Appendix 20.1.4-4 (1/20) CAPACITY-DEMAND RATIO OF EXISTING PIER WALL (OLD CODE)

1.00 DESIGN OF PIER COLUMN, (P1)

1.1 MATERIAL AND SPECIFICATIONS

A) Concrete

Compressive strength of concrete, f'c = 25.00 MpaModulus of elasticity of concrete, $E_c = 4730(f_c)^{0.50}$ = 23650.00 MpaConcrete cover, cc = 0.05 m

B) Reinforcing Steel

Tensile strength of reinforcing steel, f_v = 275.00 Mpa Modulus of elasticity of reinforcing steel, E_s = 200000.00 Mpa Main bar diameter, d_b = 20.00 mm Diameter of ties, d_s = 16.00 mm

1.2 COLUMN PROPERTIES

Column dimension: (with respect to lon	g'l dire	ction of bridge)	Unsupported length of column, L_{u} :			
Column width, B	=	25.30 m	1) At longitudinal direction	=	9.70 m	
Column depth, D	=	1.86 m	2) At transversal direction	=	9.70 m	
Strength reduction factor, φ :			Clear height of column, H			
 For moment magnification factor 	=	0.70	1) At longitudinal direction	=	7.80 m	
For lateral reinforcement	=	0.85	2) At transversal direction	=	7.80 m	

1.3 ELASTIC FORCES FROM DYNAMIC ANALYSIS

Location	Member	Loading	Joint	Axial	Shear V _y	Shear V _z	Torsion	Moment M _v	Moment M _z
LOCATION	Number	Loading	Number	(kN)	(kN)	(kN)	(kN-m)	(kN-m)	(kN-m)
		1	440	12017.00	-73.00	9.00	50.81	303.43	382.82
亅			441	-13224.00	73.00	-9.00	-50.81	-313.03	-461.14
	1441	2	440	8.00	268.00	0.00	-0.01	-0.20	-1089.49
PIER WALL	, , , , ,	2	441	-8.00	-316.00	0.00	0.01	0.22	1401.88
颪		3	440	0.00	0.00	510.00	-66.17	2326.99	-0.14
	i		441	0.00	0.00	-558.00	66.17	-2898.04	0.17
		1	441	13224.00	-73.00	9.00	50.81	313.03	461.14
그			442	-14430.00	73.00	-9.00	-50.81	-322.63	-539.46
PIER WALL	1442	2	441	8.00	316.00	0.00	-0.01	-0.22	-1401.88
出	1772	-	442	-8.00	-364.00	0.00	0.01	0.25	1765.91
颪		3	441	0.00	0.00	558.00	-66.17	2898.04	-0.17
			442	0.00	0.00	-606.00	66.17	-3520.73	0.20
		1	442	14430.00	-73.00	9.00	50.81	322.63	539.46
ᆿ	L	'	443	-15636.00	73.00	-9.00	-50.81	-332.23	-617.74
×	1443	2	442	8.00	364.00	0.00	-0.01	-0.25	-1765.91
PIER WALL		4	443	-8.00	-413.00	0.00	0.01	0.27	2181.38
ᄛ		3	442	0.00	0.00	606.00	-66.17	3520.73	-0.20
<u> </u>			443	0.00	0.00	-654.00	66.17	-4194.74	0.23

Note:

TABULATION OF TOP AND BOTTOM COLUMN FORCES DUE TO THE CORRESPONDING LOAD CASES

A) Basic Loading

				@ LONGITUDII	NAL DIRECTION	@ TRANSVER	SAL DIRECTION
Loading	Joint	Location	Axial	Shear Vy	Moment Mz	Shear Vz	Moment My
Loading	No.	Location	(kN)	(kN)	(kN-m)	(kN)	(kN-m)
Dead Load	0	top	12017.00	73.00	382.82	9.00	303.43
Dead Load	0	bottom	15636.00	73.00	617.74	9.00	332.23
Long'l Earthquake	0	top	8.00	268.00	1089.49	0.00	0.20
Long i Laitiiquake	0	bottom	8.00	413.00	2181.38	0.00	0.27
Tran'l Earthquake	0	top	0.00	0.00	0.14	510.00	2326.99
Trairi Laitiiquake	0	bottom	0.00	0.00	0.23	654.00	4194.74

¹⁾ Loading #1 is "Dead Load". From ADAPT Program

²⁾ Loading #2 is "Seismic Load at Longitudinal Direction". From STAAD Program

³⁾ Loading #3 is "Seismic Load at Transversal Direction". From STAAD Program

Appendix 20.1.4-4 (2/20) CAPACITY-DEMAND RATIO OF SUBSTRUCTURES - OLD CODE

B) Load Combination

W-11111				@ LONGITUDII	NAL DIRECTION	@ TRANSVERS	SAL DIRECTION
Load Combination	Joint	Location	Axial	Shear Vy	Moment Mz	Shear Vz	Moment My
Load Combination	No.	Location	(kN)	(kN)	(kN-m)	(kN)	(kN-m)
LC1	0	top	8.00	268.00	1089.49	0.00	0.20
LOT	0	bottom	8.00	413.00	2181.38	0.00	0.27
LC2	0	top	0.00	0.00	0.14	510.00	2326.99
202	0	bottom	0.00	0.00	0.23	654.00	4194.74

C) Modified Load Combination

Response Modification Factor (R) for LC1 = 1
Response Modification Factor (R) for LC2 = 1

				@ LONGITUDI	NAL DIRECTION	@ TRANSVER	SAL DIRECTION
Load Combination	Joint	Location	Axial	Shear Vy	Moment Mz	Shear Vz	Moment My
Load Combination	No.	Location	(kN)	(kN)	(kN-m)	(kN)	(kN-m)
Modified LC1	0	top	12025.00	341.00	1472.31	9.00	303.63
Modified LCT	0	bottom	15644.00	486.00	2799.12	9.00	332.50
Modified LC2	0	top	12017.00	73.00	382.96	519.00	2630.42
Wodilled LOZ	0	bottom	15636.00	73.00	617.97	663.00	4526 97

Unreduced Forces (where R = 1)

				@ LONGITUDII	VAL DIRECTION	@ TRANSVERS	SAL DIRECTION
Load Combination	Joint	Location	Axial	Shear Vy	Moment Mz	Shear Vz	Moment My
Load Combination	No.	Location	(kN)	(kN)	(kN-m)	(kN)	(kN-m)
Unreduced LC1	0	top	12025.00	341.00	1472.31	9.00	303.63
Officadoed LOT	0	bottom	15644.00	486.00	2799.12	9.00	332.50
Unreduced LC2	0	top	12017.00	73.00	382.96	519.00	2630.42
Officational LOZ	0	bottom	15636.00	73.00	617.97	663.00	4526.97

D.) Design Forces

		TOP OF	COLUMN	1	BOTTOM	OF COLUMN		TOP OF	COLUMN	воттом с	OF COLUMN
Forces	N	Mod. LC1	Mod. LC2		Mod. LC1	Mod. LC2	Unit	Unred. LC1	Unred, LC2	Unred. LC1	Unred. LC2
Long'l Shear		341.00	73.00		486.00	∄ 73.00	kN	341.00	73.00	486.00	73.00
Long'l Moment		1472.31	382.96		2799.12	617.97	kN-m	1472.31	382.96	2799.12	617.97
Tran'i Shear		9.00	519.00		9.00	663.00	kN	9.00	519.00	9.00	663.00
Tran'l Moment			2630.42		332.50	4526.97	kN-m	303.63	2630.42	332.50	4526.97
Max. Axial		12025.00	12017.00		15644.00	15636.00	kN	12025.00	12017.00	15644.00	15636.00
Min. Axial	1	12009.00	_12017.00		15628.00	15636.00	kN	12009.00	12017.00	15628.00	15636,00

A) CONSIDER FORCES AT TOP OF COLUMN

A-1) Slenderness Effect

i) Sienderness E		From Modi	fied Forces		From Unreduced Forces		
Direction		Longitudinal	Transversal	Unit	Longitudinal	Transversal	
Column dimension :	Width, B	25.30	1.86	m	25.30	1.86	
Column dimension .	Depth, D	1.86	25.30	m	1.86	25.30	
Unsupported length		9.70	9.70	m	9.70	9.70	
Compressive streng		25.00	25.00	Мра	25.00	25.00	
Modulus of elasticity	of concrete, $E_c = 4730(f_c)^{0.50}$	23650.00	23650.00	Мра	23650.00	23650.00	
Gross area of colum	n, A _g = BD	47.06	47.06	m²	47.06	47.06	
	column, I _g = BD ³ / 12	13.57	2510.11	m ⁴	13.57	2510.11	
Radius of gyration, r	$= (I_0/A_0)^{0.50}$	0.54	7.30	m	0.54	7.30	
Effective length factor	or, k	2.10	2.10		2.10	2.10	
kL _u /r		37.94	2.79		37.94	2.79	
Maximum dead load		382.82	303.43	kN-m	382.82	303.43	
Maximum total load	moment, M _{max}	1472.31	2630.42	kN-m	1472.31	2630.42	
$\beta_d = M_{DL} / M_{max}$		0.26	0.01		0.26	0.01	
	column, El = $(E_{c}I_{q}/2.5) / (1+\beta_{d})$	1.02E+08	2.35E+10	kN-m²	1.02E+08	2.35E+10	
Factored axial load,	P _u = P _{max}	12025.00	12017.00	kN	12025.00	12017.00	
Critical load, $P_c = \pi^2 I$	∃l / (kL _u)²	2422770.07	559217446.00	kN	2422770.07	559217446.00	
For members with tie	es as lateral reinforcement, φ	0.70	0.70		0.70	0.70	
$\delta_s = 1 / [1 - (\Sigma P_u / \phi \Sigma P_u)]$	(,)] ≥ 1.00	1.01	1.00		1.01	1.00	

Appendix 20.1.4-4 (4/20) CAPACITY DEMAND-RATIO OF SUBSTRUCTURES – OLD CODE

02/21/04 PCACOL V3.00 - PORTLAND CEMENT ASSOCIATION -Page 13:42:50 Licensed to: KEI, Pasig City, PI PIER1B 0000000 00000 00000 00000 00000 0000000 00 00 0000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00000 00000 00 00 00000 OOOOO (TM) ______ Computer program for the Strength Design of Reinforced Concrete Sections ______ Licensee stated above acknowledges that Portland Cement Association (PCA) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the PCACOL(tm) computer program. Furthermore, PCA neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the PCACOL(tm) program. Although PCA has endeavored to produce PCACOL(tm) error free, the program is not and can't be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensees. Accordingly, PCA disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the PCACOL(tm) program.
02/21/04 PCACOL V3.00 - PORTLAND CEMENT ASSOCIATION -Page 13:42:50 Licensed to: KEI, Pasig City, PI PIER1B General Information: File Name: C:\MSNAVAL\PASIG-~3\PASIG-~1\JONES\DESIGN\OLDCODE\PIER1B.COL Project: PASIG-MARIKINA Column: Engineer: msn ACI 318-95 Code: Units: Metric Run Option: Investigation Slenderness: Not considered Run Axis: Biaxial Column Type: Structural Material Properties: -----f'c = 17 MPa fy = 226 MPa Es = 200000 MPa Ec = 19378.6 MPa = 14.45 MPa Rupture strain = Infinity Ultimate strain = 0.003 mm/mm Beta1 = 0.85Section: Rectangular: Width = 25290 mm Gross section area, Ag = 4.62807e+007 mm^2 Ix = 1.29158e+013 mm^4 Iy = Xo = 0 mm Yo = $Iy = 2.4667e + 015 mm^4$ $Y_{O} = 0 \text{ mm}$ Reinforcement: Rebar Database: CSA G30.18 Size Diam (mm) Area (mm^2) Size Diam (mm) Area (mm^2) Size Diam (mm) Area (mm^2) ---- ------# 10 100 # 15 16 200 # 20 20 300 # 25 25 500 700 # 35 36 1000 # 45 44 1500 # 55 56 2500 Confinement: User-defined; #10 ties with #0 bars, #10 with larger bars. phi(a) = 1, phi(b) = 1, phi(c) = 1 Layout: Rectangular Pattern: Sides Different (Cover to transverse reinforcement) Total steel area, $As = 34800 \text{ mm}^2$ at 0.08% Top Bottom Left 58 #20 58 #20 0 #15 0 #15 Cover(mm)

Factored Loads and Moments with Corresponding Capacities: (see user's manual for notation)

No.	Pu kN	Mux kN-m	Muy kN-m	fMnx kN-m	fMny kN-m	fMn/Mu
1	17911.5	3233.7	384.1	22654.3	2670.8	7.005
2	17893.2	3233.7	384.1	22638.6	2654.9	7.000
3	17902.1	707.6	5183.3	22119.9	160436.7	30.959

^{***} Program completed as requested! ***

Appendix 20.1.4-4 (3/20) CAPACITY-DEMAND RATIO OF SUBSTRUCTURES - OLD CODE

A-2) Modified Strength Reduction Factor (φ)

From Modified Forces

From Unreduced Forces

Direction	Longitudinal	Transversal	Unit	Longitudinal	Transversal
Maximum axial stress, $\sigma_{Pmax} = P_{max}/A_{q}$	255.54	255.37	Кра	255.54	255.37
20% of compressive strength of concrete, 0.20fc	5000.00	5000.00	Кра	5000.00	5000.00
Modified strength reduction factor, $\phi = 0.90 - 0.40[\sigma_{Pmax}/(0.20fc)] \ge 0.50$	0.88	0.88		0.88	0.88

A-3) Nominal Design Forces At Top Of Column

	MODIFIED	FORCES		UNREDUC	D FORCES
Forces	LC1	LC2	Unit	LC1	LC2
Long'l M _u (M _x)	1685.88	435.41	kN-m	1685.88	435.41
Tran'i M _u (M _v)	347.67	2990.66	kN-m	347.67	2990.66
P _{Umax}	13671.65	13662.35	kN	13671.65	13662.35
P _{Umin}	13653.46	13662.35	kN	13653.46	13662.35
P_{DL}	12017.00		kN	12017.00	

... design and investigate using PCACOL Program...

B) CONSIDER FORCES AT BOTTOM OF COLUMN

B-1) Slenderness Effect

F	BE - Alter		
⊢rom	Modifi	ea For	CAS

From Unreduced Forces

	From Wod	ified Forces	From Unreduced Forces		
Direction	Longitudinal	Transversal	Unit	Longitudinal	Transversal
Column dimension : Width, B	25.30	1.86	m	25.30	1.86
Depth, D	1.86	25.30	m	1.86	25.30
Unsupported length of column, L _u	9.70	9.70	m	9.70	9.70
Compressive strength of concrete, f'c	25.00	25.00	Мра	25.00	25.00
Modulus of elasticity of concrete, $E_c = 4730(f_c)^{0.50}$	23650.00	23650.00	Мра	23650.00	23650.00
Gross area of column, A _g = BD	47.06	47.06	m²	47.06	47.06
Moment of inertia of column, I _g = BD³ / 12	13.57	2510.11	m⁴	13.57	2510.11
Radius of gyration, $r = (I_o/A_o)^{0.50}$	0.54	7.30	m	0.54	7.30
Effective length factor, k	2.10	2.10		2.10	2.10
kL _u /r	37.94	2.79		37.94	2.79
Maximum dead load moment, M _{DL}	617.74	332.23	kN-m	617.74	332.23
Maximum total load moment, M _{max}	2799.12	4526.97	kN-m	2799.12	4526.97
$\beta_d = M_{DL} / M_{max}$	0.22	0.01		0.22	0.01
Flexural stiffness of column, EI = $(E_c I_g/2.5) / (1+\beta_d)$	1.05E+08	2.35E+10	kN-m²	1.05E+08	2.35E+10
Factored axial load, P _u = P _{max}	15644.00	15636.00	kN	15644.00	15636.00
Critical load, $P_c = \pi^2 EI / (kL_u)^2$	2500810.98	559217446.00	kN	2500810.98	559217446.00
For members with ties as lateral reinforcement, φ	0.70	0.70		0.70	0.70
$\delta_{\rm s}$ = 1 / [1-($\Sigma P_{\rm u}/\phi \Sigma P_{\rm c}$)] \geq 1.00	1.01	1.00		1.01	1.00

B-2) Modified Strength Reduction Factor (φ)

From Modified Forces

From Unreduced Forces

Direction	Longitudinal	Transversal	Unit	Longitudinal	Transversal
Maximum axial stress, $\sigma_{Pmax} = P_{max}/A_g$	332.44	332.27	Кра	332.44	332.27
20% of compressive strength of concrete, 0.20fc	5000.00	5000.00	Кра	5000.00	5000.00
Modified strength reduction factor, $\phi = 0.90 - 0.40[\sigma_{Pmax}/(0.20fc)] \ge 0.50$	0.87	0.87		0.87	0.87

B-3) Nominal Design Forces At Bottom Of Pier Wall

	MODIFIED	FORCES		UNREDUCE	D FORCES
Forces	LC1	LC2	Unit	LC1	LC2
Long'l M _u (M _x)	3233.74	707.56	kN-m	3233.74	707.56
Tran'i M _u (M _v)	384.13	5183.25	kN-m	384.13	5183.25
P _{Umax}	17911.51	17902.07	kN	17911.51	17902.07
P _{Umin}	17893.19	17902.07	kN	17893.19	17902.07
P _{DL}	1563	6.00	kN	1563	6.00

... design and investigate using PCACOL Program...

Appendix 20.1.4-4 (5/20) CAPACITY-DEMAND RATIO OF EXISTING PIER WALL (OLD CODE)

2.00 DESIGN OF PIER COLUMN, (P2)

2.1 MATERIAL AND SPECIFICATIONS

A) Concrete

Compressive strength of concrete, fc = 25.00 Mpa Modulus of elasticity of concrete, $E_c = 4730(f_c)^{0.50}$ = 23650.00 Mpa Concrete cover, cc = 0.05 m

B) Reinforcing Steel

Tensile strength of reinforcing steel, f_{γ} = 275.00 Mpa Modulus of elasticity of reinforcing steel, E_{s} = 200000.00 Mpa Main bar diameter, d_{b} = 20.00 mm Diameter of ties, d_{s} = 16.00 mm

2.2 COLUMN PROPERTIES

Column dimension: (with respect to long'l direction of bridge) Unsupported length of column, L., : Column width, B 26.30 m 1) At longitudinal direction 11.56 m Column depth, D 1.83 m 2) At transversal direction 11.56 m Strength reduction factor, 6: Clear height of column, H 1) For moment magnification factor 0.70 1) At longitudinal direction 9.66 m 2) For lateral reinforcement 0.85 2) At transversal direction 9.66 m

2.3 ELASTIC FORCES FROM DYNAMIC ANALYSIS

Location	Member	Loading	Joint	Axial	Shear V _y	Shear V _z	Torsion	Moment M _y	Moment M _z
Location	Number	Loading	Number	(kN)	(kN)	(kN)	(kN-m)	(kN-m)	(kN-m)
11		1	536	11973.00	42.00	-1.00	-17.19	-326.62	-220.60
N N		1	537	-14006.00	-42.00	1.00	17.19	329.08	296.65
1/3 UMIN	1451	2	536	-7.00	91.00	0.00	0.10	0.20	-166.30
UPPER 1/3 COLUMN	1701	Z	537	7.00	-173.00	0.00	-0.10	-0.21	404.23
E		3	536	0.00	0.00	507.00			0.07
			537	0.00	0.00	-588.00	-57.53	-3298.23	-0.09
유		1	537	14006.00	42.00	-1.00	-17.19	-329.08	-296.65
		1	538	-16040.00	-42.00	1.00	17.19	331.54	372.70
= 1/3 UMN	1452	2	537	-7.00	173.00	0.00	0.10	0.21	-404.23
MIDDLE 1/3 COLUMN	1402		538	7.00	-254.00	0.00	-0.10	-0.23	788.80
€ 0		3	537	0.00	0.00	588.00	57.53	3298.23	0.09
			538	0.00	0.00	-669.00	-57.53	-4431.52	-0.12
ш		1 .	538	16040.00	42.00	-1.00	-17.19	-331.54	-372.70
R N	1		539	-18072.00	-42.00	1.00	17.19	334.00	448.73
WER 1/3 COLUMN	1453	2	538	-7.00	254.00	0.00	0.10	0.23	-788.80
単は	1700		539	7.00	-335.00	0.00	-0.10	-0.24	1319.83
LOWER		3	538	0.00	0.00	669.00	57.53	4431.52	0.12
			539	0.00	0.00	-751.00	-57.53	-5711.06	-0.14

Note:

- 1) Loading #1 is "Dead Load". From ADAPT Program
- 2) Loading #2 is "Seismic Load at Longitudinal Direction". From STAAD Program
- 3) Loading #3 is "Seismic Load at Transversal Direction". From STAAD Program
- 4) Joint #536 is at top of column.
- 5) Joint #539 is at bottom of column.

TABULATION OF TOP AND BOTTOM COLUMN FORCES DUE TO THE CORRESPONDING LOAD CASES

A) Basic Loading

				@ LONGITUDIN	NAL DIRECTION	@ TRANSVER	@ TRANSVERSAL DIRECTION			
Loading	Joint	Location	Axial	Shear Vy	Moment Mz	Shear Vz	Moment My			
Loading	No.	Location	(kN)	(kN)	(kN-m)	(kN)	(kN-m)			
Dead Load	536	top	11973.00	42.00	220.60	1.00	326.62			
Dead Load	539	bottom	18072.00	42.00	448.73	1.00	334.00			
Long'l Earthquake	536	top	7.00	91.00	166.30	0.00	0.20			
Long Laitiquake	539	bottom	7.00	335.00	1319.83	0.00	0.24			
Tran'l Earthquake	536	top	0.00	0.00	0.07	507.00	2311.58			
Trairi Eartiiquake	539	bottom	0.00	0.00	0.14	751.00	5711.06			

${\small Appendix~20.1.4-4~(~6/20~)}\\ {\small CAPACITY-DEMAND~RATIO~OF~EXISTING~PIER~WALL~(OLD~CODE)}\\$

B) Load Combination

				@ LONGITUDI	NAL DIRECTION	@ TRANSVER	SAL DIRECTION
Load Combination	Joint	Location	Axial	Shear Vy	Moment Mz	Shear Vz	Moment My
Load Combination	No.	Location	(kN)	(kN)	(kN-m)	(kN)	(kN-m)
LC1	536	top	7.00	91.00	166.30	0.00	0.20
LOT	539	bottom	7.00	335.00	1319.83	0.00	0.24
LC2	536	top	0.00	0.00	0.07	507.00	2311.58
	539	bottom	0.00	0.00	0.14	751.00	5711.06

C) Modified Load Combination

Response Modification Factor (R) for LC1 = 1 Response Modification Factor (R) for LC2 = 1

				@ LONGITUDI	NAL DIRECTION	@ TRANSVER	SAL DIRECTION
Load Combination	Joint	Location	Axial	Shear Vy	Moment Mz	Shear Vz	Moment My
Load Combination	No.	Location	(kN)	(kN)	(kN-m)	(kN)	(kN-m)
Modified LC1	536	top	11980.00	133.00	386.90	1.00	326.82
Wodilled LC I	539	bottom	18079.00	377.00	1768.57	1.00	334.24
Modified LC2	536	top	11973.00	42.00	220.67	508.00	2638.20
Modified ECZ	539	bottom	18072.00	42.00	448.87	752.00	6045.06

Unreduced Forces (where R = 1)

		•		@ LONGITUDII	VAL DIRECTION	@ TRANSVERSAL DIRECTION		
Load Combination L	Joint Location		Axial	Shear Vy	Moment Mz	Shear Vz	Moment My	
	No.	Location	(kN)	(kN)	(kN-m)	(kN)	(kN-m)	
Unreduced LC1	536	top	11980.00	133.00	386.90	1.00	326.82	
Officadoca 201	539	bottom	18079.00	377.00	1768.57	1.00	334.24	
Unreduced LC2	536	top	11973.00	42.00	220.67	508.00	2638.20	
Officuloca LOZ	539	bottom	18072.00	42.00	448.87	752.00	6045.06	

D.) Design Forces

	TOP OF	COLUMN	BOTTOM	OF COLUMN			TOP OF	COLUMN		воттом с	F COLUMN
Forces	Mod. LC1	Mod. LC2	Mod. LC1	Mod. LC2	Unit		Unred, LC1	Unred, LC2		Unred. LC1	Unred, LC2
Long'l Shear	133.00	42.00	377.00	42.00	kN	ŀ	133.00	42.00		377.00	42.00
Long'i Moment	386.90	220.67	1768.57	448.87	kN-m		386.90	220.67		1768.57	448.87
Tran'l Shear	1.00	508.00	1.00	752.00	kN		1.00	508.00	1	1.00	752.00
Tran'l Moment	326.82	2638.20	334.24	6045.06	kN-m		326.82	2638.20		334.24	6045.06
Max. Axial	11980.00	11973.00	18079.00	18072.00	kN		11980.00	11973.00		18079.00	18072.00
Min. Axial	11966.00	11973.00	18065.00	18072.00	kN		11966.00	11973.00		18065.00	18072.00

A) CONSIDER FORCES AT TOP OF COLUMN

A-1) Slenderness Effect

1) Sienderness Eriect	From Modi	fied Forces		From Unreduced Forces		
Direction	Longitudinal	Transversal	Unit	Longitudinal	Transversal	
Column dimension : Width, B	26.30	1.26	m	26.30	1.26	
Depth, D	1.26	26.30	m	1.26	26.30	
Unsupported length of column, L _u	11.56	11.56	m	11.56	11.56	
Compressive strength of concrete, f'c	25.00	25.00	Мра	25.00	25.00	
Modulus of elasticity of concrete, $E_c = 4730(f_c)^{0.50}$	23650.00	23650.00	Мра	23650.00	23650.00	
Gross area of column, A _g = BD	33.14	33.14	m²	33.14	33,14	
Moment of inertia of column, I _g = BD³ / 12	4.38	1910.10	m ⁴	4.38	1910.10	
Radius of gyration, $r = (I_o/A_o)^{0.50}$	0.36	7.59	m	0.36	7.59	
Effective length factor, k	2.10	2.10		2.10	2.10	
kL _u /r	66.74	3.20		66.74	3.20	
Maximum dead load moment, M _{DL}	220.60	326.62	kN-m	220.60	326.62	
Maximum total load moment, M _{max}	386.90	2638.20	kN-m	386.90	2638.20	
$\beta_d = M_{DL} / M_{max}$	0.57	0.01		0.57	0.01	
Flexural stiffness of column, EI = $(E_c I_g/2.5) / (1+\beta_d)$	2.64E+07	1.79E+10	kN-m²	2.64E+07	1.79E+10	
Factored axial load, P _u = P _{max}	11980.00	11973.00	kN	11980.00	11973.00	
Critical load, $P_c = \pi^2 EI / (kL_u)^2$	442359.04	299620686.61	kN	442359.04	299620686.61	
For members with ties as lateral reinforcement, φ	0.70	0.70		0.70	0.70	
$\delta_{\rm s}$ = 1 / [1-($\Sigma P_{\rm u}/\phi \Sigma P_{\rm c}$)] \geq 1.00	1.04	1.00		1.04	1.00	

$\begin{array}{c} \text{Appendix 20.1.4-4 (7/20)} \\ \text{CAPACITY-DEMAND RATIO OF EXISTING PIER WALL (OLD CODE)} \end{array}$

A-2) Modified Strength Reduction Factor (φ)

From Modified Forces

From Unreduced Forces

Direction	Longitudinal	Transversal	Unit	Longitudinal	Transversal
Maximum axial stress, $\sigma_{Pmax} = P_{max}/A_{q}$	361.52	361.31	Кра	361.52	361.31
20% of compressive strength of concrete, 0.20fc	5000.00	5000.00	Kpa	5000.00	5000.00
Modified strength reduction factor, $\phi = 0.90 - 0.40[\sigma_{Pmax}/(0.20fc)] \ge 0.50$	0.87	0.87	•	0.87	0.87

A-3) Nominal Design Forces At Top Of Column

	MODIFIE	FORCES		UNREDUCE	D FORCES	
Forces	LC1	LC2	Unit	LC1	LC2	
Long'l M _u (M _x)	462.04	253.34	kN-m	462.04	253.34	
Tran'i M _u (M _v)	390.29	3028.78	kN-m	390.29	3028.78	
P _{Umax}	13753.07	13744.76	kN	13753.07	13744.76	
P _{Umin}	13736.99	13744.76	kN	13736.99	13744.76	
P_{DL}	11973.00		kN	11973.00		

... design and investigate using PCACOL Program...

B) CONSIDER FORCES AT BOTTOM OF COLUMN

B-1) Slenderness Effect

From	Modi	fied	Forces

From Unreduced Forces

	From Modified Forces			From Unreduced Forces	
Direction	Longitudinal	Transversal	Unit	Longitudinal	Transversal
Column dimension : Width, B	26.30	1.26	m	26.30	1.26
Depth, D	1.26	26.30	m	1.26	26.30
Unsupported length of column, L _u	11.56	11.56	m	11.56	11.56
Compressive strength of concrete, f'c	25.00	25.00	Мра	25.00	25.00
Modulus of elasticity of concrete, $E_c = 4730(f_c)^{0.50}$	23650.00	23650.00	Мра	23650.00	23650.00
Gross area of column, A _g = BD	33.14	33.14	m²	33.14	33.14
Moment of inertia of column, I _g = BD³ / 12	4.38	1910.10	m ⁴	4.38	1910.10
Radius of gyration, $r = (I_{\sigma}/A_{\sigma})^{0.50}$	0.36	7.59	m	0.36	7.59
Effective length factor, k	2.10	2.10		2.10	2.10
kL _u /r	66.74	3.20		66.74	3.20
Maximum dead load moment, M _{DL}	448.73	334.00	kN-m	448.73	334.00
Maximum total load moment, M _{max}	1768.57	6045.06	kN-m	1768.57	6045.06
$\beta_d = M_{DL} / M_{max}$	0.25	0.01		0.25	0.01
Flexural stiffness of column, EI = $(E_c I_g/2.5) / (1+\beta_d)$	3.31E+07	1.79E+10	kN-m²	3.31E+07	1.79E+10
Factored axial load, P _u = P _{max}	18079.00	18072.00	kN	18079.00	18072.00
Critical load, $P_c = \pi^2 EI / (kL_u)^2$	554013.02	299620686.61	kN	554013.02	299620686.61
For members with ties as lateral reinforcement, φ	0.70	0.70		0.70	0.70
$\delta_{\rm s}$ = 1 / [1-($\Sigma P_{\rm u}/\phi \Sigma P_{\rm c}$)] \geq 1.00	1.05	1.00		1.05	1.00

B-2) Modified Strength Reduction Factor (φ)

From Modified Forces

From Unreduced Forces

Direction	Longitudinal	Transversal	Unit	Longitudinal	Transversal
Maximum axial stress, $\sigma_{Pmax} = P_{max}/A_q$	545.57	545.36	Кра	545.57	545.36
20% of compressive strength of concrete, 0.20fc	5000.00	5000.00	Кра	5000.00	5000.00
Modified strength reduction factor, $\phi = 0.90 - 0.40[\sigma_{Pmax}/(0.20fc)] \ge 0.50$	0.86	0.86		0.86	0.86

B-3) Nominal Design Forces At Bottom Of Column

	MODIFIED	FORCES		UNREDUC	D FORCES
Forces	LC1	LC2	Unit	LC1	LC2
Long'l M _u (M _x)	2166.21	524.20	kN-m	2166.21	524.20
Tran'l M _u (M _v)	409.39	7059.53	kN-m	409.39	7059.53
P _{Umax}	21111.58	21102.99	kN	21111.58	21102.99
P _{Umin}	21095.23	21102.99	kN	21095.23	21102.99
P_{DL}	18072.00		kN	18072.00	

... design and investigate using PCACOL Program...

Appendix 20.1.4-4 (8/20) CAPACITY-DEMAND RATIO OF SUBSTRUCTURES - OLD CODE

02/21/04 PCACOL V3.00 - PORTLAND CEMENT ASSOCIATION -02/21/04 PCACOL V3.00 - PORTERNA CELLER 13:43:27 Licensed to: KEI, Pasig City, PI 00000 00000 0000000 00 00 $\cap \cap$ ററ 0000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00

00000

PIER2B

______ Computer program for the Strength Design of Reinforced Concrete Sections

00000

00000

00000 (TM)

00

Licensee stated above acknowledges that Portland Cement Association (PCA) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the PCACOL(tm) computer program. Furthermore, PCA neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the PCACOL(tm) program. Although PCA has endeavored to produce PCACOL(tm) error free, the program is not and can't be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensees. Accordingly, PCA disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of Licensee stated above acknowledges that Portland Cement Association design or engineering documents prepared in connection with the use of the PCACOL(tm) program.
02/21/04 PCACOL V3.00 - PORTLAND CEMENT ASSOCIATION -

13:43:27 Licensed to: KEI, Pasig City, PI

Page PTER2B

General Information:

File Name: C:\MSNAVAL\PASIG-~3\PASIG-~1\JONES\DESIGN\OLDCODE\PIER2B.COL

Project: PASIG-MARIKINA

00

Column: Code:

ACI 318-95

Engineer: msn Units: Metric

Run Option: Investigation

Slenderness: Not considered Column Type: Structural

Run Axis: Biaxial

Material Properties: ------

f'c = 17 MPa

fy = 226 MPa Es = 200000 MPa

Ec = 19378.6 MPa = 14.45 MPa fc

Rupture strain = Infinity

Ultimate strain = 0.003 mm/mm

Beta1 = 0.85

Section:

Rectangular: Width = 25290 mm Depth = 1830 mm

Gross section area, Ag = 4.62807e+007 mm² Ix = 1.29158e+013 mm⁴

 $Ty = 2.4667e + 015 mm^4$

Xo = 0 mm

Reinforcement:

Rebar Database: CSA G30.18

Size	Diam (mm)	Area (mm^2)	Size	Diam (mm)	Area (mm^2)	Size	Diam (mm)	Area (mm^2)
# 10	11	100	# 15	16	200	# 20	20	300
# 25	25	500	# 30	30	700	# 35	36	1000
# 45	44	1500	# 55	56	2500			

Confinement: User-defined; #10 ties with #0 bars, #10 with larger bars. phi(a) = 1, phi(b) = 1, phi(c) = 1

Layout: Rectangular

Pattern: Sides Different (Cover to transverse reinforcement)

Total steel area, As = 34800 mm² at 0.08%

		Top	Во	ttom	L	eft	F	Right
Bars	58	#20	58	#20	0	#15	0	#15
Cover(mm)		50		50		50		50

Factored Loads and Moments with Corresponding Capacities: (see user's manual for notation)

No.	Pu kN	Mux kN-m	Muy kN-m	fMnx kN-m	fMny kN-m	fMn/Mu
1	21111.6	2166.2	409.4	25372.9	4781.0	11.712
2	21095.2	2166.2	409.4	25359.1	4813.0	11.708
3	21103.0	524.2	7059.5	21969.4	290431.2	41.145

^{***} Program completed as requested! ***

Appendix 20.1.4-4 (9/20) CAPACITY-DEMAND RATIO OF EXISTING CAISSON FOUNDATION (OLD CODE)

BRIDGE NAME: Jones Bridge

SUBJECT:

Investigation of Spread Footing

SUMMARY OF CAPACITY/DEMAND RATIO (OLD CODE)

LOCATION	CAPACITY (kPa)	DEMAND (kPa)	C/D
PIER 1 (Case I)	300	192.86	1.56
PIER 1 (Case VII)	400	205.50	1.95
PIER 2 (Case I)	300	197.86	1.52
PIER 2 (Case VII)	400	207.97	1.92

PIFR 1 (Case I)

PIER 1 (Case I)			
Design D	ata		
Design Strengt	hs / Loa	d	
Concrete			MPa
Reinforcing Steel			MPa
Factored Axial Load			kN
Factored Moment (x)	M _u x	: 739	kN-m
Factored Moment (y)	M _u y	5437	kN-m
Allowable Soil Bear	ring Cap	acity	
	qallow	300	kPa
Footing & Column	Dimens	ions	
Footing Width	В	10.20	m
Footing Length	L:		m
Footing Thickness		3.00	m
Column Width	b	4.12	m
Column Thickness	t	27.60	m
Rebar Diamete	rs / Area	1	
Rebar Dia	φ _(m) :		mm
Rebar Area	Α	314.16	mm²
Other Pertinent In	nformati	on	
Concrete Cover	cc :	100	mm
Effective Depth	d:	2870	mm
Strength Reduction Factor (Flexure).	ф f :	0.9	
Strength Reduction Factor (Shear)	ф _s	0.85	
	β1:	0.85	
Footing Founding Depth	Н:	5.00	m
Unit Wt. of Soil	γs :	18.00	kN/m³
Unit Wt. of Concrete	γс :	24.50	kN/m³
Wt. of Footing V	V _{ftg} : 23	840.46	kN
Wt. of Overburden Soil	W _s : 7	583.33	kN
Load Factor used for DL	:	1.00	
Col. Ecc. (x) fr. Cen. of Ftg.	ex col:	0	m
Col. Ecc. (y) fr. Cen. of Ftg.	ey col:	0	m
Design Calcul	ations		
q _{actual} = (P _{uT} / B*L) [1± (6*	e _x /L)±(6*e _y /B)]
Final Eccentricity (x)	ex:	0.326	m
Final Eccentricity (y)	ey:	0.044	m
	q ₁ :	161.78	kPa
Company Coll Programme	q ₂ :	171.03	-
Corner Soil Pressures	q ₃ :	183.61	
	q ₄ :	192.86	
	74.		4

PIER 1 (Case VII)

Design Strengt Concrete	hs / Load	1	
Reinforcing Steel		4	
			MPa
	fy:	226	MPa
Factored Axial Load	P _u :		kN
Factored Moment (x)	M _u x:	3170	kN-m
Factored Moment (y)	M _u y:		kN-m
Allowable Soil Bear	ring Cap	acity	
qı	ultimate:	400	kPa
Footing & Column		ons	
Footing Width	В:	10.20	m
Footing Length		31.80	m
Footing Thickness	T :	3.00	m
Column Width	b:	4.12	m
Column Thickness	t:	27.60	m
Rebar Diamete	rs / Area		
Rebar Dia	φ _(m) ;	25	mm
Rebar Area	Α:	490.87	mm²
Other Pertinent In	nformatio	on	
Concrete Cover	cc:	100	mm
Effective Depth	d:	2862.5	mm
Strength Reduction Factor (Flexure)	ф f :	0.9	
Strength Reduction Factor (Shear)	фs:	0.85	
	β1:	0.85	
Footing Founding Depth	H:	5.00	m
Unit Wt. of Soil	γs:	18.00	kN/m³
Unit Wt. of Concrete	γс:		kN/m³
	V_{ftg} : 23		kN
	W _s : 75	83.33	kN
Load Factor used for DL	:	1.00	
Col. Ecc. (x) fr. Cen. of Ftg.	ex col:	0	m
Col. Ecc. (y) fr. Cen. of Ftg.	ey col:	0	m
Design Calcul	ations		
q _{actual} = (P _{uT} / B*L) [1± (6*c	e _x /L)±(6	6*e _y /B)]	
Final Eccentricity (x)	ex:	0.322	
Final Eccentricity (y)	ey:	0.203	
	q₁:	142.85	kPa
Corner Cell December	q ₂ :	184.37	kPa
Corner Soil Pressures	q ₃ :	163.98	
	q ₄ :	205.50	

${\small \textbf{Appendix 20.1.4-4 (10/20)}} \\ {\small \textbf{CAPACITY-DEMAND RATIO OF EXISTING CAISSON FOUNDATION (OLD CODE)}} \\$

PIER 2 (Case I)

PIER 2 (Case I)			
Design E	ata	<u> </u>	<u> </u>
Design Strengt	hs / Loa	d	
Concrete	fc' :	17	MPa
Reinforcing Steel	fy:	226	MPa
Factored Axial Load	Pu:	19104	kN
Factored Moment (x)	M _u x:	547	kN-m
Factored Moment (y)	M _u y:	5426	kN-m
Allowable Soil Bea	ring Cap	acity	
	qallow:	300	kPa
Footing & Column	Dimensi	ons	
Footing Width	В:	10.20	m
Footing Length		31.80	m
Footing Thickness	T :	3.00	m
Column Width	b:	4.12	m
Column Thickness	t:	27.60	m
Rebar Diamete	rs / Area		
Rebar Dia	φ _(m) :	20	mm
Rebar Area	Α:	314.16	mm²
Other Pertinent l	nformatio	on	
Concrete Cover	cc:	100	mm
Effective Depth	d :	2870	mm
Strength Reduction Factor (Flexure).	фf:	0.9	
Strength Reduction Factor (Shear)	ф _s :	0.85	
	β1:	0.85	
Footing Founding Depth	H:	5.00	m
Unit Wt. of Soil	γs :	18.00	kN/m³
Unit Wt. of Concrete	γc :		kN/m ³
Wt. of Footing V	V_{ftg} : 23	840.46	kN
Wt. of Overburden Soil	W _s : 75	83.33	kN
Load Factor used for DL	:	1.00	
Col. Ecc. (x) fr. Cen. of Ftg.	ex col:	0	m
Col. Ecc. (y) fr. Cen. of Ftg.	ey col:	0	m
Design Calcu	lations	•	
$q_{actual} = (P_{uT} / B*L) [1 \pm (6*$	e _x /L)±(6	3*e _y /B)]	
Final Eccentricity (x)	ex:	0.284	m
Final Eccentricity (y)	ey:	0.029	m
	q₁:	171.82	kPa
Corner Soil Pressures	q ₂ :	178.05	kPa
23/10/ 2011 10000/00	q ₃ :	191.63	kPa
	q ₄ :	197.86	kPa

PIER 2 (Case VII)

Design D	ata		1. 4	
Design Strengt		224		
Concrete			17	MPa
Reinforcing Steel			226	MPa
Factored Axial Load				
Factored Moment (x)				kN-m
Factored Moment (y)			6944	
Allowable Soil Bea				kN-m
	ultimate		400	kPa
Footing & Column				кга
Footing Width				m
Footing Length				
				m
Footing Thickness			3.00	m
Column Width			4.12	m
Column ThicknessRebar Diamete			27.60	m
			25	
Rebar Dia	<u>Ψ (m</u>		25 490.87	mm mm ²
Other Pertinent I				111111
Concrete Cover			100	mm
Effective Depth			2862.5	
Strength Reduction Factor (Flexure).				11011
Strength Reduction Factor (Shear)			0.85	-
Strength Reduction Factor (Shear)	ψ: β1		0.85	
Footing Founding Depth	H P		5.00	m
Unit Wt. of Soil			18.00	m kN/m³
Unit Wt. of Concrete				kN/m³
			24.50	kN
	V _{ftg} : 2			
Load Factor used for DL	W _s :	/ 50		kN
		÷	1.00	
	ex col		0	m
new control of the co	ey col	• • •	0	m
Design Calcul		_		
q _{actual} = (P _{uT} / B*L) [1± (6*		: (6		
Final Eccentricity (x)	ex:		0.384	
Final Eccentricity (y)	ey:		0.123	
	q₁:		155.36	
Corner Soil Pressures	q ₂ :		181.64	
	q ₃ :		181.70	
	q₄:		207.97	кРа

Appendix 20.1.4-4 (11/20) CAPACITY-DEMAND RATIO OF EXISTING PIER WALL (LATEST CODE)

1.00 DESIGN OF PIER COLUMN, (P1)

1.1 MATERIAL AND SPECIFICATIONS

A) Concrete

Compressive strength of concrete, fc = 25.00 MpaModulus of elasticity of concrete, $E_c = 4730(f_c)^{0.50}$ = 23650.00 MpaConcrete cover, cc = 0.05 m

B) Reinforcing Steel

Tensile strength of reinforcing steel, f_{γ} = 275.00 Mpa Modulus of elasticity of reinforcing steel, E_{s} = 200000.00 Mpa Main bar diameter, d_{b} = 20.00 mm Diameter of ties, d_{s} = 16.00 mm

1.2 COLUMN PROPERTIES

Column dimension: (with respect to long	'l direc	ction of bridge)	Unsupported length of column, L,, :		
Column width, B	=	25.30 m	1) At longitudinal direction	=	9.70 m
Column depth, D	=	1.86 m	2) At transversal direction	=	9.70 m
Strength reduction factor, φ:			Clear height of column, H		
 For moment magnification factor 	=	0.70	At longitudinal direction	=	7.80 m
2) For lateral reinforcement	=	0.85	At transversal direction	=	7.80 m

1.3 ELASTIC FORCES FROM DYNAMIC ANALYSIS

Location	Member	Loading	Joint	Axial	Shear V _y	Shear V _z	Torsion	Moment M _y	Moment M _z
Loodion	Number	Loading	Number	(kN)	(kN)	(kN)	(kN-m)	(kN-m)	(kN-m)
11		1	440	13883.00	-24.00	9.00	31.00	303.34	125.91
P ×		ı	441	-15826.00	24.00	-9.00	-31.00	-312.86	-151.67
1/3 UMI	1441	2	440	393.00	6066.00	7.00	6.27	253.68	20617.87
UPPER 1/3 COLUMN	, , , ,		441	393.00	6066.00	7.00	6.27	252.59	26704.03
= 0		3	440	38.00	5.00	7519.00	2076.09	35152.81	28.96
			441	38.00	5.00	7519.00	2076.09	42909.35	24.23
P		1	441	15826.00	-24.00	9.00	31.00	312.86	151.67
	1442		442	-17770.00	24.00	-9.00	-31.00	-322.38	-177.43
ODLE 1/3 COLUMN		2	441	394.00	6838.00	9.00	6.27	252.59	26704.03
밀었	1772		442	394.00	6838.00	9.00	6.27	251.83	33524.43
MIDDLE		3	441	43.00	9.00	8061.00	2076.09	42909.35	24.23
		· · · · · · · · · · · · · · · · · · ·	442	43.00	9.00	8061.00	2076.09	51116.90	15.19
LL.		1	442	17770.00	-24.00	9.00	31.00	322.38	177.43
3 OF	1	Į.	443	-19713.00	24.00	-9.00	-31.00	-331.90	-203.18
WER 1/3 (COLUMN	1443	2	442	394.00	7354.00	10.00	6.27	251.83	33524.43
[일	'	2	443	394.00	7354.00	10.00	6.27	251.59	40887.26
LOWER		3	442	47.00	12.00	8570.00	2076.09	51116.90	15.19
			443	47.00	12.00	8570.00	2076.09	59781.90	3.75

Note:

- 1) Loading #1 is "Dead Load". From ADAPT Program
- 2) Loading #2 is "Seismic Load at Longitudinal Direction". From STAAD Program
- 3) Loading #3 is "Seismic Load at Transversal Direction". From STAAD Program
- 4) Joint #440 is at top of column.
- 5) Joint #443 is at bottom of column.

TABULATION OF TOP AND BOTTOM COLUMN FORCES DUE TO THE CORRESPONDING LOAD CASES

A) Basic Loading

				@ LONGITUDIN	VAL DIRECTION	@ TRANSVER	SAL DIRECTION
Loading	Joint	Location	Axial	Shear Vy	Moment Mz	Shear Vz	Moment My
	No.	Location	(kN)	(kN)	(kN-m)	(kN)	(kN-m)
Dead Load	440	top	13883.00	24.00	125.91	9.00	303.34
Dead Load	443	bottom	19713.00	24.00	203.18	9.00	331.90
Long'l Earthquake	440	top	393.00	6066.00	20617.87	7.00	253.68
Long i Laitiiquake	443	bottom	394.00	7354.00	40887.26	10.00	251.59
Tran'i Earthquake	440	top	38.00	5.00	28.96	7519.00	35152.81
Traffi Earthquake	443	bottom	47.00	12.00	3.75	8570.00	59781.90

${\it Appendix~20.1.4-4~(~12/20~)} \\ {\it CAPACITY-DEMAND~RATIO~OF~EXISTING~PIER~WALL~(LATEST~CODE)}$

B) Load Combination

				@ LONGITUDII	NAL DIRECTION	@ TRANSVER	SAL DIRECTION
Load Combination	Joint	Location	Axial	Shear Vy	Moment Mz	Shear Vz	Moment My
	No.	Location	(kN)	(kN)	(kN-m)	(kN)	(kN-m)
LC1	440	top	404.40	6067.50	20626.56	2262.70	10799.53
201	443	bottom	408.10	7357.60	40888.39	2581.00	18186.16
LC2	440	top	155.90	1824.80	6214.32	7521.10	35228.91
LOZ	443	bottom	165.20	2218.20	12269.92	8573.00	59857.38

C) Modified Load Combination

Response Modification Factor (R) for LC1 = 1 Response Modification Factor (R) for LC2 = 1

				@ LONGITUDI	NAL DIRECTION	@ TRANSVER	SAL DIRECTION
Load Combination	nation Joint Location		Axial	Shear Vy	Moment Mz	Shear Vz	Moment My
	No.	Location	(kN)	(kN)	(kN-m)	(kN)	(kN-m)
Modified LC1	440	top	14287.40	6091.50	20752.47	2271.70	11102.86
Woulled LC I	443	bottom	20121.10	7381.60	41091.57	2590.00	18518.06
Modified LC2	440	top	14038.90	1848.80	6340.23	7530.10	35532.25
	443	bottom	19878.20	2242.20	12473.11	8582.00	60189.28

Unreduced Forces (where R = 1)

				@ LONGITUDII	NAL DIRECTION	@ TRANSVERS	SAL DIRECTION
Load Combination	Joint	Location	Axial	Shear Vy	Moment Mz	Shear Vz	Moment My
	No.	Location	(kN)	(kN)	(kN-m)	(kN)	(kN-m)
Unreduced LC1	440	top	14287.40	6091.50	20752.47	2271.70	11102.86
Officauced LOT	443	bottom	20121.10	7381.60	41091.57	2590.00	18518.06
Unreduced LC2	440	top	14038.90	1848.80	6340.23	7530.10	35532.25
	443	bottom	19878.20	2242.20	12473.11	8582.00	60189.28

D.) Design Forces

_		TOP OF	TOP OF COLUMN		BOTTOM OF COLUMN		BOTTOM OF COLUMN		BOTTOM OF COLUMN					TOP OF	COLUMN	BOTTOM	OF COLUMN
E	Forces	Mod. LC1	Mod. LC2		Mod. LC1	Mod. LC2		Unit		Unred. LC1	Unred, LC2	Unred. LC1	Unred. LC2				
	Long'l Shear	6091.50	1848.80		7381.60	2242.20		kN		6091.50	1848.80	7381.60	2242.20				
L	Long'l Moment	20752.47	6340.23	l	41091.57	12473.11	1	kN-m		20752.47	6340.23	41091.57	12473.11				
	Tran'l Shear	2271.70	7530.10		2590.00	8582.00		kN	li	2271.70	7530.10	2590.00	8582.00				
L	Tran'l Moment	11102.86	35532.25		18518.06	60189.28		kN-m		11102.86	35532.25	18518.06	60189.28				
	Max. Axial	14287.40	14038.90		20121.10	19878.20		kN	l	14287.40	14038.90	20121.10	19878.20				
L	Min. Axial	13478.60	13727.10		19304.90	19547.80		kN		13478.60	13727.10	19304.90	19547.80				

A) CONSIDER FORCES AT TOP OF COLUMN

A-1) Slenderness Effect

-1) Olelluelliess L		From Modi	fied Forces		From Unred	uced Forces
Direction		Longitudinal	Transversal	Unit	Longitudinal	Transversal
Column dimension :	Width, B	25.30	1.26	m	25.30	1.26
Column dimension .	Depth, D	1.26	25.30	m	1.26	25.30
Unsupported length	of column, L _u	9.70	9.70	m	9.70	9.70
Compressive strengt		25.00	25.00	Мра	25.00	25.00
Modulus of elasticity	of concrete, $E_c = 4730(f_c)^{0.50}$	23650.00	23650.00	Mpa	23650.00	23650.00
Gross area of colum		31.88	31.88	m²	31.88	31.88
	column, I _g = BD³ / 12	4.22	1700.40	m ⁴	4.22	1700.40
Radius of gyration, r	$= (I_0/A_0)^{0.50}$	0.36	7.30	m	0.36	7.30
Effective length factor	r, k	2.10	2.10		2.10	2.10
kL _u /r		56.00	2.79		56.00	2.79
Maximum dead load		125.91	303.34	kN-m	125.91	303.34
Maximum total load r	moment, M _{max}	20752.47	35532.25	kN-m	20752.47	35532.25
$\beta_d = M_{DL} / M_{max}$		0.01	0.01		0.01	0.01
	column, EI = $(E_c I_g/2.5) / (1+\beta_d)$	3.97E+07	1.59E+10	kN-m²	3.97E+07	1.59E+10
Factored axial load, f	$P_u = P_{max}$	14287.40	14038.90	kN	14287.40	14038.90
Critical load, $P_c = \pi^2 E$	EI / (kL _u) ²	943262.76	378824721.48	kN	943262.76	378824721.48
For members with tie	s as lateral reinforcement, φ	0.70	0.70		0.70	0.70
$δ_s = 1 / [1-(ΣP_u/φΣP_c$.)] ≥ 1.00	1.02	1.00		1.02	1.00

Appendix 20.1.4-4 (13/20) CAPACITY-DEMAND RATIO OF EXISTING PIER WALL (LATEST CODE)

A-2) Modified Strength Reduction Factor (φ)

From	Modified	Forces
------	----------	--------

From Unreduced Forces

Direction	Longitudinal	Transversal	Unit	Longitudinal	Transversal
Maximum axial stress, $\sigma_{Pmax} = P_{max}/A_g$	448.19	440.39	Кра	448.19	440.39
20% of compressive strength of concrete, 0.20fc	5000.00	5000.00	Кра	5000.00	5000.00
Modified strength reduction factor,	0.86	0.86		0.86	0.86
$\phi = 0.90 - 0.40[\sigma_{Pmax}/(0.20fc)] \ge 0.50$				0.00	0.00

A-3) Nominal Design Forces At Top Of Column

	MODIFIE	FORCES		UNREDUCI	D FORCES
Forces	LC1	LC2	Unit	LC1	LC2
Long'l M _u (M _x)	24546.18	7332.10	kN-m	24546.18	7332.10
Tran'l M _u (M _v)	13132.55	41090.92	kN-m	13132.55	41090.92
P _{Umax}	16533.57	16234.29	kN	16533.57	16234.29
P _{Umin}	15597.62	15873.73	kN	15597.62	15873.73
P _{DL}	1388	33.00	kN	13883.00	

... design and investigate using PCACOL Program...

B) CONSIDER FORCES AT BOTTOM OF COLUMN

B-1) Slenderness Effect

F	rom	Modi	fied	Force	s

From Unreduced Forces

	T TOTT INCU	neu roices		From Unreduced Forces			
Direction	Longitudinal	Transversal	Unit	Longitudinal	Transversal		
Column dimension : Width, B	25.30	25.30 1.26		25.30	1.26		
Depth, D	1.26	25.30	m	1.26	25.30		
Unsupported length of column, L _u	9.70	9.70	m	9.70	9.70		
Compressive strength of concrete, f'c	25.00	25.00	Мра	25.00	25.00		
Modulus of elasticity of concrete, $E_c = 4730(f_c)^{0.50}$	23650.00	23650.00	Мра	23650.00	23650.00		
Gross area of column, A _g = BD	31.88	31.88	m²	31.88	31.88		
Moment of inertia of column, I _g = BD ³ / 12	4.22	1700.40	m⁴	4.22	1700.40		
Radius of gyration, $r = (I_g/A_g)^{0.50}$	0.36	7.30	m	0.36	7.30		
Effective length factor, k	2.10	2.10 2.10		2.10	2.10		
kL _u /r	56.00	2.79		56.00	2.79		
Maximum dead load moment, M _{DL}	203.18	331.90	kN-m	203.18	331.90		
Maximum total load moment, M _{max}	41091.57	60189.28	kN-m	41091.57	60189.28		
$\beta_d = M_{DL} / M_{max}$	0.00	0.01	-	0.00	0.01		
Flexural stiffness of column, EI = $(E_c I_g/2.5) / (1+\beta_d)$	3.97E+07	1.59E+10	kN-m²	3.97E+07	1.59E+10		
Factored axial load, $P_u = P_{max}$	20121.10	19878.20	kN	20121.10	19878.20		
Critical load, $P_c = \pi^2 EI / (kL_u)^2$	944316.58	378824721.48	kN	944316.58	378824721.48		
For members with ties as lateral reinforcement, φ	0.70	0.70		0.70	0.70		
$\delta_{\rm s}$ = 1 / [1-($\Sigma P_{\rm u}/\phi \Sigma P_{\rm c}$)] \geq 1.00	1.03	1.00		1.03	1.00		

B-2) Modified Strength Reduction Factor (φ)

From Modified Forces

From Unreduced Forces

Direction	Longitudinal	Transversal	Unit	Longitudinal	Transversal
Maximum axial stress, $\sigma_{Pmax} = P_{max}/A_g$	631.19	623.57	Кра	631.19	623.57
20% of compressive strength of concrete, 0.20f _c	5000.00	5000.00	Кра	5000.00	5000.00
Modified strength reduction factor, φ = 0.90 - 0.40[σ _{Pmax} /(0.20fc)] ≥ 0.50	0.85	0.85		0.85	0.85

B-3) Nominal Design Forces At Bottom Of Column

	MODIFIED	FORCES		UNREDUCE	D FORCES
Forces	LC1	LC2	Unit	LC1	LC2
Long'l M _u (M _x)	49889.82	14673.37	kN-m	49889.82	14673.37
Tran'l M _u (M _v)	22483.02	70806.70	kN-m	22483.02	70806.70
P _{Umax}	23685.68	23382.97	kN	23685.68	23382.97
P _{Umin}	22724.89 22994.32		kN	22724.89	22994.32
P _{DL}	1971	3.00	kN	1971	3.00

... design and investigate using PCACOL Program...

Appendix 20.1.4-4 (14/20) CAPACITY-DEMAND RATIO OF EXISTING PIER WALL (LATEST CODE)

02/21/04 PCACOL V3.00 - PORTLAND CEMENT ASSOCIATION -13:48:18 Licensed to: KEI, Pasig City, PI 0000000 00000 00000 00000 00000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ററ 00 00 00 00 00 00 00 00 00 0000000 00 00 00 00 0000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00

00000

PIER1BOT

Computer program for the Strength Design of Reinforced Concrete Sections

00000

00000

00000 (TM)

00

Licensee stated above acknowledges that Portland Cement Association (PCA) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the

PCACOL(tm) computer program. Furthermore, PCA neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the PCACOL(tm) program. Although PCA has endeavored to produce PCACOL(tm) error free, the program is not and can't be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensees. Accordingly, PCA disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of

the PCACOL(tm) program.
02/21/04 PCACOL V3.00 - PORTLAND CEMENT ASSOCIATION -13:48:18 Licensed to: KEI, Pasig City, PI

Page PIER1BOT

General Information:

File Name: C:\MSNAVAL\PASIG-~3\PASIG-~1\JONES\DESIGN\NEWCODE\PIER1BOT.COL

Project: PASIG-MARIKINA

Column:

Code: ACI 318-95 Engineer: msn Units: Metric

Run Option: Investigation

Slenderness: Not considered Column Type: Structural

Run Axis: Biaxial

Material Properties:

f'c = 25 MPa EC = 23500 MPa

= 200000 MPa Es = 21.25 MPa Rupture strain = Infinity

fc Ultimate strain = 0.003 mm/mm

Betal = 0.85

Section:

Rectangular: Width = 25290 mm

Depth = 1830 mm

= 226 MPa

Gross section area, $Ag = 4.62807e+007 \text{ mm}^2$

Ix = 1.29158e+013 mm⁴ Xo = 0 mm

2.4667e+015 mm⁴ Iy =

Yo = 0 mm

Reinforcement:

Rebar Database: CSA G30.18

٤	Size	Diam (mm)	Area (mm^2)	Siz	e Diam	(mm)	Area	(mm^2)	S:	ize	Diam	(mm)	Area	(mm^2)
-														
#	10	11	100	# 1	5	16		200	#	20		20		300
ŧ	25	25	500	# 3	0	30		700	#	35		36		1000
ŧ	45	44	1500	# 5	5	56		2500						

Confinement: User-defined; #10 ties with #0 bars, #10 with larger bars. phi(a) = 1, phi(b) = 1, phi(c) = 1

Layout: Rectangular

Total steel area, As = 34800 mm² at 0.08%

		Top	Bo	ottom	I	eft	R	ight
			-					
Bars	58	#20	58	#20	0	#15	0	#15
Cover(mm)		50		. 50		50		50

Factored Loads and Moments with Corresponding Capacities: (see user's manual for notation)

No.	Pu kN	Mux kN-m	Muy kN-m	fMnx kN-m	fMny kN-m	fMn/Mu
1	23685.7	49889.8	22483.0	27899.0	12580.5	0.559
2	22724.9	49889.8	22483.0	27075.7	12244.1	0.543
3	23383.0	14673.4	70806.7	27391.9	132790.4	1.875
4	22994.3	14673.4	70806.7	27068.5	129941.6	1.836
5	19713.0	0.0	0.0	24496.2	3.3	999.999

^{***} Program completed as requested! ***

Appendix 20.1.4-4 (15/20) CAPACITY-DEMAND RATIO OF EXISTING PIER WALL (LATEST CODE)

2.00 DESIGN OF PIER COLUMN, (P2)

2.1 MATERIAL AND SPECIFICATIONS

A) Concrete

Compressive strength of concrete, f'c = 25.00 MpaModulus of elasticity of concrete, $E_c = 4730(f'_c)^{0.50}$ = 23650.00 MpaConcrete cover, cc = 0.05 m

B) Reinforcing Steel

Tensile strength of reinforcing steel, f_{γ} = 275.00 Mpa Modulus of elasticity of reinforcing steel, E_{s} = 200000.00 Mpa Main bar diameter, d_{b} = 20.00 mm Diameter of ties, d_{s} = 16.00 mm

2.2 COLUMN PROPERTIES

Column dimension: (with respect to long'l direction of bridge) Unsupported length of column, L_n: Column width, B 26.30 m 1) At longitudinal direction 11.56 m Column depth, D 1.86 m 2) At transversal direction 11.56 m Strength reduction factor, 6: Clear height of column, H 1) For moment magnification factor 0.70 1) At longitudinal direction 9.66 m 2) For lateral reinforcement 0.85 2) At transversal direction 9.66 m

2.3 ELASTIC FORCES FROM DYNAMIC ANALYSIS

Location	Member	Loading	Joint	Axial	Shear V _y	Shear V _z	Torsion	Moment M _y	Moment M _z
Location	Number	Loading	Number	(kN)	(kN)	(kN)	(kN-m)	(kN-m)	(kN-m)
11		1	536	11973.00	42.00	-1.00	-17.19	-326.62	-220.60
N N		•	537	-14006.00	-42.00	1.00	17.19	329.08	296.65
: 1/3 UMI	1451	2	536	277.00	3528.00	6.00	3.70	102.12	11414.31
UPPER 1/3 COLUMN	1701		537	277.00	3528.00	6.00	3.70	104.39	16967.69
벌이		3	536	69.00	3.00	7079.00	2731.73	35596.68	28.95
			537	69.00	3.00	7079.00	2731.73	48131.72	24.23
OF		1	537	14006.00	42.00	-1.00	-17.19	-329.08	-296.65
	1452	1	538	-16040.00	-42.00	1.00	17.19	331.54	372.70
1/3 UMIN		2	537	277.00	4406.00	6.00	3.70	104.39	16967.69
DLE 1/3 COLUMN			538	277.00	4406.00	6.00	3.70	107.73	23919.94
MIDDLE		3	537	81.00	8.00	7513.00	2731.73	48131.72	24.23
لــــــــــــــــــــــــــــــــــــــ			538	81.00	8.00	7513.00	2731.73	61272.82	10.58
L		1	538	16040.00	42.00	-1.00	-17.19	-331.54	-372.70
S N		. '	539	-18072.00	-42.00	1.00	17.19	334.00	448.73
7 1/3 UMIN	1453	2	538	278.00	5038.00	6.00	3.70	107.73	23919.94
WER 1/3 COLUMN	,400	4	539	278.00	5038.00	6.00	3.70	112.20	32040.71
LOWER		3	538	89.00	11.00	7882.00	2731.73	61272.82	10.58
			539	89.00	11.00	7882.00	2731.73	74975.77	11.98

Note:

- 1) Loading #1 is "Dead Load". From ADAPT Program
- 2) Loading #2 is "Seismic Load at Longitudinal Direction". From STAAD Program
- 3) Loading #3 is "Seismic Load at Transversal Direction". From STAAD Program
- 4) Joint #536 is at top of column.
- 5) Joint #539 is at bottom of column.

TABULATION OF TOP AND BOTTOM COLUMN FORCES DUE TO THE CORRESPONDING LOAD CASES

A) Basic Loading

				@ LONGITUDII	VAL DIRECTION	@ TRANSVERSAL DIRECTIO		
Loading	Joint	Location	Axial	Shear Vy	Moment Mz	Shear Vz	Moment My	
Loading	No.	Location	(kN)	(kN)	(kN-m)	(kN)	(kN-m)	
Dead Load	536	top	11973.00	42.00	220.60	1.00	326.62	
Dead Load	539	bottom	18072.00	42.00	448.73	1.00	334.00	
Long'l Earthquake	536	top	277.00	3528.00	11414.31	6.00	102.12	
Long Lantiquake	539	bottom	278.00	5038.00	32040.71	6.00	112.20	
Tran'i Earthquake	536	top	69.00	3.00	28.95	7079.00	35596.68	
Tan Latinquako	539	bottom	89.00	11.00	11.98	7882.00	74975.77	

Appendix 20.1.4-4 (16/20) CAPACITY-DEMAND RATIO OF EXISTING PIER WALL (LATEST CODE)

B) Load Combination

W				@ LONGITUDI	NAL DIRECTION	@ TRANSVERSAL DIRECTION		
Load Combination	Joint	Location	Axial	Shear Vy	Moment Mz	Shear Vz	Moment My	
Load Combination	No.	Location	(kN)	(kN)	(kN-m)	(kN)	(kN-m)	
LC1	536	top	297.70	3528.90	11423.00	2129.70	10781.13	
201	539	bottom	304.70	5041.30	32044.30	2370.60	22604.93	
LC2	536	top	152.10	1061.40	3453.24	7080.80	35627.32	
	539	bottom	172.40	1522.40	9624.19	7883.80	75009.43	

C) Modified Load Combination

Response Modification Factor (R) for LC1 = 1 Response Modification Factor (R) for LC2 = 1

				@ LONGITUDI	NAL DIRECTION	@ TRANSVER	SAL DIRECTION
Load Combination	Joint	Location	Axial	Shear Vy	Moment Mz	Shear Vz	Moment My
Load Combination	No.	Location	(kN)	(kN)	(kN-m)	(kN)	(kN-m)
Modified LC1	536	top	12270.70	3570.90	11643.60	2130.70	11107.75
Woulled LC I	539	bottom	18376.70	5083.30	32493.04	2371.60	22938.92
Modified LC2	536	top	12125.10	1103.40	3673.85	7081.80	35953.94
Modified LOZ	539	bottom	18244.40	1564.40	10072.92	7884.80	75343.43

Unreduced Forces (where R = 1)

				@ LONGITUDII	NAL DIRECTION	@ TRANSVERSAL DIRECTION		
Load Combination	Joint	Location	Axial	Shear Vy	Moment Mz	Shear Vz	Moment My	
Load Combination	No.	Location	(kN)	(kN)	(kN-m)	(kN)	(kN-m)	
Unreduced LC1	536	top	12270.70	3570.90	11643.60	2130.70	11107.75	
Officadoed LOT	539	bottom	18376.70	5083.30	32493.04	2371.60	22938.92	
Unreduced LC2	536	top	12125.10	1103.40	3673.85	7081.80	35953.94	
Officuaded EO2	539	bottom	18244.40	1564.40	10072.92	7884.80	75343.43	

D.) Design Forces

		TOP OF	COLUMN		BOTTOM	OF COLUMN			TOP OF	COLUMN		воттом о	OF COLUMN												
Forces		Mod. LC1	Mod. LC2		Mod. LC1	Mod. LC2		Unit	Unred. LC1	Unred LC2		Unred, LC1	Unred, LC2												
Long'i Shear		3570.90	1103.40		5083.30	1564,40		kN	3570.90	1103.40		5083.30	1564.40												
Long'l Moment		11643.60	3673.85		32493.04	10072.92		kN-m	11643.60	3673.85	1	32493.04	10072.92												
Tran'l Shear		2130.70 11107.75		7081.80		2371.60	7884.80		kN	2130.70	7081.80		2371.60	7884.80											
Tran'l Moment	11107.75			11107.75	11107.75	11107.75	11107.75	11107.75	11107.75	11107.75	11107.75	11107.75	11107.75	11107.75	323	11107.75	11107.75 35953.94		22938.92	75343.43	3.43	kN-m	11107.75	35953.94	
Max. Axial		12270.70	12125.10		18376.70	18244.40		kN	12270.70	12125.10		18376.70	18244.40												
Min. Axial		11675.30	11820.90		17767.30	17899.60		kN	11675.30	11820.90		17767.30	17899.60												

A) CONSIDER FORCES AT TOP OF COLUMN

A-1) Slenderness Effect

i i Siendemess L	Olenderness Effect		From Modified Forces		From Unreduced Forces	
Direction		Longitudinal	Transversal	Unit	Longitudinal	Transversal
Column dimension :	Width, B	26.30	1.26	m	26.30	1.26
Column dimension :	Depth, D	1.26	26.30	m	1.26	26.30
Unsupported length	of column, L _u	11.56	11.56	m	11.56	11.56
Compressive strengt	h of concrete, f' _c	25.00	25.00	Мра	25.00	25.00
Modulus of elasticity	of concrete, $E_c = 4730(f_c)^{0.50}$	23650.00	23650.00	Мра	23650.00	23650.00
Gross area of colum		33.14	33.14	m²	33.14	33.14
Moment of inertia of column, I _g = BD ³ / 12		4.38	1910.10	m ⁴	4.38	1910.10
Radius of gyration, $r = (I_g/A_g)^{0.50}$		0.36	7.59	m	0.36	7.59
Effective length factor, k		2.10	2.10		2.10	2.10
kL _u /r		66.74	3.20		66.74	3.20
Maximum dead load moment, M _{DL}		220.60	326.62	kN-m	220.60	326.62
Maximum total load moment, M _{max}		11643.60	35953.94	kN-m	11643.60	35953.94
$\beta_d = M_{DL} / M_{max}$		0.02	0.01		0.02	0.01
Flexural stiffness of column, EI = $(E_c I_g/2.5) / (1+\beta_d)$		4.07E+07	1.79E+10	kN-m²	4.07E+07	1.79E+10
Factored axial load, $P_u = P_{max}$		12270.70	12125.10	kN	12270.70	12125.10
Critical load, $P_c = \pi^2 EI / (kL_u)^2$		681665.86	299620686.61	kN	681665.86	299620686.61
For members with ties as lateral reinforcement, φ		0.70	0.70		0.70	0.70
$\delta_{\rm s} = 1 / [1 - (\Sigma P_{\rm u}/\phi \Sigma P_{\rm c})]$.)] ≥ 1.00	1.03	1.00		1.03	1.00

Appendix 20.1.4-4 (17/20) CAPACITY-DEMAND RATIO OF EXISTING PIER WALL (LATEST CODE)

A-2) Modified Strength Reduction Factor (φ)

From Modified Forces

From Unreduced Forces

Direction	Longitudinal	Transversal	Unit	Longitudinal	Transversal
Maximum axial stress, $\sigma_{Pmax} = P_{max}/A_g$	370.29	365.90	Кра	370.29	365.90
20% of compressive strength of concrete, 0.20fc	5000.00	5000.00	Кра	5000.00	5000.00
Modified strength reduction factor, $\phi = 0.90 - 0.40[\sigma_{Pmax}/(0.20fc)] \ge 0.50$	0.87	0.87		0.87	0.87

A-3) Nominal Design Forces At Top Of Column

	MODIFIED	FORCES		UNREDUCED FORCES		
Forces	LC1	LC2	Unit	LC1	LC2	
Long'l M _u (M _x)	13730.75	4219.52	kN-m	13730.75	4219.52	
Tran'l M _u (M _v)	13098.84	41294.19	kN-m	13098.84	41294.19	
P _{Umax}	14098.15	13925.24	kN	14098.15	13925.24	
P_{Umin}	13414.08	13575.88	kN	13414.08	13575.88	
P_{DL}	1197	3.00	kN	11973.00		

... design and investigate using PCACOL Program...

B) CONSIDER FORCES AT BOTTOM OF COLUMN

B-1) Slenderness Effect

From Modified Forces

From Unreduced Force

		From Modified Forces			From Unreduced Forces	
Direction		Longitudinal	Transversal	Unit	Longitudinal	Transversal
Column dimension : Width, B		26.30	1.26	m	26.30	1.26
Column dimension .	Depth, D	1.26	26.30	m	1.26	26.30
Unsupported length		11.56	11.56	m	11.56	11.56
Compressive strengt		25.00	25.00	Мра	25.00	25.00
Modulus of elasticity	of concrete, $E_c = 4730(f_c)^{0.50}$	23650.00	23650.00	Мра	23650.00	23650.00
Gross area of colum	n, A _g = BD	33.14	33.14	m²	33.14	33.14
Moment of inertia of column, I _q = BD ³ / 12		4.38	1910.10	m ⁴	4.38	1910.10
Radius of gyration, $r = (I_g/A_g)^{0.50}$		0.36	7.59	m	0.36	7.59
Effective length factor	r, k	2.10	2.10		2.10	2.10
kL _u /r		66.74	3.20		66.74	3.20
Maximum dead load		448.73	334.00	kN-m	448.73	334.00
Maximum total load ı	moment, M _{max}	32493.04	75343.43	kN-m	32493.04	75343.43
$\beta_d = M_{DL} / M_{max}$	-	0.01	0.01		0.01	0.01
	column, El = $(E_c I_g/2.5) / (1+\beta_d)$	4.09E+07	1.79E+10	kN-m²	4.09E+07	1.79E+10
Factored axial load, I	P _u = P _{max}	18376.70	18244.40	kN	18376.70	18244.40
Critical load, $P_c = \pi^2 I$	$\mathrm{EI} / (\mathrm{kL_u})^2$	685119.22	299620686.61	kN	685119.22	299620686.61
For members with tie	s as lateral reinforcement, φ	0.70	0.70		0.70	0.70
$\delta_s = 1 / [1 - (\Sigma P_u / \phi \Sigma P_c)]$.)] ≥ 1.00	1.04	1.00		1.04	1.00

B-2) Modified Strength Reduction Factor (φ)

From Modified Forces

From Unreduced Forces

Direction	Longitudinal	Transversal	Unit	Longitudinal	Transversal
Maximum axial stress, $\sigma_{Pmax} = P_{max}/A_g$	554.55	550.56	Кра	554.55	550.56
20% of compressive strength of concrete, 0.20fc	5000.00	5000.00	Кра	5000.00	5000.00
Modified strength reduction factor, $\phi = 0.90 - 0.40[\sigma_{Pmax}/(0.20fc)] \ge 0.50$	0.86	0.86		0.86	0.86

B-3) Nominal Design Forces At Bottom Of Column

	MODIFIE	FORCES		UNREDUCED FORCES	
Forces	LC1	LC2	Unit	LC1	LC2
Long'l M _u (M _x)	39488.42	11769.07	kN-m	39488.42	11769.07
Tran'i M _u (M _v)	27877.42	88030.27	kN-m	27877.42	88030.27
P _{Umax}	21477.24	21314.66	kN	21477.24	21314.66
P _{Umin}	20765.02	20911.84	kN	20765.02	20911.84
P _{DL}	1807	2.00	kN	18072.00	

... design and investigate using PCACOL Program...

Appendix 20.1.4-4 (18/20) CAPACITY-DEMAND RATIO OF EXISTING PIER WALL (LATEST CODE)

02/21/04 PCACOL V3.00 - PORTLAND CEMENT ASSOCIATION -Page 13:47:10 Licensed to: KEI, Pasig City, PI PIER2BOT 00000 0000000 00000 00000 00 00 00 00 00 00 00 00 ററ 0000000 00 00 00 00 0000000 00 00 00 00 00 00 00 00 00 00 00 00 00000 00 00 00000 00000 00000 Computer program for the Strength Design of Reinforced Concrete Sections Licensee stated above acknowledges that Portland Cement Association (PCA) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the PCACOL(tm) computer program. Furthermore, PCA neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the PCACOL(tm) program. Although PCA has endeavored to produce PCACOL(tm) error free, the program is not and can't be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensees. Accordingly, PCA disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the PCACOL(tm) program. 02/21/04 PCACOL V3.00 - PORTLAND CEMENT ASSOCIATION -Page 13:47:10 Licensed to: KEI, Pasig City, PI PIER2BOT General Information: File Name: C:\MSNAVAL\PASIG-~3\PASIG-~1\JONES\DESIGN\NEWCODE\PIER2BOT.COL Project: PASIG-MARIKINA Column: Engineer: msn Code: ACI 318-95 Run Option: Investigation Slenderness: Not considered Run Axis: Biaxial Column Type: Structural Material Properties: _____ = 25 MPa fic = 226 MPa = 23500 MPa Ec Es = 200000 MPa = 21.25 MPa Rupture strain = Infinity Ultimate strain = 0.003 mm/mm Beta1 = 0.85 Section: Rectangular: Width = 25290 mm Depth = 1830 mmGross section area, $Ag = 4.62807e+007 \text{ mm}^2$ $Ix = 1.29158e + 013 \text{ mm}^4$ 2.4667e+015 mm^4 Iy = Xo = 0 mm 0 mm Reinforcement: Rebar Database: CSA G30.18 Size Diam (mm) Area (mm^2) Size Diam (mm) Area (mm^2) Size Diam (mm) Area (mm^2) # 10 11 100 # 15 16 200 # 20 300 # 25 25 500 # 30 30 700 # 35 36 1000 1500 # 55 2500 56 Confinement: User-defined; #10 ties with #0 bars, #10 with larger bars. phi(a) = 1, phi(b) = 1, phi(c) = 1Layout: Rectangular Pattern: Sides Different (Cover to transverse reinforcement) Total steel area, As = 34800 mm² at 0.08% Top Bottom Left Right

Factored Loads and Moments with Corresponding Capacities: (see user's manual for notation)

0 #15

50

#15

50

Mux Muy fMnx kN No. kN-m kN-m kN-m fMn/Mu -----------------21477.2 39488.4 27877.4 26001.5 18340.7 0.658 20765.0 39488.4 27877.4 25390.0 17899.3 0.643 21314.7 11769.1 88030.3 25316.1 189212.6 2.149 20911.8 11769.1 88030.3 24969.6 18072.0 0.0 0.0 23086.0 999.999 3.4

58 #20

50

58 #20

50

Bars

Cover (mm)

^{***} Program completed as requested! ***

${\it Appendix~20.1.4-4~(~19/20~)} \\ {\it CAPACITY-DEMAND~RATIO~OF~EXISTING~CAISSON~FOUNDATION~(LATEST~CODE)}$

BRIDGE NAME: Jones Bridge

SUBJECT:

Investigation of Spread Footing

SUMMARY OF CAPACITY/DEMAND RATIO (LATEST CODE)

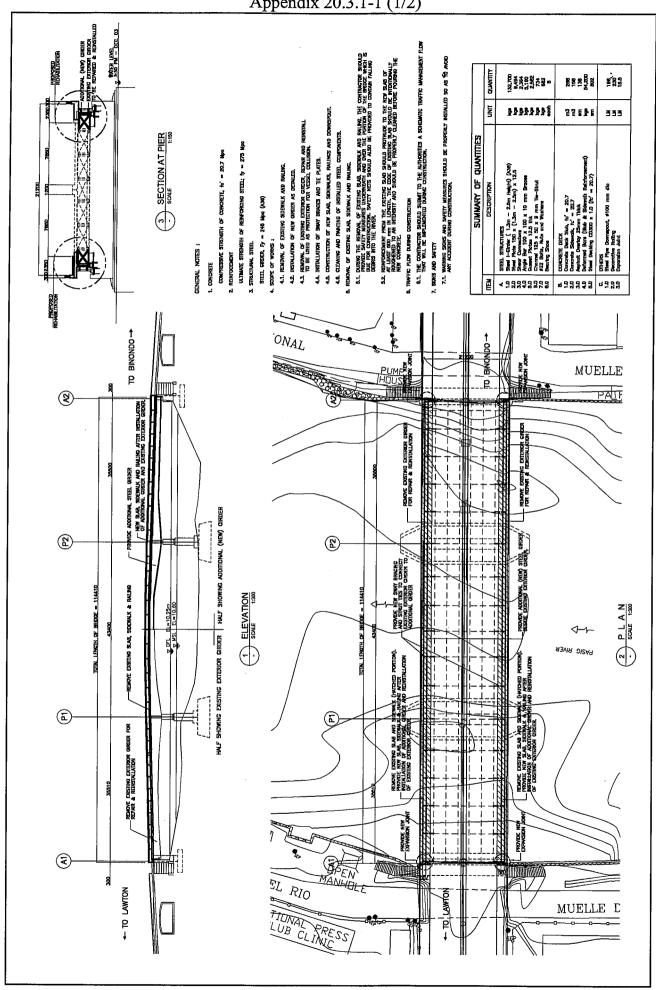
LOCATION	CAPACITY (kPa)	DEMAND (kPa)	C/D
PIER 1 (Case I)	300	219.50	1.37
PIER 1 (Case VII)	400	446.44	0.90
PIER 2 (Case I)	300	226.09	1.33
PIER 2 (Case VII)	400	450.57	0.89

PIFR 1 (Case I)

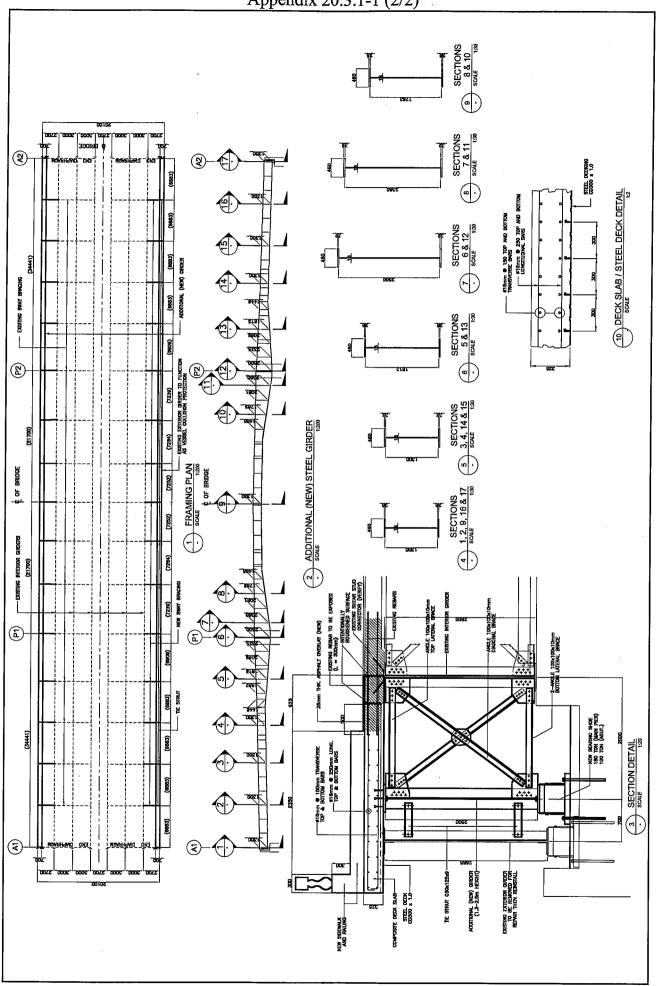
PIER 1 (Case I)				
Design D				
Design Strengt				
Concrete	fc'	: 17	MPa	
Reinforcing Steel	fy	: 226	MPa	
Factored Axial Load				
Factored Moment (x)	M _u	c: 1016.4	kN-m	
Factored Moment (y)			kN-m	
Allowable Soil Bea	ring Ca _l	pacity		
	qallow		kPa	
Footing & Column				
Footing Width			m	
Footing Length		: 31.80	m	
Footing Thickness		: 3.00	m	
Column Width	b	: 4.12	m	
Column Thickness	t	: 27.60	m	
Rebar Diamete	rs / Are	a		
Rebar Dia	ф _(m)		mm	
Rebar Area	Α	314.16	mm ²	
Other Pertinent Information				
Concrete Cover	CC	: 100	mm	
Effective Depth	d		mm	
Strength Reduction Factor (Flexure).	ф f	: 0.9		
Strength Reduction Factor (Shear)	¢s	: 0.85		
	β1	: 0.85		
Footing Founding Depth	H :		m	
Unit Wt. of Soil	γs	: 18.00	kN/m ³	
Unit Wt. of Concrete	γс	: 24.50	kN/m³	
Wt. of Footing V		3840.46	kΝ	
	W _s : 7	7583.33	kN	
Load Factor used for DL		: 1.00		
Col. Ecc. (x) fr. Cen. of Ftg.	ex col	: 0	m	
Col. Ecc. (y) fr. Cen. of Ftg.	ey col	: 0	m	
Design Calcu	lations			
q _{actual} = (P _{uT} / B*L) [1± (6*	e _x /L)±	(6*e _v /B)]	
Final Eccentricity (x)	ex:	0.510		
Final Eccentricity (y)	ey:	0.045	m	
 :	q ₁ :	171.51	kPa	
Corner Soil Pressures	q ₂ :	181.87	kPa	
Comer don Fressules	q ₃ :	209.14	kPa	
	q ₄ :	219.50	kPa	
		-		

PIFR 1 (Case VII)

PIER 1 (Case VII)			
Design I)ata	11.	
Design Streng	ths / Load	t	
Concrete			MPa
Reinforcing Steel	fy:	226	MPa
Factored Axial Load	P _u :	20121	kN
Factored Moment (x)	M _u x:	41092	kN-m
Factored Moment (y)	M _u y:		kN-m
Allowable Soil Bea	ring Cap	acity	
	ultimate:		kPa
Footing & Column	Dimensi	ons	
Footing Width	B:	10.20	m
Footing Length	L:	31.80	m
Footing Thickness	T :	3.00	m
Column Width	b:	4.12	m
Column Thickness	t:	27.60	m
Rebar Diamete	ers / Area		
Rebar Dia	φ _(m) :	25	mm
Rebar Area	Α:	490.87	mm²
Other Pertinent I	nformatio	on	
Concrete Cover	cc:	100	mm
Effective Depth	d :	2862.5	mm
Strength Reduction Factor (Flexure)	φf:	0.9	
Strength Reduction Factor (Shear)	φ _s :	0.85	
	β1:	0.85	
Footing Founding Depth	H:	5.00	m
Unit Wt. of Soil	γs:		kN/m ³
Unit Wt. of Concrete		24.50	kN/m ³
	$N_{\text{ftg}}: 23$		kN
Wt. of Overburden Soil	W _s : 75	83.33	kN
Load Factor used for DL	:	1.00	
Col. Ecc. (x) fr. Cen. of Ftg.	ex col:	0	m
Col. Ecc. (y) fr. Cen. of Ftg.	ey col:	0	m
Design Calcu	lations		
q _{actual} = (P _{uT} / B*L) [1± (6	*e _x /L)± (6	6*e _y /B)	
Final Eccentricity (x)	ex:	0.920	m
Final Eccentricity (y)	ey:	2.042	m
	q ₁ :	-70.48	kPa
0	q ₂ :	381.15	
Corner Soil Pressures	q ₃ :	-5.20	
	q ₄ :	446.44	
	1 44.	170.77	NI Q


Appendix 20.1.4-4 (20/20) CAPACITY-DEMAND RATIO OF EXISTING CAISSON FOUNDATION (LATEST CODE)

PIER 2 (Case I)


PIER 2 (Case I)			
Design D	ata		
Design Strengt	hs / Load	d	
Concrete	fc' :	17	MPa
Reinforcing Steel			MPa
Factored Axial Load	P. :	25731	kN
Factored Moment (x)	M _u x:	752.04	kN-m
Factored Moment (y)	M _u y:	11487	kN-m
Allowable Soil Bea	ring Cap	acity	
	qallow:	300	kPa
Footing & Column	Dimensi	ons	
Footing Width	B :	10.20	m
Footing Length			m
Footing Thickness			m
Column Width	b:	4.12	m
Column Thickness		27.60	m
Rebar Diamete	rs / Area		
Rebar Dia	φ _(m) :	20	mm
Rebar Area		314.16	mm²
Other Pertinent I	nformatio	on	
Concrete Cover	cc:	100	mm
Effective Depth	d:	2870	mm
Strength Reduction Factor (Flexure).	ф f :	0.9	
Strength Reduction Factor (Shear)	¢s:	0.85	Ï
	β1:	0.85	
Footing Founding Depth	H:	5.00	m
Unit Wt. of Soil	γs:	18.00	kN/m³
Unit Wt. of Concrete	γс:	24.50	kN/m³
Wt. of Footing	V _{ftg} : 23	840.46	kN
Wt. of Overburden Soil	W _s : 75	83.33	kN
Load Factor used for DL	. :	1.00	
Col. Ecc. (x) fr. Cen. of Ftg.	ex col:	0	m
Col. Ecc. (y) fr. Cen. of Ftg.	ey col:	0	m
Design Calcu	lations		1.0
q _{actual} = (P _{uT} / B*L) [1± (6*	e _v /L)± (6	6*e _v /B)	
Final Eccentricity (x)	ex:	0.446	
Final Eccentricity (y)	ey:	0.029	
<u>1.35.</u>	q ₁ :	184.45	
Comes Call Decrees	q ₂ :	191.51	
Corner Soil Pressures	q ₃ :	219.03	
	q ₄ :	226.09	kPa

PIER 2 (Case VII)

Design E)ata
Design Streng	ths / Load
Concrete	
Reinforcing Steel	
Factored Axial Load	
Factored Moment (x)	
Factored Moment (y)	
Allowable Soil Bea	ring Capacity
q	ultimate: 400 kPa
Footing & Column	Dimensions
Footing Width	B: 10.20 m
Footing Length	
Footing Thickness	
Column Width	
Column Thickness	t: 27.60 m
Rebar Diamete	rs / Area
Rebar Dia	φ _(m) : 25 mm
Rebar Area	A : 490.87 mm²
Other Pertinent I	nformation
Concrete Cover	cc: 100 mm
Effective Depth	
Strength Reduction Factor (Flexure).	фf: 0.9
Strength Reduction Factor (Shear)	φ _s : 0.85
	β1: 0.85
Footing Founding Depth	H: 5.00 m
Unit Wt. of Soil	γs: 18.00 kN/m³
Unit Wt. of Concrete	γc: 24.50 kN/m ³
Wt. of Footing	V _{ftg} : 23840.46 kN
Wt. of Overburden Soil	W _s : 7583.33 kN
Load Factor used for DL	: 1.00
Col. Ecc. (x) fr. Cen. of Ftg.	ex _{col} : 0 m
Col. Ecc. (y) fr. Cen. of Ftg.	ey _{col} : 0 m
Design Calcu	lations
q _{actual} = (P _{uT} / B*L) [1± (6*	e _x /L)± (6*e _y /B)]
Final Eccentricity (x)	ex: 1.342 m
Final Eccentricity (y)	ey: 1.902 m
	q₁: -70.65 kPa
Corner Soil Pressures	q ₂ : 354.34 kPa
Comer Son Pressures	q ₃ : 25.58 kPa
	q ₄ : 450.57 kPa

JONES BRIDGE PROPOSED REHABILITATION

JONES BRIDGE PROPOSED REHABILITATION

0.01376 0.0167 0.0138 0.0302 0.0668 0.0516 0.0246 0.0138 0.1737

0.00041

0.00052 0.00041 0.00052 0.00046

0.00041

0.00046 0.00041

0.00007

0.01253

DESIGN OF ADDITIONAL STEEL GIRDER

1.0 DESIGN OF STEEL PLATE GIRDERS (3 CONTINUOUS SPANS) 1.1 MATERIALS AND SPECIFICATIONS

248 Fy (SMA490), plate g Fy (A36) for other ste-

1.2 BASIC LAYOUT, DIMENSIONS AND SECTION PROPERTIES

Unit weight of steel, w_s - 0.100 m ₹0.200 m МРа 2.700 m 335

kN/m³

11

(End) (Intermediate)
1.300 m 0.850 m
T 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

	(End) (Intermediate)
	W 5
·	1.300 m 0.850 m
1	

	(End) (Intermediate)
	1.300 m 0.850 m
1-	
1	3

(End) (Intermediate)	
1.300 m 0.850 m	
	,

2.500 m

۵

₹ ζ

,	DIAPHRAGMS
-	
	PLATE GIRDER

	Fy (SMA490) for plate gi	MPa	1
	Fb = 0.55 Fy (bending)	MPa	
	Fy (A36) for other steel	MPa	
•	Fb = 0.55 Fy (bending)	MPa	
rmediate)	Es	МРа	
	fc (slab)	MPa	Į į
	Ec = 5350√fc	МРа	
	n = Es/Ec		
	3n		
			ĺ

248 136.5 200,000 31,651

DIAPHRAGMS	(b) or Depth (D) Ax Web, D Bot flange
	ę
	×
j	l or J

Bot flange 1 (m) 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026	Base (b) or Depth (D) Ax Yb Yt Ix or J	Top flange Web, D Bot flange	(m) (m) (m) (m) (m)	0.700 0.700 0.000	1.350 0.460 0.0446 0.700 0.700	1.350 0.460 0.0510 0.707 0.707 0	1.350 0.460 0.0446	1.908 0.460 0.0535 0.979 0.979	2.500 0.460 0.0694 1.282 1.282	2.326 0.460 0.0630 1.191 1.191	0.898 0.898	0.460 1.300 0.460 0.0466 0.678 0.678 0.000009	1.278 1.278	Ü	
Тр (4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	e(b) or Depth(D)	Web, D		_							_	_	_		0300
	Bas						_	_	_	_			_	L	
	Thickness (t	op flange	(m)	0.025	0.025	0.032	0.025	0.025	0.032	0.028	0.025	0.028	0.056	0.025	0.025

CHECK AASHTO 10.34 REQUIREMENTS:

Intermediate Diaph End Diaphragm

9

J39-J40

J36-J38 (J41-J43) J38-J39 (J40-J41)

J33-J34 (J45-J46) J35-J36 (J43-J44)

2 9 2 0.016 0.016 0.005 Ok 0.00 0.00 Q 2 % 2 % 0.012 2 % 9.08 6 0.017 å Ş 0.018 1 8 0.00 4 Q 0.007 Ok 0.014 ð 8 8 8 8 0.010 0.005 Qk ŏ **4** ♀ 0.010 0.005 송 0.005 Q 0.010 ŏ ∞ 8 8 2 0.005 0.010 20 8 sirders not stiffened longitudinally: Sirders stiffened longitudinally: b/t < 270 / 1/16 or 24 = tw > D 1 fb / 1910 = b/t < 270 / 1/fb or 24 = tw > D 1/fb / 3820 = ottom flange: b/t Veb thickness: tw fop flange: b/t

0.015 0.005 0.003 ŏ

9.00 Q

0.009

ŏ

ŏ

0.008

0.017

옷 끊 옷

2 8

은 은 층

b eff = b min/(n or 3n)

	1/4 Span	12 tmin.	12 tave.	12 tave. c/c spacing	b min
min	16.250	2.400	3.000	4.825	2.400

End-J29 (J50-End) J31-J32 (J47-J48) J32-J33 (J46-J47) J34-J35 (J44-J45)

J29-J31 (J48-J50)

ECTION

Plate Girder

SECTION PROPERTIES

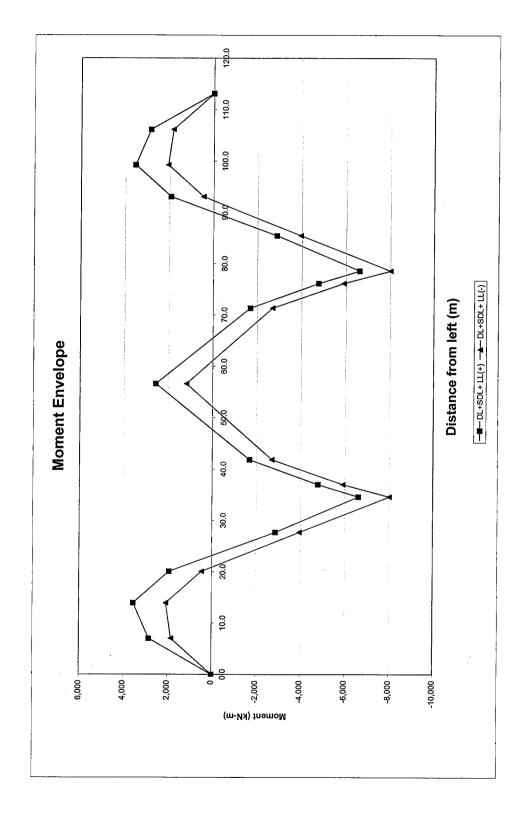
1.2) SECTION FOR CURBS, BARRIER/RAILING & ASPHALT LOADS

		beff = bmin / 3n	tslab	¥	χp	۶	KorJ	>	Δ
		(m)	Œ	(m ²)	Œ	Ē	-¢	. €	1 4€
	4) Slab	0.142	0.100	0.0142			0.000027		
	5) Slab	0.127	0.200	0.0253			0.000082		
Set			Total	0.0396	0.146	0.154	0.000109	0.00006	0.0003
Composite Slab-Girder 1				0.0761	1.725	0.800	0.000114	0.00046	0.0482
Ø				0.0842	1.627	0.898	0.000116	0.00047	0.0572
ო				0.0906	1.568	0.964	0.000121	0.00058	0.0658
4				0.0842	1.627	0.898	0.000116	0.00047	0.0572
ស				0.0931	1.698	0.827	0.000116	0.00047	0.0679
ဖ				0.1090	1.789	0.743	0.000122	0.00058	0.0984
7				0.1025	1.763	0.765	0.000119	0.00052	0.0847
80				0.0905	1.673	0.852	0.000116	0.00047	0.0643
o				0.0861	1.595	0.933	0.000118	0.00051	0.0602
10				0.1868	1.580	0.976	0.000220	0.00687	0.2239
1.3) SECTION FOR LIVE LOAD									
		beff = bmin / n	tslab	¥	ą	۶	IX or J	2	Z
		(m)	(m)	(m ²)	(m)	(E)	£E)	-€ (m)	(m ⁴
	4) Slab	0.427	0.100	0.0427			0.000121		
	5) Slab	0.380	0.200	0.0760			0.000679		
Set			Total	0.1187	0.146	0.154	0.000800	0.00156	0.000
Composite Slab-Girder 1				0.1552	2.207	0.318	0.000806	0.00197	0.0389
2				0.1633	2.133	0.392	0.000807	0.00197	0.0491
e				0.1697	2.085	0.447	0.000812	0.00209	0.0593
4				0.1633	2.133	0.392	0.000807	0.00197	0.0491
ιo.				0.1722	2.145	0.380	0.000808	0.00197	0.0639
ဖ				0.1881	2.163	0.369	0.000814	0.00209	0.0993
_				0.1817	2.160	0.368	0.000810	0.00202	0.0839
ω .				0.1696	2.139	0.386	0.000808	0.00197	0.0592
o :				0.1653	2.112	0.416	0.000809	0.00202	0.0523
9				0.2659	1 014	0.643	0,000013	00000	7070

1.3 SUMMARY OF SECTION FORCES

= Girder + Slab

= Superimposed Dead Loads (Curb,Barrier/Railing,Asphalt)


= Live Load (UCL or TL)

PL SDL LL VCL

= Uniform and Concentrated Load w/ Impact plus Sidewalk Live Load = Truck Load (HS 20-44)

Max. Moment for Live Load is determined from loading pattern for maximum moment. Max. Shear for Live Load is determined from loading pattern for maximum shear.

Distance from left:	Ū.	Tabadile					SUPPORT	•	,	, C	2	:	SUPPORT	2	<u>.</u>	2	2	-
Distance from left:		יייין			_	-					_	_			-		-	TAOQUIS
	E	0.000	7.000	13.900	20.090	27.700	34.600	37.010	41.830	56.575	71.320	76.140	78.550	85.450	93.060	99.250	106.150	113.150
DL: Girder+Slab	kN-m	0.00	1,721,00	2.132.00	899.00	-2.830.00	-5 807 00	4 229 00	1 728 00	1 385 00	1 725 00	24.0	0000	000	000	0		;
SDL:Curb+Rail+Asphalt	E-NX	0.00	0.00	0.00	00.0	00.0	000	0 00		0000	00.02,1,1	4,4	00.000,00	00.020,2-	988.00	2,130.00	1,719.00	0.00
DL +SDL	KN-3	0.00	1,721.00	2,132.00	899.00	-2.830.00	-5.807.00	4.229.00	-1 728 00	1385.00	1 725 00	247.00	00.00	00.00	00.00	0.00	0.00	0.00
LL: Live Load		-							1	200	200	00:014	00.000,0	-2,020,00	00.000	2,130,00	00.617,1	0.00
Impact = 15.24/(L+38)		0,209	0.209	0.209	0.209	0.209	0.209	0.209	0.209	0.209	0.20	0.209	0.209	0 200	0000	0000	0000	0000
UCL (Lane load): + M	kN-m	0.00	381.00	612.00	554.00	116.00	0.00	0.00	58.80	547.00	58.40	0.00	0.00	116.00	556.00	612.00	391.00	0.00
Σ.	KN-m	0.00	-129.00	-241.00	-357.00	-556.00	-897.00	-725.00	-359.00	-299.00	-359.00	-725.00	-897.00	-506.00	-357.00	-241 00	-129 00	000
> +	Ž	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	00'0	0.00	000	0000
> -	Š	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	000		
TL (Truck load): + M	kN-m	0.00	674.00	905.00	748.00	232.00	259.00	206.00	298.00	850.00	293.00	207.00	260.00	220.00	750.00	904.00	688 00	200
Σ-	KN-m	0.00	-157.00	-314.00	-471.00	-668.00	-778.00	-632.00	-536.00	-218.00	-536.00	-639.00	-780.00	-668.00	472.00	-314 00	-157.00	
+ Mmax	kN-m	0.00	814.71	1,093.93	904.16	280.43	313.07	249.01	360.21	1,027.45	354.17	250.21	314.28	265.93	906.58	1 092 73	83.63	3 6
- Mmax	kN-m	0.00	-189.78	-379.55	-569.33	-807.46	-1,084.26	-876.36	-647.90	-361.42	-647.90	-876.36	-1 084 26	-807 46	570 54	370 55	180 78	3 6
T: Temperature Load	KN-in	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	000	000	000			0.00	3 6
MAX. SHEAR (V):													200	8	8	20.0	8.0	0.00
DL: Girder+Slab	ž	369.00	173.00	-83.00	-289.00	-532.00	-733.00	615.00	450.00	-22.00	-449.00	-615.00	733.00	561 00	289.00	83.20	-173 00	360.00
SDL: Curb+Rail+Asphalt	ž	00.00	0.00	0.00	0.00	0.00	00.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9 6	00:00
DL+SDL		369.00	173.00	-83.00	-289.00	-532.00	-733.00	615.00	450.00	-22.00	-449.00	-615.00	733.00	561.00	280 00	83.20	472.00	20.00
LL: Live Load												3		3	70.00	93.50	0.67	208.00
UCL (Lane load): + V	ž	54.10	56.00	22.60	0.00	00:00	74.74	77.00	79.20	30.70	0.00	0.00	77.80	83.00	68.00	36.40	0	c
	ž	0.00	0.00	-36.40	-68.00	-82.30	-77.00	0.00	0.00	-30.50	-79.20	-75.00	-74.00	0.00	0.00	-22.60	-56.00	-55 10
TL (Truck load): +V	Ž	101.00	92.80	51.20	22.00	20.50	121.00	121.00	95.30	55.10	29.10	29.10	121.00	120.00	88.90	53.70	22.60	22.80
> -	Ž	-22.80	-22.80	-57.80	-94.40	-121.00	-121.00	-21.91	-21.90	-60.60	-121.00	-122.00	-122.00	-7.58	-25.20	-56.40	-97.00	-102.00
+ Утах	ž	122.09	112.17	61.89	26.59	24.78	146.26	146.26	115.20	09.99	35.18	35.18	146.26	145.05	107.46	64.91	27.32	27.56
- Vmax	Ž	-27.56	-27.56	-69.87	-114.11	-146.26	-146.26	-26.48	-26.47	-73.25	-146.26	-147.47	-147.47	-9.16	-30.46	-68.17	-117.25	-123.29
T: Temperature Load	ž	0.00	0.00	0.00	0.00	0.00	00.00	00.00	00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	000
SIDEWALK LIVE LOAD:			_															
Sidewalk LL Moment	KN-m	0.00	307.09	320.39	128.15	-314.34	-1,112.88	-802.22	-326.87	166.84	-320.39	-803.99	-1,119.70	-314.34	131.78	320.39	307.09	0.00
	Ž	73.74	29.52	-23.13	-54.28	-106.68	-144.23	118.63	83.03	17.29	-81.24	-120.33	145.08	107.53	54.28	23.13	-29.52	-73.71
Load Combination: MOMENT (M)	<u>-</u> ε									_								
[DF+SDF+FF(+)]	kN-m	0.00	2,842.80	3,546.32	1,931.31	-2,863.91	-6,606.81	4,782.21	-1,694.65	2,579.29	-1,691.22	4,768.77	-6,608.42	-2,876.41	1,936,36	3,543,11	2.857.72	000
[DL+SDL + LL(-)]	kN-m	0.00	1,838.31	2,072.83	457.82	-3,951.80	-8,004.15	-5,907.58	-2,702.76	1,190.42	-2,693.28	-5,895.34	-8,006.97	-3,949.80	459.24	2.070.83	1.836.31	000
[DL+SDL + LL(+)]	E-NA E	0.00	2,842.80	3,546.32	1,931.31	-2,863.91	-6,606.81	-4,782.21	-1,694.65	2,579.29	-1,691.22	4,768.77	-6,608.42	-2,876.41	1,936.36	3,543.11	2,857.72	00.00
- 1	KN-m	0.00	1,838.31	2,072.83	457.82	-3,951.80	-8,004.15	-5,907.58	-2,702.76	1,190.42	-2,693.28	-5,895.34	-8,006.97	-3,949.80	459.24	2,070.83	1.836.31	00.0
Load Combination: SHEAR (V)	٠						-											3
[DL+SDL + LL(+)]	ž	564.82	285.17	-21.11	-262.41	-507.22	-586.74	761.26	565.20	44.60	413.82	-579.82	879.26	706.05	396.46	148.11	-145.68	-341 44
[DF+SDF + FF(-)]	ž	415.18	145.44	-152.87	-403.11	-678.26	-879.26	588.52	423.53	-95.25	-595.26	-762.47	585.53	551.84	258.54	15.03	-290.25	492 29
[DL+SDL + LL(+)]	ž	564.82	314.70	-44.24	-316.69	-613.90	-730.97	879.89	648.23	61.89	495.07	-700.16	1,024.34	813.58	450.74	171.24	-175.21	415.15
[DL+SDL + LL(-)]	Š	415.18	174.96	-175.99	-457.39	-784.94	-1,023.49	707.14	506.56	-77.96	-676.51	-882.80	730.61	659.37	312.82	38.15	-319.77	-566.01

184.25 MPa (AASHTO Table 10.32.1A) Fb = 0.55 Fy ALLOWABLE BENDING STRESS: Laterally-supported comp. flange:

Fb = (344,700 Cb / Sxc) (lyc / Lb) ½ [0.772 J / lyc + 9.87 (d / Lb)²] ≤ 0.55 Fy
Fb = allowable bending stress, MPa
Lb = unbraced length of compression flange, m
lyc = moment of inertia of compression flange about the vertical axis in the lyc
section modulus with respect to compression flange, m³
d = depth of girder, m
J = [(br²)_c + (br²)_c + Dtw²] J 3 where b and t represent the flange width an
Cb = 1.75 + 1.05 (M1/M2) + 0.3(M1/M2)² ≤ 2.3 Partially-supported comp. flange:

= yield strength of steel, MPa

= moment of inertia of compression flange about the vertical axis in the plane of the web, \mathbf{m}^4

= $[(bt^3)_c + (bt^3)_t + Dtw^3]/3$ where b and t represent the flange width and thickness of the compression and tension flange, respectively, m⁴

where M1 is the smaller and M2 the larger end moment in the unbraced segment of the beam

= 1.0 for unbraced cantilevers and for members where the moment within a significant portion of the unbraced segment is greater than M1/M2 is positive when the moments cause reverse curvature and negative when bent in single curvature

or equal to the larger of the segment end moments.

i cacalon		-	7	m	4	r.	9	7	80	6	10	11	12	13	14	15	16	17
Distance from left:	E	0.000	7.000	13.900	20.090	27.700	34.600	37.010	41.830	56.575	71.320	76.140	78 550	85.450	03.060	00 250	106 150	149 450
Plate Girder Set		-	2	m	4	- 12	9	7	00	-	00	7	2	2	0000	00.4.00	00:	13.130
b1 (top flange)	Ε	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0 480	0 480	0460	1 000	2 6	7 0	6
t1 (top flange)	Ε	0.025	0.025	0.032	0.025	0.025	0.032	0.028	0.025	0.028	0.025	8000	0.400	0.400	20.400	0.400	0.400	0.460
b2 (bot flange)	Ε	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.020	0.020	0.032	0.020	0.020
t2 (bot flange)	ε	0.025	0.025	0.032	0.025	0.025	0.032	0.028	0.025	0.028	0.025	0.028	0.032	0.025	0.025	0.032	0.025	0.100
۵	Ε	1.350	1.350	1.350	1.350	1.908	2.500	2.326	1.746	1.300	1.746	2.326	2.500	1.908	1.350	1.350	1.350	1.350
tw	٤	0.010	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0 0 10
_	ξE	0.0125	0.0138	0.0167	0.0138	0.0302	0.0668	0.0516	0.0246	0.0138	0.0246	0.0516	0.0668	0.0302	0.0138	0.0167	0.0138	0.0125
*	Ε	00.700	0.700	0.707	0.700	0.979	1.282	1.191	0.898	0.678	0.898	1.191	1.282	0.979	0.700	0.707	0.700	0.700
λγ	٤	0.700	0.700	0.707	0.700	0.979	1.282	1.191	0.898	0.678	0.898	1.191	1.282	0.979	0.700	0.707	0.700	0.700
Compression flange location:		Тор	Тор	Тор	Тор	Bottom	Bottom	Bottom	Bottom	Top	Bottom	Bottom	Bottom	Bottom	<u>8</u>	Too	L	
<u>a</u>	Ε	2.000	5.000	2.000	5.000	5.000	5.000	5.000	5.000	2.000	2.000	5.000	5.000	2,000	5.000	2,000	2000	200.5
$ y_c = t b ^3/12$	Ě	0.000203	0.000203	0.000260	0.000203	0.000203	0.000260	0.000227	0.000203	0.000227	0.000203	0.000227	0.000260	0.000203	0.000203	0 000000	0.0000	000000
Sxc = 1 / Yt or 1 / Yb	ξE	0.017906	0.019664	0.023627	0.019664	0.030847	0.052140	0.043348	0.027428	0.020383	0.027428	0.043348	0.052140	0.030847	0.019664	0.00000	0.000000	0.000203
d = D+t1+t2	Ε	1.400	1.400	1.414	1.400	1.958	2.564	2.382	1.796	1.356	1.796	2.382	2.564	1 958	1 400	1 414	1 400	0.07.900
<u>¬</u>	ξE	0.000005	0.000007	0.000012	0.000007	0.000007	0.000013	0.000010	0.000007	0.00000	0.000007	0.000010	0.000013	200000	200000	0.00012	200000	30000
Use Cb		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0	10	10	-		0.00000
Allowable stress: Fb	MPa	184.25	184.25	184.25	184.25	184.25	184.25	184.25	184.25	184.25	184.25	184.25	184.25	184.25	184 25	184 25	184 25	101

1.4 CHECK OF BENDING STRESS Stress at T Stress at B	STRESS tress at Tc tress at Bc	op of Gird ottom of G	STRESS Stress at Top of Girder: f _{top} = - M Yt / I Stress at Bottom of Girder: f _{bot} = M Yb / I	M Yt / I = M Yb / I			; ;	= distance from top fiber to neutral axis = distance from bottom fiber to neutral axis	om top fiber t om bottom fib	o neutral axi; er to neutral	s axis	σ	Sign Convention:		Tension (+) Compression (-)	3		
NON-COMPOSITE: (All loads will be carried by plate girder section alone)	will be ca	rried by p	late girder	section alor	(e)			= moment of inertia	inertia					•		2		
Section			7	က	4	2	9	2	80	o	9	Ξ	12	13	4	12	91	17
Distance from left:	ε	0.000	7.000	13.900	20.090	27.700	34.600	37.010	41.830	56.575	71.320	76.140	78.550	85.450	93.060	99.250	106.150	113.150
Plate Girder Set		- 502.0	7	က	4	ιΩ	9	7	60	6	60	7	9	ΙΩ	4	8	7	_
= £	E E	0.700	0.700	0.707	0.700	0.979	1.282	1.191	0.898	0.678	0.898	1.191	1.282	0.979	0.700	0.707	0.700	0.700
<u>: _</u>	- ₹	0.0125	0.0138	0.0167	0.0138	0.0302	0.0668	0.0516	0.0246	0.078	0.0398	1.191	1.282	0.979	0.700	0.707	0.700	0.700
1) DL: Girder+Slab, M	kN-m	0	1,721	2,132	888	-2,830	-5,807	4,229	-1,728	1,385	-1,725	4,215	-5,803	-2.828	898	2.130	1 719	0.0.0
frop	MPa	0.00	-87.52	-90.24	-45.72	91.74	111.37	92.76	63.00	-67.95	62.89	97.24	111.30	91.68	45.67	-90.15	-87.42	00:0
TBot	MFa	0.00	87.52	90.24	45.72	-91.74	-111.37	-97.56	-63.00	67.95	-62.89	-97.24	-111.30	-91.68	45.67	90.15	87.42	0.00
z) sur: Curo+Kall+Aspn	E - 2	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	٥
Top	M M	00.00	0.00	00.0	00.0	0.00	00:0	0.00	0:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00
108+10 (8	7 K	3 0	1 724	2 432	00.0	00.0	0.00	0.00	00:0	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00
-)	MPa	0.00	-87.52	2,132	-45.72	91 74	111 37	4,229	-1,728	1,385	-1,725	4,215	-5,803	-2,828	898	2,130	1,719	0
	MPa	0.00	87.52	90.24	45.72	-91.74	-111.37	-97.56	93.00	67.95	-62.89	97.24	11.30	91.00	45.67	90.13	-87.42	00:0
4a) LL: + M	KN-n	0	1,122	1,414	1,032	8	900	-553	33	1,194	g	254	-805	489	1038	1 413	1 130	9 6
fтop	МРа	0.00	-57 05	-59.86	-52.50	1.10	15.34	12.76	-1.22	-58.59	-1.23	12.77	15.45	1.57	-52.81	-59.81	-57.91	9 6
	MPa	0.00	57.05	59.86	52.50	-1.10	-15.34	-12.76	1.22	58.59	1.23	-12.77	-15.45	-1.57	52.81	59.81	57.91	00'0
4b) LL: - M	KŅ-m	0	117	දු	44	-1,122	-2,197	-1,679	-975	-195	896-	-1,680	-2,204	-1,122	439	65-	117	0
ф.	MPa :	0.00	-5.97	2.50	22.44	36.37	42.14	38.72	35.54	9.55	35.30	38.76	42.27	36.37	22.31	2.50	-5.97	0.00
TBot	MPa	0.00	5.97	-2.50	-22.44	-36.37	-42.14	-38.72	-35.54	-9.55	-35.30	-38.76	-42.27	-36.37	-22.31	-2.50	5.97	0.00
(1)	Z :	0.00	-144.57	-150.10	-98.22	92.84	126.71	110.32	61.78	-126.54	61.66	110.01	126.74	93.25	-98.47	-149.96	-145.33	0.00
	MF 2	0.00	144.57	150.10	98.22	-92.84	-126.71	-110.32	-61.78	126.54	-61.66	-110.01	-126.74	-93.25	98.47	149.96	145.33	0.00
1705 ITOS	N N	00.00	93.49	-81.73	-23.28	128.11	153.51	136.28	98.54	-58.40	98.19	136.00	153.57	128.05	-23.35	-87.65	-93.39	0.00
max	MP	0000	87.52	07.73	23.28	-128.17	-153.51	-136.28	98.54	58.40	-98.19	-136.00	-153.57	-128.05	23.35	87.65	93.39	0.00
dol	M G	3 6	144 57	150.15	02.62	20.61	103.01	136.28	80. 50 40. 50	-58.40	98.19	136.00	153.57	128.05	-23.35	-87.65	-87.42	0.00
min fr.	N W	8 8	144.57	150.10	30.22	47.74	111.37	-97.36	-61.78	126.54	-61.66	-97.24	-111.30	-91.68	98.47	149.96	145.33	0.00
min f _{Bot}	MPa	0.00	87.52	87.73	23.28	-128 11	-153.51	136.28	0 0	-120.34 -28.40	00.100	97.24	111.30	97.68	-98.47	-149.96	-145.33	0.00
Allow. Tens. (+): Fb	MPa	184.25	184.25	184.25	184.25	184.25	184.25	184.25	184.25	184.25	184 25	184 25	184.25	184 25	184.25	20.78	24.78	0.00
Allow. Comp. (-): Fb	MPa	-184.25	-184.25	-184.25	-184.25	-184.25	-184.25	-184.25	-184.25	-184.25	-184.25	-184.25	-184.25	-184.25	-184.25	-184.25	-184 25	-184 25
	\dashv	ŏ	ŏ	ŏ	ŏ	ð	ð	ð	ð	ŏ	ŏ	ð	ŏ	ð	ð	ŏ	ŏ	ŏ
CHECK STRESS REVERSAL (FATIGILE)	FATIGUE												!	- 				
[DL+SDL + LL(+)]	kN-m									-	-		}		-	-	-	
	k-N-w																	
DL+SDL+LL(+) +T] /1.25	kN-m														-	_		
[DL+SDL+LL(-) +T] /1.25	kN-m																	
Mr = M(+) - M(-)	ĸ. ₩-'n				-													
$f_{Top} = Mr YVI$ $f_{-} = Mr VVI$	MPa		_			***												
Sol - Wil 10/1	0 14	č	ð	ĉ	à	ð	t	7	1	+	+	+	+	+	1			
	-	5	Ś	5	5	5	Š	Š	Š	š	ŏ	ð	ð	ð	ŏ	ŏ	ð	ŏ

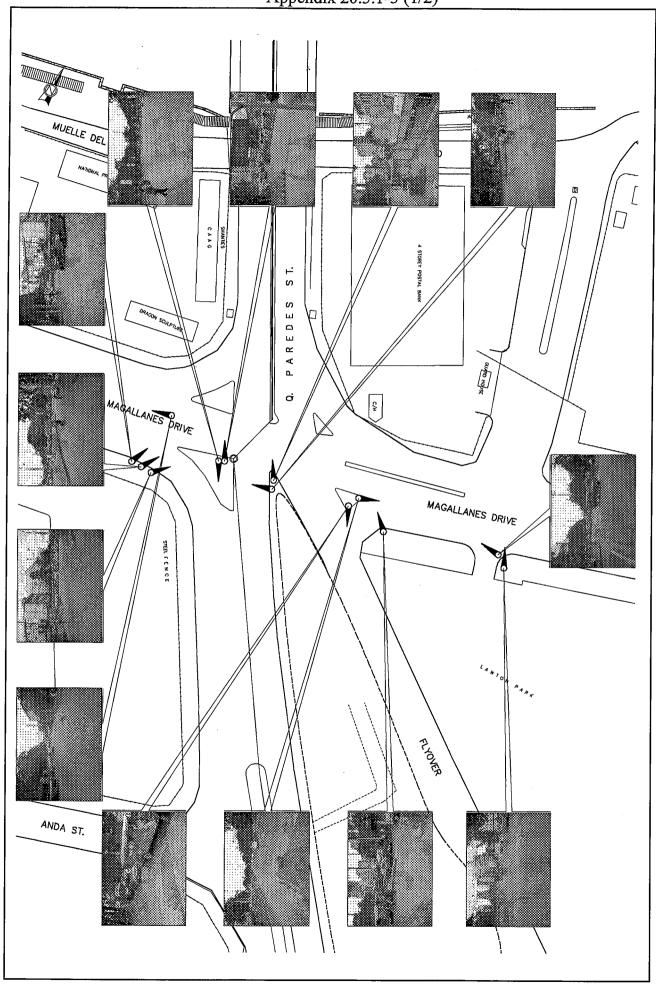
110.0

100.0 80.0 DESIGN OF ADDITIONAL STEEL GIRDER Bending Stresses (Plate Girder) 0.09 40.0 30.0 20.0 10.0 200.002 250.00 150.00 100.001 0.00

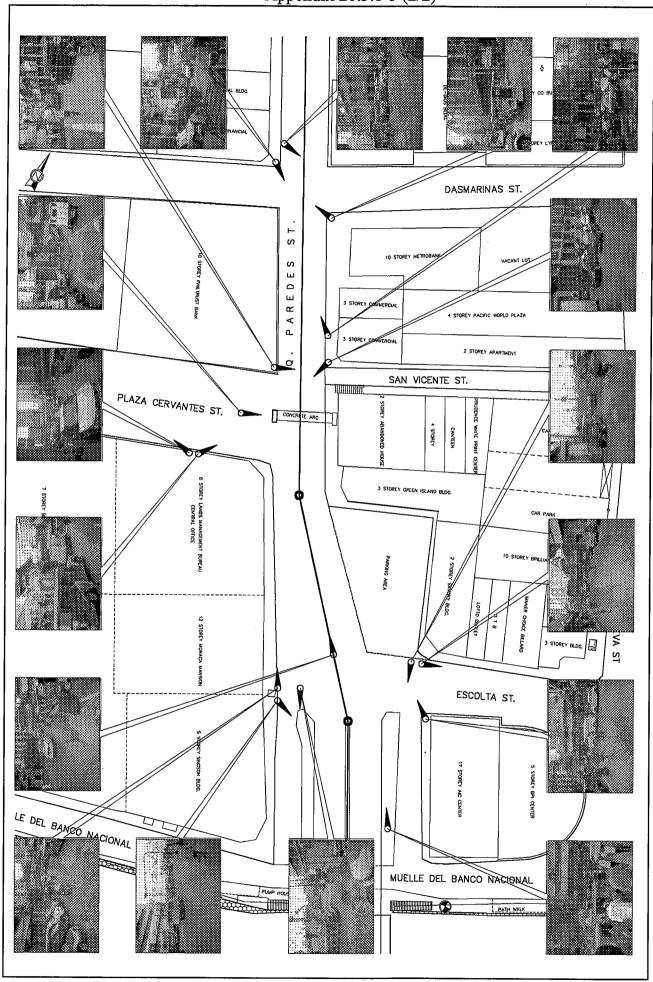
Section		_	7	က	4	2	9	7	80	6	10	11	12	13	14	15	16	17
		SUPPORT		729		730		QW	131			732		!	3	Tanadil	2 %	=
Distance from left:	Ε	0000	7.000	13.900	20.090	27.700	34.600	37.010	41 830	56.575	71 320	76 140	79 550	00 450	200	2000	100	
Thickness of web (tw)	Ε	0,00	9100	970	070				2		2	2	2000	00:4:00	33.000	98.230	1061.30T	113.150
(111) (2011) (2011)	•	2	0.00		0.0	0.0.0	910.0	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.010
Depth of web (D)	Ε	1.350	1.350	1.350	1.350	1.908	2.500	2.326	1.746	1.300	1.746	2.326	2.500	1.908	1 350	1 350	1 250	1 350
A = Area of Web	m ₂	0.0135	0.0216	0.0216	0.0216	0.0305	0.0400	0.0372	0.0279	0.0208	0.0779	0.0372	0.0400	0.005	91000	960	200	2000
SHEAR STRESS: fv = V / A													}	2000	200	0.02	0.0210	0.0133
DL : Girder+Slab	ž	369.00	173.00	83.00	289.00	532.00	733.00	615.00	450.00	22.00	449.00	615.00	733.00	561 00	289 00	83 20	473.00	00 096
.≥	MPa	27.33	8.01	3.84	13.38	17.43	18.33	16.53	16.11	1.06	16.07	16.53	18.33	18.38	13.38	2 2 2	2000	203.00
SDL: Curb+Rail+Asphalt	Š	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	000	000	0	9 0	8 6	3 6	0 0	55.72
\$	MPa	0.00	0.00	0.00	0.00	00.0	00 0	000	2		000	2	3 6	3 6	000	9 6	9 6	0.00
Dr+spr	Z	369 00	173 00	00 83	280 00	532.00	733.00	00.00	00.01	80.0	00.0	9 6	9	9	00.0	0.0	0.00	0.00
	:	00.00	200	9	203.00	252.00	00.00	00.610	450.00	22:00	449.00	615.00	733.00	261.00	289.00	83.20	173.00	369.00
2	Σ α	27.33	8.01	3.84	13.38	17.43	18.33	16.53	16.11	1.06	16.07	16.53	18.33	18.38	13.38	3.85	8.01	27.33
Live Load: max(+V,-V)	Ž	122.09	112.17	28.69	114.11	146.26	146.26	146.26	115.20	73.25	146.26	147.47	147.47	145.05	107.46	68 17	117.25	123.20
	MPa	9.04	5.19	3.23	5.28	4.79	3.66	3.93	4.12	3.52	5.24	3.96	3.69	4.75	4 97	3.16	5 43	0 13
24	MPa	36.38	13.20	7.08	18.66	22.22	21.98	20.46	20.23	4.58	21.31	20.49	22.01	23.13	18.35	7 04	13.44	36.47
< Fv = 0.33 Fy = 10.55 MPa	.55 MPa	ð	ð	ŏ	ð	ð	ò	ð	ð	ŏ	ŏ	ŏ	ŏ	ð	ð	ŏ	ŏ	č
														1				5

-◆-Top: DL+SDL+LL(+) -#-Bot DL+SDL+LL(+) Top: DL+SDL+LL(-) - ★-Bot DL+SDL+LL(-) - ★-Fb allow = 184.25 - ◆-Fb allow = -184.25

Distance from left (m)


-150.00

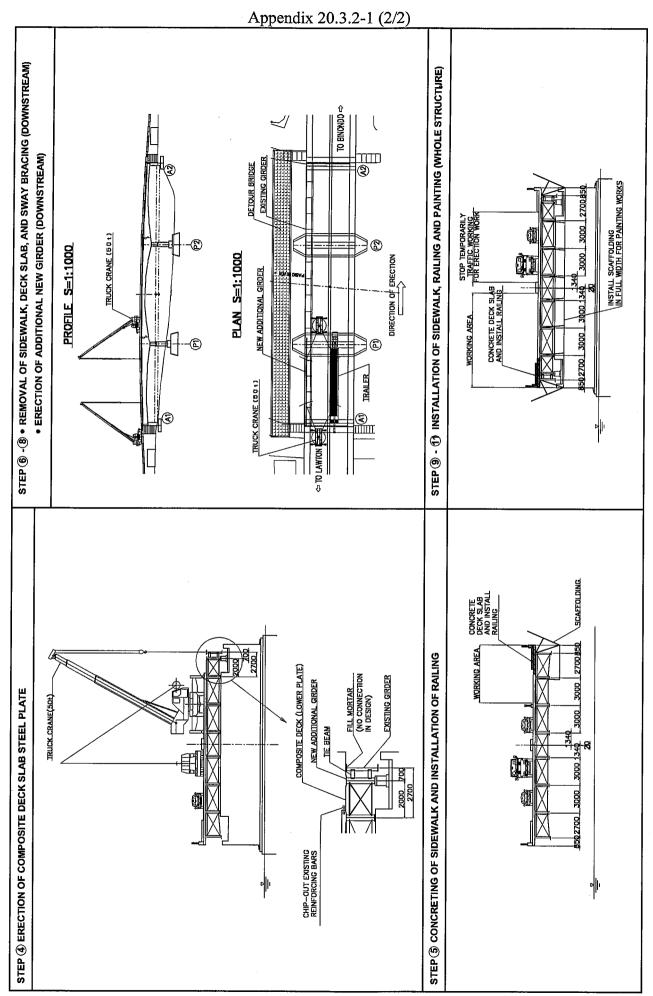
Bending Stress (MPa)


-200.00

-250.00

Appendix 20.3.1-3 (1/2)

APPROACH 1 SITE OCULAR INSPECTION (JONES BRIDGE)


APPROACH 2 SITE OCULAR INSPECTION (JONES BRIDGE)

Appendix 20.3.2-1 (1/2) TO BINOMDO INSTALL
TE BEAM
EXISTING
EXTERIOR
GIRDER
UNED AS
VESSEL
COLLISION
PROTECTOR FEQUIRED CRANE CAPACITY (BY 2 CRANES)

NEW ADDITIONAL GIRDER SEPECIFIED LOAD = (GIRDER WEIGHT / 2 +

LIFTING ARM WEIGHT) x 1.25 INSTALL NEW BRACING Ξ ERECTION DIRECTION PR TRUCK CRANE(50t) STEPS ③ ERECTION OF NEW GIRDER (UPSTREAM SIDE) SA SECTION PROFILE PLAN 2 ල EXISTING EXTERIOR GIRDER INSTALL NEW BRACING TO LAWTON ERECTION ORDER TRUCK CRANE (50t) TRUCK CRANE (50t) STEP ${\bf \oplus}$ REMOVAL OF RAILING, SIDEWALK AND DECK SLAB (UPSTREAM SIDE) TO BINONIDO ⇔ REMOVE RAILING, CURB, AND DECK SLAB INSTALL SCAFFOLDING. SCAFFOLDING REMOVE RAILING, SIDEWALK AND DECK SLAB REMOVE SWAY BRACING STEP ② REMOVAL OF CROSS-BEAM AND LATERALS (SWAY BRACING) **3** 3000 3000 2700850 REMOVE RAILING, CURB, AND DECK SLAB STEPS (1) & (2) REMOVAL OF EXISTING STRUCTURES REMOVAL DIRECTION PROFILE PLAN Ì **②** ⇒ TO LAWTON

CONSTRUCTION SEQUENCE FOR JONES BRIDGE

CONSTRUCTION SEQUENCE FOR JONES BRIDGE

BREAKDOWN OF COSTS FOR JONES BRIDGE

Annex VI - Construction Cost for Retrofitting of Jones Bridge

	Description	nit C	Quantity	Unit Price	Cost		Components	
10			•			Foreign	Local	Taxes
A. Steel Str	A. Steel Structures (Furnish/Fabricate, Transport & Erection)							
408(1)	Steel I Girder (1.3m - 2.5m height)	kgs	132,700.00	150.00	19,905,000.00	14,729,700.00	2,189,550.00	2,985,750.00
B. Scaffoldi	Scaffolding (including scaffolding for painting)							
SPL	Scaffoldings/Temporary Works	sq. m.	2,530.00	750.00	1,897,500.00	1,290,300.00	341,550.00	265,650.00
C. Siteworks								
101(3)	Removal of Deck Slab and Railing	l.m.	1,072.00	6,300.00	6,753,600.00	4.389.840.00	1 418 256 00	945 504 00
SPL	Deck Slab	sq. m.	268.00	35,000.00	9,380,000.00	6,097,000.00	1,969,800,00	1 313 200 00
408(2)	Existing Exterior Girders Repair	kgs	132,700.00	20.00	6,635,000.00	4,909,900.00	729,850,00	995.250.00
SPL	Bridge Surface	sq. m.	00'508	2,500.00	2,012,500.00	1,529,500.00	201,250.00	281.750.00
401(1)	Railing Works	l.m.	230.00	50,000.00	11,500,000.00	7,475,000.00	2,415,000.00	1.610,000.00
411	Painting (includes cleaning)	sq. m.	9,111.00	4,020.00	36,626,220.00	27,103,402.80	4,028,884.20	5,493,933.00
500(1)	Steel Pipe Downspout, 100 mm dia	l.m.	196.00	1,028.16	201,519.36	130,987.58	42,319.07	28,212.71
401(3)	Decorative Railing	ľ.m.	230.00	14,792.00	3,402,160.00	2,517,598.40	374,237.60	510,324,00
SPL	Expansion Joint	l.m.	15.50	130,000.00	2,015,000.00	1,491,100.00	221,650.00	302,250.00
503(1)a	Clogged Drainage with Missing Steel Grating		8.00	17,298.93	138,391.44	89,954.44	29,062.20	19.374.80
SPL	Epoxy Injection	s:	1.00	11,636,630.63	11,636,630.63	8.494.740.36	1 745 494 59	1.396.395.68
SPL	Replacement of New Concrete (Spalling with Exposed Rebars)	.s.l	1.00	3,490,989.19	3,490,989.19	2,478,602.32	523.648.38	488 738 49
				Sub-total	93,792,010.62	66,707,625.90	13,699,452.04	13,384,932.67
D. Total Direct Cost	ect Cost				115,594,510.62	82,727,625.90	16,230,552.04	16,636,332.67
E. Indirect Cost	Sost							
	Traffic Management							
	Temporary Facilities							
	Mobilization/Demobilization					1		
	40% of Total Direct Cost				46,237,804.25	32,828,841.02	6,935,670.64	6,473,292.59
,								
F. Iotal Cor	F. I otal Construction Cost				161,832,314.87	115,556,466.92	23,166,222.68	23,109,625,27

BREAKDOWN OF COSTS FOR JONES BRIDGE

Annex VII - Roadway Improvement (Jones Bridge)

Item No	Description	1 41	C. C.	1-10			Component	
		1 5	Channy	1800 JIIIO	Amount	Foreign	Local	Tax
	Earthworks							5
101(3)a	Removal of Island	m	123.80	114.15	14.131.40	9 185 41	2 967 59	1 978 40
101(3)b	Removal of Curb and Gutter	l.m.	303.00	85.62	25.944.07	16.863.65	5 448 26	3 632 17
101(3)c	Removal of Plant Box	m ²	90.00	82.62	7.435.89	4 833 33	1 561 54	1 041 02
101(3)d	Removal of Sidewalk	m²	53.00	154.06	8,164,92	5.307.19	1 714 63	1 143 09
101(3)e	Removal of Parking Space	m ²	70.00	99.21	6.944.63	4.514.01	1 458 37	972.25
	Surface Course					2.	1,100.01	012:20
301(1)	Tack Coat	tonne	0.50	25.000.00	12.500.00	8.125.00	2 625 00	1 750 00
310	Asphalt	tonne	46.00	3,100.00	142,600.00	92.690.00	29 946 00	19 964 00
	Miscellaneous					22122	20:010:01	00.5
311	Concrete Median	m ²	897.00	272.93	244.820.00	159 133 00	51 412 20	34 274 80
600(1)	Concrete Curb	l.m.	855.00	562.46	480,905.87	312,588.81	100,990,23	67 326 82
600(1)	Combination of Concrete Curb and Gutter	l.m.	815.00	1,100.00	896,500.00	582,725.00	188,265,00	125,510.00
612(1)	Pavement Markings	m²	483.00	862.13	416,406.38	270,664.14	87,445.34	58.296.89
	Contingencies	l.s.	1.00	112,817.66	112,817.66	84,613.24	16,922.65	11.281.77
				Total	2,369,170.81	1,551,242.79	490,756.81	327,171.21
				% Component	100%	92%	21%	14%