Appendix 22.1.4-3 (1/18) CALCULATION OF LOAD RATING

<u>PROJECT TITLE</u>: PASIG-MARIKINA RIVER BRIDGE INSPECTION, LAMBINGAN BRIDGE ITEM: ANALYTICAL ASSESMENT OF BRIDGE STRUCTURAL

EXTERIOR GIRDERS

RATING METHOD: ALLOWABLE STRESS AT INVENTORY LEVEL						
STRESSES	SECTION		SPAN A1 TO P2 / A2 TO SPAN A1 TO P2 / A2 TO P3 P3		SPAN P1 TO P2	
			MIDSPAN	SUPPORT	MIDSPAN	
TDL=PS+DL+SDL	BOTTOM	Mpa	-7.83	6.06	-15.49	
	TOP		-4.75	-13.37	-3.37	
LL (HS20)	BOTTOM Mpa		1.02	1.98	-3.05	
EE (11020)	TOP	mpa	-1.69	-2.54	5.07	
Allowable Stress	Compression	Mpa	-21.00	-21.00	-21.00	
Allowable Stress	Tension	wpa .	2.96	2.96	2.96	
RATING FACTOR	BOTTOM		4.78	-1.57	1.81	
(RF=(Cap-TDL)/LL	TOP		4.55	3.01	1.25	
Equivalent LL(HS20)	RF*(HS20)	tons	145.48	-50.20	39.97	

RATING METHOD: LOAD FACTOR						
FORCES	FORCES SECTIO		SPAN A1 TO P2 / A2 TO P3	SPAN A1 TO P2 / A2 TO P3	SPAN P1 TO P2	
			MIDSPAN	SUPPORT	MIDSPAN	
Moment, DL	+SDL	kN-m	2326.00	8674.00	9060.00	
Moment, L		kN-m	843.16	1805.19	2560.80	
Width of Flar		mm	2000.00	2000.00	2000.00	
Depth of Composit	e Section, d	mm	1325.00	1779.00	1828.87	
Comp. Strength o	f Conc., f _c '	Мра	35.00	35.00 35.00		
Ultimate Stress of P	S Strands., f _s '	Mpa	1862.00	1862.00	1862.00	
Area of PS Stra	nds, A _s *	mm²	4737.60	4737.60	5922.00	
Steel Ratio	, ρ*		0.0018	0.0013	0.0016	
f _{su} *		Mpa	1773.45	1796.05	1781.81	
Neutral Axis, NA	A Bottom	mm	1.29	1.15	1.29	
$R = \phi M_n = \phi A_s * f_{su} * d($	1-0.6p*f _{su} */f _c ')	kN-m	10527.46	14516.86	18343.66	
RATING FACTOR: INVENTORY LE		EVEL	4.10	0.83	1 10	
RF=(R-1.3(DL+SDL))/1.3*1.67LL			4.10	0.03	1.18	
RATING FACTOR: C RF=(R-1.3(DL		.EVEL	6.85	1.38	1.97	

Appendix 22.1.4-3 (2/18) CALCULATION OF LOAD RATING

<u>PROJECT TITLE</u>: PASIG-MARIKINA RIVER BRIDGE INSPECTION, LAMBINGAN BRIDGE ITEM: ANALYTICAL ASSESMENT OF BRIDGE STRUCTURAL

INTERIOR GIRDERS

RATING METHOD: ALLOWABLE STRESS AT INVENTORY LEVEL						
STRESSES	SECTION		SPAN A1 TO P2 / A2 TO P3	SPAN A1 TO P2 / A2 TO P3	SPAN P1 TO P2 MIDSPAN	
			MIDSPAN	SUPPORT		
TDL=PS+DL+SDL	BOTTOM	Mpa	-4.73	5.50	-13.94	
IDE-FOIDE-ODE	TOP	wpa	-7.21	-12.94	-1.33	
LL (HS20)	BOTTOM	Mpa	0.76	1.48	-2.35	
LL (11020)	TOP	wpa	-1.55	-2.27	4.78	
Allowable Stress	Compression	Mpa	-21.00	-21.00	-21.00	
Allowable Stress	Tension	ivipa	2.96	2.96	2.96	
RATING FACTOR	BOTTOM		2.33	-1.72	3.00	
(RF=(Cap-TDL)/LL	TOP		6.58	3.55	0.90	
Equivalent LL(HS20)	RF*(HS20)	tons	74.58	-54.95	28.69	

RATING METHOD: LOAD FACTOR						
FORCES SECTIO		N	SPAN A1 TO P2 / A2 TO P3	SPAN A1 TO P2 / A2 TO P3	SPAN P1 TO P2	
			MIDSPAN	SUPPORT	MIDSPAN	
Moment, DL	+SDL	kN-m	2240.00	8434.00	8772.00	
Moment, L		kN-m	757.73	1577.37	2378.40	
Width of Flar		mm	2000.00	2000.00	2000.00	
Depth of Composit	e Section, d	mm	1325.00	1779.00	1828.87	
Comp. Strength o	of Conc., f _c '	Mpa	35.00	35.00	35.00	
Ultimate Stress of P	S Strands., f _s '	Mpa	1862.00	1862.00	1862.00	
Area of PS Stra	inds, A _s *	mm ²	4737.60	4737.60	5922.00	
Steel Ratio	, ρ*		0.0018	0.0013	0.0016	
f _{su} *		Mpa	1773.45	1796.05	1781.81	
Neutral Axis, NA	A Bottom	mm	1.29	1.15	1.29	
$R = \phi M_{n} = \phi A_{s} * f_{su} * d(s)$	1-0.6p*f _{su} */f _c ')	kN-m	10527.46	14516.86	18343.66	
RATING FACTOR: INVENTORY LEVEL			4.63	1.04	1.34	
RF=(R-1.3(DL+SDL))/1.3*1.67LL						
RATING FACTOR: 0 RF=(R-1.3(DL				2.24		

Appendix 22.1.4-3 (3/18) CALCULATION OF LOAD RATING

EVALUATION FOR PRESTRESSED CONCRETE GIRDER BRIDGE USING ALLOWABLE STRESS

FOR SPAN A1 TO P1 / A2 TO P2 - AT MIDSPAN TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of	Y Bottom of	Y Top of
BEGGINI HON		Inertia (m ⁴)	Girder (m)	Girder (m)
Basic Section				
PSCG Type IV	0.743	0.406	1.044	0.996
Deck Slab	0.400	N/A	N/A	N/A
Diaphragm	0.425	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.100	0.696	1.399	0.841
Live Load MS-18	1.100	.0.696	1.399	0.841

TABLE B: MOMENT DEMAND FOR PRESTRESSED CONCRETE GIRDER (D=1.829M; L=26.000M)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	1449.00
Due to Weight of Girder + Slab +	2071.00
Diaphragm	2071.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	255.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact *Distribution factor	681.00
With Impact	843.16
Load Combination at Service Condition	
DL + (LL+I)	3169.16

l = 100*(15.24 / L + 38) = 24 %

TABLE C: STRESSES AT MIDSPAN FOR PRESTRESSED CONCRETE GIRDER

Allowable Stress in Tension = $0.5 \sqrt{f_c}$ = 2.96 MPa

LOAD DESCRIPTION	STRESSES (MPa)					
	Top Fiber		Bottom Fiber			
Sresses due Dead Loads (Girder+Slab+Diaphragm Weight+Prestressing)	-8.14	С	-4.23	С		
Sresses due to Superimposed Loads	0.31	T	-0.51	С		
Sresses due to all Live Load + Impact	1.02	Т	-1.69	С		

RF = Allowable Stress - (Stress due to Dead Loads + Stress due to Superimposed Loads

Stress due to Live Load + Impact

RF = 4.78 -At Top fiber

RF = 4.55 -At Bottom fiber

Appendix 22.1.4-3 (4/18) CALCULATION OF LOAD RATING

EVALUATION FOR PRESTRESSED CONCRETE GIRDER BRIDGE USING ALLOWABLE STRESS

FOR SPAN A1 TO P1 / A2 TO P2 - AT SUPPORT TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of Inertia (m ⁴)	Y Bottom of Girder (m)	Y Top of Girder (m)
Basic Section				
PSCG Type IV	1.518	0.552	1.051	0.989
Deck Slab	0.400	N/A	N/A	N/A
Diaphragm	0.425	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.874	0.895	1.258	0.982
Live Load MS-18	1.874	0.895	1.258	0.982

TABLE B: MOMENT DEMAND FOR PRESTRESSED CONCRETE GIRDER (D=1.829M; L=26.000M)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	5550.00
Due to Weight of Girder + Slab +	7808.00
Diaphragm	7000.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	866.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact *Distribution factor	1458.00
With Impact	1805.19
Load Combination at Service Condition	
DL + (LL+I)	10479.19

Distribution Factor = S / 1.68 = 1.19 I = 100*(15.24 / L + 38) = 24 %

TABLE C: STRESSES AT SUPPORT FOR PRESTRESSED CONCRETE GIRDER

(D=1.829M; L=26.000M)

Prestressing Force, Pf = 493 Eccentricity:	Prestressing Force, Pf = 4939.99 kN			
For Basic Section =	0.635	m		
For Composite Section :	0.703	m	(Superimposed Loads)	
For Composite Section =	0.703	m	(Live Loads)	
After Transfer:				
f₀'= 35 MPa				

LOAD DESCRIPTION	STRESSES (MPa)					
	Top Fiber		Bottom Fiber			
Sresses due Dead Loads (Girder+Slab+Diaphragm Weight+Prestressing)	5.11	Т	-12.15	С		
Sresses due to Superimposed Loads	0.95	Т	-1.22	С		
Sresses due to all Live Load + Impact	1.98	T	-2.54	С		

RF = Allowable Stress - (Stress due to Dead Loads + Stress due to Superimposed Loads

Stress due to Live Load + Impact

RF = -1.57 -At Top fiber

RF = 3.01 -At Bottom fiber

Appendix 22.1.4-3 (5/18) CALCULATION OF LOAD RATING

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI BRIDGE USING ALLOWABLE STRESS

FOR SPAN P1 TO P2 - AT MIDSPAN TABLE A: SECTION PROPERTIES

DESCRIPTION	Aroo (m ²)	Moment of	Y Bottom of	Y Top of
DESCRIPTION	Area (m²)	Inertia (m ⁴)	Girder (m)	Girder (m)
Basic Section				
PSCG Type VI Modified	0.743	0.406	1.044	0.996
Deck Slab	0.400	N/A	N/A	N/A
Diaphragm	0.425	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.100	0.696	1.399	0.841
Live Load MS-18	1.100	0.696	1.399	0.841

TABLE B: MOMENT DEMAND FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI (D=1.829M; L=46.100M)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	· · · · · · · · · · · · · · · · · · ·
Basic Section	
Due to Weight of Girder	5297.00
Due to Weight of Girder + Slab + Diaphragm	7965.00
Composite Section	
Due to Weight of Superimposed Loads (railing, sidewalk, median and wearing surface)	1095.00
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact *Distribution factor	2134.00
With Impact	2521.17
Load Combination at Service Condition	
DL + (LL+I)	3616.17

Distribution Factor = S / 1.68 = 1.19 I = 100*(15.24 / L + 38) = 18 %

TABLE C: STRESSES AT MIDSPAN FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI (D=1.829M; L=46.100M)

Prestressing Force, P = 7409.99 kN (Assumed: 5-12T 12.7mmØ) Eccentricity: For Basic Section = 0.844 m For Composite Section = 1.199 m (Superimposed Loads) For Composite Section = 1.199 m (Live Loads) After Transfer:

f_' = 35 MPa

Allowable Stress in Compression = 0.60 fc' = -21.00 MPa

Allowable Stress in Tension = $0.5 \sqrt{f_c'}$ = 2.96 MPa

LOAD DESCRIPTION	STRESSES (MPa)			
	Top Fibe	er	Bottom Fi	ber
Sresses due Dead Loads (Girder+Slab+Diaphragm Weight+Prestressing)	-14.17	С	-5.57	С
Sresses due to Superimposed Loads	-1.32	С	2.20	Т
Sresses due to all Live Load + Impact	-3.05	C	5.07	Т

RF = Allowable Stress - (Stress due to Dead Loads + Stress due to Superimposed Loads

Stress due to Live Load + Impact

RF = 1.81 -At top fiber

RF = 1.25 -At bottom fiber

Appendix 22.1.4-3 (6/18) CALCULATION OF LOAD RATING

EVALUATION FOR PRESTRESSED CONCRETE GIRDER BRIDGE USING LOAD FACTOR

FOR SPAN A1 TO P1 / A2 TO P2 - AT MIDSPAN

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m ²)	Moment of	Y Bottom of	Y Top of
		Inertia (m ⁴)	Girder (m)	Girder (m)
Basic Section				
PSCG Type IV	1.38	0.308	0.949	0.88
Deck Slab	0.400	N/A	N/A	N/A
Diaphragm	0.425	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.058	0.551	1.290	0.770
Live Load MS-18	1.058	0.551	1.290	0.770

TABLE B: MOMENT DEMAND FOR PRESTRESSED CONCRETE GIRDER (D=1.829M; L=26.000M)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	1449.00
Due to Weight of Girder + Slab + Diaphragm	2071.00
Composite Section	
Due to Weight of Superimposed Loads (railing, sidewalk, median and wearing surface)	255.00
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	681.00
With Impact	843.16
Load Combination at Service Condition	
DL + (LL+I)	3169.16

Distribution Factor = S / 1.68 = 1.19 I = 100*(15.24 / L + 38) = 24 %

CALCULATION OF MOMENT CAPACITY AT MIDSPAN

CONSIDERING PRESTRESSING STEEL ONLY:

$A_{S}^{*} = 4737.60 \text{ mm}^{2}$	f' _c = 35	MPa f' _s = 1862.00 MPa	b = 2000.00 mm d = 1325.00 mm
ρ* = 0.00179	γ* = 0.40	- for stress-relieved steel	$\beta_1 = 0.80$ - for fc = 35.00 Mpa $\phi = 1.00$
f _{su} * = f _s {1-[(γ*/β ₁)(f _{su} * = 1773.45 MPa	[p*fs/fc)]}		
Compression Block =	$\frac{A_{\rm S}^* f_{\rm su}}{0.85 f_{\rm C} b} =$	141.2 mm < t _{slab} = 200 mm -Cc	onsider rectangular section

 $\phi M_n = \phi A_s^* f_{su}^* d [1 - (0.6 (\rho^* f_{su}^* / f_c)]$

 $\phi M_n = 10527.5 \text{ kN}$

LOAD RATING:

$\gamma_{\rm D} = 1.30$	$\gamma_L = 2.17$ (Inventory Level)	D = 2326.00 kN	LL + I = 843.16 kN-m
	$\gamma_L = 1.30$ (Operating Level)		

Appendix 22.1.4-3 (7/18) CALCULATION OF LOAD RATING

EVALUATION FOR PRESTRESSED CONCRETE GIRDER BRIDGE USING LOAD FACTOR

FOR SPAN A1 TO P1 / A2 TO P2 - AT SUPPORT

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of	Y Bottom of	Y Top of
	,	Inertia (m ⁴)	Girder (m)	Girder (m)
Basic Section				
PSCG Type IV	1.38	0.405	0.885	0.944
Deck Slab	0.400	N/A	N/A	N/A
Diaphragm	0.425	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.694	0.828	1.153	0.876
Live Load MS-18	1.694	0.828	1.153	0.876

TABLE B: MOMENT DEMAND FOR PRESTRESSED CONCRETE GIRDER (D=1.829M; L=26.000M)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	5550.00
Due to Weight of Girder + Slab +	7808.00
Diaphragm	7000.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	866.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	1458.00
With Impact	1805.19
Load Combination at Service Condition	
DL + (LL+I)	10479.19

Distribution Factor = S / 1.68 = 1.19

I = 100*(15.24 / L + 38) = 24 %

CALCULATION OF MOMENT CAPACITY AT SUPPORT

CONSIDERING PRESTRESSING STEEL ONLY:

A _S * = 4737.60 mm²	f ^r c = 35	MPa f _s =1	862.00 MPa b	= 2000.00 mm	d = 1779.00 mm
ρ* = 0.00133	γ* = 0.40	- for stress-reliev	ved steel β_1	= 0.80 - for f'c = 3	5.00 Mpa φ = 1.00

$$\begin{split} &f_{su}{}^{*} = f_{s} \; \left\{ \; 1 - \left[\; \left(\; \gamma^{*} \, / \; \beta_{1} \; \right) \left(\; \rho^{*} \; f_{s}^{'} \, / \; f_{c}^{'} \right) \; \right] \right\} \\ &f_{su}{}^{*} = \; 1796.05 \; \; \text{MPa} \end{split}$$

Compression Block =
$$\frac{A_{S} * f_{su}}{0.85 f_{C} b}$$
 = 143.0 mm < t_{slab} = 200 mm -Consider rectangular section

 $\phi M_n = \phi A_s^* f_{su}^* d [1 - (0.6 (\rho^* f_{su}^* / f_c)]$

 $\phi M_n = 14516.9 \text{ kN-m}$

LOAD RATING:

 $\gamma_D = 1.30$ $\gamma_L = 2.17$ (Inventory Level) D = 8674.00 kN-m LL + I = 1805.19 kN-m $\gamma_L = 1.30$ (Operating Level)

Appendix 22.1.4-3 (8/18) CALCULATION OF LOAD RATING

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI

FOR SPAN P1 TO P2 - AT MIDSPAN

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of	Y Bottom of	Y Top of
	/ #00 (iii)	Inertia (m ⁴)	Girder (m)	Girder (m)
Basic Section				
PSCG Type VI Modified	0.701	0.308	0.949	0.880
Deck Slab	0.400	N/A	N/A	N/A
Diaphragm	0.425	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.058	0.551	1.290	0.770
Live Load MS-18	1.058	0.551	1.290	0.770

TABLE B: MOMENT DEMAND FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI (D=1.829M; L=46.100M)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	5297.00
Due to Weight of Girder + Slab +	7965.00
Diaphragm	7903.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	1095.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	2134.00
With Impact	2560.80
Load Combination at Service Condition	
DL + (LL+I)	3655.80

Distribution Factor = S / 1.68 = 1.19 I = 100*(15.24 / L + 38) = 18 %

CALCULATION OF MOMENT CAPACITY AT MIDSPAN:

CONSIDERING PRESTRESSING STEEL ONLY:

A_{S}^{*} = 5922.00 mm ²	f _c = 35 MP	a f' _s = 1862.00 MPa	b = 2000.00 mm	d = 1828.87 mm
o* = 0.00162	$\gamma^* = 0.40 - fo$	r stress-relieved steel	$\beta_1 = 0.80 - \text{ for f'c} = 33$	5.00 Mpa φ = 1.00

$$\begin{split} f_{su}^{*} &= f_{s} \; \left\{ \; 1 - \left[\; \left(\; \gamma^{*} \, / \, \beta_{1} \; \right) \left(\; \rho^{*} \, f_{s}^{*} \, / \, f_{c} \right) \; \right] \right\} \\ f_{su}^{*} &= \; 1781.81 \; \text{ MPa} \end{split}$$

Compression Block = $\frac{A_{s} * f_{su}}{0.85 f_{c} b}$ = 177.3 mm < t_{slab} = 200 mm -Consider rectangular section

 $\phi M_n = \phi A_s^* f_{su}^* d [1 - (0.6 (\rho^* f_{su}^* / f_c)]$

 $\phi M_n = 18343.7 \text{ kN}$

LOAD RATING:

D = 9060.00 kN LL + I = 2560.80 kN-m

 $\gamma_D = 1.30$ $\gamma_L = 2.17$ (Inventory Level) $\gamma_L = 1.30$ (Operating Level)

 $\frac{\text{INVENTORY LEVEL:}}{\text{RF} = \frac{\phi M_n - \gamma_D D}{\gamma_L (LL+1)}} = 1.18 \qquad \qquad \frac{\text{OPERATING LEVEL:}}{\text{RF} = \frac{\phi M_n - \gamma_D D}{\gamma_L (LL+1)}} = 1.97$

Appendix 22.1.4-3 (9/18) CALCULATION OF LOAD RATING

EVALUATION FOR PRESTRESSED CONCRETE GIRDER BRIDGE USING ALLOWABLE STRESS

FOR SPAN A1 TO P1 / A2 TO P2 - AT MIDSPAN **TABLE A: SECTION PROPERTIES**

DESCRIPTION	Area (m²)	Moment of	Y Bottom of	Y Top of
		Inertia (m ⁴)	Girder (m)	Girder (m)
Basic Section				
PSCG Type IV	0.743	0.406	1.044	0.996
Deck Slab	0.400	N/A	N/A	N/A
Diaphragm	0.425	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.053	0.670	1.367	0.673
Live Load MS-18	1.053	0.670	1.367	0.673

TABLE B: MOMENT DEMAND FOR PRESTRESSED CONCRETE GIRDER (D=1.829M; L=26.000M)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	1446.00
Due to Weight of Girder + Slab +	1985.00
Diaphragm	1900.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	255.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact *Distribution factor	612.00
With Impact	757.73
Load Combination at Service Condition	
DL + (LL+I)	2997.73

I = 100*(15.24 / L + 38) = 24 %

TABLE C: STRESSES AT MIDSPAN FOR PRESTRESSED CONCRETE GIRDER

(D=1.829M; L=26.000M)

(= """"""""""""""""""""""""""""""""""""			
Prestressing Force, Pf = 432	2.49 kN		(Assumed: 5-12T 12.7mmØ)
Eccentricity:			
For Basic Section =	0.381	m	
For Composite Section :	0.449	m	(Superimposed Loads)
For Composite Section =	0.449	m	(Live Loads)
After Transfer:			
f _c '= 35 MPa			

Allowable Stress in Compression = 0.60 fc' = -21.00 MPa Allowable Stress in Tension = 0.5 $\sqrt{f_c}$ = 2.96 MPa

LOAD DESCRIPTION	STRESSES (MPa)				
LOAD DESCRIPTION	Top Fiber		Bottom Fiber		
Sresses due Dead Loads (Girder+Slab+Diaphragm Weight+Prestressing)	-4.99 C		-6.69	С	
Sresses due to Superimposed Loads	0.26	Т	-0.52	С	
Sresses due to all Live Load + Impact	0.76	T	-1.55	С	

RF = <u>Allowable Stress - (Stress due to Dead Loads + Stress due to Superimposed Loads</u>

Stress due to Live Load + Impact

RF = 2.33 -At Top fiber

RF = 6.58 -At Bottom fiber

Appendix 22.1.4-3 (10/18) CALCULATION OF LOAD RATING

EVALUATION FOR PRESTRESSED CONCRETE GIRDER BRIDGE USING ALLOWABLE STRESS

FOR SPAN A1 TO P1 / A2 TO P2 - AT SUPPORT TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of Inertia (m ⁴)	Y Bottom of Girder (m)	Y Top of Girder (m)
Basic Section				
PSCG Type IV	1.518	0.552	1.051	0.989
Deck Slab	0.400	N/A	N/A	N/A
Diaphragm	0.425	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.828	0.858	1.236	0.804
Live Load MS-18	1.828	0.858	1.236	0.804

TABLE B: MOMENT DEMAND FOR PRESTRESSED CONCRETE GIRDER (D=1.829M; L=26.000M)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	5599.00
Due to Weight of Girder + Slab +	7568.00
Diaphragm	7000.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	866.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact *Distribution factor	1274.00
With Impact	1577.37
Load Combination at Service Condition	
DL + (LL+I)	10011.37

Distribution Factor = S / 1.68 = 1.19 I = 100*(15.24 / L + 38) = 24 %

TABLE C: STRESSES AT SUPPORT FOR PRESTRESSED CONCRETE GIRDER

(D=1.829M; L=26.000M)

Prestressing Force, Pf = 493	9.99 kN	(Assumed: 5-12T 12.7mmØ)
Eccentricity:		
For Basic Section =	0.635 r	n
For Composite Section -	0.703 r	n (Superimposed Loads)
For Composite Section :	0.703 n	n (Live Loads)
After Transfer:		
f _c '= 35 MPa		
Allowable Stress in Compr	ression = ().60 f _c ' = -21.00 MPa

Allowable Stress in Tension = $0.5 \sqrt{f_c}$ = 2.96 MPa

LOAD DESCRIPTION	STRESSES (MPa)				
LOAD DESCRIPTION	Top Fiber		Bottom Fiber		
Sresses due Dead Loads (Girder+Slab+Diaphragm Weight+Prestressing)	4.68 T		-11.69	С	
Sresses due to Superimposed Loads	0.81	Т	-1.25	С	
Sresses due to all Live Load + Impact	1.48	Т	-2.27	С	

RF = Allowable Stress - (Stress due to Dead Loads + Stress due to Superimposed Loads

Stress due to Live Load + Impact

RF = -1.72 -At Top fiber

RF = 3.55 -At Bottom fiber

Appendix 22.1.4-3 (11/18) CALCULATION OF LOAD RATING

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI BRIDGE USING ALLOWABLE STRESS

FOR SPAN P1 TO P2 - AT MIDSPAN TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of Inertia (m ⁴)	Y Bottom of Girder (m)	Y Top of Girder (m)
Basic Section				
PSCG Type VI Modified	0.743	0.406	1.044	0.996
Deck Slab	0.400	N/A	N/A	N/A
Diaphragm	0.425	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.053	0.670	1.367	0.673
Live Load MS-18	1.053	0.670	1.367	0.673

TABLE B: MOMENT DEMAND FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI (D=1.829M; L=46.100M)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	5311.00
Due to Weight of Girder + Slab +	7677.00
Diaphragm	1011.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	1095.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact *Distribution factor	1982.00
With Impact	2341.59
Load Combination at Service Condition	
DL + (LL+I)	3436.59

Distribution Factor = S / 1.68 = 1.19l = 100*(15.24 / L + 38) = 18 %

TABLE C: STRESSES AT MIDSPAN FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI (D=1.829M; L=46.100M)

 f_c ' = 35 MPa Allowable Stress in Compression = 0.60 f_c ' = -21.00 MPa

Allowable Stress in Tension = $0.5 \sqrt{f_c}$ = 2.96 MPa

LOAD DESCRIPTION	STRESSES (MPa)				
	Top Fiber		Bottom Fiber		
Sresses due Dead Loads (Girder+Slab+Diaphragm Weight+Prestressing)	-12.84 C		-3.56	С	
Sresses due to Superimposed Loads	-1.10	С	2.23	Т	
Sresses due to all Live Load + Impact	-2.35	С	4.78	Т	

RF = Allowable Stress - (Stress due to Dead Loads + Stress due to Superimposed Loads

Stress due to Live Load + Impact

RF = 3.00 -At top fiber

RF = 0.90 -At bottom fiber

Appendix 22.1.4-3 (12/18) CALCULATION OF LOAD RATING

EVALUATION FOR PRESTRESSED CONCRETE GIRDER BRIDGE USING LOAD FACTOR

FOR SPAN A1 TO P1 / A2 TO P2 - AT MIDSPAN

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of	Y Bottom of	Y Top of	
		Inertia (m ⁴)	Girder (m)	Girder (m)	
Basic Section					
PSCG Type IV	1.38	0.308	0.949	0.88	
Deck Slab	0.400	N/A	N/A	N/A	
Diaphragm	0.425	N/A	N/A	N/A	
Composite Section					
Suprimposed Loads	1.058	0.551	1.290	0.770	
Live Load MS-18	1.058	0.551	1.290	0.770	

TABLE B: MOMENT DEMAND FOR PRESTRESSED CONCRETE GIRDER (D=1.829M; L=26.000M)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	1446.00
Due to Weight of Girder + Slab +	1985.00
Diaphragm	1905.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	255.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	612.00
With Impact	757.73
Load Combination at Service Condition	
DL + (LL+I)	2997.73

Distribution Factor = S / 1.68 = 1.19

I = 100*(15.24 / L + 38) = 24 %

CALCULATION OF MOMENT CAPACITY AT MIDSPAN

CONSIDERING PRESTRESSING STEEL ONLY:

A _S * = 4737.60 mm ²	f _c = 35 MPa f _s = 1862.00 MPa	b = 2000.00 mm d = 1325.00 mm
ρ* = 0.00179	$\gamma^* = 0.40$ - for stress-relieved steel	$\beta_1 = 0.80$ - for f'c = 35.00 Mpa $\phi = 1.00$

Compression Block = $\frac{A_{s} \cdot f_{su}}{0.85 f_{c} b}$ = 141.2 mm < t_{slab} = 200 mm -Consider rectangular section

 $\phi M_n = \phi A_s^* f_{su}^* d [1 - (0.6 (\rho^* f_{su}^* / f_c)]$

 $\phi M_n = 10527.5 \text{ kN}$

LOAD RATING:

 $\gamma_D = 1.30$ $\gamma_L = 2.17$ (Inventory Level) D = 2240.00 kN LL + I = 757.73 kN-m $\gamma_L = 1.30$ (Operating Level)

Appendix 22.1.4-3 (13/18) CALCULATION OF LOAD RATING

EVALUATION FOR PRESTRESSED CONCRETE GIRDER BRIDGE USING LOAD FACTOR

FOR SPAN A1 TO P1 / A2 TO P2 - AT SUPPORT

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of	Y Bottom of	Y Top of
DESCRIPTION	Area (m²)	Inertia (m ⁴)	Girder (m)	Girder (m)
Basic Section				
PSCG Type IV	1.38	0.405	0.885	0.944
Deck Slab	0.400	N/A	N/A	N/A
Diaphragm	0.425	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.694	0.828	1.153	0.876
Live Load MS-18	1.694	0.828	1.153	0.876

TABLE B: MOMENT DEMAND FOR PRESTRESSED CONCRETE GIRDER (D=1.829M; L=26.000M)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	5599.00
Due to Weight of Girder + Slab +	7568.00
Diaphragm	7000.00
Composite Section	
Due to Weight of Superimposed Loads	
(railing, sidewalk, median and wearing	866.00
surface)	
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	1274.00
With Impact	1577.37
Load Combination at Service Condition	
DL + (LL+I)	10011.37

Distribution Factor = S / 1.68 = 1.19 I = 100*(15.24 / L + 38) = 24 %

CALCULATION OF MOMENT CAPACITY AT SUPPORT

CONSIDERING PRESTRESSING STEEL ONLY:

$A_{S}^{*} = 4737.60 \text{ mm}^{2}$	f' _c = 35 MPa f' _s = 1862.00 MPa	b = 2000.00 mm d = 1779.00 mm
ρ* = 0.00133	$\gamma^* = 0.40$ - for stress-relieved steel	$\beta_1 = 0.80$ - for fc = 35.00 Mpa $\phi = 1.00$

 $\begin{array}{l} f_{su}{}^{*} = f_{s} & \{1 - [(\gamma^{*} / \beta_{1}) (\rho^{*} f_{s} / f_{c})]\} \\ f_{su}{}^{*} = & 1796.05 \ \text{MPa} \end{array}$

Compression Block = $\frac{A_{s} * f_{su}}{0.85 f_{c} b}$ = 143.0 mm < t_{slab} = 200 mm -Consider rectangular section

 $\phi M_{n} = \phi A_{s}^{*} f_{su}^{*} d \left[1 - (0.6 (\rho^{*} f_{su}^{*} / f_{c})) \right]$

φM_n = 14516.9 kN-m

LOAD RATING:

 $\gamma_D = 1.30$ $\gamma_L = 2.17$ (Inventory Level) D = 8434.00 kN-m LL + I = 1577.37 kN-m $\gamma_L = 1.30$ (Operating Level)

Appendix 22.1.4-3 (14/18) CALCULATION OF LOAD RATING

EVALUATION FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI

FOR SPAN P1 TO P2 - AT MIDSPAN

TABLE A: SECTION PROPERTIES

DESCRIPTION	Area (m²)	Moment of	Y Bottom of	Y Top of
BESCRIFTION	Alea (III-)	Inertia (m ⁴)	Girder (m)	Girder (m)
Basic Section				101010000000000000000000000000000000000
PSCG Type VI Modified	0.701	0.308	0.949	0.880
Deck Slab	0.400	N/A	N/A	N/A
Diaphragm	0.425	N/A	N/A	N/A
Composite Section				
Suprimposed Loads	1.058	0.551	1.290	0.770
Live Load MS-18	1.058	0.551	1.290	0.770

TABLE B: MOMENT DEMAND FOR SIMPLY SUPPORTED PRESTRESSED CONCRETE GIRDER TYPE VI (D=1.829M; L=46.100M)

DESCRIPTION	MIDSPAN
Dead Load Moment per Girder (kN-m)	
Basic Section	
Due to Weight of Girder	5311.00
Due to Weight of Girder + Slab + Diaphragm	7677.00
Composite Section	
Due to Weight of Superimposed Loads (railing, sidewalk, median and wearing surface)	1095.00
MS-18 Live Load Moment per Girder (kN-m)	
Without Impact	1982.00
With Impact	2378.40
Load Combination at Service Condition	
DL + (LL+I)	3473.40

Distribution Factor = S / 1.68 = 1.19 $I = 100^{*}(15.24 / L + 38) = 18 \%$

CALCULATION OF MOMENT CAPACITY AT MIDSPAN:

CONSIDERING PRESTRESSING STEEL ONLY:

A_{S}^{*} = 5922.00 mm ²	f' _c = 35	MPa f _s = 1862.00 MPa	b = 2000.00 mm d = 182	8.87 mm
ρ* = 0.00162	γ* = 0.40	- for stress-relieved steel	$\beta_1 = 0.80$ - for fc = 35.00 Mpa	φ = 1.00

 $f_{su}^{*} = f_{s}^{*} \{ 1 - [(\gamma^{*} / \beta_{1}) (\rho^{*} f_{s}^{*} / f_{c}^{*})] \}$ f_{su}* = 1781.81 MPa

Compression Block = $\frac{A_{s} * f_{su}}{0.85 f_{c} b}$ = 177.3 mm < t_{slab} = 200 mm -Consider rectangular section

 $\phi M_n = \phi A_s^* f_{su}^* d [1 - (0.6 (\rho^* f_{su}^* / f_n^*)]$ $\phi M_n = 18343.7 \text{ kN}$

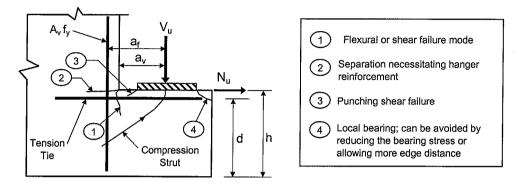
LOAD RATING:

D = 8772.00 kN LL + I = 2378.40 kN-m $\gamma_{\rm D} = 1.30$ $\gamma_L = 2.17$ (Inventory Level)

 $\gamma_L = 1.30$ (Operating Level)

OPERATING LEVEL: INVENTORY LEVEL: $\frac{\text{INVENTORY LEVEL:}}{\text{RF} = \frac{\phi M_n - \gamma_D D}{\gamma_L (LL+1)}} = 1.34 \qquad \qquad \text{RF} = \frac{\phi M_n - \gamma_D D}{\gamma_L (LL+1)} = 2.24$

Appendix 22.1.4-3 (15/18) CALCULATION OF LOAD RATING - GERBER HINGE


PROJECT TITLE: PASIG-MARIKINA RIVER BRIDGE INSPECTION LAMBINGAN BRIDGE

ITEM: LIVE LOAD RATING

BEAM LEDGE CAPACITY INVESTIGATION FOR GERBER HINGE

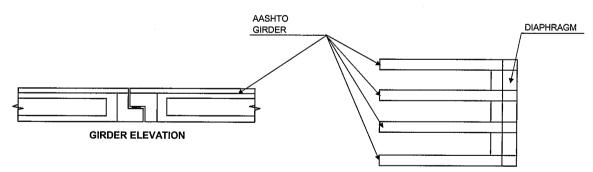
1. BEAM LEADGE FAILURE MECHANISM

Beam ledges have to be designed for overall member actions and local failure modes as follows:

Failure Modes and Potential Cracks

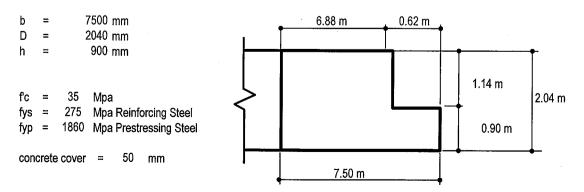
Forces and actions acting on the ledge includes shear (Vu), horizontal tensile force (Nuc), and moment (Mu):

Vu = Factored Shear (Dead load + Live load + Impact)

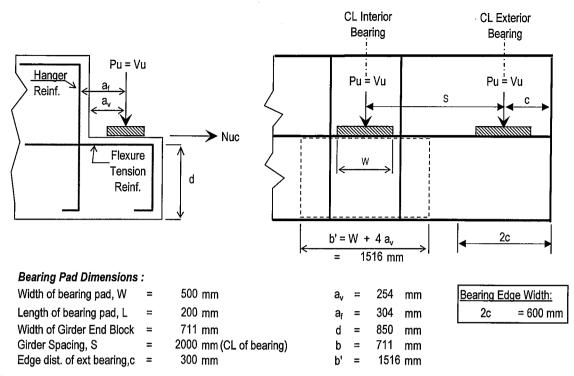

Nuc & 0.2Vu, but less than 1.0Vu

 $Mu = Vu (a_f) + Nu (h-d)$

a_f = Flexural moment arm; distance from reaction centerline to centerline of hanger reinforcement

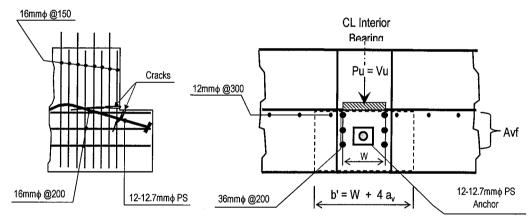

h - d = Moment arm for the horizontal load, Nuc

GERBER HINGE LAYOUT



GIRDER PLAN LAYOUT

2. DIMENSION AND PROPERTIES OF LEDGE:



Appendix 22.1.4-3 (16/18) CALCULATION OF LOAD RATING - GERBER HINGE

3. SHEAR FRICTION

(

Reinforcements Provided

Location	Bar Φ, mm	No. Pcs.	Area, mm ²
Interior	20	22.00	6911.5
Exterior	20	22.00	6911.5
Note: 10-¢	36 diagonal ba	ars are incl	iuded (7-φ36 eq.)

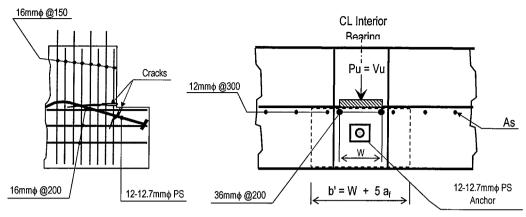
μ	=	friction coefficient			=	1.40
b'	=	W+4a _b	=	1516	mm	1

Contribution of Prestressing Tendons:

Prestress, As (12-d12.7)	=	3553	mm ²	
Equiv. Rebar, As'	=	21629	mm ²	
Effective Area of PS	=	5197	mm ²	(2-tendons)
$\theta = 6.9 \text{ deg}$				

Ledge Capacity Under Shear Friction:

For Interior Bearing:


$a_v / d = 0.30$	=	1	
Vu	=	7667	kN
Vu 头- փµ A _{vf} fy	=	2262	kN
With Prestress, Vu	=	3962	kN

For Exterior Bearing:

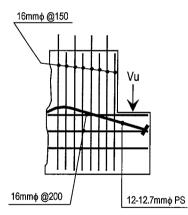
	a _v /d	=	0.30	' =	1	
Vu	گر	c) (K)	(d)	=	3035	kN
Vu	Տ, φμ Α _{vf} i	fy		=	2262	kN
Wit	h Prestress,	Vu		=	3962	kN
	K	=	2c	=	600	mm

Appendix 22.1.4-3 (17/18) CALCULATION OF LOAD RATING - GERBER HINGE

4. FLEXURE

Reinforcements Provided

Location	Bar Φ, mm	No. Pcs.	Area, mm ²
Interior	20	10.00	3141.6
Exterior	20	10.00	3141.6


Note: 10-\u00f36 diagonal bars are included (5-\u00f436 eq.)

Prestressing :

Ap = $12-\phi 12.7$ mm = 3553.2 mm² Equiv. Rebar, As' 24033 mm² Effective Area of PS = 21260 mm² θ = 10.6 deg

W + 5a_f = 2020 mm 2c = 600 mm

5. HANGER REINFORCEMENT

Reinforcements Provided

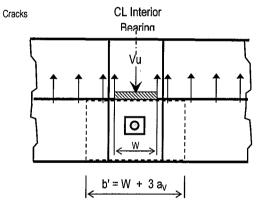
Location	Bar Φ, mm	No. Pcs.	Area, mm ²
Interior	20	20.00	6283.2
Exterior	20	20.00	6283.2

Note: 10-\u00f36 diagonal bars are included (25-\u00f416 eq.)

Contribution	of Prest	ressing	Tendons:

Prestress, As (12-d12.7)	=	1184	mm ²
Equiv. Rebar, As'	=	7210	mm ²
Effective Area of PS	Ξ	2652	mm ³
$\theta = 10.6 \deg$			

Ledge Capacity Under Flexure:


		_ `	. .	
Reinfor	cina.	Bars	()niv	

romoromy bare only			
Strength:	Interiror	=	1590 kN
Vu → ∳ Af fy jd /[af +0.2(h-d)]	Exterior	=	1590 kN

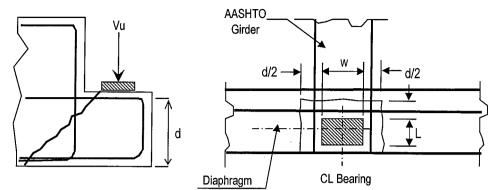
As	ଚ୍ଚ 2(A _{vf})/3 + An =		4609 n	nm² N	IOT OK
As	& ρmin (W + 5af)(d)	=	8741	mm ²	NOT OK
	ρmin = 0.04(fc/fy)	=	0.0051		

Reinforcing Bars Plus Prestressing Bars

Strength	Interiror	=	12352 kN
Vu み ∳ Af fy jd /[af +0.2(h-d)]	Exterior	=	12352 kN

Ledge Capacity Under Hanger Tension:

Reinforcing Bars Only

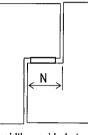

Strength	į Vu	=	φ Av fy S / s	Interior Exterior	= '	1469 kN 1469 kN
Servicea		0.5		Interior	=	864 kN
V	= Av (0.5	fy) (W+3a) / s	Exterior	=	864 kN

Reinforcing Bars Plus Prestressing Bars

<u>Strength</u>	Vu	=	φ Av fy S / s	Interior Exterior	=	2089 kN 2089 kN
<u>Serviceabi</u> V =		0.5	fy) (W+3a) / s	Interior Exterior	= =	1229 kN 1229 kN

Appendix 22.1.4-3 (18/18) CALCULATION OF LOAD RATING - GERBER HINGE

6. PUNCHING SHEAR


Allow. Tensile Strength for Puching = 0.33 √ fc = 1.95 MPa

Ledge Capacity Under Punching Shear:

 Interior Bearing:
 Vu
 3 + φ (0.33 √ fc)(W+2L'+2d)(d)
 =
 3136 kN

 Exterior Bearing:
 Vu
 3 + φ (0.33 √ fc)(W+L'+d)(d)
 =
 1859 kN

7. AVAILABLE SEAT WIDTH

From AASHTO 7.3.1 DIVISION 1A

- $N = (305 + 2.5L + 10H)(1 + 0.000125S^{2})$
- L = length in meters of the bridge deck to the adjacent expansion joint
- S = angle of skew of support in degrees measured from a line normal to the span.
- H = is the column or pier average height in meters

Seat width provided at gerber hinge = 800 mm

- L = 37.5 m (Total length of deck from expansion joint to the of the expansion)
- S = 0 degrees
- H = 5.3 m (Average Height of Column at Main Bridge)
- $N = (305 + 2.5L + 10H)(1 + 0.000125S^{2})$
- N = 451.75 mm OK, Seat Width Sufficient

8. SUMMARY OF CAPACITY

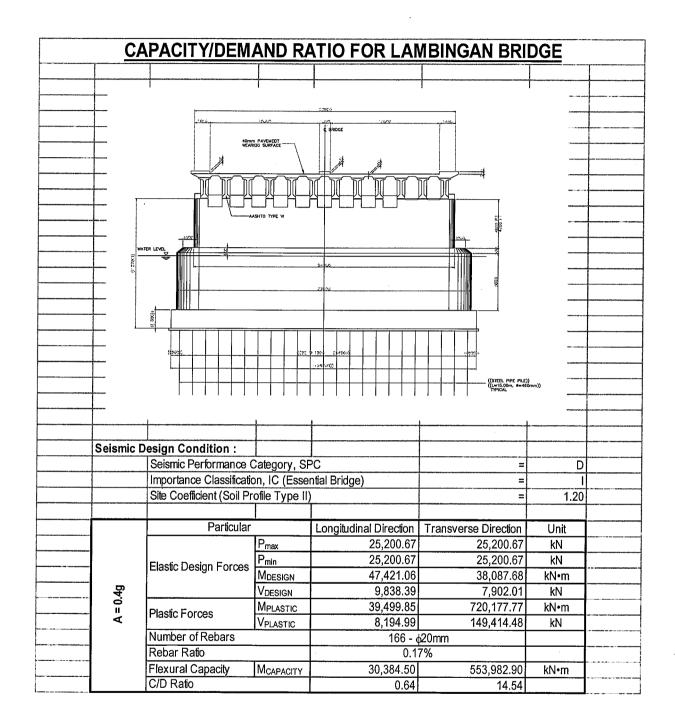
Demand / Reaction:

emand / Reaction:						Load Factors (Service)			Load Factors		
	EXT		INT		· · ·	γ_{D} Dead Load	=	1.00	$\gamma_{\rm D}$ Dead Load	=	1.30
Dead Load =	878.0	kN	856.0	kN		γ_{L} Inventory	=	1.00	γ _L Inventory	=	2.17
Live Load =	213.3	kN	259.2	kN		γ_L Operating	=	1.00	γ_L Operating	=	1.30

Calculated Capacity (Load Factor)

Girder	Shear Friction		Fle	xure	Har	nger	Punching
Location	Rebar	W/ PS	Rebar	W/PS	Rebar	W/ PS	Shear
Interior	2262	3962	1590	12352	1469	2089	3136
Exterior	2262	3962	1590	12352	1469	2089	1859

Load Rating:

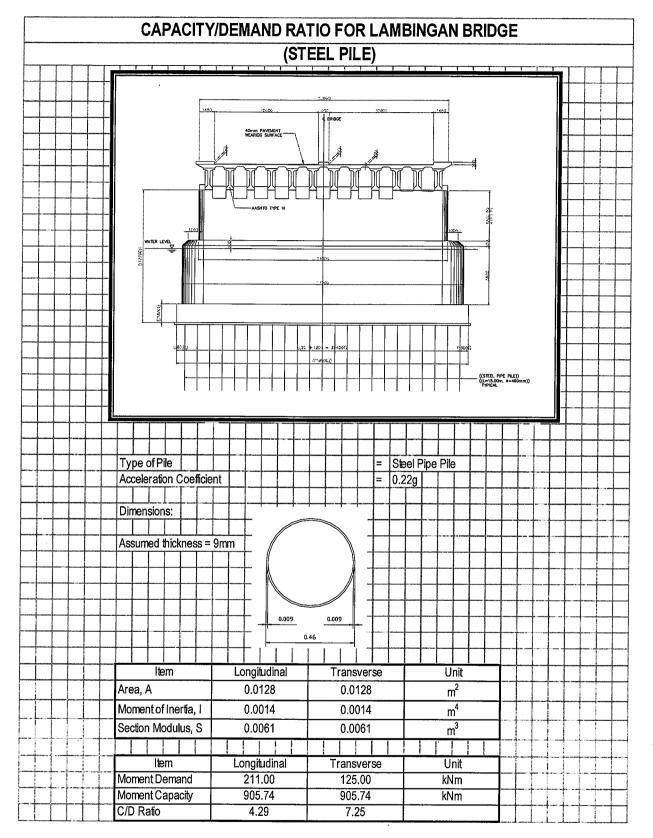

By Serviceability State Limit Method:

	Considering Reinforcing Bars Only			Reinforcing Bars Plus Prestress				
Girder	Inventory			·	nventory			
Location	RF	LL _{EQUIV} (HS20)		RF	LL _{EQUIV} (HS20)			
Interior	2.36	77.3 tons		4.76	155.5 tons			
Exterior	2.77	90.6 tons		1.55	50.7 tons			

Load Rating:

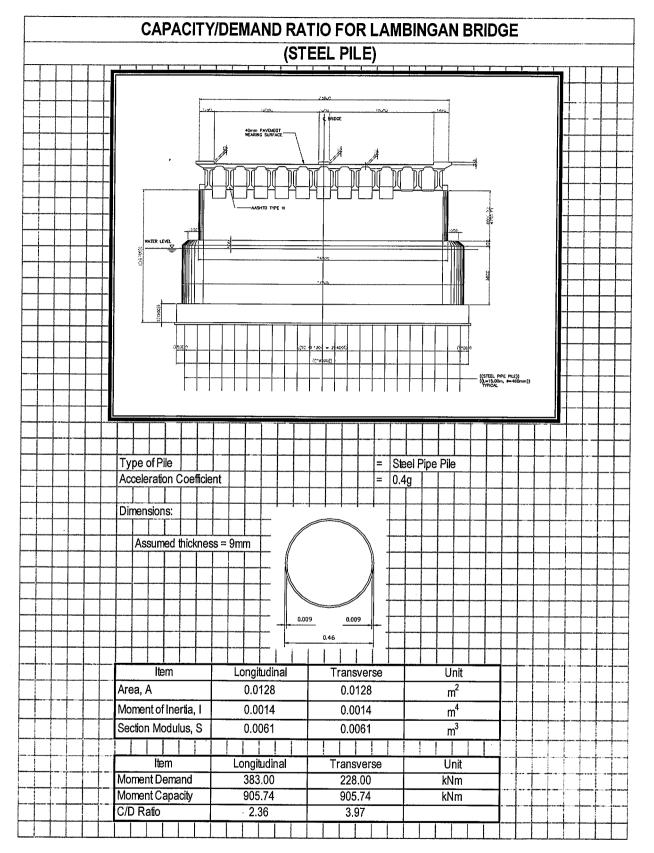
By Load Factor Method:

	Considering Reinforcing Bars Only					Reinforcing Bars Plus Prestress				
Girder		iventory		perating	Inventory		Operating			
Location	RF	LL _{EQUIV} (HS20)	RF	LL _{EQUIV} (HS20)	RF	LL _{EQUIV} (HS20)	RF	LL _{EQUIV} (HS20)		
Interior	0.63	20.7 tons	1.06	34.5 tons	1.74	56.7 tons	2.90	94.7 tons		
Exterior	0.71	23.1 tons	1.18	38.6 tons	1.55	50.7 tons	2.59	84.6 tons		



(

Appendix 22.1.4-4 (2/12) CALACULATION OF CAPACITY-DEMAND RATIO OF PIER WALL


			EDESTAL)			
			1955			
			1995			
			¢ seoce			
		ו זון ד				
				NIL		
			┍山┍╴┍╶┍╴			•
				3		
						·
-			27.02	e e e e e e e e e e e e e e e e e e e		
-		······				
-						
-						
	((502)	f=22	9 :227 - 28:333))	1/2007		
			((2890))		、 I	
				((STEEL PIPE PILE) ((L=15.00m, #=46 TYPICAL	0mm))	
-						-
			1	1		
Seismic D	esign Condition :	<u> </u>				Landowan Black and
	Seismic Performance (=	D	
	Importance Classification			=		
	Site Coefficient (Soil Pr	ofile Type II) T	=	1.20	
	Particular	1	Longitudinal Direction	Transverse Direction	Unit	
	Particular P _{max}		44,974.38		kN	
	Elastic Design Forces	P _{min}	44,974.36		kN	
.4g	Elastic Design Forces	MDESIGN	113,767.80		kN•m	
ø		VDESIGN	23,603.28		kN	
stal	Plastic Forces	MPLASTIC	224,907.02		kN•m	
Pedestal @ 0.4g	Number of Rebars (As		46,661.21	233,409.74	kN	
Ľ.	Rebar Ratio	sun c u)		ф20mm)5%		
	Flexural Capacity	MCAPACITY	173,005.40		kN•m	
	C/D Ratio		1.52			
	Particular		Longitudinal Direction	Transverse Direction	Unit	
		P _{max}	44,974.38		kN	
		P _{min}	44,974.36		kN -	
p	Elastic Design Forces		62,572.31			
0.22		MDESIGN			kN•m	ar haadii waxaa
8		VDESIGN	12,981.81	11,285.46	kN	
esta	Plastic Forces	Mplastic	224,907.02		kN•m	
ede			46,661.21	233,409.74	kN	
ĕ	NUMBER OF PARAMA / AA	eumod)		10/0 0000		
	Number of Rebars (As Rebar Ratio	sumeu)	198 - 0			
	Rebar Ratio		0.0	5%		
		MCAPACITY		5% 865,411.50	kN•m	

Appendix 22.1.4-4 (3/12) CALCULATION OF CAPACITY-DEMAND RATIO OF PILE FOUNDATION

(

Appendix 22.1.4-4 (4/12) CALCULATION OF CAPACITY-DEMAND RATIO OF PILE FOUNDATION

Appendix 22.1.4-4 (5/12) CAPACITY-DEMAND RATIO OF PIER WALL

ANALYSIS OF WALL-PIER

SEISMIC DESIGN CRITERIA

Acceleration Coefficient, A =	0.20	Importance Classification, IC (Essential Brdg)	=	l (i or ii)
Seismic Performance Category, SPC =	С	Site Coefficient, : (Soil Profile Type II)	=	1.20
ELASTIC SEISMIC FORCES				

From STAAD-III Multi-Modal Dynamic Analysis

	LONGITUDINAL		TRANS		
	SHEAR MOMENT kN kN-m		SHEAR	MOMENT	AXIAL
			kN	kN-m	kN
DEAD LOAD	0.00	0.02	0.00	0.00	25,200.67
LONG EQ	12,421.51	69,597.48	0.00	0.00	0.00
TRAN EQ 0.00		0.00	5,886.97	31,854.79	0.00

LOAD COMBINATION

Load Case 1 = 1.0 LONG EQ + 0.3 TRAN EQ

Load Case 2 = 0.3 LONG EQ + 1.0 TRAN EQ

	LONGIT	UDINAL	TRANS		
	SHEAR	MOMENT	SHEAR	MOMENT	AXIAL
	kN	kN-m	kN	kN-m	kN
Load Case 1	12,421.51	69,597.48	1,766.09	9,556.44	0.00
Load Case 2	Case 2 3,726.45 20,879.24		5,886.97	31,854.79	0.00

GROUP LOADING OF DESIGN FORCES

Group Load = 1.0 (D + B + SF + E + EQ)

	LONGIT	UDINAL	TRANS	AXIAL			
	SHEAR	MOMENT	SHEAR	MOMENT	max	min	
	kN	kN-m	kN	kN-m	kN	kN	
Load Case 1	12,421.51	69,597.50	1,766.09	9,556.44	25,200.67	25,200.67	
Load Case 2	3,726.45	20,879.26	5,886.97	31,854.79	25,200.67	25,200.67	

MODIFIED DESIGN FORCES

Group Load = 1.0 (D + EQ / R)

R = 2 (for wall-pier)*** R = 3 (for single column)

*** Check H / Dmax < 2.5

R applied only to	applied only to LONGITUDIN		TRANS	VERSE	AX	AXIAL	
elastic seismic	SHEAR	SHEAR MOMENT		MOMENT	max	min	
moments	kN	kN-m	kN	kN-m	kN	kN	
Weak Direction	12,421.51	23,199.18	1,766.09	3,185.48	25,200.67	25,200.67	
Load Case 1	12,421.51	34,798.76	1,766.09	4,778.22	25,200.67	25,200.67	
Load Case 2	3,726.45	10,439.64	5,886.97	15,927.40	25,200.67	25,200.67	

PIER ELASTIC DESIGN FORCES

COLUMN ELASTIC DESIGN FORCES

	STRONG DIR	WEAK DIR		AB	K AXIS	
M DESIGN =	19,043.85	35,125.28	kN-m	M DESIGN =	23,416.86	kN-m
V DESIGN =	6,967.27	12,546.43	kN	V DESIGN =	12,546.43	kN
Pmax DES =	25,200.67	25,200.67	kN	Pmax DES =	25,200.67	kN
Pmin DES =	25,200.67	25,200.67	kN	Pmin DES =	25,200.67	kN

DESIGN OF WALL-PIER MAIN REINFORCEMENT BARS (AS PIER ABOUT THE STRONG AXIS)

MATERIAL SPECIFICATIONS

A) Concrete		
Compressive Strength of Concrete, fc	=	28.00 MPa
Modulus of Elasticity of Concrete, Ec = 4730 sqrt(fc)	· =	25,028.81 MPa
Concrete Cover, cc	=	50 mm
B) Reinforcing Steel		
Tensile Strength of Steel, fy	=	303.00 MPa
Main Bar Diameter, db	=	20 mm
Lateral Tie Diameter, ds \leq 20 mm	=	20 mm

Appendix 22.1.4-4 (6/12) CAPACITY-DEMAND RATIO OF PIER WALL

WALL-PIER PROPERTIES

(

WALL-PIER PROPER	KIIES									
Base, B	=	1.30 m		End Condition		EFFEC	FIVE LE	NGTH FA	CTOR,	K
Depth, D	=	24.00 m		Rotation	FIXED	FREE	FIXED	FREE	FREE	FIXED
Unsupported Length, Lu	=	5.82 m			1 FIXED	FIXED	FREE	FIXED	FREE	FREE
Clear Height, H	=	4.82 m		Rotation Translation	FIXED	FIXED	FIXED	FREE	FIXED	FREE
Gross Area, Ag = BD	=	31.20 m ²				FIXED	FIXED	FIXED	FIXED	FIXED
Core Area, Ac = BcDc	=	28.68 m ²		Theoretical K	0.50	0.70	1.00	1.00	2.00	2.00
Moment of Inertia, Ig = BD		1497.60 m⁴		Design Value, I		0.80	1.20	1.00	2.10	2.00
Radius of Gyration, r = sq	rt(lg/Ag) =	6.93 m		Effectiv	/e Length	n Factor, I	(=	2.10	ļ
SLENDERNESS EFF	<u>ECT</u>									
22.00 < kLu/r <	100.00	neglect sle	nderne	ss effect			22.00	> 1.	76 <	100.00
Lu/r < 35/sqrt[Pu/	(f'cAg)]	-								206.07
MOMENT MAGNIFIC										
Maximum Dead Load Mon								=	0.02	kN-m
Maximum Total Load Mom									9,043.85	
Ratio βd = Mdl / Mmax	ion, minux							=	0.00	
Flexural Stiffnes of Columi	n. El = (Eclo	1/2.5)/(1+ßd)								MN-m2
Factored Axial Load, Pu =		,,(: pa)							5,200.67	
Buckling Load, $Pc = \pi^2 EI$.91E+08	
Spiral as Lateral Reinforce	· ·							=	0.70	
Moment Magnification Fac		ed against side	esway, δ	s = 1 / [1 - (ΣPu	/ φ ΣPc)	1		= 1.	00 ≥	1.00
Magnified Design Moment			•		1 7.	•			9,043.85	
MODIFIED STRENGT	H REDUC	TION FACT	OR ቀ							
Maximum Axial Stress, σP			<u> • • • •</u>					=	807.71	kPa
10% of Compressive Strer		• •							2,800.00	
Approximate Balanced Axi	•								7,360.00	
Modified Strength Reduction			αPmax /	(0.10fc) > 0.7()			=	0.842	NIN .
MAGNIFIED ELASTIC		-		(01012	
	43.85	kN-m								
	200.67	kN		*** DE		LUMN US				
	200.67	kN				< As/A			ROGRA	<i>чи</i>
						- A3/A	y = 0.0	0		
DESIGN OF WALL	<u>-PIER N</u>	AIN REIN	FORC	<u>EMENT BA</u>	ARS					
(AS COLUMN ABOUT 1		(AXIS)								
MATERIAL SPECIFIC	ATIONS									
A) Concrete										
Compressive Strength	of Concrete	e, fc						=	28.00	MPa
Modulus of Elasticity o	f Concrete,	Ec = 4730 sqrt	(f'c)					= 25	5,028.81	MPa
Concrete Cover, cc								=	50	mm
B) Reinforcing Steel										
Tensile Strength of Ste	el, fy							=	303.00	MPa
Modulus of Elasticity o								= 200	,000.00	MPa
Main Bar Diameter, db								=	20	mm
WALL-PIER PROPER	TIES									
Base, B	=	24.00 m	ſ	End Condition		EFFECT	VE LEN	GTH FAC	CTOR, K	
Depth, D	=	1.30 m	ŀ	1 =	FIXED	FREE	FIXED	FREE	FREE	FIXED
Unsupported Length, Lu	=	5.82 m		F Rotation	FIXED	FIXED	FREE	FIXED	FREE	FREE
Clear Height, H	=	4.82 m	ľ	호 Rotation	FIXED	FIXED	FIXED	FREE	FIXED	FREE
Gross Area, Ag = BD	=	31.20 m²		Rotation Translation	FIXED	FIXED	FIXED	FIXED	FIXED	FIXED
Core Area, Ac = BcDc	=	28.68 m ²	F	Theoretical K	0.50	0.70	1.00	1.00	2.00	2.00
Moment of Inertia, Ig = BD ³	/12 =	4.39 m⁴	F	Design Value, K	0.65	0.80	1.20	1.00	2.10	2.00
Radius of Gyration, r = sqrt	(lg/Ag) =	0.38 m	L		e Length	Factor, k		=	2.10	
SLENDERNESS EFFE	CT				-					
22.00 < k Lu / r < 7							22.00	< 32.	57 <	100.00
$L_{\rm L}/r < 25/cort[D_{\rm L}]/r$							22.00	- 52,		200.00

Lu/r <	35 / sqrt[Pu / (f'cAg)]
--------	-------------------------

22.00 < 32.57 < 100.00 15.51 < 206.07

Appendix 22.1.4-4 (7/12) CAPACITY-DEMAND RATIO OF PIER WALL

MOMENT MAGNIFICATION

Maximum Dead Load Moment, Mdl	=	0.02 kN-m
Maximum Total Load Moment, Mmax	=	23,416.86 kN-m
Ratio βd = Mdi / Mmax	=	0.00
Flexural Stiffnes of Column, EI = (Eclg/2.5)/(1+βd)	=	4.40E+04 MN-m2
Factored Axial Load, Pu = Pmax	=	25,200.67 kN
Buckling Load, $Pc = \pi^2 EI / (kLu)^2$	=	2.91E+06 kN
Spiral as Lateral Reinforcement, φ	=	0.70
Moment Magnification Factor not braced against sidesway, δs = 1 / [1 - (ΣPu / φ ΣPc	.)] =	1.01 ≥ 1.00
Magnified Design Moment, Mc = δs Mmax	=	23,710.54 kN-m
MODIFIED STRENGTH REDUCTION FACTOR ϕ		
Maximum Axial Stress, σPmax = Pmax / Ac	=	878.68 kPa
20% of Compressive Strength of Concrete, 0.2fc	=	5,600.00 kPa
Approximate Balanced Axial Load,	=	160,608.00 kN
Modified Strength Reduction Factor, $\phi = 0.90 - 0.40 [\sigma Pmax / (0.20 fc)] \ge 0.50$	=	0.837

MAGNIFIED ELASTIC DESIGN FORCES

M DESIGN =	23710.54	kN-m	
Pmax DES =	25200.67	kN	*** DESIGN COLUMN USING PCACOL PROGRAM
Pmin DES =	25200.67	kN	*** NOTE 0.01 < As / Ag < 0.06

ULTIMATE (Nominal) DESIGN FORCES FOR COLUMN

M ULTIMATE =	28319.99	kN-m
Pmax ULT =	30099.81	kN
Pmin ULT =	30099.81	kN
	Autor 1919 1919	

*** INVESTIGATE COLUMN PLASTIC CAPACITY FROM PCACOL INTERACTION DIAGRAM...

FORCES RESULTING FROM PLASTIC HINGING

Pmax DES =	25,200.67	kN		M Nominal Cap =	28,431.80	kN-m
M Plastic =	36,961.34	kN-m	<	M Elastic =	69,597.50	kN-m
V Plastic =	7,668.33	kN				
Pmax Plastic =	25,200.67	kN				
Pmin Plastic =	25,200.67	kN				
COLUMN CONN	IECTIONS RE	QUIREME	NTS			

Anchorage for Uplift Forces, Ptens = 1.25 As fy = 118.99 KN Development Length, $L_d = 0.04 A_b f_v / f_c^{-1/2} = 13.431945$ = 341.26 mm $L_a = 0.0004 d_b f_v = 13.840909$ GOVERNS = 351.65 mm Shear Stress @ Joint, vu = Vu / $\phi Ag \le sqrt(fc) : 5,291.50 kPa$ ok = 289.15 kPa

Appendix 22.1.4-4 (8/12) CAPACITY-DEMAND RATIO OF PIER WALL

		CA	PAC		IMAI	ND K	AHO	OF P.	IER WA	LL	
	00	o: KEI, 00000 00	Pasig 000000 00 0	City, PI 00000		FION - 0000 00		0 00			Page 1 L-20
	00 00 00	00	00	00 (00000(00 00 00 00 00 00 00 00	00	00 0 00 0	00 00 00 00 00 00			
	00		00 0	0 00 0		00 0000	00 0	00 00 0000			
	Computer p	rogram f	for the	Strength	n Desig	n of I	Reinfor	ced Con	crete Sect	ions	
	Licen (PCA) is no adequacy o	ot and	cannot	be res	ponsit	ole fo	or eit	her the		y or	
02/21/04	PCACOL(tm) expressed prepared } produce PC infallible engineering responsibi design or e the PCACOL PCACOL V3.(nor imp by the F ACOL(tm) . The f g docume lity in engineer (tm) pro 00 - POR	Died PCACOL(error inal a ents is contra ing d ogram. TLAND	with res tm) prog free, th nd only r the lice ct, negl ocuments CEMENT AS	ppect t pram. le prog respons insees. igence prepar	o the Althou gram is ibilit Acco or ot red in	e corre igh PC s not a cy for ordingl ther t	ctness of A has nd can't analys: y, PCA ort for	of the ou endeavore be certi is, design disclaims any analy	tput d to fied and all sis, e of	Page 2
	Licensed to		Pasig	City, PI							L-2G
======= File	Name: C:\N ect: Lambi	=== 4SNAVAL\ ingan Br	PASIG-	~3\FROMKE		AL-~1\ neer:		-2\LAMBI	N~1\L-2G.	COL	
Code	: ACI 3	818-95			Unit	s: Met	ric				
	Option: Inv Axis: Bia		ion					conside uctural	ered		
	l Propertie										
f'c Ec fc Ulti	= 28 MPa = 24870.1 = 23.8 MF mate strain 1 = 0.84695	. MPa Pa n = 0.00	3 mm/mr	n	fy Es Rupt	= 200	000 MPa	a Infinit	У		
Section	-										
Rect	angular: Wi	dth = 2	3561 mr	n	Dept:	h = 13	00 mm				
Ix =	s section a 4.31363e+ 0 mm				Iy =			15 mm^4			
Reinfor											
Size	r Database: Diam (mm)	Area (m	m^2)	Size Diam	n (mm)	Area	(mm^2)	Size			
# 6			28	# 8	8			# 10	10		79
# 12 # 20			113 314		14 25			# 16 # 28			201 616
# 32	32		801	# 36	36		1018	# 40	40		1256
phi (a	inement: Us a) = 0.8,	phi(b) :	= 0.9,	phi(c) =	= 0.83	7.	, #20	with ia	rger bars.		
Patte Total	ut: Rectang ern: Equal l steel are \$20 Cover	Bar Spac a, As =	52124			verse :	reinfor	cement)			
Factored	l Loads and	Moments	s with	Correspor	nding (Capacit	cies: (see use	r's manual	. for	notation)
No.	Pu kN		Mux kN-m	Mı kN-	ıy ∙m	fMn: kN·	k -m	fMny kN-m	fMn/Mu		
	25200 7										

No.	kN	kN-m	kN-m	kN-m	kN-m	fMn/Mu
1	25200.7	0.0	19043.8	0.0	488390.4	25.646
2	25200.7	23710.5	0.0	26807.6	2.7	1.131

*** Program completed as requested! ***

(

Appendix 22.1.4-4 (9/12) CAPACITY-DEMAND RATIO OF PIER WALL

ANALYSIS OF WALL-PIER

SEISMIC DESIGN CRITERIA

Acceleration Coefficient, A =	0.40	Importance Classification, IC (Essential Brdg)	=	l (l or ll)
Seismic Performance Category, SPC =	D	Site Coefficient, : (Soil Profile Type II)	=	1.20

ELASTIC SEISMIC FORCES

From STAAD-III Multi-Modal Dynamic Analysis

	LONGIT	UDINAL	TRANS			
	SHEAR	MOMENT	SHEAR	MOMENT	AXIAL	
	kN	kN-m	kN	kN-m	kN	
DEAD LOAD	0.00	0.02	0.00	0.00	25,200.67	
LONG EQ	24,843.03	139,194.95	0.00	0.00	0.01	
TRAN EQ	0.01	0.01	11,773.94	63,709.58	0.00	

LOAD COMBINATION

Load Case 1 = 1.0 LONG EQ + 0.3 TRAN EQ

Load Case 2 = 0.3 LONG EQ + 1.0 TRAN EQ

	LONGIT	UDINAL	TRANS	TRANSVERSE		
ſ	SHEAR	MOMENT	SHEAR	MOMENT	AXIAL	
	kN	kN-m	kN	kN-m	kN	
Load Case 1	24,843.03	139,194.95	3,532.18	19,112.87	0.01	
Load Case 2	7,452.92	41,758.50	11,773.94	63,709.58	0.00	

GROUP LOADING OF DESIGN FORCES Group Load = 10 (D + B + SE + E + EO)

Group Load =	1.0 (D + B + SF + E ·	FEQ)				
	LONGITUDINAL		TRANS	VERSE	AXIAL	
	SHEAR	MOMENT	SHEAR	MOMENT	max	min
	kN	kN-m	kN	kN-m	kN	kN
Load Case 1	24,843.03	139,194.97	3,532.18	19,112.87	25,200.68	25,200.66
Load Case 2	7,452.92	41,758.52	11,773.94	63,709.58	25,200.67	25,200.67

MODIFIED DESIGN FORCES

Group Load = 1.0 (D + EQ / R)

R = 2 (for wall-pier)***

R = 3 (for single column)

*** Check H / Dmax < 2.5

R applied only to	LONGITUDINAL		TRANS	AXIAL		
elastic seismic	SHEAR	MOMENT	SHEAR	MOMENT	max	min
moments	kN	kN-m	kN	kN-m	kN	kN
Weak Direction	24,843.03	46,398.34	3,532.18	6,370.96	25,200.68	25,200.66
Load Case 1	24,843.03	69,597.50	3,532.18	9,556.44	25,200.68	25,200.66
Load Case 2	7,452.92	20,879.27	11,773.94	31,854.79	25,200.67	25,200.67
DIED EL ASTIC I		10		LIMANELACTIC	DESIGNED	

PIER ELASTIC DESIGN FORCES

COLUMN ELASTIC DESIGN FORCES ABOUT THE WEAK AXIS

	STRONG DIR	WEAK DIR		Al	BOUT THE WEA	K AXIS
M DESIGN =	38,087.68	70,250.53	kN-m	M DESIGN =	46,833.69	kN-m
V DESIGN =	13,934.55	25,092.88	kN	V DESIGN =	25,092.88	kN
Pmax DES =	25,200.67	25,200.68	kN	Pmax DES =	25,200.68	kN
Pmin DES =	25,200.67	25,200.66	kN	Pmin DES =	25,200.66	kN

DESIGN OF WALL-PIER MAIN REINFORCEMENT BARS (AS PIER ABOUT THE STRONG AXIS)

MATERIAL SPECIFICATIONS

.

A) Concrete		
Compressive Strength of Concrete, f'c	=	28.00 MPa
Modulus of Elasticity of Concrete, Ec = 4730 sqrt(fc)	=	25,028.81 MPa
Concrete Cover, cc	=	50 mm
B) Reinforcing Steel		
Tensile Strength of Steel, fy	=	303.00 MPa
Main Bar Diameter, db	=	20 mm
Lateral Tie Diameter, ds \leq 20 mm	=	20 mm

Appendix 22.1.4-4 (10/12) CAPACITY-DEMAND RATIO OF PIER WALL

WALL-PIER PROPERTIES Base, B 1.30 m End Condition **EFFECTIVE LENGTH FACTOR, K** = Depth, D = 24.00 m Rotation ц Б FIXED FREE FIXED FREE FREE FIXED Unsupported Length, Lu = 5.82 m Translation FIXED FIXED FREE FIXED FREE FREE Bottor Clear Height, H = 4.82 m Rotation FIXED FIXED FIXED FREE FIXED FREE Gross Area, Ag = BD = 31.20 m² Translation FIXED FIXED FIXED FIXED FIXED FIXED Core Area. Ac = BcDc = 28.68 m² Theoretical K 0.50 0.70 1.00 1.00 2.00 2.00 Moment of Inertia, $Ig = BD^3/12$ 1497.60 m⁴ = Design Value, K 0.65 0.80 1.20 1.00 2.10 2.00 Radius of Gyration, r = sqrt(lq/Aq) =6.93 m Effective Length Factor, k 2.10 = SLENDERNESS EFFECT 22.00 < k Lu / r < 100.00neglect slenderness effect 22.00 > 1.76 < 100.00 Lu/r < 35 / sqrt[Pu / (f'cAg)] 0.84 < 206.07 MOMENT MAGNIFICATION Maximum Dead Load Moment, Mdl = 0.02 kN-m Maximum Total Load Moment, Mmax = 38,087.68 kN-m Ratio $\beta d = Mdl / Mmax$ = 0.00 Flexural Stiffnes of Column, EI = $(Eclg/2.5)/(1+\beta d)$ 1.50E+07 MN-m2 = Factored Axial Load, Pu = Pmax = 25,200.67 kN Buckling Load, Pc = π^2 El / (kLu)² 9.91E+08 kN = Spiral as Lateral Reinforcement, o = 0.70 Moment Magnification Factor not braced against sidesway, $\delta s = 1 / [1 - (\Sigma Pu / \phi \Sigma Pc)]$ = 1.00 1.00 ≥ Magnified Design Moment, Mc = δ s Mmax ----38,087.68 kN-m MODIFIED STRENGTH REDUCTION FACTOR & Maximum Axial Stress, oPmax = Pmax / Ag 807.71 kPa = 10% of Compressive Strength of Concrete, 0.1fc 2,800.00 kPa = Approximate Balanced Axial Load, $\phi Pb = 0.1$ fc Ag = 87.360.00 kN Modified Strength Reduction Factor, $\phi = 0.90 - 0.20 [\sigma Pmax / (0.10fc)] \ge 0.70$ 0.842 =

MAGNIFIED ELASTIC DESIGN FORCES

M DESIGN =	38087.68	kN-m	
Pmax DES =	25200.67	kN	*** DESIGN COLUMN USING PCACOL PROGRAM
Pmin DES =	25200.67	kN	*** NOTE 0.01 < As / Ag < 0.06

DESIGN OF WALL-PIER MAIN REINFORCEMENT BARS (AS COLUMN ABOUT THE WEAK AXIS)

MATERIAL SPECIFICATIONS

A) Concrete		
Compressive Strength of Concrete, fc	=	28.00 MPa
Modulus of Elasticity of Concrete, Ec = 4730 sqrt(fc)	. =	25,028.81 MPa
Concrete Cover, cc	=	50 mm
B) Reinforcing Steel		
Tensile Strength of Steel, fy	=	303.00 MPa
Modulus of Elasticity of Steel, Es	=	200,000.00 MPa
Main Bar Diameter, db	=	20 mm

WALL-PIER PROPERTIES

Base, B	=	24.00 m	Er	nd Condition		EFFECT	IVE LEN	GTH FA	CTOR, K	
Depth, D	=	1.30 m	d	Rotation	FIXED	FREE	FIXED	FREE	FREE	
Unsupported Length, Lu	=	5.82 m	P	Translation	FIXED	FIXED	FREE	FIXED	FREE	
Clear Height, H	=	4.82 m	Bottor	Rotation	FIXED	FIXED	FIXED	FREE	FIXED	
Gross Area, Ag = BD	=	31.20 m ²	l 🖁	Translation	FIXED	FIXED	FIXED	FIXED	FIXED	
Core Area, Ac = BcDc	=	28.68 m ²	TI	neoretical K	0.50	0.70	1.00	1.00	2.00	
Moment of Inertia, Ig = BD ³ /12	=	4.39 m⁴	Des	sign Value, K	0.65	0.80	1.20	1.00	2.10	
Radius of Gyration, r = sqrt(Ig/A	g) =	0.38 m		Effective	Length	Factor, k		=	2.10	
SLENDERNESS EFFECT										

DLENL		(NE33	EFF	<u>EUI</u>	
22.00	<	kLu/r	<	100.00	

		K Ed / T	100.00
Lu / r	<	35 / sqrt[Pu /	(f'cAg)]

A.22	- 75	

FIXED

FREE

FREE

FIXED

2.00

2.00

22.00 < 32.57 < 100.00

15.51 < 206.07

Appendix 22.1.4-4 (11/12) CAPACITY-DEMAND RATIO OF PIER WALL

MOMENT MAGNIFICATION

Maximum Dead Load Moment, Mdl	=	0.02 kN-m
Maximum Total Load Moment, Mmax	=	46,833.69 kN-m
Ratio βd = Mdl / Mmax	=	0.00
Flexural Stiffnes of Column, EI = (Eclg/2.5)/(1+βd)	=	4.40E+04 MN-m2
Factored Axial Load, Pu = Pmax	=	25,200.68 kN
Buckling Load, $Pc = \pi^2 EI / (kLu)^2$	=	2.91E+06 kN
Spiral as Lateral Reinforcement, φ	=	0.70
Moment Magnification Factor not braced against sidesway, $\delta s = 1 / [1 - (\Sigma Pu / \phi \Sigma Pc)]$	=	1.01 ≥ 1.00
Magnified Design Moment, Mc = δ s Mmax	=	47,421.06 kN-m
MODIFIED STRENGTH REDUCTION FACTOR ϕ		
Maximum Axial Stress, σPmax = Pmax / Ac	=	878.68 kPa
20% of Compressive Strength of Concrete, 0.2fc	=	5,600.00 kPa
Approximate Balanced Axial Load,	=	160,608.00 kN
Modified Strength Reduction Factor, ϕ = 0.90 - 0.40 [σ Pmax / (0.20fc)] \geq 0.50	=	0.837

MAGNIFIED ELASTIC DESIGN FORCES

M DESIGN =	47421.06	kN-m	
Pmax DES =	25200.68	kN	*** DESIGN COLUMN USING PCACOL PROGRAM
Pmin DES =	25200.66	kN	*** NOTE 0.01 < As / Aa < 0.06

ULTIMATE (Nominal) DESIGN FORCES FOR COLUMN

M ULTIMATE =	56639.96	kN-m
Pmax ULT =	30099.82	kN
Pmin ULT =	30099.80	kN

*** INVESTIGATE COLUMN PLASTIC CAPACITY FROM PCACOL INTERACTION DIAGRAM...

FORCES RESULTING FROM PLASTIC HINGING

Pmax DES =	25,200.68	kN		M Nominal Cap =	30,384.50	kN-m	
M Plastic =	39,499.85	kN-m	<	M Elastic =	139,194.97	kN-m	
V Plastic =	8,194.99	kN			-		
Pmax Plastic =	25,200.68	kN					
Pmin Plastic =	25,200.66	kN					

COLUMN CONNECTIONS REQUIREMENTS

Anchorage for Uplift Forces, Ptens = 1.25 As fy			=	118.99 KN
Development Length, $L_d = 0.04 A_b f_v / f_c'^{1/2} =$	13.431945		=	341.26 mm
$L_a = 0.0004 d_b f_y =$	13.840909	GOVERNS	=	351.65 mm
Shear Stress @ Joint, vu = Vu / ϕ Ag \leq sqrt(fc) =	5,291.50 kPa	ok	=	309.01 kPa

Appendix 22.1.4-4 (12/12) CAPACITY-DEMAND RATIO OF PIER WALL

02/21/04 PCACOL	V3.00	- PO	RTLAN	ID CE	MENT	ASSC	CIAT	ION -			
16:08:11 License	ed to:	KEI,	Pasi	g Ci	ty, :	PI					
	00000	000	000	000	000	000	000	000	000	000	00
	00	00	00	00	00	00	00	00	00	00	00
	00	00	00	00	00	00	00	00	00	00	00
	00	00	00		00	00	00		00	00	00
	00	00	00		0000	0000	00		00	00	00
	00000	00	00	00	00	00	00	00	00	00	00
	00		00	00	00	00	00	00	00	00	00
	00		000	00	00	00	000	000	000	000	00000

Computer program for the Strength Design of Reinforced Concrete Sections

Licensee stated above acknowledges that Portland Cement Association (PCA) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the

PCACOL(tm) computer program. Furthermore, PCA neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the PCACOL(tm) program. Although PCA has endeavored to produce PCACOL(tm) error free, the program is not and can't be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensees. Accordingly, PCA disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the PCACOL(tm) program.

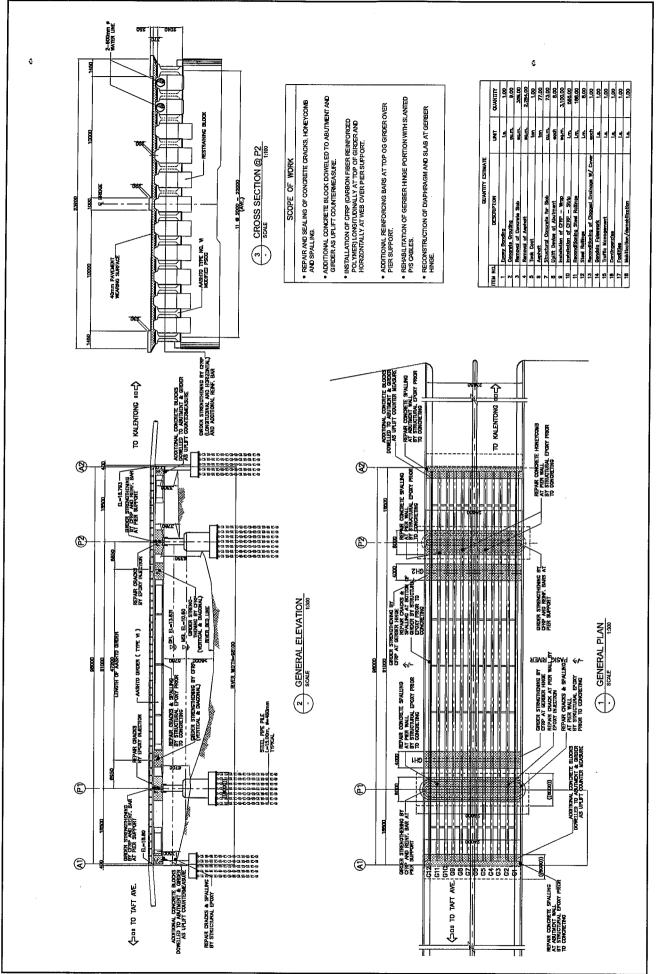
02/21/04 PCACOL V3.00 - PORTLAND CEMENT ASSOCIATION -16:08:11 Licensed to: KEI, Pasig City, PI

Page L-4G

General Information:

(

	•						
File Name: C:\MSN	IAVAL\PASIG-	~3\FROMKE-	-1\FINAL-~	1\APPEND~2	2\LAMBIN~1	\L-4G.COL	
Project: Lambing	yan Bridge						
Column: Column			Engineer	: AHR			
Code: ACI 318	-95		Units: M				
Run Option: Inves	stigation		Slendern	ess: Not o	ronsidered		
Run Axis: Biaxi				ype: Struc			
				1901 001u	Jourar		
Material Properties:							
f'c = 28 MPa			fy = 3	03 MDa			
EC = 24870.1 M	IPa			00000 MPa			
fc = 23.8 MPa	i u			strain = 1	nfinity		
Ultimate strain =	0 003 mm/m	m	Rupture	scrain - i	untinity		
Beta1 = 0.846954	0.005 1111/11						
Decar = 0.840954							
Section:							
=======							
Rectangular: Widt	h = 23561 m	m	Depth -	1400 mm			
Rectanguiar. Hide	II - 25501 III	***	Deptin -	1400 11811			
Gross section are		298540+007	^2				
Ix = 5.38762e+01	2 mm^{4}	290546+007		52591e+015			
$X_0 = 0 \text{ mm}$	2 11111 4		$Y_0 = 0$		5 uuu 4		
xo = 0 mm			10 = 0				
Reinforcement:							
Rebar Database: U	ser-defined						
Size Diam (mm) Ar			(mm) Are	a (mm^2)	Size Dia	m (mm) Area	(mm^2)
# 6 6 # 12 12 # 20 20	28	# 8	8	50	# 10	10	79
# 12 12	113	# 14	14	154	# 16	16	201
# 20 20	314	# 25	25	491	# 28	28	616
# 32 32	801	# 36	36	1018	# 20	40	1256
1 34 38	001	# 50	50	1010	π ±0	40	1200
Confinement: User	-defined. #'	20 ties wi	th #20 ha	re #20 w	ith large	r hare	
phi(a) = 1, $phi(a)$			CII #20 Da	13, #20 W	atti targe.	L Dars.	
phi(u) = 1, phi(5, - 1, pii.	1(0) - 1					
Layout: Rectangul	ar						
Pattern: Equal Ba		Cover to	trancuora	o roinford	omont)		
Total steel area,				e refinore	ement		
166 #20 Cover =		nun z at V	0.9				
100 #20 COVEI =	50 mm						
Factored Loads and M	omente with	Corregnon	ding Cara	nition. (a	ee veer's	manual for	nototio-1
					ee user s	manual for	notation)
	888688888888 Muur				Elfan -		

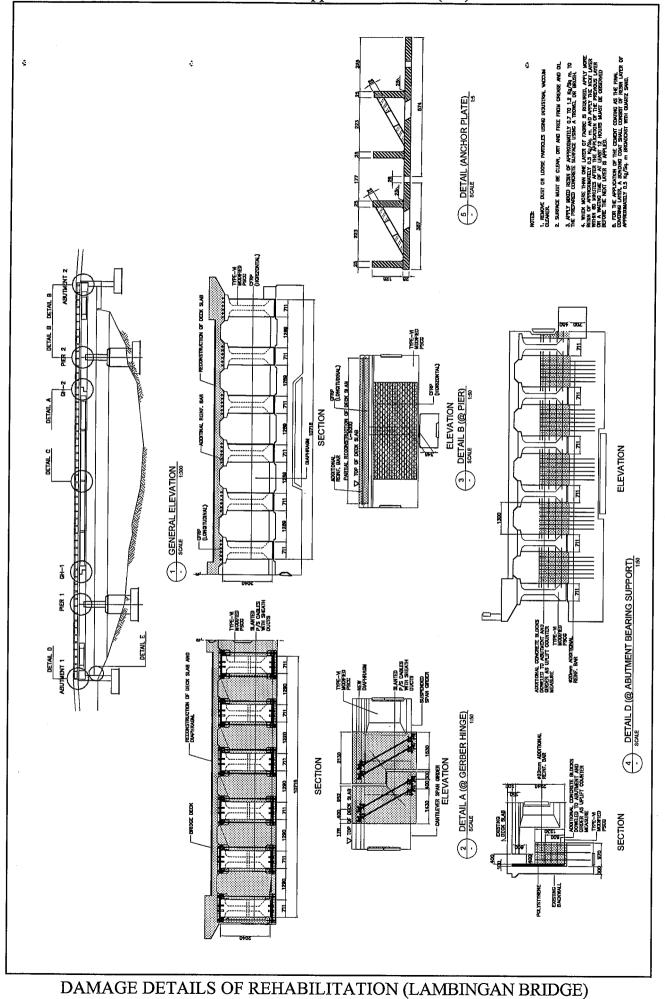

	Pu	Mux	Muy	fMnx	fMny		
NO.	kN	kN-m	kN-m	kN-m	kN-m	fMn/Mu	
1	25491.1	0.0	38000.9	0.0	462268.2	12.165	
2	25491.1	47251.1	0.0	27303.8	3.2	0.578	

*** Program completed as requested! ***

Page 1 L-4G

(TM)

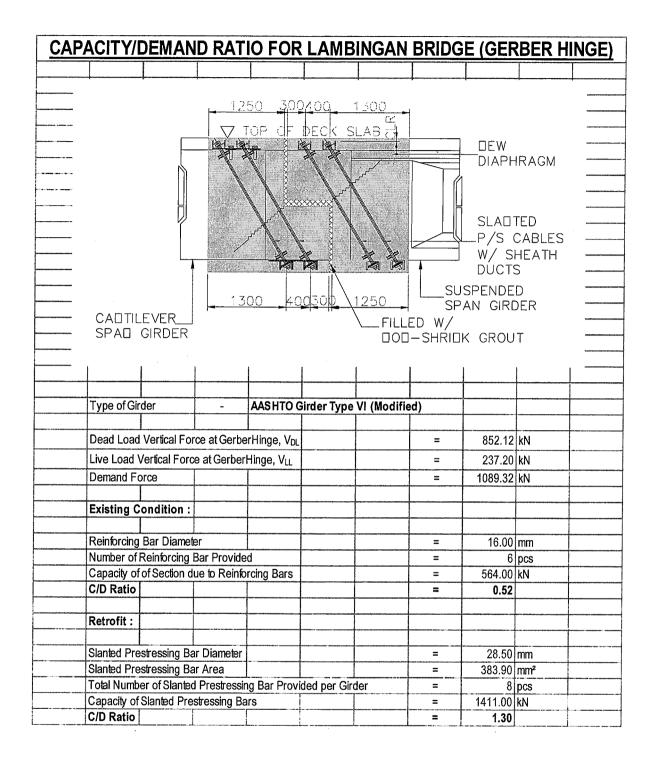
1



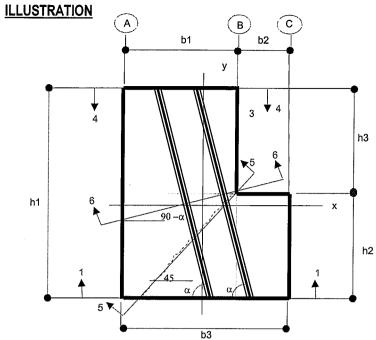
Appendix 22.3.1-1 (1/2)

÷

¢


DETAILS OF REHABILITATION (LAMBINGAN BRIDGE)

(

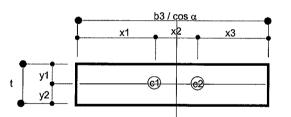

A.22 - 79

Appendix 22.3.1-2 (1/6) ANALYSIS OF GIRDER REHABILITATION

1

Appendix 22.3.1-2 (2/6) CALCULATION OF GERBER HINGE REHABILITATION

b1 =	1.53	m
b2 =	0.60	m
b3 =	2.13	m
h1 =	2.62	m
h2 =	1.20	m
h3 =	1.42	m
α=	60.00	deg


а. Р

Section	1	4	Unit
t =	0.300	0.300	m
y1 =	0.150	0.150	m
y2 =	0.150	0.150	m
x1 =	1.430	0.178	m
x2 =	0.400	0.400	m
x3 =	0.300	0.952	m
b3 or b1=	2.130	1.530	m

	Section	5	6	Unit
	t =	0.300	0.300	m
	y1 =	0.150	0.150	m
	y2 =	0.150	0.150	m
	x1 =	1.063	1.154	m
	x2 =	0.359	0.346	m
	x3 =	0.276	0.266	m
ba	se, b =	1.698	1.766	m

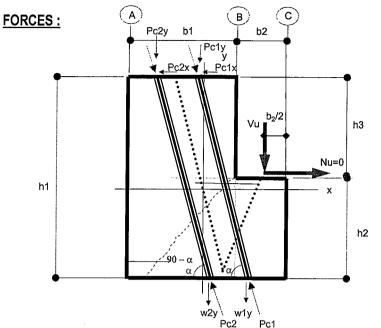
b3 x1 x2 <u>x3</u> у1 ©1-----©2 t y2

SECTION

SECTION

SECTION PROPERTIES

(-


Section	1	5	6	4	Unit
Area, A	0.639	0.509	0.530	0.459	m²
Dist. from N.A. to edge a, Xa =	1.065	0.849	0.883	0.765	m
Dist. from N.A. to edge c, Xc =	1.065	0.849	0.883	0.765	m
Moment of Inertia, I = t * b^3/12	0.242	0.122	0.138	0.090	m ⁴
Section modulus @ a, Sa	0.227	0.144	0.156	0.117	m ³
Section modulus @ c, S_c	0.227	0.144	0.156	0.117	m³

MATERIAL SPECIFICATIONS

Compressive strength of concrete :	_	22.40	Mara
at time of initial prestress, fci	=	22.40	
at 28th day, f' _c	=	28.00	Мра
Ultimate strength of HTS, f ^r s	Ξ	1860.00	Mpa
Elastic modulus of HTS, E _S	=	195000	Mpa
Nominal area of HTS, A _{ps}	=	383.90	mm²
Jacking stress, 0.70f _s	=	1302.00	Мра
Number of HTS, N	=	1	pcs
.70Pu	=	499.84	kN
Total number of Prestressing steel =		4	pcs

Appendix 22.3.1-2 (3/6) CALCULATION OF GERBER HINGE REHABILITATION

. .

Section	1	5	6	4	Unit
Shear reaction due to Dead Load, Wy =	852.12	852.12	852.12	852.12	kN
Shear reaction due to Live Load, VII =	237.20	237.20	237.20	237.20	kN
Impact = (15.21 / 38.1 + L) =	0.21	0.21	0.21	0.21	
Wylocal = sin(90- α) * Wy due to DL	737.96	737.96	737.96	737.96	kN
Wxlocal = $cos(90-\alpha)$ * Wy due to DL	426.06	426.06	426.06	426.06	kN
Wylocal = sin(90- α) * Wy due to DL+LL+i	985.77	985.77	985.77	985.77	kN
Wxlocal = $cos(90-\alpha) * Wy$ due to DL+LL+i	569.14	569.14	569.14	569.14	kN
Effective 0.70Pu	432.87	499.84	499.84	432.87	kN

Assumption :

(

(

1) Shear, V are carried equally by the oblique prestress cables since spacing is not far apart.

2) Favorable effects of internal prestress tendon in the girders are neglected.

3) Horizontal force, Nu is neglected due to cable restrainer/or slab made continuous, preventing the horizontal force from developing.

ACTUAL ECCENTRICITY "e"

Section	1	5	6	4	No. of HTS
Distance of c.g. of C1 from edge c =	700 mm	635 mm	612 mm	1352 mm	1
Distance of c.g. of C2 from edge c =	300 mm	276 mm	266 mm	952 mm	1
Ya of strands	500 mm	456 mm	439 mm	1152 mm	Total = 2
Eccentricity "e"	565 mm	394 mm	444 mm	-387 mm	

LOSSES

A) Friction and Anchorage Draw-In

Section	1	5	6	4	Unit
Loss due to friction and anchorage draw-in, FS	0.00	0.00	0.00	0.00	Mpa

Note :

-Live End device using SEE (Screw type).

-Tendon profile is straight.

B) Elastic Shortening, ES

$$ES = \frac{0.50E_s f_{cir}}{E}$$

Eci

where :

f_{cir} = Concrete stress at the center of gravity of the prestressing steel due to prestressing force and dead load of beam immediately after transfer, in mpa.

Appendix 22.3.1-2 (4/6) CALCULATION OF GERBER HINGE REHABILITATION

Section	1	5	6	4	Unit
Eci, modulus of elasticity of concrete in mpa at transfer =	22386.45	22386.45	22386.45	22386.45	Мра
Concrete stress, f _{cir}	2.50	3.23	3.32	3.33	Мра
Loss due to elastic shortening, ES	10.88	14.06	14.45	14.52	Mpa

1. I

C) Concrete Shrinkage, SH

Mean annual ambient relative humidity in percent, RH = 80.00 % Loss due to concrete shrinkage, SH = 0.80(117-1.03

= 0.80(117-1.03RH) = 92.94 Mpa

D) Creep of Concrete, CR_C

 $CR_C = 12f_{cir} - 7f_{cds}$

where : f_{cds} = Concrete stress at center of gravity of the prestressing steel due to all dead loads except the dead load present at the time the prestressing force is applied, in Mpa.

Section	1	2	6	4	Unit
Moment due to dead load (w/o beam weight)	0.00	0.00	0.00	0.00	kN-m
Concrete stress, f _{cds}	0.00	2.36	0.00	0.00	Мра
Loss due to creep of concrete, CR _c	29.99	22.24	39.82	40.01	Mpa

E) Relaxation of Prestressing Steel, CR_S

CRs = 138 - 0.30FR - 0.40ES - 0.20(SH+CRc) ... for stress relieved strands

Section	1	5	6	4	Unit
Loss due to relaxation of prestressing steel, CR_S	109.06	109.34	105.67	105.60	Mpa

F) Effective Prestress at Initial and Final Condition

Section	1	5	6	4	Unit
Initial losses, FR + ES	10.88	14.06	14.45	14.52	Mpa
Effective prestress at initial condition	1291.12	1287.94	1287.55	1287.48	Мра
Final losses, FR + ES + SH + CR _C + CR _S	242.87	238.57	159.94	160.13	Мра
Effective prestress at final condition	1059.13	1063.43	1142.06	1141.87	Mpa

CHECK STRESSES

A) Only Prestress Force Acting.

Section	1		5	;	6	3	4	ļ	Unit
Number of strands, N	2		2	2	2	2	2	2	pcs.
Effective jacking force @ intial condition, Pj	858	.51	988	.88	988	.58	856	.09	kN
Eccentricity, e	0.5	65	0.3	94	0.4	44	-0.3	387	m
Stress at edge c, f c	3.48	С	4.64	С	4.68	С	-0.97	Т	Mpa
Remarks	sa	e!	saf	e!	sa	fe!	sa	fe!	<u> </u>
Stress at edge a, f a	-0.79	Т	-0.17	Т	-0.95	Т	4.70	С	Mpa
Remarks	sa	e!	saf	e!	sat	e!	sa	fe!	
Allowable stresses : Compression = 0.55f _{ci}		=	12.	.32 Mp	a				

Tension = 1.40 Mpa or $0.25(f_{ci})^{\frac{1}{2}}$

12.32 Mpa -1.18 Mpa

=

=

B) If All DL is Acting.

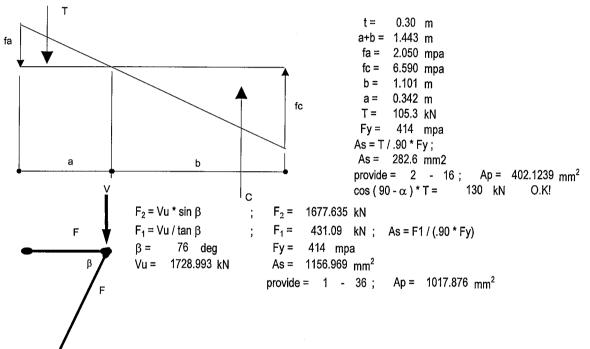
Section	1		5)	6	}	4	ļ	Unit
Axial Force due to dead load	-426	5.06	-368	3.98	-368	3.98	-426	3.06	kN
Number of strands, N	2	2	2	2	2	2	2	2	pcs.
Effective jacking force, Pj	704	.25	816	.50	876	.88	759	.27	kN
Eccentricity, e	0.5	65	0.3	94	0.4	44	-0.3	387	m
Stress at edge c, f c	1.13	С	2.10	С	2.40	С	-0.38	Т	Mpa
Remarks	sat	fe!	saf	e!	sa	fe!	sa	fe!	
Stress at edge a, f a	-0.26	Т	-0.34	Т	-0.49	Т	1.83	С	Mpa
Remarks	sa	fe!	saf	e!	sat	ie!	sa	fel	
Allowable stresses : Compression = $0.40f_c$		=	11	.20 Mp	a				

Tension = $.50^{*}$ (fc')^{.5}

11.20 Mpa -2.65 Mpa

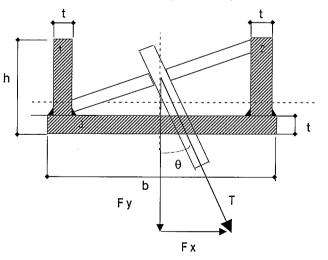
Appendix 22.3.1-2 (5/6) CALCULATION OF GERBER HINGE REHABILITATION

C) Due to All Dead Load and Live Load Plus Impact (Service Condition)


Section	1	5	6	4	Unit
Axial Force due to DL + LL+i	-544.66	-284.57	-284.57	-544.66	kN
Number of strands, N	2	2	2	2	pcs
Effective jacking force, Pj	704.25	816.50	876.88	759.27	kN
Eccentricity, e	0.565	0.394	0.444	-0.387	, m
Stress at edge c, f c	0.647 C	2.496 C	2.804 C	-0.242 T	Mpa
Remarks	safe!	safe!	safe!	safe!	
Stress at edge a, f a	-0.15 T	-0.41 T	-0.57 T	1.18 C	Mpa
Remarks	safel	safe!	safe!	safe!	

Allowable stresses : Compression = $0.40f_c$

Tension = $.50^{*}$ (fc')^{.5}


= 11.20 Mpa = -2.65 Mpa , i , **i**

Reinforcement Bars :

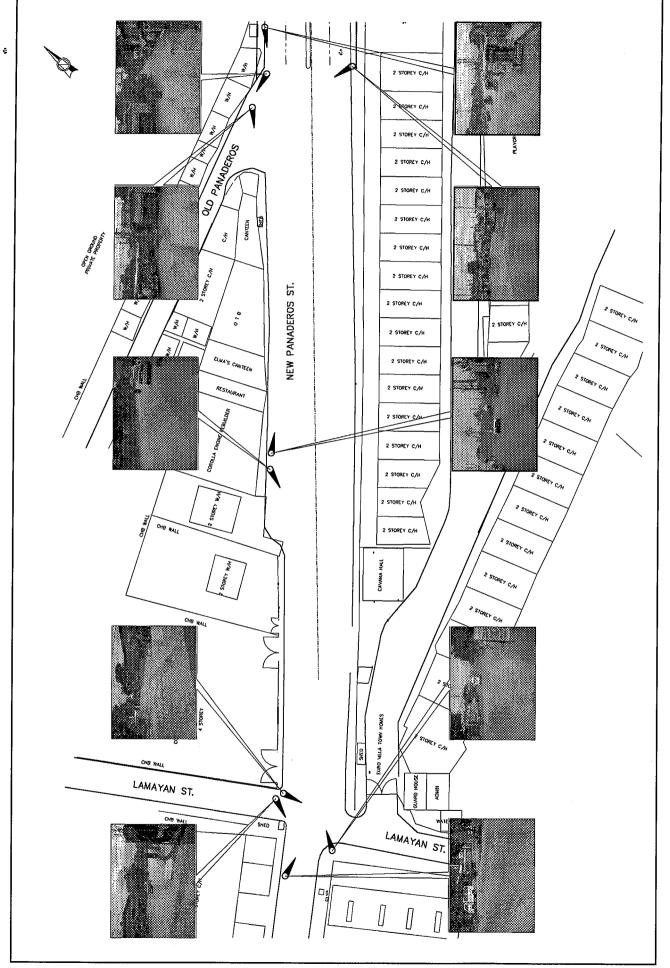
Dimension & Material Properties of steel channel anchorage::

Specified minimum yield stress of structural steel, Fy = 245 mpa

Appendix 22.3.1-2 (6/6) CALCULATION OF GERBER HINGE REHABILITATION

(1, k)

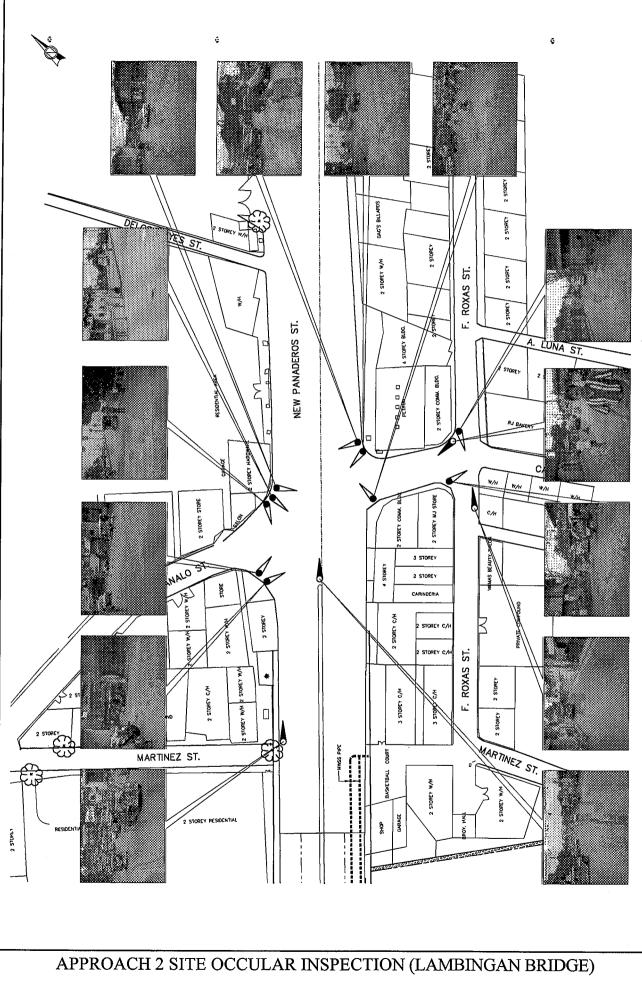
element	t (mm)	h (mm)	Area (mm2)	y (mm)	A*y (mm3)	lx = bh3/3 (mm4)	A(Y-y)2 (mm4)
1	22	125	2750	62.5	171875	14322916.67	1236645.978
2	22	125	2750	62.5	171875	14322916.67	1236645.978
3	22	175	3850	11	42350	621133.3333	3533274.221
			9350		386100	29266966.67	6006566.176

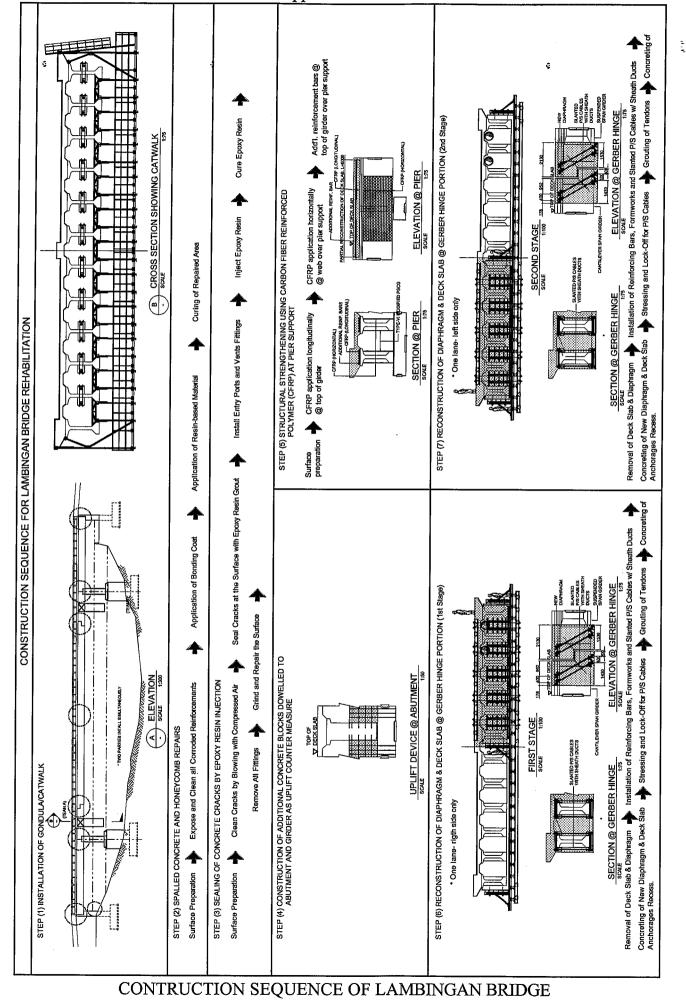

Y =	41.29	mm
lx =	35273532.84	mm⁴
Sx =	854202.36	mm ³

Check bending and shear stress :

		-	
F =	499.84]kN	
θ =	30	deg	
0.70Puy =	432.87	kN	
0.70Pux =	249.92	kN	
cantilever arm =	0	m	
moment =	0.00	kN-m	
.55Fy =	134.75	mpa	
fb = M/Sx =	0.00	mpa	OK!
Fv = .33Fy	80.85	mpa	
Fv = V / A	78.70	mpa	OK!

1.4


¢


APPROACH 1 SITE OCCULAR INSPECTION (LAMBINGAN BRIDGE)

Appendix 22.3.1-3 (2/2)

1.9

A.22 - 87

Appendix 22.3.2-1

ŝ

A.22 - 88

Dascrintion	tinl	Outantitue	I mit Drivo	100		Components	
		Quantity			Foreian	Local	Tayes
r/Sei							2020
SPL Epoxy Bonding	l.s.	1.00	9,827,443.90	9,827,443.90	7,174,034.05	1,474,116.59	1,179,293.27
SPL Concrete Grouting	cu.m.	1.00	2.948.233.17	2.948.233.17	1.916.351.56	737 058 29	204 873 37
B. Partial Reconstruction of Deck Slab/New Diaphragm					1 00:100/010/r	77.000'101	20.020,702
101(3) Removal of Concrete Slab	sq.m.	399.00	500.00	199,500.00	129,675.00	41.895.00	27,930,00
Removal of Diaphram	cu.m.	50.46	575.00	29,014.50	18,859.43	6.093.05	4 062 03
	sq.m.	2,264.00	150.00	339,600.00	220,740.00	71,316.00	47.544.00
	ton	0.16	25,000.00	4,016.16	3,052.28	401.62	562.26
	ton	86.00	3,100.00	266,600.00	202,616.00	26,660.00	37,324.00
	cu.m.	80.00	4,500.00	360,000.00	234,000.00	75,600.00	50,400.00
	cu.m.	224.00	6,000.00	1,344,000.00	873,600.00	282,240.00	188,160.00
	kgs	50,507.00	50.00	2,525,350.00	1,641,477.50	530,323.50	353,549.00
416(1) Prestressing Bar with Anchor	kgs	4,469.00	604.27	2,700,500.51	1,755,325.33	567,105.11	378,070.07
r Installation of Parkon Ethor Boinfacered Batheree							
C. IIIStaliation of Carbon Fiber Reinforced Polymer							
Installation of CFRP - Wrap	sq.m.	722.00	7,057.19	5,095,288.81	4,076,231.05	509,528.88	509,528.88
Installation of CFRP - Strip		514.00	5,340.53	2,745,032.38	2,196,025.91	274,503.24	274,503.24
D. Steel Railings							
Reconditioning Steel Railings		188.00	1,500.00	282,000.00	183,300.00	59,220.00	39,480.00
Steel Railings	l.m.	8.00	12,636.69	101,093.52	65,710.79	21,229.64	14.153.09
E. Drainage		-					
Reconditioning of Clogged Drainage with Cover	each	1.00	8,204.76	8,204.76	5,333.09	1,723.00	1,148.67
la an							-
SPL Gondola and Falsework	l.s.	1.00	12,465,544.36	12,465,544.36	8,476,570.17	2,243,797.99	1,745,176.21
G Traffic Manadement							
SPL Traffic Management	l.s.	1.00	2,000,000.00	2,000,000.00	1,420,000.00	300,000.00	280,000.00
H. Contingencies							
Contingencies	l.s.	1.00	2,162,071.10	2,162,071.10	1,621,553.33	324,310.67	216.207.11
I. Temporary Facilities							
Facilities	l.s.	1.00	2,279,851.20	2,279,851.20	1,481,903.28	478,768.75	319,179.17
I. Mobilization/Demobilization							
Mobilization/demobilization	l.s.	1.00	1,297,242.66	1,297,242.66	972.932.00	194.586.40	129 724 27
						2	1311 1 1 1 0 2 1
			Total	48,980,587.04	34,669,290.76	8,220,477.71	6,090,818.58
			% Component	100%	71%	17%	12%

Annex II - Construction Cost for Retrofitting of Lambingan Bridge

(

(

Appendix 22.3.3-1 (1/2) BREAKDOWN OF COSTS

1.1

Annex III - Roadway Improvement (Lambingan Bridge)

(

Item No.	Description	Unit	Ouantity	Ilnit Cost	Amount		Component	
			()		אוואמוור	Foreign	Local	Tax
	Miscellaneous							
	Concrete Median	m ²	30.00	272.93	8.187.96	5.322.17	1.719.47	1 146 31
600(1)	Concrete Curb		104.00	562.46	58,496.15	38,022.50	12.284.19	8,189,46
612(1)	Pavement Markings	m ²	380.00	862.13	327,607.50	212,944.88	68,797.58	45,865.05
	Contingencies	l.s.	1.00	19,714.58	19,714.58	14.785.94	2.957.19	1.971.46
				1 2211 - 122	2211 1 121	10,000 1,11	21.100,4	04.1 16.1
	Traffic Signal (2 Intersection)	l.S.	1.00	3,000,000.00	3,000,000.00	2,250,000.00	450,000.00	300.000.00
				Total	3,414,006.19	2,521,075.48	535,758.43	357,172.28
				% Component	100%	74%	16%	10%

Appendix 22.3.3-1 (2/2) BREAKDOWN OF COSTS

1.1