight of Girder + Slab +	6028.00
Diaphragm Composite Section	
Due to Weight of Superimposed Loads (railing, sidewalk, median and wearing surface)	996.00
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	1670.00
With Impact	2093.90
Load Combination at Service Condition	
DL + (LL+I)	9117.90

I = 100*(15.24 / L + 38) = 25 %

TABLE C: STRESSES AT MIDSPAN FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI (D=1.86M; L=22.04M)

Prestressing Force, P = 5000.00 kN

(Data from As-built Plans; Drawing No. E-25)

Eccentricity:

After Transfer:

For Basic Section =

0.668 m

For Composite Section: 0.682 m (Superimposed Loads)

For Composite Section: 0.682 m (Live Loads)

f_c' = 39 MPa

Allowable Stress in Compression = 0.60 t_c = -23.40 MPa

Allowable Stress in Tension = 0.5 $\sqrt{f_c}$ = 3.12 MPa

LOAD DESCRIPTION	STRESSES (MPa)				
EGAD DEGOTAL FIGH	D DESCRIPTION Top Fiber		Bottom Fiber		
Sresses due Dead Loads (Girder+Slab+Diaphragm Weight+Prestressing)	1.93	1.93 T		С	
Sresses due to Superimposed Loads	1.21	Т	-1.62	С	
Sresses due to all Live Load + Impact	2.55	T	-3.41	С	

RF = Allowable Stress - (Stress due to Dead Loads + Stress due to Superimposed Loads

Stress due to Live Load + Impact

RF = -0.009 -At Top fiber RF = 3.54-At Bottom fiber

Appendix 24.1.4-3 (8/30) CALCULATION OF LOAD RATING - EXTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI BRIDGE USING ALLOWABLE STRESS

FOR INTERIOR AND EXTERIOR GIRDER (AT NEAR MIDSPAN OF SPAN 4)

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of Inertia (m ⁴)	Y Bottom of Girder (m)	Y Top of Girder (m)
Basic Section				
PSCG Type IV	0.707	0.322	0.965	0.864
Deck Slab	0.528	N/A	N/A	N/A
Diaphragm	2.07	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.024	0.539	1.272	0.788
Live Load MS-18	1.024	0.539	1.272	0.788

TABLE B: MOMENT DEMAND FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI (D=1.86m; L=22.04m)

DESCRIPTION	NEAR MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	546.00
Due to Weight of Girder + Slab + Diaphragm	1041.00
Composite Section	·
Due to Weight of Superimposed Loads (railing, sidewalk, median and wearing surface)	132.00
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	1008.00
With Impact	1229.76
Load Combination at Service Condition	
DL + (LL+I)	2402.76

I = 100*(15.24 / L + 38) = 22 %

TABLE C: STRESSES AT NEAR MIDSPAN FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI (D-1.86M; L=22.04M)

Prestressing Force, P = 4937.18 kN (Data from As-built Plans)

Eccentricity:

For Basic Section = 0.530 m

For Composite Section: 0.837 m (Superimposed Loads)

For Composite Section: 0.837 m (Live Loads)

After Transfer:

f_c' = 39 MPa

Allowable Stress in Compression = 0.50 Vf_c = -23.40 MPa Allowable Stress in Tension = 0.50 Vf_c = 3.12 MPa

STRESSES (MPa) LOAD DESCRIPTION Top Fiber Bottom Fiber Sresses due Dead Loads 2.83 Т -17.95 C (Girder+Slab+Diaphragm Weight+Prestressing) Sresses due to Superimposed Loads 0.19 T -0.31 С Sresses due to all Live Load + Impact -1.80 С 2.90

RF = Allowable Stress - (Stress due to Dead Loads + Stress due to Superimposed Loads

Stress due to Live Load + Impact

RF = 14.70 -At top fiber RF = 5.21 -At bottom fiber

Appendix 24.1.4-3 (9/30) CALCULATION OF LOAD RATING - EXTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE V BRIDGE **USING LOAD FACTOR**

FOR EXTERIOR GIRDER (AT MIDSPAN OF SPAN 1)

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of	Y Bottom of	Y Top of
	Inerti		Girder (m)	Girder (m)
Basic Section				
PSCG Type V	0.65613	0.21859	0.83694	0.76306
Deck Slab	0.528	N/A	N/A	N/A
Diaphragm	2.07	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.041	0.401	1.156	0.644
Live Load MS-18	1.041	0.401	1.156	0.644

TABLE B: MOMENT DEMAND FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE V (D=1.60m; L=19.30m)

MIDSPAN
,,,=
832.00
1441.00
1441.00
278.00
857.00
1087.35
2806.35

$$I = 100*(15.24 / L + 38) = 27 \%$$

CALCULATION OF MOMENT CAPACITY AT MIDSPAN:

CONSIDERING PRESTRESSING STEEL ONLY:

$$A_0^* = 2370.00 \text{ mm}^2$$
 $f = 30 \text{ MP}_2$

$$k_{\rm S}{}^{\star}$$
 = 2370.00 mm² $f_{\rm c}^{\prime}$ = 39 MPa $f_{\rm s}^{\prime}$ = 1862

$$f_{su}^* = f_s \{ 1 - [(\gamma^* / \beta_1) (\rho^* f_s / f_c)] \}$$

 $f_{su}^* = 1838.2 \text{ MPa}$

Compression Block =
$$\frac{A_S^* f_{su}}{0.85 f_C b}$$
 = 61 mm < t_{slab} = 200 mm -Consider rectangular section

$$\phi M_n = \phi A_s^* f_{su}^* d [1 - (0.6 (\rho^* f_{su}^* / f_c))]$$

 $\phi M_n = 8752.79 \text{ kN}$

$$\gamma_D$$
 = 1.30 γ_L = 2.17 INVENTORY LEVEL D = 1719.00 kN LL + I = 1087.35 kN-m γ_L = 1.30 OPERATING LEVEL

$$D = 171900 \text{ kN}$$

$$RF = \frac{\phi M_n - \gamma_D D}{\gamma_L (11+1)} = 2.76$$

$$RF = \frac{\phi M_n - \gamma_D D}{\gamma_L \left(LL + I \right)} = 2.76 \qquad RF = \frac{\phi M_n - \gamma_D D}{\gamma_L \left(LL + I \right)} = 4.61$$

Appendix 24.1.4-3 (10/30) CALCULATION OF LOAD RATING - EXTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI BRIDGE **USING LOAD FACTOR**

FOR EXTERIOR GIRDER (AT NEAR MIDSPAN OF SPAN 2)

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of Inertia (m ⁴)	Y Bottom of Girder (m)	Y Top of Girder (m)
Basic Section				<u></u>
PSCG Type IV	0.707	0.322	0.965	0.895
Deck Slab	0.528	N/A	N/A	N/A
Diaphragm	2.07	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.092	0.57	1.315	0.745
Live Load MS-18	1.092	0.570	1.315	0.745

TABLE B: MOMENT DEMAND FOR PRESTRESSED CONCRETE GIRDER TYPE VI (D=1.860m; L=30.5m)

	0.00
DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	414.00
Due to Weight of Girder + Slab +	740.00
Diaphragm	712.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	202.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	1543.00
With Impact	1913.32
Load Combination at Service Condition	
DL + (LL+I)	2115.32

$$l = 100*(15.24 / L + 38) = 24 \%$$

CALCULATION OF MOMENT CAPACITY AT MIDSPAN:

CONSIDERING PRESTRESSING STEEL ONLY:

$$A_0* = 4740.00 \text{ mm}^2$$

$$\gamma^* = 0.40$$
 - for stress-relieved stee

$$f_{su}^* = f_s \{1 - [(\gamma^*/\beta_1)(\rho^* f_s/f_c)]\}$$

$$f_{su}^* = 1814.41 \text{ MPa}$$

Compression Block =
$$\frac{A_S^* f_{su}}{0.85 f_C^* b}$$
 = 119.6 mm < t_{slab} = 200 mm -Consider rectangular section

$$\phi M_n = \phi A_s^* f_{su}^* d [1 - (0.6 (\rho^* f_{su}^* / f_c))]$$

$$\phi M_n = 17020.2 \text{ kN}$$

$$\gamma_D$$
 = 1.30 γ_L = 2.17 INVENTORY LEVEL D = 914.00 kN LL + I = 1913.32 kN-m γ_I = 1.30 OPERATING LEVEL

$$D = 914.00 \text{ kM}$$

$$RF = \frac{\phi M_n - \gamma_D D}{\gamma_L (1 L + 1)} = 3.81$$

$$RF = \frac{\phi M_n - \gamma_D D}{\gamma_L (LL+I)} = 3.81 \qquad RF = \frac{\phi M_n - \gamma_D D}{\gamma_L (LL+I)} = 6.37$$

Appendix 24.1.4-3 (11/30) CALCULATION OF LOAD RATING - EXTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI BRIDGE **USING LOAD FACTOR**

FOR EXTERIOR GIRDER (AT SUPPORT / PIER 2)

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of	Y Top of	Y Bottom of
DECORN HOW	Alca (III)	Inertia (m⁴)	Girder (m)	Girder (m)
Basic Section				
PSCG Type IV	1.39	0.42219	0.86752	0.96148
Deck Slab	0.528	N/A	N/A	N/A
Diaphragm	3.07	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.775	0.724	0.882	1.178
Live Load MS-18	1.775	0.724	0.882	1.178

TABLE B: MOMENT DEMAND FOR PRESTRESSED CONCRETE GIRDER TYPE VI (D=1.860m; L=30.5m)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	3260.00
Due to Weight of Girder + Slab +	6034.00
Diaphragm	0034.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	997.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	2085.55
With Impact	2549.55
Load Combination at Service Condition	
DL + (LL+I)	3546.55

$$I = 100*(15.24 / L + 38) = 22 \%$$

CALCULATION OF MOMENT CAPACITY AT MIDSPAN:

CONSIDERING PRESTRESSING STEEL ONLY:

$$\rho^* = 0.00107$$

$$\gamma^* = 0.40$$
 - for stress-relieved steel

$$f_{su}^* = f'_s \{1 - [(\gamma^* / \beta_1)(\rho^* f'_s / f'_c)]\}$$

$$f_{su}^* = 1814.41 \text{ MPa}$$

Compression Block =
$$\frac{A_S^* f_{su}}{0.85 f_C^* b}$$
 = 119.6 mm < t_{slab} = 200 mm -Consider rectangular section

$$\phi M_n = \phi A_s^* f_{su}^* d [1 - (0.6 (\rho^* f_{su}^* / f_c))]$$

$$\phi M_n = 17020.2 \text{ kN}$$

$$\gamma_{\rm D}$$
 = 1.30 $\gamma_{\rm L}$ = 2.17 INVENTORY LEVEL D = 7031.00 kN LL + I = 2549.55 kN-m $\gamma_{\rm L}$ = 1.30 OPERATING LEVEL

$$D = 7031.00 \text{ kN}$$

$$RF = \frac{\phi M_n - \gamma_D D}{\sqrt{1 + (1 + 1)}} = 1.42$$

$$RF = \frac{\phi M_n - \gamma_D D}{\gamma_L (LL+1)} = 1.42 \qquad RF = \frac{\phi M_n - \gamma_D D}{\gamma_L (LL+1)} = 2.38$$

Appendix 24.1.4-3 (12/30) CALCULATION OF LOAD RATING - EXTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE IV BRIDGE USING LOAD FACTOR

FOR EXTERIOR GIRDER

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of Inertia (m ⁴)	Y Bottom of Girder (m)	Y Top of Girder (m)
Basic Section				
PSCG Type VI Modified	0.707	0.322	0.965	0.864
Deck Slab	0.528	N/A	N/A	N/A
Diaphragm	2.07	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.092	0.57	1.315	0.745
Live Load MS-18	1.092	0.57	1.315	0.745

TABLE B: MOMENT DEMAND FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI MODIFIED (D=1.86m; L=35.0m)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	2645.00
Due to Weight of Girder + Slab +	4785.00
Diaphragm	4705.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	907.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	1830.00
With Impact	2177.70
Load Combination at Service Condition	
DL + (LL+I)	7869.70

$$I = 100*(15.24 / L + 38) = 19 \%$$

CALCULATION OF MOMENT CAPACITY AT MIDSPAN:

CONSIDERING PRESTRESSING STEEL ONLY:

$$\Delta_{a}^{*} = 4740.00 \text{ mm}^{2}$$
 $f = 20 \text{ MPa}$

$$A_S^* = 4740.00 \text{ mm}^2$$
 $f_c = 39 \text{ MPa}$ $f_s = 1862.00 \text{ MPa}$ $b = 2170.00 \text{ mm}$ $d = 2040.00 \text{ mm}$ $\rho^* = 0.00107$ $\gamma^* = 0.40$ - for stress-relieved steel $\beta_1 = 0.80$ - for fc = 35.00 Mpa $\phi = 1.00$

$$b = 21/0.00 \text{ mm}$$
 $d = 2040.00 \text{ mm}$
 $B_t = 0.80 \text{ - for fc} = 35.00 \text{ Mps}$ $b = 1.00 \text{ ms}$

$$f_{su}^* = f_s^* \{ 1 - [(\gamma^*/\beta_1)(\rho^*f_s^*/f_c)] \}$$

 $f_{su}^* = 1814.41 \text{ MPa}$

Compression Block =
$$\frac{A_S^* f_{su}}{0.85 f_C^* b}$$
 = 119.6 mm < t_{slab} = 200 mm -Consider rectangular section

$$\phi M_n = \phi A_s^* f_{su}^* d [1 - (0.6 (\rho^* f_{su}^* / f_c))]$$

 $\phi M_n = 17020.2 \text{ kN}$

$$\gamma_{\rm D}$$
 = 1.30 $\gamma_{\rm L}$ = 2.17 INVENTORY LEVEL D = 5692.00 kN LL + I = 2177.70 kN-m $\gamma_{\rm L}$ = 1.30 OPERATING LEVEL

$$RF = \frac{\phi M_n - \gamma_D D}{\gamma_0 (11 + 1)} = 2.04$$

$$RF = \frac{\phi M_n - \gamma_D D}{\gamma_L (LL+I)} = 2.04 \qquad RF = \frac{\phi M_n - \gamma_D D}{\gamma_L (LL+I)} = 3.40$$

Appendix 24.1.4-3 (13/30) CALCULATION OF LOAD RATING - EXTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE IV BRIDGE **USING LOAD FACTOR**

FOR INTERIOR AND EXTERIOR GIRDER

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of Inertia (m ⁴)	Y Bottom of Girder (m)	Y Top of Girder (m)
Basic Section		I merua (m.)	Glider (III)	Olider (III)
PSCG Type VI Modified	1.39	0.42219	0.8675942	0.96141
Deck Slab	0.528	N/A	N/A	N/A
Diaphragm	2.07	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.775	0.724	0.882	1.178
Live Load MS-18	1.775	0.724	0.882	1.178

TABLE B: MOMENT DEMAND FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI MODIFIED (D=1.86m; L=35.0m)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	3256.00
Due to Weight of Girder + Slab +	6028.00
Diaphragm	0020.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	996.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	1670.00
With Impact	1987.30
Load Combination at Service Condition	
DL + (LL+I)	9011.30

$$I = 100*(15.24 / L + 38) = 19 \%$$

CALCULATION OF MOMENT CAPACITY AT MIDSPAN:

CONSIDERING PRESTRESSING STEEL ONLY:

$$f_{su}^* = f_s \{ 1 - [(\gamma^* / \beta_1) (\rho^* f_s / f_c)] \}$$

 $f_{su}^* = 1814.41 \text{ MPa}$

Compression Block =
$$\frac{A_S^* f_{su}}{0.85 f_C b}$$
 = 119.6 mm < t_{slab} = 200 mm -Consider rectangular section

$$\phi M_n = \phi A_s^* f_{su}^* d [1 - (0.6 (\rho^* f_{su}^* / f_c))]$$

 $\phi M_n = 17020.2 \text{ kN}$

$$\gamma_D$$
 = 1.30 γ_L = 2.17 INVENTORY LEVEL D = 7024.00 kN LL + I = 1987.30 kN-m γ_L = 1.30 OPERATING LEVEL

$$D = 7024.00 \text{ kM}$$

$$RF = \frac{\phi M_n - \gamma_D D}{\gamma_L (LL+L)} = 1.83$$

$$RF = \frac{-\phi M_n - \gamma_D D}{\gamma_L \left(LL + I \right)} = 1.83 \qquad RF = \frac{-\phi M_n - \gamma_D D}{\gamma_L \left(LL + I \right)} = 3.05$$

Appendix 24.1.4-3 (14/30) CALCULATION OF LOAD RATING - EXTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI BRIDGE USING LOAD FACTOR

FOR INTERIOR AND EXTERIOR GIRDER (AT NEAR MIDSPAN OF SPAN 2)

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of	Y Bottom of	Y Top of
		Inertia (m⁴)	Girder (m)	Girder (m)
Basic Section				
PSCG Type IV	0.707	0.322	0.965	0.864
Deck Slab	0.528	N/A	N/A	N/A
Diaphragm	2.07	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.024	0.539	1.272	0.788
Live Load MS-18	1.024	0.539	1.272	0.788

TABLE B: MOMENT DEMAND FOR PRESTRESSED CONCRETE GIRDER TYPE VI (D=1.860m; L=30.5m)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	546.00
Due to Weight of Girder + Slab +	1041.00
Diaphragm	1041.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	132.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	1008.00
With Impact	1249.92
Load Combination at Service Condition	
DL + (LL+I)	1381.92

$$I = 100*(15.24 / L + 38) = 24 \%$$

CALCULATION OF MOMENT CAPACITY AT MIDSPAN:

CONSIDERING PRESTRESSING STEEL ONLY:

$$f_{su}^* = f_s^* \{ 1 - [(\gamma^*/\beta_1)(\rho^*f_s^*/f_c)] \}$$

 $f_{su}^* = 1814.41 \text{ MPa}$

Compression Block =
$$\frac{A_S* f_{su}}{0.85 f_C b}$$
 = 119.6 mm < t_{slab} = 200 mm -Consider rectangular section

$$\phi M_n = \phi A_s^* f_{su}^* d [1 - (0.6 (\rho^* f_{su}^* / f_c))]$$

 $\phi M_n = 17020.2 \text{ kN}$

$$\gamma_{D}$$
 = 1.30 γ_{L} = 2.17 INVENTORY LEVEL D = 1173.00 kN LL + I = 1249.92 kN-m γ_{L} = 1.30 OPERATING LEVEL

$$RF = \frac{\phi M_n - \gamma_D D}{\gamma_L (LL+1)} = 5.71 \qquad RF = \frac{\phi M_n - \gamma_D D}{\gamma_L (LL+1)} = 9.54$$

Appendix 24.1.4-3 (15/30) CALCULATION OF LOAD RATING - INTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE V BRIDGE USING ALLOWABLE STRESS

FOR INTERIOR GIRDER (AT MIDSPAN OF SPAN 1)

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of	Y Bottom of	Y Top of
DESCRIPTION	Alea (III)	Inertia (m4)	Girder (m)	Girder (m)
Basic Section				
PSCG Type V	0.65613	0.21859	0.83694	0.76306
Deck Slab	0.391	N/A	N/A	N/A
Diaphragm	2.07	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	0.972	0.379	1.118	0.682
Live Load MS-18	0.972	0.379	1.118	0.682

TABLE B: MOMENT DEMAND FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE V (D=1.60m; L=19.30m)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	682.00
Due to Weight of Girder + Slab +	1359.00
Diaphragm	1309.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	264.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	729.00
With Impact	924.94
Load Combination at Service Condition	
DL + (LL+I)	2547.94

I = 100*(15.24 / L + 38) = 27 %

TABLE C: STRESSES AT MIDSPAN FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE IV (D-1.60M; L=36.20M)

Prestressing Force, P = 2471.25 kN

(Data from As-built Plans; Drawing No. E-25)

Eccentricity:

For Basic Section = 0.73

0.737 m

For Composite Section: 1.018 m (Superimposed Loads)

For Composite Section: 1.018 m (Live Loads)

After Transfer:

f_c' = 39 MPa

Allowable Stress in Compression = 0.60 f_c ' = -23.40 MPa

Allowable Stress in Tension = $0.5 \sqrt{f_c}$ = 3.12

3.12 MPa

LOAD DESCRIPTION	STRESSES (MPa)			
LOAD DESCRIPTION .	Top Fib	er	Bottom F	ber
Sresses due Dead Loads (Girder+Slab+Diaphragm Weight+Prestressing)	-2.15	С	-5.54	С
Sresses due to Superimposed Loads	-0.48	С	0.78	Т
Sresses due to all Live Load + Impact	-1.66	С	2.73	Т

RF = Allowable Stress - (Stress due to Dead Loads + Stress due to Superimposed Loads

Stress due to Live Load + Impact

RF = 12.48 -At top fiber RF = 2.89 -At bottom fiber

Appendix 24.1.4-3 (16/30) CALCULATION OF LOAD RATING - INTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI BRIDGE **USING ALLOWABLE STRESS**

FOR INTERIOR GIRDER (AT NEAR MIDSPAN OF SPAN 2)

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of Inertia (m ⁴)	Y Bottom of Girder (m)	Y Top of Girder (m)
Basic Section				
PSCG Type IV	0.707	0.322	0.965	0.895
Deck Slab	0.434	N/A	N/A	N/A
Diaphragm	2.07	N/A	· N/A	N/A
Composite Section				
Suprimposed Loads	1.024	0.539	1.272	0.788
Live Load MS-18	1.024	0.539	1.272	0.788

TABLE B: MOMENT DEMAND FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI (D=1.86m; L=30.50m)

DESCRIPTION	NEAR MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	410.00
Due to Weight of Girder + Slab +	664.00
Diaphragm	004.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	188.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	1189.00
With Impact	1453.53
Load Combination at Service Condition	
DL + (LL+I)	2305.53

I = 100*(15.24 / L + 38) = 22 %

TABLE C: STRESSES AT NEAR MIDSPAN FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI (D-1.86M; L=30.5M) Prestressing Force, P = 4320.04 kN

(Data from As-built Plans)

Eccentricity:

For Basic Section =

0.530 m

For Composite Section: 0.837 m (Superimposed Loads)

For Composite Section: 0.837 m (Live Loads)

After Transfer:

f.' = 39 MPa

Allowable Stress in Compression = 0.60 fc' = -23.40 MPa

Allowable Stress in Tension = 0.50 √f_c' =

3.12 MPa

LOAD DESCRIPTION	STRESSES (MPa)				
LOAD DESCRIPTION	Top Fiber		Bottom Fiber		
Sresses due Dead Loads (Girder+Slab+Diaphragm Weight+Prestressing)	-1.59 C		-10.98	C	
Sresses due to Superimposed Loads	-0.27	С	0.44	Т	
Sresses due to all Live Load + Impact	-2.13	С	3.43	T	

RF = Allowable Stress - (Stress due to Dead Loads + Stress due to Superimposed Loads

Stress due to Live Load + Impact

RF = 10.13 -At top fiber

RF = 3.98 -At bottom fiber

Appendix 24.1.4-3 (17/30) CALCULATION OF LOAD RATING - INTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI BRIDGE **USING ALLOWABLE STRESS**

FOR INTERIOR GIRDER (AT SUPPORT / PIER 2)

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of	Y Top of	Y Bottom of
BEGORIE HOR	DECORATION Alea (III)		Girder (m)	Girder (m)
Basic Section				
PSCG Type IV	1.39	0.42219	0.86752	0.96148
Deck Slab	0.434	N/A	N/A	N/A
Diaphragm	2.07	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.706	0.68	0.914	1.146
Live Load MS-18	1.706	0.680	0.914	1.146

TABLE B: MOMENT DEMAND FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI (D=1.86m; L=30.50m)

DESCRIPTION	NEAR MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	3206.50
Due to Weight of Girder + Slab +	E004.00
Diaphragm	5604.00
Composite Section	
Due to Weight of Superimposed Loads	*******
(railing, sidewalk, median and wearing	930.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	1289.00
With Impact	1598.36
Load Combination at Service Condition	
DL + (LL+I)	8132.36

I = 100*(15.24 / L + 38) = 22 %

TABLE C: STRESSES AT NEAR MIDSPAN FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI (D-1.86M; L=30.5M)

Prestressing Force, P = 5000.00 kN

(Data from As-built Plans)

Eccentricity:

For Basic Section =

0.668 m

For Composite Section: 0.714 m (Superimposed Loads)

For Composite Section: 0.714 m (Live Loads)

After Transfer:

f_c' =

Allowable Stress in Compression = 0.60 f_c' = -23.40 MPa

Allowable Stress in Tension = 0.50 √f_c' =

3.12 MPa

LOAD DESCRIPTION	STRESSES (MPa)				
EOAD DESCRIPTION	Top Fiber		Bottom Fiber		
Sresses due Dead Loads (Girder+Slab+Diaphragm Weight+Prestressing)	1.06	Т	-8.76	С	
Sresses due to Superimposed Loads	1.25	Т	-1.57	С	
Sresses due to all Live Load + Impact	2.15	T	-2.69	С	

RF = Allowable Stress - (Stress due to Dead Loads + Stress due to Superimposed Loads)

Stress due to Live Load + Impact

RF = 0.378 -At top fiber RF = 4.854 -At bottom fiber

Appendix 24.1.4-3 (18/30) CALCULATION OF LOAD RATING - INTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI BRIDGE **USING ALLOWABLE STRESS**

FOR INTERIOR GIRDER **TABLE A: SECTION PROPERTIES**

DESCRIPTION	Area (m²)	Moment of Inertia (m ⁴)	Y Bottom of Girder (m)	Y Top of Girder (m)
Basic Section		111011111111111111111111111111111111111		
PSCG Type VI	0.707	0.322	0.965	0.864
Deck Slab	0.434	N/A	N/A	N/A
Diaphragm	2.07	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.024	0.539	1.272	0.788
Live Load MS-18	1.024	0.539	1.272	0.788

TABLE B: MOMENT DEMAND FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI (D=1.860m; L=36.00m)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	2645.00
Due to Weight of Girder + Slab +	4520.00
Diaphragm	4530.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	856.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	1375.00
With Impact	1662.05
Load Combination at Service Condition	
DL + (LL+I)	7048.05

I = 100*(15.24 / L + 38) = 21 %

TABLE C: STRESSES AT MIDSPAN FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI (D=1.86M; L=36.0M)

Prestressing Force, P = 5110.00 kN

(Data from As-built Plans; Drawing No. E-25)

Eccentricity:

For Basic Section =

0.855 m

For Composite Section: 1.162 m (Superimposed Loads)

For Composite Section: 1.162 m (Live Loads)

After Transfer:

f_c' = 39 MPa

Allowable Stress in Compression = 0.60 f_c' = -23.40 MPa

Allowable Stress in Tension = 0.5 √f_c' =

3.12 MPa

LOAD DESCRIPTION	STRESSES (MPa)				
LOAD DESCRIPTION	Top Fiber		Bottom Fiber		
Sresses due Dead Loads (Girder+Slab+Diaphragm Weight+Prestressing)	-7.66	С	-6.75	С	
Sresses due to Superimposed Loads	-1.25	С	2.02	Т	
Sresses due to all Live Load + Impact	-2.43	С	3.92	T	

RF = Allowable Stress - (Stress due to Dead Loads + Stress due to Superimposed Loads

Stress due to Live Load + Impact

RF = 5.96 -At top fiber RF = 2.00-At bottom fiber

Appendix 24.1.4-3 (19/30) CALCULATION OF LOAD RATING - INTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI BRIDGE **USING ALLOWABLE STRESS**

FOR INTERIOR GIRDER (AT SUPPORT / PIER 3)

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of Inertia (m⁴)	Y Top of Girder (m)	Y Bottom of Girder (m)
Basic Section		merua (iii)	Olider (III)	Olider (III)
PSCG Type VI	1.39	0.42219	0.86759	0.96141
Deck Slab	0.434	N/A	N/A	N/A
Diaphragm	2.07	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.706	0.68	0.914	1.146
Live Load MS-18	1.706	0.68	0.914	1.146

TABLE B: MOMENT DEMAND FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI (D=1.860m; L=22.04m)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	3210.00
Due to Weight of Girder + Slab +	5610.00
Diaphragm	5010.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	931.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	1256.00
With Impact	1574.81
Load Combination at Service Condition	
DL + (LL+I)	8115.81

I = 100*(15.24 / L + 38) = 25 %

TABLE C: STRESSES AT MIDSPAN FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI (D=1.86M; L=22.04M)

Prestressing Force, P = 5000.00 kN

(Data from As-built Plans; Drawing No. E-25)

Eccentricity:

For Basic Section =

0.668 m

For Composite Section: 0.714 m (Superimposed Loads)

For Composite Section: 0.714 m (Live Loads)

After Transfer:

f_c' = 39 MPa

Allowable Stress in Compression = 0.60 f_c' = -23.40 MPa

Allowable Stress in Tension = 0.5 √f_c' =

3.12 MPa

LOAD DESCRIPTION	STRESSES (MPa)				
LOAD DESCRIPTION	Top Fiber		Bottom Fiber		
Sresses due Dead Loads (Girder+Slab+Diaphragm Weight+Prestressing)	1.07	Т	-8,77	С	
Sresses due to Superimposed Loads	1.25	Т	-1.57	С	
Sresses due to all Live Load + Impact	2.12	Т	-2.65	С	

RF = Allowable Stress - (Stress due to Dead Loads + Stress due to Superimposed Loads

Stress due to Live Load + Impact

RF = 0.378 -At Top fiber RF = 4.921 -At Bottom fiber

Appendix 24.1.4-3 (20/30) CALCULATION OF LOAD RATING - INTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI BRIDGE **USING ALLOWABLE STRESS**

FOR INTERIOR GIRDER (AT NEAR MIDSPAN OF SPAN 4)

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of Inertia (m ⁴)	Y Bottom of Girder (m)	Y Top of Girder (m)
Basic Section				
PSCG Type IV	0.70891	0.32105	0.96803	0.89197
Deck Slab	0.434	N/A	N/A	N/A
Diaphragm	2.07	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.024	0.539	1.272	0.788
Live Load MS-18	1.024	0.539	1.272	0.788

TABLE B: MOMENT DEMAND FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI (D=1.86m; L=22.04m)

(S 1100H) L LLIOTHI)	
DESCRIPTION	NEAR MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	556.00
Due to Weight of Girder + Slab +	997.00
Diaphragm	997.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	125.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	861.00
With Impact	1067.64
Load Combination at Service Condition	
DL + (LL+I)	2189.64

I = 100*(15.24 / L + 38) = 22 %

TABLE C: STRESSES AT NEAR MIDSPAN FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI (D-1.86M; L=22.04M)

Prestressing Force, P = 4937.18 kN

(Data from As-built Plans)

Eccentricity:

For Basic Section =

0.533 m

For Composite Section: 0.837 m (Superimposed Loads)

For Composite Section: 0.837 m (Live Loads)

After Transfer:

f_c' = 39 MPa

Allowable Stress in Compression = 0.60 f_c' = -23.40 MPa

Allowable Stress in Tension = 0.50 √f_c' =

3.12 MPa

LOAD DESCRIPTION	STRESSES (MPa)				
LOAD DESCRIPTION	Top Fibe	er	Bottom Fiber		
Sresses due Dead Loads (Girder+Slab+Diaphragm Weight+Prestressing)	3.12	Т	-17.91	С	
Sresses due to Superimposed Loads	0.18	Т	-0.29	С	
Sresses due to all Live Load + Impact	-1.56	С	2.52	T	

RF = Allowable Stress - (Stress due to Dead Loads + Stress due to Superimposed Loads

Stress due to Live Load + Impact

RF = 17.11 -At top fiber RF = 5.98 -At bottom fiber

Appendix 24.1.4-3 (21/30) CALCULATION OF LOAD RATING - INTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE V BRIDGE **USING LOAD FACTOR**

FOR INTERIOR GIRDER (AT MIDSPAN OF SPAN 1)

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of Inertia (m ⁴)	Y Bottom of Girder (m)	Y Top of Girder (m)
Basic Section				
PSCG Type V	0.65613	0.21859	0.83694	0.76306
Deck Slab	0.391	N/A	N/A	N/A
Diaphragm	2.07	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	0.972	0.379	1.118	0.682
Live Load MS-18	0.972	0.379	1.118	0.682

TABLE B: MOMENT DEMAND FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE V (D=1.60m; L=19.30m)

MIDSPAN
682.00
1359.00
1339.00
264.00
729.00
924.94
2547.94

$$I = 100*(15.24 / L + 38) = 27 \%$$

CALCULATION OF MOMENT CAPACITY AT MIDSPAN:

CONSIDERING PRESTRESSING STEEL ONLY:

a
$$D = 21/0.00 \text{ mm}$$
 $C = 2040.00 \text{ mm}$
 $C = 0.80 \text{ for } C = 25.00 \text{ Mpc}$

$$f_{su}^* = f_s^* \{ 1 - [(\gamma^* / \beta_1)(\rho^* f_s / f_c)] \}$$

$$f_{su}^* = 1838.2 \text{ MPa}$$

Compression Block =
$$\frac{A_8 * f_{su}}{0.85 f_C b}$$
 = 61 mm < t_{slab} = 200 mm -Consider rectangular section

$$\phi M_n = \phi A_s^* f_{su}^* d [1 - (0.6 (\rho^* f_{su}^* / f_c)] \phi M_n = 8752.79 \text{ kN}$$

$$\gamma_{\rm D}$$
 = 1.30 $\gamma_{\rm L}$ = 2.17 INVENTORY LEVEL D = 1623.00 kN LL + I = 924.94 kN-m $\gamma_{\rm I}$ = 1.30 OPERATING LEVEL

$$D = 1623.00 \text{ kN}$$

$$DE = \phi M_n - \gamma_D D = 3.31$$

$$RF = \frac{\phi M_n - \gamma_D D}{\gamma_L (LL+I)} = 3.31 \qquad RF = \frac{\phi M_n - \gamma_D D}{\gamma_L (LL+I)} = 5.52$$

Appendix 24.1.4-3 (22/30) CALCULATION OF LOAD RATING - INTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI BRIDGE USING LOAD FACTOR

FOR INTERIOR GIRDER (AT NEAR MIDSPAN OF SPAN 2)

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of Inertia (m ⁴)	Y Bottom of Girder (m)	Y Top of Girder (m)
Basic Section				
PSCG Type IV	0.707	0.322	0.965	0.895
Deck Slab	0.434	N/A	N/A	N/A
Diaphragm	2.07	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.024	0.539	1.272	0.788
Live Load MS-18	1.024	0.539	1.272	0.788

TABLE B: MOMENT DEMAND FOR PRESTRESSED CONCRETE GIRDER TYPE VI (D=1.860m; L=30.5m)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	410.00
Due to Weight of Girder + Slab +	664.00
Diaphragm	664.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	188.00
surface)	,
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	1189.00
With Impact	1474.36
Load Combination at Service Condition	
DL + (LL+I)	1662.36

I = 100*(15.24 / L + 38) = 24 %

CALCULATION OF MOMENT CAPACITY AT MIDSPAN:

CONSIDERING PRESTRESSING STEEL ONLY:

$$A_S^* = 4740.00 \text{ mm}^2$$

$$f_s = 1862.00 \text{ MPa}$$

$$o = 2170.00 \text{ mm}$$

$$d = 2040.00 \text{ mm}$$

$$\rho^* = 0.00107$$

$$\gamma^* = 0.40$$
 - for stress-relieved steel

$$A_S^* = 4740.00 \text{ mm}^2$$
 $f_c^* = 39 \text{ MPa}$ $f_s^* = 1862.00 \text{ MPa}$ $f_s^* = 2170.00 \text{ mm}$ $f_s^* = 2040.00 \text{ mm}$ $f_s^* = 0.00107$ $f_s^* = 0.40$ - for stress-relieved steel $f_s^* = 0.80$ - for $f_s^* = 35.00 \text{ Mpa}$ $f_s^* = 1862.00 \text{ M$

$$f_{su}^* = f_s^* \{1 - [(\gamma^*/\beta_1)(\rho^* f_s^*/f_c)]\}$$

$$f_{su}^* = 1814.41 \text{ MPa}$$

Compression Block =
$$\frac{A_S * f_{su}}{0.85 f_C b}$$
 = 119.6 mm < t_{slab} = 200 mm -Consider rectangular section

$$\phi M_n = \phi A_s^* f_{su}^* d [1 - (0.6 (\rho^* f_{su}^* / f_c))]$$

$$\phi M_n = 17020.2 \text{ kN}$$

$$\gamma_D$$
 = 1.30 γ_L = 2.17 INVENTORY LEVEL D = 852.00 kN LL + I = 1474.36 kN-m γ_I = 1.30 OPERATING LEVEL

$$D = 852.00 \text{ kN}$$

$$RF = \frac{\phi M_n - \gamma_D D}{\gamma_1 (11+1)} = 4.97$$

$$RF = \frac{\phi M_n - \gamma_D D}{\gamma_L (LL+1)} = 4.97 \qquad RF = \frac{\phi M_n - \gamma_D D}{\gamma_L (LL+1)} = 8.30$$

Appendix 24.1.4-3 (23/30) CALCULATION OF LOAD RATING - INTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI BRIDGE **USING LOAD FACTOR**

FOR INTERIOR GIRDER (AT SUPPORT / PIER 2)

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of Inertia (m⁴)	Y Top of Girder (m)	Y Bottom of Girder (m)
Basic Section				
PSCG Type IV	1.39	0.42219	0.86752	0.96148
Deck Slab	0.434	N/A	N/A	N/A
Diaphragm	3.07	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.706	0.68	0.914	1.146
Live Load MS-18	1.706	0.680	0.914	1.146

TABLE B: MOMENT DEMAND FOR PRESTRESSED CONCRETE GIRDER TYPE VI

/D 4	000		- \
(D=1	.860m:	L=30	.5m)

١N
)
,
)
3
}
)

$$I = 100*(15.24 / L + 38) = 22 \%$$

CALCULATION OF MOMENT CAPACITY AT MIDSPAN:

CONSIDERING PRESTRESSING STEEL ONLY:

$$A_S^* = 4740.00 \text{ mm}^2$$

$$f_c = 39$$
 MPa

$$f_s' = 1862.00 \text{ MPa}$$

$$b = 2170.00 \text{ mm}$$

$$\rho^* = 0.00107$$

$$\gamma^* = 0.40$$
 - for stress-relieved stee

$$f_{su}^* = f_s \{1 - [(\gamma^*/\beta_1)(\rho^* f_s^*/f_c)]\}$$

$$f_{su}^* = 1814.41 \text{ MPa}$$

Compression Block =
$$\frac{A_S * f_{su}}{0.85 f_C b}$$
 = 119.6 mm < t_{slab} = 200 mm -Consider rectangular section

$$\phi M_n = \phi A_s^* f_{su}^* d [1 - (0.6 (\rho^* f_{su}^* / f_c))]$$

$$\phi M_0 = 17020.2 \text{ kN}$$

$$\gamma_D$$
 = 1.30 γ_L = 2.17 INVENTORY LEVEL D = 6534.00 kN LL + I = 1575.78 kN-m γ_I = 1.30 OPERATING LEVEL

$$D = 6534.00 \text{ kM}$$

$$LL + I = 1575.78 \text{ kN-m}$$

$$RF = \frac{\phi M_n - \gamma_D D}{\gamma_L (1.1 \pm 1.1)} = 2.49$$

$$RF = \frac{\phi M_n - \gamma_D D}{\gamma_L (LL+I)} = 2.49 \qquad RF = \frac{\phi M_n - \gamma_D D}{\gamma_L (LL+I)} = 4.16$$

Appendix 24.1.4-3 (24/30) CALCULATION OF LOAD RATING - INTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE IV BRIDGE USING LOAD FACTOR

FOR INTERIOR GIRDER

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of	Y Bottom of	Y Top of
	704 (/	Inertia (m⁴)	Girder (m)	Girder (m)
Basic Section				
PSCG Type VI Modified	0.707	0.322	0.965	0.864
Deck Slab	0.434	N/A	N/A	N/A
Diaphragm	2.07	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.024	0.539	1.272	0.788
Live Load MS-18	1.024	0.539	1.272	0.788

TABLE B: MOMENT DEMAND FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI MODIFIED (D=1.86m; L=35.0m)

<u> </u>	
DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	2645.00
Due to Weight of Girder + Slab +	4520.00
Diaphragm	4530.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	856.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	1375.00
With Impact	1636.25
Load Combination at Service Condition	
DL + (LL+i)	7022.25

$$I = 100*(15.24 / L + 38) = 19 \%$$

CALCULATION OF MOMENT CAPACITY AT MIDSPAN:

CONSIDERING PRESTRESSING STEEL ONLY:

$$A_0^* = 4740.00 \text{ mm}^2$$

$$f_c = 39 \text{ MPa}$$

$$a f_s' = 1862.00 MP$$

$$\gamma^* = 0.40$$
 - for stress-relieved stee

$$f_{su}^* = f_s \{1 - [(\gamma^*/\beta_1)(\rho^* f_s/f_c)]\}$$

$$f_{su}^* = 1814.41 \text{ MPa}$$

Compression Block =
$$\frac{A_S* f_{su}}{0.85 f_C' b}$$
 = 119.6 mm < t_{slab} = 200 mm -Consider rectangular section

$$\phi M_n = \phi A_s^* f_{su}^* d [1 - (0.6 (\rho^* f_{su}^* / f_c))]$$

 $\phi M_n = 17020.2 \text{ kN}$

$$v_D = 1.30$$

$$\gamma_D$$
 = 1.30 γ_L = 2.17 INVENTORY LEVEL D = 5386.00 kN LL + I = 1636.25 kN-m γ_I = 1.30 OPERATING LEVEL

$$D = 5386.00 \text{ kN}$$

$$LL + I = 1636.25 \text{ kN-m}$$

$$RF = \frac{\phi M_n - \gamma_D D}{\gamma_1 (11+1)} = 2.82$$

$$RF = \frac{\phi M_n - \gamma_D D}{\gamma_L (LL+I)} = 2.82 \qquad RF = \frac{\phi M_n - \gamma_D D}{\gamma_L (LL+I)} = 4.71$$

Appendix 24.1.4-3 (25/30) CALCULATION OF LOAD RATING - INTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE IV BRIDGE **USING LOAD FACTOR**

FOR INTERIOR GIRDER

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of Inertia (m ⁴)	Y Bottom of Girder (m)	Y Top of Girder (m)
Basic Section				
PSCG Type VI Modified	1.39	0.42219	0.8675942	0.96141
Deck Slab	0.434	N/A	N/A	N/A
Diaphragm	2.07	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.706	0.68	0.914	1.146
Live Load MS-18	1.706	0.68	0.914	1.146

TABLE B: MOMENT DEMAND FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI MODIFIED (D=1.86m: L=35.0m)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	3210.00
Due to Weight of Girder + Slab +	5610.00
Diaphragm	3010,00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	931.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	1256.00
With Impact	1494.64
Load Combination at Service Condition	
DL + (LL+i)	8035.64

$$I = 100*(15.24 / L + 38) = 19 \%$$

CALCULATION OF MOMENT CAPACITY AT MIDSPAN:

CONSIDERING PRESTRESSING STEEL ONLY:

$$f_{su}^* = f_s^* \{1 - [(\gamma^* / \beta_1)(\rho^* f_s^* / f_c)]\}$$

$$f_{su}^* = 1814.41 \text{ MPa}$$

Compression Block =
$$\frac{A_S^* f_{su}}{0.85 f_C^* b}$$
 = 119.6 mm < t_{slab} = 200 mm -Consider rectangular section

$$\phi M_n = \phi A_s^* f_{su}^* d [1 - (0.6 (\rho^* f_{su}^* / f_c))]$$

 $\phi M_n = 17020.2 \text{ kN}$

$$\gamma_D$$
 = 1.30 γ_L = 2.17 INVENTORY LEVEL D = 6541.00 kN LL + I = 1494.64 kN-m γ_L = 1.30 OPERATING LEVEL

$$D = 6541.00 \text{ kN}$$

$$LL + I = 1494.64 \text{ kN-m}$$

$$RF = \frac{\phi M_n - \gamma_D D}{\gamma_L (1.1+1)} = 2.63$$

$$\mathsf{RF} = \frac{\phi \mathsf{M}_\mathsf{n} - \gamma_\mathsf{D} \, \mathsf{D}}{\gamma_\mathsf{L} \, (\, \mathsf{LL} + \mathsf{I} \,)} = 2.63 \qquad \qquad \mathsf{RF} = \frac{\phi \mathsf{M}_\mathsf{n} - \gamma_\mathsf{D} \, \mathsf{D}}{\gamma_\mathsf{L} \, (\, \mathsf{LL} + \mathsf{I} \,)} = 4.38$$

Appendix 24.1.4-3 (26/30) CALCULATION OF LOAD RATING - INTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI BRIDGE **USING LOAD FACTOR**

FOR INTERIOR GIRDER (AT NEAR MIDSPAN OF SPAN 2)

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of	Y Bottom of	Y Top of
DESCRIPTION	Alea (III)	Inertia (m⁴)	Girder (m)	Girder (m)
Basic Section				
PSCG Type IV	0.70891	0.32105	0.96803	0.89197
Deck Slab	0.434	N/A	N/A	N/A
Diaphragm	2.07	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.024	0.539	1.272	0.788
Live Load MS-18	1.024	0.539	1.272	0.788

TABLE B: MOMENT DEMAND FOR PRESTRESSED CONCRETE GIRDER TYPE VI (D=1.860m; L=30.5m)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	556.00
Due to Weight of Girder + Slab +	997.00
Diaphragm	997.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	125.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	861.00
With Impact	1067.64
Load Combination at Service Condition	
DL + (LL+I)	1192.64

i = 100*(15.24 / L + 38) = 24 %

CALCULATION OF MOMENT CAPACITY AT MIDSPAN:

CONSIDERING PRESTRESSING STEEL ONLY:

$$A_{S}^{*} = 4740.00 \text{ mm}^{2}$$

$$= 30 \text{ MPa}$$
 $f = 1962.00$

$$f_s = 1862.00 \text{ MPa}$$

$$\rho^* = 0.00107$$

$$\gamma^* = 0.40$$
 - for stress-relieved steel

$$0 \, \text{Mpa} \quad \phi = 1.00$$

$$f_{su}^* = f_s^* \{1 - [(\gamma^*/\beta_1)(\rho^* f_s^*/f_c)]\}$$

 $f_s^* = 1814.41 \text{ MPa}$

$$f_{su}^* = 1814.41 \text{ MPa}$$

Compression Block =
$$\frac{A_S^* f_{su}}{0.85 f_C^* b}$$
 = 119.6 mm < t_{slab} = 200 mm -Consider rectangular section

$$\phi M_n = \phi A_s^* f_{su}^* d [1 - (0.6 (\rho^* f_{su}^* / f_c))]$$

$$\phi M_n = 17020.2 \text{ kN}$$

$$\gamma_D$$
 = 1.30 γ_L = 2.17 INVENTORY LEVEL D = 1122.00 kN LL + I = 1067.64 kN-m γ_L = 1.30 OPERATING LEVEL

$$D = 1122.00 \text{ kM}$$

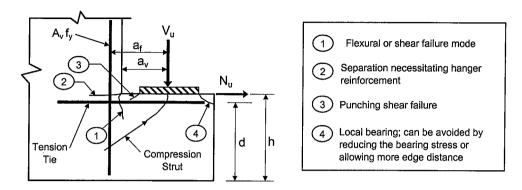
$$LL + I = 1067.64 \text{ kN-m}$$

$$RF = \frac{\phi M_n - \gamma_D D}{\gamma_L (1.1 + 1)} = 6.72$$

$$RF = \frac{\phi M_n - \gamma_D D}{\gamma_L (LL+1)} = 6.72 \qquad RF = \frac{\phi M_n - \gamma_D D}{\gamma_L (LL+1)} = 11.21$$

Appendix 24.1.4-3 (27/30)

CALCULATION OF LOAD RATING - EXTERIOR AND INTERIOR GIRDER


PROJECT TITLE: PASIG-MARIKINA RIVER BRIDGE INSPECTION VARGAS BRIDGE UPSTREAM

ITEM: LIVE LOAD RATING

BEAM LEDGE CAPACITY INVESTIGATION (LOAD RATING) FOR GERBER HINGE

1. BEAM LEADGE FAILURE MECHANISM

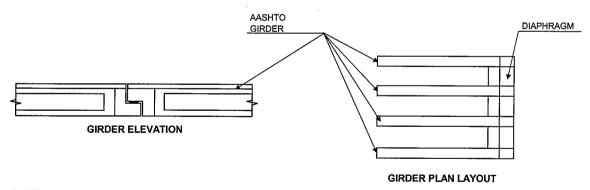
Beam ledges have to be designed for overall member actions and local failure modes as follows:

Failure Modes and Potential Cracks

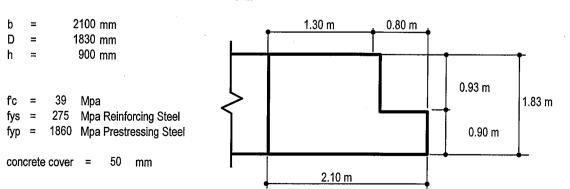
Forces and actions acting on the ledge includes shear (Vu), horizontal tensile force (Nuc), and moment (Mu):

Vu = Factored Shear (Dead load + Live load + Impact)

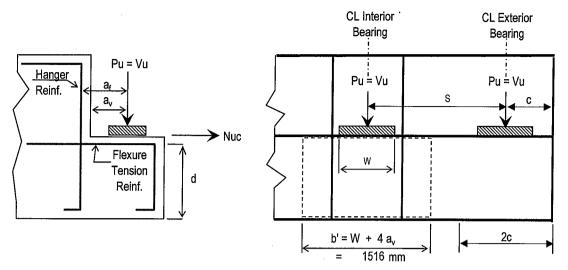
Nuc & 0.2Vu, but less than 1.0Vu


 $Mu = Vu(a_f) + Nu(h-d)$

a_f = Flexural moment arm; distance from reaction centerline to centerline of


hanger reinforcement

h - d = Moment arm for the horizontal load, Nuc

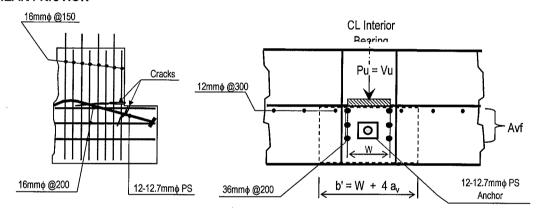

GERBER HINGE LAYOUT

2. DIMENSION AND PROPERTIES OF LEDGE:

Appendix 24.1.4-3 (28/30) CALCULATION OF LOAD RATING - EXTERIOR AND INTERIOR GIRDER

Bearing Pad Dimensions:

Width of bearing pad, W = 500 mm


Length of bearing pad, L = 200 mm

Width of Girder End Block = 711 mm

Girder Spacing, S = 2170 mm (CL of bearing) Edge dist. of ext bearing,c = 300 mm $a_v = 254 \text{ mm}$ $a_f = 304 \text{ mm}$

d = 850 mm b = 711 mm b' = 1516 mm Bearing Edage Width: 2c = 600 mm

3. SHEAR FRICTION

Reinforcements Provided

Location	Bar Φ, mm	No. Pcs.	Area, mm ²
Interior	36	12.00	12214.5
Exterior	36	12.00	12214.5
Note: 10-δ	36 diagonal b	ars are incl	uded (7-436 e

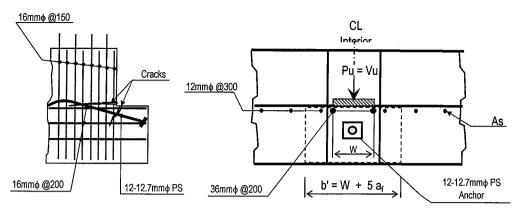
 μ = friction coefficient = 1.40 b' = W+4a_b = 1516 mm

Contribution of Prestressing Tendons:

Prestress, As (12-d12.7) = 2369 mm^2 Equiv. Rebar, As' = 14420 mm^2 Effective Area of PS = 3465 mm^2 (2-tendons) $\theta = 6.9 \text{ deg}$

Ledge Capacity Under Shear Friction:

For Interior Bearing:


$a_v/d = 0.30$	H-	1	
Vu $\sim \phi$ (0.2fc) (W+4a _v) (d)	=	8543	kN
Vu & φμ A _{vf} fy	=	3997	kΝ
With Prestress, Vu	=	5131	kN

For Exterior Bearing:

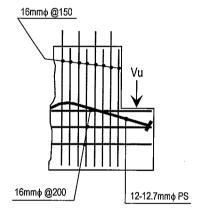
•	a _v / d	=	0.30	Ļ	1	
Vu -	% φ (0.2f′c	c) (K)	(d)	=	3381	kN
Vu -	% φμ Α _{vf} 1	y		=	3997	kN
With I	Prestress,	Vu		=	5131	kN
	K	=	2c	=	600	mm

Appendix 24.1.4-3 (29/30) CALCULATION OF LOAD RATING - EXTERIOR AND INTERIOR GIRDER

4. FLEXURE

Reinforcements Provided

Location	Bar Φ, mm	No. Pcs.	Area, mm ²
Interior	36	12.00	12214.5
Exterior	36	12.00	12214.5


Note: 10-φ36 diagonal bars are included (5-φ36 eq.)

Prestressing:

Ap = $12-\phi12.7$ mm = 2368.8 mm² Equiv. Rebar, As' 16022 mm² Effective Area of PS = 14173 mm² θ = 10.6 deg

 $W + 5a_f = 2020 \text{ mm}$ 2c = 600 mm

5. HANGER REINFORCEMENT

Reinforcements Provided

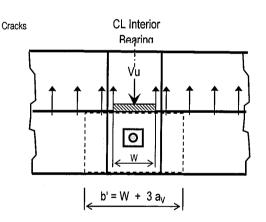
Location	Bar Φ, mm	No. Pcs.	Area, mm ²
Interior	16	29.00	5830.8
Exterior	16	29.00	5830.8

Note: 10-φ36 diagonal bars are included (25-φ16 eq.)

Contribution of Prestressing Tendons:

Prestress, As (12-d12.7) = $\frac{1184 \text{ mm}^2}{\text{Equiv. Rebar, As'}}$ = $\frac{7210 \text{ mm}^2}{\text{Effective Area of PS}}$ = $\frac{2652 \text{ mm}^3}{\text{0}}$

Ledge Capacity Under Flexure:


Reinforcing Bars Only

Tronsorting Date Offit			
Strength:	Interiror	=	6183 kN
Vu & φ Af fy jd /[af +0.2(h-d)]	Exterior	=	6183 kN

As $\approx 2(A_{vf})/3 + An = 8148 \text{ mm}^2 < Asupplied, OK}$ As $\approx \text{pmin} (W + 5af)(d) = 9740 \text{ mm}^2 < Asupplied, OK}$ pmin = 0.04(fc/fy) = 0.0057

Reinforcing Bars Plus Prestressing Bars

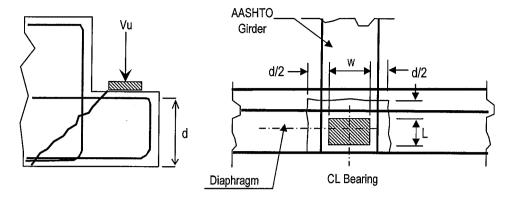
Strength	Interiror	=	13358 kN
Vu ♣	Exterior	=	13358 kN

Ledge Capacity Under Hanger Tension:

Reinforcing Bars Only

Reinforcing Bars Plus Prestressing Bars

 Strength
 Vu
 = φ Av fy S / s
 Interior
 =
 1983 kN

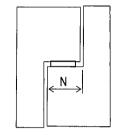

 Exterior
 =
 1983 kN

 Serviceability
 Interior
 =
 1166 kN

 V
 = Av (0.5 fy) (W+3a) / s
 Exterior
 =
 1166 kN

Appendix 24.1.4-3 (30/30) CALCULATION OF LOAD RATING - EXTERIOR AND INTERIOR GIRDER

6. PUNCHING SHEAR



Allow. Tensile Strength for Puching = 0.33 √ fc = 2.06 MPa

Ledge Capacity Under Punching Shear:

Interior Bearing: Vu $\stackrel{>}{\sim} \varphi$ (0.33 \sqrt{f} c)(W+2L'+2d)(d) = 3311 kN Exterior Bearing: Vu $\stackrel{>}{\sim} \varphi$ (0.33 \sqrt{f} c)(W+L'+d)(d) = 1962 kN

7. AVAILABLE SEAT WIDTH

From AASHTO 7.3.1 DIVISION 1A

 $N = (305 + 2.5L + 10H)(1 + 0.000125S^{2})$

L = length in meters of the bridge deck to the adjacent expansion joint

S = angle of skew of support in degrees measured from a line normal to the span.

H = is the column or pier average height in meters

Seat width provided at gerber hinge = 800 mm

L = 37.5 m (Total length of deck from expansion joint to the of the expansion)

S = 0 degrees

H = 5.3 m (Average Height of Column at Main Bridge)

 $N = (305 + 2.5L + 10H)(1 + 0.000125S^2)$

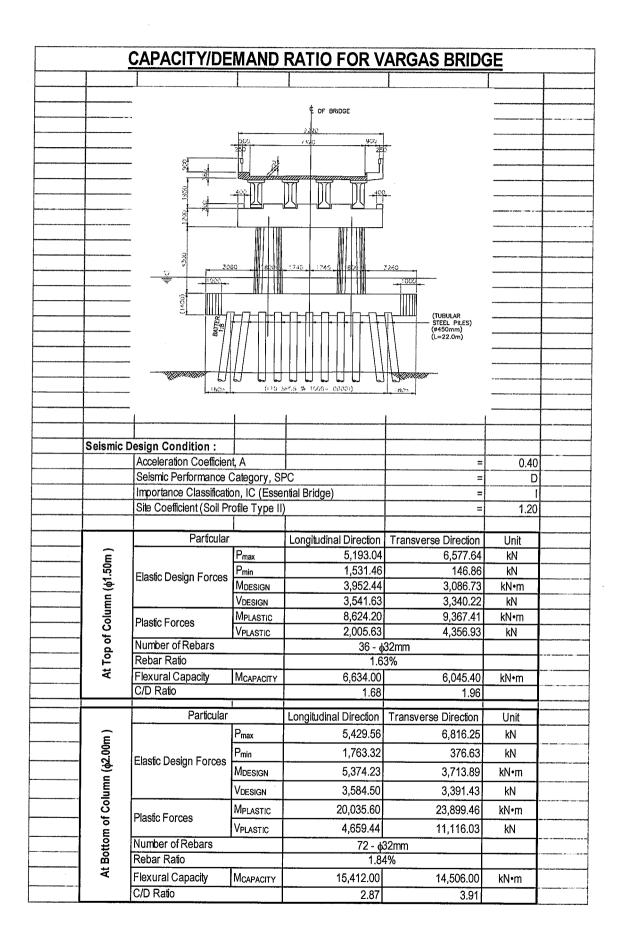
N = 451.75 mm OK, Seat Width Sufficient

8. SUMMARY OF CAPACITY

Demand / Reaction:

Dead Load = 694.0 kN 658.0 kN Live Load = 255.0 kN 231.8 kN Load Factors (Service)Load Factors γ_D Dead Load= 1.00 γ_D Dead Load= 1.30 γ_L Inventory= 1.00 γ_L Inventory= 2.17 γ_L Operating= 1.00 γ_L Operating= 1.30

Calculated Capacity (Load Factor)


Girder	Shear	Friction	Flexure		Har	Punching	
Location	Rebar	W/ PS	Rebar	W/PS	Rebar	W/PS	Shear
Interior	3997	5131	6183	13358	1363	1983	3311
Exterior	3997	5131	6183	13358	1363	1983	1962

Load Rating:

By Load Factor Method:

_	Considering Reinforcing Bars Only					Reinforcing Bars	Plus Prest	ress
Girder	Ir	rventory	Operating		Inventory		Operating	
Location	RF	LL _{EQUIV} (HS20)	RF	LL _{EQUIV} (HS20)	RF	LL _{EQUIV} (HS20)	RF	LL _{EQUIV} (HS20)
Interior	1.01	33.0 tons	1.68	55.1 tons	2.24	73.3 tons	3.74	122.4 tons
Exterior	0.83	27.2 tons	1.39	45.5 tons	1.92	62.6 tons	3.20	104.5 tons

Appendix 24.1.4-4 (1/4) CALCULATION OF CAPACITY-DEMAND RATIO OF PIER COLUMN

Appendix 24.1.4-4 (2/4) CALCULATION OF CAPACITY-DEMAND RATIO OF PIER COLUMNS

ANALYSIS OF CIRCULAR COLUMN (BOTTOM)

SEISMIC DESIGN CRITERIA

Acceleration Coefficient, A = 0.40
Importance Classification, IC (Essential Bridge) = I (I or II)
Seismic Performance Category, SPC = D
Site Coefficient, S (Soil Profile Type - II) = 1.20

ELASTIC SEISMIC FORCES

From STAAD-III Multi-Modal Dynamic Analysis

		LONGITUDINA	AL DIRECTION	TRANSVERSE DIRECTION		
LOADING	AXIAL	SHEAR	MOMENT	SHEAR	MOMENT	
LOADING	(kN)	(kN)	(kN•m)	(kN)	(kN•m)	
DEAD LOAD	3,596.44	0.00	1,901.47	13.83	21.79	
LONG. EQ.	952.94	3,257.61	9,871.17	4.23	6.65	
TRAN. EQ.	2,933.93	710.27	1,644.18	2,926.66	6,928.89	

BOTTOM FORCES GOVERN

LOAD COMBINATION

Load Case 1 = 1.0 LONG. EQ. + 0.3 TRAN. EQ. Load Case 2 = 0.3 LONG. EQ. + 1.0 TRAN. EQ.

		LONGITUDINAL DIRECTION		TRANSVERSE DIRECTION	
LOAD COMBINATION Load Case 1 Load Case 2	AXIAL	SHEAR	MOMENT	SHEAR	MOMENT
	(kN)	(kN)	(kN•m)	(kN)	(kN•m)
Load Case 1	1,833.12	3,470.69	10,364.42	882.23	2,085.32
Load Case 2	3,219.81	1,687.55	4,605.53	2,927.93	6,930.89

GROUP LOADING OF DESIGN FORCES

Group Load = 1.0 (D + B + SF + E + EQ)

			LONGITUDINAL DIRECTION		TRANSVERSE DIRECTION	
LOAD COMBINATION	AXIAL		SHEAR	MOMENT	SHEAR	MOMENT
	Max (kN)	Min (kN)	(kN)	(kN•m)	(kN)	(kN•m)
Load Case 1	5,429.56	1,763.32	3,470.69	12,265.89	896.06	2,107.11
Load Case 2	6,816.25	376.63	1,687.55	6,507.00	2,941.76	6,952.68

MODIFIED DESIGN FORCES

Group Load = 1.0 (D + EQ/R)

R = 3 (longitudinal direction)

R = 5 (transverse direction)			LONGITUDINAL DIRECTION		TRANSVERSE DIRECTION	
LOAD COMBINATION	AXIAL		SHEAR	MOMENT	SHEAR	MOMENT
	Max (kN)	Min (kN)	(kN)	(kN•m)	(kN)	(kN•m)
Load Case 1	5,429.56	1,763.32	3,470.69	5,356.28	896.06	438.85
Load Case 2	6,816.25	376.63	1,687.55	3,436.65	2,941.76	1,407.97

... MODIFIED DESIGN MOMENT OF Load Case 1 GOVERNS!

ELASTIC DESIGN FORCES

 $M_{DESIGN} = 5,374.23 kN \cdot m$ $V_{DESIGN} = 3,584.50 kN$ $P_{max DESIGN} = 5,429.56 kN$ $P_{min DESIGN} = 1,763.32 kN$

Appendix 24.1.4-4 (3/4) CALCULATION OF CAPACITY-DEMAND RATIO OF PIER COLUMNS

K value

0.65

DESIGN OF CIRCULAR COLUMN MAIN REINFORCEMENT BARS

MATERIAL SPECIFICATIONS

A) Concrete	
Compressive Strength of Concrete, f'c	=
Modulus of Elasticity, E _c = 4730 sqrt(f,	=

Concrete Cover, cc

COLUMN PROPERTIES

Unsupported Length, Lu

Diameter, D

Tensile Strength, f. 21.00 MPa 276.00 MPa 21.675.58 MPa Modulus of Elasticity. 200,000.00 MPa uckled shape of columniss shown by dashed line Main Diameter Buckled shape of colur *iim* WIII. MM. 77777

B) Reinforcing Steel

0.80

ode

condition

Ē

Ø

5.05 m 4.30 m

2.00 m

Clear Height, H Gross Area, $A_0 = \pi D^2/4$ 3.14 m² Core Area, $A_c = \pi D_c^2/4$ 2.84 m²

Moment of Inertia, $I_0 = \pi D^4/64$ 0.79 m⁴ Radius of Gyration, $r = sqrt(I_c/A_c)$ 0.50 m

Effective Length Factor, k 2.10

SLENDERNESS EFFECT

a) $22.00 < kL_u/r < 100.00$

22.00 > 21.21 < 100.00 ... neglect slenderness effect

b) $L_u/r < 35 / sqrt[P_u/(f_cA_q)]$

10.10 < 122.00

MOMENT MAGNIFICATION

Maximum Dead Load Moment, Mpt Maximum Total Load Moment, Mmax

Ratio $\beta_d = M_{DL} / M_{max}$

Flexural Stiffnes of Column, EI = $(E_c I_0/2.5)/(1+\beta_d)$

Factored Axial Load, Pu = Pmax Buckling Load, $P_c = \pi^2 EI / (kL_u)^2$

Spiral as Lateral Reinforcement, 6

Magnified Design Moment, Mc = $\delta_s M_{max}$

0.35 5,029.84 MN·m² 5,429.56 kN

> 441,400.67 kN 0.70

1,901.59 kN·m

5,374.23 kN·m

5,374.23 kN·m

2.00

- Rotation fixed and translation fixed

- Rotation free and translation fixed

- Rotation fixed and translation free

- Rotation free and translation free

=

Moment Magnification Factor not braced against sidesway, $\delta_s = 1 / [1 - (\Sigma P_u / \phi \Sigma P_c)]$ $1.02 \ge 1.00$

MODIFIED STRENGTH REDUCTION FACTOR φ

Maximum Axial Stress, $\sigma_{Pmax} = P_{max} / A_c$

20% of Compressive Strength of Concrete, 0.20fc

Approximate Balanced Axial Load, $\phi P_h = 0.20 f_c \cdot A_c$

Modified Strength Reduction Factor, ϕ = 0.90 - 0.40 [σ_{Pmax} / (0.20f_c)] \geq 0.50

1,914.99 kPa

4,200.00 kPa

11,908.21 kN

0.718

MAGNIFIED ELASTIC DESIGN FORCES

5374.23 M DESIGN

P_{max DESIGN}

P_{min DESIGN}

P_{max ULTIMATE} =

P_{min ULTIMATE} =

5429.56 1763.32 kΝ kΝ

kN•m

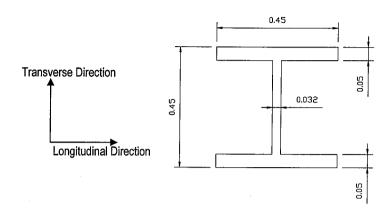
*** DESIGN COLUMN USING PCACOL PROGRAM ...

*** NOTE: $0.01 < A_s / A_g < 0.06$

ULTIMATE (Nominal) DESIGN FORCES FOR COLUMN

M ULTIMATE

7488.96


7566.07

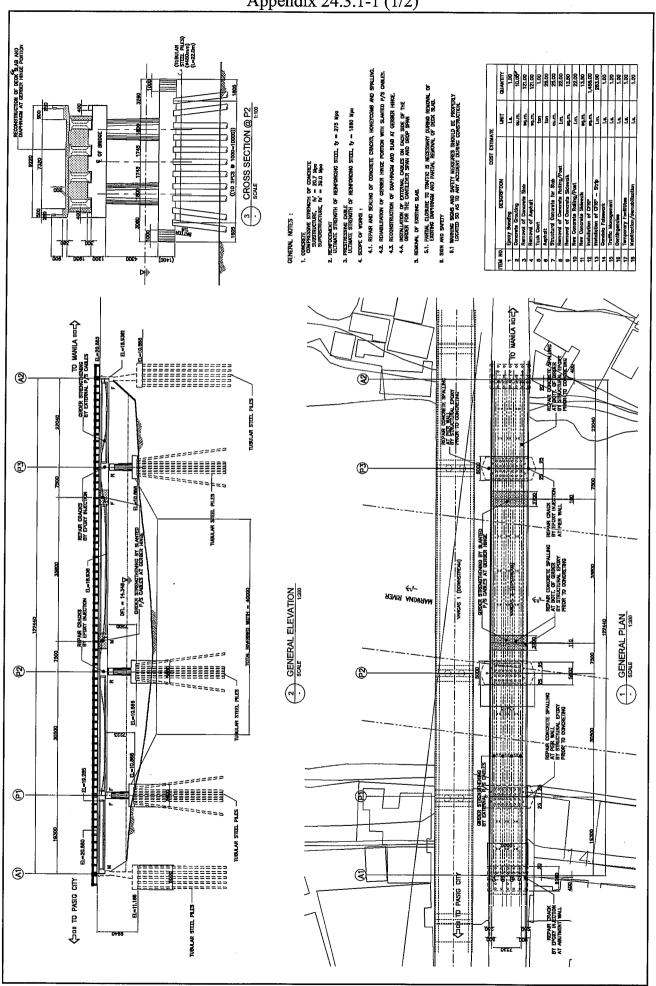
kN•m kΝ kΝ

2457.18

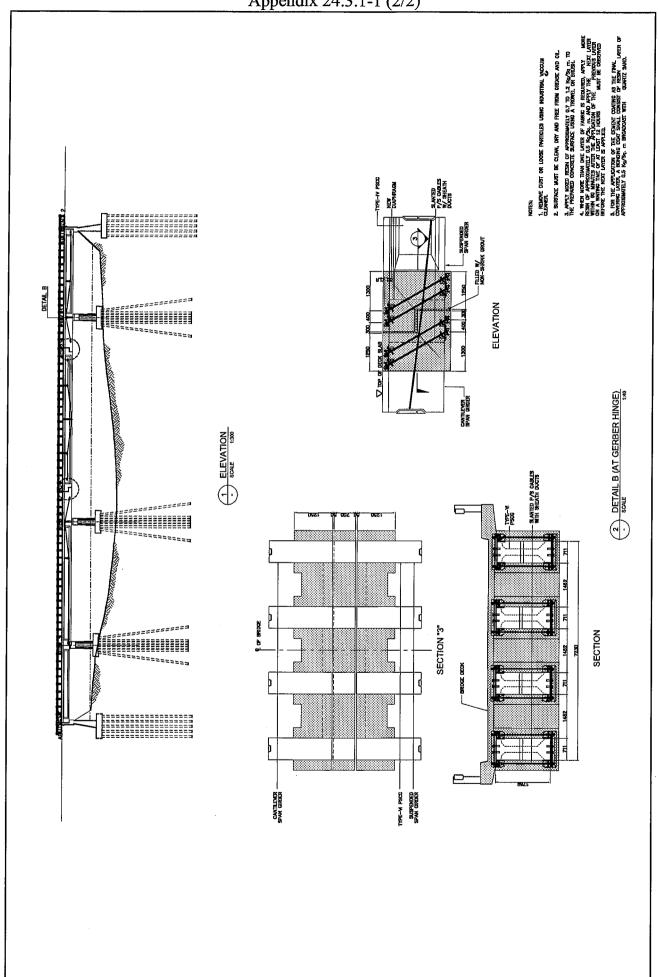
*** INVESTIGATE COLUMN PLASTIC CAPACITY FROM PCACOL INTERACTION DIAGRAM...

INVESTIGATION OF DRIVEN STEEL PILES

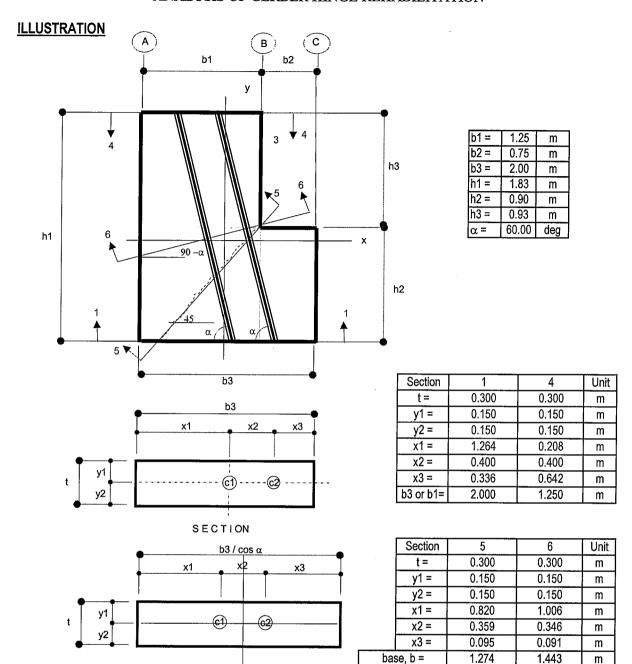
LONGITUDINAL DIRECTION


Area = 0.0562 m^2 Moment of Inertia, I = 0.0054 m^4 Distance from NA to edge, y_b = 0.2250 mSection Modulus, S = 0.0240 m^3 Fy = 248 MPaDesign Moment = 323.00 kNmMoment Capacity = $0.6 \cdot \text{Fy} \cdot \text{S}$ = 3571.20 kNm

11.06


TRANSVERSE DIRECTION

C/D Ratio

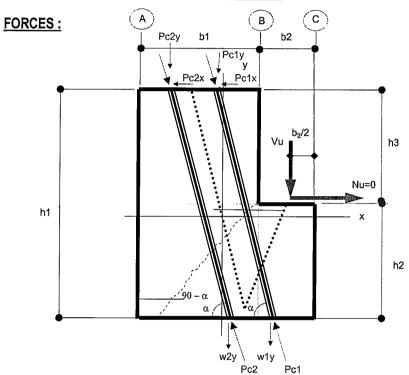

Area 0.0562 m^2 Moment of Inertia, I 0.0066 m⁴ Distance from NA to edge, y_b 0.2250 m 0.0293 m^3 Section Modulus, S Fy 248 MPa **Design Moment** 706.00 kNm Moment Capacity = 0.6 Fy S 4364.80 kNm C/D Ratio 6.18

DRAWING DETAILS FOR REHABILITATION (VARGAS BRIDGE)

Appendix 24.3.1-2 (1/16) ANALYSIS OF GERBER HINGE REHABILITATION

SECTION PROPERTIES

Section	1	5	6	4	Unit
Area, A	0.600	0.382	0.433	0.375	m²
Dist. from N.A. to edge a, Xa =	1.000	0.637	0.722	0.625	m
Dist. from N.A. to edge c, Xc =	1.000	0.637	0.722	0.625	m
Moment of Inertia, I = t * b^3/12	0.200	0.052	0.075	0.049	m ⁴
Section modulus @ a, Sa	0.200	0.081	0.104	0.078	m³
Section modulus @ c, S _c	0.200	0.081	0.104	0.078	m³


SECTION

Appendix 24.3.1-2 (2/16) ANALYSIS OF GERBER HINGE REHABILITATION

MATERIAL SPECIFICATIONS

Compressive strength of concrete:

at time of initial prestress, f'ci	=	22.40	_
at 28th day, f _c	=	28.00	Мра
Ultimate strength of HTS, f's	=	1860.00	Мра
Elastic modulus of HTS, E _S	=	195000	Мра
Nominal area of HTS, A _{ps}	=	383.90	mm²
Jacking stress, 0.70f _s	=	1302.00	Мра
Number of HTS, N	=	1	pcs
.70Pu	=	499.84	kN
Total number of Prestressing steel =		4	pcs

Section	1	5	6	4	Unit
Shear reaction due to Dead Load, Wy =	738.38	738.38	738.38	738.38	kN
Shear reaction due to Live Load, VII =	163.21	163.21	163.21	163.21	kN
Impact = (15.21 / 38.1 + L) =	0.21	0.21	0.21	0.21	
Wylocal = $\sin(90-\alpha)$ * Wy due to DL	639.45	639.45	639.45	639.45	kN
Wxlocal = $cos(90-\alpha)$ * Wy due to DL	369.19	369.19	369.19	369.19	kN
Wylocal = $\sin(90-\alpha)$ * Wy due to DL+LL+i	809.96	809.96	809.96	809.96	kN
Wxlocal = $cos(90-\alpha)$ * Wy due to DL+LL+i	467.63	467.63	467.63	467.63	kN
Effective 0.70Pu	432.87	499.84	499.84	432.87	kN

Assumption:

- 1) Shear,V are carried equally by the oblique prestress cables since spacing is not far apart.
- 2) Favorable effects of internal prestress tendon in the girders are neglected.
- 3) Horizontal force, Nu is neglected due to cable restrainer/or slab made continuous, preventing the horizontal force from developing.

ACTUAL ECCENTRICITY "e"

Section	1	5	6	4	No. of HTS
Distance of c.g. of C1 from edge c =	736 mm	454 mm	437 mm	1042 mm	1
Distance of c.g. of C2 from edge c =	336 mm	95 mm	91 mm	642 mm	1
Ya of strands	536 mm	275 mm	264 mm	842 mm	Total = 2
Eccentricity "e"	464 mm	363 mm	458 mm	-217 mm	

Appendix 24.3.1-2 (3/16) ANALYSIS OF GERBER HINGE REHABILITATION

LOSSES

A) Friction and Anchorage Draw-In

Section	1	5	6	4	Unit
Loss due to friction and anchorage draw-in, FS	0.00	0.00	0.00	0.00	Мра

Note:

-Live End device using SEE (Screw type).

-Tendon profile is straight.

B) Elastic Shortening, ES

$$ES = \frac{0.50E_s f_{cir}}{E_{ci}}$$

where:

f_{cir} = Concrete stress at the center of gravity of the prestressing steel due to prestressing force and dead load of beam immediately after transfer, in mpa.

Section	1	5	6	4	Unit
Eci, modulus of elasticity of concrete in mpa at transfer =	22386.45	22386.45	22386.45	22386.45	Мра
Concrete stress, f _{cir}	2.37	5.16	5.09	3.14	Мра
Loss due to elastic shortening, ES	10.34	22.46	22.19	13.69	Мра

C) Concrete Shrinkage, SH

Mean annual ambient relative humidity in percent, RH =

80.00 %

Loss due to concrete shrinkage, SH

= 0.80(117-1.03RH)

92.94 Mpa

D) Creep of Concrete, CR_C

$$CR_C = 12f_{cir} - 7f_{cds}$$

where: f_{cds} = Concrete stress at center of gravity of the prestressing steel due to all dead loads except the dead load present at the time the prestressing force is applied, in Mpa.

Section	1	2	6	4	Unit
Moment due to dead load (w/o beam weight)	0.00	0.00	0.00	0.00	kN-m
Concrete stress, f _{cds}	0.00	2.98	0.00	0.00	Мра
Loss due to creep of concrete, CR _C	28.50	41.03	61.14	37.72	Мра

E) Relaxation of Prestressing Steel, CRs

 $CR_S = 138 - 0.30FR - 0.40ES - 0.20(SH+CR_C)$

... for stress relieved strands

Section	1	5	6	4	Unit
Loss due to relaxation of prestressing steel, CR _S	109.57	102.22	98.31	106.39	Мра

F) Effective Prestress at Initial and Final Condition

Section	1	5	6	4	Unit
Initial losses, FR + ES	10.34	22.46	22.19	13.69	Мра
Effective prestress at initial condition	1291.66	1279.54	1279.81	1288.31	Мра
Final losses, FR + ES + SH + CR _C + CR _S	241.36	258.66	181.63	157.80	Мра
Effective prestress at final condition	1060.64	1043.34	1120.37	1144.20	Mpa

CHECK STRESSES

A) Only Prestress Force Acting.

Section	1		5		6		4		Unit
Number of strands, N	2		2		2		2		pcs.
Effective jacking force @ intial condition, Pj	858	858.87 982.43		982.64		856.64		kN	
Eccentricity, e	0.4	64	0.363		0.4	0.458 -0.217		m	
Stress at edge c, f c	3.42	С	6.96	С	6.59	С	-0.10	T	Mpa
Remarks	sa	fe!	sat	e!	sa	fe!	sa	safe!	
Stress at edge a, f a	-0.56	T	-0.14	Т	-2.05	T	4.66	С	Мра
Remarks	sa	fe!	saf	e!	carried l	by rebar	sa	fe!	,

Allowable stresses: Compression = 0.55fci

12.32 Mpa

Tension

= 1.40 Mpa or $0.25(f_{ci})^{\frac{1}{2}}$

-1.18 Mpa

Appendix 24.3.1-2 (4/16) ANALYSIS OF GERBER HINGE REHABILITATION

B) If All DL is Acting.

Section	1	5	5		6		4	
Axial Force due to dead load	-369.19	-319.	73	-319.73		-369	9.19	kN
Number of strands, N	2	2 2		2		2		pcs.
Effective jacking force, Pj	705.26	801.0	801.08		860.22		760.81	
Eccentricity, e	0.464	0.36	0.363		58	-0.217		m
Stress at edge c, f c	1.34 C	3.41	С	3.62	С	-0.04	Т	Мра
Remarks	safe!			fe!	<u> </u>			
Stress at edge a, f a	-0.22 T	-0.89	T	-1.13	T	2.13	С	Мра
Remarks	safe!	safe	safe!		safe!		safe!	

Allowable stresses: Compression = 0.40f_c

11.20 Mpa

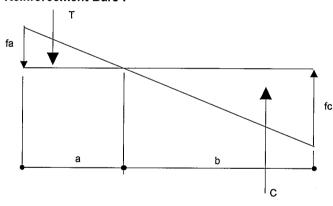
Tension

 $= .50*(fc')^{.5}$

-2.65 Mpa

C) Due to All Dead Load and Live Load Plus Impact (Service Condition)

Section	1	1			6		4		Unit
Axial Force due to DL + LL+i	-450.79	-450.79 -233.82		-233.82		-450.79		kN	
Number of strands, N	2	2 2		2		2		pcs	
Effective jacking force, Pj	705.26	T	801.08		860.22		760.81		kN
Eccentricity, e	0.464	ヿ	0.36	3	0.4	58	-0.2	217	m
Stress at edge c, f c	1.014 C	\neg	4.018	С	4.200	С	-0.034	T	Мра
Remarks	safe!			e!					
Stress at edge a, f a	-0.17 T		-1.05	T	-1.31	T	1.69	С	Mpa
Remarks	safe!	safe! safe!		safe! safe!		e!	<u> </u>		


Allowable stresses: Compression = 0.40f_c

Tension

 $= .50*(fc')^{.5}$

11.20 Mpa -2.65 Mpa

Reinforcement Bars:

0.30 m

a+b = 1.443 m

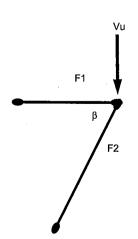
2.050 mpa

6.590 mpa

1.101 m

0.342 m 105.3 kN

Fy = 414 mpa


As = T / .90 * Fy;

As = 282.6 mm2

provide = 2 - 16; Ap = 402.1239 mm^2 O.K!

 $\cos (90 - \alpha) * T =$

130 kN

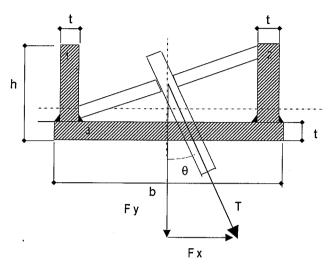
 F_2 = Vu * $\sin \beta$

Vu = 1387.334 kN

 $F_2 = 1346.124 \text{ kN}$

 $F_1 = Vu / tan \beta$ F₁ = 345.90 kN; As = F1 / (.90 * Fy) 76 deg

Fy = 414 mpa


 $As = 928.3446 \text{ mm}^2$

provide = 1 - 36; $Ap = 1017.876 \text{ mm}^2$

Appendix 24.3.1-2 (5/16) ANALYSIS OF GERBER HINGE REHABILITATION

Dimension & Material Properties of steel channel anchorage:

Specified minimum yield stress of structural steel, Fy = 245 mpa

element	t (mm)	h (mm)	Area (mm2)	y (mm)	A*y (mm3)	lx = bh3/3 (mm4)	A(Y-y)2 (mm4)
1	22	125	2750	62.5	171875	14322916.67	1236645.978
2	22	125	2750	62.5	171875	14322916.67	1236645.978
3	22	175	3850	11	42350	621133.3333	3533274.221
			9350		386100	29266966.67	6006566.176

Y =	41.29	mm
lx =	35273532.84	mm ⁴
Sx =	854202.36	mm ³

Check bending and shear stress:

F=	499.84	kN	
$\theta =$	30	deg	
0.70Puy =	432.87	kN	
0.70Pux =	249.92	kN	
cantilever arm =	0	m	
moment =	0.00	kN-m	
.55Fy =	134.75	mpa	
fb = M/Sx =	0.00	mpa	OK!
Fv = .33Fy	80.85	mpa	
Fv = V / A	78.70	mpa	OK!

Appendix 24.3.1-2 (6/16) ANALYSIS OF GIRDER EXTERNAL POST-TENSION

LOADINGS

Unit Weight of Concrete, γ = 24.00 kN/m³ Unit Weight of Wearing Surface, γ_{ws} = 22.00 kN/m³

DEAD LOAD

GIRDER:

Girder area = 0.700 m^2

SLAB:

Slab area = 0.443 m^2 (interior)

= 0.676 m² (exterior)

TOTAL DEAD LOAD:

SUPERIMPOSED DEAD LOAD

RAILING:

TOTAL SUPERIMPOSED DEAD LOAD:

Interior Girder	Exterior Girder
16.80 kN/m	16.80 kN/m
10.63 kN/m	16.22 kN/m
27.43 kN/m	33.02 kN/m
0.00 kN/m	1.84 kN/m
0.00 kN/m	1.84 kN/m

Appendix 24.3.1-2 (7/16) ANALYSIS OF GIRDER EXTERNAL POST TENSION

EXTERNAL PRESTRESSING ANALYSIS (DROP BEAM)

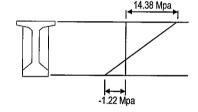
DESIGN FORCES

Moment due to Girder Weight. M _G	2661.00
Moment due to Slab & Diaphragm, M _S	2570.00
Moment due to Superimposed Dead Load, M _{SDL}	291.00
Moment due to Live Load, M _{LL}	1245.00
Moment due to Live Load w/ Impact, M _{LL+I}	1502.80
Moment for Non-Composite Section, M _{NC}	5231.00
Moment for Composite Section, M _C	1793.80

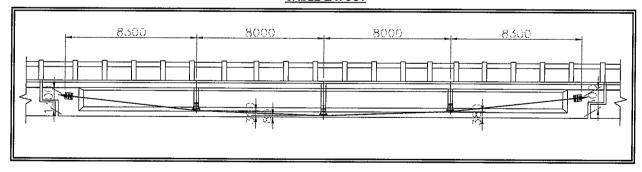
Section Properties of Girder

Particular	Non-Composite	Composite
Area	0.700 m²	1.169 m²
Top Section Modulus, S _t	0.337 m³	0.825 m³
Bottom Section Modulus, S _b	0.330 m³	0.511 m³

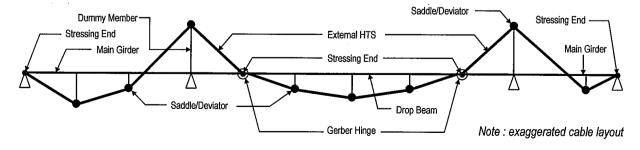
Pier-to-pier Distance, L = 35.600 mImpact Factor, IF = 15.24/(L+38) = 1.207


STRESSES AT PRESENT CONDITION USING EFFECTIVE PRESTRESSING FORCE FROM CONSTRUCTION DRAWING

Stress at Top of Girder		
Due to Prestress, (+) P _f /A	7.30	Мра
Due to Prestress w/ Eccentricity, (-) Pre/St	-10.61	Мра
Due to Girder and Slab Moment, (+) M _{NC} /S _t	15.52	Мра
Due to SDL and Live Load Moment, (+) M _C /S _t	2.17	Мра
Total Stress at Top of Girder, f _{top}	14.38	Мра
Allowable f _{bot} = 0.40•f' _c (compression)	15.60	Мра
Remarks	within	
Themains	allowable	
Stress at Bottom of Girder		
Due to Prestress, (+) P _f /A	7.30	Мра
Due to Prestress w/ Eccentricity, (+) P _f e/S _b	10.84	Мра
Due to Girder and Slab Moment, (-) M _{NC} /S _b	-15.85	Мра
Due to SDL and Live Load Moment, (-) M _C /S _b	-3.51	Мра
Total Stress at Bottom of Girder, f _{bot}	-1.22	Мра
Allowable f _{top} (tension)	0.00	Мра
Remarks	exceeds	
Incinary	allowable	

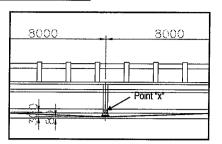

GIVEN DATA: (based on available drawing)

Assumed Number of HTS Tensile Strength of HTS, f _{pu} Effective Prestress at Section	= = =	48 pcs 1862.00 Mpa 1078.61 Mpa
Net Effective Prestressing Force, $P_{\rm f}$	=	(58% of f _{pu}) 5110.00 kN
Concrete Strength at Service, f' _c Eccentricity of HTS, e	=	39.00 Mpa 0:700 m


Exceeded Tensile Stress, $f_{ex} = f_{bot} = -1.22 \text{ Mpa}$

CABLE LAYOUT

STAAD MODEL



Appendix 24.3.1-2 (8/16) ANALYSIS OF GIRDER REHABILITATION

ANCHORAGE DRAW-IN AND FRICTION LOSS FOR EXTERNAL HTS

Assumed Jacking Stress at Anchorage = $0.75 \cdot f_{pu}$ = 1396.50 Mpa Distance from Stressing End to Point of Consideration, x = 16.30 m Wobble Friction Coefficient due to Tendon Curvatures, k = 0.00492 K/m Coefficient of Friction, μ = 0.25

Angular deviation, α = 0.148 radians

Total Number of External 12.70mm HTS	6	8	10	12	14	pcs
Total Area of External HTS, P _j	592.20	789.60	987.00	1184.40	1381.80	mm²
Jacking Force at Anchorage, P _j	827.01	1102.68	1378.35	1654.01	1929.68	kN
Prestressing Force at Point "x", $P_x = e^{-(\mu\alpha + kx)}$	735.55	980.73	1225.92	1471.10	1716.28	kN
Prestressing Force Loss due to Draw-in, 4% of f _{pu}	33.08	44.11	55.13	66.16	77.19	kN
Eff. Prestressing Force at Point "x", P _x - P _{Draw-in}	702.47	936.63	1170.78	1404.94	1639.09	kN
Total Number of External 12.70mm HTS	40	4.0	00	0.0	· .	T
	16	18	20	22	24	pcs
Total Area of External HTS, P _j	1579.20	18 1776.60	1974.00	2171.40	2368.80	pcs mm²
Total Area of External HTS, P _j Jacking Force at Anchorage, P _j						<u> </u>
Total Area of External HTS, P_j Jacking Force at Anchorage, P_j Prestressing Force at Point "x", $P_x = e^{-(\mu \alpha + kx)}$	1579.20	1776.60	1974.00	2171.40	2368.80	mm²
Total Area of External HTS, P _j Jacking Force at Anchorage, P _j	1579.20 2205.35	1776.60 2481.02	1974.00 2756.69	2171.40 3032.36	2368.80 3308.03	mm² kN

COUNTER-STRESS AT GIRDER DUE TO EXTERNAL HTS (No Long Term Loss Considered)

No. of HTS	Jacking Force at Stressing End (kN)	Moment due to External HTS (kN•m)	Top Stress due to Moment, M _{ps} /S _t (Mpa)	Bottom Stress due to Moment, M _{ps} /S _b (Mpa)	Axial due to External HTS (kN)	Top Stress due to Axial, P _{ps} /A (Mpa)	Total Top Stress due to External HTS, (Mpa)	Total Bottom Stress due to External HTS, (Mpa)
6	702.47	488.00	-1.45	1.48	696.00	0.99	-0.45	2.47
8	936.63	649.00	-1.93	1.97	927.00	1.32	-0.60	3.29
10	1170.78	810.00	-2.40	2.45	1158.00	1.65	-0.75	4.11
12	1404.94	971.00	-2.88	2.94	1389.00	1.98	-0.90	4.93
14	1639.09	1132.00	-3.36	3.43	1620.00	2.31	-1.04	5.74
16	1873.25	1293.00	-3.84	3.92	1851.00	2.64	-1.19	6.56
18	2107.41	1454.00	-4.31	4.41	2082.00	2.97	-1.34	7.38
20	2341.56	1615.00	-4.79	4.89	2313.00	3.30	-1.49	8.20
22	2575.72	1776.00	-5.27	5.38	2544.00	3.63	-1.64	9.02
24	2809.88	1937.00	-5.75	5.87	2775.00	3.96	-1.78	9.83

COUNTER-STRESS AT GIRDER DUE TO EXTERNAL HTS (5% Long Term Loss Considered)

No. of HTS	Jacking Force at Stressing End (kN)	Moment due to External HTS (kN•m)	Top Stress due to Moment, M _{ps} /S _t (Mpa)	Bottom Stress due to Moment, M _{ps} /S _b (Mpa)	Axial due to External HTS (kN)	Top Stress due to Axial, P _{ps} /A (Mpa)	Total Top Stress due to External HTS, (Mpa)	Total Bottom Stress due to External HTS, (Mpa)
6	667.35	463.00	-1.37	1.40	662.00	0.95	-0.43	2.35
8	889.79	617.00	-1.83	1.87	881.00	1.26	-0.57	3.13
10	1112.24	771.00	-2.29	2.34	1100.00	1.57	-0.72	3.91
12	1334.69	925.00	-2.74	2.80	1319.00	1.88	-0.86	4.69
14	1557.14	1079.00	-3.20	3.27	1538.00	2.20	-1.00	5.47
16	1779.59	1233.00	-3.66	3.74	1757.00	2.51	-1.15	6.25
18	2002.04	1387.00	-4.12	4.20	1976.00	2.82	-1.29	7.03
20	2224.49	1541.00	-4.57	4.67	2195.00	3.14	-1.44	7.81
22	2446.93	1695.00	-5.03	5.14	2414.00	3.45	-1.58	8.58
24	2669.38	1849.00	-5.49	5.60	2633.00	3.76	-1.73	9.36

Appendix 24.3.1-2 (9/16) ANALYSIS OF GIRDER REHABILITATION

COUNTER-STRESS AT GIRDER DUE TO EXTERNAL HTS (10% Long Term Loss Considered)

No. of HTS	Jacking Force at Stressing End (kN)	Moment due to External HTS (kN•m)	Top Stress due to Moment, M _{ps} /S _t (Mpa)	Bottom Stress due to Moment, M _{ps} /S _b (Mpa)	Axial due to External HTS (kN)	Top Stress due to Axial, P _{ps} /A (Mpa)	Total Top Stress due to External HTS, (Mpa)	Total Bottom Stress due to External HTS, (Mpa)
6	600.61	417.00	-1.24	1.26	596.00	0.85	-0.39	2.12
8	800.81	555.00	-1.65	1.68	793.00	1.13	-0.51	2.81
10	1001.02	693.00	-2.06	2.10	990.00	1.41	-0.64	3.51
12	1201.22	831.00	-2.47	2.52	1187.00	1.70	-0.77	4.21
14	1401.43	969.00	-2.88	2.94	1384.00	1.98	-0.90	4.91
16	1601.63	1107.00	-3.28	3.35	1581.00	2.26	-1.03	5.61
18	1801.83	1245.00	-3.69	3.77	1778.00	2.54	-1.15	6.31
20	2002.04	1383.00	-4.10	4.19	1975.00	2.82	-1.28	7.01
22	2202.24	1521.00	-4.51	4.61	2172.00	3.10	-1.41	7.71
24	2402.44	1659.00	-4.92	5.03	2369.00	3.38	-1.54	8.41

COUNTER-STRESS AT GIRDER DUE TO EXTERNAL HTS (15% Long Term Loss Considered)

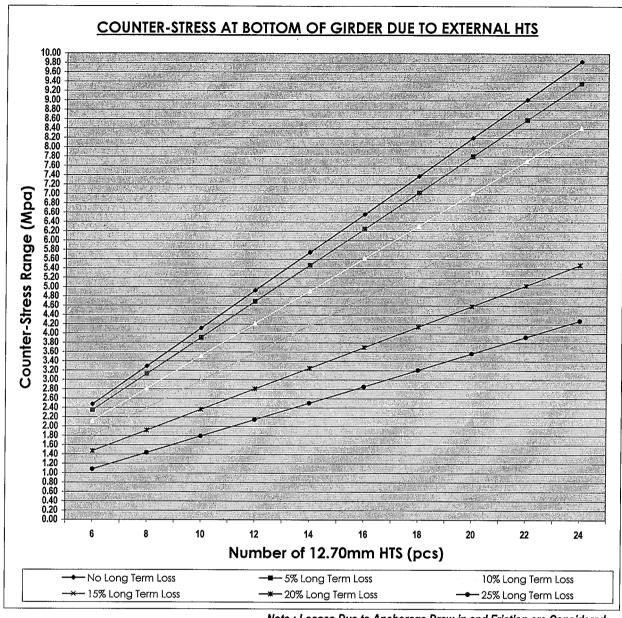
No. of HTS	Jacking Force at Stressing End (kN)	Moment due to External HTS (kN•m)	Top Stress due to Moment, M _{ps} /S _t (Mpa)	Bottom Stress due to Moment, M _{ps} /S _b (Mpa)	Axial due to External HTS (kN)	Top Stress due to Axial, P _{ps} /A (Mpa)	Total Top Stress due to External HTS, (Mpa)	Total Bottom Stress due to External HTS, (Mpa)
6	510.52	355.00	-1.05	1.08	507.00	0.72	-0.33	1.80
8	680.69	472.00	-1.40	1.43	674.00	0.96	-0.44	2.39
10	850.87	589.00	-1.75	1.78	841.00	1.20	-0.55	2.99
12	1021.04	706.00	-2.09	2.14	1008.00	1.44	-0.65	3.58
14	1191.21	823.00	-2.44	2.49	1175.00	1.68	-0.76	4.17
16	1361.38	940.00	-2.79	2.85	1342.00	1.92	-0.87	4.77
18	1531.56	1057.00	-3.14	3.20	1509.00	2.16	-0.98	5.36
20	1701.73	1174.00	-3.48	3.56	1676.00	2.39	-1.09	5.95
22	1871.90	1291.00	-3.83	3.91	1843.00	2.63	-1.20	6.54
24	2042.08	1408.00	-4.18	4.27	2010.00	2.87	-1.31	7.14

COUNTER-STRESS AT GIRDER DUE TO EXTERNAL HTS (20% Long Term Loss Considered)

No. of HTS	Jacking Force at Stressing End (kN)	Moment due to External HTS (kN•m)	Top Stress due to Moment, M _{ps} /S _t (Mpa)	Bottom Stress due to Moment, M _{ps} /S _b (Mpa)	Axial due to External HTS (kN)	Top Stress due to Axial, P _{ps} /A (Mpa)	Total Top Stress due to External HTS, (Mpa)	Total Bottom Stress due to External HTS, (Mpa)
6	408.42	283.00	-0.84	0.86	429.00	0.61	-0.23	1.47
- 8	544.55	378.00	-1.12	1.15	539.00	0.77	-0.35	1.92
10	680.69	473.00	-1.40	1.43	649.00	0.93	-0.48	2.36
12	816.83	568.00	-1.69	1.72	759.00	1.08	-0.60	2.81
14	952.97	663.00	-1.97	2.01	869.00	1.24	-0.73	3.25
16	1089.11	758.00	-2.25	2.30	979.00	1.40	-0.85	3.70
18	1225.25	853.00	-2.53	2.58	1089.00	1.56	-0.98	4.14
20	1361.38	948.00	-2.81	2.87	1199.00	1.71	-1.10	4.59
22	1497.52	1043.00	-3.09	3.16	1309.00	1.87	-1.22	5.03
24	1633.66	1138.00	-3.38	3.45	1419.00	2.03	-1.35	5.48

Appendix 24.3.1-2 (10/16) ANALYSIS OF GIRDER REHABILITATION

COUNTER-STRESS AT GIRDER DUE TO EXTERNAL HTS (25% Long Term Loss Considered)


No. of HTS	Jacking Force at Stressing End (kN)	Moment due to External HTS (kN•m)	Top Stress due to Moment, M _{ps} /S _t (Mpa)	Bottom Stress due to Moment, M _{ps} /S _b (Mpa)	Axial due to External HTS (kN)	Top Stress due to Axial, P _{ps} /A (Mpa)	Total Top Stress due to External HTS, (Mpa)	Total Bottom Stress due to External HTS, (Mpa)
6	306.31	213.00	-0.63	0.65	304.00	0.43	-0.20	1.08
8	408.42	283.00	-0.84	0.86	404.00	0.58	-0.26	1.43
10	510.52	353.00	-1.05	1.07	504.00	0.72	-0.33	1.79
12	612.62	423.00	-1.26	1.28	604.00	0.86	-0.39	2.14
14	714.73	493.00	-1.46	1.49	704.00	1.01	-0.46	2.50
16	816.83	563.00	-1.67	1.71	804.00	1.15	-0.52	2.85
18	918.93	633.00	-1.88	1.92	904.00	1.29	-0.59	3.21
20	1021.04	703.00	-2.09	2.13	1004.00	1.43	-0.65	3.56
22	1123.14	773.00	-2.29	2.34	1104.00	1.58	-0.72	3.92
24	1225.25	843.00	-2.50	2.55	1204.00	1.72	-0.78	4.27

SUMMARY OF COUNTER-STRESS AT GIRDER DUE TO EXTERNAL HTS

Number		Girde	Top Stresses	due to Externa	I HTS	
of HTS	No Long Term	5% Long Term	10% Long	15% Long	20% Long	25% Long
0 110	Loss	Loss	Term Loss	Term Loss	Term Loss	Term Loss
6	-0.45	-0.43	-0.39	-0.33	-0.23	-0.20
8	-0.60	-0.57	-0.51	-0.44	-0.35	-0.26
10	-0.75	-0.72	-0.64	-0.55	-0.48	-0.33
12	-0.90	-0.86	-0.77	-0.65	-0.60	-0.39
14	-1.04	-1.00	-0.90	-0.76	-0.73	-0.46
16	-1.19	-1.15	-1.03	-0.87	-0.85	-0.52
18	-1.34	-1.29	-1.15	-0.98	-0.98	-0.59
20	-1.49	-1.44	-1.28	-1.09	-1.10	-0.65
22	-1.64	-1.58	-1.41	-1.20	-1.22	-0.72
24	-1.78	-1.73	-1.54	-1.31	-1.35	-0.78

Number		Girder I	Bottom Stresse	es due to Exteri	nal HTS	
of HTS	No Long Term	5% Long Term	10% Long	15% Long	20% Long	25% Long
011110	Loss	Loss	Term Loss	Term Loss	Term Loss	Term Loss
6	2.47	2.35	2.12	1.80	1.47	1.08
8	3.29	3.13	2.81	2.39	1.92	1.43
10	4.11	3.91	3.51	2.99	2.36	1.79
12	4.93	4.69	4.21	3.58	2.81	2.14
14	5.74	5.47	4.91	4.17	3.25	2.50
16	6.56	6.25	5.61	4.77	3.70	2.85
18	7.38	7.03	6.31	5.36	4.14	3.21
20	8.20	7.81	7.01	5.95	4.59	3.56
22	9.02	8.58	7.71	6.54	5.03	3.92
24	9.83	9.36	8.41	7.14	5.48	4.27

Appendix 24.3.1-2 (11/16) ANALYSIS OF GIRDER REHABILITATION

Note : Losses Due to Anchorage Draw-in and Friction are Considered. CONCLUSION

WITH FUTURE WEARING COURSE CONSIDERED:

Moment due to Future Wearing Course, M_{wc} =

279.00 kN•m

Top Stress due to Future Wearing Course, $f_{twc} = M_{wc}/S_t$

0.83 Mpa

Bottom Stress due to Future Wearing Course, $f_{bwc} = M_{wc}/S_t =$

-0.85 Mpa

A) Due to Existing Condition Using Effective Prestressing Force from Construction Drawing

		No. of HTS to be Provided / Corresponding Counter-Stresses											
Design Stresses (Mpa)		No Long Term Loss		5% Long Term Loss		10% Long Term Loss		15% Long Term Loss		20% Long Term Loss		25% Long Term Loss	
(IVI)	paj	6 HTS	Stress Result	6 HTS	Stress Result	6 HTS	Stress Result	8 HTS	Stress Result	10 HTS	Stress Result	12 HTS	Stress Result
Тор	15.21	-0.45	14.76	-0.43	14.78	-0.39	14.82	-0.44	14.77	-0.48	14.73	-0.39	14.82
Bottom	-2.07	2.47	0.40	2.35	0.28	2.12	0.05	2.39	0.32	2.36	0.29	2.14	0.07

Note:

- 1) Negative (-) values denote tension.
- 2) Positive values denote compression.
- 3) Allowable Tensile Stress = 0
- 4) Allowable Compressive Stress = 0.40 •fc = 15.60 Mpa

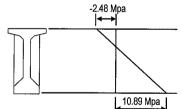
Appendix 24.3.1-2 (12/16) ANALYSIS OF GIRDER EXTERNAL POST-TENSION

EXTERNAL PRESTRESSING ANALYSIS (SIDE SPAN)

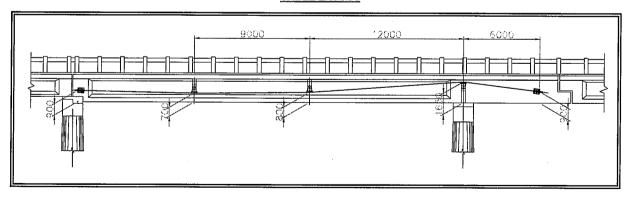
DESIGN FORCES

Moment due to Girder Weight. MG2715.00Moment due to Slab & Diaphragm, MS2622.00Moment due to Superimposed Dead Load, MSDL297.00Moment due to Live Load, MLL1118.00Moment due to Live Load w/ Impact, MLH1328.35Moment for Non-Composite Section, MC5337.00Moment for Composite Section, MC1625.35

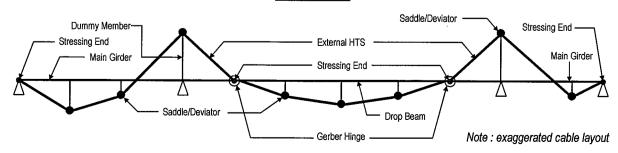
Section Properties of Girder


Particular	Non-Composite	Composite
Area	1.353 m²	2.468 m²
Top Section Modulus, S _t	0.451 m³	0.852 m³
Bottom Section Modulus, Sb	0.420 m³	0.624 m³
Pier-to-pier Distance, L	=	43.000 m
Impact Factor, IF = 15.24/(L+	38) =	1.188

STRESSES AT PRESENT CONDITION USING EFFECTIVE PRESTRESSING FORCE FROM CONSTRUCTION DRAWING

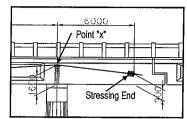

		
Stress at Top of Girder		
Due to Prestress, (+) P _f /A	3.70	Mpa
Due to Prestress w/ Eccentricity, (+) P _f e/S _t	7.56	Мра
Due to Girder and Slab Moment, (-) M _{NC} /S _t	-11.83	Мра
Due to SDL and Live Load Moment, (-) M _C /S _t	-1.91	Мра
Total Stress at Top of Girder, f _{top}	-2.48	Мра
Allowable f _{top} (tension)	0.00	Мра
Remarks	within allowable	
Stress at Bottom of Girder		•
Due to Prestress, (+) P _f /A	3.70	Мра
Due to Prestress w/ Eccentricity, (-) P _f e/S _b	-8.11	Мра
Due to Girder and Slab Moment, (+) M _{NC} /S _b	12.70	Мра
Due to SDL and Live Load Moment, (+) M _C /S _b	2.60	Мра
Total Stress at Bottom of Girder, f _{bot}	10.89	Мра
Allowable f _{bot} = 0.40•f' _c <i>(compression)</i>	15.60	Мра
Remarks	within allowable	

GIVEN DATA: (based on available drawing)


Exceeded Tensile Stress, $f_{ex} = f_{top}$	=	-2.48 Mpa
Eccentricity of HTS, e	=	0.682 m
Concrete Strength at Service, f'c	=	39.00 Mpa
Net Effective Prestressing Force, P _f	=	5000.00 kN
		(57% of f _{pu})
Effective Prestress at Section	=	1055.39 Mpa
Tensile Strength of HTS, fpu	=	1862.00 Mpa
Assumed Number of HTS	=	48 pcs

CABLE LAYOUT

STAAD MODEL


Appendix 24.3.1-2 (13/16) ANALYSIS OF GIRDER EXTERNAL POST-TENSION

ANCHORAGE DRAW-IN AND FRICTION LOSS FOR EXTERNAL HTS

Assumed Jacking Stress at Anchorage = $0.75 \cdot f_{pu}$ = 1396.50 Mpa Distance from Stressing End to Point of Consideration, x = 6.00 m

Wobble Friction Coefficient due to Tendon Curvatures, k = 0.00492 K/mCoefficient of Friction, $\mu = 0.25$

Angular deviation, α = 0.125 radians

Total Number of External 12.70mm HTS	6	8	10	12	14	pcs
Total Area of External HTS, P _j	592.20	789.60	987.00	1184.40	1381.80	mm²
Jacking Force at Anchorage, P _j	827.01	1102.68	1378.35	1654.01	1929.68	kN
Prestressing Force at Point "x", $P_x = e^{-(\mu\alpha + kx)}$	778.25	1037.66	1297.08	1556.49	1815.91	kN
Prestressing Force Loss due to Draw-in, 4% of fpu	33.08	44.11	55.13	66.16	77.19	kN
Eff. Prestressing Force at Point "x", P _x - P _{Draw-in}	745.17	993.56	1241.94	1490.33	1738.72	kN
Total Number of External 12.70mm HTS	16	18	20	22	24	pcs
Total Area of External HTS, P _j	16 1579.20	18 1776.60	20 1974.00	22 2171.40	24 2368.80	pcs mm²
Total Area of External HTS, P _j Jacking Force at Anchorage, P _j				~-		_
Total Area of External HTS, P_j Jacking Force at Anchorage, P_j Prestressing Force at Point "x", $P_x = e^{-(\mu \alpha + kx)}$	1579.20	1776.60	1974.00	2171.40	2368.80	mm²
Total Area of External HTS, P _j Jacking Force at Anchorage, P _j	1579.20 2205.35	1776.60 2481.02	1974.00 2756.69	2171.40 3032.36	2368.80 3308.03	mm² kN

COUNTER-STRESS AT GIRDER DUE TO EXTERNAL HTS (No Long Term Loss Considered)

No. of HTS	Jacking Force at Stressing End (kN)	Moment due to External HTS (kN•m)	Top Stress due to Moment, M _{ps} /S _t (Mpa)	Bottom Stress due to Moment, M _{ps} /S _b (Mpa)	Axial due to External HTS (kN)	Top Stress due to Axial, P _{ps} /A (Mpa)	Total Top Stress due to External HTS, (Mpa)	Total Bottom Stress due to External HTS, (Mpa)
6	745.17	481.00	1.07	-1.14	738.00	0.55	1.61	-0.60
8	993.56	640.00	1.42	-1.52	984.00	0.73	2.15	-0.80
10	1241.94	798.00	1.77	-1.90	1228.00	0.91	2.68	-0.99
12	1490.33	958.00	2.12	-2.28	1473.00	1.09	3.21	-1.19
14	1738.72	1118.00	2.48	-2.66	1718.00	1.27	3.75	-1.39
16	1987.11	1278.00	2.83	-3.04	1963.00	1.45	4.28	-1.59
18	2235.50	1438.00	3.19	-3.42	2208.00	1.63	4.82	-1.79
20	2483.89	1598.00	3.54	-3.80	2453.00	1.81	5.35	-1.99
22	2732.28	1758.00	3.90	-4.18	2698.00	1.99	5.89	-2.19
24	2980.67	1918.00	4.25	-4.56	2943.00	2.18	6.43	-2.39

COUNTER-STRESS AT GIRDER DUE TO EXTERNAL HTS (5% Long Term Loss Considered)

No. of HTS	Jacking Force at Stressing End (kN)	Moment due to External HTS (kN•m)	Top Stress due to Moment, M _{ps} /S _t (Mpa)	Bottom Stress due to Moment, M _{ps} /S _b (Mpa)	Axial due to External HTS (kN)	Top Stress due to Axial, P _{ps} /A (Mpa)	Total Top Stress due to External HTS, (Mpa)	Total Bottom Stress due to External HTS, (Mpa)
6	707.91	457.00	1.01	-1.09	701.00	0.52	1.53	-0.57
8	943.88	608.00	1.35	-1.45	934.00	0.69	2.04	-0.76
10	1179.85	759.00	1.68	-1.81	1166.00	0.86	2.54	-0.94
12	1415.82	910.00	2.02	-2.17	1398.00	1.03	3.05	-1.13
14	1651.79	1061.00	2.35	-2.52	1630.00	1.20	3.56	-1.32
16	1887.75	1212.00	2.69	-2.88	1862.00	1.38	4.06	-1.51
18	2123.72	1363.00	3.02	-3.24	2094.00	1.55	4.57	-1.70
20	2359.69	1514.00	3.36	-3.60	2326.00	1.72	5.07	-1.88
22	2595.66	1665.00	3.69	-3.96	2558.00	1.89	5.58	-2.07
24	2831.63	1816.00	4.02	-4.32	2790.00	2.06	6.09	-2.26

Appendix 24.3.1-2 (14/16) ANALYSIS OF GIRDER EXTERNAL POST-TENSION

COUNTER-STRESS AT GIRDER DUE TO EXTERNAL HTS (10% Long Term Loss Considered)

No. of HTS	Jacking Force at Stressing End (kN)	Moment due to External HTS (kN•m)	Top Stress due to Moment, M _{ps} /S _t (Mpa)	Bottom Stress due to Moment, M _{ps} /S _b (Mpa)	Axial due to External HTS (kN)	Top Stress due to Axial, P _{ps} /A (Mpa)	Total Top Stress due to External HTS, (Mpa)	Total Bottom Stress due to External HTS, (Mpa)
6	637.12	411.00	0.91	-0.98	631.00	.00 0.47		-0.51
8	849.49	547.00	1.21	-1.30	840.00	0.62	1.83	-0.68
10	1061.86	683.00	1.51	-1.63	1050.00	0.78	2.29	-0.85
12	1274.23	819.00	1.81	-1.95	1260.00	0.93	2.75	-1.02
14	1486.61	955.00	2.12	-2.27	1470.00	1.09	3.20	-1.19
16	1698.98	1091.00	2.42	-2.60	1680.00	1.24	3.66	-1.35
18	1911.35	1227.00	2.72	-2.92	1890.00	1.40	4.12	-1.52
20	2123.72	1363.00	3.02	-3.24	2100.00	1.55	4.57	-1.69
22	2336.10	1499.00	3.32	-3.57	2310.00	1.71	5.03	-1.86
24	2548.47	1635.00	3.62	-3.89	2520.00	1.86	5.49	-2.03

COUNTER-STRESS AT GIRDER DUE TO EXTERNAL HTS (15% Long Term Loss Considered)

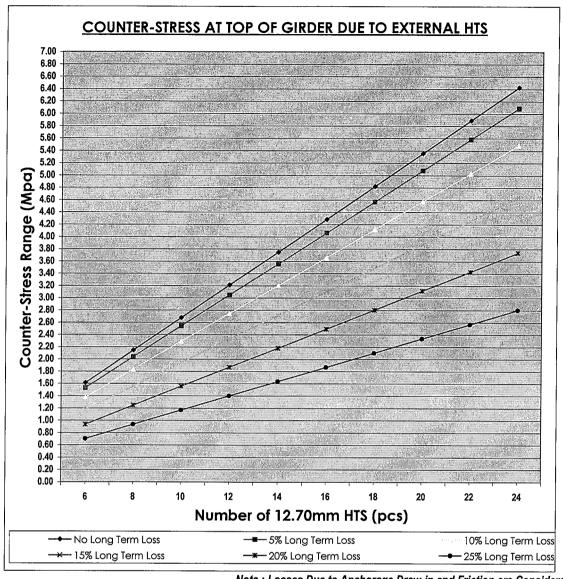
No. of HTS	Jacking Force at Stressing End (kN)	Moment due to External HTS (kN•m)	Top Stress due to Moment, M _{ps} /S _t (Mpa)	Bottom Stress due to Moment, M _{ps} /S _b (Mpa)	Axial due to External HTS (kN)	Top Stress due to Axial, P _{ps} /A (Mpa)	Total Top Stress due to External HTS, (Mpa)	Total Bottom Stress due to External HTS, (Mpa)
6	541.55	350.00	0.78	-0.83	537.00	0.40	1.17	-0.44
8	722.07	465.00	1.03	-1.11	714.00	0.53	1.56	-0.58
10	902.58	580.00	1.29	-1.38	892.00	0.66	1.94	-0.72
12	1083.10	695.00	1.54	-1.65	1069.00	0.79	2.33	-0.86
14	1263.62	810.00	1.80	-1.93	1246.00	0.92	2.72	-1.01
16	1444.13	925.00	2.05	-2.20	1423.00	1.05	3.10	-1.15
18	1624.65	1040.00	2.30	-2.47	1600.00	1.18	3.49	-1.29
20	1805.17	1155.00	2.56	-2.75	1777.00	1.31	3.87	-1.43
22	1985.68	1270.00	2.81	-3.02	1954.00	1.44	4.26	-1.58
24	2166.20	1385.00	3.07	-3.30	2131.00	1.58	4.64	-1.72

COUNTER-STRESS AT GIRDER DUE TO EXTERNAL HTS (20% Long Term Loss Considered)

No. of HTS	Jacking Force at Stressing End (kN)	Moment due to External HTS (kN•m)	Top Stress due to Moment, M _{ps} /S _t (Mpa)	Bottom Stress due to Moment, M _{ps} /S _b (Mpa)	Axial due to External HTS (kN)	Top Stress due to Axial, P _{ps} /A (Mpa)	Total Top Stress due to External HTS, (Mpa)	Total Bottom Stress due to External HTS, (Mpa)
6	433.24	279.00	0.62	-0.66	429.00	0.32	0.94	-0.35
8	577.65	372.00	0.82	-0.89	572.00	0.42	1.25	-0.46
10	722.07	464.00	1.03	-1.10	714.00	0.53	1.56	-0.58
12	866.48	557.00	1.23	-1.33	857.00	0.63	1.87	-0.69
14	1010.89	650.00	1.44	-1.55	1000.00	0.74	2.18	-0.81
16	1155.31	743.00	1.65	-1.77	1143.00	0.84	2.49	-0.92
18	1299.72	836.00	1.85	-1.99	1286.00	0.95	2.80	-1.04
20	1444.13	929.00	2.06	-2.21	1429.00	1.06	3.11	-1.15
22	1588.55	1022.00	2.26	-2.43	1572.00	1.16	3.43	-1.27
24	1732.96	1115.00	2.47	-2.65	1715.00	1.27	3.74	-1.39

Appendix 24.3.1-2 (15/16) ANALYSIS OF GIRDER EXTERNAL POST-TENSION

COUNTER-STRESS AT GIRDER DUE TO EXTERNAL HTS (25% Long Term Loss Considered)


No. of HTS	Jacking Force at Stressing End (kN)	Moment due to External HTS (kN•m)	Top Stress due to Moment, M _{ps} /S _t (Mpa)	Bottom Stress due to Moment, M _{ps} /S _b (Mpa)	Axial due to External HTS (kN)	Top Stress due to Axial, P _{ps} /A (Mpa)	Total Top Stress due to External HTS, (Mpa)	Total Bottom Stress due to External HTS, (Mpa)
6	324.93	210.00	0.47	-0.50	322.00	0.24	0.70	-0.26
8	433.24	279.00	0.62	-0.66	428.00	0.32	0.93	-0.35
10	541.55	348.00	0.77	-0.83	536.00	0.40	1.17	-0.43
12	649.86	417.00	0.92	-0.99	645.00	0.48	1.40	-0.52
14	758.17	486.00	1.08	-1.16	754.00	0.56	1.63	-0.60
16	866.48	555.00	1.23	-1.32	863.00	0.64	1.87	-0.68
18	974.79	624.00	1.38	-1.48	972.00	0.72	2.10	-0.77
20	1083.10	693.00	1.54	-1.65	1081.00	0.80	2.33	-0.85
22	1191.41	762.00	1.69	-1.81	1190.00	0.88	2.57	-0.93
24	1299.72	831.00	1.84	-1.98	1299.00	0.96	2.80	-1.02

SUMMARY OF COUNTER-STRESS AT GIRDER DUE TO EXTERNAL HTS

Number		Girde	Top Stresses	due to Externa	I HTS	*****
of HTS	No Long Term	5% Long Term	10% Long	15% Long	20% Long	25% Long
011113	Loss	Loss	Term Loss	Term Loss	Term Loss	Term Loss
6	1.61	1.53	1.38	1.17	0.94	0.70
8	2.15	2.04	1.83	1.56	1.25	0.93
10	2.68	2.54	2.29	1.94	1.56	1.17
12	3.21	3.05	2.75	2.33	1.87	1.40
14	3.75	3.56	3.20	2.72	2.18	1.63
16	4.28	4.06	3.66	3.10	2.49	1.87
18	4.82	4.57	4.12	3.49	2.80	2.10
20	5.35	5.07	4.57	3.87	3.11	2.33
22	5.89	5.58	5.03	4.26	3.43	2.57
24	6.43	6.09	5.49	4.64	3.74	2.80

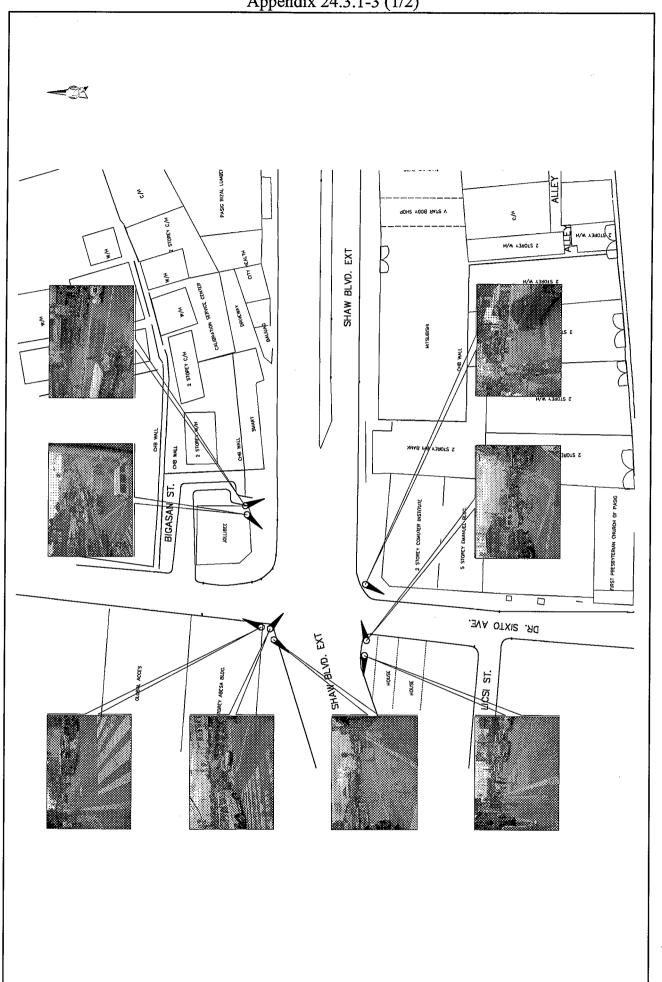
Number			Bottom Stress	es due to Exter	nal HTS	
of HTS	No Long Term	5% Long Term	10% Long	15% Long	20% Long	25% Long
011113	Loss	Loss	Term Loss	Term Loss	Term Loss	Term Loss
6	-0.60	-0.57	-0.51	-0.44	-0.35	-0.26
8	-0.80	-0.76	-0.68	-0.58	-0.46	-0.35
10	-0.99	-0.94	-0.85	-0.72	-0.58	-0.43
12	-1.19	-1.13	-1.02	-0.86	-0.69	-0.52
14	-1.39	-1.32	-1.19	-1.01	-0.81	-0.60
16	-1.59	-1.51	-1.35	-1.15	-0.92	-0.68
18	-1.79	-1.70	-1.52	-1.29	-1.04	-0.77
20	-1.99	-1.88	-1.69	-1.43	-1.15	-0.85
22	-2.19	-2.07	-1.86	-1.58	-1.27	-0.93
24	-2.39	-2.26	-2.03	-1.72	-1.39	-1.02

Appendix 24.3.1-2 (16/16) ANALYSIS OF GIRDER EXTERNAL POST-TENSION

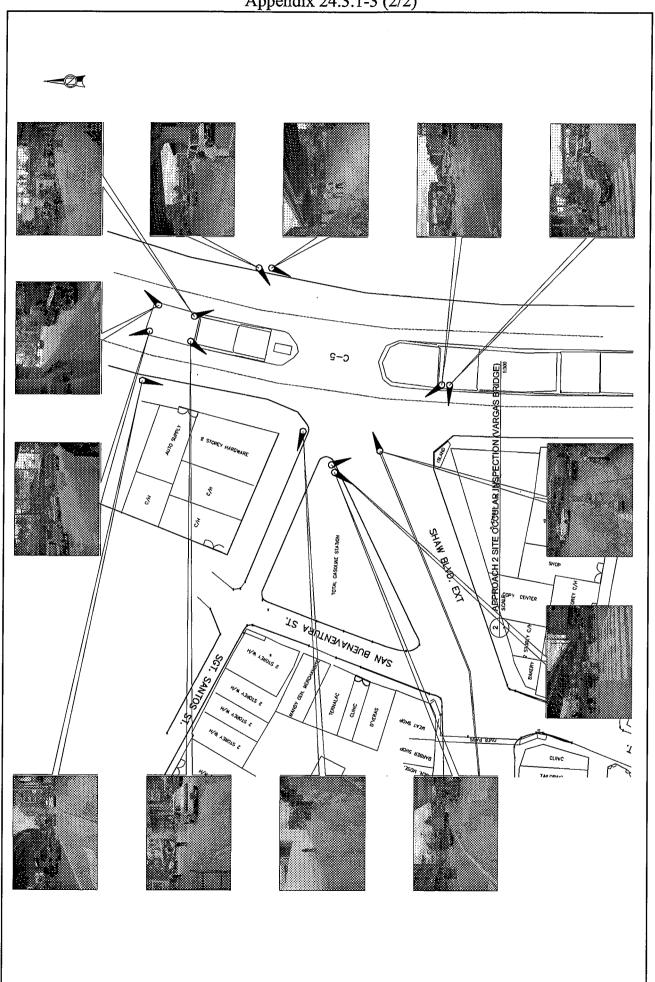
Note: Losses Due to Anchorage Draw-in and Friction are Considered.

CONCLUSION

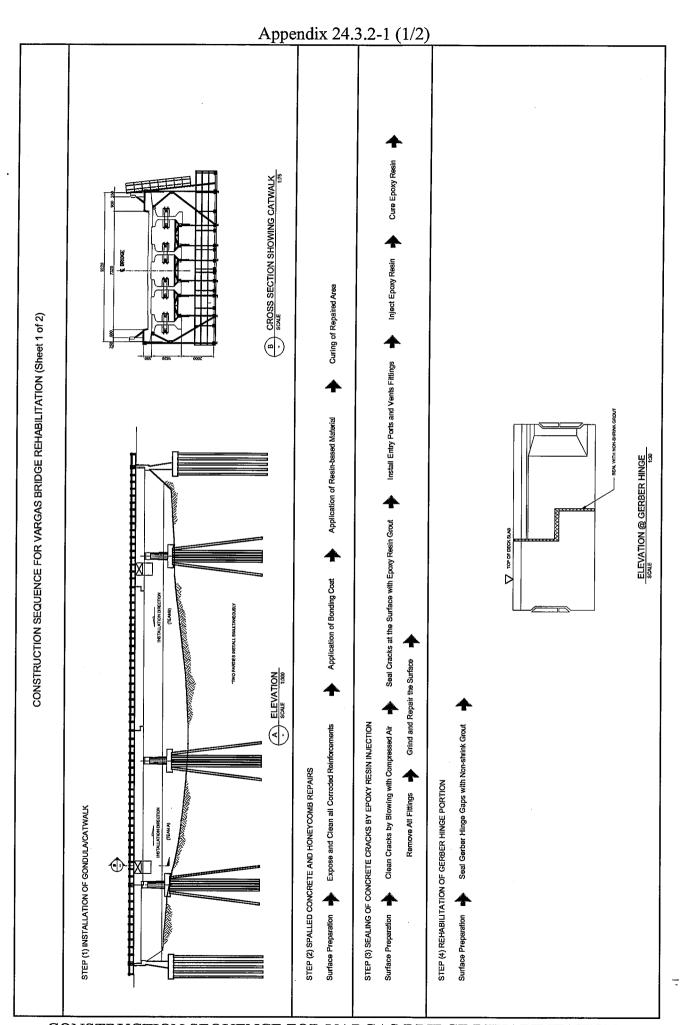
WITH FUTURE WEARING COURSE CONSIDERED:


Moment due to Future Wearing Course, M_{wc} = 284.00 kN•m Top Stress due to Future Wearing Course, $f_{twc} = M_{wc}/S_t$ = -0.63 Mpa Bottom Stress due to Future Wearing Course, $f_{bwc} = M_{wc}/S_t$ = 0.68 Mpa

A) Due to Existing Condition Using Effective Prestressing Force from Construction Drawing


				No. c	of HTS to	be Prov	ided / Co	rrespon	ding Cou	inter-Stre	esses		
	Stresses pa)		Loss		Long Loss		Long Loss		Long Loss	1	Long Loss		Long Loss
(101	pa)	12 HTS	Stress Result	14 HTS	Stress Result	14 HTS	Stress Result	18 HTS	Stress Result	20 HTS	Stress Result	24 HTS	Stress Result
Тор	-3.11	3.21	0.10	3.56	0.45	3.20	0.09	3.49	0.38	3.11	0.00	2.80	-0.31
Bottom	11.56	-1.19	10.37	-1.32	10.24	-1.19	10.37	-1.29	10.27	-1.15	10.41	-1.02	10.54

Note:


- 1) Negative (-) values denote tension.
- 2) Positive values denote compression.
- 3) Allowable Tensile Stress = 0
- 4) Allowable Compressive Stress = 0.40•f'_c = 15.60 Mpa

APPROACH 1 SITE OCULAR INSPECTION (VARGAS BRIDGE)

APPROACH 2 SITE OCULAR INSPECTION (VARGAS BRIDGE)

CONSTRUCTION SEQUENCE FOR VARGAS BRIDGE REHABILITATION

Appendix 24.3.2-1 (2/2) Installation of Reinforcing bars, Formworks and Slanted P/S Cables w/ Sheath D. Grouting of Tendons SOULE SOULE STEP (6) RECONSTRUCTION OF DIAPHRAGM AND DECK SLAB AT GERBER HINGE(2nd Stage) Fireproofing (all exposed tendons shall be fire protected by wrapping with fire proofing materials) Stressing and Lock-Off for P/S Cables SECOND STAGE SEALING OF CRACKS BY EPOXY INJECTION SECTION @ GERBER HINGE soule CONSTRUCTION SEQUENCE FOR VARGAS BRIDGE REHABILITATION (Sheet 2 of 2) ELEVATION @ PIER One lane- left side only Concreting of New Diaphragm & Deck Stab Concreting of Anchorages Recess Removal of Deck Slab & Diaphragm TOP OF DECK BLAB Stressing Works upon approval of Cable Positions, Anchorages and Saddles TO BE CHIP-OFF PRIOR TO PLACING OF SADDLE TYPE-VI Removal of Deck Slab & Diaphragm 🕩 Installation of Reinforcing bars, Formworks and Slanted P/S Cables w/ Sheath Ducts SECTION @ PIER scale Grouting of Tendons Installation of P/S Cable through Anchorage Ends and Saddles ELEVATION @ GERBER HINGE scale STEP (5) RECONSTRUCTION OF DIAPHRAGM AND DECK SLAB AT GERBER HINGE(1st Stage) Stressing and Lock-Off for P/S Cables STEP (7) LONGITUDINAL EXTERNAL P/S CABLE STRENGTHENING FIRST STAGE SCALE 1:50 ANTED P.S CABLES TH SHEATH DUCTS SECTION @ GERBER HINGE SCALE 1:75 Construction of Reinforced Concrete Blocks and Saddles Cast Against the Webs of Girders for Tendons Anchorages * One lane- rigth side only Concreting of New Diaphragm & Deck Stab Concreting of Anchorages Recess

CONSTRUCTION SEQUENCE FOR VARGAS BRIDGE REHABILITATION

Appendix 24.3.3-1 (1/2) BREAKDOWN OF COSTS

Annex IV - Construction Cost for Retrofitting of Vargas Bridge

	Description	- iai	Ougantify	o ti ci	97.0		Components	
9	in the second		Qualinity	OIIII Price	rost	Foreign	Local	Taxes
A. Repair/Seal	A. Repair/Sealing of Concrete Cracks	į						
SPL	Epoxy Bonding	l.s.	1.00	2,568,243.05	2,568,243.05	1,874,817.43	385,236.46	308,189.17
SPL	Concrete Grouting	.s.	1.00	1,027,297.22	1.027.297.22	667.743.19	256 824 31	109 799 79
B. New Diaphr	B. New Diaphragm/Concrete Slab						10:1-20,00=	102,120,12
	Removal of Concrete Slab	sq.m.	00.009	200.00	300,000.00	195,000.00	63.000.00	42.000.00
	Removal of Asphalt	sq.m.	00.009	150.00	90'000'06	58,500.00	18,900.00	12.600.00
	Tack Coat	ton	1.00	25,000.00	25,000.00	19,000.00	2.500.00	3,500.00
ヿ	Asphalt	ton	46.00	3,100.00	142,600.00	108,376.00	14,260.00	19,964.00
405(1)a	Structural Concrete for Slab	cu.m.	123.00	4,500.00	553,500.00	359,775.00	116,235.00	77,490.00
	Structural Concrete for New Diaphragm	cu.m.	68.00	00.000,9	408,000.00	265,200.00	85,680.00	57,120.00
	Formworks	sd.m.	76.00	810.00	61,560.00	40,014.00	12,927.60	8,618.40
	Reinforcing Steel Bars	kgs	17,900.00	20.00	895,000.00	581,750.00	187,950.00	125,300.00
	External Cable	kgs	3,840.93	1,087.69	4,177,729.70	2,715,524.31	877,323.24	584,882.16
	Prestressing Bar	kgs	820.00	604.27	495,504.68	322,078.04	104,055.98	69,370.66
1								
C. Guadrail Post	st							
<u></u>	Removal of Concrete Railing/Post	l.m.	22.00	150.00	3,300.00	2,145.00	693.00	462.00
Lafter	Removal of Concrete Sidewalk	sq.m.	13.50	160.00	2,160.00	1,404.00	453.60	302.40
	New Concrete Railing/Post	l.m.	22.00	3,500.00	00.000,77	20,050.00	16.170.00	10.780.00
_	New Concrete Sidewalk	sq.m.	13.50	350.00	4,725.00	3,071.25	992.25	661.50
D. Gondola Falsework	Isework					,	1	,
SPL	Gondola Falsework	l.s.	1.00	7,216,546.64	7,216,546.64	4,907,251.72	1,298,978.40	1.010.316.53
								200
E. Traffic Management	gement							
SPL	Traffic Management	l.s.	1.00	2,000,000.00	2,000,000.00	1,420,000.00	300,000.00	280,000.00
F. Contingencies	Se							
	Contingencies	l.s.	1.00	1,002,408.31	1,002,408.31	751,806.24	150.361.25	100.240.83
								200
 G. Temporary Facilitites 	Facilitites							
	Temporary Facilitites	.s.	1.00	2,659,826.40	2,659,826.40	1,728,887.16	558,563.54	372,375.70
H. Mobilization/	H. Mobilization/Demobilization							
	Mobilization/demobilization	l.s.	1.00	601,444.99	601,444.99	451,083.74	90,216.75	60,144.50
				Total	24,311,846.00	16,523,477.07	4,541,321.37	3,247,047.56
				% Component	100%	%89	19%	13%

Appendix 24.3.3-1 (2/2) BREAKDOWN OF COSTS

Annex V - Roadway Improvement (Vargas Bridge)

Item No.	Description	1 Just	Oreantify	l hit Coct	7		Component	
		5	- Audillis	1800		Foreign	Local	Tax
	Earthworks					-		
101(3)b	101(3)b Removal of Curb and Gutter	l.m.	28.00	85.62	2,397.47	1.558.36	503.47	335.65
101(3)e	101(3)e Removal of Parking Space	m²	30.00	99.21	2.976.27	1.934.58	625.02	416 68
	Miscellaneous							
600(1)	600(1) Combination of Concrete Curb and Gutter	l.m.	113.00	1,100.00	124,300.00	80,795.00	26.103.00	17.402.00
612(1)	612(1) Pavement Markings	m ²	118.00	862.13	101,730.75	66,124.99	21,363.46	14,242.31
	Contingencies	l.s.	1.00	11,570.22	11,570.22	8,677.67	1,735.53	1,157.02
	Traffic Signal (1 Intersection)	l.s.	1.00	1,500,000.00	1,500,000.00	1,500,000.00 1,125,000.00	225,000.00	150,000.00
				Total	1,742,974.72	1,284,090.59	275,330.48	183,553.65
				% Component	100%	74%	16%	10%