CHAPTER 14

COMPARATIVE STUDY ON IMPROVEMENT MEASURES

				Appendix 1	14	.2.1	-1	(1/3)	5)									
	System			acity. ane ng		ر ا	2	c 00					. «	, a		۵ ۵		
	ment of Floor	ab) + New		s S1 with addit of the state of the existing o	20	20 G	ssage	1,420	9	Lailes			do				9.	
Strengthening of Bridge	Strengthening of Entire Lower Chords +Replacement of Floor System	(Conversion to steel deck slab from RC deck size Bridge Construction	00 00 00 00 00 00 00 00 00 00 00 00 00	This scheme is basically the same as Scheme S1 with additional from 3-lane to reduce bridge section to improve its traffic capacity. The number of lanes on the existing bridge is reduced to 2-lane the live load in addition to the reduction of dead weight by the conversion system. Diving condition will be improved by 2-lane use of the existing bridge comparing to Scheme S1. The new bridge can be used as a detour by constructing ahead during improvement works for the existing bridge. Bridge widening required additional R.O.W.	Expected Load Carrying Capacity	Expected Durability	Stage construction necessary for keeping the passage of traffic	In between rehabilitation and new	Lane width is minimum	Satisfies AASHTO requirements	Existing alignment is not smooth	Depend on existing girder height	Satisfies regulatory clearance	New added bridge can be used as detour bridge	Upper members remain There is a new added bidged	Good	R.O.W. acquisition is necessary for the new bridge	æ
Strengthen	or System		* TE	ing nnverling nnversion sase by 30%. existing		o o	\ <	æ	ပ	A	8	8	8	8	A	8	8	
	acement of Fic	k slab)		ding or replace ighter by α by With the α e will be decreased as the improved a lift	20	Ton 15	e passage	1,408	6 1 anes	200			meter				2-Lane	
	S1 Strengthening of Entire Lower Chords+Replacement of Floor System	(Conversion to steel deck slab from RC deck slab)	1	•To strengthen the entire lower chord by adding or replacing member to meet the latest code. •To make the dead weight of Superstructure lighter by converting the existing RC deck slab to steed deck slab. With the conversion the existing RC deck slab to steed deck slab. With the conversion the total dead weight of the Superstructure will be decrease by 30%. •Road width and the vertical alignment are same as the existing conditions.	Expected Load Carrying Capacity	Expected Durability	Stage construction necessary for keeping the passage of traffic	In between rehabilitation and new construction	Lane width is minimum	Satisfies AASHTO requirements	Existing alignment is not smooth	Depend on existing girder height	Satisfies regulatory clearance	2-Lane detour bridge shall be provided to maintain the required 4-1 are	Upper members remain	Good	Temporarily borrowed land is necessary for 2-Lane detour	O
	oes and		**************************************	ed bearings, and cross w corroded		۵ ۵	4	¥	a	A	æ	٧	٥	æ	<	В	A	
	of Bearing Sh			savily damage s of stringers s ened with new e.	15	on 5 VIS		700	6 Lanes				3.50 meter					
Rehabilitation of Existing Bridge	Rehabilitation/Strengthening/Replacement of Bearing Shoes and	rioor system	100 May 100 Ma	To rehabilitate or strengthen or replace heavily damaged bearings, stringers and cross beams. The joint areas of stringers and cross beams with truss chords shall be strengthened with new state place and to their significant damage. All bearings shall be replaced because they are heavily corroded and have not functioned properly.	Expected Load Carrying Capacity	Expected Durability	Small work compared to other schemes	Minimal among proposed schemes	Substandard lane width	Satisfies AASHTO requirements	Existing alignment is not smooth	Grade of access road road is acceptable	Does not satify regulatory clearance	Maintains passage of existing traffic	Existing bridge remains	Good	No need	Q
ehabilitation	Members		10011	s joints portion or to width. The 000 PCU. h is Level D re		۵ ۵	A	A	٥	V	В	A	0	8	٧	ю	¥	
8	ints of Truss			area of the truss corroded steel toorcoded steel too. Steel too Solandard lane mated to be 59, isting road widt become 1,8 if if the become 1,8 if if the steel to be 50, is the 50, is the steel to be 50, is the 50, is the steel to be 50, is the 50, is the steel to be 50, is	15	o Sry		750	6 Lanes				3.50 meter					
	Rehabilitation/Strengthening of Damaged Joints of Truss Members			- To rehabilitate or strengthen heavily damaged area of the truss joints - The intabilitation method is to replace heavily corroded steel portion or to - frorease section areas by adding now steel plates Problem with this scheme is to maintain the situational darea width. The - traffic capacity of the existing road width is tell situated to be 59,000 PCU. The present Level of Service (LOS) of the existing road width is Level D (vic ratioo.l./0), in year 2010 the vic ratio will become 1.8 if the existing road width will be maintained.	Expected Load Carrying Capacity	Expected Durability	Small work compared to other schemes	Minimal among proposed schemes	Substandard lane width	Satisfies AASHTO requirements	Existing alignment is not smooth	Grade of access road road is acceptable	Does not satify regulatory dearance	Maintains passage of existing traffic	Existing bridge remains	Good	No need	Q
Improvement Type	Scheme Name		Diagramatic Sketch	Description	(1) Structural	Aspects	(2) Construction Difficulty	(3) Economical Aspects	a. No. of Lanes	b. Gradient	c, Horizonial Geoment Geoment		e. Nav. dearance	<u> </u>	a. Historical Aspects	b. Scenery/ LD Aesthetics	C Row C Acquisition (6) Difficulty	Rating

PRELIMINARY SCREENING OF POSSIBLE SCHEMES FOR AYALA BRIDGE

Appendix 14.2.1-1 (2/5) The strengthened bridge is designed as a through type simple steel box girder Unique, into sit softenen devent or expect the exacting upper chords, diagonal and vertical members to shoulder the loads.

The difference from Scheme S4 and S5 is whether to expect the existing upper chords, diagonal and vertical members to stare the loads.

This scheme is almost a new bridge construction in terms of strang of the loads. ⋖ 8 ပ В 4 മ 8 ပ 00 æ æ ω Conversion from Existing Lower Chord only to Steel Box Girder (Through Type) + Replacementof Floor System (Conversion to steel deck slab from RC deck slab) + New Bridge Construction The existing upper members wil remain as a symbol for the people who feel nostalgia to the old Ayala Bridge or ritend to preserve the old Ayala Bridge as a historical structure. 2,028 Lanes 25 <u>10</u> 22 R.O.W acquisition is necessary for the new bridge New added bridge can be used as detour bridge Stage construction necessary for keeping the daintain existing alignment. In-depth study is necessary to improve the existing alignmen Depend on existing girder height Expected Load Carrying Capacity n between rehabilitation and new Satisfies AASHTO requirements Satisfies regulatory clearance Remain upper members ane width is medium Expected Durability of traffic The difference between Scheme S5 and S4 the additional steel box girder to reinforce the existing truss without replacing/strengthening lower chords. The additional steel box girder is effective only under live load condition. Ф 8 В Combining Existing Lower Chard and Steel Box Girder (Through Type) Replacement of Floor System (Conversion to steel deck slab from RC deck slab) + New Bridge Construction ٧ 8 ⋖ æ æ В В 8 മ m When combining the existing lower chord with a new steel box girder, the stress of the existing main trusses can be reduced. Construction work wilb be easier comparing to Scheme S4 because a new steel girder is only combined with the existing lower chord instead of replacing the damaged lower chord. 32 Ton 40 yrs passage 1,935 1,25 6 anes A High possible improvement scheme R.O.W acquisition is necessary for the new bridge New added bridge can be used as detour bridge Stage construction necessary for keeping the p of traffic. In between rehabilitation and new Maintain existing alignment. In-depth study is necessary to improve the existing alignment Depend on existing girder height Additional R.O.W similar to Scheme S2. Expected Load Carrying Capacity Satisfies AASHTO requirements Satisfies regulatory clearance 2002 0000 Remain upper members construction Lane width is medium Expected Durability 900 4 മ 00 ۵ 4 a 8 æ a Replacement of Lower Chords + Replacement of Floor System (Conversion to steet deck stab from RC deck stab) + New Bridge Construction The durability can be increased comparing to Scheme S2 from the same reason as Scheme S3. The relationship between Scheme S3 and S4 is the same as that between Scheme S1 and S2. 1.00 6 Lanes 33 To 87 A High possible improvement scheme R.O.W acquisition is necessary for the new bridge Additional R.O.W. required similar to Scheme S2. New added bridge can be used as detour bridge Stage construction necessary for keeping the of traffic. Maintain existing alignment. In-depth study is necessary to improve the existing alignment Depend on existing girder height Expected Load Carrying Capacity n between rehabilitation and new Satisfies AASHTO requirements Satisfies regulatory clearance Remain upper members Lane width is medium Expected Durability 90g The difference with Scheme S1 is the replacement of the lower chord. **m** ပ ပ 4 В 8 æ æ a <u>m</u> œ æ Road width and the vertical alignment are the same as the existing conditions. Difficulty will be encountered when replacing the middle truss lower chord if the bridge will not be obsed during overstruction. Replacement of Lower Chords + Replacement of Floor System Conversion to steel deck slab from RC deck slab. Durability of the existing bridge can be increased by replacing the damaged lower chord with new one. Maintained 4-lane traffic needs temporary bridge as detour. Stage construction necessary for keeping the passagr A possible improvement scheme 0.95 anes 경 글 용 활 emporarily borrowed land is necessary for 2-Lane 2-Lane detour bridge shall be provided to maintain the required 4-Lane traffic volume Remain upper members Maintain existing alignment. In-depth study is necessary to improve the existing alignment Depend on existing girder height Expected Load Carrying Capacity n between rehabilitation and new Satisfies AASHTO requirements Satisfies regulatory clearance Lane width is minimum 퍝 Expected Durability bridge 900 900 nprovement Type d. Access to Acquisition Scheme Name) Construction Difficulty) Economical . Gradient Aspects a. No. of b. Scenery Difficulty c. Row) Structural Aspects Rating Diagramatic Sketch Describtion (4) Geometrical

PRELIMINARY SCREENING OF POSSIBLE SCHEMES FOR AYALA BRIDGE

Appendix 14.2.1-1 (3/5)

			Appendix	\ \ \ \ \ \	Z.1			\ _{\dagger}	l	_		A	∀		l o	U	\prod
			which increase		920	-	1,879		-		-						1
	N4 2-Span Continuous PC Box Girder Bridge	COOKET COOKET	A new pier construction is necessary, which is to be constructed beside the existing pier. The girder height is 2.0 m higher than the existing one, which increases the gradesgoing to adjacent intersections and the Hospico de San Jose. Construction cost is chapter comparing to other new horge construction cost. A 4-lane detour is necessary for securing the Iraffic.	Expected Load Carrying Capacity 3	Expected Durability 5	After 4-Lane detour construction relatively easy to	y expensive	Lane width is desirable	In-depth study is necessary for access road to Hosnicio	Easy to improve existing alignment	Another route shall be studied	Easy to satisfy navigational limit	Easy because 4-Lane detour will be provided	Different type from existing one	Fair	Widening road width require the R.O.W. acquisition + temporary R.O.W. for detour bridge	O
			nucted aquired. girder.	4	∢	4	ပ	∢	٥	∢	O	A	A	۵	B	O	
			h is to be const he river is not re he traffic. due to shallow he a monument	32 Ton	50 Siv	asy to	2,474	6 Lanes	1				-			luisition	
New Bridge Construction	2-Span PC Cable Stayed Bridge		Girder height is lower than Scheme NZ. A new pier construction is necessary, which is to be constructed beside the existing pier. Temporary work for the superstructure in the river is not required. A 4-lane delour is necessary for securing the teriffic. Verical grade less steep Ihan Scheme NZ due to shallow girder. The main tower can be expected to become a monument or landmark due to high profile. Presents an opportunity for technology transfer.	Expected Load Carrying Capacity	Expected Durability	After 4-Lane detour construction relatively easy to construct	Very expensive	Lane width is desirable	In-depth study is necessary for access road to Hospicio	Easy to improve existing alignment	Another route shall be studied	Easy to satisfy navigational limit	Easy because 4-Lane detour will be provided	Different type from existing one	Excellent	Widening road width require the R.O.W. acquisition + temporary R.O.W. for detour bridge	Q
New Bridge			sted iired. jirder. indmark.	¥	A	¥	၁	∢	o	4	S	A	4	۵	∢	O	
			to be constructiver is not requiraffic. e to shallower genonument or la	32 Ton	50 yrs	sy to	2,350 1.40	6 Lanes	0							isition	cheme
SN SN	2-Span PC Extradosed Bridge		Girder helphi is lower than Scheme N1. A new pier construction is necessary, which is to be constructed beside the existing pier. Temporary work for the superstructure in the river is not required. A d-lane debur is necessary for securing the Italific. Verifical grade less steep than Scheme N1 due to shallower girder. The main tower can be expected to be come monument or landmark. Presents an opportunity for technology transfer.	Expected Load Carrying Capacity	Expected Durability	After 4-Lane detour construction relatively easy to construct	Relatively expensive	Lane width is desirable	In-depth study is necessary for access road to Hospicio	Easy to improve existing alignment	Another route shall be studied	Easy to satisfy navigational limit	Easy because 4-Lane detour will be provided	Different type from existing one	Excellent	Widening road width require the R.O.W. acquisition + temporary R.O.W. for detour bridge	A High possible improvement scheme
			se of structed required.	4	A	∢	8	A	С	A	D	A	¥	٥	ပ	ပ	
	- B		er height becausich is to be consider is to be consider is to be consider is to the traffic. Seaper girder. To de San Jose by de San Jose by sea very high elie.	32 Ton	. 20 VIS	ly easy to	2,160 1.39	6 Lanes	oad to				ided			acquisition	
2	2 - Span Continuous PC Rigid Frame Bridge		This bridge type requires the higher girder height because of cantilever type. A mew pier construction is necessary, which is to be constructed beside the existing pier. Temporary work for the superstructure in the river is not required. A 4-lane detour is necessary for securing the traffic. Verifical grade becomes steeper due to desper girder. The vertical grade of the access road to the Hospicio de San Jose becomes steeper because the center of bridge has a very high elevation.	Expected Load Carrying Capacity	Expected Durability	After 4-Lane detour construction relatively easy to construct	Relatively expensive	Lane Width is desirable	In-depth study is necessary for access road to Hospicio	Easy to improve existing alignment	Another route shall be studied	Easy to satisfy navigational limit	Easy because 4-Lane detour will be provided	Different type from existing one	Fair	Widening road width require the R.O.W. acquisition + temporary R.O.W. for detour bridge	O
Improvement Type	Scheme Name	Diagramatic Sketch	Description	(1) Structural Aspects		(z) Construction Difficulty	(3) Economical Aspects	a. No. of Lanes		c. Horizontal		e. Nav. clearance	(5) Traffic Treatment	a. Historical Aspects	b. Scenery/	COCI C. Row CO Acquisition CO Difficulty	Rating

PRELIMINARY SCREENING OF POSSIBLE SCHEMES FOR AYALA BRIDGE

Appendix 14.2.1-1 (4/5)

	Ī	1		Appendix 1	T.2	. <u>1</u>	<u> </u>	T/3/	<u>, </u>		Т	Τ	T-	Т-	Т	T	7	T
				cause lar s. line.	4	¥	¥	ပ	⋖	8	∢	ω	A	¥	۵	4	ပ	
		ans)		eme N7. latively gentle bec e minimized simil temporally works ceuse of the arch	32	92		2,316	9	1							iltion	
	N8	Simple Through Type Steel Arch Bridge (2-Spans)		The existing pier can be utilized similar to Scheme NT. The access to the Hospicio de San, lose is retainely gentle because the elevation of the bridge deck surface is to be infumized similar to Scheme NY. To install temporally bents or utilize barges as temporally works. Scenery and aesthetic aspect will be good because of the arch line.	Expected Load Carrying Capacity	Expected Durability	After 4-Lane detour construction relatively easy to	Expensive	Lane width is desirable	In-depth study is necessary for access road to Hospition	Easy to improve existing alignment	Depend on girder height	Easy to satisfy navigational limit	Easy because 4-Lane detour will be provided	Different type from existing one	Excellent	Widening road width require the R.O.W. acquisition + temporary R.O.W. for detour bridge	8
				g	¥	¥	¥	œ,	4	¥	¥	8	¥	¥		O	O	
		te (2-Spans)	7780	ugistrengthening, relatively gentle I be minimized in girder type. oppressive feelin ilision.	32	50 Vrs	asy to	2,129	9					-0			tuisition	scheme
New Bridge Construction	ŽV.	Simple Through Type Steel Box Girder Bridge (2-Spans)		The existing pler can be utilized by improving/strengthening, if necessary. If a process to the Hospition de San, bose is relatively gentle because the elevation of the bridge deck surface is to be minimized comparing with other schemes using through gitter type. There is the possibility that drivers have an oppressive feeling due to the through type. Box girder needs protection from vehicle collision.		Expected Durability	After 4-Lane detour construction relatively easy to construct	Relatively expensive	Lane width is desirable	Will satisfy AASHTO requirements	Easy to improve existing alignment	Depend on girder height	Easy to satisfy navigational limit	Easy because 4-Lane detour will be provided	Different type from existing one	Fair/Bad	Widening road width require the R.O.W. acquisition + temporary R.O.W. for detour bridge	A High possible improvement scheme
New Bridge	ļ			ted gher nethod	¥	A	¥	D	¥	æ	¥	۵	A	A	۵	∀	ပ	
				s to be constructing be becomes high becomes high into a symbol into a capillaver in the postary bent. The schemes.	ئ _ا 33	05 y		2,870	6 Lanes	,							sition	
ON	QN	2-Span Steel Cable Stayed Bridge		A new pier construction is necessary, which is to be constructed beside the existing pier. The construction cost of the cable-stayed bridge becomes higher than other schemes of new bridge construction. The main tower can be expected as monuments or symbol because of its high profile. Temporary work method for the superstructure is cantilever method from the center support point or to provide a temporary bent. Superstructure dead weight is lighter than other schemes. Detour road is necessary.	Expected Load Carrying Capacity	Expected Durability	After 4-Lane detour construction relatively easy to construct	Most expensive among new bridges	Lane width is desirable	In-depth study is necessary for access road to Hospicio	Easy to improve existing alignment	Another route shall be studied	Easy to satisfy navigational limit	Easy because 4-Lane detour will be provided	Different type from existing one	Excellent	Widening road width require the R.O.W. acquisition + temporary R.O.W. for detour bridge	æ
				structed Hospicio de ind ge to utilize	¥	¥	¥	٥	∢	В	٧	_	¥	∢	۵	89	ပ	į
			2000 2010 2010 2010 2010 2010 2010 2010	rhich is to be condoge. dge. g to the existing I go to existing a difficult. on or realign bridg.	32 Ton	50 yrs	ily easy to	2,241	6 Lanes	oad to			i	ided			acquisition	
Y.	CAT	2-Span Continuous Steel Truss Bridge	200011 00001	A new pier construction is necessary, which is to be constructed beside the existing pier. Truss bridge is similar to the existing bridge. Indepth study on the access road going to the existing Hospicio de San Joses stall be necessary because securing vertical and horizontal clearance for vehicles will be difficult. Requires detour road during construction or realign bridge to utilize existing bridge.	Expected Load Carrying Capacity	Expected Durability	After 4-Lane detour construction relatively easy to construct	Very expensive	Lane Width Is desirable	In-depth study is necessary for access road to Hospicio	Easy to improve existing alignment	Another route shall be studied	Easy to satisfy navigational limit	Easy because 4-Lane detour will be provided	Different type from existing one	Good	Widening road width require the R.O.W. acquisition + temporary R.O.W. for detour bridge	В
Improvement Type		Scheme Name	Diagramatic Sketch	Descublion	(1) Structural Aspects		_		a. No. of Lanes		c. Horizontal	d. Access to Hospicio	e. Nav. clearance	(5) Traffic Treatment	a. Historical Aspects	b. Scenery/	CO C. Row CO Acquisition (6) Difficulty	Rating

PRELIMINARY SCREENING OF POSSIBLE SCHEMES FOR AYALA BRIDGE

Appendix 14.2.1-1 (5/5)

				Appendix 1	7.2		1	(3)	<u> </u>									
			Notes: A = Most preferable B = Preferable C = Applicable D = Not applicable						•									
		clusive Use	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	pedestrian	4	¥	A	۵	A	A	¥.	A	۵	¥	A	a	Q	
	05	festrian/Light Vehicles Exc		g the existing bridge as the cong the schemes of new	32	99	715	3,300	9	ranes			egulatory clearance	the existing bridge			.W. acquisition e	
Others		Converting Existing Bridge to Pedestrian/Light Vehicles Exclusive Use + New Bridge Construction		To construct a new bridge, utilizing the existing bridge as the pedestrian and light vehicle bridge. A new bridge is to be selected among the schemes of new bridge construction.	Expected Load Carrying Capacity	Expected Durability	Easiest among the schemes	Relatively expensive	Lane width is desirable	Will satisfy AASHTO requirements	Easy to improve existing alignment	Depend on girder height	Existing bridge does not satisfy the regulatory clearance limits	Very easy to control traffic because the existing bridge	Will Jenaill Existing bridge will remain	Good	Widening road width require the R.O.W. acquisition + temporary R.O.W. for detour bridge	Q
ō		ction	ilia enti	So unent. If new	∢	A	O	۵	¥	A	A	8	Ą	A	A	B	ပ	
		Bridge Consruc	transfered)	ne adequale plac structure or mon ig the schemes o	7 32 To	50		3,600	9 9					ovided			V. acquisition	
	Ю	Relocation of Existing Bridge + New Bridge Consruction	New Bridge (to be transfered)	To transfer the existing bridge to some adequate place in order to preserve it as a historical structure or morument. A new bridge is to be selected among the schemes of new bridge construction.	Expected Load Carrying Capacity	Expected Durability	Relocation will be difficult	Significantly expensive because of relocation	Lane width is desirable	Will satisfy AASHTO requirements	Easy to improve existing alignment	Depend on girder height	Easy to satisfy navigational limit	Easy because 4-Lane detour will be provided	The existing bridge will be preserve	Good	Widening road width require the R.O.W. acquisition + temporary R.O.W. for detour bridge	Q
				well he elevation Scheme N7. work. bridge.	V	¥	∢	ω.	∢	∢	4	<u> </u>	∢	A	B	<u>m</u>	ပ	
New Bridge Construction		2-Spans)	80 Maria (1997)	vrovement of it as gentle because t imized as well as ges as lemporary ar to the existing I	32 Ton	50 Yrs	ively easy to	2,121	6 Lanes					rovided			W. acquisition	ement scheme
	60	Simple Through Type Truss Bridge (2-Spans)		The existing pler can be utilized by improvement of it as well as Scheme N7. The access to the hospido is relatively gentle because the elevation of the bridge deck surface is to be minimized as well as Scheme N7. To install temporary bents or utilize barges as temporary work. Scenery and aesthetic aspect are similar to the existing bridge.	Expected Load Carrying Capacity	Expected Durability	After 4-Lane detour construction relatively easy to construct	Relatively expensive	Lane width is desirable	Will satisfy AASHTO requirements	Easy to improve existing alignment	Depend on girder height	Easy to satisfy navigational limit	Easy because 4-Lane detour will be provided	Similar appearance to the existing one	Good	Widening road width require the R.O.W. acquisition + temporary R.O.W. for detour bridge	A High possible improvement scheme
Improvement Type		Scheme Name		noidinosed	(1) Structural Aspects	56	(2) Construction Difficulty	(3) Ecc As	a. No. of Lanes	b. Gradient	c. Horizontal	d. Access to	e. Nav. clearance	(5) Traffic Treatment	a. Historical Aspects	b. Scanery/	C Row COcial Acquisition Difficulty	Rating

PRELIMINARY SCREENING OF POSSIBLE SCHEMES FOR AYALA BRIDGE

CHAPTER 15

PRELIMINARY DESIGN AND COST ESTIMATE

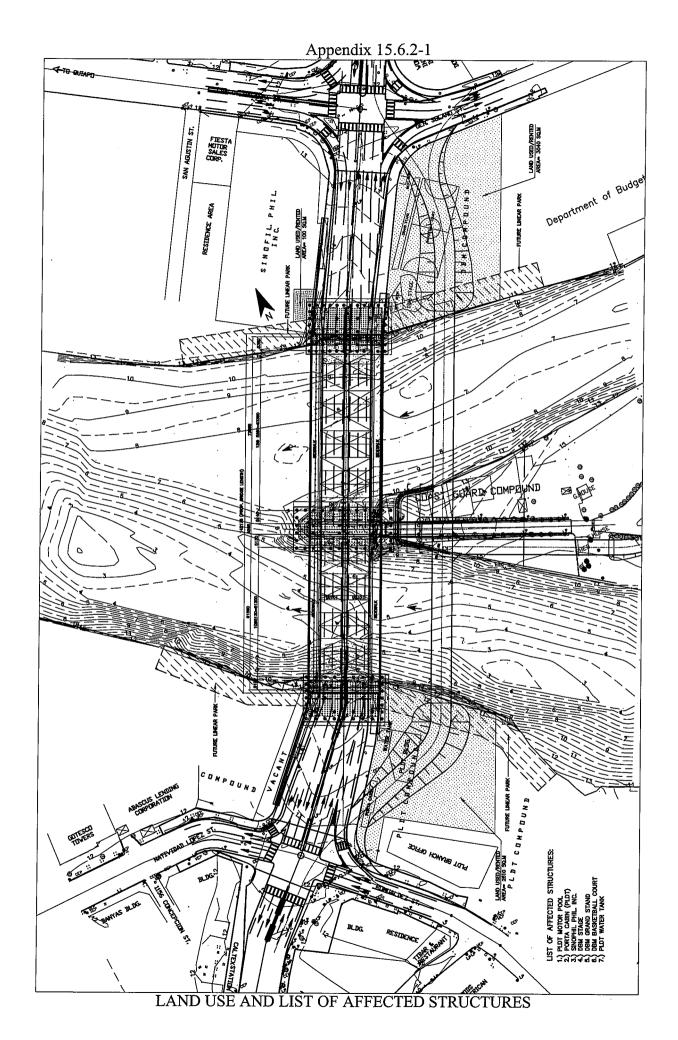
Appendix 15.6.1-1 (1/2)

Basic Labor Cost

CATEGORY	COST INDEX	TOTAL RATE PER MONTH	RATE / (P/HR)
Foreman	2.14	17,715.48	84.90
Assistant Foreman/Rigger	1.98	16,345.15	78.33
Skilled Laborer	1.74	10,572.55	50.67
Diver	1.74	10,572.55	50.67
Laborer	1.00	8,338.14	39.96
Special Welder	1.00	17,715.48	84.90
Heavy Equipment Operator	1.90	13,234.19	63.42
Supervisor	1.65	13,284.79	63.67
Surveyor	1.45	9,724.42	46.60
Foreign Specialist (Pile)	1.00	380,000.00	1821.09
Foreign Specialist (Steel)	1.00	760,000.00	3642.17
Foreign Specialist (Asphalt)	1.00	380,000.00	18210.09

Basic Row Materials Cost (PP)

REF.	MATERIALS	UNIT	C	OMPONENT	rs	COST
No.	· ·		FOREIGN	LOCAL	TAXES	(P/unit)
MA1010	Reinforcing Steel, Grade 40	kg	10.26	6.65	2.09	19.00
MA4010	Tie Rod, 36 mm	kg	16.15	0.76	2.09	19.00
MB3010	Fabricated Steel Girders	kg	156.40	7.36	20.24	184.00
MB3112	Structural Steel, H-200 (Used)	kg	15.30	0.72	1.98	18.00
MB3130	H-300 × 300 × 10 × 15	kg	30.60	1.44	3.96	36.00
MB3135	H-300 × 300 × 10 × 15 (Used)	kg	15.30	0.72	1.98	18.00
MB3145	H-400 × 400 × 13 × 21 (Used)	kg	15.30	0.72	1.98	18.00
MB3150	H-588 × 300 × 12 × 20 (Used)	kg	15.30	0.72	1.98	18.00
MB3155	H-1100 × 400 × 18 × 28 (Used)	kg	15.30	0.72	1.98	18.00
MB3160	[-150 × 75 × 6.5 × 10 (Used)	kg	15.30	0.72	1.98	18.00
MB3215	[-300 × 90 × 12 × 16 (Used)	kg	15.30	0.72	1.98	18.00
MB3225	[-380 × 100 × 13 × 20 (Used)	kg	15.30	0.72	1.98	18.00
MB3305	L- 150 × 150 (Used)	kg	15.30	0.72	1.98	18.00
MB3315	L- 100 × 100 × 10 (Used)	kg	15.30	0.72	1.98	18.00
MB3520	Binding Wire	kg	234.04	11.01	30.29	275.34
MB3610	Metro Deck 250kg/sq.m.) (Used)	kg	12.54	0.59	1.62	14.74
MB3622	Steel Railing	l.m.	9,384.00	441.60	1,214.40	11,040.00
MB3650	Hanger and Bracket	рс	211.06	9.93	27.31	248.30
MC5030	Tubular Steel Piles, 1000mm	kg	34.00	1.60	4.40	40.00
MC6020	Sheet Pile, Type V	kg	32.30	1.52	4.18	38.00
MC6022	Steel Sheet Piles, Type FSP III (rental)	kg	17.00	0.80	2.20	20.00
MC6030	Steel Sheet Piles, Type FSP VL (rental)	kg	17.00	0.80	2.20	20.00
MD2020	Marine Plywood ½" × 4' × 8'	рс	-	623.70	69.30	693.00
MD3010	Lumber (tanguile or equal)	bd ft.	-	10.80	1.20	12.00
MD3030	Floor Planks (Apitong)	bd ft.		29.70	3.30	33.00
MD4010	Form Lumber	bd ft.	-	21.60	2.40	24.00
MD9020	Form Oil (used)	lit.	3.84	22.40	5.76	32.00
MG1010	Portland Cement, 40 kg	bag	44.00	49.50	16.50	110.00
MK5010	Tire Fender	рс	4,700.00	4,400.00	900.00	10,000.00
ML1050	PVC Pipe, 150 mmØ	m	57.94	235.15	47.71	340.80
ML2020	Stainless Steel Pipe, 150mmØ	m	621.00	153.00	126.00	900.00
ML4035	Floating Fender	l.m	33,280.00	3,640.00	15,080.00	52,000.00
ML4040	Navigator Detector	set	2,355,200.00	257,600.00	1,067,200.00	3,680,000.00
ML5310	Reflective Pavement Paint	gal.	133.45	541.65	109.90	785.00
ML6010	Bitt, 200 mm dia	Pc	1,020.00	4,140.00	840.00	6,000.00
MM3140	Steel Form Shuttering (Normal)	Sq.m.	1,446.40	158.20	655.40	2,260.00
MS4010	Oxygen (Content Only)	Cyl	59.40	346.50	89.10	495.00
MS4020	Acetylene (Contents Only)	Cyl	105.00	612.50	157.50	875.00

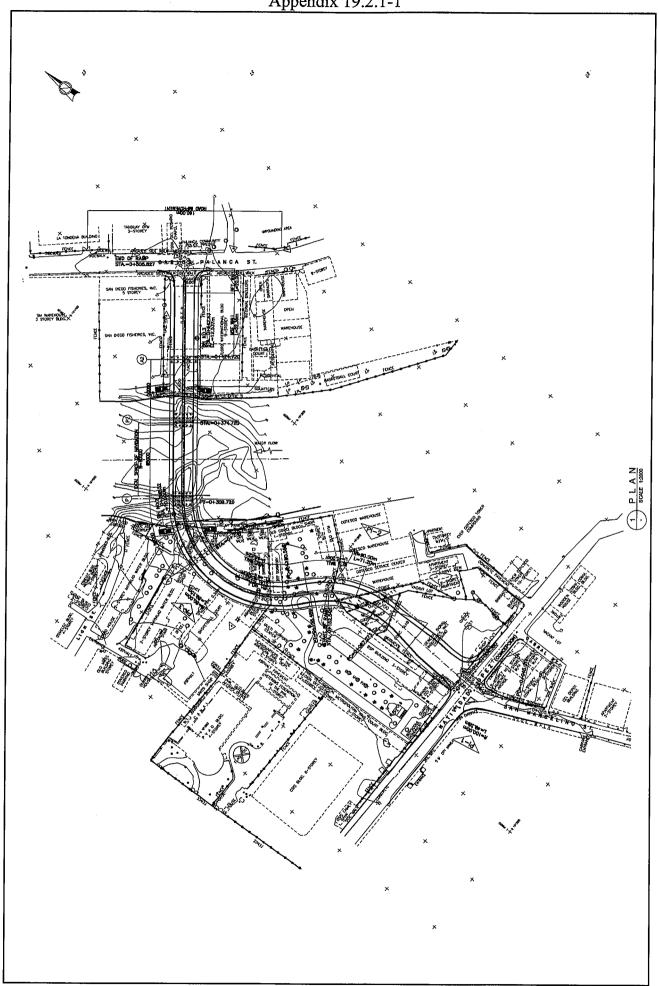

Appendix 15.6.1-1 (2/2)

Basic Processed Materials Cost (PP)

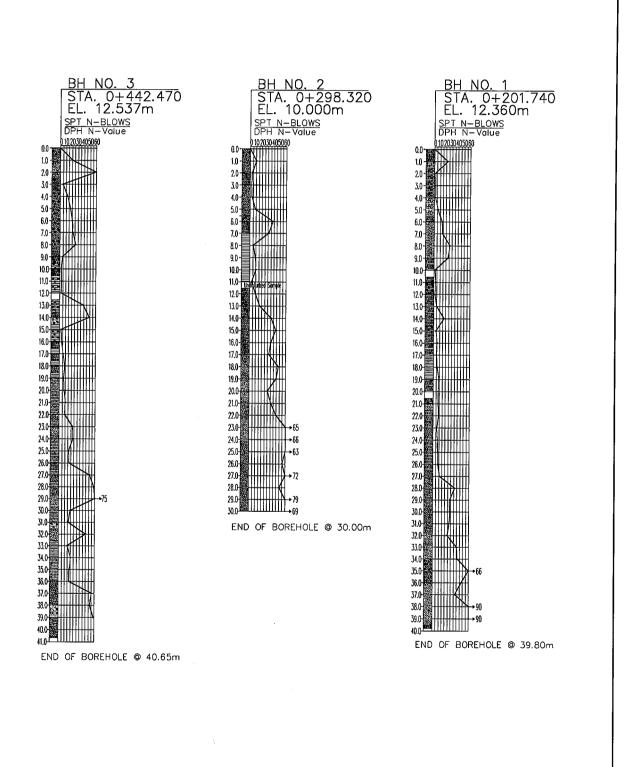
REF.	MATERIALS	UNIT	CO	MPONENT	S	COST
No.			FOREIGN	LOCAL	TAXES	(P/unit)
UD#338	Welding Pile on Site	Ea	4,959.52	3,599.72	1,525.34	10,084.58
UM#420	Blending Soil for Subbase and Base Course	cu.m.	56.51	113.02	32.29	201.82
UM#425	Aggregate for Subbase Material	cu.m.	57.13	127.27	30.00	214.41
UM#430	Aggregate for Base Coarse	cu.m.	161.27	163.68	55.00	379.96
UM#530	Boulders	cu.m.	117.60	235.20	67.20	420.00
UM#810	Mortar Cement, 1:3	cu.m.	958.14	1,127.15	371.01	2,456.30
UM#815	Mortar Cement, 1:2	cu.m.	1,101.65	1,299.38	423.71	2,824.75
UM#820	Concrete Class "A", 24 MPa	cu.m.	1,081.24	1,111.75	394.66	2,587.64
UM#830	Concrete Class "A", 24 MPa (Underwater)	cu.m.	2,387.29	2,577.95	883.73	5,848.97
UM#865	Lean Concrete, 15 MPa	cu.m.	675.55	730.52	255.30	1,661.36
UM#911	Formworks	sq.m	11.07	57.65	11.47	80.19
UM#930	Formworks for Footing	sq.m	342.43	178.64	156.67	677.75
UT#140	Fitting Works for De tour Bridge	l.s	334,324.32	372,673.86	96,587.87	803.586.05

Major Equipment Hourly Operating Cost

REF. No.	TYPE OF EQUIPMENT		NG COST IN F	/HR	TOTAL
		FOREIGN	LOCAL	TAXES	
EA1010	Bulldozer Crawler, D5 PS/DD. 105 Hp	709.28	251.68	183.04	1,144.00
EB1025	Backhoe w/ Hydraulic Breaker	502.94	178.46	129.79	811.20
EB1060	Hydraulic Backhoe, 1.32 cu m, 207 Hp	1,834.58	650.98	473.44	2,959.00
EB3010	Wheel Loader, 1.53 cu m, 545B	549.94	195.14	141.92	887.00
EB5010	Clamshell Bucket	587.93	146.98	126.69	864.60
EC1030	Cargo Truck, 6t – 8t	482.12	120.53	106.35	709.00
EC2010	Dump Truck, 8 ton, 220 Hp, 244 PS	548.76	137.19	121.05	807.00
EC5020	Water Truck, 3001 – 5000 gals	1,033.60	258.40	228.00	1,520.00
EC6010	Truck Trailer	2,720.00	680.00	600.00	4,000.00
ED1010	Crawler Crane, 25 t	855,44	213.86	188.70	1,258.00
ED1020	Crawler Crane, 35 t	942.48	235.62	207.90	1,386.00
ED2030	Truck Crane, 16 t, 180 Hp	637.84	159.46	140.70	938.00
ED3030	Portal Crane	4,926.54	1,231.64	1.086.74	7,244.92
EH2020	Concrete Pump Car, 100 cu.m/hr	2,196.77	779.50	566.91	3,543.18
EH4010	Concrete Vibrator	57.20	13.20	17.60	88.00
EH5010	Paint Stripping Machine	50.05	11.55	15.40	77.00
EH6010	Bar Shear/Cutter, 40 mm. dia.	68.80	15.88	21.17	105.84
EH6020	Bar Bender, 40 mm. dia.	44.77	10.33	13.78	68.88
EH7010	Tremie Pipe	189.28	43.68	58.24	291.20
EH7020	Concrete Bucket, 1.5 cu.m.	273.00	63.00	84.00	420.00
EJ1010	Concrete Batch Plant w/ silo, 30 cu m/hr	977.16	244.29	215.55	1,437.00
EK1030	Air Compressor, 356 – 450 cmf	527.15	121.65	162.20	811.00
EL1030	Submersible Pump, 200 mm dia × 25 m	67.39	15.55	20.73	103.67
EM1060	Generator Set, 100 kva	195.90	45.21	60.28	301.38
EM1090	Generator Set, 200 kva	398.31	91.92	122.56	612.79
EM1510	Oxygen/Acetylene Welding Outfit	51.35	11.85	15.80	79.00
EM2020	Electric Welding Machine, 500 A	230.75	53.25	71.00	355.00
EM2110	Welding Machine with Engine, 300A, DC	219.05	50.55	67.40	337.00
EN1010	Flat Barge, 300 t	489.98	113.07	150.76	753.81
EN1020	Flat Barge, 500 t	293.15	67.65	90.20	451.00
EN1030	Flat with Winch, 800 t	899.48	207.57	276.76	1,383.81
EN1040	Hopper Barge	608.40	140.40	187.20	936.00
EN1050	Crane Barge	3,494.00	2,271.10	524.10	698.80
EN2010	Tug Boat, 500 HP	1,224.60	282.60	376.80	1,884.00
EN7010	Modular Float	6,324.50	1,459.50	1,946.00	9,730.00
ED5010	Rock Drill	220.87	50.97	67.96	339.80
ED6010	Jack Hammer/Pneumatic Breaker	76.05	17.55	23.40	117.00
EE1010	Vibrating Pile Hammer, 60 kw	887.56	190.19	190.19	1,267.94
EE1020	Electric Vibro Hammer, VM2 – 4000E, 60 KW	395.50	84.75	84.75	565.00
EE2030	Diesel Hammer, D80 – 23	5,092.50	1,091.25	1,091.25	7,275.00
EG1010	Motor Grader, 130 hp, FG75A	894.04	317.24	230.72	1,442.00
EG2020	Vibratory Drum Roller, 6.5 t, CA15, 73 Hp	876.68	311.08	226.24	1,414.00
EG2110	Vibratory Plate Compactor, 12 Hp	127.72	45.32	32.96	206.00
EG4020	Pneumatic Roller, 20 t	556.32	197.40	143.57	897.29
EG5010	Concrete Paver/ Finisher	810.96	287.76	209.28	1,308.00



PART IV


FEASIBILITY STUDY ON SELECTED BRIDGES

CHAPTER 19

FEASIBILITY STUDY OF THE SECOND AYALA BRIDGE CONSTRUCTION PLAN

TOPOGRAPHIC SURVEY OF SECOND AYALA BRIDGE

Breakdown of Costs of Second Ayala Bridge

							Components	
	Description	Unit	Quantity	Unit Cost	Cost	Foreign	Local	Taxes
Mobilization/Demobilization	mobilization					>		
	Mobilization/Demobilization	l.s.	1:00	6,030,400.00	6,030,400.00	4,522,800.00	904.560.00	603.040.00
Substructure								
400(16)	Bored Pile 1500 mm diameter	l.m.	2,109.00	30,000.00	63,270,000.00	41,125,500.00	13.286.700.00	8 857 800 00
103	Structure Excavation	cu.m.	3,637.00	400.00	1,454,800.00	945,620.00	305,508.00	203 672 00
404	Reinforcing Steel Bars	kgs	468,394.00	20.00	23,419,700.00	15,222,805.00	4.918.137.00	3 278 758 00
405(1)	Structural Concrete	cu.m.	3,227.00	6,000.00	19,362,000.00	12.585.300.00	4.066.020.00	2 710 680 00
405(6)	Lean Concrete	cu.m.	86.00	3,800.00	326,800.00	212.420.00	68.628.00	45 752 00
SPL 415	Formworks	sq.m.	2,158.00	810.00	1.747,980.00	1 136 187 00	367 075 80	244 717 20
Superstructure					2000	201 (201 (20:010,100	07.11 1,777
	Box Girder	per sq.m.	4,455.00	65.000.00	289.575.000.00	188 223 750 00	60 810 750 00	40 540 500 00
	(Asphalting Works included)					2000	2000	00.000,010,01
Approach								ļ
101(3)	Removal of PCCP	sq.m.	2,560.00	150.00	384,000.00	249.600.00	80 640 00 1	53 760 00
103	Structure Excavation	cu.m.	7,711.00	400.00	3,084,400.00	2,004,860.00	647,724.00	431,816.00
104(1)	Embankment from Roadway	cu.m.	1,281.00	200:00	256,200.00	166,530.00	53,802.00	35,868.00
200	Subbase Course	cu.m.	2,411.00	730.00	1,760,030.00	1,144,019.50	369,606.30	246.404.20
301(1)	Tack Coat	ton	00.9	25,000.00	150,000.00	114,000.00	15,000.00	21,000.00
310	Asphalt	ton	1,329.00	3,100.00	4,119,900.00	3,131,124.00	411,990.00	576,786.00
311(1)	PCCP 250 mm	sq.m.	5,669.00	870.00	4,932,030.00	3,205,819.50	1,035,726.30	690,484.20
104(2)	Selected Fill for MSE Wall	cu.m.	13,530.00	00.099	8,929,800.00	5,804,370.00	1,875,258.00	1,250,172.00
405(1)A	Structural Concrete (21 Mpa)	cu.m.	809.00	4,500.00	3,640,500.00	2,366,325.00	764,505.00	509,670.00
405(6)	Lean Concrete	cu.m.	72.20	3,800.00	274,360.00	178,334.00	57,615.60	38,410.40
404	Reinforcing Steel Bars	kgs	49,848.00	20.00	2,492,400.00	1,620,060.00	523,404.00	348,936.00
SPL 414	Mechanically Stabilized Earthwall	sq.m.	991.00	15,000.00	14,865,000.00	9,662,250.00	3,121,650.00	2,081,100.00
Miscellaneous								
600(1)	Combination of Curb and Gutter	l.m.	1,001.00	1,000.00	1,001,000.00	650,650.00	210.210.00	140,140,00
401(1)	Parapet	l.m.	681.00	3,253.00	2,215,293.00	1,439,940.45	465,211.53	310,141.02
꼾	Traffic Fence	l.m.	681.00	00.002,6	6,469,500.00	4,205,175.00	1,358,595,00	905,730.00
SPL	Barrier Fence	l.m.	681.00	5,760.00	3,922,560.00	2,549,664.00	823,737.60	549,158.40
601	Sidewalk	sq.m.	2,042.00	810.00	1,654,020.00	1,075,113.00	347,344.20	231,562.80
Testing								
SPL 419	Pile Dynamic Test	each	4.00	35,365.00	141,460.00	91,949.00	29,706.60	19,804.40
SPL 420	Pile Integrity Test	each	20.00	252,054.00	5,041,080.00	3,276,702.00	1,058,626.80	705,751.20

Breakdown of Costs of Second Ayala Bridge

							Components	
	Description	Unit	Quantity	Unit Cost	Cost	Foreign	Local	Taxes
Others								
	Temporary Cofferdam for Pier Construction	sq.m.	972.00	29,638.84	28,808,953.55	18,725,819.81	6,049,880,25	4.033.253.50
	Craneway	æ	154.00	148,097.00	22,806,938.00	14,824,509.70	4,789,456.98	3,192,971,32
	Access Road	٤	100.00	13,120.00	1,312,000.00	852,800.00	275,520.00	183,680.00
	Traveller Equipment Wagon	l.s.	1.00	50,000,000.00	50,000,000.00	34,000,000.00	9,000,000.00	7.000.000.00
	Right of Way Fence	Е	790.00	1,200.00	948,000.00	616,200.00	199,080.00	132,720.00
	Drainage	km	0.50	8,463,158.12	4,231,579.06	2,750,526.39	888,631.60	592,421.07
	Miscellaneous	km	0.20	23,577,058.02	4,715,411.60	3,065,017.54	990,236.44	660,157.62
	Traffic Signalization	l.s.	1.00	3,000,000,00	3,000,000.00	1,950,000.00	630,000.00	420,000.00
	Stairway	each	4.00	2,500,000.00	10,000,000.00	6,500,000.00	2,100,000.00	1.400,000.00
	Landscapping	l.s.	1.00	10,000,000,00	10,000,000.00	6,500,000.00	2,100,000.00	1,400,000,00
	Streetlighting	km	0.50	5,454,500.65	2,727,250.32	1,772,712.71	572.722.57	381.815.05
Slope Protection	u							
	Structure Excavation	cu.m.	2,362.00	400.00	944,800.00	614,120.00	198.408.00	132 272 00
	Boulders	cu.m.	2,370.00	1,114.90	2,642,301.84	1,717,496.19	554,883,39	369.922.26
,	Pre-cast Panel	sq.m.	497.00	2,873.41	1,428,084.27	928,254.78	299,897.70	199,931.80
Contingencies								
	Contingencies	.S.	1.00	22,202,245.00	22,202,245.00	16.651.683.75	3.330.336.75	2 220 224 50
Facilities								2011
	Temporary Facilities	l.s.	1.00	11,318,660.54	11,318,660.54	7,357,129.35	2,376,918.71	1.584.612.48
				TOTAL	647,606,437.18	425,737,137.67	132,333,704.11	89,535,595,41
				% Component	100%	%99	20%	14%

Appendix 19.5.2-1 NHI POSITION ON THE CONTRUCTION OF A NEW BRIDGE

NATIONAL HISTORICAL INSTITUTE Historic Preservation Division

For

JICA

:

Subject

NHI Position on the Construction of A New Bridge

(Bridge Supplemental to the Ayala Bridge) across the Pasig River

and the restructuring of the Quezon and Jones Bridges

Date

December 22, 2003

The NHI has studied the different schemes presented for the (a) New Bridge Supplemental to Ayala Bridge, which JICA names as Second Ayala Bridge, (b) Jones Bridge and (c) Quezon Bridge. We would like to make the following positions regarding the schemes presented to us.

A. On the Construction of a New Bridge supplemental to Ayala Bridge

1. The NHI recommends Scheme B (S-Curve Scheme). Scheme B attempts to avoid affecting as many structures and sites as possible along its alignment.

B. On the Restructuring of Jones Bridge and Quezon Bridge

1. The NHI interposes no objection to Scheme 3 for Jones Bridge and Scheme 2 for Quezon Bridge.

2. The NHI stresses the retention of the basic configuration of both historic bridges to preserve their historical authenticity. Only structural repair/rehabilitation should be considered, which is typical in principle to our position regarding Ayala Bridge.

It is recommended that all three bridge projects be properly documented – before, during and after construction/restoration – and published. Documentation shall include the project study, history of the structure, feasibility, studies/designs/schemes, photographs, architectural/structural interventions and reports. The new bridge supplemental to Ayala Bridge may follow the design of the historic structure or it may follow a new avant garde design based on or stylistically reflective of the old historic Ayala Bridge.

The NHI reiterates its position that total replacement of the three bridge structures would be against conservation principles. Restructuring of the historic bridges, which would also involve cleaning, painting, replacement of parts and possible provision of additional structural supports, would be more consistent with the accepted standards of conservation. Restructuring and/or provision of a supplemental bridge/s to these historic bridges would be more acceptable than their total demolition and replacement.

Prepared by:

REYNALDO A. INOVERC

Chief, Historic Preservation Division

LUDOVICU D. BADOY

Executive Director

Noted b