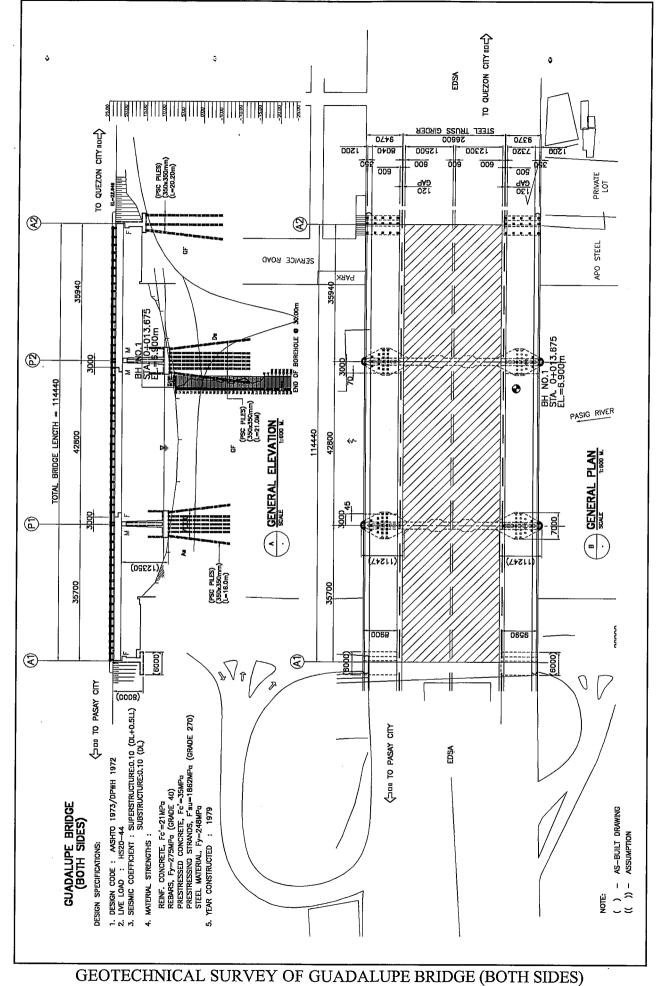
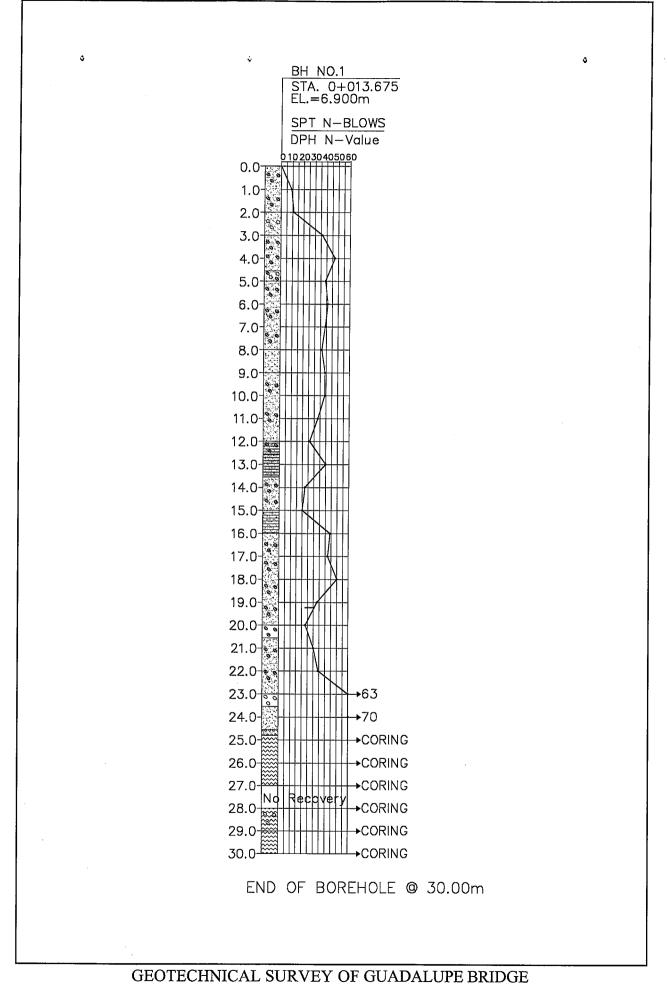
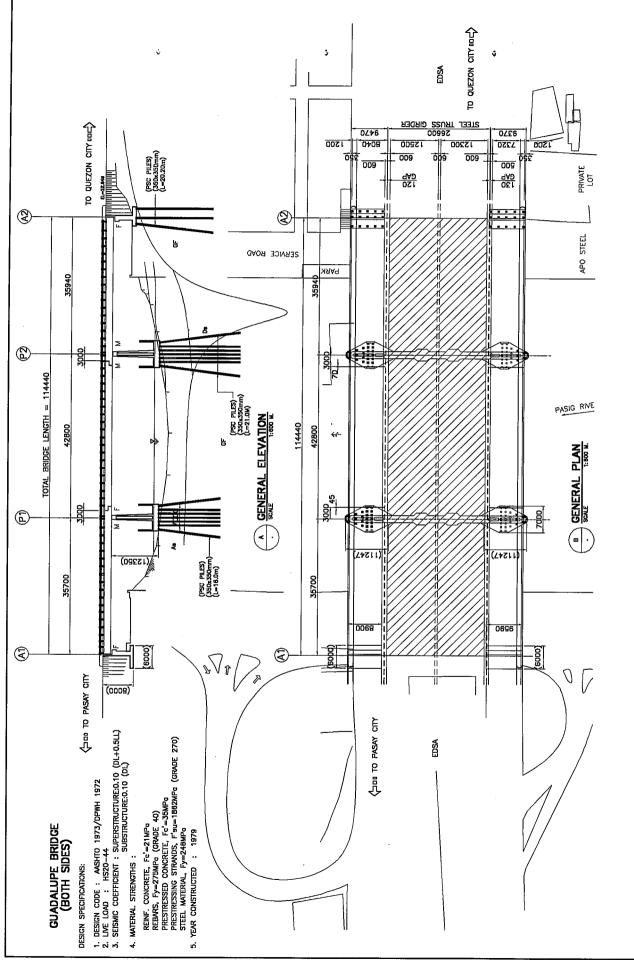

CHAPTER 23

FEASIBILITY STUDY OF GUADALUPE BRIDGE REHABILITATION PLAN


1.1

TOPOGRAPHIC SURVEY OF GUADALUPE BRIDGE


Appendix 23.1.2-2 (1/2)

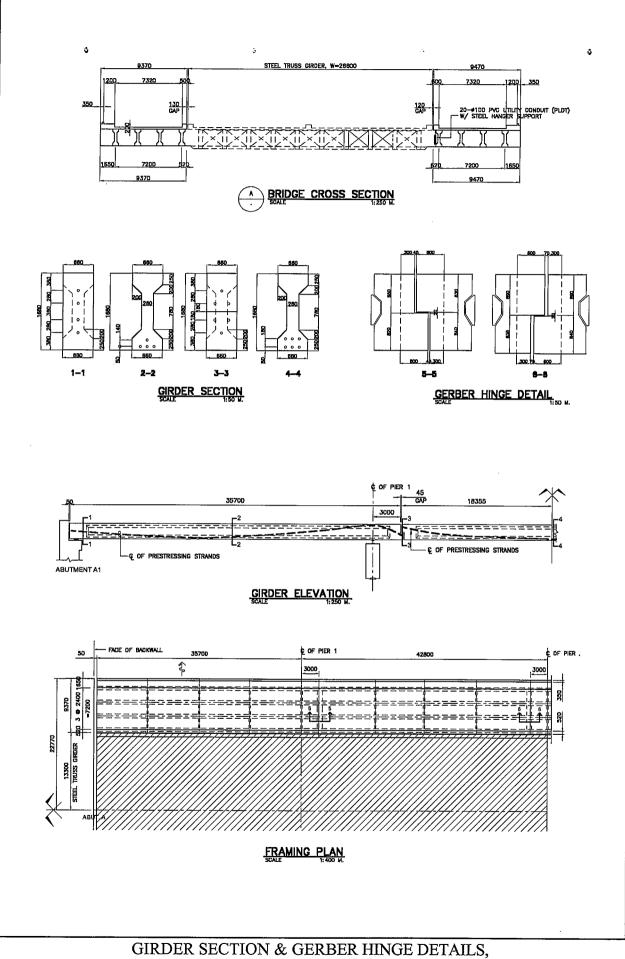

1.1

ŝ

1.1

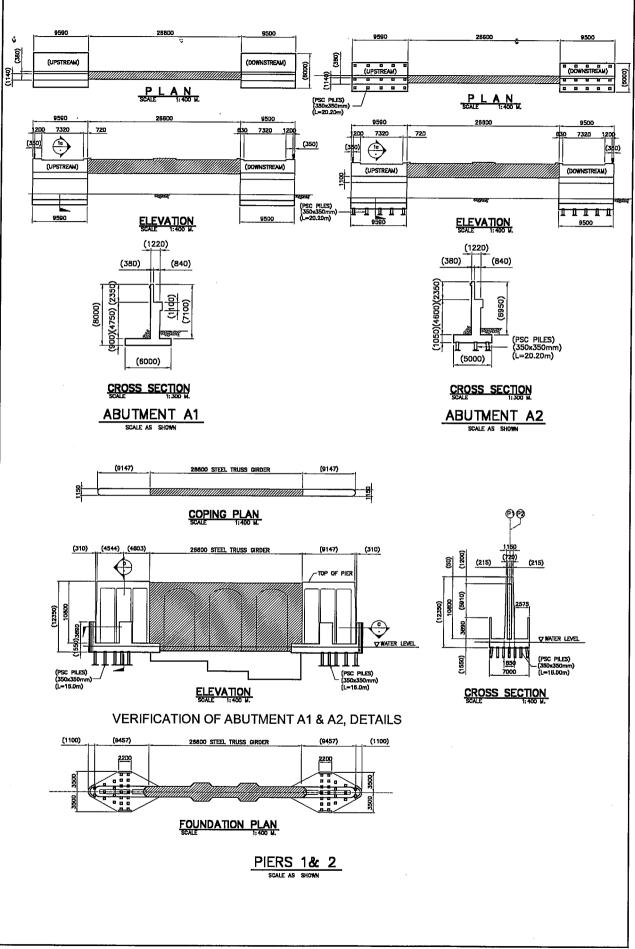
GENERAL PLAN AND ELEVATION OF GUADALUPE BRIDGE

Appendix 23.1.3-1 (1/3)

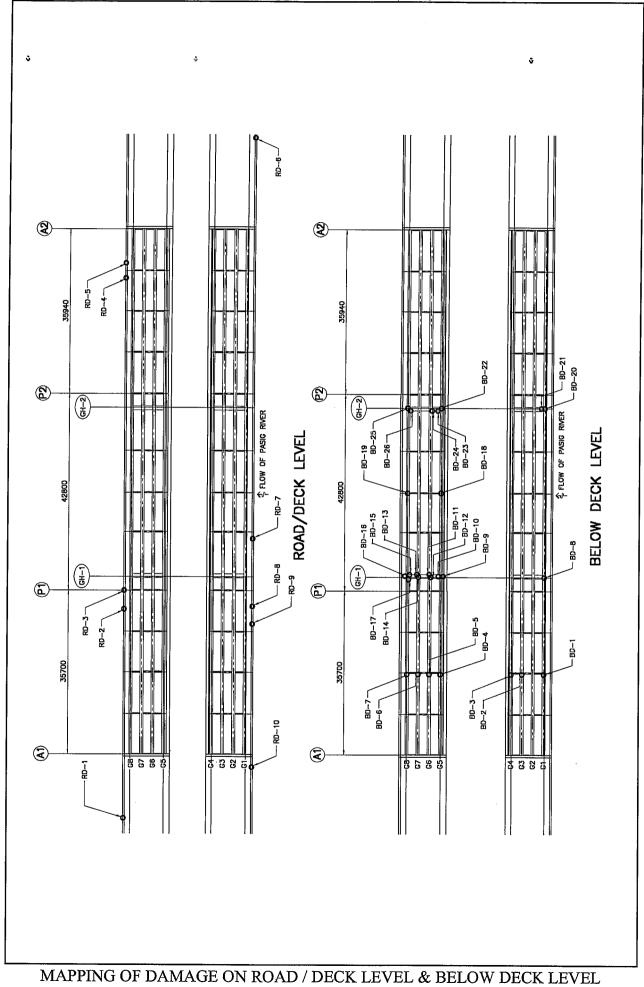

ů

(

(

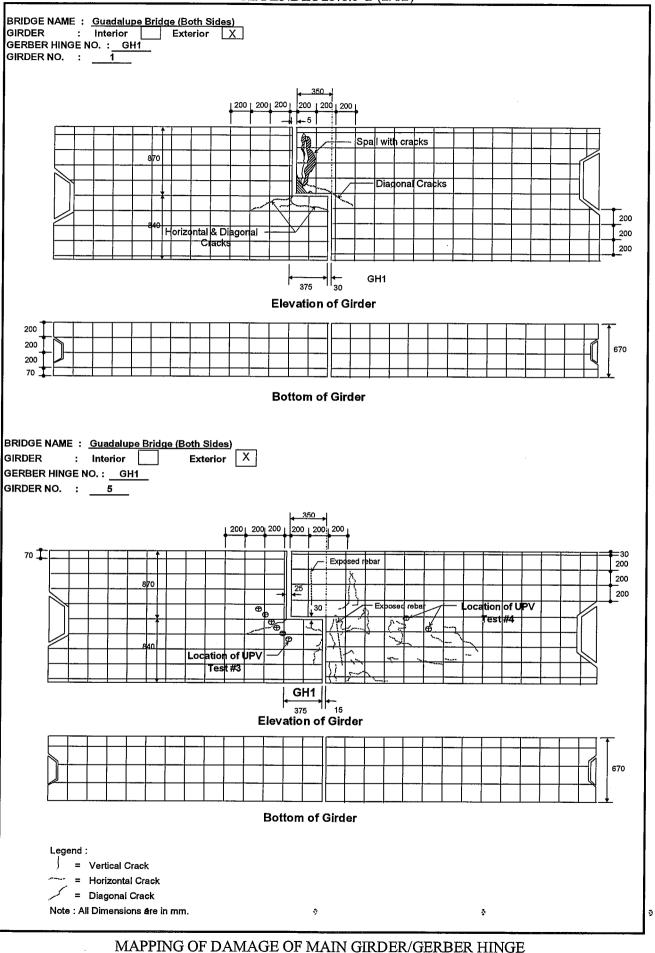

1. •

4.54



1.1

DETAILS OF ABUTMENT A1 & A2, DETAILS OF PIER 1 & 2


4.3

\$

A.23 - 7

APPENDIX 23.1.3-2 (2/12)

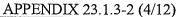

4.4

(

Ş

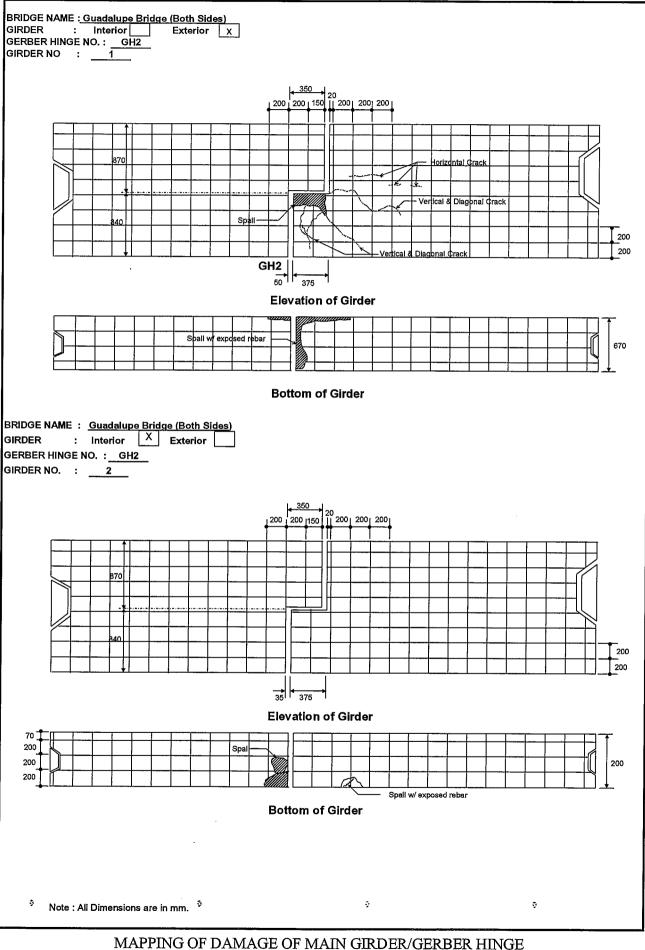
APPENDIX 23.1.3-2 (3/12)

(

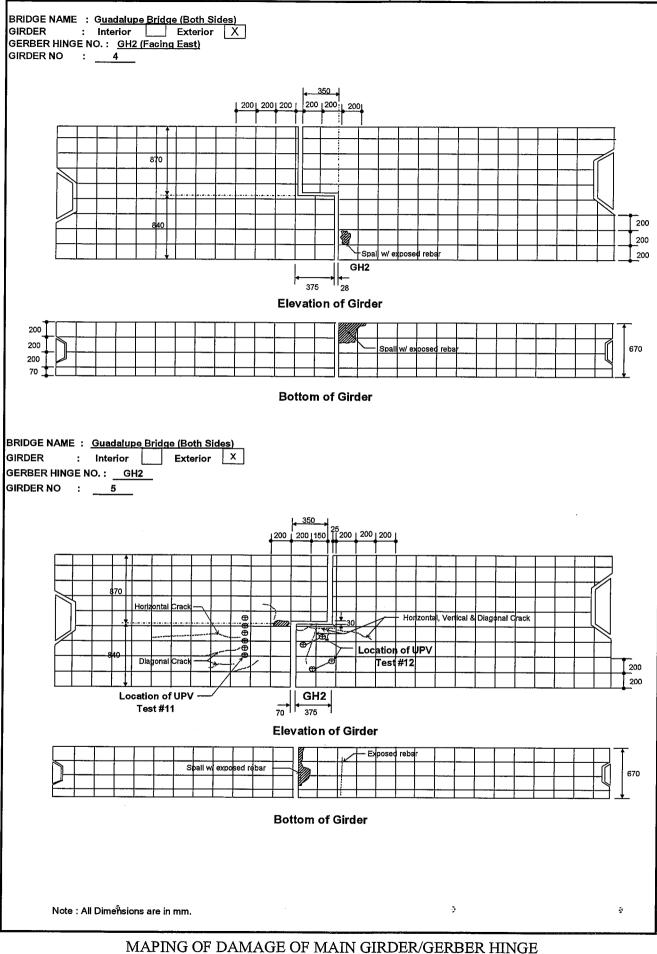

{

2

MAPPING OF DAMAGE OF MAIN GIRDER/GERBER HINGE

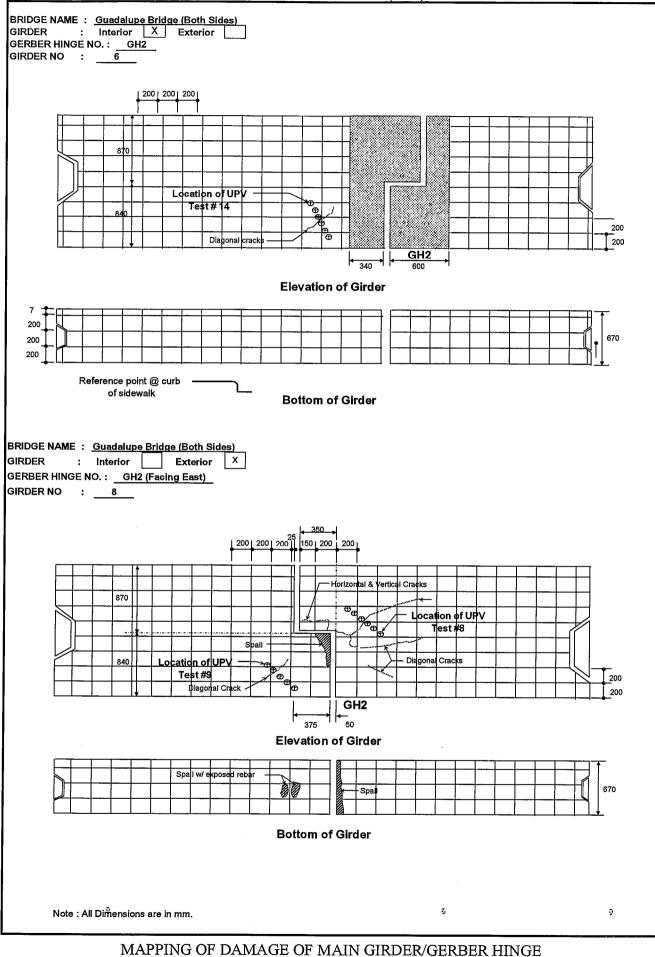

1

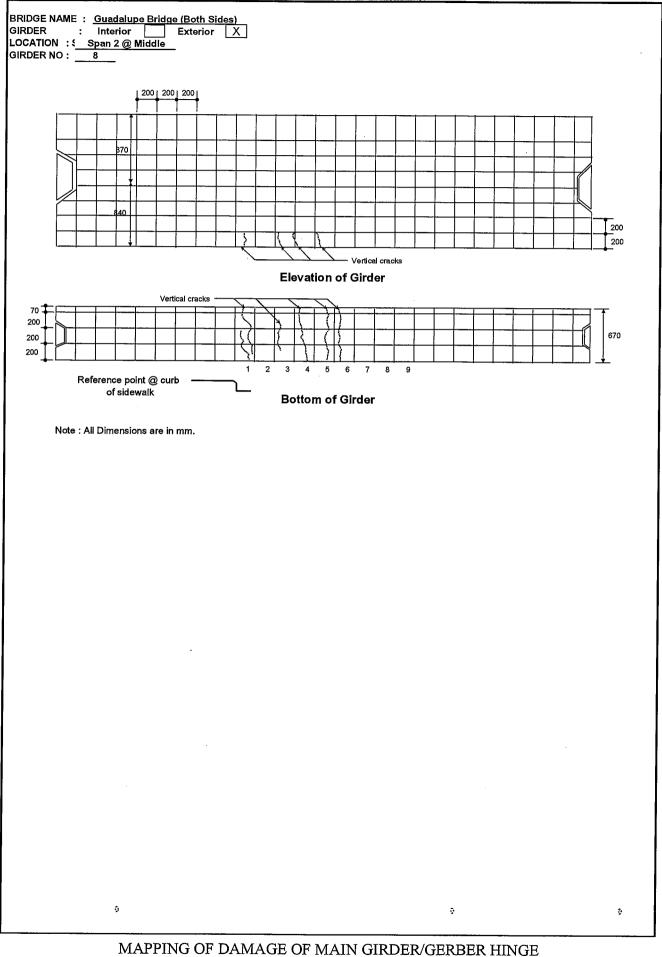
Ð

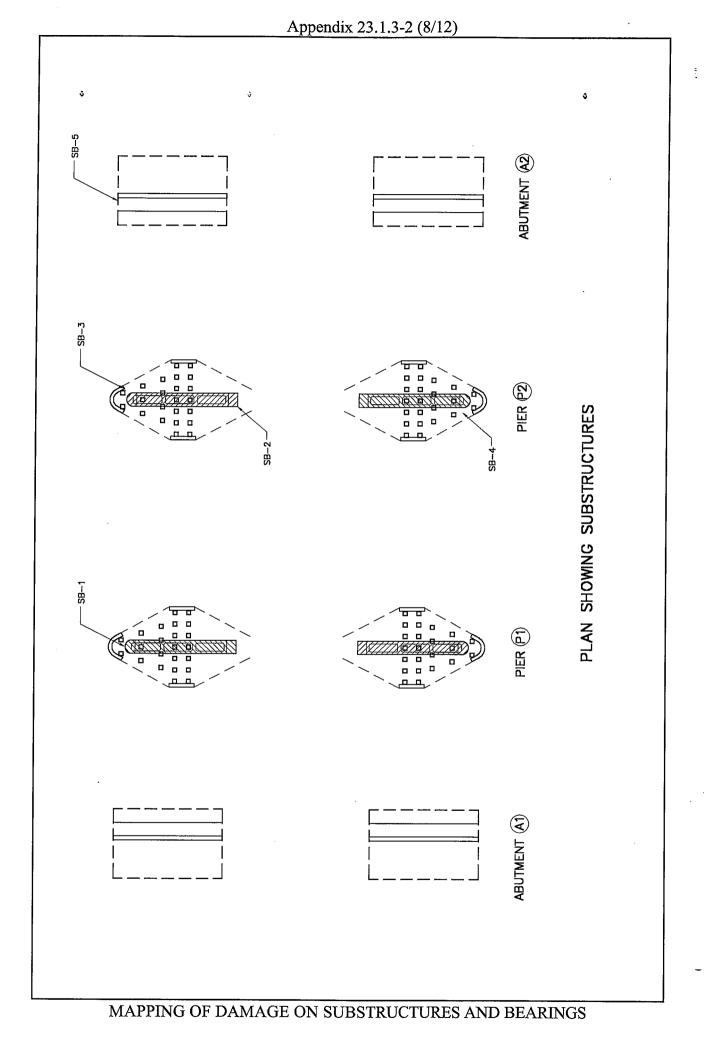

1

ð

APPENDIX 23.1.3-2 (5/12)


ì


APPENDIX 23.1.3-2 (6/12)


1

APPENDIX 23.1.3-2 (7/12)

Ę

Appendix 23.1.3-2 (9/12)

Ē

		TYPE	CRACKS
			X HIGH
•		EVALUATION	Y MEDIUM
	DAMAGE		Z HIGH
		RATING	111
		DAMAGE CONDITION	w = 0.10 mm., spacing • 50 cm
	GIRDER	VIEW	PHOTO FILENAME
2008 01 02 00:56	G-5 / SPAN 1/MID	UPSTREAM	DCP-7975.JPG
		TYPE	CRACKS
		EVALUATION	X HIGH Y HIGH
		DATING	Z HIGH
	DAMAGE	RATING	II wide cracks range form
		DAMAGE CONDITION	0.50 mm depth cracks small spall w/ d=78mm,(UPV(19),expo sed rebar A=0.10x0.60=0.06sq.m.
	GIRDER	VIEW	PHOTO FILENAME
	GHIL, G-1	DOWNSTREAM	DCP-7938.JPG
		TYPE	CRACKS
		EVALUATION	X HIGH Y HIGH
<u>7. 16 (96</u>	DAMAGE	RATING	Z HIGH
		DAMAGE CONDITION	wide 1.0 mm cracks, depth of cracks shallow spall w/ d=210mm (UPV 20) exposed rebars
	GIRDER	VIEW	PHOTO FILENAME
		DOWNSTREAM	DOD 7020 IDO
	GHIR, G-1	DOWNSTREAM	DCP-7939.JPG
			CRACK
		TYPE	CRACK X HIGH
	DAMAGE		CRACK X HIGH Y HIGH
	<u>المحمد من المحمد الم</u>	TYPE	CRACK X HIGH Y HIGH Z HIGH
	<u>المحمد من المحمد الم</u>	TYPE EVALUATION	CRACK X HIGH Y HIGH
	<u>المحمد من المحمد الم</u>	TYPE EVALUATION RATING	CRACK X HIGH Y HIGH Z HIGH II
	<u>المحمد من المحمد الم</u>	TYPE EVALUATION RATING DAMAGE	CRACK X HIGH Y HIGH Z HIGH II 3 wide cracks ranging
	DAMAGE	TYPE EVALUATION RATING DAMAGE CONDITION	CRACK X HIGH Y HIGH Z HIGH II 3 wide cracks ranging form 1.5mm to 5mm
	DAMAGE GIRDER	TYPE EVALUATION RATING DAMAGE CONDITION VIEW	CRACK X HIGH Y HIGH Z HIGH II 3 wide cracks ranging form 1.5mm to 5mm PHOTO FILENAME
	DAMAGE GIRDER	TYPE EVALUATION RATING DAMAGE CONDITION VIEW DOWNSTREAM	CRACK X HIGH Y HIGH Z HIGH II 3 wide cracks ranging form 1.5mm to 5mm PHOTO FILENAME DCP-7807.JPG CRACKS X HIGH
	DAMAGE GIRDER	TYPE EVALUATION RATING DAMAGE CONDITION VIEW DOWNSTREAM	CRACK X HIGH Y HIGH Z HIGH II 3 wide cracks ranging form 1.5mm to 5mm PHOTO FILENAME DCP-7807.JPG CRACKS X HIGH Y HIGH
	DAMAGE GIRDER	TYPE EVALUATION RATING DAMAGE CONDITION VIEW DOWNSTREAM TYPE EVALUATION	CRACK X HIGH Y HIGH Z HIGH II 3 wide cracks ranging form 1.5mm to 5mm PHOTO FILENAME DCP-7807.JPG CRACKS X HIGH Y HIGH Z HIGH
	DAMAGE GIRDER DHIL, G-5	TYPE EVALUATION RATING DAMAGE CONDITION VIEW DOWNSTREAM TYPE EVALUATION RATING DAMAGE	CRACK X HIGH Z HIGH II 3 wide cracks ranging form 1.5mm to 5mm PHOTO FILENAME DCP-7807.JPG CRACKS X HIGH Y HIGH Z HIGH II
	DAMAGE GIRDER DHIL, G-5 DAMAGE	TYPE EVALUATION RATING DAMAGE CONDITION VIEW DOWNSTREAM TYPE EVALUATION RATING DAMAGE CONDITION	CRACK X HIGH Y HIGH Z HIGH II 3 wide cracks ranging form 1.5mm to 5mm PHOTO FILENAME DCP-7807.JPG CRACKS X HIGH Y HIGH Z HIGH II WIDTH = 0.50mm
	DAMAGE GIRDER DHIL, G-5 DAMAGE GIRDER	TYPE EVALUATION RATING DAMAGE CONDITION VIEW DOWNSTREAM TYPE EVALUATION RATING DAMAGE CONDITION VIEW	CRACK X HIGH Y HIGH Z HIGH II 3 wide cracks ranging form 1.5mm to 5mm PHOTO FILENAME DCP-7807.JPG CRACKS X HIGH Y HIGH Z HIGH II WIDTH = 0.50mm PHOTO FILENAME
	DAMAGE GIRDER DHIL, G-5 DAMAGE	TYPE EVALUATION RATING DAMAGE CONDITION VIEW DOWNSTREAM TYPE EVALUATION RATING DAMAGE CONDITION VIEW DOWNSTREAM	CRACK X HIGH Y HIGH Z HIGH II 3 wide cracks ranging form 1.5mm to 5mm PHOTO FILENAME DCP-7807.JPG CRACKS X HIGH Y HIGH Z HIGH II WIDTH = 0.50mm
	DAMAGE GIRDER DHIL, G-5 DAMAGE GIRDER	TYPE EVALUATION RATING DAMAGE CONDITION VIEW DOWNSTREAM TYPE EVALUATION RATING DAMAGE CONDITION VIEW	CRACK X HIGH Y HIGH Z HIGH II 3 wide cracks ranging form 1.5mm to 5mm PHOTO FILENAME DCP-7807.JPG CRACKS X HIGH Y HIGH II WIDTH = 0.50mm PHOTO FILENAME DCP-7808.JPG CRACKS
	DAMAGE GIRDER DHIL, G-5 DAMAGE GIRDER	TYPE EVALUATION RATING DAMAGE CONDITION VIEW DOWNSTREAM EVALUATION RATING DAMAGE CONDITION VIEW DOWNSTREAM	CRACK X HIGH Y HIGH Z HIGH II 3 wide cracks ranging form 1.5mm to 5mm PHOTO FILENAME DCP-7807.JPG CRACKS X HIGH Y HIGH Z HIGH II WIDTH = 0.50mm PHOTO FILENAME DCP-7808.JPG
	DAMAGE GIRDER DHIL, G-5 DAMAGE GIRDER	TYPE EVALUATION RATING DAMAGE CONDITION VIEW DOWNSTREAM TYPE EVALUATION RATING DAMAGE CONDITION VIEW DOWNSTREAM	CRACK X HIGH Y HIGH Z HIGH II 3 wide cracks ranging form 1.5mm to 5mm PHOTO FILENAME DCP-7807.JPG CRACKS X HIGH Y HIGH II WIDTH = 0.50mm PHOTO FILENAME DCP-7808.JPG CRACKS
	DAMAGE GIRDER DHIL, G-5 DAMAGE GIRDER	TYPE EVALUATION RATING DAMAGE CONDITION VIEW DOWNSTREAM EVALUATION RATING DAMAGE CONDITION VIEW DOWNSTREAM TYPE EVALUATION	CRACK X HIGH Y HIGH Z HIGH II 3 wide cracks ranging form 1.5mm to 5mm PHOTO FILENAME DCP-7807.JPG CRACKS X HIGH II WIDTH = 0.50mm PHOTO FILENAME DCP-7808.JPG CRACKS X HIGH
	DAMAGE GIRDER DHIL, G-5 DAMAGE GIRDER GHIL, G-5	TYPE EVALUATION RATING DAMAGE CONDITION VIEW DOWNSTREAM EVALUATION RATING DAMAGE CONDITION VIEW DOWNSTREAM	CRACK X HIGH Y HIGH Z HIGH II 3 wide cracks ranging form 1.5mm to 5mm PHOTO FILENAME DCP-7807.JPG CRACKS X HIGH II WIDTH = 0.50mm PHOTO FILENAME DCP-7808.JPG CRACKS X HIGH Y HIGH Y HIGH
	DAMAGE GIRDER DHIL, G-5 DAMAGE GIRDER GHIL, G-5	TYPE EVALUATION RATING DAMAGE CONDITION VIEW DOWNSTREAM EVALUATION RATING DAMAGE CONDITION VIEW DOWNSTREAM TYPE EVALUATION	CRACK X HIGH Y HIGH Z HIGH II 3 wide cracks ranging form 1.5mm to 5mm PHOTO FILENAME DCP-7807.JPG CRACKS X HIGH Y HIGH Z HIGH II WIDTH = 0.50mm PHOTO FILENAME DCP-7808.JPG CRACKS X HIGH Y HIGH Z HIGH Y HIGH Z HIGH
	DAMAGE GIRDER DHIL, G-5 DAMAGE GIRDER GHIL, G-5	TYPE EVALUATION RATING DAMAGE CONDITION VIEW DOWNSTREAM EVALUATION RATING DAMAGE CONDITION VIEW DOWNSTREAM TYPE EVALUATION RATING CATING DAMAGE	CRACK X HIGH Y HIGH Z HIGH II 3 wide cracks ranging form 1.5mm to 5mm PHOTO FILENAME DCP-7807.JPG CRACKS X HIGH Y HIGH Z HIGH II WIDTH = 0.50mm PHOTO FILENAME DCP-7808.JPG CRACKS X HIGH Y HIGH Z HIGH II WIDTH = 0.20 mm.

(

Ð

Appendix 23.1.3-2 (10/12)

i,

		TYPE	CRACKS
			X HIGH
		EVALUATION	Y HIGH
	DAMAGE		Z LOW
		RATING	
		DAMAGE CONDITION	Width = 0.20 mm., One (1) Crack
	GIRDER	VIEW	PHOTO FILENAME
	0111.0.7		000 7074 100
and the Constant of the Consta	GH 1, G-7	UPSTREAM	DCP-7871.JPG
		TYPE	CRACKS
			X HIGH
		EVALUATION	Y HIGH
	DAMAGE	RATING	Z - 11
			Two (2) Cracks,
		DAMAGE CONDITION	Width=2.00mm.,
		CONDITION	Spacing < 0.50cm.
	GIRDER	VIEW	PHOTO FILENAME
	GHIL, G-1	DOWNSTREAM	DCP-7938.JPG
	L		1
		TYPE	CRACKS
			X HIGH
		EVALUATION	Y HIGH
	DAMAGE	DATING	Z HIGH
		RATING	
		DAMAGE	One (1) Crack, Width = 1.50mm., Spacing <
		CONDITION	50cm
	GIRDER	VIEW	PHOTO FILENAME
2 <u>2</u> 1 1 1			
2	GHIL, G-8	UPSTREAM	DCP-7804.JPG
		···· I .	L
	······	D D/DE	SPALLING/EXPOSED
		TYPE	REBAR
			х -
	50005	EVALUATION	Y HIGH
	DAMAGE	RATING	Z HIGH
			Spalling with Exposed
		DAMAGE CONDITION	Rebar @ bottom girder, A=0.10x1.75=0.175sq.m
		CONDITION	
	GIRDER (BOTTOM)	VIEW	PHOTO FILENAME
	· · · · ·		
	G-5/SPAN 2/MID	DOWNSTREAM	DCP-7768.JPG
		1	
		TYPE	
		TYPE	
			X
	DAMAGE	TYPE	
	DAMAGE	TYPE	X
	DAMAGE	TYPE	X
	•	EVALUATION RATING	X
	DAMAGE GIRDER	TYPE	X
	•	EVALUATION RATING	X Y Z PHOTO FILENAME
	GIRDER	EVALUATION RATING VIEW	X Y Z
	GIRDER	EVALUATION RATING VIEW	X Y Z PHOTO FILENAME
	GIRDER	TYPE EVALUATION RATING VIEW NORTH	X Y Z PHOTO FILENAME DCP-7759.JPG
	GIRDER	TYPE EVALUATION RATING VIEW NORTH	X Y Z PHOTO FILENAME DCP-7759.JPG CRACKS
	GIRDER G-5/SPAN 2/MID	TYPE EVALUATION RATING VIEW NORTH	X Y Z PHOTO FILENAME DCP-7759.JPG CRACKS X HIGH
	GIRDER	TYPE EVALUATION RATING VIEW NORTH	X Y Z Z PHOTO FILENAME DCP-7769,JPG CRACKS X HIGH Y MEDIUM
	GIRDER G-5/SPAN 2/MID	TYPE EVALUATION RATING VIEW NORTH TYPE EVALUATION RATING	X Y Z Z PHOTO FILENAME DCP-7769.JPG CRACKS X HIGH Y MEDIUM Z HIGH NI
	GIRDER G-5/SPAN 2/MID	TYPE EVALUATION RATING VIEW NORTH TYPE EVALUATION	X Y Z Z PHOTO FILENAME DCP-7769.JPG CRACKS X HIGH Y MEDIUM Z HIGH
	GIRDER G-5/SPAN 2/MID	TYPE EVALUATION RATING VIEW NORTH TYPE EVALUATION RATING DAMAGE	X
	GIRDER G-5/SPAN 2/MID	TYPE EVALUATION RATING VIEW NORTH TYPE EVALUATION RATING DAMAGE	X Y Z Z PHOTO FILENAME DCP-7769,JPG CRACKS X HIGH Y MEDIUM Z HIGH NI WIDTH = 0.10 mm.,
	GIRDER G-5/SPAN 2/MID DAMAGE	TYPE EVALUATION RATING VIEW NORTH TYPE EVALUATION RATING DAMAGE CONDITION	X

(

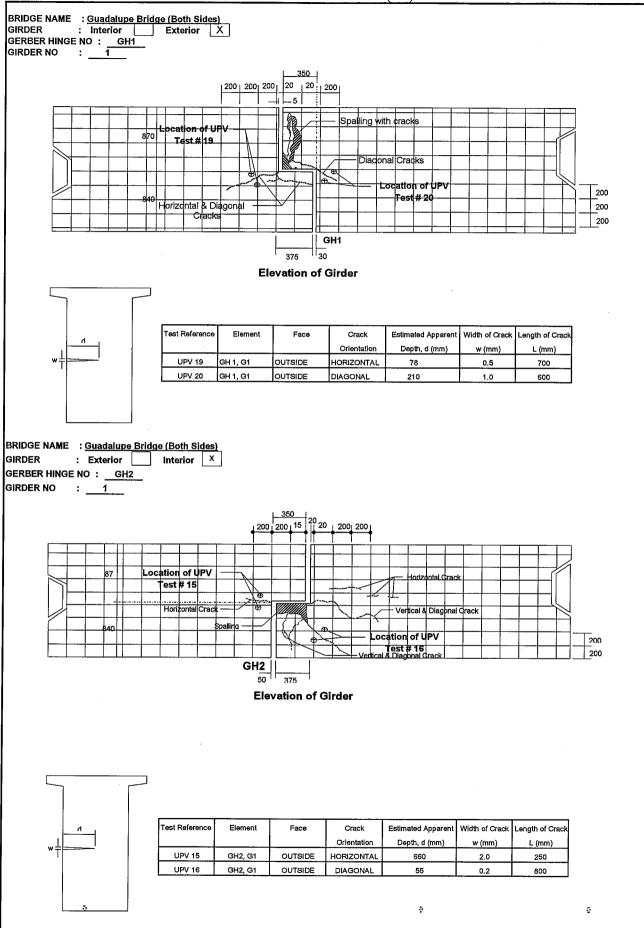
Appendix 23.1.3-2 (11/12)

-

			TYPE EVALUATION	CRACKS X HIGH Y MEDIUM
	norghan san galanting for the second s	DAMAGE	RATING	Z HIGH
			DAMAGE CONDITION	Width = 0.10 mm.,
		GIRDER (BOTTOM FLYOVER)	VIEW	Spacing < 50cm PHOTO FILENAME
	wate of the latent of the	G-8/SPAN 2/MID	UPSTREAM	DCP-7900.JPG
		·····		
			TYPE	CRACKS X HIGH
			EVALUATION	Y MEDIUM Z HIGH
		DAMAGE	RATING	II Many Cracks with
			DAMAGE CONDITION	thickness range from 0.10 mm. to 0.20 mm. depth of crack d=55m (UPV 15)
		GIRDER	VIEW	PHOTO FILENAME
		GH2R, G-1	UPSTREAM	DCP-7861.JPG
			TYPE	<u>، </u>
Let a set a se				X HIGH
No. of the local division of the local divis		DAMAGE	EVALUATION	Y HIGH Z LOW
/ ***			RATING	
			DAMAGE CONDITION	One (1) crack w = 2.0 mm. (UPV 16)
		GIRDER	VIEW	PHOTO FILENAME
		GH 2L, G-1	WEST	DCP-0784.JPG
			TYPE	SPALLING/EXPOSED
				REBAR
		DAMAGE	EVALUATION	Y HIGH
		DAMAGE	RATING	
			DAMAGE CONDITION	Spalling at soffit of Diaphragm with exposed rebar A = 0.60x0.30=0.18sq.m.
		GIRDER (BOTTOM)	VIEW	PHOTO FILENAME
		GH2R, G-1	UPSTREAM	DCP-7823.JPG
		· · · · ·	TYPE	CRACKS
			EVALUATION	X HIGH Y HIGH
		DAMAGE	RATING	Z HIGH
			DAMAGE	Width = 1.00 mm., Spacing < 50 cm depth of crack d = 1065 mm (UPV 11)
		GIRDER	VIEW	PHOTO FILENAME
		GH2L, G-5	DOWNSTREAM	DCP-7834.JPG
			TYPE	CRACKS
			EVALUATION	Х НІСН
		DANAGE	LVALOANON	Y HIGH Z HIGH
		DAMAGE	RATING	III Width range from 2mm
			DAMAGE CONDITION	to 5mm, Spacing < 50cm depth of crack d = 1572mm (UPV 12)
		GIRDER	VIEW	PHOTO FILENAME
	200 BD 22 ST	GH2R, G-5	DOWNSTREAM	DCP-7835.JPG
				_

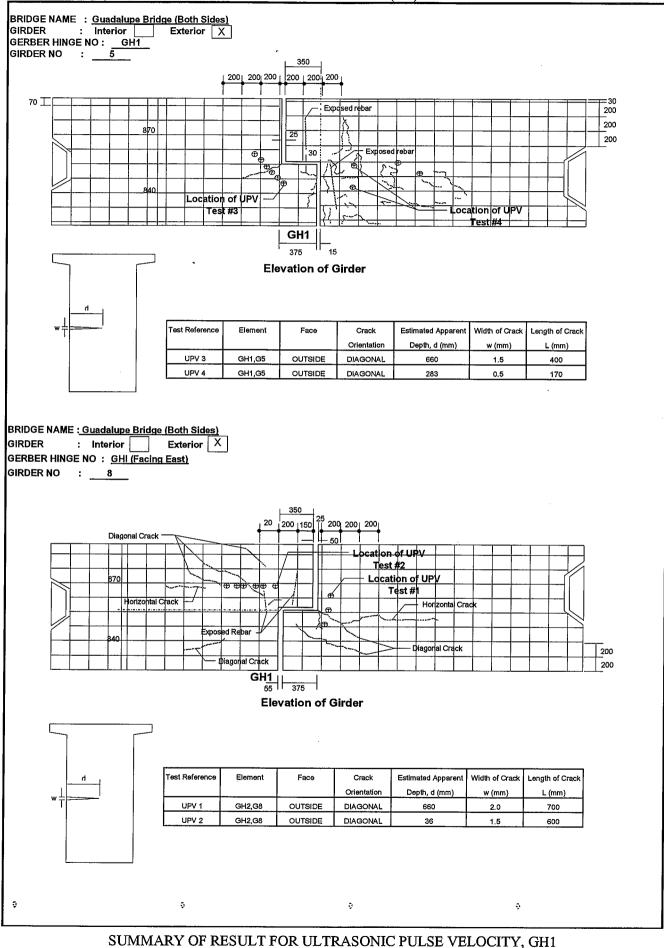
Ć

÷,


		EVALUATION	CRACKS X HIGH Y HIGH Z HIGH
	DAMAGE	RATING DAMAGE CONDITION	II Width = 2,00mm, Spacing < 50cm depth of crack d = full depth
	GIRDER	VIEW	(UPV 14) PHOTO FILENAME
	GH2L, G-6	UPSTREAM	DCP-7837.JPG
		TYPE	CRACKS
		EVALUATION	X HIGH
15	DAMAGE	RATING	Z HIGH
		DAMAGE CONDITION	Width = 3.00mm, Spacing < 50cm (3 cracks) depth of crack = 660mm (UPV 9)
	GIRDER	VIEW	PHOTO FILENAME
	GH2R, G-8	UPSTREAM	DCP-7832.JPG
		TYPE	CRACKS
		EVALUATION	X HIGH Y HIGH Z HIGH
	DAMAGE	RATING	Width range from 2mm
		DAMAGE CONDITION	Spacing < 50cm (2 cracks) d = 55mm (UP 8)
e /	GIRDER	VIEW	PHOTO FILENAME
	GH 2L, G-8	DOWNSTREAM	DCP-7831.JPG
		TYPE	CRACKS
		EVALUATION	X HIGH Y HIGH
	DAMAGE	RATING	Z LOW
		DAMAGE CONDITION	Width = 1.00mm, Spacing < 50cm depth of crack d =730mm (UPV 10)
	GIRDER	VIEW	PHOTO FILENAME
	GH 2L, G-8	DOWNSTREAM	DCP-7833.JPG
		TYPE	CORROSION
	1	EVALUATION	Y LOW Z LOW
	DAMAGE	RATING	
		DAMAGE CONDITION	Moderate rust at bearing
	BEARING	VIEW	PHOTO FILENAME
	G-5 / PIER 2	WEST	DCP-7828.JPG
		TYPE	SPALLING/EXPOSED REBAR
		EVALUATION	X - Y HIGH
	DAMAGE	RATING	Z LOW
		DAMAGE CONDITION	Spailing with Exposed Rebar at Pier Wall A = 0.30x0.30 = 0.09sq.m.
	PIER (WALL)	VIEW	PHOTO FILENAME
	PIER 2, U/S	NORTH	DCP-0581.JPG
ş	9		Ŷ

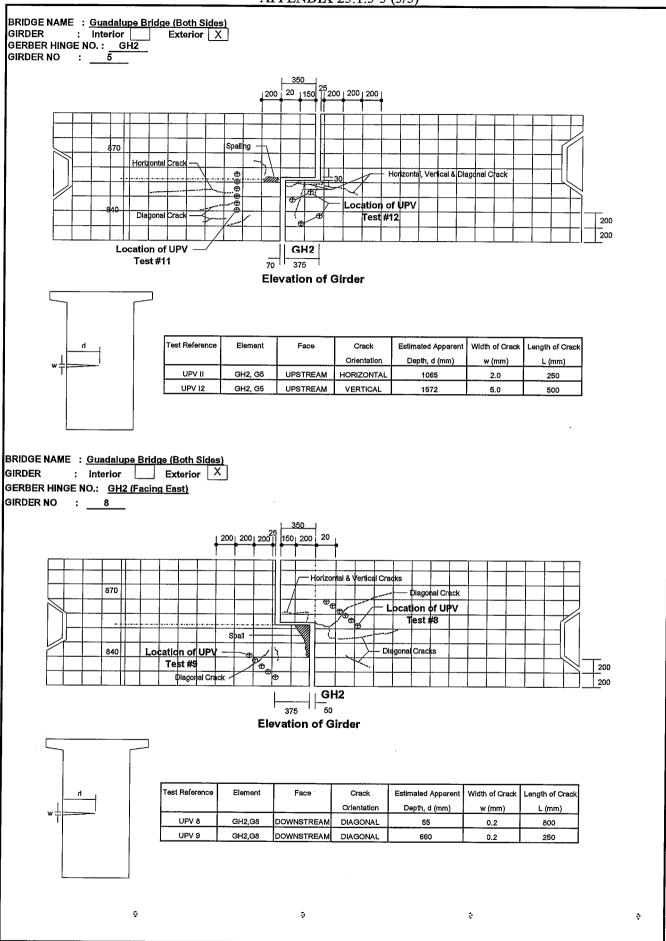
(⁻ ·

(

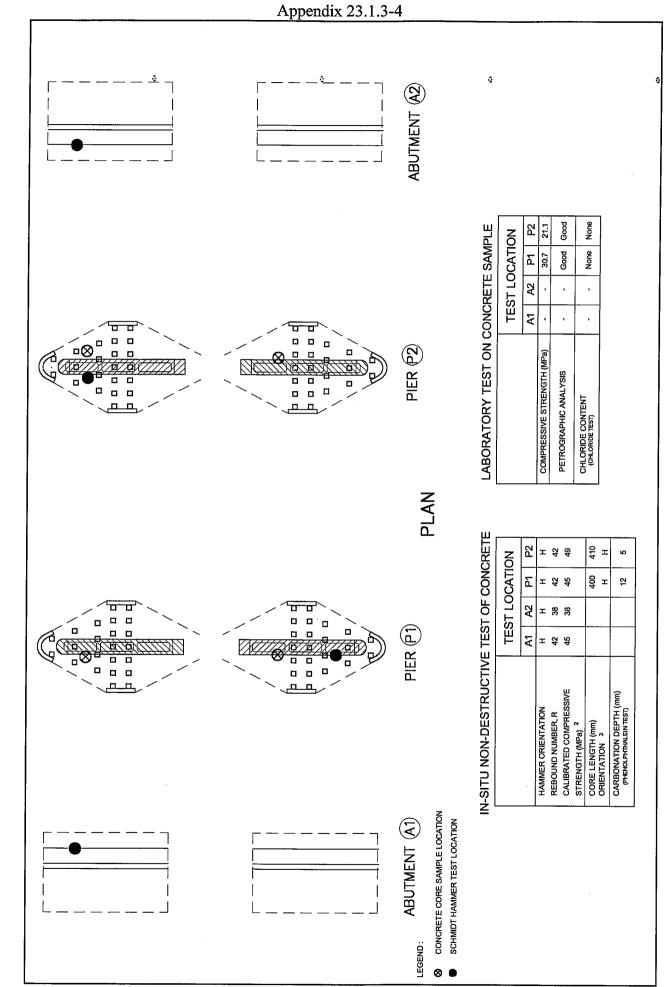

APPENDIX 23.1.3-3 (1/3)

÷

SUMMARY OF RESULT FOR ULTRASONIC PULSE VELOCITY, GH1 & GH2


APPENDIX 23.1.3-3 (2/3)

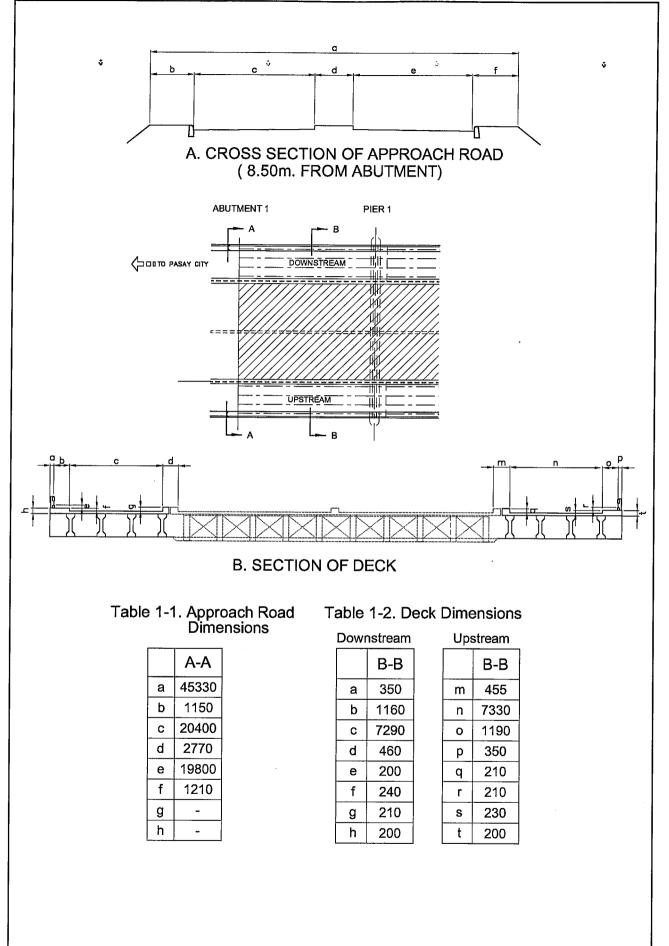
A.23 - 20

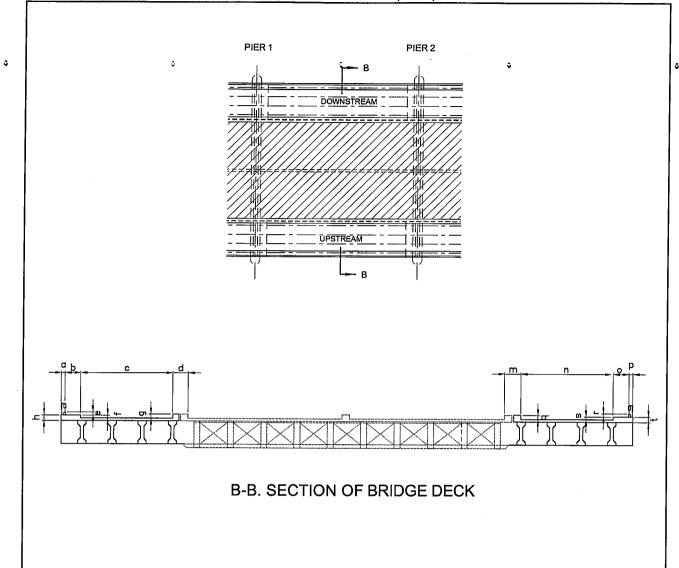

_ 9

APPENDIX 23.1.3-3 (3/3)

SUMMARY OF RESULT FOR ULTRASONIC PULSE VELOCITY, GH2

ŷ




ý

(

-

SUMMARY OF RESULTS FOR SUBSTUCTURES

Table 1-2. Deck Dimensions

Upstream

m

n o

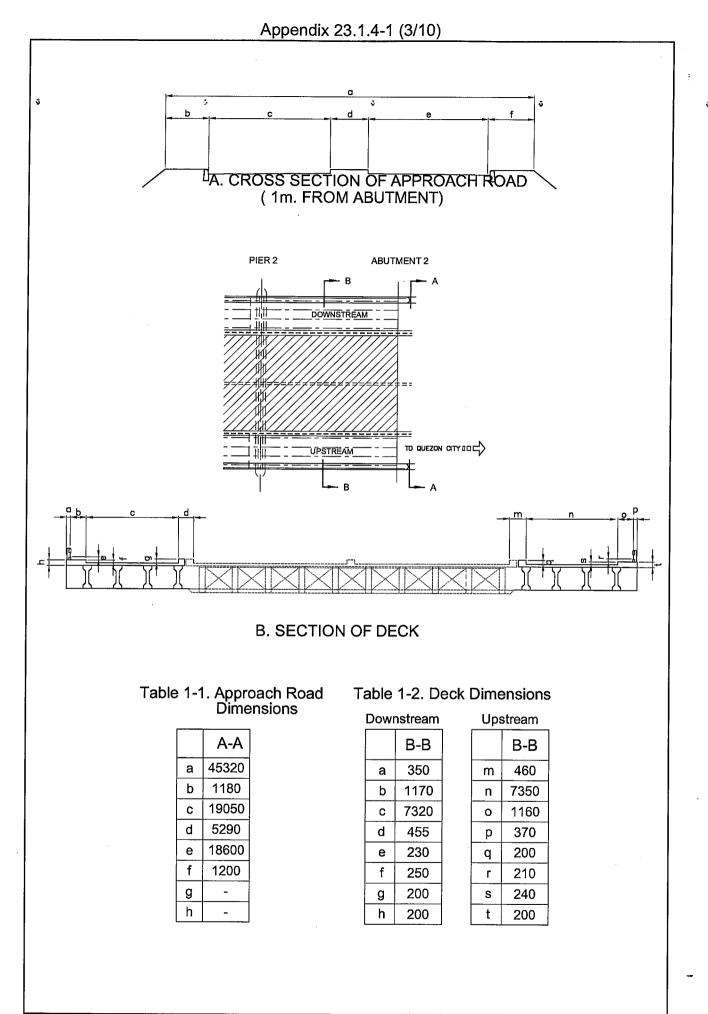
р

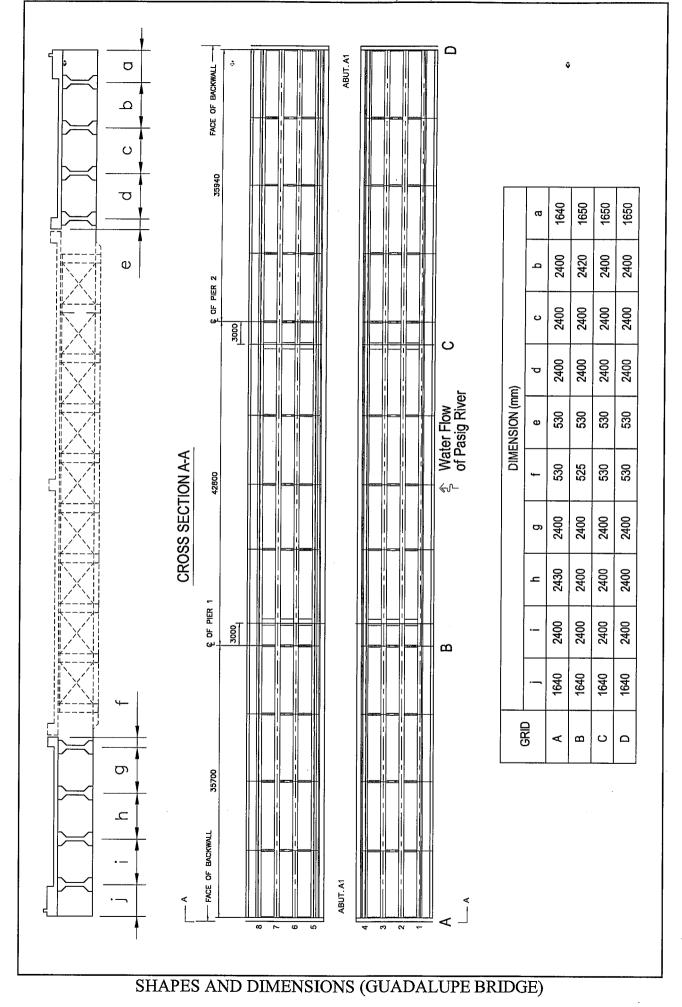
q r

> s t

B-B

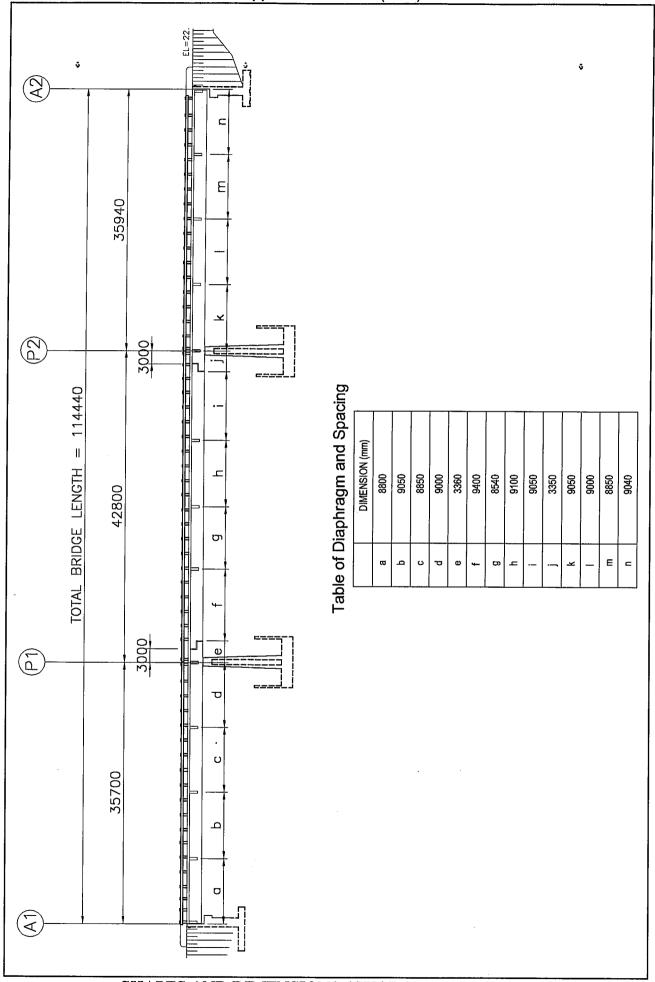
460 7350


1180 360

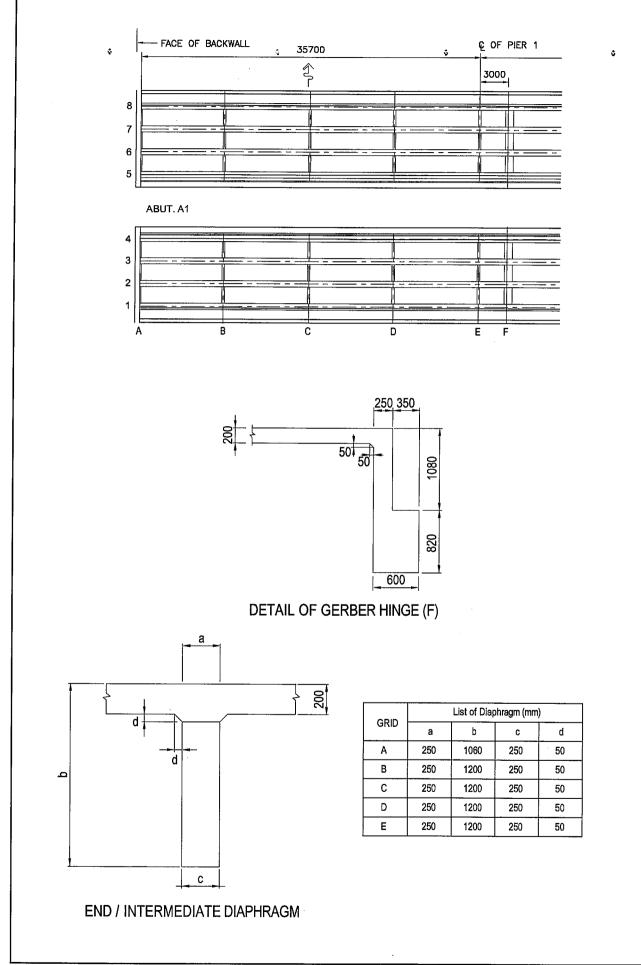

190

190 220

195

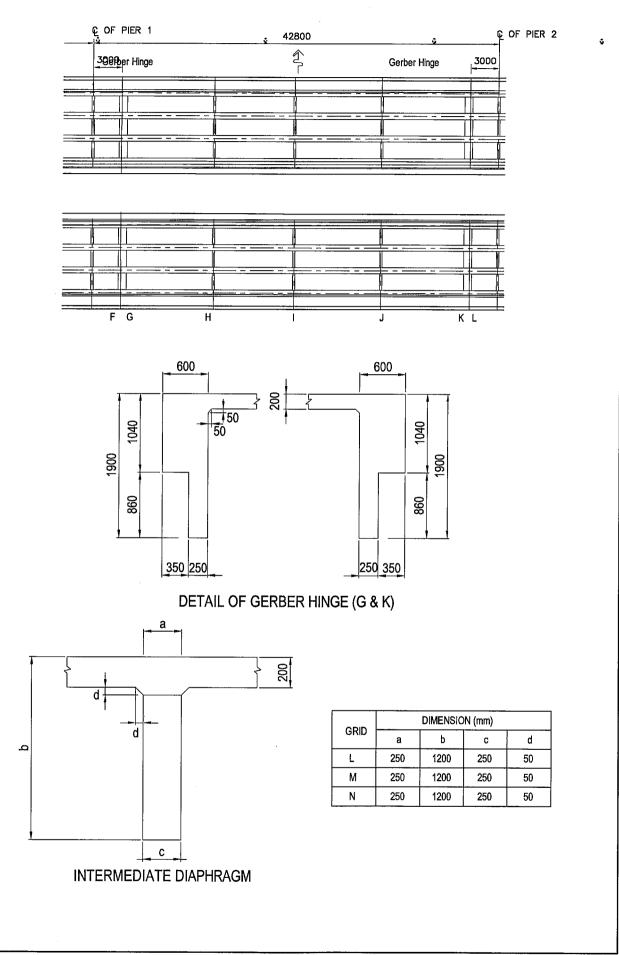

Downstream				
	B-B			
а	340			
b	1150			
С	7300			
d	450			
е	230			
f	220			
g	190			
h	205			

Appendix 23.1.4-1 (4/10)


A.23 - 26

(

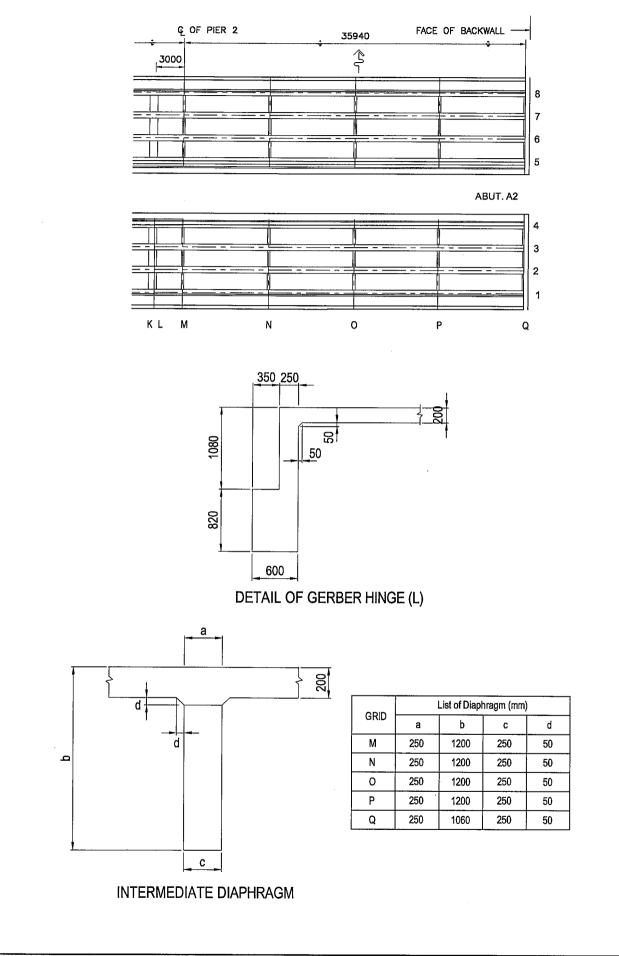
SHAPES AND DIMENSIONS (GUADALUPE BRIDGE)


2

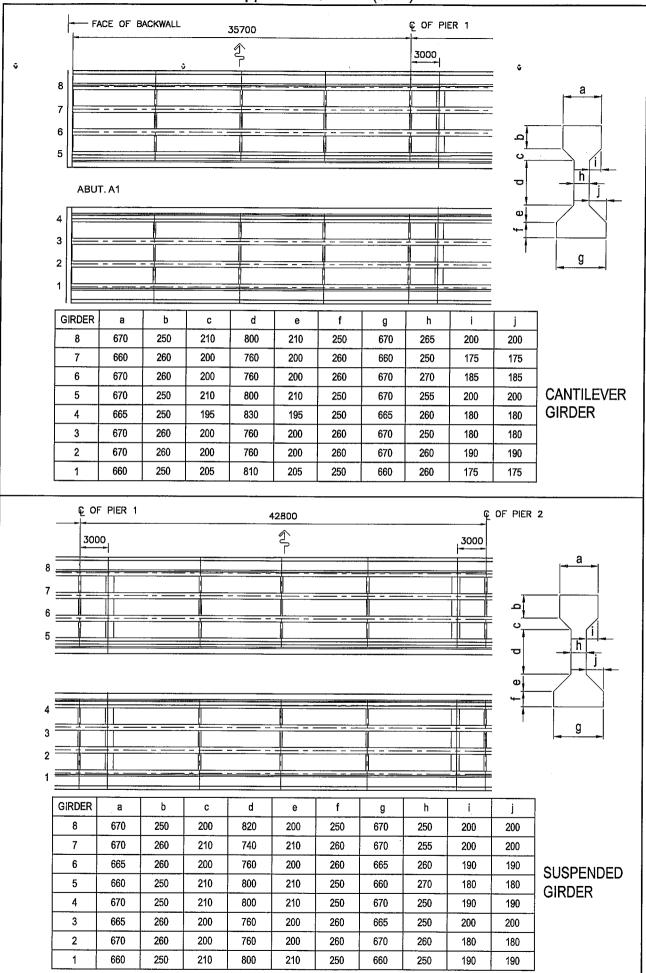
SHAPES AND DIMENSIONS (GUADALUPE BRIDGE)

\$

(

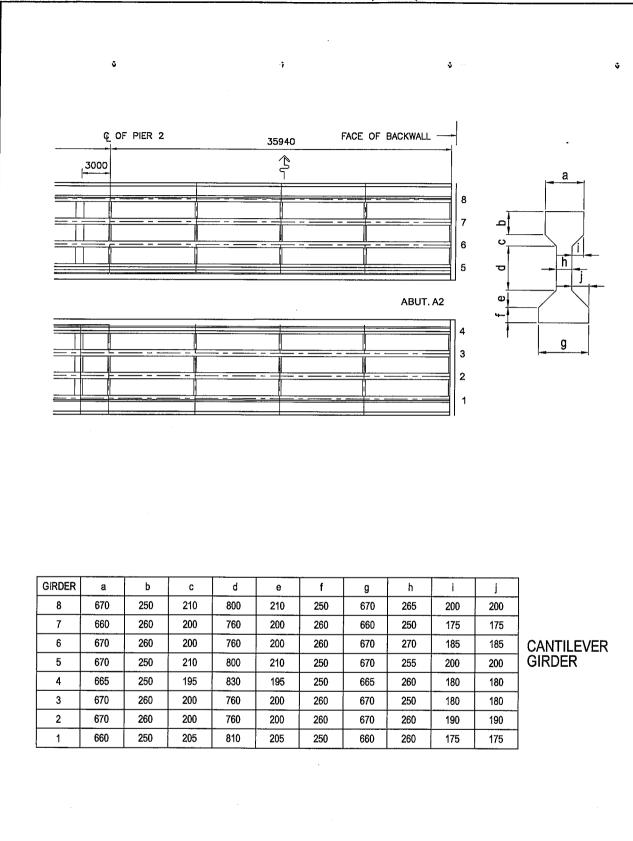


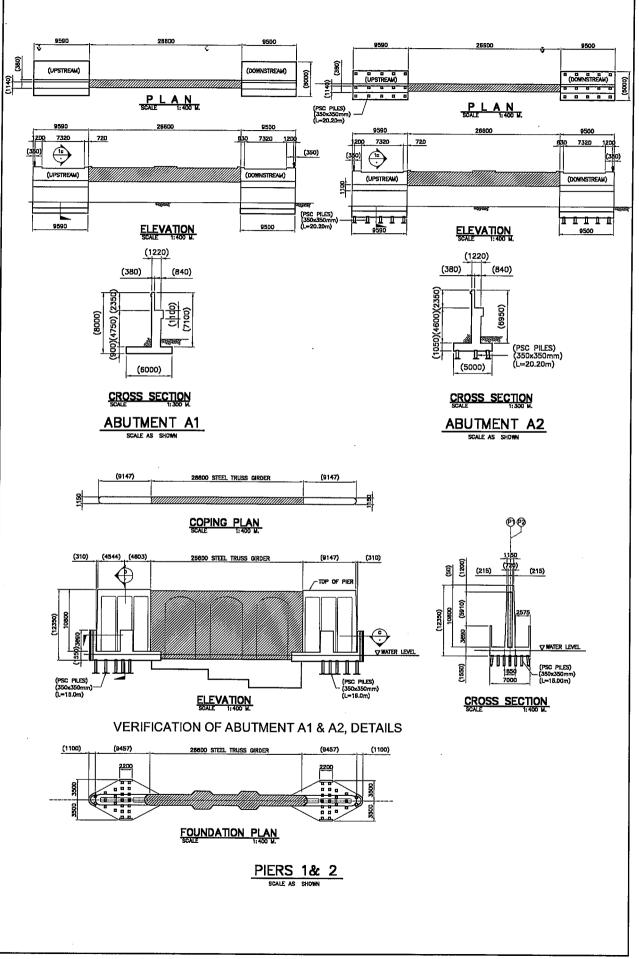
ŷ


(

Ē

ŵ




Appendix 23.1.4-1 (9/10)

Appendix 23.1.4-1 (10/10)

ů

SHAPES AND DIMENSIONS - SUBSTRUCTURE

Appendix 23.1.4-3 (1/11) CALCULATION OF LOAD RATING - INTERIOR AND EXTERIOR GIRDER

÷

<u>PROJECT TITLE</u>: PASIG-MARIKINA RIVER BRIDGE INSPECTION, GUADALUPE BRIDGE (BOTH SIDES) <u>ITEM</u>: ANALYTICAL ASSESMENT OF BRIDGE STRUCTURAL

RATING METHOD: ALLOWABLE STRESS AT INVENTORY LEVEL						
STRESSES SEC		N	SPAN P1 TO P2	SPAN A1 TO P1 / A2 TO P2	SPAN A1 TO P1 / A2 TO P2	
			MIDSPAN	MIDSPAN	SUPPORT	
TDL=PS+DL+SDL	TOP	Мра	-12.41	-7.52	-7.90	
	BOTTOM	mpa	-5.23	-6.64	-6.53	
LL (HS20)	TOP	Mpa	-2.87	-2.72	-1.11	
EE (11020)	BOTTOM	wpa	4.99	4.73	1.93	
Allowable Stress	Compression	Mpa	-21.00	-21.00	-21.00	
Allowable Olless	Tension	wpa	2.96	2.96	2.96	
RATING FACTOR	TOP		2.99	4.96	11.82	
(RF=(Cap-TDL)/LL	BOTTOM		1.64	2.03	4.92	
Equivalent LL(HS20)	RF*(HS20)	tons	52.44	64.89	157.38	

RATING METHOD: LOAD FACTOR						
FORCES	SECTIO	SECTION		SPAN A1 TO P1 / A2 TO P2	SPAN A1 TO P1 / A2 TO P2	
			MIDSPAN	MIDSPAN	SUPPORT	
Moment, DL		kN-m	5988.00	4408.00	2058.00	
Moment, L		kN-m	2218.95	2101.71	857.14	
Width of Flar		mm	2400.00	2400.00	2400.00	
Depth of Composite		mm	1679.91	1679.91	1225.00	
Comp. Strength o	f Conc., f _c '	Mpa	35.00	35.00	35.00	
Ultimate Stress of PS Strands., fs		Mpa	1862.00	1862.00	1862.00	
Area of PS Strands, As*		mm²	7106.40	4737.60	4737.60	
Steel Ratio	, ρ*		0.0018	0.0012	0.0016	
f _{su} *		Mpa	1774.70	1803.80	1782.19	
Neutral Axis, NA	Bottom	mm	1.07	1.07	1.07	
$R = \phi M_n = \phi A_s * f_{su} * d(1 - 0.6 \rho * f_{su} * / f_c)$		kN-m	20050.43	13834.33	9833.82	
RATING FACTOR: I	NVENTORY L	EVEL	2.55	1 70	0.04	
RF=(R-1.3(DL+S			2.00	1.78	3.61	
RATING FACTOR: C RF=(R-1.3(DL		EVEL	4.25	2.97	6.02	

Appendix 23.1.4-3 (2/11) CALCULATION OF LOAD RATING - INTERIOR AND EXTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE IV B MODIFIED BRIDGE USING ALLOWABLE STRESS

FOR SPAN P1 TO P2 - AT MIDSPAN TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of	Y Bottom of	Y Top of	
		Inertia (m ⁴)	Girder (m)	Girder (m)	
Basic Section				······	
PSCG Type IV	0.717	0.228	0.84	0.84	
Deck Slab	0.480	N/A	N/A	N/A	
Diaphragm	2.67	N/A	N/A	N/A	
Composite Section					
Suprimposed Loads	1.214	0.474	1.067	0.613	
Live Load MS-18	1.214	0.474	1.067	0.613	

TABLE B: MOMENT DEMAND FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE IV B MODIFIED (D=1.680M; L=36.76M)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	2902.00
Due to Weight of Girder + Slab +	5128.00
Diaphragm	
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	860.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact *Distribution factor	1849.13
With Impact	2218.95
Load Combination at Service Condition	
DL + (LL+I)	8206.95

Distribution Factor = S / 1.68 = 1.429

l = 100*(15.24 / L + 38) = 20 %

TABLE C: STRESSES AT MIDSPAN FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE IV MODIFIED (D=1.680M; L=36.76M)

Prestressing Force, Pf = 6618.62 kN(As-built: Pf = 1448 kips)Eccentricity:For Basic Section =0.690 mFor Composite Section :0.917 m (Superimposed Loads)For Composite Section :0.917 m (Live Loads)After Transfer: $f_c' = 35 \text{ MPa}$ Allowable Stress in Compression = $0.60 f_c' = -21.00 \text{ MPa}$

Allowable Stress in Tension = $0.5 \sqrt{f_c}$ = 2.96 MPa

LOAD DESCRIPTION	STRESSES (MPa)				
	Top Fiber Bottom Fib		ber		
Sresses due Dead Loads (Girder+Slab+Diaphragm Weight+Prestressing)	-11.30	С	-7.16	С	
Sresses due to Superimposed Loads	-1.11	С	1.94	Т	
Sresses due to all Live Load + Impact	-2.87	С	4.99	Т	

RF = Allowable Stress - (Stress due to Dead Loads + Stress due to Superimposed Loads

Stress due to Live Load + Impact

RF = 2.99 -At top fiber

RF = 1.64 -At bottom fiber

Appendix 23.1.4-3 (3/11) CALCULATION OF LOAD RATING - INTERIOR AND EXTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE IV B MODIFIED BRIDGE USING ALLOWABLE STRESS

FOR SPAN A1 TO P1 / A2 TO P2- AT MIDSPAN TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of Inertia (m ⁴)	Y Bottom of Girder (m)	Y Top of Girder (m)
Basic Section				
PSCG Type VI Modified	0.717	0.228	0.84	0.84
Deck Slab	0.480	N/A	N/A	N/A
Diaphragm	2.67	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.214	0.474	1.067	0.613
Live Load MS-18	1.214	0.474	1.067	0.613

TABLE B: MOMENT DEMAND FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE IV B MODIFIED (D=1.680M; L=38.409M)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	2136.00
Due to Weight of Girder + Slab +	9775 00
Diaphragm	3775.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	633.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact *Distribution factor	1751.43
With Impact	2101.71
Load Combination at Service Condition	
DL + (LL+I)	2734.71

Distribution Factor = S / 1.68 = 1.429

I = 100*(15.24 / L + 38) = 20 %

TABLE C: STRESSES AT MIDSPAN FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE IVB MODIFIED (D=1.680M; L=38.409M)

Prestressing Force, P = 529	13.12 kM	N (As-built: Pf = 1190 kips)
Eccentricity:		
For Basic Section =	0.748	m
For Composite Section -	0.975	m (Superimposed Loads)
For Composite Section :	0.975	m (Live Loads)
After Transfer:		
f _c ' = 35 MPa		
		0.00.51

Allowable Stress in Compression = $0.60 f_c' = -21.00 MPa$

Allowable Stress in Tension = $0.5 \sqrt{f_c'}$ = 2.96 MPa

LOAD DESCRIPTION	STRESSES (MPa)				
	Top Fibe	ər 🛛	Bottom Fi	ber	
Sresses due Dead Loads (Girder+Slab+Diaphragm Weight+Prestressing)	-6.70	с	-8.06	С	
Sresses due to Superimposed Loads	-0.82	С	1.42	Т	
Sresses due to all Live Load + Impact	-2.72	C	4.73	Т	

RF = Allowable Stress - (Stress due to Dead Loads + Stress due to Superimposed Loads Stress due to Live Load + Impact

RF = 4.96 -At top fiber

RF = 2.03 -At bottom fiber

Appendix 23.1.4-3 (4/11) CALCULATION OF LOAD RATING - INTERIOR AND EXTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE IV B MODIFIED BRIDGE USING ALLOWABLE STRESS

FOR SPAN A1 TO P1 / A2 TO P2 - AT SUPPORT **TABLE A: SECTION PROPERTIES**

DESCRIPTION	Area (m²)	Moment of Inertia (m ⁴)	Y Bottom of Girder (m)	Y Top of Girder (m)
Basic Section				
PSCG Type VI Modified	0.717	0.228	0.84	0.84
Deck Slab	0.480	N/A	N/A	N/A
Diaphragm	2.67	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.214	0.474	1.067	0.613
Live Load MS-18	1.214	0.474	1.067	0.613

TABLE B: MOMENT DEMAND FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE IV B MODIFIED (D=1.680M; L=38.409M)

DESCRIPTION	SUPPORT
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	1165.00
Due to Weight of Girder + Slab + Diaphragm	2058.00
Composite Section	
Due to Weight of Superimposed Loads (railing, sidewalk, median and wearing surface)	345.00
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact *Distribution factor	714.29
With Impact	857.14
Load Combination at Service Condition	
DL + (LL+I)	1202.14

Distribution Factor = S / 1.68 = 1.429 I = 100*(15.24 / L + 38) = 20 %

TABLE C: STRESSES AT SUPPORT FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI B MODIFIED (D=1.680M; L=38.409M)

Prestressing Force, Pf = 5293.12 kN (As-built: Pf = 1190 kips) Eccentricity:

For Basic Section = 0.385 m

For Composite Section : 0.158 m (Superimposed Loads) For Composite Section = 0.158 m (Live Loads)

After Transfer:

f_c' = 35 MPa

Allowable Stress in Compression = $0.60 f_c' =$ -21.00 MPa

Allowable Stress in Tension = 0.5 $\sqrt{f_c}$ = 2.96 MPa

LOAD DESCRIPTION	STRESSES (MPa)			
	Bottom Fi	ber	Top Fibe	er 👘
Sresses due Dead Loads (Girder+Slab+Diaphragm Weight+Prestressing)	-7.46	С	-7.31	С
Sresses due to Superimposed Loads	-0.45	С	0.78	Т
Sresses due to all Live Load + Impact	-1.11	С	1.93	T

RF = Allowable Stress - (Stress due to Dead Loads + Stress due to Superimposed Loads

Stress due to Live Load + Impact

RF = 11.82 -At bottom fiber

RF = 4.92 -At top fiber

Appendix 23.1.4-3 (5/11) CALCULATION OF LOAD RATING - INTERIOR AND EXTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE IV B MODIFIED BRIDGE USING LOAD FACTOR

FOR SPAN P1 TO P2 - AT MIDSPAN

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)		Y Bottom of	Y Top of	
	Alea (m.)	Area (m ⁻) Inertia (m ⁴)		Girder (m)	
Basic Section					
PSCG Type IV	0.717	0.228	0.84	0.84	
Deck Slab	0.480	N/A	N/A	N/A	
Diaphragm	2.67	N/A	N/A	N/A	
Composite Section					
Suprimposed Loads	1.214	0.474	1.067	0.613	
Live Load MS-18	1.214	0.474	1.067	0.613	

TABLE B: MOMENT DEMAND FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE IV B MIDIFIED (D=1.680M; L=36.76M)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	2902.00
Due to Weight of Girder + Slab +	5128.00
Diaphragm	5120.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	860.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	1849.13
With Impact	2218.95
Load Combination at Service Condition	
DL + (LL+I)	8206.95

Distribution Factor = 1.429 I = 100*(15.24 / L + 38) = 20 %

CALCULATION OF MOMENT CAPACITY AT MIDSPAN:

CONSIDERING PRESTRESSING STEEL ONLY:

(

			2400.00 mm d = 1679.91 mm 0.80 - for f'c = 35.00 Mpa ϕ = 1.00
$f_{su}^* = f_s \{1 - [(\gamma^* / \beta_1 f_{su}^* = 1774.7 MPa$			οιος το το σοιος τημά φ - τ.υυ
Compression Block =-	$\frac{A_{\rm S}^* f_{\rm su}}{0.85 f_{\rm C} \rm b} = 176.6 \rm mm < t_{\rm s}$	_{lab} = 200 mm -Consider	rectangular section
$\phi M_n = \phi A_s^* f_{su}^* d $	[1-(0.6(p*f _{su} */f' _c)]		
$\phi M_n = 20050.4 \text{ kN}$			
LOAD RATING:	0.47		
		D = 5988.00 kN	LL + I = 2218.95 kN-m
γ _L =	1.30 (Operating Level)		
INVENTORY LEVEL:	OPERATING LEVEL:		

 $\mathsf{RF} = \frac{\phi \mathsf{M}_{\mathsf{n}} - \gamma_{\mathsf{D}} \mathsf{D}}{\gamma_{\mathsf{L}} (\mathsf{LL}+\mathsf{I})} = 2.55 \qquad \mathsf{RF} = \frac{\phi \mathsf{M}_{\mathsf{n}} - \gamma_{\mathsf{D}} \mathsf{D}}{\gamma_{\mathsf{L}} (\mathsf{LL}+\mathsf{I})} = 4.25$

Appendix 23.1.4-3 (6/11) CALCULATION OF LOAD RATING - INTERIOR AND EXTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE IV B MODIFIED BRIDGE USING LOAD FACTOR

FOR SPAN A1 TO P1 / A2 TO P2- AT MIDSPAN

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m ²)	Moment of	Y Bottom of	Y Top of
BESERIE HEN	Alea (iii)	Inertia (m ⁴)	Girder (m)	Girder (m)
Basic Section				
PSCG Type VI Modified	0.717	0.228	0.84	0.84
Deck Slab	0.480	N/A	N/A	N/A
Diaphragm	2.67	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.214	0.474	1.067	0.613
Live Load MS-18	1.214	0.474	1.067	0.613

TABLE B: MOMENT DEMAND FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE IV B MIDIFIED (D=1.680M; L=38.409M)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	2136.00
Due to Weight of Girder + Slab +	3775.00
Diaphragm	3775.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	633.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	1751.43
With Impact	2101.71
Load Combination at Service Condition	
DL + (LL+I)	2734.71

Distribution Factor = S / 1.68 = 1.429I = 100*(15.24 / L + 38) = 20 % ۰.

. ,

CALCULATION OF MOMENT CAPACITY AT MIDSPAN:

CONSIDERING PRESTRESSING STEEL ONLY:

	$f_c = 35$ MPa $f_s = 1862.00$ MPa $b = 2400.00$ mm $d = 1679.91$ mm $\gamma^* = 0.40$ - for stress-relieved steel $\beta_1 = 0.80$ - for frc = 35.00 Mpa $\phi = 1.00$
f _{su} * = f' _s {1-[(γ*/β ₁)) f _{su} * = 1803.8 MPa	p* f's / f'c)] }
Compression Block =	$\frac{A_{s} f_{su}}{0.85 f_{C} b}$ = 119.7 mm < t _{slab} = 200 mm -Consider rectangular section
$\phi M_n = \phi A_s^* f_{su}^* d [1]$	- (0.6 (ρ* f _{su} * / f _c)]
φM _n = 13834.3 kN	
LOAD RATING:	D = 4408.00 kN LL + I = 2101.71 kN-m
$\gamma_D = 1.30$ $\gamma_L = 2$	17 (Inventory Level)
$\gamma_L = 1$	³⁰ (Operating Level)
$\frac{\text{INVENTORY LEVEL:}}{\text{RF} = \frac{\phi M_n - \gamma_D D}{\gamma_L (\text{LL+I})} = 1$	78 $RF = \frac{\phi M_n - \gamma_D D}{\gamma_L (LL+I)} = 2.97$

Appendix 23.1.4-3 (7/11) CALCULATION OF LOAD RATING - INTERIOR AND EXTERIOR GIRDER

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE IV B MODIFIED BRIDGE USING LOAD FACTOR

FOR SPAN A1 TO P1 / A2 TO P2 - AT SUPPORT

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of Inertia (m ⁴)	Y Bottom of Girder (m)	Y Top of Girder (m)
Basic Section				
PSCG Type VI Modified	0.717	0.228	0.84	0.84
Deck Slab	0.480	N/A	N/A	N/A
Diaphragm	2.67	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.214	0.474	1.067	0.613
Live Load MS-18	1.214	0.474	1.067	0.613

TABLE B: MOMENT DEMAND AT SUPPORT FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE IV B MIDIFIED (D=1.680M; L=38.409M)

DESCRIPTION	SUPPORT
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	1165.00
Due to Weight of Girder + Slab +	2058.00
Diaphragm	2000.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	345.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	714.29
With Impact	857.14
Load Combination at Service Condition	
DL + (LL+I)	1202.14

Distribution Factor = S / 1.68 = 1.429 I = 100*(15.24 / L + 38) = 20 %

CALCULATION OF MOMENT CAPACITY AT SUPPORT:

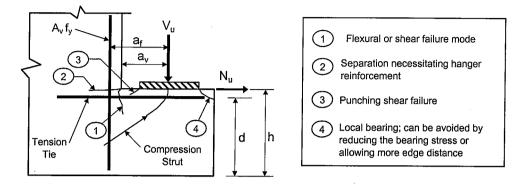
CONSIDERING PRESTRESSING STEEL ONLY:

 $A_S^* = 4737.60 \text{ mm}^2$ $f_c = 35 \text{ MPa}$ $f_s = 1862.00 \text{ MPa}$ b = 2400.00 mmd = 1225.00 mm $\rho^* = 0.00161$ $\gamma^* = 0.40$ - for stress-relieved steel $\beta_1 = 0.80$ - for fc = 35.00 Mpa $\phi = 1.00$ $f_{su}^* = f_s \{1 - [(\gamma^* / \beta_1) (\rho^* f_s / f_c)]\}$ $f_{su}^* = 1782.19$ MPa Compression Block = $\frac{A_{s} * f_{su}}{0.85 f_{c} b}$ = 118.3 mm < t_{slab} = 200 mm -Consider rectangular section $\phi M_n = \phi A_s^* f_{su}^* d [1 - (0.6 (\rho^* f_{su}^* / f_c))]$ $\phi M_n = 9833.82 \text{ kN}$ LOAD RATING: D = 2403.00 kN LL + I = 857.14 kN-m $\gamma_D = 1.30$ $\gamma_L = 2.17$ (Inventory Level) $\gamma_L = 1.30$ (Operating Level) $\frac{\text{INVENTORY LEVEL:}}{\text{RF} = \frac{\phi M_n - \gamma_D D}{\gamma_L (LL+1)}} = 3.61 \qquad \qquad \frac{\text{OPERATING LEVEL:}}{\text{RF} = \frac{\phi M_n - \gamma_D D}{\gamma_L (LL+1)}} = 6.02$ **INVENTORY LEVEL:**

Appendix 23.1.4-3 (8/11)

CALCULATION OF LOAD RATING - INTERIOR AND EXTERIOR GIRDER

PROJECT TITLE: **PASIG-MARIKINA RIVER BRIDGE INSPECTION**

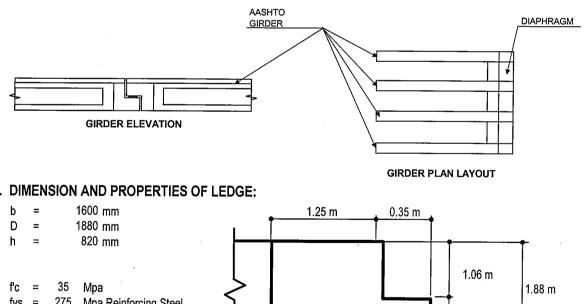

GUADALUPE BRIDGE (BOTH SIDES)

ITEM: LIVE LOAD RATING

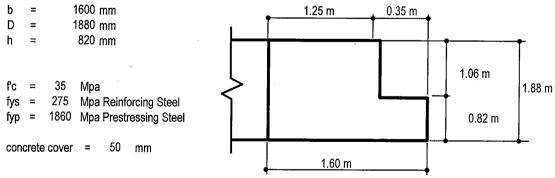
BEAM LEDGE CAPACITY INVESTIGATION (LOAD RATING) FOR GERBER HINGE

1. BEAM LEADGE FAILURE MECHANISM

Beam ledges have to be designed for overall member actions and local failure modes as follows:

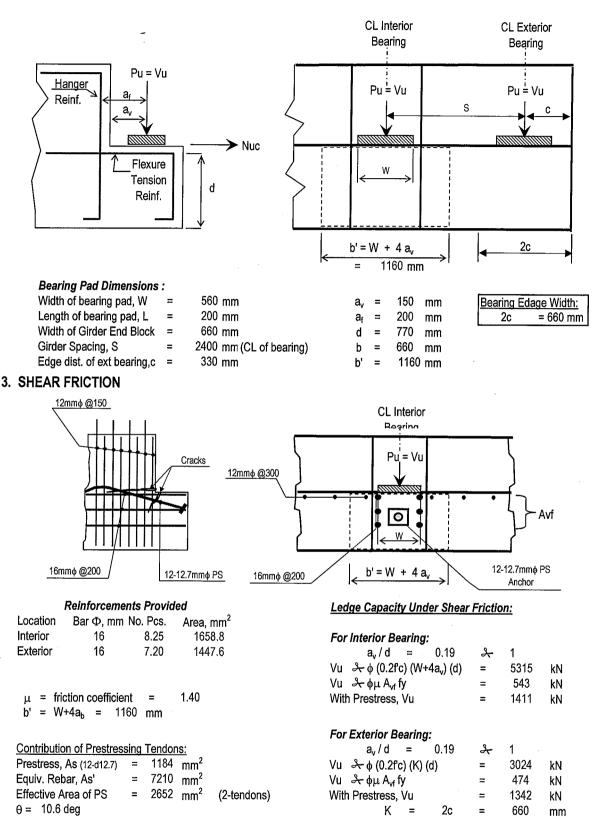


Failure Modes and Potential Cracks

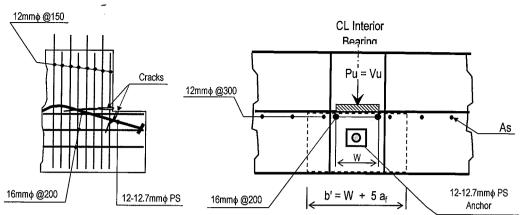

Forces and actions acting on the ledge includes shear (Vu), horizontal tensile force (Nuc), and moment (Mu):

- Vu = Factored Shear (Dead load + Live load + Impact)
- 𝒫 0.2Vu, but less than 1.0Vu Nuc
- = $Vu(a_f) + Nu(h-d)$ Μu
- a = Flexural moment arm; distance from reaction centerline to centerline of hanger reinforcement
- = Moment arm for the horizontal load. Nuc h-d

GERBER HINGE LAYOUT



2. DIMENSION AND PROPERTIES OF LEDGE:

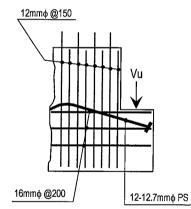

Appendix 23.1.4-3 (9/11) CALCULATION OF LOAD RATING - INTERIOR AND EXTERIOR GIRDER

÷__

Appendix 23.1.4-3 (10/11) CALCULATION OF LOAD RATING - INTERIOR AND EXTERIOR GIRDER

4. FLEXURE

Reinforcements Provided


Location	Bar Φ, mm	No. Pcs.	Area, mm ²
Interior	16	4.25	854.5
Exterior	16	3.20	643.4

Prestressing :

(

- $W + 5a_f = 1560 \text{ mm}$ 2c = 660 mm

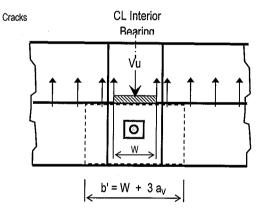
5. HANGER REINFORCEMENT

Reinforcements Provided

Location	Bar Φ, mm	No. Pcs.	Area, mm ²
Interior	12	16.00	1809.6
Exterior	12	15.00	1696.5

Contribution of Prestressing Tendons:

0011110011011100100	on ig	TORIGOI.	φ.
Prestress, As (12-d12.7)	=	1184	mm ²
Equiv. Rebar, As'	Ξ	7210	mm ²
Effective Area of PS	=	2652	mm ³
θ = 10.6 deg			


Ledge Capacity Under Flexure:

Reinforcing Bars Only

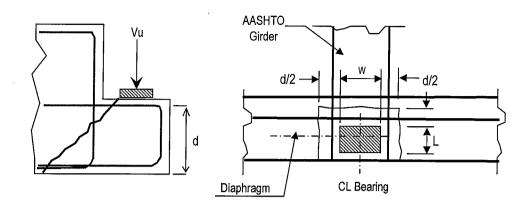
	ength:		Interiror	=	586 kN
	Vu 头	.2(h-d)]	Exterior	=	441 kN
As	<i>ಎ್</i> 2(A _{vi})/3 + An =	1100	3 mm ²	NC	T OK
As	& ρmin (W + 5af)(d)	=	6115 mi	n²	NOT OK
	pmin = 0.04(f'c/fy)	= 0	.0051		

Reinforcing Bars Plus Prestressing Bars

Strength	Interiror	=	5445 kN
Vu み ϕ Af fy jd /[af +0.2(h-d)]	Exterior	=	5300 kN

Ledge Capacity Under Hanger Tension:

Reinforcing Bars Only

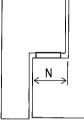

Strength	<u>n</u> Vu	-γ¢Av fy S/s	Interior	=	423 kN
			Exterior	=	397 kN
Servicea	ability		Interior	=	249 kN
V	۶ Av ((0.5 fy) (W+3a) / s	Exterior	=	233 kN

Reinforcing Bars Plus Prestressing Bars

<u>Strength</u>	Vu	-≫∼ φ Av fy S / s	Interior	=	1043 kN
			Exterior	=	1017 kN
Serviceat	oility		Interior	=	614 kN
V a	እ. Av ((0.5 fy) (W+3a) / s	Exterior	=	598 kN

Appendix 23.1.4-3 (11/11) CALCULATION OF LOAD RATING - INTERIOR AND EXTERIOR GIRDER

6. PUNCHING SHEAR



Allow. Tensile Strength for Puching = $0.33 \sqrt{fc} = 1.95 \text{ MPa}$

Ledge Capacity Under Punching Shear:

Interior Bearing:	Vu	- ≁ φ (0.33 √	f'c)(W+2L'+2d)(d)	=	2736 kN
Exterior Bearing:	Vu	♣∳ (0.33√	fc)(W+L'+d)(d)	=	1663 kN

7. AVAILABLE SEAT WIDTH

From AASHTO 7.3.1 DIVISION 1A

 $N = (305 + 2.5L + 10H)(1 + 0.000125S^2)$

L = length in meters of the bridge deck to the adjacent expansion joint

S = angle of skew of support in degrees measured from a line normal to the span.

1.30

2.17 1.30

H = is the column or pier average height in meters

Seat width provided at gerber hinge = 350 mm

- L = 38.7 m (Total length of deck from expansion joint to the othe expansion)
- S = 0 degrees
- Н = 8.2 m (Average Height of Column at Main Bridge)
- $N = (305 + 2.5L + 10H) (1 + 0.000125S^{2})$
- N = 483.25 mm > Provided Seat, NOT OK

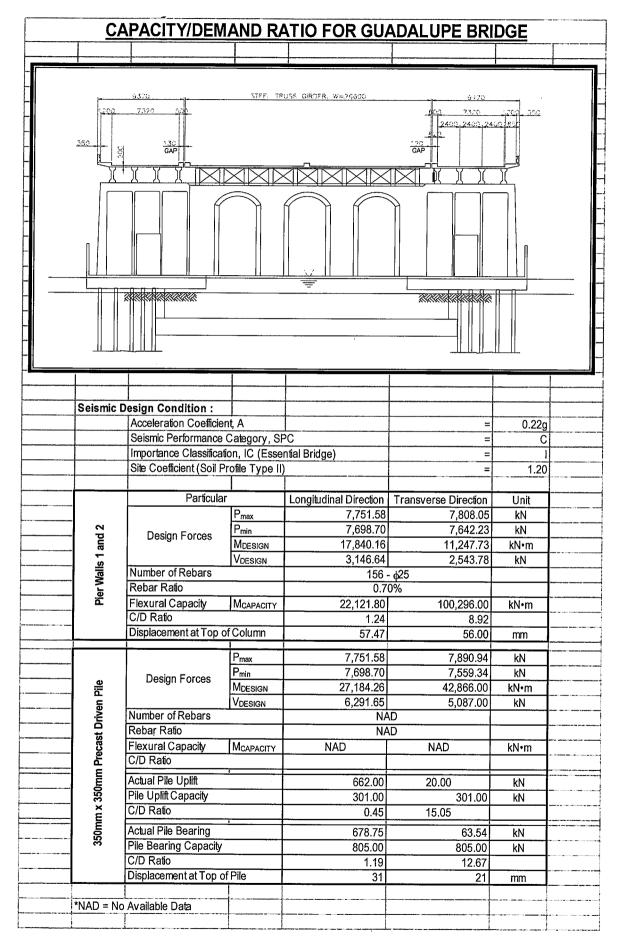
8. SUMMARY OF CAPACITY

.... De ...

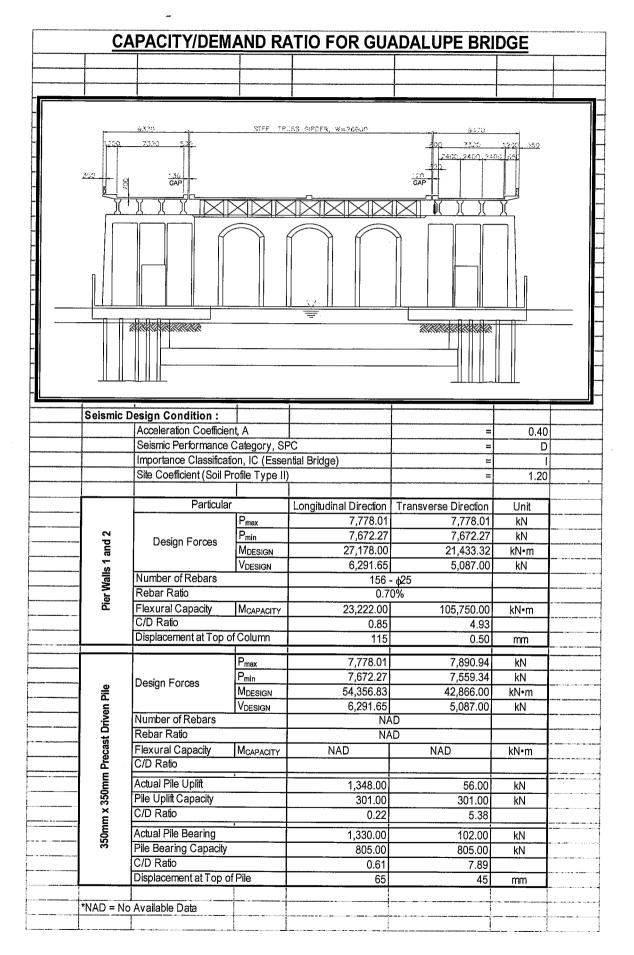
Demand / Reaction:			Load Fa	ctors	•	
				γ _D Dead Load	н	,
Dead Load	=	640.0	kN	$\gamma_{\rm L}$ Inventory	=	
Live Load	=	192.4	kN (Including Impact)	γ_L Operating	=	
						_

Calculated Capacity (Load Factor)

Girder	Shear Friction		Fle	ure Hanger		Flexure		Punching
Location	Rebar	W/ PS	Rebar	W/ PS	Rebar	W/ PS	Shear	
Interior	543	1411	586	5445	423	1043	2736	
Exterior	474	1342	441	5300	397	1017	1663	


Load Rating:

(


By Load Factor Method:

Considering Reinforcing Bars Only					Reinforcing Bars Plus Prestress			
Girder		ventory	Operatiing		Inventory		Operatiing	
Location	RF	LL _{EQUIV} (HS20)	RF	LL _{EQUIV} (HS20)	RF	LL _{EQUIV} (HS20)	RF	LL _{EQUIV} (HS20)
Interior	-0.98	-32.0 tons	-1.64	-53.5 tons	0.51	16.5 tons	0.84	27.6 tons
Exterior	-1.04	-34.1 tons	-1.74	-56.9 tons	0.44	14.5 tons	0.74	24.1 tons

Appendix 23.1.4-4 (1/6) CALCULATION OF CAPACITY-DEMAND RATIO OF SUBSTRUCTURE

Appendix 23.1.4-4 (2/6) CALCULATION OF CAPACITY-DEMAND RATIO OF SUBSTRUCTURE

Appendix 23.1.4-4 (3/6) CALCULATION OF CAPACITY-DEMAND RATIO OF SUBSTRUCTURE

ANALYSIS OF WALL-PIER MAIN REINFORCEMENT USING OLD CODE

SEISMIC DESIGN CRITERIA

Acceleration Coefficient, A =	0.22
Importance Classification, IC (Essential Bridge) =	(I or II)
Seismic Performance Category, SPC =	C` ´
Site Coefficient, S (Soil Profile Type - II) =	1.20

ELASTIC SEISMIC FORCES

From STAAD-III Multi-Modal Dynamic Analysis

		LONGITUDIN	AL DIRECTION	TRANSVERS	BE DIRECTION
LOADING	AXIAL	SHEAR	MOMENT	SHEAR	MOMENT
LOADING	(kN)	(kN)	(kN•m)	(kN)	(kN•m)
DEAD LOAD	7,725.14	0.63	5.68	0.01	0.12
LONG. EQ.	1.72	3,054.21	26,427.30	21.21	179.70
TRAN, EQ.	82.39	20.88	181.48	2,358.25	19,786.04
			1		

BOTTOM FORCES GOVERN

LOAD COMBINATION

Load Case 1 = 1.0 LONG. EQ. + 0.3 TRAN. EQ. Load Case 2 = 0.3 LONG. EQ. + 1.0 TRAN. EQ.

		LONGITUDIN	AL DIRECTION	TRANSVERS	E DIRECTION
LOAD COMBINATION	AXIAL	SHEAR	MOMENT	SHEAR	MOMENT
	(kN)	(kN)	(kN•m)	(kN)	(kN•m)
Load Case 1	26.44	3,060.47	26,481.74	728.69	6,115.51
Load Case 2	82.91	937.14	8,109.67	2,364.61	19,839.95

GROUP LOADING OF DESIGN FORCES

Group Load = 1.0 (D + B + SF + E + EQ)

7 7.			LONGITUDIN	AL DIRECTION	TRANSVERS	E DIRECTION
LOAD COMBINATION	AXIAL		SHEAR	MOMENT	SHEAR	MOMENT
	Max (kN)	Min (kN)	(kN)	(kN•m)	(kN)	(kN•m)
Load Case 1	7,751.58	7,698.70	3,061.10	26,487.42	728.70	6,115.63
Load Case 2	7,808.05	7,642.23	937.77	8,115.35	2,364.62	19,840.07

MODIFIED DESIGN FORCES

Group Load = 1.0 (D + EQ/R)

R = 1 (longitudinal direction)

R = 1 (transverse direction)			LONGITUDIN	AL DIRECTION	TRANSVERSE DIRECTION		
LOAD COMBINATION	AXIAL		SHEAR	MOMENT	SHEAR	MOMENT	
LOAD COMBINATION	Max (kN)	Min (kN)	(kN)	(kN•m)	(kN)	(kN•m)	
Load Case 1	7,751.58	7,698.70	3,061.10	26,487.42	728.70	6,115.63	
Load Case 2	7,808.05	7,642.23	937.77	8,115.35	2,364.62	19,840.07	

... MODIFIED DESIGN MOMENT OF Load Case 1 GOVERNS !

ELASTIC DESIGN FORCES

M DESIGN	=	27,184.27	kN•m
V DESIGN	=	3,146.64	kN
P _{max DESIGN}	=	7,751.58	kN
P _{min DESIGN}	=	7,698.70	kN

Appendix 23.1.4-4 (4/6) CALCULATION OF CAPACITY-DEMAND RATIO OF SUBSTRUCTURE

DESIGN OF WALL-PIER MAIN REINFORCEMENT BARS

MATERIAL SPECIFICATIONS

A)	Concrete
----	----------

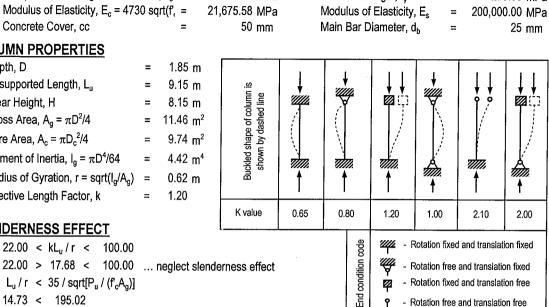
Compressive Strength of Concrete, f'c	=	
Modulus of Elasticity, Ec = 4730 sqrt(f,	=	2
Concrete Cover, cc	=	

21.00 MPa

B) Reinforcing Steel Tensile Strength, fv

= =

- Rotation free and translation free


40,908.00 kN

0.824

275.00 MPa 200,000.00 MPa

COLUMN PROPERTIES

Depth, D	=
Unsupported Length, L _u	=
Clear Height, H	=
Gross Area, $A_g = \pi D^2/4$	=
Core Area, $A_c = \pi D_c^2/4$	Ξ
Moment of Inertia, $I_g = \pi D^4/64$	=
Radius of Gyration, r = sqrt(Ig/Ag)	=
Effective Length Factor, k	=

የ

14.73 < 195.02 MOMENT MAGNIFICATION

SLENDERNESS EFFECT

a) $22.00 < kL_u/r < 100.00$

b) $L_u / r < 35 / sqrt[P_u / (f_cA_q)]$

<u>WOWENT WAGNIFICATION</u>		
Maximum Dead Load Moment, M _{DL}	=	5.68 kN•m
Maximum Total Load Moment, M _{max}	=	27,184.27 kN•m
Ratio $\beta_d = M_{DL} / M_{max}$	=	0.00
Flexural Stiffnes of Column, EI = $(E_c _g/2.5)/(1+\beta_d)$	=	38,314.42 MN•m²
Factored Axial Load, P _u = P _{max}	=	7,751.58 kN
Buckling Load, $P_c = \pi^2 E I / (kL_u)^2$	=	3,136,587.16 kN
Spiral as Lateral Reinforcement, ϕ	=	0.75
Moment Magnification Factor not braced against sidesway, $\delta_s = 1 / [1 - (\Sigma P_u / \phi \Sigma P_c)]$	=	$1.00 \ge 1.00$
Magnified Design Moment, Mc = $\delta_s M_{max}$	=	27,184.27 kN•m
MODIFIED STRENGTH REDUCTION FACTOR ϕ		
Maximum Axial Stress, σ _{Pmax} = P _{max} / A _c	=	795.85 kPa
20% of Compressive Strength of Concrete, 0.20fc	=	4,200.00 kPa

Ap	proximate Balance	d Axial Load, ϕP_{I}	$h = 0.20 f_{c} \cdot A_{c}$	
			• • •	$[\sigma_{Pmax} / (0.20 f_c)] \ge 0.50$

MAGNIFIED ELASTIC DESIGN FORCES

M _{DESIGN}	=	27184.27	kN•m
P _{max DESIGN}	=	7751.58	kN
Pmin DESIGN	=	7698.70	kN

*** DESIGN COLUMN USING PCACOL PROGRAM ... *** NOTE : 0.01 < A s / A g < 0.06

=

_

ULTIMATE (Nominal) DESIGN FORCES FOR COLUMN

M ULTIMATE	Ξ	32982.42	kN•m
Pmax ULTIMATE	=	9404.92	kN
Pmin ULTIMATE	=	9340.76	kN

*** INVESTIGATE COLUMN PLASTIC CAPACITY FROM PCACOL INTERACTION DIAGRAM ...

FORCES RESULTING FROM PLASTIC HINGING

P _{max DESIGN}	=	7751.58	kN		M NOMINAL CAPACITY	=	3265.40	kN•m
M PLASTIC	=	4245.02	kN•m	<	M ELASTIC	=	27184.27	kN•m
Along Longit	udinal	Direction :			Along Transverse	Directio	<u>n :</u>	
V _{PLASTIC}	=	463.94	kN		V PLASTIC =	144	3.18 kN	
P _{max PLASTIC}	=	7751.58	kN		P _{max PLASTIC} =	390	3.84 kN	
Pmin PLASTIC	=	7698.70	kN		Pmin PLASTIC =	-201	1.06 kN	

Appendix 23.1.4-4 (5/6) CALCULATION OF CAPACITY-DEMAND RATIO OF SUBSTRUCTURE

		KEI, Pasig	City, PI	SSOCIATION				GUACOL
	00000				00000	00		
	00				00 00 00 00			
	00	00 00		000000000000000000000000000000000000000		00		
	00	00 00	000000			00		
	00000					00		
	00 00	00 0000		00 00 00 00 0000		00	(ም.አ.)	
z					00000	00000		1
C	Computer prog	ram for th	e Strength	n Design of	Reinforc	ed Conci	rete Sections	3
5 1 1 1 1 1 1 1 1 2 3/04 1 2 2 3/04 1 2 2 3/04 1 2 1 2 3/04 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		stated ab and canno the mater mputer pro- r implied the PCACOL L(tm) erro The final ocuments i y in contr ineering) program. - PORTLAND	ove acknow t be res ial suppl gram. Furt with res (tm) prog r free, th and only r s the lice act, negl documents CEMENT AS	vledges tha sponsible ied as in hermore, P spect to t tram. Alth te program esponsibil nsees. Ac igence or prepared i	t Portland for eithd put for CA neithe: he correct ough PCA is not and ity for a cordingly other top n connect	d Cement er the process makes cness of has e d can't analysis PCA o ct for a	Association accuracy or sing by the any warranty the output endeavored to be certified a, design and disclaims all uny analysis,	
	Information:							
	Name: C:\MSN	AVAL\PASIG	-~3\REPORT	\GUADAL~1\	APPENDIX\C	JUACOL.C	OL	
Proje	ect: Guadalu	pe Bridge		,, (
Colum				Engineer				
Code:	ACI 318	- 75		Units: M	etric			
	ption: Investing xis: Biaxia				ess: Not o ype: Struc		red	
terial	Properties:							
	===========							
f'c	01 MDa							
-					75 MPa			
Ec	= 21538.1 M			Es = 20	00000 MPa			
Ec fc	= 21538.1 MM = 17.85 MPa			Es = 20		nfinity		
Ec fc Ultim	= 21538.1 M		nm	Es = 20	00000 MPa	nfinity		
Ec fc Ultim Betal ection:	= 21538.1 Mi = 17.85 MPa ate strain = . = 0.85		nm	Es = 20	00000 MPa	nfinity		
Ec fc Ultim Betal ection:	= 21538.1 Mi = 17.85 MPa ate strain = . = 0.85		າເຕ	Es = 20	00000 MPa	nfinity		
Ec fc Ultim Betal ection: Exter	= 21538.1 MJ = 17.85 MPa wate strain = = 0.85 Tior Points X (mm)	0.003 mm/r Y (mm)		Es = 20 Rupture :	00000 MPa	-		Y (mm)
Ec fc Ultim Betal ection: Exter No.	= 21538.1 MJ = 17.85 MPa wate strain = = 0.85 Fior Points X (mm)	0.003 mm/r Y (mm)	No.	Es = 20 Rupture : X (mm)	00000 MPa strain = I Y (mm)	No.	X (mm)	
Ec fc Ultim Betal ection: Exter No.	= 21538.1 M = 17.85 MPa tate strain = = 0.85 tior Points X (mm) 4680	0.003 mm/r Y (mm) 925	No. 2	Es = 20 Rupture s X (mm) -3542	00000 MPa strain = I Y (mm) 925	No. 3	X (mm) 	893
Ec fc Ultim Betal ection: Exter No. 1	= 21538.1 M = 17.85 MPa late strain = = 0.85 ior Points X (mm) -4680 -4004	0.003 mm/r Y (mm) 925 801	No. 2 5	Es = 20 Rupture : X (mm) 	00000 MPa strain = I Y (mm) 925 654	No. 3 6	X (mm) 	893 463
Ec fc Ultim Betal ection: Exter No.	= 21538.1 MJ = 17.85 MPa tate strain = = 0.85 ior Points X (mm) 4680 -4004 -4435	0.003 mm/r Y (mm) 925 801 239	No. 2	Es = 20 Rupture s X (mm) -3542	00000 MPa strain = I Y (mm) 925	No. 3 6 9	X (mm) 	893
Ec fc Ultim Betal ection: Exter No. 1 4 7	= 21538.1 MJ = 17.85 MPa tate strain = = 0.85 	0.003 mm/r Y (mm) 925 801 239	No. 2 5 8	Es = 20 Rupture = X (mm) -3542 -4196 -4467	00000 MPa strain = 1 Y (mm) 925 654 0	No. 3 6 9	X (mm) -3781 -4343 -4435	893 463 -239
Ec fc Ultim Betal ection: Exter No. 1 4 7 10 13 Inter	= 21538.1 M = 17.85 MPa tate strain = = 0.85 ior Points X (mm) 	0.003 mm/r Y (mm) 925 801 239 -463 -893	No. 2 5 8 11 14	Es = 20 Rupture a x (mm) -3542 -4196 -4467 -4196 -3542	00000 MPa strain = 1 925 654 0 -654 -925	No. 3 6 9 12 15	X (mm) -3781 -4343 -4435 -4004 4680	893 463 -239 -801 -925
Ec fc Ultim Betal ection: Exter No. 1 4 7 10 13 Inter No.	= 21538.1 M = 17.85 MPa late strain = = 0.85 ior Points X (mm) -4680 -4004 -4435 -4343 -3781 ior Points X (mm)	0.003 mm/r Y (mm) 925 801 239 -463 -893 Y (mm)	No. 2 5 8 11 14 No.	Es = 21 Rupture = X (mm) -3542 -4196 -4467 -4196 -3542 X (mm)	00000 MPa strain = I 925 654 0 -654 -925 Y (mm)	No. 3 6 9 12 15 No.	X (mm) 	893 463 -239 -801 -925 Y (mm)
Ec fc Ultim Betal ection: Exter No. 1 4 7 10 13 Inter No.	= 21538.1 MJ = 17.85 MPa tate strain = = 0.85 	0.003 mm/r Y (mm) 925 801 239 -463 -893 Y (mm)	No. 2 5 8 11 14 No.	Es = 20 Rupture s X (mm) -3542 -4196 -4467 -4196 -3542 X (mm)	00000 MPa strain = I 925 654 -654 -925 Y (mm)	No. 3 6 9 12 15 No.	X (mm) -3781 -4343 -4435 -4004 4680 X (mm)	893 463 -239 -801 -925 Y (mm)
Ec fc Ultim Betal ection: Exter No. 1 4 7 10 13 Inter No.	= 21538.1 M = 17.85 MPa ate strain = = 0.85 ior Points X (mm) -4004 -404 -4343 -3781 ior Points X (mm) -4416	0.003 mm/r Y (mm) 925 801 239 -463 -893 Y (mm)	No. 2 5 8 11 14 No.	Es = 21 Rupture = X (mm) -3542 -4196 -4467 -4196 -3542 X (mm)	00000 MPa strain = I 925 654 0 -654 -925 Y (mm)	No. 3 6 9 12 15 No.	X (mm) 	893 463 -239 -801 -925 Y (mm)
Ec fc Ultim Betal ction: Exter No. 1 4 7 100 133 Inter No. 1 4 7	= 21538.1 M = 17.85 MPa late strain = = 0.85 fior Points X (mm) 	0.003 mm/r Y (mm) 925 801 239 -463 -893 Y (mm) 250 250 250 250	No. 2 5 8 11 14 No. 2	Es = 20 Rupture s X (mm) -3542 -4196 -4467 -4196 -3542 X (mm) -3542	00000 MPa strain = I Y (mm) 925 654 -925 Y (mm) 	No. 3 6 9 12 15 No. 3	X (mm) -3781 -4343 -435 -4004 4680 X (mm) 2016	893 463 -239 -801 -925 Y (mm) 350
Ec fc Ultim Betal ction: Exter No. 1 4 7 10 13 Inter No. 1 4 7 10	= 21538.1 MJ = 17.85 MPa tate strain = = 0.85 	0.003 mm/r Y (mm) 925 801 239 -463 -893 Y (mm) 250 250 250 250 250	No. 2 5 8 11 14 No. 2 5 8 11	Es = 20 Rupture s X (mm) 	00000 MPa strain = I 925 654 -925 Y (mm) 350 50 350 50	No. 3 6 9 12 15 No. 3 6 9 12	X (mm) 	893 463 -239 -801 -925 Y (mm)
Ec fc Ultim Betal ction: Exter No. 1 4 7 10 13 Inter No. 1 4 7 10 13	= 21538.1 MJ = 17.85 MPa state strain = = 0.85 	0.003 mm/r 925 801 239 -463 -893 Y (mm) 250 250 250 250 250 250 250 250	No. 2 5 8 11 14 No. 2 5 8 11 14	Es = 20 Rupture s X (mm) -3542 -4196 -4467 -4196 -3542 X (mm) 4316 1916 1516 -742 -1142	00000 MPa strain = I 925 654 -925 Y (mm) 350 50 350 50 350	No. 3 6 9 12 15 No. 3 6 9 12 15	X (mm) 	893 463 -239 -801 -925 Y (mm) 350 50 350 50 350
Ec fc Ultim Betal ction: Exter No. 1 4 7 10 13 Inter No. 1 4 7 10 13 Inter 10 13	= 21538.1 M = 17.85 MPa tate strain = = 0.85 ior Points X (mm) -4004 -4435 -4343 -3781 ior Points X (mm) 	0.003 mm/r Y (mm) 925 801 239 -463 -893 Y (mm) 250 250 250 250 250 250 250 250	No. 2 5 8 11 14 No. 2 5 8 11 14 14 17	Es = 20 Rupture s X (mm) -3542 -4196 -4467 -4196 -3542 X (mm) 4316 1916 1516 -742 -1142 -3542	00000 MPa strain = 1 925 654 -925 Y (mm) 	No. 3 6 9 12 15 No. 3 6 9 12 15 18	X (mm) -3781 -4343 -4435 -4004 4680 X (mm) 2016 1616 -642 -1042 -3442 -3442	893 463 -239 -801 -925 Y (mm) 350 50 350 50 350 -350
Ec fc Ultim Betal ection: Exter No. 1 4 7 100 13 Inter No. 1 4 7 100 13 Inter 13 13 Inter 13 10 13 13 Inter 13 13 13 10 13 13 13 13 13 13 14 14 14 14 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14	= 21538.1 M = 17.85 MPa tate strain = = 0.85 ior Points X (mm) -4680 -4004 -4435 -4343 -3781 ior Points X (mm) 	0.003 mm/r Y (mm) 925 801 239 -463 -893 Y (mm) 250 250 250 250 250 250 250 250	No. 2 5 8 11 14 No. 2 5 8 11 14 17 20	Es = 20 Rupture s X (mm) -3542 -4196 -3542 X (mm) 4316 1916 1516 -742 -1142 -3542 -1042	200000 MPa strain = 1 925 654 0 -654 -925 Y (mm) 	No. 3 6 9 12 15 No. 3 6 9 12 15 12 15 18 21	X (mm) -3781 -4343 -4435 -4004 4680 X (mm) 	893 463 -239 -801 -925 Y (mm) 350 50 350 50 350 -350 -50
Ec fc Ultim Betal ection: Exter No. 1 4 7 10 13 Inter No. 1 4 7 10 13 Inter 10 13	= 21538.1 MJ = 17.85 MPa tate strain = = 0.85 	0.003 mm/r Y (mm) 925 801 239 -463 -893 Y (mm) 250 250 250 250 250 250 250 250	No. 2 5 8 11 14 No. 2 5 8 11 14 14 17	Es = 20 Rupture s X (mm) -3542 -4196 -4467 -4196 -3542 X (mm) 4316 1916 1516 -742 -1142 -3542 -1042 -742	00000 MPa strain = I 925 654 0 -654 -925 Y (mm) 350 50 350 50 350 -250 -250	No. 3 6 9 12 15 No. 3 6 9 12 15 18	X (mm) -3781 -4343 -4435 -4004 4680 X (mm) 	893 463 -239 -801 -925 Y (mm)
Ec fc Ultim Betal ection: Exter No. 1 4 7 10 13 Inter No. 1 4 7 10 13 11 14 7 10 13 11 14 22 25 28	= 21538.1 MJ = 17.85 MPa hate strain = = 0.85 	0.003 mm/r Y (mm) 925 801 239 -463 -893 Y (mm) 250 250 250 250 250 250 250 250	No. 2 5 8 11 14 No. 2 5 8 11 14 14 17 20 23	Es = 20 Rupture s X (mm) -3542 -4196 -4467 -4196 -3542 X (mm) 4316 1916 1516 -742 -1142 -3542 -1042 -742	200000 MPa strain = 1 925 654 0 -654 -925 Y (mm) 	No. 3 6 9 12 15 No. 3 6 9 12 15 12 15 18 21 24	X (mm) -3781 -4343 -4435 -4004 4680 X (mm) 	893 463 -239 -801 -925 Y (mm) 350 50 350 50 350 -350 -50
Ec fc Ultim Betal ection: Exter No. 1 4 7 10 13 Inter No. 1 4 7 7 10 13 Inter 10 13 16 19 222 25	= 21538.1 MJ = 17.85 MPa hate strain = = 0.85 	0.003 mm/r 925 801 239 -463 -893 Y (mm) 250 250 250 250 250 250 250 250	No. 2 5 8 11 14 No. 2 5 8 11 14 17 20 23 26	Es = 20 Rupture s X (mm) -3542 -4196 -4467 -4196 -3542 X (mm) -4316 1916 1916 1916 1916 1916 -742 -1142 -3542 -1042 -742 1616	200000 MPa strain = I 925 654 -925 Y (mm) 350 50 350 50 350 -250 -250 -250 -250	No. 3 6 9 12 15 No. 3 6 9 12 15 18 12 15 18 12 24 27	X (mm) 	893 463 -239 -801 -925 Y (mm) 350 50 350 -350 -350 -350 -350 -50
Ec fc Ultim Betal ection: Exter No. 1 4 7 10 13 Inter No. 1 4 7 10 13 Inter 10 13 16 19 222 25 28 31	= 21538.1 MI = 17.85 MPa state strain = = 0.85 	0.003 mm/r 925 801 239 -463 -893 Y (mm) 250 250 250 250 250 250 250 250 250 250	No. 2 5 8 11 14 No. 2 5 8 11 14 17 20 23 26 29 32	Es = 24 Rupture s X (mm) -3542 -4196 -4467 -4196 -3542 X (mm) -4316 1916 1516 -742 -1142 -3542 -1142 -3542 -1142 -3542 -1042 -742 1616 1916 1916 1916 2742 -742 1616 1916 1916 24467 -742 -742 1616 1916 24467 -742 -742 -742 -742 -742 -742 -742 -74	00000 MPa strain = I 925 654 -925 Y (mm) -654 -925 Y (mm) -250 -250 -250 -250 -250 -250 -250 -250	No. 3 6 9 12 15 No. 3 6 9 12 15 18 8 21 24 27 30	X (mm) 	893 463 -239 -801 -925 Y (mm) 350 50 350 -350 -350 -350 -350 -50
Ec fc Ultim Betal ction: Exter No. 1 4 7 10 13 Inter No. 1 4 7 10 13 11 14 7 10 13 11 14 7 10 13 11 14 7 10 13 11 15 16 19 22 25 28 31 16 19 22 25 28 31	= 21538.1 MJ = 17.85 MPa tate strain = = 0.85 	0.003 mm/r 925 801 239 -463 -893 Y (mm) 250 250 250 250 250 250 250 250 250 250	No. 2 5 8 11 14 No. 2 5 8 11 14 17 20 23 26 29 32	Es = 24 Rupture s X (mm) -3542 -4196 -4467 -4196 -3542 X (mm) 4316 1916 1516 -742 -1142 -3542 -1042 -742 1616 1916 4416 7 mm ² 2 Iy = 8.1	200000 MPa strain = I 925 654 -925 Y (mm) 350 50 350 50 350 -250 -250 -250 -250 -250 -250 -250	No. 3 6 9 12 15 No. 3 6 9 9 12 15 18 21 24 21 24 27 30	X (mm) 	893 463 -239 -801 -925 Y (mm) 350 50 350 -350 -350 -350 -350 -50
Ec fc Ultim Betal ection: Exter No. 1 4 7 10 13 Inter No. 1 4 7 10 13 Inter No. 1 2 5 25 28 31 Gross Ix = Xo = inforce	= 21538.1 MI = 17.85 MPa tate strain = = 0.85 	0.003 mm/r 925 801 239 -463 -893 Y (mm) 250 250 250 250 250 250 250 250 250 250	No. 2 5 8 11 14 No. 2 5 8 11 14 17 20 23 26 29 32	Es = 24 Rupture s X (mm) -3542 -4196 -4467 -4196 -3542 X (mm) 4316 1916 1516 -742 -1142 -3542 -1042 -742 1616 1916 4416 7 mm ² 2 Iy = 8.1	00000 MPa strain = I 925 654 -925 Y (mm) 350 50 350 -250 -250 -250 -250 -250 -250 -250 -2	No. 3 6 9 12 15 No. 3 6 9 9 12 15 18 21 24 21 24 27 30	X (mm) 	893 463 -239 -801 -925 Y (mm) 350 50 350 -350 -350 -350 -350 -50
Ec fc Ultim Betal ection: Exter No. 1 4 7 10 13 Inter No. 1 4 7 10 13 10 10 13 10 10 13 10 10 13 10 10 10 10 13 10 10 10 10 10 10 10 10 10 10 10 10 10	= 21538.1 MI = 17.85 MPa tate strain = = 0.85 	0.003 mm/r 925 801 239 -463 -893 Y (mm) 250 250 250 250 250 250 -350 -	No. 2 5 8 11 14 No. 2 5 8 11 14 17 20 23 26 29 32	Es = 24 Rupture s X (mm) -3542 -4196 -4467 -4196 -3542 X (mm) 4316 1916 1516 -742 -1142 -3542 -1042 -742 1616 1916 4416 7 mm ² 2 Iy = 8.1	00000 MPa strain = I 925 654 -925 Y (mm) 350 50 350 -250 -250 -250 -250 -250 -250 -250 -2	No. 3 6 9 12 15 No. 3 6 9 9 12 15 18 21 24 21 24 27 30	X (mm) 	893 463 -239 -801 -925 Y (mm) 350 50 350 -350 -350 -350 -350 -50
Ec fc Ultim Betal Exter No. 1 4 7 100 13 Inter No. 1 4 7 100 13 Inter No. 1 1 4 7 100 13 Inter No. 1 1 4 7 100 13 Inter No. 1 1 4 7 100 13 Inter No. 1 1 4 7 100 13 Inter No. 1 1 4 7 100 13 Inter No. 1 1 4 7 100 13 Inter No. 1 1 100 13 Inter No. 1 1 100 13 Inter No. 1 1 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 10 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 10 10 13 Inter So Inter Inter Inter Inter So Inter In	= 21538.1 MI = 17.85 MPa state strain = = 0.85 	0.003 mm/r Y (mm) 925 801 239 -463 -893 Y (mm) 250 250 250 250 250 250 250 -300 -300	No. 2 5 8 11 14 No. 2 5 8 11 14 17 20 23 26 29 32 13888e+00' Size Diar	Es = 20 Rupture s X (mm) -3542 -4196 -4467 -4196 -3542 X (mm) 4316 1916 1516 -742 -1142 -3542 -1042 -742 1616 1916 4416 7 mm ² 2 Iy = 8.1 Yo = 2.1 an (mm) Area	200000 MPa strain = I 925 654 0 -654 -925 Y (mm) 350 -250 -250 -250 -250 -250 -250 -250 -2	No. 3 6 9 12 15 No. 3 6 9 12 15 15 12 15 12 15 12 15 24 27 30 mm ⁴ mm	X (mm) 	893 463 -239 -801 -925 Y (mm) -350 50 350 -350 -350 -350 -350 -350 -3
Ec fc Ultim Betal Exter No. 1 4 7 100 13 Inter No. 1 4 7 100 13 Inter No. 1 1 4 7 100 13 Inter No. 1 1 4 7 100 13 Inter No. 1 1 4 7 100 13 Inter No. 1 1 4 7 100 13 Inter No. 1 1 4 7 100 13 Inter No. 1 1 4 7 100 13 Inter No. 1 1 100 13 Inter No. 1 1 100 13 Inter No. 1 1 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 10 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 100 13 Inter No. 10 10 13 Inter So Inter Inter Inter Inter So Inter In	= 21538.1 MI = 17.85 MPa tate strain = - 0.85 	0.003 mm/r Y (mm) 925 801 239 -463 -893 Y (mm) 250 250 250 250 250 250 250 -300 -300	No. 2 5 8 11 14 No. 2 5 8 11 14 17 20 23 26 29 32 13888e+00' Size Diar	Es = 24 Rupture s X (mm) -3542 -4196 -4467 -4196 -3542 X (mm) 4316 1916 1516 -742 -1142 -3542 -1042 -742 1616 1916 4416 7 mm ² 2 Iy = 8.1 Yo = 2.1	200000 MPa strain = I 925 654 0 -654 -925 Y (mm) 350 -250 -250 -250 -250 -250 -250 -250 -2	No. 3 6 9 12 15 No. 3 6 9 12 15 15 12 15 12 15 12 15 12 15 12 15 15 10 10 10 10 10 10 10 10 10 10	X (mm) -3781 -4343 -4435 -4004 4680 X (mm) 	893 463 -239 -801 -925 Y (mm) -350 50 350 -350 -350 -350 -350 -350 -3
Ec fc Ultim Betal ection: Exter No. 1 4 7 10 13 Inter No. 1 4 7 10 13 Inter No. 1 4 7 10 13 Inter No. 22 25 28 31 Gross Ix = Xo = inforce Rebar Size I	= 21538.1 MI = 17.85 MPa state strain = = 0.85 	0.003 mm/r Y (mm) 925 801 239 -463 -893 Y (mm) 250 250 250 250 250 250 250 -350	No. 2 5 8 11 14 No. 2 5 8 11 14 17 20 23 26 29 32 13888e+00 ⁷ Size Diar	Es = 24 Rupture s X (mm) -3542 -4196 -4467 -4196 -3542 X (mm) -3542 X (mm) -4316 1916 1516 -742 -1142 -3542 -1042 -742 1616 1916 4416 7 mm ² Iy = 8.1 Yo = 2.1	00000 MPa strain = I 925 654 -925 Y (mm) 350 -250 -250 -250 -250 -250 -250 -250 -2	No. 3 6 9 12 15 No. 3 6 9 12 15 18 21 24 27 30 mm ⁴ mm	X (mm) -3781 -4343 -4004 4680 X (mm) 2016 1616 -642 -1042 -3442 -3442 -1042 -642 1616 2016 2016	893 463 -239 -801 -925 Y (mm) -350 -350 -350 -350 -350 -350 -350 -350

(

un çen

÷___

•

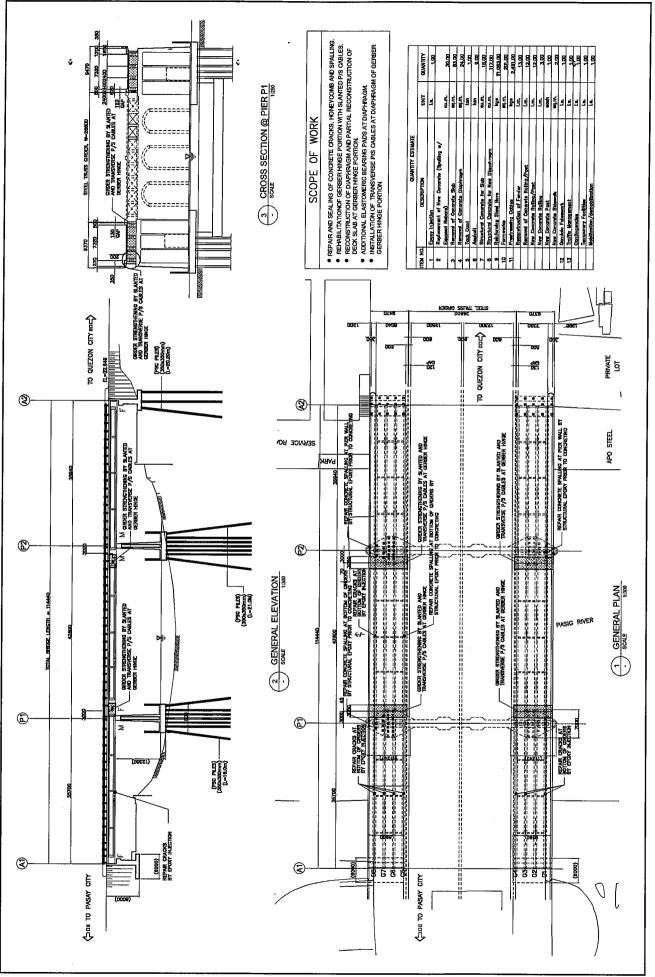
Appendix 23.1.4-4 (6/6) CALCULATION OF CAPACITY-DEMAND RATIO OF SUBSTRUCTURE

Confinement: User-defined; #3 ties with #10 bars, #3 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.824

02/23/04 PCACOL V3.00 - PORTLAND CEMENT ASSOCIATION -14:35:57 Licensed to: KEI, Pasig City, PI

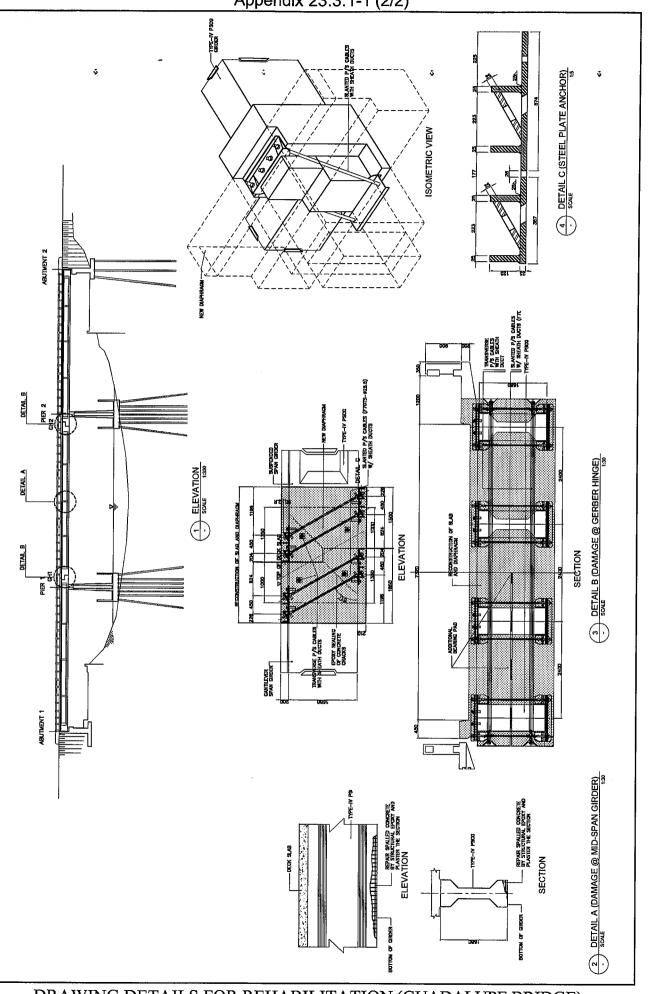
Page 3 GUACOL 2_

Pattern: Irregular Total steel area, As = 78560 mm² at 0.69%


Are	ea mm^2	X (mm)	Y (mm)	Area mm^2	X (mm)	Y (mm)	Area mm^2	X (mm)	Y (mm)
	491	-967	-141	491	-816	-141	491	1842	-141
	491	1691	-141	491	4606	-141	491	4491	-141
	491	4548	-141	491	4548	144	491	4491	144
	491	4606	144	491	1691	144	491	1842	144
	491	-816	144	491	-967	144	491	-4375	-141
	491	-4375	144	491	-4106	-141	491	-4106	144
	491	-3616	-141	491	-3616	144	491	-3878	-141
	491	-3878	144	491	4606	-849	491	4491	-849
	491	4548	-849	491	4548	-423	491	4491	-423
	491	4606	-423	491	1842	-849	491	1691	-849
	491	1691	-423	491	1842	-423	491	2136	-849
	491	2431	-849	491	2725	-849	491	3019	-849
	491	2725	-849	491	3314	-849	491	3608	-849
	491	3902	-849	491	4197	-849	491	4197	-423
	491	3902	-423	491	3608	-423	491	3314	-423
	491	2725	-423	491	3019	-423	491	2725	-423
	491	2431	-423	491	2136	-423	491	-816	-423
	491	-967	-423	491	-967	-849	491	-816	-849
	491	-503	-849	491	-189	-849	491	124	-849
	491 491	437 1377	-849 -849	491	751	-849	491	1064	-849
	491	751	-849	491 491	1377	-423	491	1064	-423
	491	-189	-423	491	437 -503	-423 -423	491 491	124	-423
	491	-1261	-423	491	-1556	-423	491	-3616 -1850	-846 -848
	491	-2144	-848	491	-2439	-848	491	-1850	-848
	491	-3027	-847	491	-3322	-846	491	-3322	-426
	491	-3027	-426	491	-2733	-426	491	-2439	-425
	491	-2144	-425	491	-1850	-424	491	-1556	-424
	491	-1261	-424	491	-4277	-426	491	-4106	-635
	491	-3878	-780	491	-3616	-426	491	-3878	-426
	491	-4106	-426	491	-4106	429	491	-3878	429
	491	-3616	429	491	-3878	782	491	-4106	637
	491	-4277	429	491	-1261	426	491	-1556	426
	491	-1850	427	491	-2144	427	491	-2439	427
	491	-2733	428	491	-3027	428	491	-3322	429
	491	-3322	849	491	-3027	849	491	-2733	849
	491	-2439	850	491	-2144	850	491	-1850	851
	491	-1556	851	491	-1261	851	491	-3616	848
	491	-503	426	491	-189	426	491	124	426
	491	437	426	491	751	426	491	1064	426
	491	1377	426	491	1377	852	491	1064	852
	491	751	852	491	437	852	491	124	852
	491	-189	852	491	-503	852	491	-816	852
	491	-967	852	491	-967	426	491	-816	426
	491	2136	426	491	2431	426	491	2725	426
	491 491	3019	426	491	2725	426	491	3314	426
	491	3608 4197	426 852	491 491	3902	426	491	4197	426
	491	3314	852	491	3902 2725	852 852	491 491	3608	852
	491	2725	852	491	2725	852		3019	852
	491	1842	426	491	1691	426	491 491	2136 1691	852
	491	1842	428 852	491	4606	426	491	4491	852 426
	491	4548	426	491	4548	852	491	4491	426 852
	491	4606	852		-940	220		4491	002
02/23/04				CEMENT ASSO	CIATION -			1	Page 4
		ed to: KE						-	GUACOL

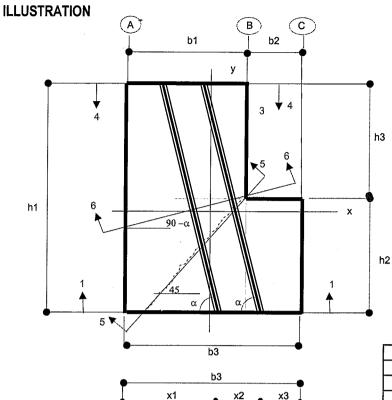
Factored Loads and Moments with Corresponding Capacities: (see user's manual for notation)

No.	Pu kN	Mux kN-m	Muy kN-m	fMnx kN-m	fMny kN-m	fMn/Mu
1	9439.9	32985.3	0.0	23927.1	28.0	0.725
2	9311.5	32985.3	0.0	23835.5	-32.1	0.723
3	9439.9	0.0	0.0	23927.1	28.0	999.999
4	7751.6	13594.9	0.0	22719.3	31.7	1.671
5	7698.7	13594.9	0.0	22680.5	-20.7	1.668
6	7751.6	0.0	0.0	22719.3	31.7	999.999


*** Program completed as requested! ***

(

DRAWINGS DETAILS FOR REHABILITATION (GUADALUPE BRIDGE)


:

(

DRAWING DETAILS FOR REHABILITATION (GUADALUPE BRIDGE)

Appendix 23.3.1-2 (1/16) ANALYSIS OF GERBER HINGE REHABILITATION - GUADALUPE BRIDGE

 $b3/\cos\alpha$

x₽

2

SECTION

(1)

x1

b1 =	1.50	m
b2 =	0.35	m
b3 =	1.85	m
h1 =	1.68	m
h2 =	0.84	m
h3 =	0.84	m
α=	60.00	deg

SECTION 5-6

÷____

b3	Section	1
	t =	0.300
b3	y1 =	0.150
1 <u>x2 x3</u>	y2 =	0.150
	x1 =	1.100
	x2 =	0.400
	x3 =	0.150
	b3 or b1=	1.650
SECTION		

Section	1	4	Unit
t =	0.300	0.300	m
y1 =	0.150	0.150	m
y2 =	0.150	0.150	m
x1 =	1.100	0.130	m
x2 =	0.400	0.400	m
x3 =	0.150	0.770	m
b3 or b1=	1.650	1.300	m

	Section	5	6	Unit
	t =	0.300	0.300	m
	y1 =	0.150	0.150	m
	y2 =	0.150	0.150	m
	x1 =	0.556	0.918	m
	x2 =	0.359	0.346	m
	x3 =	0.245	0.237	m
ba	se, b =	1.160	1.501	m

SECTION PROPERTIES

ŧ

у1

y2

y1

v2

t

(

Section	1	5	6	4	Unit
Area, A	0.495	0.348	0.450	0.390	m²
Dist. from N.A. to edge a, Xa =	0.825	0.580	0.751	0.650	m
Dist. from N.A. to edge c, Xc =	0.825	0.580	0.751	0.650	m
Moment of Inertia, I = t * b^3/12	0.112	0.039	0.085	0.055	
Section modulus @ a, Sa	0.136	0.067	0.113	0.085	m ³
Section modulus @ c, S _c	0.136	0.067	0.113	0.085	m ³

x3

MATERIAL SPECIFICATIONS

Compressive strength of concrete : at time of initial prestress, f'ci at 28th day, f_c Ultimate strength of HTS, f's E

Elastic modulus of HTS, Es	
Nominal area of HTS, A _{ps}	
Jacking stress, 0.70f's	
Number of HTS, N	
.70Pu	

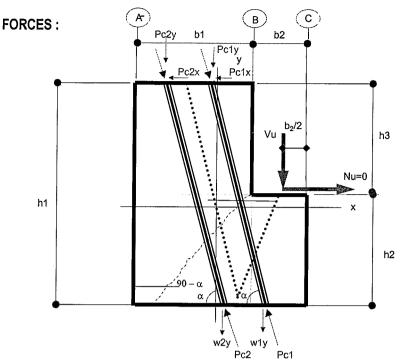
Total number of Prestressing steel =

22.40	Mpa	
28.00	Mpa	
1860.00	Mpa	
195000		
383.90		
1302.00	Mpa	
1	pcs	
499.84	kN	
4	pcs	

= [

=

=


=

=

=

=

Appendix 23.3.1-2 (2/16) ANALYSIS OF GERBER HINGE REHABILITATION - GUADALUPE BRIDGE

Section	1	5	6	4	Unit
Shear reaction due to Dead Load, Wy =	848.22	848.22	848.22	848.22	kN
Shear reaction due to Live Load, VII =	188.38	188.38	188.38	188.38	kN
Impact = (15.21 / 38.1 + L) =	0.19	0.19	0.19	0.19	
Wylocal = sin(90- α) * Wy due to DL	734.58	734.58	734.58	734.58	kN
Wxlocal = $cos(90-\alpha)$ * Wy due to DL	424.11	424.11	424.11	424.11	kN
Wylocal = sin(90-a) * Wy due to DL+LL+i	928.39	928.39	928.39	928.39	kN
Wxlocal = cos(90-α) * Wy due to DL+LL+i	536.01	536.01	536.01	536.01	kN
Effective 0.70Pu	432.87	499.84	499.84	432.87	kN

Assumption :

1) Shear, V are carried equally by the oblique prestress cables since spacing is not far apart.

2) Favorable effects of internal prestress tendon in the girders are neglected.

3) Horizontal force, Nu is neglected due to cable restrainer/or slab made continuous, preventing the horizontal force from developing.

ACTUAL ECCENTRICITY "e"

Section	1	5	6	4	No. of HTS
Distance of c.g. of C1 from edge c =	550 mm	604 mm	583 mm	1170 mm	1
Distance of c.g. of C2 from edge c =	150 mm	245 mm	237 mm	770 mm	1
Ya of strands	350 mm	425 mm	410 mm	970 mm	Total = 2
Eccentricity "e"	475 mm	156 mm	341 mm	-320 mm	

LOSSES

A) Friction and Anchorage Draw-In

Section	1	5	6	4	Unit
Loss due to friction and anchorage draw-in, FS	0.00	0.00	0.00	0.00	Mpa

Note :

-Live End device using SEE (Screw type).

-Tendon profile is straight.

B) Elastic Shortening, ES

$$ES = \frac{0.50E_{s}f_{cir}}{E}$$

where : f_{cir} = Concrete stress at the center of gravity of the prestressing steel due to prestressing force and dead load of beam immediately after transfer, in mpa.

Appendix 23.3.1-2 (3/16) ANALYSIS OF GERBER HINGE REHABILITATION - GUADALUPE BRIDGE

Section	1	5	6	4	Unit
Eci, modulus of elasticity of concrete in mpa at transfer =	22386.45	22386.45	22386.45	22386.45	Mpa
Concrete stress, f _{cir}	3.49	3.49	3.59	3.83	Mpa
Loss due to elastic shortening, ES	15.19	15.21	15.64	16.70	Mpa

C) Concrete Shrinkage, SH

Mean annual ambient relative humidity in percent, RH	=	80.00 %
Loss due to concrete shrinkage, SH	=	0.80(117-1.03

BRH) 92.94 Mpa =

D) Creep of Concrete, CR_c

 $CR_{C} = 12f_{cir} - 7f_{fcds}$ where : $f_{cds} = Concrete stress at center of gravity of the prestressing steel due to all dead loads except the$ dead load present at the time the prestressing force is applied, in Mpa.

Section	1	2	6	4	Unit
Moment due to dead load (w/o beam weight)	0.00	0.00	0.00	0.00	kN-m
Concrete stress, f _{cds}	0.00	3.03	0.00	0.00	Mpa
Loss due to creep of concrete, CR _C	41.86	20.71	43.09	46.01	Mpa

E) Relaxation of Prestressing Steel, CRs

CR_s = 138 - 0.30FR - 0.40ES - 0.20(SH+CR_c) ... for stress relieved strands

Section	1	5	6	4	Unit
Loss due to relaxation of prestressing steel, CR _S	104.96	109.19	104.54	103.53	Мра

F) Effective Prestress at Initial and Final Condition

Section	1	5	6	4	Unit
Initial losses, FR + ES	15.19	15.21	15.64	16.70	Mpa
Effective prestress at initial condition	1286.81	1286.79	1286.36	1285.30	Mpa
Final losses, FR + ES + SH + CR _C + CR _S	254.96	238.04	163.27	166.24	Mpa
Effective prestress at final condition	1047.04	1063.96	1138.73	1135.76	Mpa

CHECK STRESSES

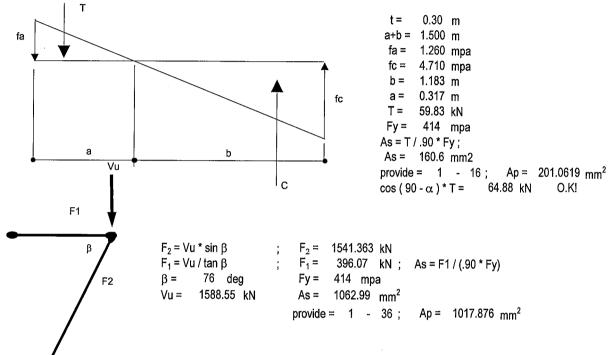
A) Only Prestress Force Acting.

Section	1		5	5	6	3	4	1	Unit
Number of strands, N		2	2	2	2	2	1	2	pcs.
Effective jacking force @ intial condition, Pj	855	5.64	988	.00	987	.67	854	.64	kN
Eccentricity, e	0.475		0.1	56	0.3	41	-0.3	320	m
Stress at edge c, f c	4.71	C	5.12	С	5.18	С	-1.05	T	Мра
Remarks	safe!		safe! safe!		sa	fe!	sa	fe!	
Stress at edge a, f a	-1.26	T	0.87	С	-0.79	Т	5.43	С	Mpa
Remarks	not	safe	sa	fel	sa	fe!	sa	fe!	
Allowable stresses : Compression = 0.55f _{ci} Tension = 1.40 Mpa or 0.25	(f' _{ci}) ^½	=		.32 Mp .18 Mp					

B) If All DL is Acting.

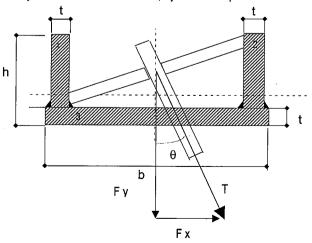
Section	1	1		5		6		ļ	Unit	
Axial Force due to dead load	-424.	-424.11		-367.29 -367.29		7.29	-424	1.11	kŇ	
Number of strands, N	2	2		2 2		2	2	pcs.		
Effective jacking force, Pj	696.2	696.22		816.90		874.32		.21	kN	
Eccentricity, e	0.47	0.475		0.156		41	-0.3	320	m	
Stress at edge c, f c	1.50	С	2.33	С	2.66	С	-0.40	Т	Mpa	
Remarks	safe	safe!		safe! safe!		safe!		safe!		
Stress at edge a, f a	-0.40	Т	0.25	С	-0.41	Т	2.10	С	Mpa	
Remarks	safe	9	saf	e!	sa	fe!	sa	fe!	<u> </u>	

Allowable stresses :	Compression	=	0.40f _c	=	11.20 Mpa
	Tension	=	.50*(fc') ^{.5}	=	-2.65 Mpa


Appendix 23.3.1-2 (4/16) ANALYSIS OF GERBER HINGE REHABILITATION - GUADALUPE BRIDGE

C) Due to All Dead Load and Live Load Plus Impact (Service Condition)

Ć

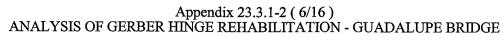

ł,

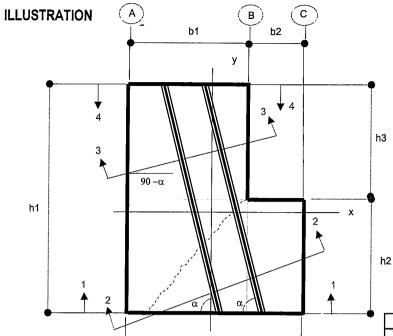
Section	1		5	;	6		4	Ļ	Unit
Axial Force due to DL + LL+i	-518.	30	-268	3.00	-268	.00	-518	3.30	kN
Number of strands, N	2		2)	2		2	2	pcs
Effective jacking force, Pj	696.	22	816	.90	874	32	755	.21	kN
Eccentricity, e	0.47	'5	0.1	56	0.3	41	-0.3	320	m
Stress at edge c, f c	0.980	С	2.846	С	3.179	С	-0.290	Т	Мра
Remarks	safe	9!	saf	e!	saf	e!	sa	ie!	<u> </u>
Stress at edge a, f a	-0.26	Т	0.31	С	-0.49	Т	1.50	С	Мра
Remarks	safe	el	saf	e!	saf	e!	saf	e!	
Allowable stresses : Compression = 0.40f _c		=	11	.20 Mp	а				
Tension = $.50^{*}$ (fc') ⁵		=	-2	.65 Mp	а				

Dimension & Material Properties of steel channel anchorage::

Specified minimum yield stress of structural steel, Fy = 245 mpa

÷____


Appendix 23.3.1-2 (5/16) ANALYSIS OF GERBER HINGE REHABILITATION - GUADALUPE BRIDGE


element	t (mm)	h (mm)	Area (mm2)	y (mm)	A*y (mm3)	Ix = bh3/3 (mm4)	A(Y-y)2 (mm4)
1	22	125	2750	62.5	171875	14322916.67	1236645.978
2	22	125	2750	62.5	171875	14322916.67	1236645.978
3	22	175	3850	11	42350	621133.3333	3533274.221
			9350		386100	29266966.67	6006566.176

Y =	41.29	mm
lx =	35273532.84	mm ⁴
Sx =	854202.36	mm ³

Check bending and shear stress :

F =	499.84]kN	
θ =	30	deg	
0.70Puy =	432.87	kN	
0.70Pux =	249.92	kN	
cantilever arm =	0.15	m	
moment =	64.93	kN-m	
.55Fy =	134.75	mpa	
fb = M/Sx =	76.01	mpa	OK!
Fv = .33Fy	80.85	mpa	
Fv = V / A	78.70	mpa	OK!

b3 b3

x2

-(c2)

(c1) ---

<u>b3 / cos α</u> x2

(2)

SECTION

(1)

х3

xЗ

x1

x1

b1 =	1.50	m
b2 =	0.35	m
b3 =	1.85	m
h1 =	1.68	m
h2 =	0.84	m
h3 =	0.84	m
α=	60.00	deg

SECTION 2-3

:__

Section	1	4	Unit
t=	0.300	0.300	m
y1 =	0.150	0.150	m
y2 =	0.150	0.150	m
x1 =	1.196	0.229	m
x2 =	0.450	0.450	m
x3 =	0.204	0.821	m
b3 or b1=	1.850	1.500	m

	Section	2	3	Unit
	t =	0.300	0.300	m
	y1 =	0.150	0.150	m
	y2 =	0.150	0.150	m
	x1 =	0.347	0.790	m
	x2 =	0.390	0.390	m
	x3 =	0.481	0.553	m
b3/ cos	$s(90 - \alpha) =$	1.218	1.733	m

SECTION PROPERTIES

t

y1

y2

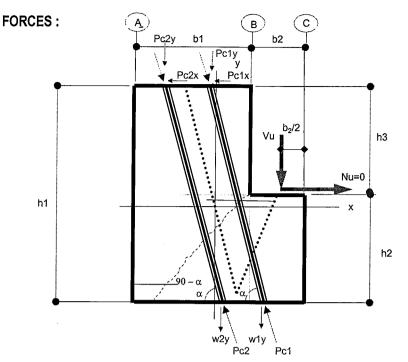
у1

y2

t

(

Ĺ


Section	SECTION 1	2	3	4	Unit
Area, A	0.555	0.365	0.520	0.450	m²
Dist. from N.A. to edge a, Xa =	0.925	0.609	0.867	0.750	m
Dist. from N.A. to edge c, Xc =	0.925	0.609	0.867	0.750	m
Moment of Inertia, I = t * b^3/12	0.158	0.045	0.130	0.084	m ⁴
Section modulus @ a, Sa	0.171	0.074	0.150	0.113	m ³
Section modulus @ c, S _c	0.171	0.074	0.150	0.113	m ³

MATERIAL SPECIFICATIONS

Compressive strength of concrete :
at time of initial prestress, fci
at 28th day, f' _c
Ultimate strength of HTS, fs
Elastic modulus of HTS, E _S
Nominal area of HTS, A _{ps}
Jacking stress, 0.70f's
Number of HTS, N
.70Pu
Total number of Prestressing steel =

=	22.40	Mpa
Π	28.00	Mpa
=	1860.00	Mpa
Ξ	195000	Mpa
=	383.90	mm²
Ξ	1302.00	Мра
=	1	pcs
=	499.84	kN
	4	pcs

Appendix 23.3.1-2 (7/16) ANALYSIS OF GERBER HINGE REHABILITATION - GUADALUPE BRIDGE

Section	1	2	3	4	Unit
Shear reaction due to Dead Load, Wy =	848.22	848.22	848.22	848.22	kN
Shear reaction due to Live Load, VII =	188.38	188.38	188.38	188.38	kN
Impact = (15.21 / 38.1 + L) =	0.19	0.19	0.19	0.19	
Wylocal = sin(90- α) * Wy due to DL	734.58	734.58	734.58	734.58	kN
Wxlocal = $cos(90-\alpha)$ * Wy due to DL	424.11	424.11	424.11	424.11	kN
Wylocal = sin(90- α) * Wy due to DL+LL+i	928.39	928.39	928.39	928.39	kN
Wxlocal = cos(90-α) * Wy due to DL+LL+i	536.01	536.01	536.01	536.01	kN
Effective 0.70Pu	432.87	499.84	499.84	432.87	kN

Assumption :

1) Shear, V are carried equally by the oblique prestress cables since spacing is not far apart.

2) Favorable effects of internal prestress tendon in the girders are neglected.

3) Horizontal force, Nu is neglected due to cable restrainer/or slab made continuous, preventing the horizontal force from developing.

ACTUAL ECCENTRICITY "e"

Section	1	2	3	4	No. of HTS
Distance of c.g. of C1 from edge c =	654 mm	871 mm	943 mm	1271 mm	1
Distance of c.g. of C2 from edge c =	204 mm	481 mm	553 mm	821 mm	1
Ya of strands	429 mm	676 mm	748 mm	1046 mm	Total = 2
Eccentricity "e"	496 mm	-67 mm	119 mm	-296 mm	

LOSSES

A) Friction and Anchorage Draw-In

Section	1	2	3	4	Unit
Loss due to friction and anchorage draw-in, FS	0.00	0.00	0.00	0.00	Мра

Note :

-Live End device using SEE (Screw type).

-Tendon profile is straight.

B) Elastic Shortening, ES

$$ES = \frac{0.50E_{s}f_{cir}}{E}$$

where f_{cir} = Concrete stress at the center of gravity of the prestressing steel due to prestressing force and dead load of beam immediately after transfer, in mpa.

Appendix 23.3.1-2 (8/16) ANALYSIS OF GERBER HINGE REHABILITATION - GUADALUPE BRIDGE

Section	1	2	3	4	Unit
Eci, modulus of elasticity of concrete in mpa at transfer =	22386.45	22386.45	22386.45	22386.45	Mpa
Concrete stress, f _{cir}	2.91	2.84	2.03	2.82	Mpa
Loss due to elastic shortening, ES	12.65	12.35	8.84	12.29	Mpa

C) Concrete Shrinkage, SH

Mean annual ambient relative humidity in percent, RH	=	80.00 %
Loss due to concrete shrinkage, SH	=	0.80(117-1.03

= 0.80(117-1.03RH) = 92.94 Mpa

D) Creep of Concrete, CR_C

 $CR_C = 12f_{cir} - 7f_{cds}$

where : f_{cds} = Concrete stress at center of gravity of the prestressing steel due to all dead loads except the dead load present at the time the prestressing force is applied, in Mpa.

Section	1	2	3	4	Unit
Moment due to dead load (w/o beam weight)	0.00	0.00	0.00	0.00	kN-m
Concrete stress, f _{cds}	0.00	2.67	0.00	0.00	Mpa
Loss due to creep of concrete, CR _c	34.87	15.34	24.37	33.87	Mpa

E) Relaxation of Prestressing Steel, CR_s

$CR_s = 138 - 0.30FR - 0.40ES - 0.20(SH+CR_c)$ for	r stress relieved s	strands			
Section	1	2	3	4	Unit
Loss due to relaxation of prestressing steel, CR _S	107.38	111.40	111.00	107.72	Mpa

F) Effective Prestress at Initial and Final Condition

Section	1	2	3	4	Unit
Initial losses, FR + ES	12.65	12.35	8.84	12.29	Mpa
Effective prestress at initial condition	1289.35	1289.65	1293.16	1289.71	Мра
Final losses, FR + ES + SH + CR _C + CR _S	247.84	232.03	144.21	153.89	Мра
Effective prestress at final condition	1054.16	1069.97	1157.79	1148.11	Мра

CHECK STRESSES

A) Only Prestress Force Acting.

Section	1		2		3		4		Unit
Number of strands, N	2)	2	2	2	2	2		pcs.
Effective jacking force @ intial condition, Pj	857	57.33 990.19		992.88		857.57		kN	
Eccentricity, e	0.4	96	-0.0	67	0.1	19	-0.296		m
Stress at edge c, f c	4.03	С	1.82	С	2.69	С	-0.35	Т	Mpa
Remarks	sat	e!	sat	ie!	sat	ie!	safe!		
Stress at edge a, f a	-0.94	Т	2.17	С	1.13	С	4.16	С	Мра
Remarks	saf	e!	safe!		safe!		safe!		
Allowable stresses : Compression = 0.55f _{ci}		=	12	.32 Mp	a				

Tension = $1.40 \text{ Mpa or } 0.25(f_{ci})^2$

-1.18 Mpa

≕

B) If All DL is Acting.

Section	1	1 2			}	4	1	Unit	
Axial Force due to dead load	-424.11	-424.11 -367		.29	-367.29		-424.11		kN
Number of strands, N	2		2	2 2		2	2		pcs.
Effective jacking force, Pj	700.95		821.52		888	.95	763.42		kN
Eccentricity, e	0.496		-0.067		0.119		-0.296		m
Stress at edge c, f c	1.30 (2	0.83	С	1.42	С	-0.14	Т	Mpa
Remarks	safe!		saf	e!	safe!		safe!		
Stress at edge a, f a	-0.30	Г	1.65	С	0.59	С	1.65	С	Mpa
Remarks	safe!	safe! safe!		safe! safe		fe!			

Allowable stresses : Compression = $0.40f_c$ = 11.20 Mpa Tension = $.50*(fc')^{.5}$ = -2.65 Mpa

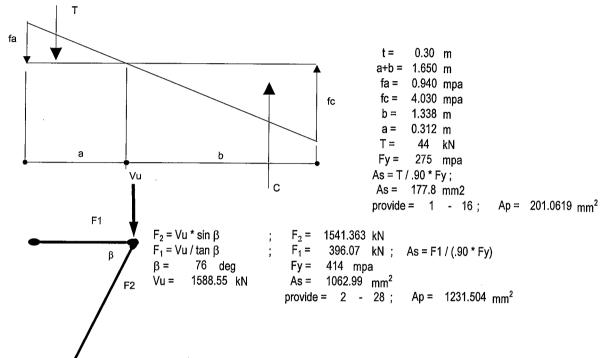
Appendix 23.3.1-2 (9/16) ANALYSIS OF GERBER HINGE REHABILITATION - GUADALUPE BRIDGE

C) Due to All Dead Load and Live Load Plus Impact (Service Condition)

Section	1 2		2	3		4		Unit	
Axial Force due to DL + LL+i	-518.30		-268.00		-268.00		-518.30		kN
Number of strands, N	2 2		2		2		pcs		
Effective jacking force, Pj	700.9	5	821	.52	888.95		763.42		kN
Eccentricity, e	0.496	3	-0.0			-0.2	96	m	
Stress at edge c, f c	0.858	С	1.015	С	1.684	С	-0.100	Т	Мра
Remarks	safe!		saf	e!	sa	fe!	saf	safe!	
Stress at edge a, f a	-0.20	Т	2.01	С	0.70	С	1.19	С	Mpa
Remarks	safe!	safe! safe! safe! safe		e!					
Allowable stresses : Compression = $0.40f_c$		=	11.	.20 Mp	а				•

Allowable stresses : Compression = $0.40f_{c}$ Tension

= .50*(fc')^{.5}

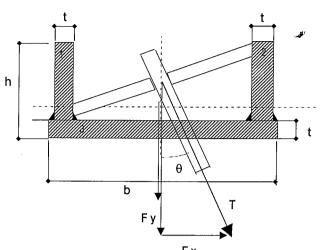

11.20 Mpa

-2.65 Mpa

=

Reinforcement Bars : (Not Applicable)

(

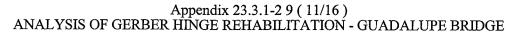

Check Shear at direction perpendicular to cables

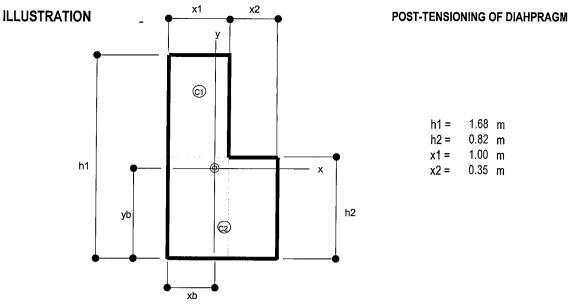
Section	2	3	Unit
Shear, Vu =	397.14	397.14	kN
Vci =	308.73	349.61	kN
Vcw =	826.51	1071.77	kN
Use Vc =	308.73	349.61	kN
Vs = (Vu / φ) - Vc	132.53	91.66	kN
fy =	275	275	Mpa
diameter,d =	10	10	mm
spacing, s =	0.30	0.30	m
Av =	78.54	78.54	mm2
α =	60.00	60.00	deg
d =	1.850	1.500	m
Vs= Av * fy * (sin α) * d / s	230.69	187.05	kN
Remarks	• OK !	OK !	

:_

Dimension & Material Properties of steel channel anchorage::

Specified minimum yield stress of structural steel, Fy = 245 mpa


				F X			
element	t (mm)	h (mm)	Area (mm2)	y (mm)	A*y (mm3)	lx = bh3/3 (mm4)	A(Y-y)2 (mm4)
1	22	125	2750	62.5	171875	14322916.67	1987325.789
2	22	125	2750	62.5	171875	14322916.67	1987325.789
3	22	273	6006	11	66066	968968	3639790.822
			11506		409816	29614801.33	7614442.4


Y =	35.62	mm
. Ix =	37229243.73	mm ⁴
Sx =	1045248.79	mm ³

Check bending and shear stress :

(

F =	499.84	kN	
θ =	30	deg	
0.70Puy =	432.87	kN	
0.70Pux =	249.92	kΝ	
cantilever arm =	0.15	m	
moment =	64.93	kN-m	
.55Fy =	134.75	mpa	
fb = M/Sx =	62.12	mpa	OK!
Fv = .33Fy	80.85	mpa	
Fv = V / A	78.70	mpa	OK!

SECTION PROPERTIES

Section	jt. 17	jt. 336	Unit
Distance from face of support	0.000	1.200	m
Area, A	1.967	1.967	m²
Dist. from N.A. to top, Y _{top}	0.903	0.903	m
Dist. from N.A. to bottom, Y _{bot}	0.777	0.777	m
Moment of Inertia, I	0.456	0.456	m ⁴
Section modulus at top, Stop	0.505	0.505	m³
Section modulus at bottom, Sbot	0.587	0.587	m³

MOMENTS

(

ĺ

Section	jt. 17	jt. 336	Unit
Moment due to selfweight only, M _{sw}	-23.10	11.16	kN-m
Moment due to all dead load (including selfweight), M _{DL}	-166.10	154.16	kN-m
Moment due to live load plus impact, MLL+	-38.64	38.64	kN-m

ACTUAL ECCENTRICITY "e"

	jt. 17		jt. 336	
Section	value	No. of HTS	value	No. of HTS
Distance of c.g. of C1 from bottom	1430 mm	1	1430 mm	1
Distance of c.g. of C2 from bottom	315 mm	1	315 mm	1
Y _{bottom} of strands	873 mm	Total = 2	873 mm	Total = 2
Eccentricity "e"	96 mm		96 mm	

LOSSES

A) Friction and Anchorage Draw-In

Section	jt. 17	jt. 336	Unit
Loss due to friction and anchorage draw-in, FS	0.00	0.00	Mpa

-Live End device using SEE (Screw type).

-Tendon profile is straight.

B) Elastic Shortening, ES

$ES = \frac{0.50E_s f_{cir}}{5}$	where :	f _{cir} = Concrete stress at the center of gravity of the prestressing steel due to prestressing force and
EC E _{ci}		dead load of beam immediately after transfer, in Mpa.

Section	jt. 17	jt. 336	Unit
Moment due to selfweight, M _{sw}	-23.10	11.16	kN-m
Concrete stress, f _{cir}	0.56	0.58	Mpa
Loss due to elastic shortening, ES	2.36	2.46	Mpa

MATERIAL SPECIFICATIONS

Compressive strength of concrete		
at time of initial prestress, f'ci	=	
at 28th day, f _c	=	
Ultimate strength of HTS, f's	=	
Elastic modulus of HTS, E _S	=	
Nominal area of HTS, Aps	Ξ	
Jacking stress, 0.70fs	=	,
Number of HTS, N	=	

1		
:	Value	Unit
=	23.80	Мра
=	28.00	Мра
=	1860.00	Мра
=	195000	Мра
=	383.90	mm²
=	1302.00	Mpa
=	1	pcs

1

Appendix 23.3.1-2 9 (12/16) ANALYSIS OF GERBER HINGE REHABILITATION - GUADALUPE BRIDGE

C) Concrete Shrinkage, SH

Mean annual ambient relative humidity in percent, RH	=	80.00 %
Loss due to concrete shrinkage, SH	Ξ	0.80(117-1.03RH)
	=	92.94 Mpa

D) Creep of Concrete, CR_c

CR_c = 12f_{cir} - 7f_{cds} where : f_{cds} = Concrete stress at center of gravity of the prestressing steel due to all dead loads except the dead load present at the time the prestressing force id applied, in Mpa.

Section	jt. 17	jt. 336	Unit
Moment due to dead load (w/o beam weight)	-143.00	143.00	kN-m
Concrete stress, f _{cds}	0.32	0.23	Mpa
Loss due to creep of concrete, CR _C	4.45	5.40	Mpa

E) Relaxation of Prestressing Steel, CR_S

CRs = 138 - 0.30FR - 0.40ES - 0.20(SH+CRc) ... for stress relieved strands

Section	jt. 17	jt. 336	Unit
Loss due to relaxation of prestressing steel, CR _S	117.58	117.35	Mpa

F) Effective Prestress at Initial and Final Condition

Section	jt. 17	jt. 336	Unit
Initial losses, FR + ES	2.36	2.46	Mpa
Effective prestress at initial condition	1299.64	1299.54	Мра
Final losses, FR + ES + SH + CR _C + CR _S	217.33	218.15	Мра
Effective prestress at final condition	1084.67	1083.85	Мра

CHECK STRESSES

A) Due to Selfweight Only

Section	jt. 1	7	jt. 33	6	Unit
Moment due to selfweight only, M _{sw}	-23.1	0	11.1	6	kN-m
Number of strands, N	2		2		1
Effective jacking force @ intial condition, Pj	997.8	37	997.7	79	kN
Eccentricity, e	0.09	0.096		0.096	
Stress at top, f _{top}	0.650	C	0.718	С	Mpa
Remarks	safe)	safe)	
Stress at bottom, f _{bot}	0.384	С	0.326	С	Mpa
Remarks	safe)	safe)	
Allowable stresses : Compression = 0.55f _{ci}	=	13	.09 Mpa		

= 1.40 Mpa or $0.25(f_{ci})^{\frac{1}{2}}$

Allowable stresses : Compression = $0.55f_{ci}$ Tension

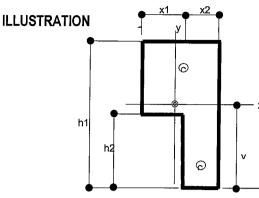
-1.22 Mpa Ξ

B) Due to All Dead Load (including selfweight)

Section	jt. 17	jt. 17		6	Unit
Moment due to all dead load, M _{DL}	-166.1	-166.10		154.16	
Number of strands, N	2	2			
Effective jacking force, Pj	832.8	832.81		832.18	
Eccentricity, e	0.096	0.096		0.096	
Stress at top, f _{top}	0.252	С	0.886	С	Mpa
Remarks	safe	safe		;	
Stress at bottom, f _{bot}	0.571	С	0.025	С	Mpa
Remarks	safe		safe)	

Allowable stresses : Compression = $0.40f_c$

Tension $= 0.50(f_{ci})^{\frac{1}{2}}$


11.20 Mpa = = -2.44 Mpa

Appendix 23.3.1-2 (13/16) ANALYSIS OF GERBER HINGE REHABILITATION - GUADALUPE BRIDGE

C) Due to All Dead Load and Live Load Plus Impact (Service Condition)

Section		jt. 1	7	jt. 33	36	Unit
Moment due to M _{DL} and M _{LL+1} , M _{max}		-204.74		192.80		kN-n
Number of strands, N		2		2		
Effective jacking force, Pj		832.8	31	832.1	18	kN
Eccentricity, e		0.09	6	0.09	6	m
Stress at top, f _{top}		0.175	С	0.962	С	Мра
Remarks		safe	•	safe	9	
Stress at bottom, f _{bot}		0.637	С	-0.041	Т	Мра
Remarks		safe	}	safe)	
Allowable stresses : Compression = 0.40f _c		=	11	.20 Mpa		
Tension = $0.50(f_{ci})^{1/2}$ = -2.44						
Tension = $0.50(T_{ci})^{-1}$		=	-2	.44 мра		
		=	-2	44 мра		
TIMATE FLEXURAL STRENGTH $M_N = \phi [A_s^* f_{su}^* d (1-0.60 \rho^* f_{su}^* / f_c)] \text{ where : } \gamma^* =$.40 φ		44 Mpa 95		
TIMATE FLEXURAL STRENGTH $M_{N} = \phi [A_{s}^{*}f_{su}^{*}d (1-0.60\rho^{*}f_{su}^{*}/f_{c})] \text{ where } \gamma^{*} = f_{su}^{*} = f_{s}^{*} [1-(\gamma^{*}/\beta_{1})(\rho^{*}f_{s}^{*}/f_{c})] \beta_{1} =$			= 0	·	6	Unit
TIMATE FLEXURAL STRENGTH $M_{N} = \phi [A_{s}^{*}f_{su}^{*}d (1-0.60\rho^{*}f_{su}^{*}/f_{c})] \text{ where : } \gamma^{*} = f_{su}^{*} = f_{s} [1-(\gamma^{*}/\beta_{1})(\rho^{*}f_{s}^{*}/f_{c})] \beta_{1} = \frac{\beta_{1}}{\beta_{1}}$ Section		.40 φ .75	= 0	.95		
TIMATE FLEXURAL STRENGTH $M_N = \phi [A_s^* f_{su}^* d (1-0.60\rho^* f_{su}^* / f_c)]$ where : $\gamma^* = f_{su}^* = f_s [1-(\gamma^* / \beta_1)(\rho^* f_s^* / f_c)]$ $\beta_1 =$ SectionWidth of section, bEffective depth of section, d		.40 φ .75 jt. 17	= 0	.95 jt. 33	00	mm
TIMATE FLEXURAL STRENGTH $M_N = \phi [A_s^* f_{su}^* d (1-0.60 \rho^* f_{su}^* / f_c)] \text{ where : } \gamma^* =$.40 φ .75 jt. 17 1000.0	= 0 00 0	.95 jt. 33 1350.(00 i0	mm mm
TIMATE FLEXURAL STRENGTH $M_N = \phi [A_s^* f_{su}^* d (1-0.60\rho^* f_{su}^* / f_c)]$ where : $\gamma^* = f_{su}^* = f_s [1-(\gamma^* / \beta_1)(\rho^* f_s^* / f_c)]$ $\beta_1 =$ Section Width of section, b Effective depth of section, d Total area of prestressing strands, A_s^* Ratio of prestressing steel, $\rho^* = A_s^*/bd$.40 φ .75 jt. 17 1000.0 872.5	= 0 	.95 jt. 33 1350.0 998.5	00 i0 i0	mm mm
TIMATE FLEXURAL STRENGTH $M_N = \phi [A_s^*f_{su}^*d (1-0.60\rho^*f_{su}^*/f_c)]$ where : $\gamma^* = f_{su}^* = f_s [1-(\gamma^*/\beta_1)(\rho^*f_s/f_c)]$ $\beta_1 =$ SectionWidth of section, bEffective depth of section, dTotal area of prestressing strands, A_s^* Ratio of prestressing steel, $\rho^* = A_s^*/bd$ Average stress of prestressing steel at ultimate load, f_{su}^*		.40 φ .75 jt. 17 1000.0 872.5 767.8	= 0 00 0 0 38	.95 jt. 33 1350.0 998.5 767.8	00 60 60 57	mm mm mm ²
TIMATE FLEXURAL STRENGTH $M_N = \phi [A_s * f_{su} * d (1-0.60\rho * f_{su} * / f_c)]$ where : $\gamma^* = f_{su}^* = f_s [1-(\gamma^*/\beta_1)(\rho * f_s / f_c)]$ $\beta_1 =$ Section Width of section, b Effective depth of section, d Total area of prestressing strands, A_s^* Ratio of prestressing steel, $\rho^* = A_s^*/bd$ Average stress of prestressing steel at ultimate load, f_{su}^* Moment capacity, ϕM_N		.40 φ .75 jt. 17 1000.0 872.5 767.8 0.0008	= 0 00 0 0 88 01	.95 jt. 33 1350.0 998.5 767.8 0.0005	00 0 0 57 47	Unit mm mm Mpa kN-n
TIMATE FLEXURAL STRENGTH $M_N = \phi [A_s^* f_{su}^* d (1-0.60\rho^* f_{su}^* / f_c)]$ where : $\gamma^* = f_{su}^* = f_s [1-(\gamma^* / \beta_1)(\rho^* f_s^* / f_c)]$ $\beta_1 =$ SectionWidth of section, bEffective depth of section, d		.40 φ .75 jt. 17 1000.0 872.5 767.8 0.0008 1802.0	= 0 00 0 0 38 01 35	.95 jt. 33 1350.0 998.5 767.8 0.0005 1822.4	00 60 57 47 30	mm mm ² Mpa

Appendix 23.3.1-2 (14/16) ANALYSIS OF GERBER HINGE REHABILITATION - GUADALUPE BRIDGE

SECTION PROPERTIES

Section	jt. 336	jt. 44	Unit
Distance from face of support	0.000	2.400	m
Area, A	1.967	1.967	m²
Dist. from N.A. to top, Y _{top}	0.777	0.777	m
Dist. from N.A. to bottom, Ybot	0.903	0.903	m
Moment of Inertia, I	0.456	0.456	m ⁴
Section modulus at top, Stop	0.587	0.587	m³
Section modulus at bottom, Sbot	0.505	0.505	m³

POST-TENSIONING OF DIAHPRAGM

h1 =	1.68	m
h2 =	0.82	m
x1 =	0.35	m
x2 =	1.00	m

MATERIAL SPECIFICATIONS

Compressive strength of concrete :	Value	Γ
at time of initial prestress, f'ci =	23.80	Ī
at 28th day, $f_c =$	28.00	1
Ultimate strength of HTS, f's =	1860.00	Ī
Elastic modulus of HTS, E _S =	195000	I
Nominal area of HTS, A_{ps} =	383.90	1
Jacking stress, 0.70f' _s =	1302.00	I
Number of HTS, N =	1	I

e:	Value	Unit
=	23.80	Mpa
=	28.00	Мра
11	1860.00	Mpa
=	195000	Мра
=	383.90	mm²
=	1302.00	Mpa
=	1	pcs

1

MOMENTS

Section	jt. 336	jt. 44	Unit
Moment due to selfweight only, M _{sw}	-5.56	-5.56	kN-m
Moment due to all dead load (including selfweight), M _{DL}	-452.56	-125.56	kN-m
Moment due to live load plus impact, MLL+I	-132.36	-148.40	kN-m

ACTUAL ECCENTRICITY "e"

	jt. 3	jt. 336		44
Section	value	No. of HTS	value	No. of HTS
Distance of c.g. of C1 from bottom	1430 mm	1	1430 mm	1
Distance of c.g. of C2 from bottom	315 mm	1	315 mm	1
Y _{bottom} of strands	873 mm	Total = 2	873 mm	Total = 2
Eccentricity "e"	-31 mm		-31 mm	1

LOSSES

(

A) Friction and Anchorage Draw-In

Section	jt. 336	jt. 44	Unit
Loss due to friction and anchorage draw-in, FS	0.00	0.00	Mpa

-Live End device using SEE (Screw type).

-Tendon profile is straight.

B) Elastic Shortening, ES

 $ES = \frac{0.50E_s f_{cir}}{E_{ci}}$ where : f_{cir} = Concrete stress at the center of gravity of the prestressing steel due to prestressing force and dead load of beam immediately after transfer, in Mpa.

Section	jt. 336	jt. 44	Unit
Moment due to selfweight, M _{sw}	-5.56	-5.56	kN-m
Concrete stress, f _{cir}	0.47	0.47	Mpa
Loss due to elastic shortening, ES	1.98	1.98	Мра

C) Concrete Shrinkage, SH

Mean annual ambient relative humidity in percent, RH	=	80.00 %	
Loss due to concrete shrinkage, SH	=	0.80(117-1.03RH)	

= 92.94 Mpa

CR_c = 12f_{cir} - 7f_{cds} where : f_{cds} = Concrete stress at center of gravity of the prestressing steel due to all dead loads except the dead load present at the time the prestressing force id applied, in Mpa.

Section	jt. 336	jt. 44	Unit
Moment due to dead load (w/o beam weight)	-447.00	-120.00	kN-m
Concrete stress, f _{cds}	-0.28	0.30	Mpa
Loss due to creep of concrete, CR _C	7.61	3.49	Mpa

Appendix 23.3.1-2 (15/16) ANALYSIS OF GERBER HINGE REHABILITATION - GUADALUPE BRIDGE

E) Relaxation of Prestressing Steel, CR_S

$CR_{S} = 138 - 0.30FR - 0.40ES - 0.20(SH+CR_{C})$	for stress relieved strands		
Section	jt. 336	jt. 44	Unit
Loss due to relaxation of prestressing steel, CR _S	117.10	117.92	Mpa

F) Effective Prestress at Initial and Final Condition

Section	jt. 336	jt. 44	Unit
Initial losses, FR + ES	1.98	1.98	Mpa
Effective prestress at initial condition	1300.02	1300.02	Mpa
Final losses, FR + ES + SH + CR _c + CR _s	219.63	216.33	Mpa
Effective prestress at final condition	1082.37	1085.67	Мра

CHECK STRESSES

A) Due to Selfweight Only

Section	jt. 33	6	jt. 4	4	Unit
Moment due to selfweight only, M _{sw}	-5.5	5	-5.5	6	kN-m
Number of strands, N	2		2		
Effective jacking force @ intial condition, Pj	998.1	6	998.′	16	k N
Eccentricity, e	-0.03	1	-0.03	31	m
Stress at top, f _{top}	0.446	С	0.446	С	Mpa
Remarks	safe)	safe)	
Stress at bottom, f _{bot}	0.579	С	0.579	C	Mpa
Remarks	safe)	safe)	
Allowable stresses : Compression = 0.55f [*] _{ci}	=	13	3.09 Mpa		
Tension = 1.40 Mpa or $0.25(f_{ci})^{\frac{1}{2}}$	=	-1	.22 Mpa		

B) Due to All Dead Load (including selfweight)

Section	jt. 33		jt. 4	4	Unit
Moment due to all dead load, M _{DL}	-452.	56	-125.56		kN-m
Number of strands, N	2		2		
Effective jacking force, Pj	831.0	831.05		57	kN
Eccentricity, e	-0.03	1	-0.03	31	m
Stress at top, f _{top}	-0.392	Т	0.167	C	Mpa
Remarks	safe)	safe		
Stress at bottom, f _{bot}	1.369	С	0.723	С	Mpa
Remarks	safe		safe)	
Allowable stresses : Compression = 0.40f _c	=	11	.20 Mpa		

Tension = $0.50(f_{c})^{\frac{1}{2}}$

11.20	ivipa
-2.44	Mpa

=

=

C) Due to All Dead Load and Live Load Plus Impact (Service Condition)

Section	jt. 33	6	jt. 44		Unit
Moment due to M _{DL} and M _{LL+I} , M _{max}	-584.9	92	-273.96		kN-m
Number of strands, N	2		2		
Effective jacking force, Pj	831.05		833.5	57	kN
Eccentricity, e	-0.031		-0.03	-0.031	
Stress at top, f _{top}	-0.617	Т	-0.086	Т	Mpa
Remarks	safe	:	safe		
Stress at bottom, f _{bot}	1.631	С	1.017	С	Mpa
Remarks	safe	•	safe	9	
Allowable stresses : Compression = 0.40f _c	=	11	.20 Mpa		

Allowable stresses : Compression = $0.40f_c$ Tension = $0.50(f_{ci})^{\frac{1}{2}}$ 11.20 Mpa -2.44 Mpa

ULTIMATE FLEXURAL STRENGTH

Section	jt. 336	jt. 44	Unit
Width of section, b	1350.00	1350.00	mm
Effective depth of section, d	872.50	746.50	mm
Total area of prestressing strands, A _s *	767.80	767.80	mm²
Ratio of prestressing steel, $\rho^* = A_s^*/bd$	0.00065	0.00076	
Average stress of prestressing steel at ultimate load, f _{su} *	1817.04	1809.79	Mpa
Moment capacity, ϕM_N	1127.04	956.32	kN-m
Ultimate moment, $M_U = 1.30 (M_{DL} + 1.67 M_{LL+})$	875.68	485.41	kN-m
Remarks	safe	safe	

Appendix 23.3.1-2 (16/16) ANALYSIS OF GERBER HINGE REHABILITATION - GUADALUPE BRIDGE

SHEAR BOLT DESIGN

5

Tux = 999.7 kN

use type HSL type as recommended, very good for shear loading.

HILTI HSL-TZ Heavy Duty Anchor

diameter = M24 $F_{30} = 81.00 \text{ kN}$ (Non-cracked concrete)

Influence of Concrete Strength fb (using cube strength)

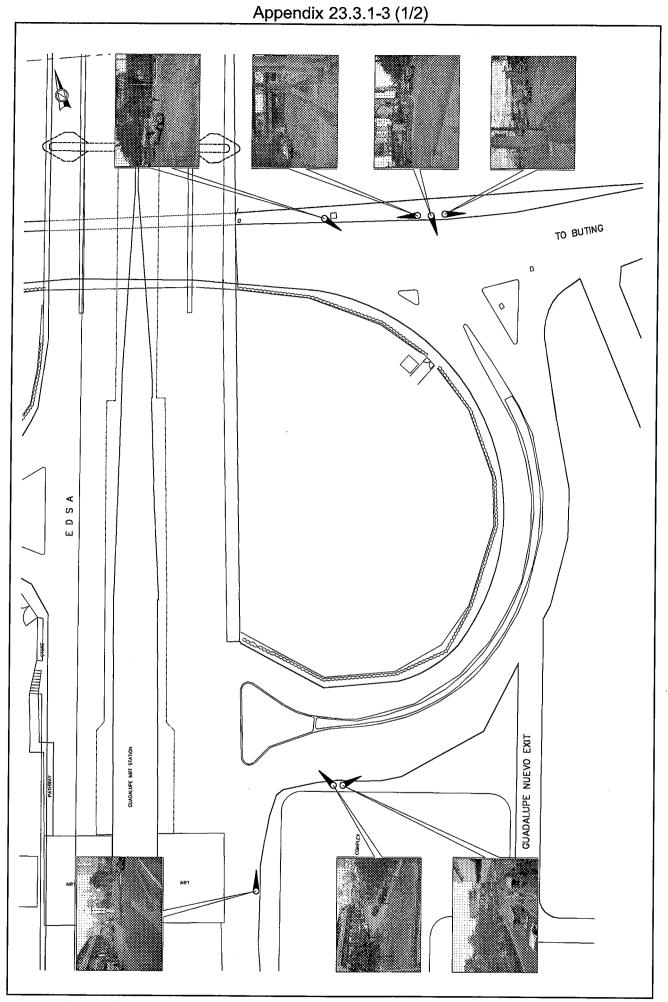
fb = 1 + 0.01 * (1 - α / 90) * (fcc -30); (20 < fcc,act < 55) fcc = 35 N/mm2

 $\begin{array}{ll} \alpha = & 90 \\ \text{fb} = & 1.00 \end{array}$

Influence of depth of embedment

ft = hact / hnom. hact = 155 mm hnom. = 155 mm ff = 1.00

Influence of Anchor Spacing and edge distance fa, fr


s = 250 mm (anchor spacing)

fa = 0.79fr = 1.00 (in the edge of concrete component

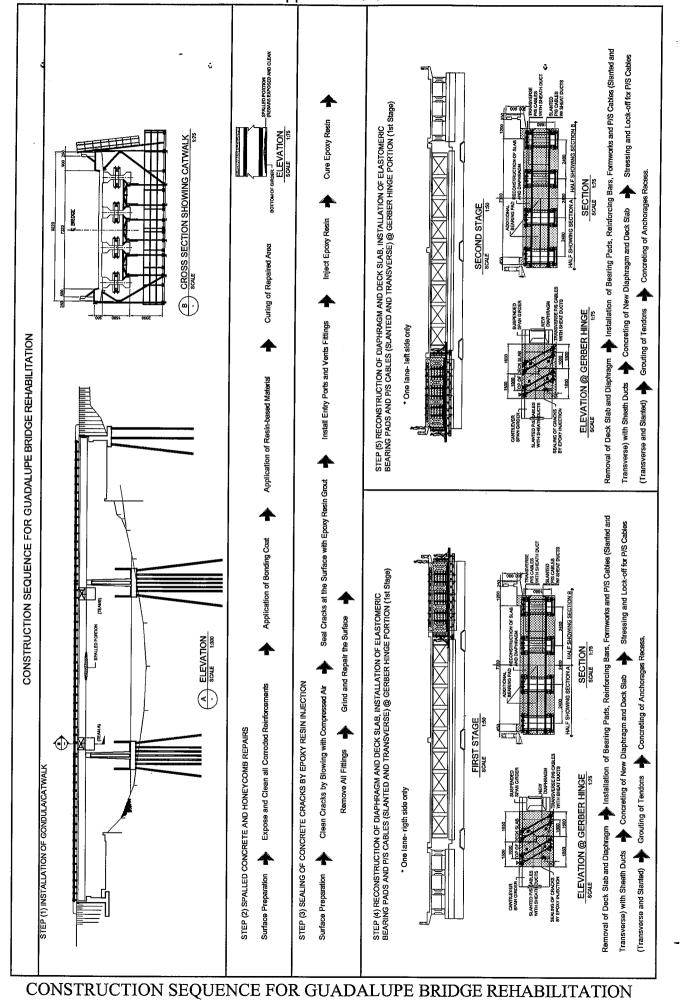
fr = 1.00 (in the edge of concrete component, there must be reinforcement w/c can take up to 0.25 times the anchor load if edge distance is equal to or less than Ccr.

Frec = 63.99 kN

Number of bolts required = 16 - M24

Ć

Ć


ĩ,

Appendix 23.3.1-3 (2/2)

Ş

(

Appendix 23.3.2-1

ŝ

							Componento	
	Description	Cnit	Quantity	Unit Price	Cost	Eoraian		Tavaa
A. Repair/Se	A. Repair/Sealing of Concrete Cracks						LUCAI	GYES
SPL	Epoxy Injection	l.s.	1.00	3,876,789.46	3.876.789.46	2.830.056.31	581 518 42	465 214 74
av	Replacement of New Concrete (Spalling with		5				21.00	F 1.F1 2,00F
B. New Diap	B. New Diaphragm/Concrete Slab/Reconstruction of Fender	<u>6</u>	1.00	100,203,209	80,802,205	3/9,125.30	145,811.42	58,326.97
101(3)	Removal of Concrete Slab	sq.m.	145.00	200.00	72.500.00	47 125 00	15 225 00	10 150 00
101(3)a	Removal of Concrete Diaphragm	cu.m.	40.00	575.00	23,000.00	14.950.00	4 830.00	3 220 00
301(1)	Tack Coat	ton	0.08	25,000.00	1,975.57	1.501.43	197.56	276.58
310	Asphalt	ton	14.00	3,100.00	43,400.00	32,984.00	4.340.00	6.076.00
405(1)a	Structural Concrete for Slab	cu.m.	23.00	4,500.00	103,500.00	67,275.00	21.735.00	14.490.00
405(3)	Structural Concrete for New Diapahragm	cu.m.	159.00	6,000.00	954,000.00	620,100.00	200,340.00	133,560.00
404	Reinforcing Steel Bars	kgs	25,322.00	50.00	1,266,100.00	822,965.00	265,881.00	177.254.00
416(1)	Prestressing Bar with Anchor	kgs	2,384.00	604.27	1,440,589.22	936,382.99	302.523.74	201,682,49
	Transverse P/S Cables	kgs	1,280.00	604.27	773,470.72	502,755.97	162,428,85	108.285.90
	Bearing Pads	each	12.00	15,000.00	180,000.00	117,000.00	37,800.00	25,200.00
C. Guadrail Post	ost							
	Removal of Concrete Railing/Post	l.m.	42.91	150.00	6,436.80	4,183.92	1.351.73	901.15
	Removal of Concrete Sidewalk	sq.m.	18.55	160.00	2,968.00	1,929.20	623.28	415.52
	New Concrete Railing/Post	l.m.	42.91	3,500.00	150,192.00	97,624.80	31.540.32	21.026.88
	New Concrete Railing	H	3.00	1,500.00	4,500.00	2.925.00	945.00	630.00
	New Concrete Post	each	10.00	2,000.00	20,000.00	13,000.00	4.200.00	2 800.00
	New Concrete Sidewalk	sq.m.	20.55	350.00	7,191.52	4.674.49	1.510.22	1 006 81
D. Gondola	D. Gondola and Falsework							10:0001
SР	Gondola and Falsework	l.S.	1.00	5,149,532.35	5,149,532.35	3,501,682.00	926,915.82	720,934.53
E Traffic Manacomont	naramant							
				-				
or L	Litamic Management	l.s.	1.00	1,500,000.00	1,500,000.00	1,065,000.00	225,000.00	210,000.00
F. Contingencies	Icies							
	Contingencies	l.s.	1.00	807,970.77	807,970.77	605,978.07	121,195.61	80.797.08
G. Facilities								
	Temporary Facilities	l.s.	1.00	2,960,034.00	2,960,034.00	1,924,022.10	621,607.14	414,404.76
Materia								
H. Mobilizati	H. Mobilization/Demobilization							
	Mobilization/demobilization	l.s.	1.00	484,782.46	484,782.46	363,586.84	72,717.37	48,478.25
				Total	20,412,202.55	13,956,827.42	3,750,243.48	2,705,131.65
				% Component	100%	68%	18%	120/
				-			2	27

.

$\left(\right)$	dge
	ipe Bri
	Annex I - Construction Cost for Retrofitting of Guadalupe Bridge
	g of G
	ofittin
	or Retr
	Cost fc
	ction (
	onstru
(x - C
Х.,	Anne

A.23 - 72

Appendix 23.3.3-1 BREAKDOWN OF COSTS