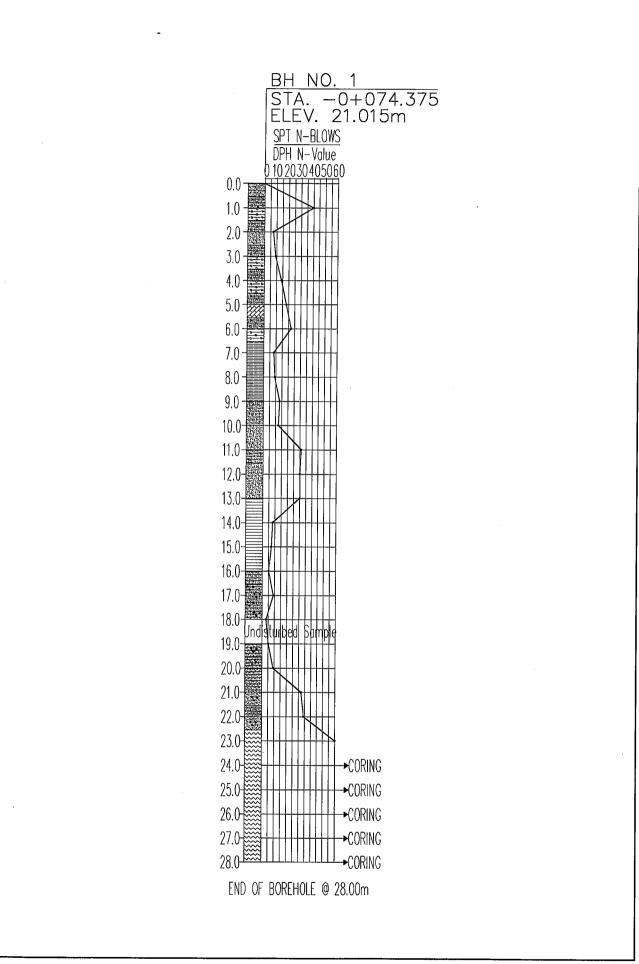
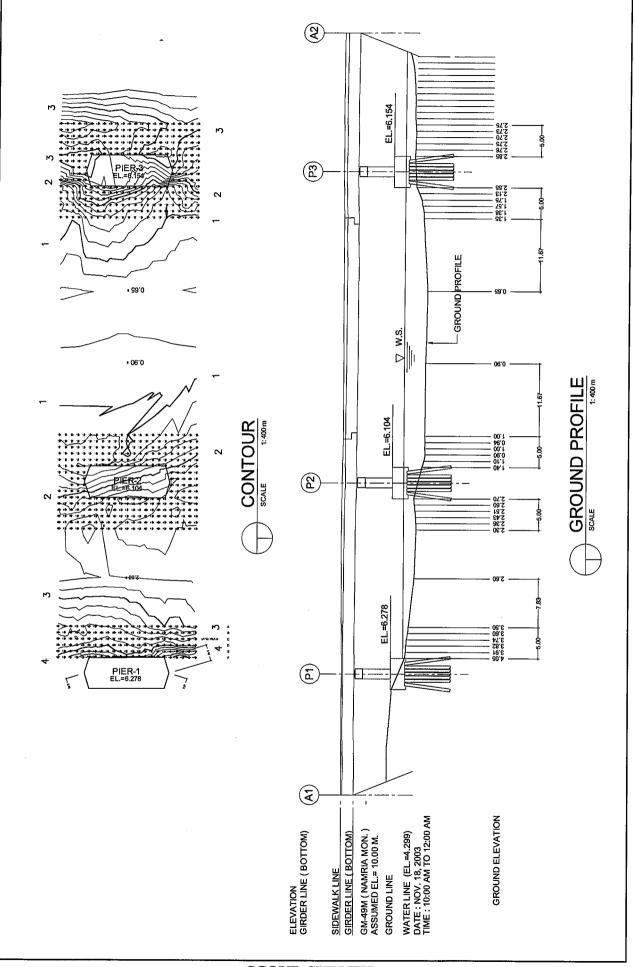
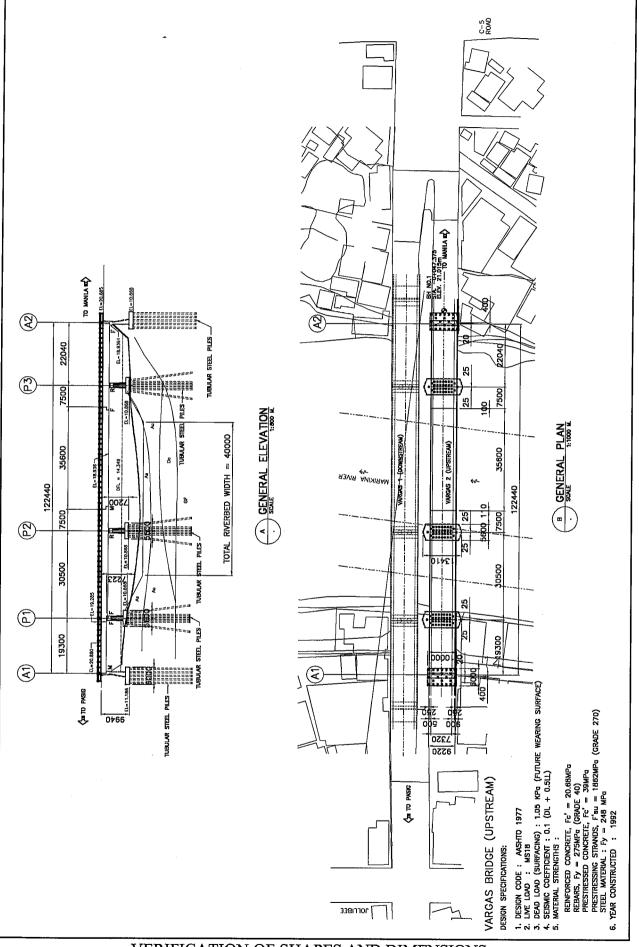

CHAPTER 24

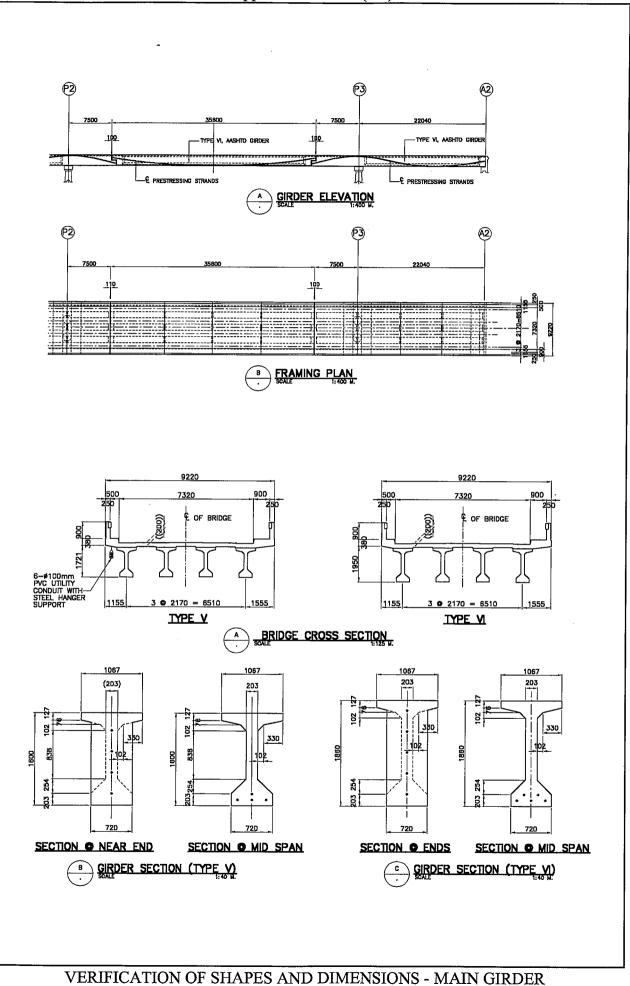

FEASIBILITY STUDY OF VARGAS BRIDGE REHABILITATION PLAN

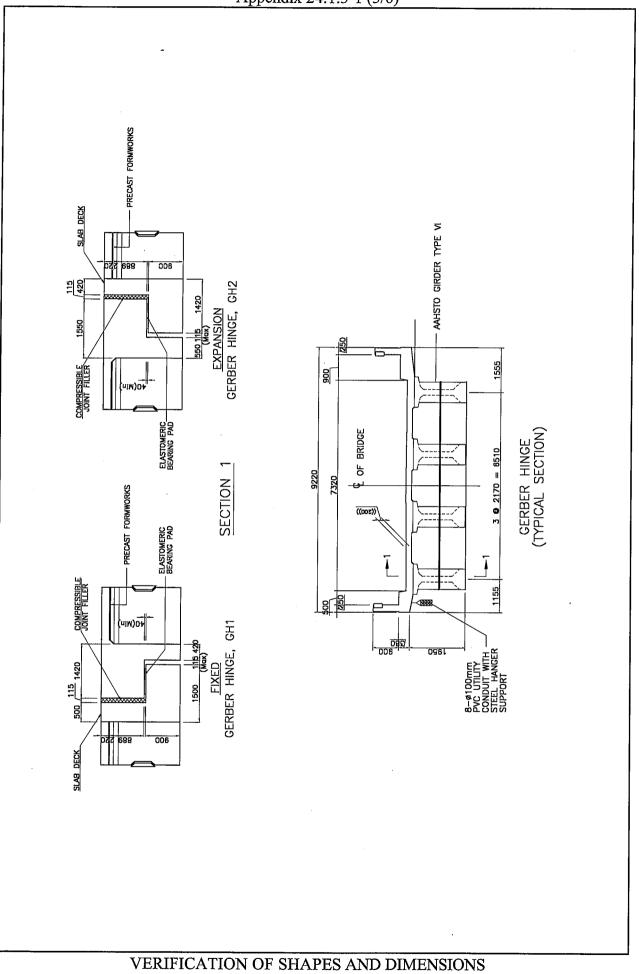
TOPOGRAPHIC SURVEY OF VARGAS BRIDGE



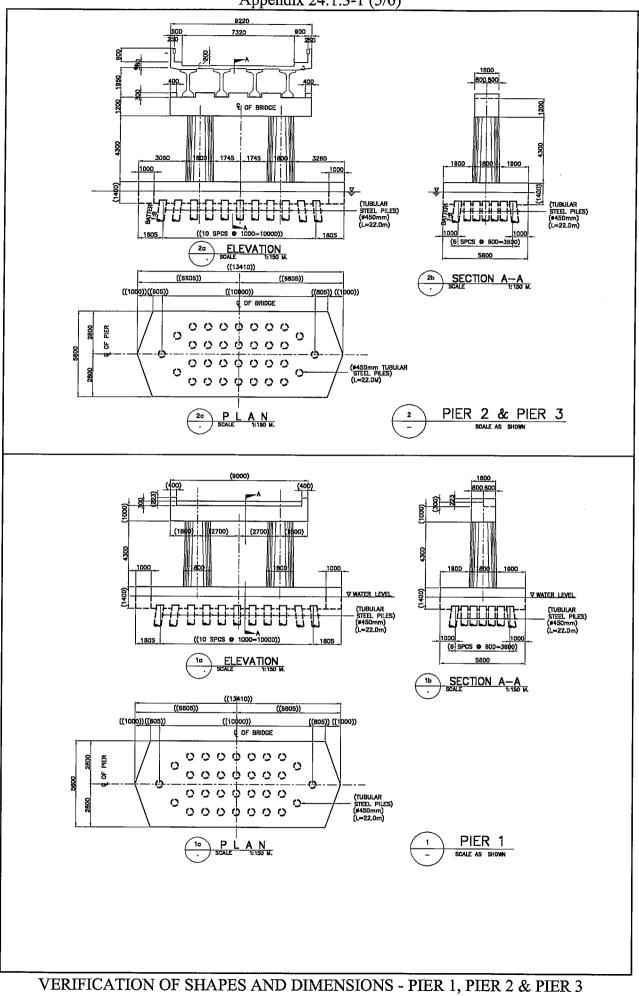

GEOTECHNICAL SURVEY

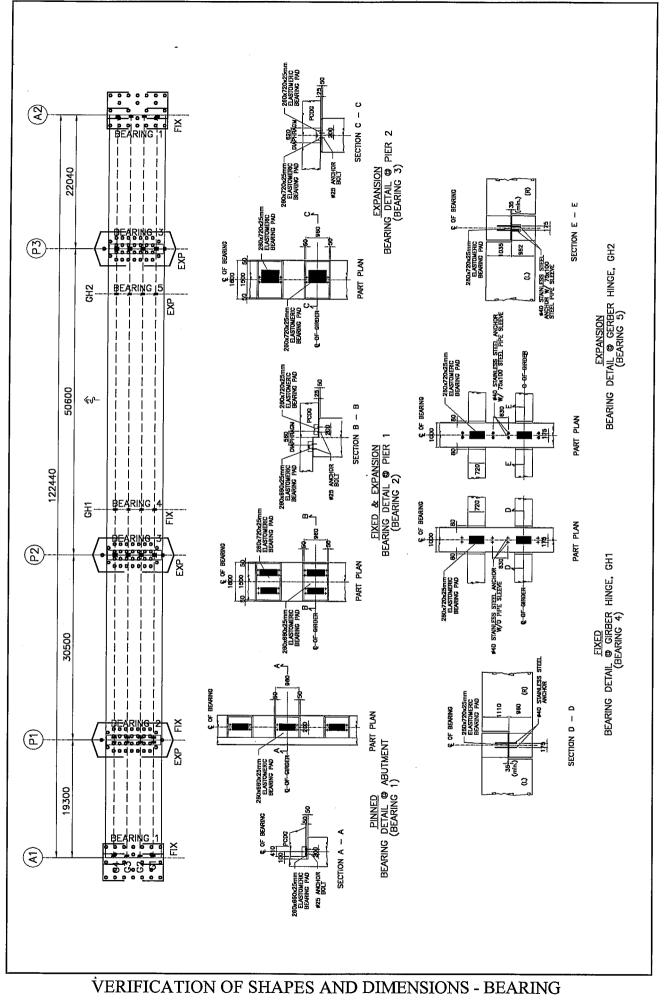
Appendix 24.1.2-3



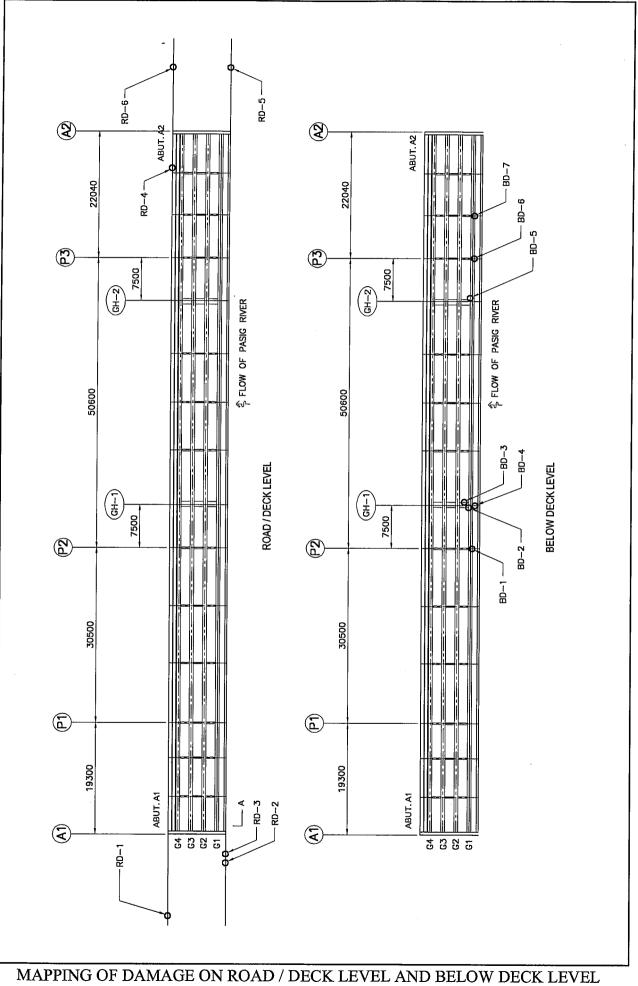

(

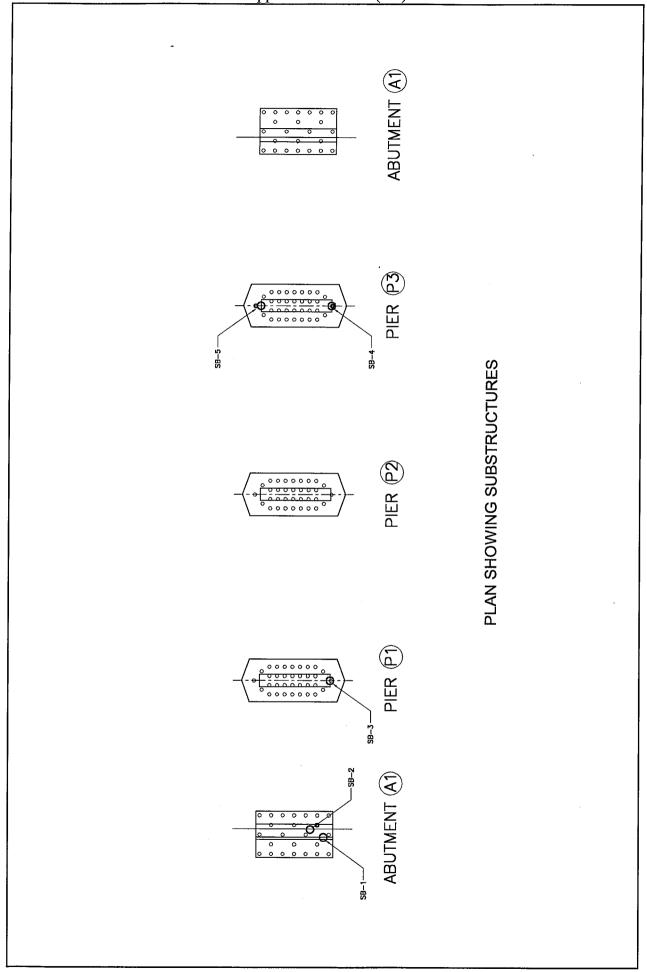
SCOUR SURVEY



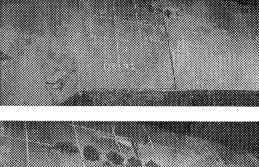


Ć

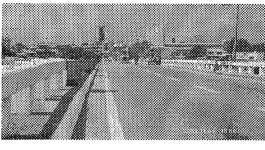

ERIFICATION OF SHAPES AND DIMENSION GERBER HINGE DETAILS

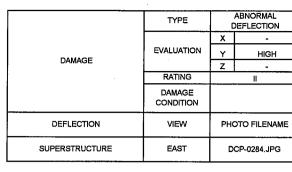


A.24 - 10



CLOSE-UP VISUAL INSPECTION OF DAMAGE BELOW/DECK LEVEL (VARGAS BRIDGE) A.24 - 13





	· · · ·	

	TYPE		
		Х	
	EVALUATION	Y	
DAMAGE		Z	
	RATING		
	DAMAGE CONDITION		
DEFLECTION	VIEW	PHO	DTO FILENAME
SUPERSTRUTURE	WEST	D	CP-8145,JPG

DAMAGE	TYPE	CRACKS			
		X	HIGH		
	EVALUATION	. Y	HIGH		
		Z	LOW		
	RATING				
	DAMAGE CONDITION	ONLY	NE(1) CRACK ',w=2mm,(DEPTH OF CRACK 17mm)(UPV 1)		
GIRDER	VIEW	PHOTO FILENAME			
G-1/PIER 2	DOWNSTREAM		CD 9117 IPG		

	TYPE		
			[
	EVALUATION	Y	
DAMAGE		z	
	RATING		
	DAMAGE CONDITION		
GIRDER	VIEW	PH	OTO FILENAME
G-1/PIER 2	DOWNSTREAM	C	CP-8116.JPG

TYPE

EVALUATION

RATING

DAMAGE CONDITION

VIEW

DOWNSTREAM

TYPE

EVALUATION

RATING

DAMAGE CONDITION

VIEW

DOWNSTREAM

CRACKS HIGH

11 w=2mm,spacing<50cm(DEPTH OF CRACK d=43mm)(UPV 3)

PHOTO FILENAME

DCP-8136.JPG

CRACKS

Ш

w=1mm,spacing<50cm

PHOTO FILENAME

DCP-8138.JPG

HIGH

HIGH

HIGH

HIGH

HIGH

х

Y

z

х

Y

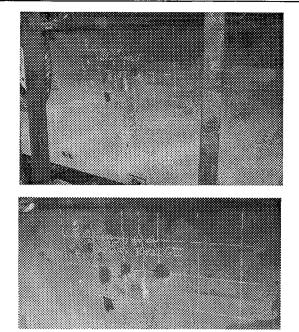
z

	CONDITION	OF CRACK d=17mm)(UPV 1)
GIRDER	VIEW	PHOTO FILENAME
G-1/PIER 2	DOWNSTREAM	DCP-8117.JPG
	TYPE	
		X
	EVALUATION	Y
DAMAGE		Z

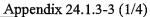
	EVALUATION
DAMAGE	RATING
	DAMAGE CONDITION
GIRDER	VIEW
G-1/PIER 2	DOWNSTREAM

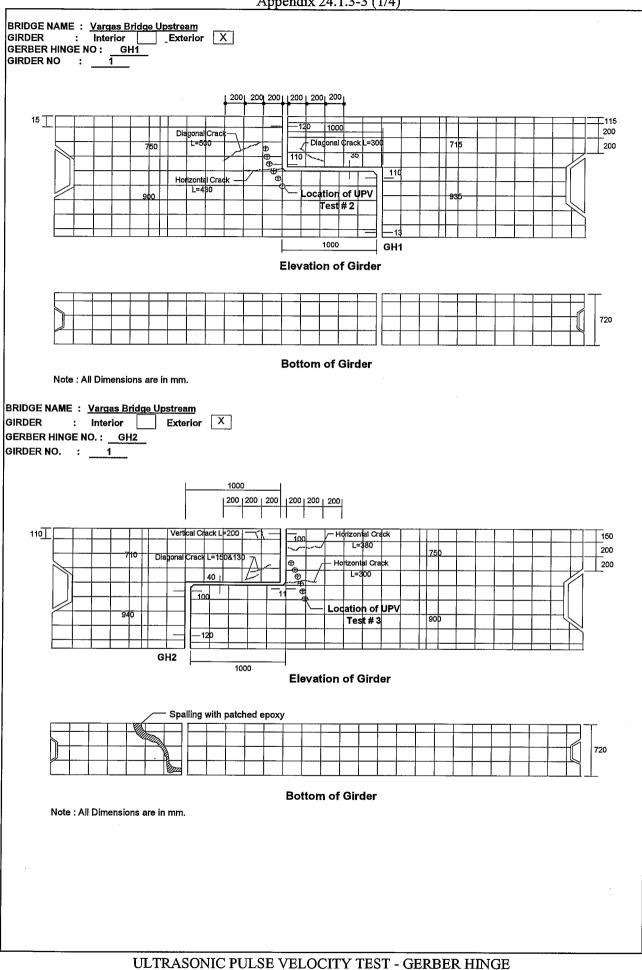
DAMAGE

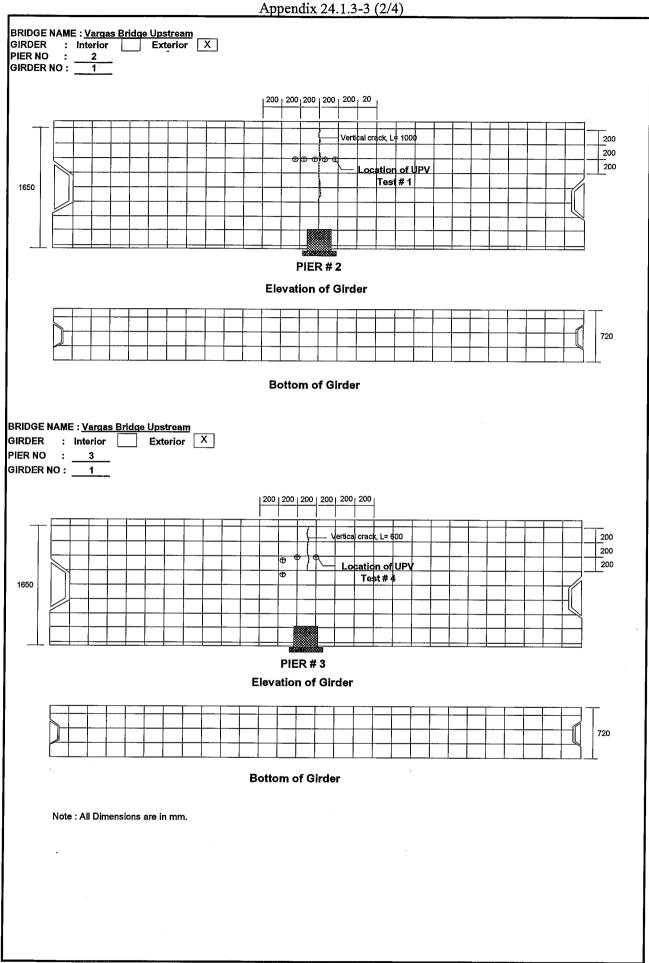
GIRDER


G-1/GH 2

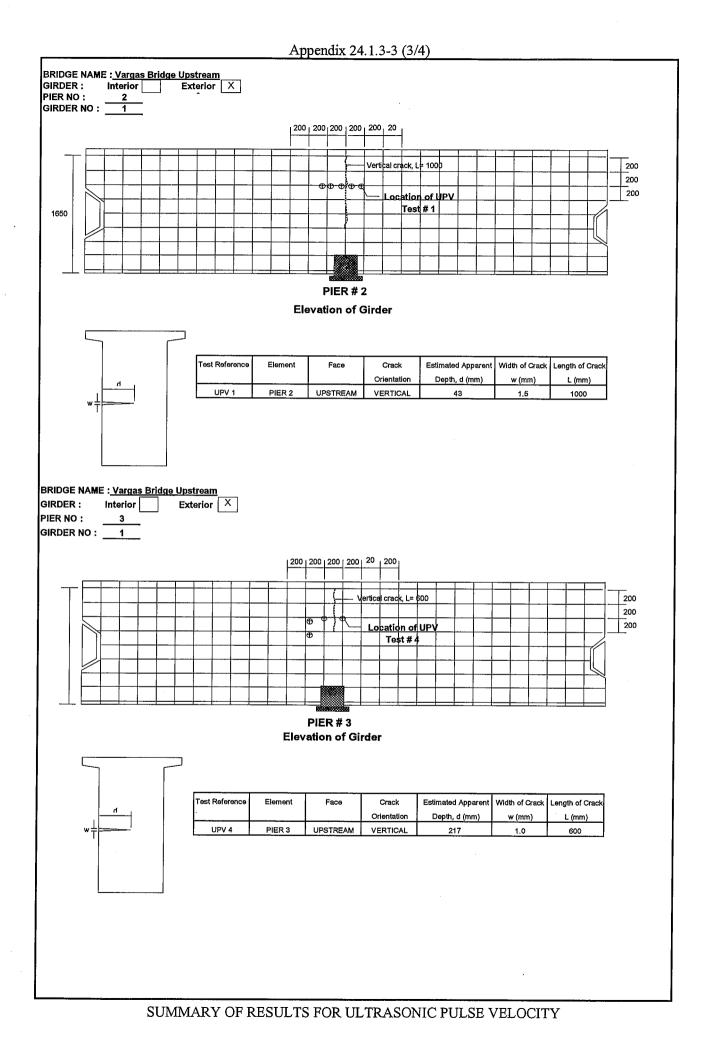
DAMAGE .

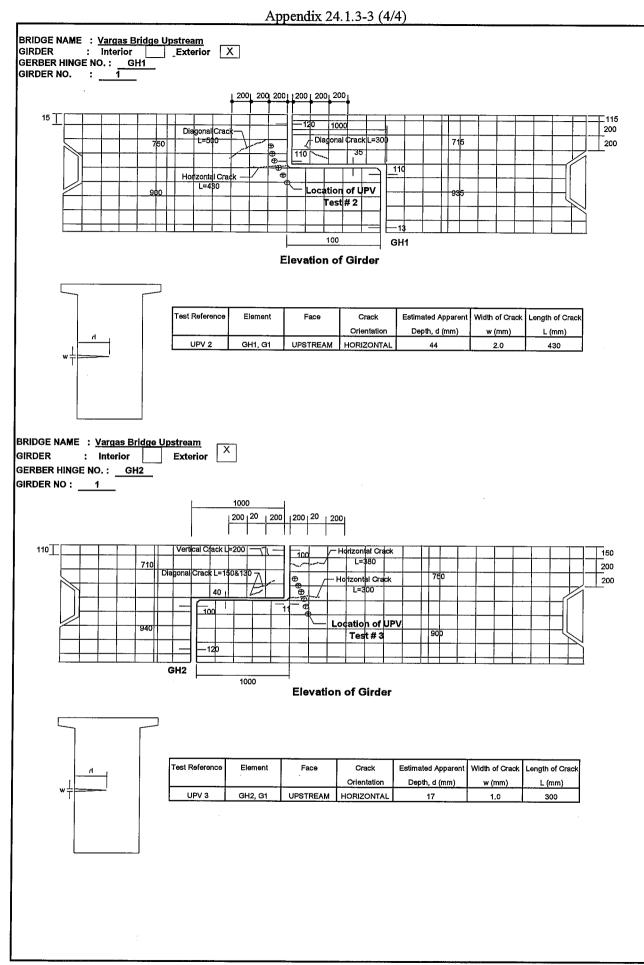

GIRDER

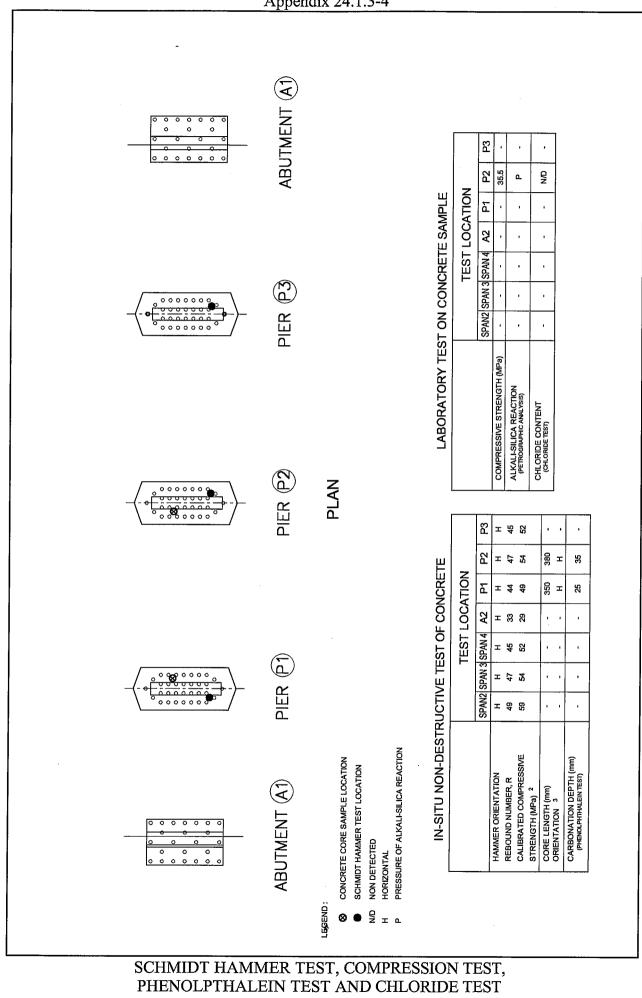

G-1/GH 2R


Appendix 24.1.3-2 (4/4)

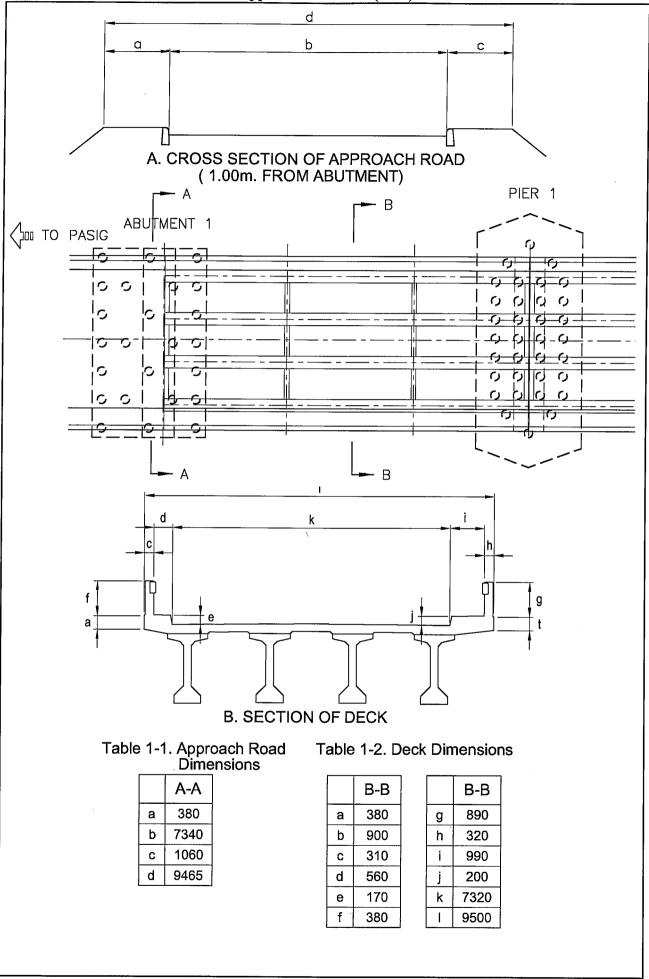
	TYPE		CRACKS	
			HIGH	
	EVALUATION	Y	HIGH	
		z	HIGH	
DAMAGE	RATING		11	
	DAMAGE CONDITION	,₩= 500	NE(1) CRACK 2mm, spacing < cm.(DEPTH OF CRACK 217mm)(UPV 4)	
GIRDER	VIEW	PHOTO FILENAME		
G-1/PIER 3	DOWNSTREAM	DCP-8124.JPG		
	TYPE			
		X		
	EVALUATION	Y		
DAMAGE		Z		
	RATING			
	DAMAGE CONDITION			
GIRDER	VIEW	PHO	DTO FILENAME	
G-1/PIER 3	DOWNSTREAM	D	CP-8125.JPG	



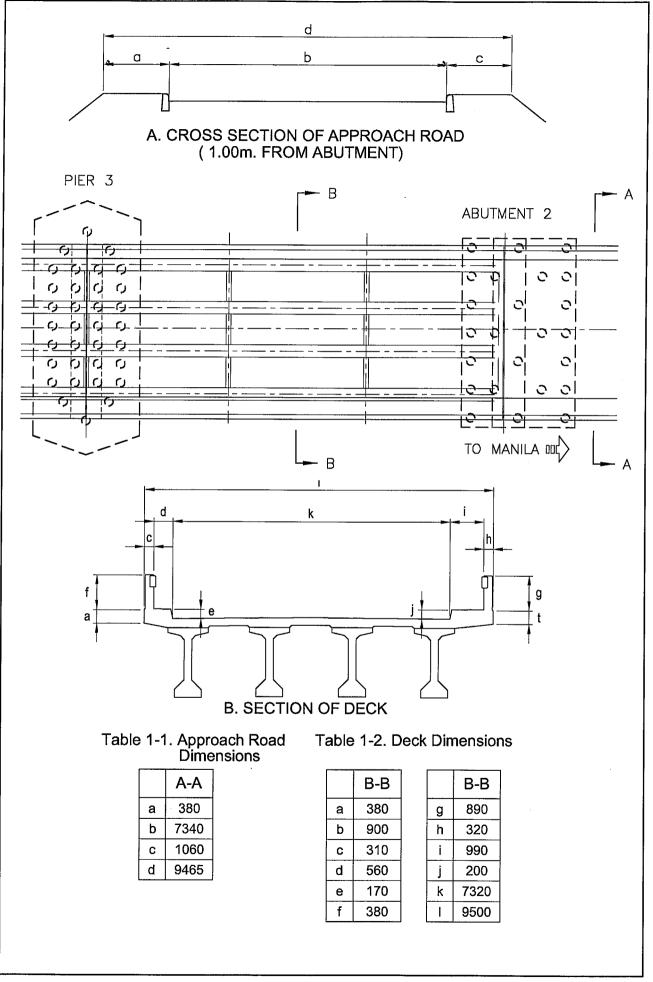



(

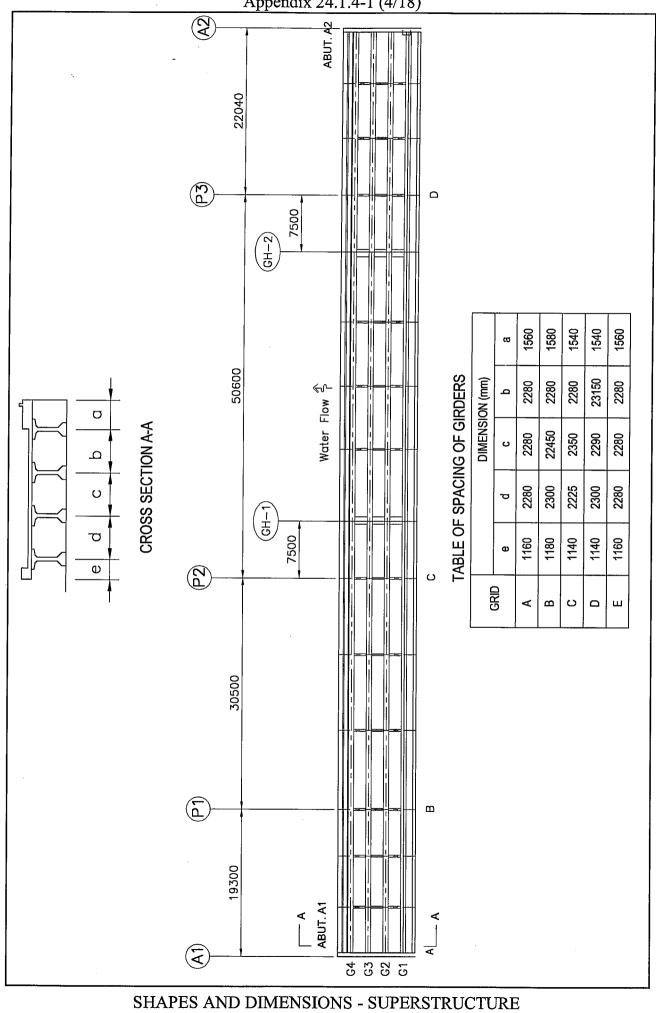
ULTRASONIC PULSE VELOCITY TEST - ABOVE PIER 2 & 3



SUMMARY OF RESULTS FOR ULTRASONIC PULSE VELOCITY

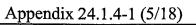


(

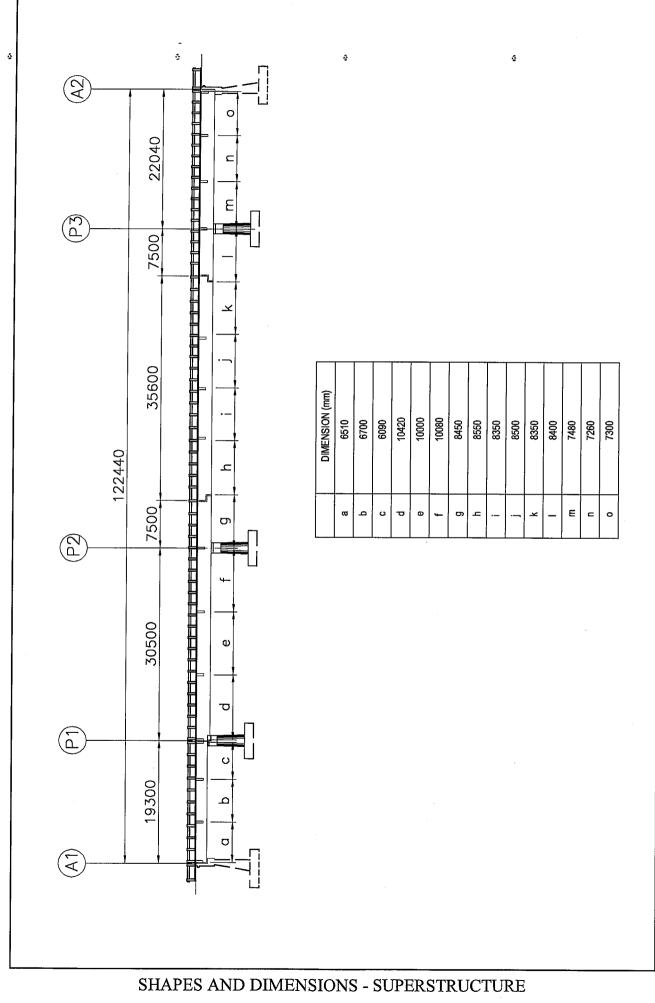

A.24 - 19

SHAPES AND DIMENSIONS - SUPERSTRUCTURE

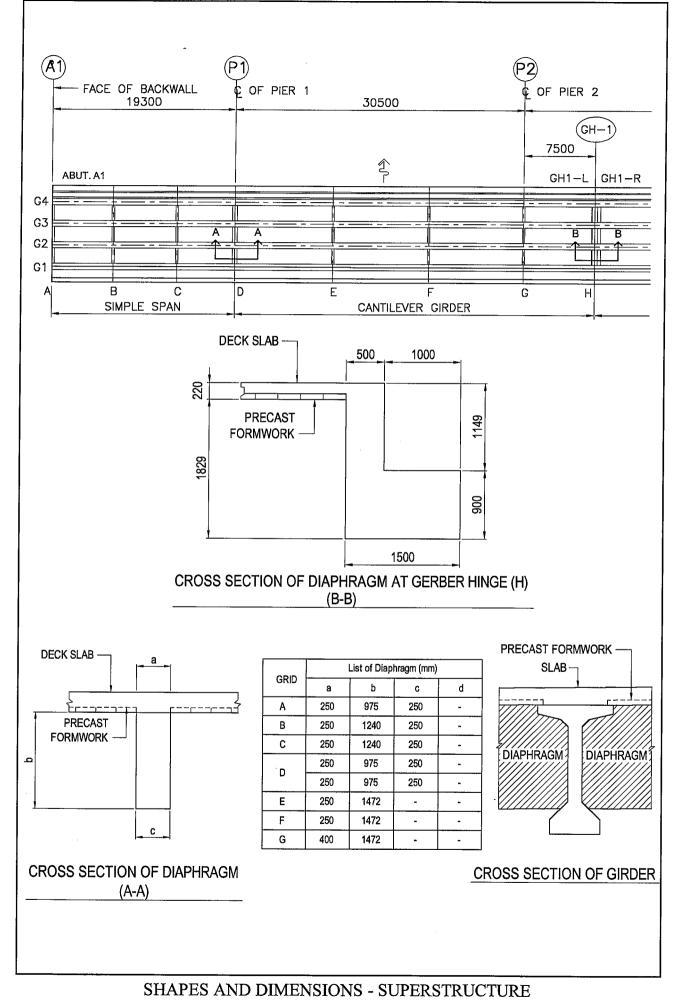
SHAPES AND DIMENSIONS - SUPERSTRUCTURE

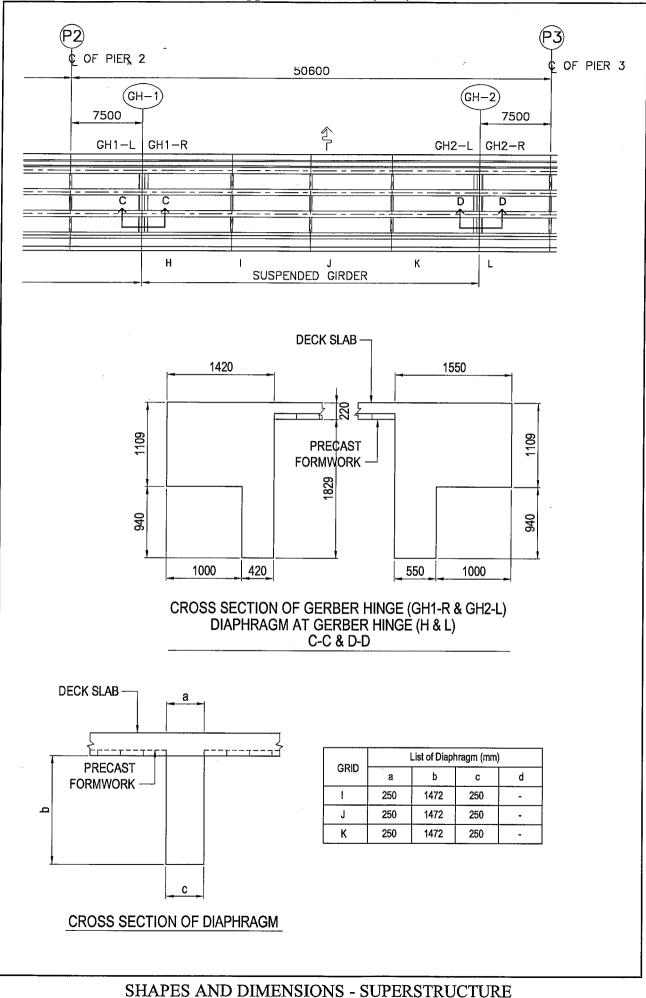


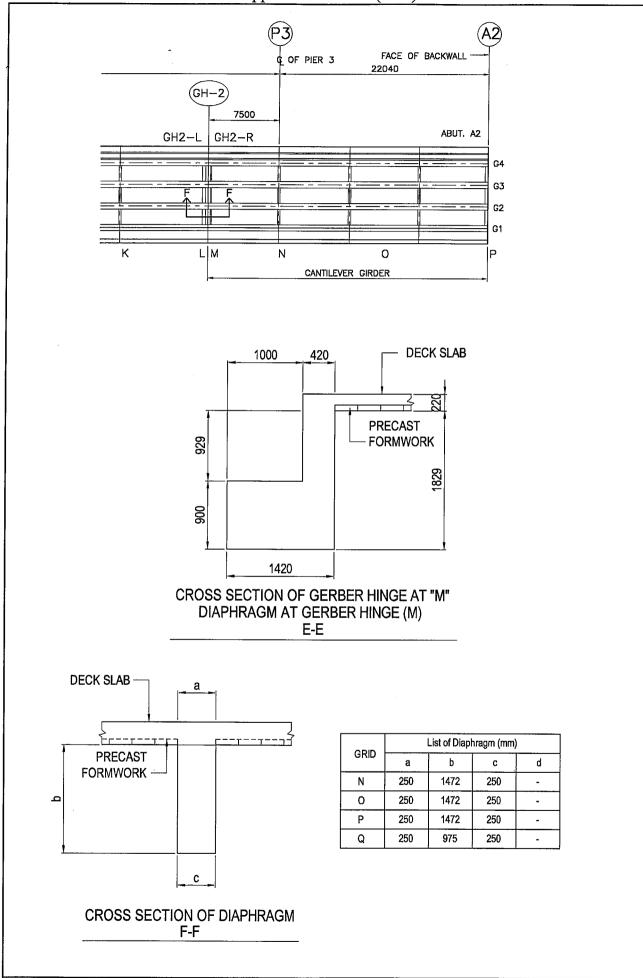
Ć


(

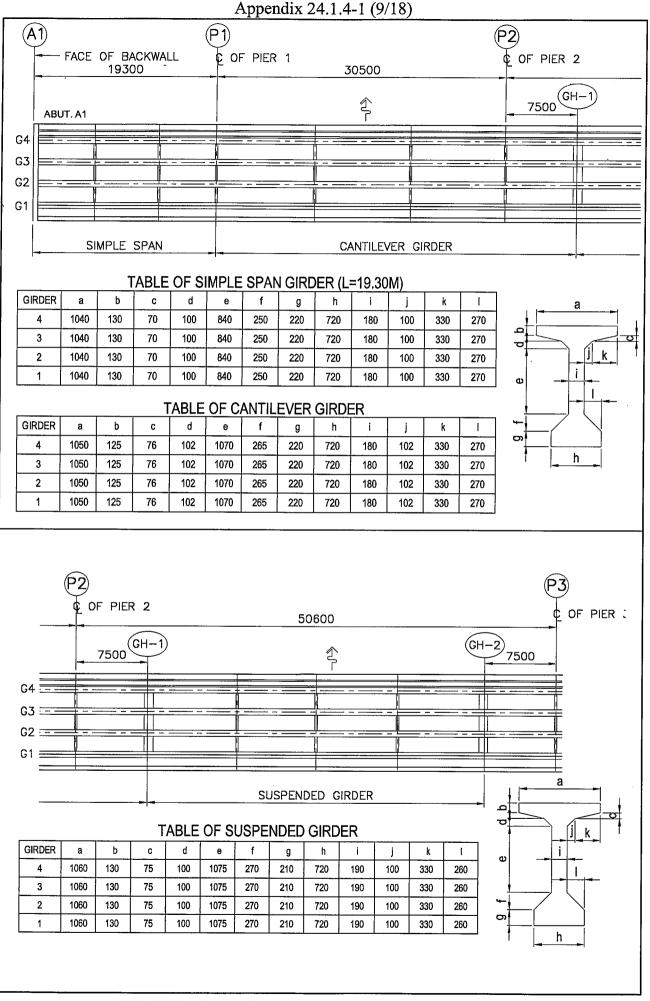
A.24 - 22


Appendix 24.1.4-1 (4/18)

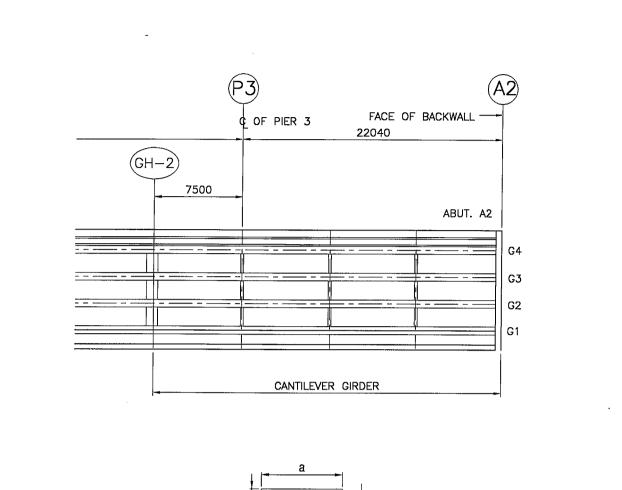

ŵ



(



Appendix 24.1.4-1 (7/18)



SHAPES AND DIMENSIONS - SUPERSTRUCTURE

SHAPES AND DIMENSIONS - SUPERSTRUCTURE

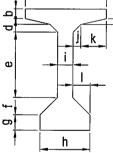
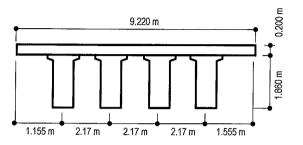


TABLE OF CANTILEVER GIRDER

GIRDER	а	b	С	d	е	f	g	h	i	j	k	1
4	1040	130	70	100	840	250	220	720	180	100	330	270
3	1040	130	70	100	840	250	220	720	180	100	330	270
2	1040	130	70	100	840	250	220	720	180	100	330	270
1	1040	130	70	100	840	250	220	720	180	100	330	270

Appendix 24.1.4-1 (11/18) CALCULATION OF SECTION PROPERTIES


A. TYPE VI AASHTO GIRDERS

1.0 MATERIAL SPECIFICATIONS

Modulus of elasticity of prestressed concrete girder, E_c Modulus of elasticity of reinforced concrete slab, E_{cs} Modular ratio, n = E_{cs} / E_c

2.0 WHOLE SUPERSTRUCTURE

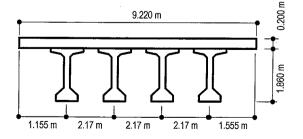
2.1 END BLOCK / SOLID PORTION

2.1.1 Properties of GirderArea of GirderCentroid of GirderDimension of Haunch : 50 mm

2.1.2	For	lχ
-------	-----	----

Girder	^	:	No. of gir	ders	x I _{x-x}	=	4	×	0.007				=	0.030 m ⁴
Slab			nbt ³ /3							÷	3			0.018 m ⁴
												Total	=	0.048 m ⁴

2.1.3 For I_Y


ltem	Area, A	у	Ay	d	Ad²	I _{Y-Y}	$I_{Y} = I_{Y-Y} + Ad^{2}$
item	(m ²)	(m)	(m ³)	(m)	(m ⁴)	(m⁴)	(m ⁴)
A	1.390	8.065	11.212	3.294	15.084	0.06798	15.152
В	1.390	5.895	8.195	1.124	1.756	0.06798	1.824
C	1.390	3.725	5.179	1.046	1.521	0.06798	1.589
D	1.390	1.555	2.162	3.216	14.379	0.06798	14.447
E	1.343	4.610	6.193	0.161	0.035	5.051	5.086
Total	6.904		32.941				38.098

2.1.4 For Iz

(

Item	Area, A	у	Ay	d	Ad²	I _{Z-Z}	$I_{Z} = I_{Z-Z} + Ad^{2}$
nem	(m ²)	(m)	(m ³)	(m)	(m ⁴)	(m ⁴)	(m ⁴)
A	1.390	0.961	1.336	0.194	0.053	0.422	0.475
В	1.390	0.961	1.336	0.194	0.053	0.422	0.475
С	1.390	0.961	1.336	0.194	0.053	0.422	0.475
D	1.390	0.961	1.336	0.194	0.053	0.422	0.475
E	1.343	1.960	2.633	0.805	0.870	0.004	0.874
Total	6.904		7.977				2.773

2.2 MID-SECTION (TYPICAL SECTION)

2.2.1 Properties of Girder Area of Girder Centroid of Girder Dimension of Haunch :

50

mm

=

0.707 m²

0.965 m

29538.84 Mpa

21520.20 Mpa

0.728539

=

Ξ

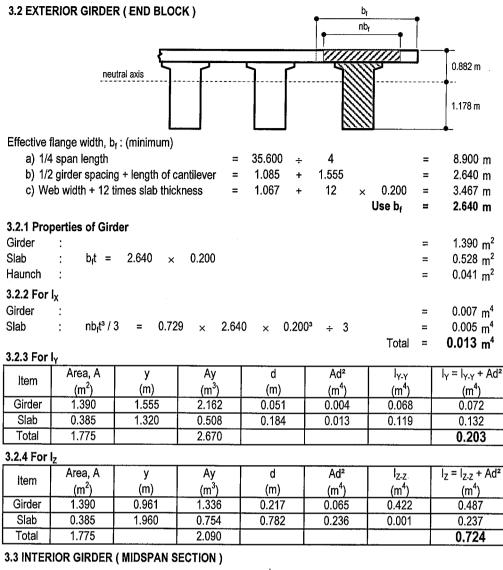
=

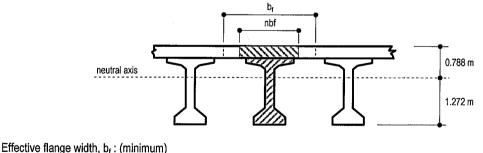
=

=

1.390 m²

0.961 m


Appendix 24.1.4-1 (12/18) CALCULATION OF SECTION PROPERTIES


$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.2.2 For Girder		girders x I _{X-X}	= 4	× 0.0	07	=	• 0.030 m ⁴	
22.3 For ly. $\frac{11cm}{1cm} Area, A y Ay Ay$	Slab	: nbt³/3	3 = 0.7	29 × 9.2	20 × 0.20)0 ³ ÷ 3			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.2.3 For	l _Y					i otai =	0.048 m*	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ltem				1	1 .		$I_Y = I_{Y-Y} + Ad$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
Item Area, A y Ay d Ad ² $ _{22}$ $ _{2} = _{22} + A$ A 0.707 0.965 0.683 0.320 0.073 0.322 0.394 B 0.707 0.965 0.683 0.320 0.073 0.322 0.394 C 0.707 0.965 0.683 0.320 0.073 0.322 0.394 D 0.707 0.965 0.683 0.320 0.073 0.322 0.394 E 1.343 1.960 2.633 0.675 0.612 0.004 0.616 Total 4.173 5.364 - 2.193 0.914 m 1.146 m Interfore GIRDER (END BLOCK) Interfore GIRDER (END BLOCK) - - 2.193 ONE of Girder Girder : - 9.900 m J Hy span length = 35.600 + 4 = 8.900 m J Hy span length = 35.600 + 4 =	Total	4.173							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.2.4 For	lz				•			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ltem	-						$ _{Z} = _{Z-Z} + Ad^{2}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
Total 4.173 5.364 2.193 DONE GIRDER PROPERTY 3.1 INTERIOR GIRDER (END BLOCK) b_1 0.914 m Instruction of the second state of t									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1		0.012	0.001		
3.1 INTERIOR GIRDER (END BLOCK) br notified in the problem of th	ONE GI	RDFR PRO	PFRTY		L	•			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				K)					
neutral axis neutral axis 0.914 m 1.146 m <td colspa<="" td=""><td></td><td></td><td></td><td>N)</td><td>br</td><td></td><td></td><td></td></td>	<td></td> <td></td> <td></td> <td>N)</td> <td>br</td> <td></td> <td></td> <td></td>				N)	br			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				•					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					•				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Ę		VIIIIIIA			0.014 m	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		neut	ral axis	ſ		ን		0.914 m	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
a) 1/4 span length = $35.600 \div 4$ = 8.900 m b) Center-to-center spacing of girder = 2.170 = 2.170 m c) Web width + 12 times slab thickness = $1.067 \div 12 \times 0.200$ = 3.467 m Use b _f = 2.170 m 3.1.1 Properties of Girder Girder : = 1.390 m^2 Slab : $b_{t}t = 2.170 \times 0.200$ = 0.434 m^2 Haunch : = 0.041 m^2 3.1.2 For l_X Girder : = 0.007 m^4 Slab : $nb_{t}t^3/3 = 0.729 \times 2.170 \times 0.200^3 \div 3$ = 0.007 m^4 3.1.3 For l_Y Them Area, A y Ay d Ad ² $l_{Y.Y}$ $l_Y = l_{Y.Y} + Action (m^4)$ (m ⁴) (m ⁴) (m ⁴) (m ⁴) Girder 1.390 1.085 1.508 0.000 0.000 0.068 0.068 Slab 0.316 1.085 0.343 0.000 0.000 0.066 0.066 Total 1.706 1.851 0 0.134 3.1.4 For l_Z Them Area, A y Ay d Ad ² $l_{Z.Z}$ $l_Z = l_{Z.Z} + Adtion (m4)$ (m ⁴) (m ⁴) (m ⁴) (m ⁴) (m ⁴) Girder 1.390 0.961 1.336 0.185 0.048 0.422 0.470 Slab 0.316 1.960 0.620 0.814 0.209 0.001 0.211								1.146 m	
a) 1/4 span length = $35.600 \div 4$ = 8.900 m b) Center-to-center spacing of girder = 2.170 = 2.170 m c) Web width + 12 times slab thickness = $1.067 \div 12 \times 0.200$ = 3.467 m Use b _f = 2.170 m 3.1.1 Properties of Girder Girder : = 1.390 m^2 Slab : $b_{t}t = 2.170 \times 0.200$ = 0.434 m^2 Haunch : = 0.041 m^2 3.1.2 For l _x Girder : = 0.007 m^4 Slab : $nb_{t}t^3/3 = 0.729 \times 2.170 \times 0.200^3 \div 3$ = 0.007 m^4 3.1.3 For l _y <u>Item Area, A y Ay d Ad² l_{y.y} l_y = $l_{y.y} + Ac$ (m²) (m) (m³) (m) (m⁴) (m⁴) (m⁴) <u>Girder 1.390 1.085 1.508 0.000 0.000 0.068 0.068</u> Slab 0.316 1.085 0.343 0.000 0.000 0.066 0.066 <u>Total 1.706 1.851 1 0 0.134</u> 3.1.4 For l_z <u>Item Area, A y Ay d Ad² l_{z.z} l_z = $l_{z.z} + Ad$ (m²) (m) (m³) (m) (m⁴) (m⁴) (m⁴) (m⁴) <u>Girder 1.390 0.961 1.336 0.185 0.048 0.422 0.470</u> <u>Slab 0.316 1.960 0.620 0.814 0.209 0.001 0.211</u></u></u>			L		())))			_ _	
b) Center-to-center spacing of girder = 2.170 = 2.170 m c) Web width + 12 times slab thickness = 1.067 + 12×0.200 = 3.467 m Use b _f = 2.170 m 3.1.1 Properties of Girder Girder : = 1.390 m ² Slab : b _f t = 2.170×0.200 = 0.434 m ² Haunch : = 0.041 m ² 3.1.2 For l _x Girder : = 0.007 m ⁴ Slab : nb _f t ³ /3 = $0.729 \times 2.170 \times 0.200^3 \div 3$ = 0.007 m ⁴ Slab : nb _f t ³ /3 = $0.729 \times 2.170 \times 0.200^3 \div 3$ = 0.007 m ⁴ 3.1.3 For l _y <u>Item Area, A y Ay d Ad² l_{y,y} l_y = l_{y,y} + Ac (m²) (m) (m³) (m) (m⁴) (m⁴) (m⁴) Girder 1.390 1.085 1.508 0.000 0.000 0.066 0.068 Slab 0.316 1.085 0.343 0.000 0.000 0.066 0.066 Total 1.706 1.851 0 0.134 3.1.4 For l_z <u>Item Area, A y Ay d Ad² l_{z,z} l_z = l_{z,z} + Ad (m⁴) (m⁴) (m⁴) (m⁴) (m⁴) (m⁴) Slab 0.316 1.085 0.343 0.000 0.000 0.000 0.066 0.066 Total 1.706 1.851 0 0.134 3.1.4 For l_z</u></u>			: (minimum)						
c) Web width + 12 times slab thickness = $1.067 + 12 \times 0.200 = 3.467 \text{ m}$ 3.1.1 Properties of Girder Girder : = = 1.390 m^2 Slab : $b_t t = 2.170 \times 0.200 = 0.434 \text{ m}^2$ Haunch : = 0.041 m^2 3.1.2 For I _X Girder : = 0.007 m^4 Slab : $nb_t t^3 / 3 = 0.729 \times 2.170 \times 0.200^3 \div 3$ 3.1.3 For I _Y <u>Item Area, A y Ay d Ad² I_{Y.Y} I_Y I_Y = I_{Y.Y} + Ac (m²) (m) (m³) (m) (m⁴) (m⁴) (m⁴) <u>Girder 1.390 1.085 1.508 0.000 0.000 0.068 0.068</u> Slab 0.316 1.085 0.343 0.000 0.000 0.066 0.066 <u>Total 1.706 1.851 0 0.134</u> 3.1.4 For I_Z <u>Item Area, A y Ay d Ad² I_{Z.Z} I_Z I_Z I_Z = I_{Z.Z} + Ad (m²) (m) (m³) (m) (m⁴) (m⁴) (m⁴) (m⁴) 3.1.4 For I_Z <u>Item Area, A y Ay d Ad² I_{Z.Z} I_Z I_Z I_Z = I_{Z.Z} + Ad (m²) (m) (m³) (m) (m⁴) (m⁴) (m⁴) (m⁴) (m⁴) 3.1.4 For I_Z</u></u></u>	•					4	=		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$						40			
3.1.1 Properties of Girder Girder : = 1.390 m ² Slab <td:< td=""> $b_1 t = 2.170 \times 0.200$ = 0.434 m² Haunch : = 0.041 m² 3.1.2 For I_X : = 0.007 m⁴ Girder : = 0.004 m⁴ Slab : nb₁t³/3 = 0.729 × 2.170 × 0.200³ ÷ 3 = 0.004 m⁴ Slab : nb₁t³/3 = 0.729 × 2.170 × 0.200³ ÷ 3 = 0.004 m⁴ Item Area, A y Ay d Ad² I_{Y.Y} I_Y = I_{Y.Y} + Ao Item Area, A y Ay d Ad² I_{Y.Y} I_Y = I_{Y.Y} + Ao Girder 1.390 1.085 1.508 0.000 0.000 0.068 0.068 Slab 0.316 1.085 0.343 0.000 0.000 0.066 0.134 3.1.4 For I_z Item Area, A y Ay A Ad² I_{Z.Z} I_Z = I_{Z.Z} + Ad (m²) (m) (m³)</td:<>	c) Wel	o width + 12 tir	mes slab thicl	(ness = ⁽	1.067 +	12 ×			
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$							Use b _f =	2.170 m	
Slab : $b_t t = 2.170 \times 0.200$ = 0.434 m^2 Haunch : = 0.041 m^2 3.1.2 For I_X Girder : = 0.001 m^4 Slab : $nb_t t^3 / 3$ = $0.729 \times 2.170 \times 0.200^3 \div 3$ = 0.004 m^4 Slab : $nb_t t^3 / 3$ = $0.729 \times 2.170 \times 0.200^3 \div 3$ = 0.004 m^4 3.1.3 For I_Y : : : : : : : item Area, A y Ay d Ad² ! ! : : Girder 1.390 1.085 1.508 0.000 0.000 0.068 0.068 Slab 0.316 1.085 0.343 0.000 0.000 0.066 0.066 Total 1.706 1.851 0.134 0.134 3.1.4 For !z :	-	erties of Gird	er					4 000 3	
Haunch : = 0.041 m^2 3.1.2 For Ix = 0.001 m^4 Girder : = 0.007 m^4 Slab : $nb_ft^3/3$ = $0.729 \times 2.170 \times 0.200^3 \div 3$ = 0.004 m^4 3.1.3 For Iy Item Area, A y Ay d Ad² $I_{Y,Y}$ $I_Y = I_{Y,Y} + Ac$ Item Area, A y Ay d Ad² $I_{Y,Y}$ $I_Y = I_{Y,Y} + Ac$ Girder 1.390 1.085 1.508 0.000 0.000 0.068 0.068 Slab 0.316 1.085 0.343 0.000 0.000 0.066 0.066 Total 1.706 1.851 0.134 0.134 0.134 3.1.4 For Iz Item Area, A y Ay d Ad² I_{Z-Z} $I_Z = I_{Z-Z} + Ad$ Girder 1.390 0.961 1.336 0.185 0.048 0.422 0.470 Slab 0.316 1.960 0.620 0.814 0.209 0.001 0.211		; , h+_	0 470	0.000					
3.1.2 For I_X Girder = 0.007 m ⁴ Slab : nb _i t ³ /3 = 0.729 \times 2.170 \times 0.200 ³ \div 3 = 0.004 m ⁴ 3.1.3 For I_Y item Area, A y Ay d Ad ² $I_{Y,Y}$ $I_Y = I_{Y,Y} + Action (m^4)$ item Area, A y Ay d Ad ² $I_{Y,Y}$ $I_Y = I_{Y,Y} + Action (m^4)$ Girder 1.390 1.085 1.508 0.000 0.000 0.068 0.068 Slab 0.316 1.085 0.343 0.000 0.000 0.066 0.066 Total 1.706 1.851 0.134 3.1.4 For I_Z Iz = I_{Z,Z} Iz = I_{Z,Z} + Adtion (m^4) (m^4) (m ²) (m) (m ³) (m) (m ⁴) (m ⁴) 3.1.4 For I_Z Iz = I_{Z,Z} Iz = I_{Z,Z} + Adtion Iz = I_{Z,Z} + Adtion (mrcl) (ml) (m ³) (ml) (ml) (ml) (ml) 3.1.4 For I_Z Iz = I_{Z,Z} Iz = I_{Z,Z} + Adtion		: 0 _f t =	2.170 x	0.200					
Girder : $nb_tt^3/3 = 0.729 \times 2.170 \times 0.200^3 \div 3$ = 0.007 m^4 Slab : $nb_tt^3/3 = 0.729 \times 2.170 \times 0.200^3 \div 3$ = 0.004 m^4 3.1.3 For I _Y Item Area, A y Ay d Ad ² $I_{Y.Y}$ $I_Y = I_{Y.Y} + Ac$ Item (m^2) (m) (m^3) (m) (m^4) (m^4) (m^4) Girder 1.390 1.085 1.508 0.000 0.000 0.068 0.068 Slab 0.316 1.085 0.343 0.000 0.000 0.066 0.066 Total 1.706 1.851 0.134 3.1.4 For I _Z Iz = Izz + Ad (m ⁴) (m ⁴) (m ⁴) Girder 1.390 0.961 1.336 0.185 0.048 0.422 0.470 Slab 0.316 1.960 0.620 0.814 0.209 0.001 0.211		•					=	0.041 m ²	
Slab : $nb_{f}t^{3}/3 = 0.729 \times 2.170 \times 0.200^{3} \div 3$ = 0.004 m^{4} 3.1.3 For I _Y Item Area, A y Ay d Ad ² I _{Y-Y} I _Y = I _{Y-Y} + Ac Item (m ²) (m) (m ³) (m) (m ⁴) (m ⁴) (m ⁴) Girder 1.390 1.085 1.508 0.000 0.000 0.068 0.068 Slab 0.316 1.085 0.343 0.000 0.000 0.066 0.066 Total 1.706 1.851 0.0134 0.134 3.1.4 For I _z Iz= Izzz Iz= Izz + Ad Item Area, A y Ay d Ad ² Iz-z Iz= Izz + Ad Girder 1.390 0.961 1.336 0.185 0.048 0.422 0.470 Slab 0.316 1.960 0.620 0.814 0.209 0.001 0.211	-	x							
Interministication Interministication 3.1.3 For Iy Area, A y Ay d Ad² Iy, Y Iy = Iy, Y Area, A Item Area, A y Ay d Ad² Iy, Y Iy = Iy, Y Au Girder 1.390 1.085 1.508 0.000 0.000 0.068 0.068 Slab 0.316 1.085 0.343 0.000 0.000 0.066 0.066 Total 1.706 1.851 0.000 0.000 0.066 0.066 3.1.4 For Iz Item Area, A y Ay d Ad² Iz-z Iz = Iz-z Iz = Iz-z Ad² Item Area, A y Ay d Ad² Iz-z Iz = Iz-z Ad² Girder 1.390 0.961 1.336 0.185 0.048 0.422 0.470 Slab 0.316 1.960 0.620 0.814 0.209 0.001 0.211		:							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Slab	: nb _f t ^a /3	= 0.72	9 × 2.17	0 × 0.200) ³ ÷ 3		0.004 m ⁴	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3.1.3 For I	<u> </u>				M	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	item							$I_{Y} = I_{Y-Y} + Ad^{2}$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		1.390							
3.1.4 For I_Z Item Area, A y Ay d Ad ² I_{Z-Z} $I_Z = I_{Z-Z} + Ad$ Item (m ²) (m) (m ³) (m) (m ⁴) (m ⁴) (m ⁴) Girder 1.390 0.961 1.336 0.185 0.048 0.422 0.470 Slab 0.316 1.960 0.620 0.814 0.209 0.001 0.211		0.040		11 3/13	I 0.000 I	0.000	1 0.066		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Slab		1.085				0.000		
Iterin (m ²) (m) (m ³) (m) (m ⁴) (m ⁴) Girder 1.390 0.961 1.336 0.185 0.048 0.422 0.470 Slab 0.316 1.960 0.620 0.814 0.209 0.001 0.211	Slab Total	1.706	1.085						
Girder 1.390 0.961 1.336 0.185 0.048 0.422 0.470 Slab 0.316 1.960 0.620 0.814 0.209 0.001 0.211	Slab Total	1.706		1.851	· · · · · · · · · · · · · · · · · · ·			0.134	
Slab 0.316 1.960 0.620 0.814 0.209 0.001 0.211	Slab Total 3.1.4 For I _z	1.706 2 Area, A	у	1.851 Ay	d	Ad ²	I _{Z-Z}	0.134	
	Slab Total 3.1.4 For I _z Item	1.706 2 Area, A (m ²)	y (m)	1.851 Ay (m ³)	d (m)	Ad² (m ⁴)	I _{Z-Z} (m ⁴)	0.134 $I_z = I_{z-z} + Ad^2$ (m ⁴)	
	Slab Total 3.1.4 For I _z Item Girder	1.706 2 Area, A (m ²) 1.390	y (m) 0.961	1.851 Ay (m ³) 1.336	d (m) 0.185	Ad ² (m ⁴) 0.048	lz-z (m ⁴) 0.422	0.134 $I_z = I_{z-z} + Ad^2$ (m ⁴) 0.470	

(

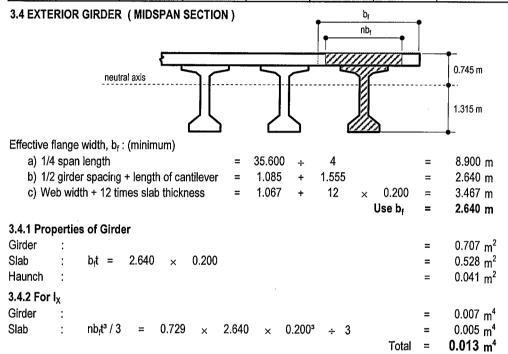
• .

Appendix 24.1.4-1 (13/18) CALCULATION OF SECTION PROPERTIES

						Use b _f	=	2.170 m
c) Web width + 12 times slab thickness	=	1.067	+	12	×	0.200	=	3.467 m
b) Center-to-center spacing of girder	=	2.170					=	2.170 m
a) 1/4 span length	=	35.600	÷	4			=	8.900 m
noouro nango maan, or (miniman)								

3.3.1 Pro	pertie	es of Girde	r										
Girder	:											=	0.707 m ²
Slab	:	b _f t =	2.170	×	0.200							=	0.434 m²
Haunch	:											=	0.041 m ²
3.3.2 For	' I _X												
Girder	:											=	0.007 m ⁴
Slab	:	nb _f t³ / 3	=	0.729	×	2.170	×	0.200 ³	÷	3		=	0.004 m ⁴
											Total	=	0.012 m ⁴

Appendix 24.1.4-1 (14/18) CALCULATION OF SECTION PROPERTIES


3.3.3 For I_Y

Item	Area, A	у	Ay	d	Ad²	ly.y	$I_{Y} = I_{Y-Y} + Ad^{2}$
Item	(m ²)	(m)	(m ³)	(m)	(m ⁴)	(m ⁴)	(m ⁴)
Girder	0.707	1.085	0.768	0.000	0.000	0.026	0.026
Slab	0.316	1.085	0.343	0.000	0.000	0.066	0.066
Total	1.024		1.111				0.092

3.3.4 For I_z

(

ltem	Area, A (m ²)	y (m)	Ay (m ³)	d (m)	Ad² (m ⁴)	l _{z-z} (m ⁴)	$ I_{Z} = I_{Z-Z} + Ad^{2}$ (m ⁴)
Girder	0.707	0.965	0.683	0.307	0.067	0.322	0.388
Slab	0.316	1.960	0.620	0.688	0.150	0.001	0.151
Total	1.024		1.302				0.539

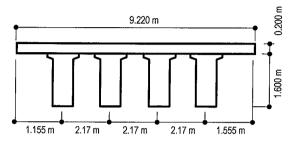
3.4.3 For I_Y

ltem	Area, A	У	Ay	d	Ad²	l _{Y-Y}	$I_{Y} = I_{Y-Y} + Ad^{2}$
Item	(m ²)	(m)	(m ³)	(m)	(m ⁴)	(m ⁴)	(m ⁴)
Girder	0.707	1.555	1.100	0.083	0.005	0.026	0.031
Slab	0.385	1.320	0.508	0.152	0.009	0.119	0.127
Total	1.092		1.608				0.158

3.4.4 For I_Z

Item	Area, A	У	Ay	d	Ad²	I _{Z-Z}	$I_{Z} = I_{Z-Z} + Ad^{2}$
Item	(m²)	(m)	(m ³)	(m)	(m ⁴)	(m⁴)	(m ⁴)
Girder	0.707	0.965	0.683	0.350	0.087	0.322	0.409
Slab	0.385	1.960	0.754	0.645	0.160	0.001	0.161
Total	1.092		1.437				0.570

Appendix 24.1.4-1 (15/18) CALCULATION OF SECTION PROPERTIES


B. TYPE V AASHTO GIRDERS

1.0 MATERIAL SPECIFICATIONS

Modulus of elasticity of prestressed concrete girder, $\rm E_c$ Modulus of elasticity of reinforced concrete slab, $\rm E_{cs}$ Modular ratio, n = E_{cs} / E_c

2.0 WHOLE SUPERSTRUCTURE

2.1 END BLOCK / SOLID PORTION

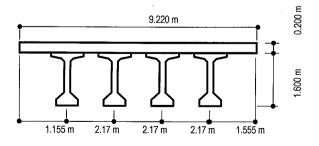
2.1.1 Properties of Girder Area of Girder Centroid of Girder Dimension of Haunch : 50

212 For	

(

Girder	:	No. of gir	ders	x I _{X-X}	=	4	×	0.007				=	0.027 m ⁴
Slab	:	nbt³ / 3	=	0.729	×	9.220	×	0.200³	÷	3		=	0.018 m ⁴
											Total	=	0.045 m ⁴

mm


2.1.3 For I_Y

ltem	Area, A	у	Ay	d	Ad²	l _{Y-Y}	$I_{Y} = I_{Y-Y} + Ad^{2}$
Item	(m ²)	(m)	(m ³)	(m)	(m ⁴)	(m ⁴)	(m ⁴)
Α	1.203	8.065	9.702	3.299	13.090	0.05989	13.150
В	1.203	5.895	7.092	1.129	1.532	0.05989	1.592
С	1.203	3.725	4.481	1.041	1.305	0.05989	1.364
D	1.203	1.555	1.871	3.211	12.406	0.05989	12.466
E	1.343	4.610	6.193	0.156	0.033	5.05126	5.084
Total	6.155		29.339				33.657

2.1.4 For I7

item	Area, A	y (m)	Ay (³)	d (m)	Ad ²	_{Z-Z}	$ _{Z} = _{Z-Z} + Ad^{2}$
	(m ²)	(m)	(m³)	(m)	<u>(m⁴)</u>	(m ⁴)	(m ⁴)
A	1.203	0.831	0.999	0.190	0.043	0.27160	0.315
В	1.203	0.831	0.999	0.190	0.043	0.27160	0.315
C	1.203	0.831	0.999	0.190	0.043	0.27160	0.315
D	1.203	0.831	0.999	0.190	0.043	0.27160	0.315
E	1.343	1.700	2.284	0.680	0.620	0.00448	0.625
Total	6.155		6.282				1.884

2.2 MID-SECTION (TYPICAL SECTION)

2.2.1 Properties of Girder

Area of Girder Centroid of Girder Dimension of Haunch :

50 mm

= 0.656 m² = 0.837 m 29538.84 Mpa

21520.20 Mpa

0.728539

=

=

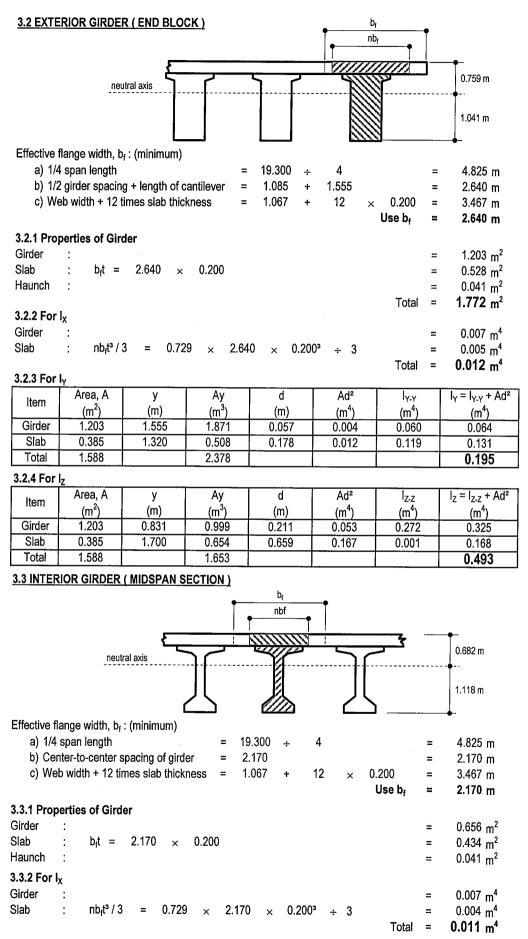
=

=

=

1.203 m²

0.831 m


Appendix 24.1.4-1 (16/18) CALCULATION OF SECTION PROPERTIES

Girder	l _X ∴ No. of	girders x I _{X-X}	= 4	× 0.00)7	_	0.027
Slab	: nbt ³ /3					=	0.027 m 0.018 m
Jiab	. 1101 /	5 - 0.72	LU X U.ZZ	20 × 0.20	iv ÷ s	 Total =	0.018 m 0.045 m
2.2.3 For	ly					i Ulai -	0.040 []
ltem	Area, A	у	Ay	d	Ad²	I _{Y-Y}	$ _{Y} = _{Y-Y} + j$
nem	(m ²)	(m)	(m ³)	(m)	(m ⁴)	(m⁴)	(m ⁴)
А	0.656	8.065	5.292	3.323	7.244	0.02580	7.270
В	0.656	5.895	3.868	1.153	0.872	0.02580	0.898
С	0.656	3.725	2.444	1.017	0.679	0.02580	0.705
D	0.656	1.555	1.020	3.187	6.665	0.02580	6.691
Е	1.343	4.610	6.193	0.132	0.024	5.05126	5.075
Total	3.968		18.817				20.638
2.2.4 For	lz						
ltem	Area, A	у	Ay	d	Ad²	I _{Z-Z}	$ _{z} = _{z-z} + /$
nom -	(m²)	(m)	(m ³)	(m)	(m ⁴)	(m ⁴)	(m ⁴)
А	0.656	0.837	0.549	0.292	0.056	0.21859	0.275
В	0.656	0.837	0.549	0.292	0.056	0.21859	0.275
С	0.656	0.837	0.549	0.292	0.056	0.21859	0.275
D	0.656	0.837	0.549	0.292	0.056	0.21859	0.275
Е	1.343	1.700	2.284	0.571	0.438	0.00448	0.442
Total	3.968		4.480				1.541
ONE GI	RDER PRO	PERTY					
			•	b _f	 •		
			•	b _f nbf	•		+ _
	neut	ral axis			- - - -	<u> </u>	0.788 m
,	neut	ral axis					0.788 m
	ange width, b _f			nbf		<u> </u>	
a) 1/4	ange width, b _f span length	: (minimum)		nbf	4		1.012 m 4.825 m
a) 1/4 b) Cer	ange width, b _f span length nter-to-center s	: (minimum)	ler = 2	nbf 9.300 ÷ .170		=	1.012 m 4.825 m 2.170 m
a) 1/4 b) Cer	ange width, b _f span length nter-to-center s	: (minimum)		nbf 9.300 ÷ .170		= 0.200 =	1.012 m 4.825 m 2.170 m 3.467 m
a) 1/4 b) Cer c) Wel	ange width, b _f span length nter-to-center s b width + 12 ti	: (minimum) spacing of gird mes slab thick	ler = 2	nbf 9.300 ÷ .170		=	1.012 m 4.825 m 2.170 m 3.467 m
a) 1/4 b) Cer c) Wel 5 .1.1 Prop	ange width, b _f span length nter-to-center s	: (minimum) spacing of gird mes slab thick	ler = 2	nbf 9.300 ÷ .170		= 0.200 = Use b _f =	4.825 m 2.170 m 3.467 m 2.170 m
a) 1/4 b) Cer c) Wel 9. 1.1 Prop Birder	ange width, b _r span length hter-to-center s b width + 12 ti erties of Gird	: (minimum) spacing of gird mes slab thick er	ler = 2 :ness = 1	nbf 9.300 ÷ .170		= 0.200 = Use b _f = =	4.825 m 2.170 m 3.467 m 2.170 m
a) 1/4 b) Cer c) Wel 3.1.1 Prop Girder Slab	ange width, b _r span length hter-to-center s b width + 12 ti erties of Gird	: (minimum) spacing of gird mes slab thick	ler = 2 :ness = 1	nbf 9.300 ÷ .170		= 0.200 = Use b _f = = =	4.825 m 2.170 m 3.467 m 2.170 m 1.203 m ² 0.434 m ²
a) 1/4 b) Cer c) Wel 3.1.1 Prop Girder Slab Haunch	ange width, b _f span length nter-to-center s b width + 12 ti erties of Gird b _f t =	: (minimum) spacing of gird mes slab thick er	ler = 2 :ness = 1	nbf 9.300 ÷ .170		= 0.200 = Use b _f = =	4.825 m 2.170 m 3.467 m 2.170 m 1.203 m ² 0.434 m ²
a) 1/4 b) Cer c) Wel 3.1.1 Prop Birder Blab Haunch 5.1.2 For I;	ange width, b _f span length nter-to-center s b width + 12 ti erties of Gird b _f t =	: (minimum) spacing of gird mes slab thick er	ler = 2 :ness = 1	nbf 9.300 ÷ .170		= 0.200 = Use b _f = = = =	4.825 m 2.170 m 3.467 m 2.170 m 1.203 m ² 0.434 m ² 0.041 m ²
a) 1/4 b) Cer c) Wel Birder Birder Blab Haunch B .1.2 For I j Birder	ange width, b _f span length nter-to-center s b width + 12 ti erties of Gird b _f t = : x	: (minimum) spacing of gird mes slab thick ler 2.170 ×	ler = 2 :ness = 1 0.200	nbf 9.300 = 170 .067 +	12 × 0	= 0.200 = Use b _f = = = =	4.825 m 2.170 m 3.467 m 2.170 m 1.203 m 0.434 m 0.041 m ²
a) 1/4 b) Cer c) Wel 3.1.1 Prop Birder Blab Haunch 5.1.2 For I;	ange width, b _f span length nter-to-center s b width + 12 ti erties of Gird b _f t = : x	: (minimum) spacing of gird mes slab thick er	ler = 2 :ness = 1 0.200	nbf 9.300 ÷ .170	12 × 0	= 0.200 = Use b _f = = = = =	1.012 m 4.825 m 2.170 m 3.467 m 2.170 m 1.203 m 0.434 m 0.041 m ² 0.007 m ² 0.007 m ²
a) 1/4 b) Cer c) Wel B.1.1 Prop Birder Blab Haunch B.1.2 For Ig Birder Blab	ange width, b _f span length nter-to-center s b width + 12 ti erties of Gird : b _f t = : x : nb _f t ^a / 3	: (minimum) spacing of gird mes slab thick ler 2.170 ×	ler = 2 :ness = 1 0.200	nbf 9.300 = 170 .067 +	12 × 0	= 0.200 = Use b _f = = = =	4.825 m 2.170 m 3.467 m 2.170 m 1.203 m 0.434 m 0.041 m ² 0.007 m ⁴ 0.004 m ⁴
a) 1/4 b) Cer c) Wel Birder Birder Blab Haunch Birder Birder Blab	ange width, b _f span length nter-to-center s b width + 12 ti erties of Gird : b _f t = : x : nb _f t ³ / 3	: (minimum) spacing of gird mes slab thick er 2.170 × = 0.729	ler = 2 ness = 1 0.200 9 × 2.170	nbf 9.300 = 170 .067 +	12 × 0	= 0.200 = Use b _f = = = = = = Total =	4.825 m 2.170 m 3.467 m 2.170 m 1.203 m ² 0.434 m ² 0.041 m ² 0.007 m ⁴ 0.004 m ⁴
a) 1/4 b) Cer c) Wel B.1.1 Prop Birder Blab Haunch B.1.2 For Ig Birder Blab	ange width, b _f span length nter-to-center s b width + 12 ti erties of Gird : b _f t = : x : nb _f t ³ / 3	: (minimum) spacing of gird mes slab thick ler 2.170 ×	ler = 2 ness = 1 0.200 9 × 2.170 Ay	nbf 9.300 ÷ .170 .067 + 0 × 0.200	12 ×	= 0.200 = Use b _f = = = = = Total =	1.012 m 4.825 m 2.170 m 3.467 m 2.170 m 1.203 m ² 0.434 m ² 0.041 m ² 0.004 m ⁴ 0.004 m ⁴ 0.0011 m ⁴
a) 1/4 b) Cer c) Wel Birder Birder Blab Haunch Birder Birder Blab	ange width, b _f span length nter-to-center s b width + 12 ti erties of Gird : b _f t = : x : nb _f t ³ / 3	: (minimum) spacing of gird mes slab thick er 2.170 × = 0.729	ler = 2 ness = 1 0.200 9 × 2.170	nbf 9.300 ÷ .170 .067 +	12 × 1	= 0.200 = Use b _f = = = = = = Total =	4.825 m 2.170 m 3.467 m 2.170 m 1.203 m ² 0.434 m ² 0.041 m ² 0.007 m ⁴ 0.004 m ⁴
a) 1/4 b) Cer c) Wel 3.1.1 Prop Birder Slab 4aunch 5.1.2 For I Slab .1.3 For I Item	ange width, b _f span length nter-to-center s b width + 12 ti erties of Gird b _f t = b _f t = x : nb _f t ³ / 3 Y Area, A (m ²)	: (minimum) spacing of gird mes slab thick er 2.170 × = 0.729	ler = 2 iness = 1 0.200 0 × 2.170 Ay (m ³)	nbf 9.300 ÷ 170 .067 + 0 × 0.200 d (m)	12 × 1 ³ ÷ 3 Ad ² (m ⁴)	= 0.200 = Use b _f = = = = Total = [i _{Y-Y} (m ⁴)	4.825 m 2.170 m 3.467 m 2.170 m 1.203 m ² 0.434 m ² 0.041 m ² 0.004 m ⁴ 0.0011 m ⁴ 1 _Y = 1 _{Y-Y} + A (m ⁴)

3.1.4 For Iz

Item	Area, A	У	Ay	d	Ad²	I _{Z-Z}	$ _{Z} = _{Z-Z} + Ad^{2}$
lleni	(m ²)	(m)	(m ³)	(m)	(m ⁴)	(m ⁴)	(m ⁴)
Girder	1.203	0.831	0.999	0.181	0.039	0.272	0.311
Slab	0.316	1.700	0.538	0.688	0.150	0.001	0.151
Total	1.519		1.537				0.462

Appendix 24.1.4-1 (17/18) CALCULATION OF SECTION PROPERTIES

(

Appendix 24.1.4-1 (18/18) CALCULATION OF SECTION PROPERTIES

3.3.3 For I_Y

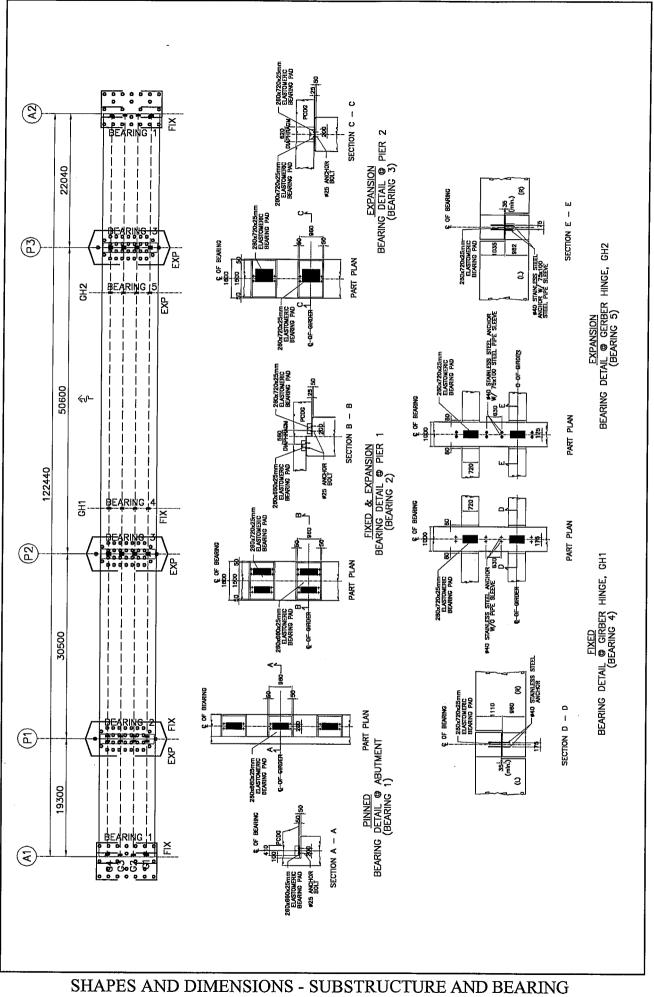
ltem	Area, A (m ²)	y (m)	Ay (m ³)	d (m)	Ad² (m ⁴)	Ι _{Υ-Υ} (m ⁴)	$ _{Y} = _{Y-Y} + Ad^{2}$ (m^{4})
Girder	0.656	1.085	0.712	0.000	0.000	0.026	0.026
Slab	0.316	1.085	0.343	0.000	0.000	0.066	0.066
Total	0.972		1.055				0.092

3.3.4 For I_Z

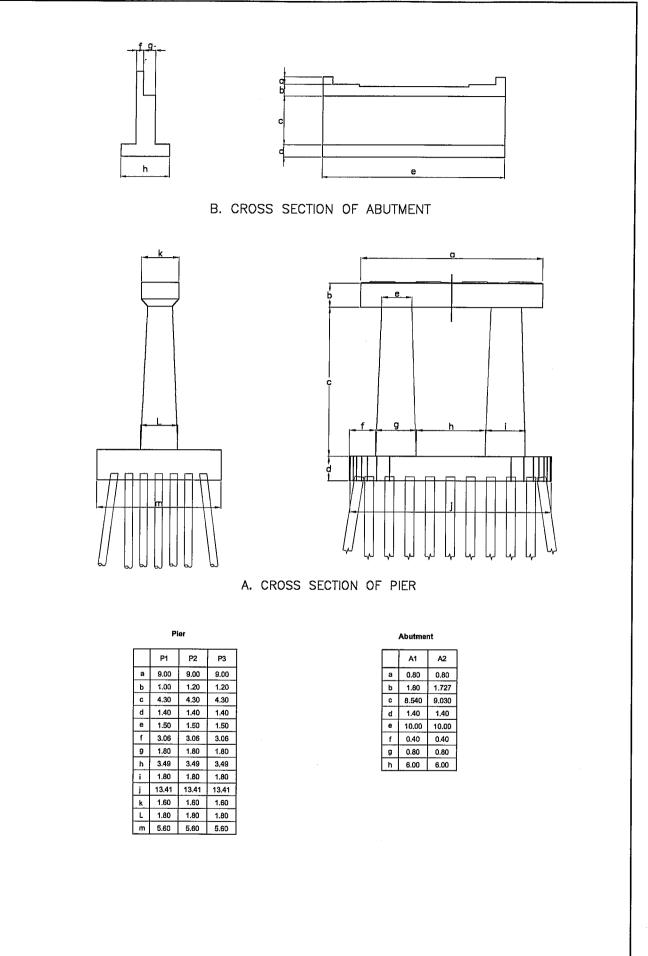
(

Item	Area, A (m ²)	у (m)	Ay (m ³)	d (m)	Ad² (m ⁴)	l _{z-z} (m ⁴)	$I_{Z} = I_{Z-Z} + Ad^{2}$ (m ⁴)
Girder	0.656	0.837	0.549	0.281	0.052	0.219	0.270
Slab	0.316	1.700	0.538	0.582	0.107	0.001	0.108
Total	0.972		1.087				0.379

3.4 EXTERIOR GIRDER (MIDSPAN SECTION) b_f nb_f 1 111 0.644 m neutral axis 1.156 m Effective flange width, b_f : (minimum) a) 1/4 span length 19.300 4 4.825 m = ÷ = b) 1/2 girder spacing + length of cantilever 1.085 2.640 m 1.555 = + = c) Web width + 12 times slab thickness 3.467 m = 1.067 + 12 0.200 = × Use b_f 2.640 m = 3.4.1 Properties of Girder Girder 0.656 m² : = Slab $b_{f}t = 2.640$ 0.200 0.528 m² : × = Haunch 0.041 m² : =


3.4.2 For	' l _x												
Girder Slab	:	nb _f t³ / 3	=	0.729	×	2.640	×	0.200³	÷	3	Total	=	0.007 m ⁴ 0.005 m ⁴ 0.012 m ⁴

3.4.3 For I_Y


Item	Area, A	У	Ay	d	Ad²	I _{Y-Y}	$I_{\rm Y} = I_{\rm Y-Y} + \rm Ad^2$
ICIII	(m ²)	(m)	(m ³)	(m)	(m ⁴)	(m⁴)	(m ⁴)
Girder	0.656	1.555	1.020	0.087	0.005	0.026	0.031
Slab	0.385	1.320	0.508	0.148	0.008	0.119	0.127
Total	1.041		1.528				0.158

3.4.4 For Iz

ltem	Area, A	У	Ay	d	Ad²	I _{Z-Z}	$I_{Z} = I_{Z-Z} + Ad^{2}$
nem	(m ²)	(m)	(m ³)	(m)	(m ⁴)	(m ⁴)	(m ⁴)
Girder	0.656	0.837	0.549	0.319	0.067	0.219	0.285
Slab	0.385	1.700	0.654	0.544	0.114	0.001	0.115
Total	1.041		1.203				0.401

A.24 - 37

 \langle

SHAPES AND DIMENSIONS - PIER AND ABUTMENT