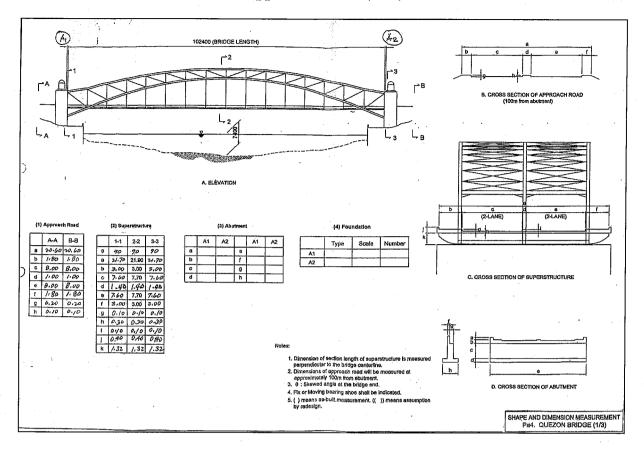
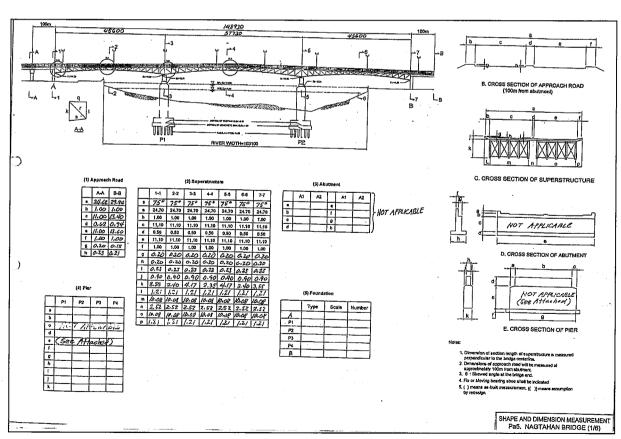

#### Appendix 7.1.2-2 (1/14)

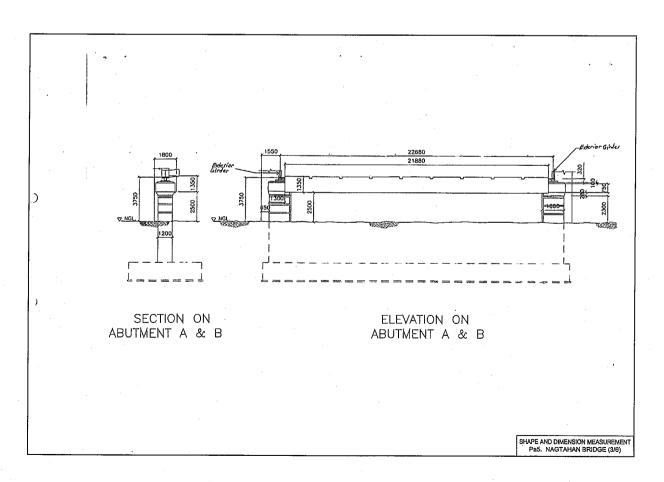




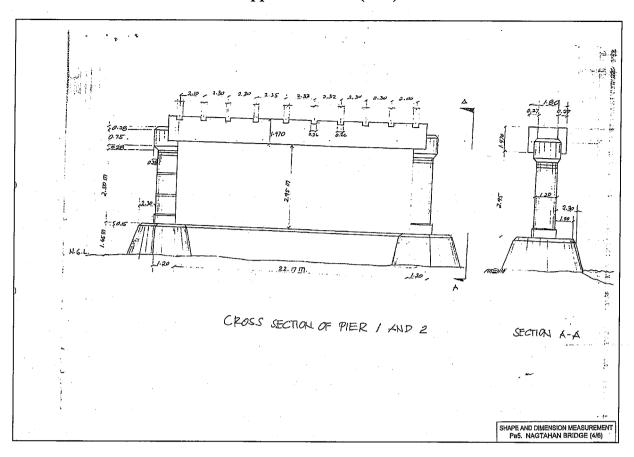


#### Appendix 7.1.2-2 (2/14)

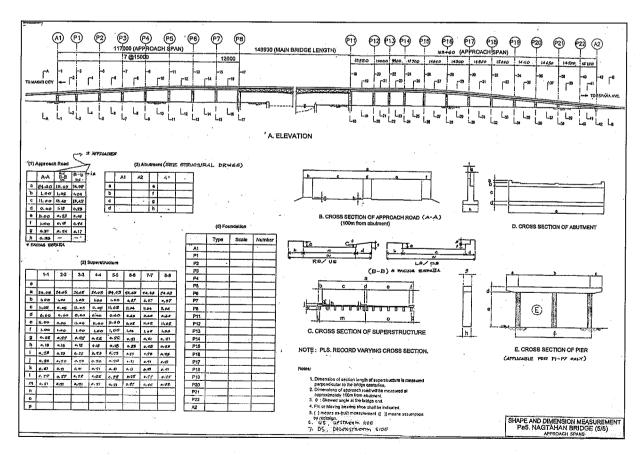





#### Appendix 7.1.2-2 (3/14)

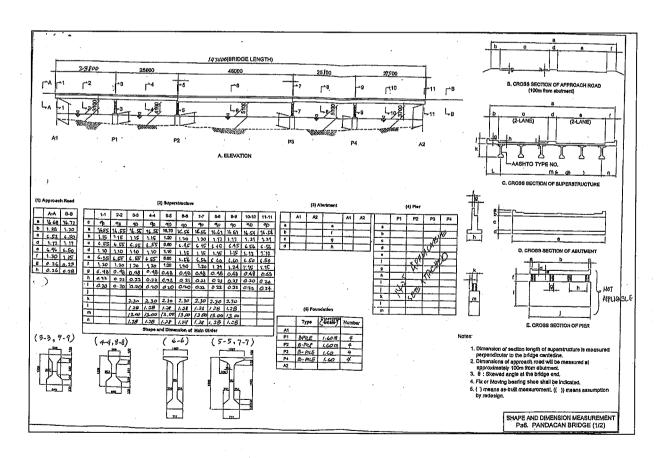




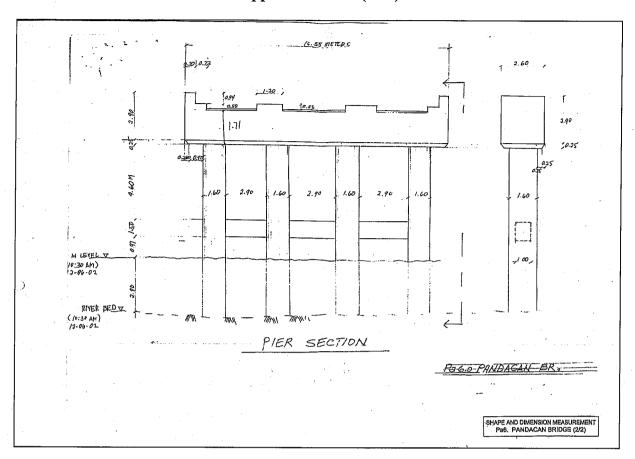


# Appendix 7.1.2-2 (4/14)

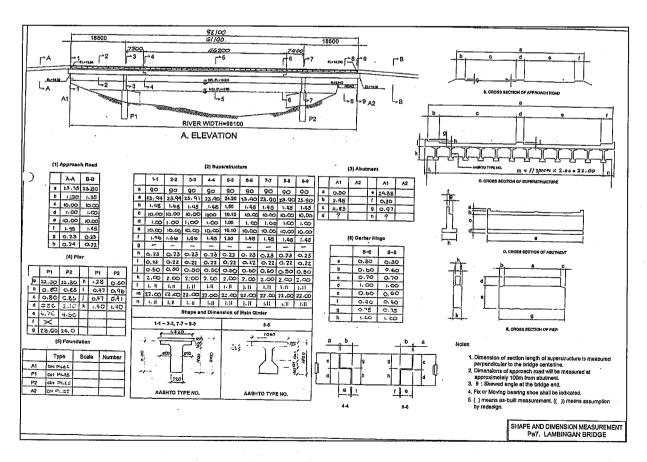
| SHAPE AND DIMENSION OF NAGTAHAN BRIDGE  CROSS SECTION SHAPE, DIMENSION AND THICKNESS  SHAPE DIMENSION 1-1 2-2 3-3 4-4 5-5 6-6 7-7  TOP FLANGE 25x190 25x190 25x190 25x190 25x190 25x190  UPPER CHORD  WEB 25x550 25x |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| SHAPE DIMENSION 1-1 2-2 3-3 4-4 5-5 6-6 7-7  TOP FLANCE 25x190 25 |  |
| UPPER CHORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| UPPER CHORD    WEB   25x550   25x190    |  |
| BOT.FLANCE 25x190 25x190 25x190 25x190 25x190 25x190 25x190 25x190 25x190 10P FLANCE 25x190 2 |  |
| LOWER CHORD   TOP FLANGE   12x180   1   |  |
| LOWER CHORD    132   WEB   25x550   25x190   25x |  |
| BOT_FLANGE   25x190   |  |
| DIAGONAL    Part   TOP FLANCE   12x180   12x180  |  |
| DIAGONAL    12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| BOT.FLANGE   12x180   |  |
| VERTICAL MEMBER  TOP FLANCE 12x180 12 |  |
| WEB 12x206 12x20 |  |
| ROT.FLANGE 12x180 12x18 |  |
| CROSS BEAM  TOP FLANGE 25x190 25x190  WEB 25x550 25x550  SECTIONS: 2-2, 3-3, 5-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| CROSS BEAM WEB 25x550 25x550 SECTIONS: 2-2, 3-3, 5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 25x190 25x190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| TOP FLANGE 25x190 25x190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| BOT.FLANCE 25x190 25x190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 10P FLANCE 25x190 25x190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 3 WEB 25x550 25x550 SECTION: 4-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 12×180 12×180 12×180 12×180 - ARE IN MILLIMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| WEB - 12x206 12x206 12x206 12x206 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| WIDTH 100 100 - 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| DEPTH 100 100 - 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| (f) THICKNESS 12 12 12 - 12 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| WDTH 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| DEPTH 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 188 (L) THICKNESS 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| WIDTH 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 3 DEPTH 200 SMADE AND DIVENSION MEADURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| SHAPE AND DIMENSION MEASUR Pa5. NAGTAHAN BRIDGE (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |



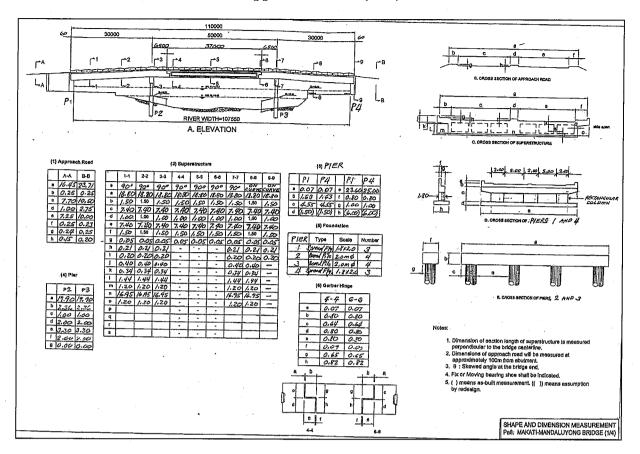

#### Appendix 7.1.2-2 (5/14)

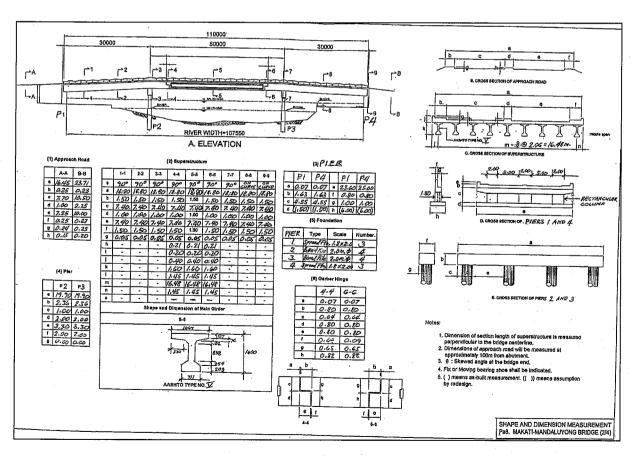




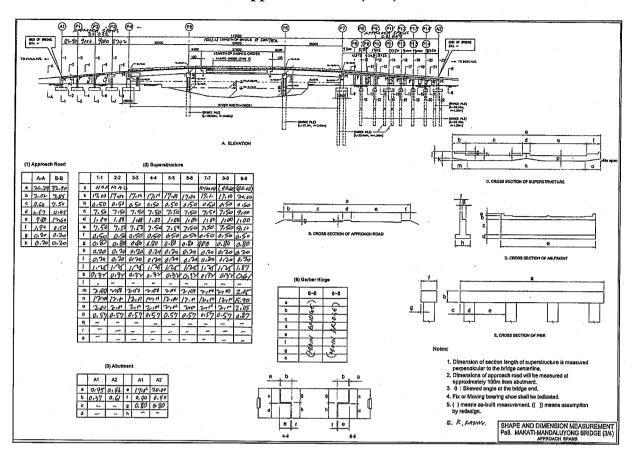


# Appendix 7.1.2-2 (6/14)

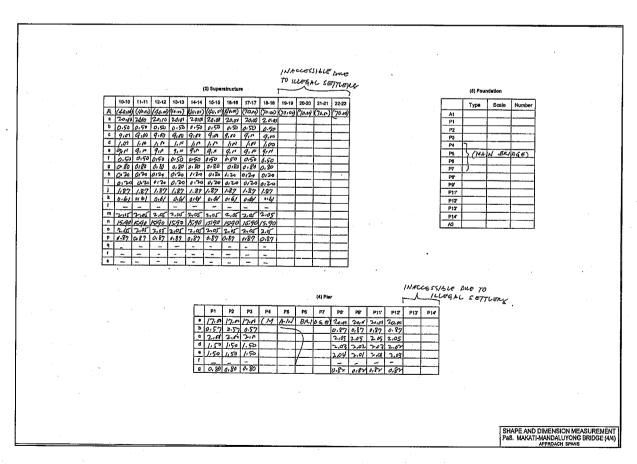
| ŀ  |   | <b>,</b>       |     |               |               |               |               |              |                |               |               |                      |            |                      |              |                      |              |              |               |           |                           |                |                |                                                  |                |           |           |            |              |              |             |              |           |                                |                |                       |
|----|---|----------------|-----|---------------|---------------|---------------|---------------|--------------|----------------|---------------|---------------|----------------------|------------|----------------------|--------------|----------------------|--------------|--------------|---------------|-----------|---------------------------|----------------|----------------|--------------------------------------------------|----------------|-----------|-----------|------------|--------------|--------------|-------------|--------------|-----------|--------------------------------|----------------|-----------------------|
| l  |   |                |     |               |               |               |               |              |                |               |               |                      |            |                      |              |                      |              |              |               |           |                           |                |                |                                                  |                |           |           |            |              |              |             |              |           |                                |                |                       |
|    |   |                |     |               |               |               |               |              |                |               |               |                      |            |                      |              |                      |              |              |               |           |                           |                |                |                                                  |                |           |           |            |              |              |             |              |           |                                |                |                       |
|    |   |                |     |               |               |               |               |              |                |               |               |                      |            |                      |              |                      |              |              |               |           |                           |                |                |                                                  |                |           |           |            |              |              |             |              |           |                                |                |                       |
| _  |   |                |     |               |               |               |               |              | <b>,</b>       |               |               | ,                    |            |                      |              |                      |              | (2) S        | upersti       | ructure   | •                         |                |                |                                                  |                |           |           |            |              |              |             |              |           |                                |                |                       |
| Ŀ  | 0 | 9-9            | - 1 | 10-10         | 11-11         | 12-12         | 13-13         | 14-14        | 16-15          | 16-18         | 17-17         | 18-18                | 19-19      | 20-20                | 21-21        | 22-22                | 23-23        | 24-24        | 25-25         | 26.26     | 27-27<br>98 pc            | 28-28<br>Ve 50 | 29-29<br>05 10 | 30:30                                            | 31-31<br>95 DA | 32:32     | 33-33     | 3434       | 35.35        | 3638<br>E    | ,27/31      | 38 38        | 39739     | 40-40<br>UB TE                 | 41 <u>41</u> , | 4242                  |
| ₩  | - | 0.97           | _   | 1.73          | 99.78<br>0.99 | £9.75         | 22.73<br>0,59 | 54,70        | \$4.20<br>0,09 | 54 70<br>c 99 | 24,70         | #4, 73<br>0197       | 0.47       | 20,24                | 79.24        | 29.24                | 24.54        | 25,74        | 22.54<br>0.07 |           | 1/45 14.58                |                |                | 8 H.H H.                                         | KO HE          | K41 K11   | × g u.s.  | M. M. F. S | N.41 M.      | £ 14.47 µ. ( | J C.17 (4.) | 1 14.17 16.1 | H41:HE    | 11473443                       | 15,473641      | 147 M.E               |
|    |   | 0.00           | -   | _             | 10,98<br>6-40 | 0.60          | 0.60          | 4,57         | H. DA          | 11.09         | 14.03<br>0,57 | 11.13                | 11,12      | 19.10                | 13.10        | 13,10                | 19.10        | 13,10        | 12.10<br>4.50 | 2.45 334  | 1,47 (1,4)                | C.45 T.46      | eligs blac     | 11.45 17.64                                      | 1 11.16 14     | elatio, H | C44 17.44 | V-15 V.A   | 1245 4.1     | 100.51 12.6  | 4 2.23 22.2 | 6 m 23 0.4   |           | 1.31 1-31<br>11.11 10.44       | V.41 15.44     | mat it a              |
| 1- |   | 1,02           |     | , IST<br>0-0- | H.G<br>I.Op   | 18.25         | 1.15          | 0.07         | H. 07          | 11.07         | 0.88          | 1100                 | 11,45      | 15.58<br>0,59        | 13.50        | 18.25                | 13,26        | 13.28        |               | 481 (6:23 | 644 - 1.55<br>1457 - 1.37 | 114 45         | 196.40         | AR ARE                                           | 11 .71         | 1.42 1,25 | Pa 1.45   | 1-11 J. 12 | 60 A         | 2.15 04      | h21 2.1     | 141.4        | 645 643   | 1411 1.13<br>141 1.13          | LES SOT        | A.E. 2.52             |
|    | 1 | 0, £1<br>0, 25 | - 4 |               | att<br>att    | 0.22          | 0.12          | A. C.P       | 0,20           | 0,20          | 0.20          | e, 26                | 2,10       | 0.23                 | a, 23        | a, 53                | e.23         | 0.28         | 4.55          | 1.10 a.ft | 0.0 24                    | 14 1.2         | 1,82,116       | 1.00 1.23                                        | A11 145        | LIT AG    | MIT LES   | 450 sei    | 1.2f . h. \$ | LITTER       | h41 54      | 475 44       | 1.57.624  | 110 F.EE<br>141 HEE<br>141 HEE | 1.25 1.50      | -~                    |
| Н  |   | 0, 23<br>0, 21 | •   | 21            | 4.1 <u>8</u>  | 0. 15<br>0.51 | 0.28<br>0.21  | 0.15<br>0.15 | 0,1 <u>6</u>   | 0.18<br>0.15  | 0.15          | 9.20<br>9.20         | 4, E4      | 0,1 <i>9</i><br>•:18 | 0.15         | e,19                 | #119<br>#114 | 0119<br>#118 | 0,19          | 141 441   | 1.4 1.4                   | 1.16 F.16      | 645 B.H        | 6.17 6.10                                        | P. C. 10       | 14 124    | 84 th     | MA: 12.6   | 1.19 1.19    | 149 145      | 417 415     | 103 61       | 263 - 264 | 113 1.1F<br>115 1.1F           | tale said      | 26.6 3.35             |
| 1  |   | 0,21<br>4,52   | 0,  |               | 6.21<br>6.25  | 0,5E          | 0,2]          | 0.25         | A SE           | 0.22<br>0.23  | 6,25          | 6.70<br>0.71         | 0.20       | 0.21<br>0.21         | 0,72<br>0,71 | 0,22<br>0.71         | 6,2E         | 1.22         |               | 24.0      | H.1- 22.4                 | 1.45 140       | est aco        | 0,60 0.65                                        | 1.19 1-43      | 1,45 1.63 | har :7-18 | 1, 69 1.63 |              | 140 114      | 1,43 .v.s   | 2.45 7.10    | 2-10 2-52 | P.40 1.14                      | vit. vit       | 1.0 1.51<br>1.10 1.50 |
|    | 1 | p.12           | -   | 21            | A 21          | 4, 21         | 0 2)          | 45           | 0,21           | *·0           | a, a1         | AU.                  | 0.17       | p. 12.5              | 0,22         | A. 70                | e, 20        | 0.70         | e, sp         |           | -                         |                |                | <del>                                     </del> | _              |           |           |            | -            | 1            |             | Ħ            | H         |                                |                |                       |
| Ľ  |   |                |     |               |               |               |               |              |                |               |               | _                    |            |                      |              |                      |              |              |               |           |                           |                |                |                                                  |                |           |           | _          |              | H            | H           | H            | H         |                                | $\blacksquare$ |                       |
|    |   |                |     |               |               |               |               |              |                |               |               |                      |            |                      |              |                      |              |              | (4) Pie       | r         |                           |                |                |                                                  |                |           |           |            | ,            | -            |             | ,            |           |                                |                |                       |
|    |   |                |     |               |               | •             |               |              |                | P1<br>8.72    | P2            | P3                   | P4<br>9,78 | P5                   | Р8           | P7                   | P8           | Pt1          | P12           | P13       | P14                       | P15            | P16            | P17                                              | Pia            | P19       | P26       | P21        | P22          |              |             |              |           |                                |                |                       |
|    |   |                |     |               |               |               |               |              | <u>ь</u>       | 18.40<br>8.29 | 18.40         | 14,40                | 16.40      | 18.40                | 10,40        | 3.78<br>3.40         | mA           | 7            | 8,78<br>18,40 |           |                           |                |                |                                                  |                |           |           | -          |              |              |             |              |           |                                |                |                       |
|    |   |                |     |               |               |               |               |              | d              | 1.58          | 1.35          | 0.7A<br>1.85<br>3.85 | 1.75       | 1,25<br>4,50         | 1.38         | 7.75<br>1.25<br>5.45 | BFI          |              | 1.95          |           | - SE 6                    | STR            | utus           | est.                                             | Dewe           | is ~      |           |            | _            |              |             |              |           |                                |                |                       |
|    |   |                |     |               |               |               |               |              | 1              | 19.00         | 14.00         |                      |            | 19.60                | 11.60        | 12,40                |              |              | 1,75          |           |                           |                | _              |                                                  |                |           |           |            |              |              |             |              |           |                                |                |                       |
|    |   |                |     |               |               |               |               |              | 6              | **80          | 0.20          | 0.90                 | 0.20       | 0.50                 | _            | s.Pò                 |              |              | 0.50          |           |                           |                |                |                                                  |                |           |           |            | _            |              |             |              | •         |                                |                |                       |
|    |   |                |     |               |               | •==-          |               |              | l<br>k         |               |               |                      |            | _                    |              |                      | _            |              |               |           |                           |                |                |                                                  |                |           |           |            |              |              |             |              |           |                                |                |                       |
|    |   |                |     |               |               |               |               |              |                |               |               |                      |            |                      |              |                      |              |              |               |           |                           |                |                |                                                  | I              |           |           |            |              |              |             |              |           |                                |                |                       |
|    |   |                |     |               |               |               |               |              |                |               |               |                      |            |                      |              |                      |              |              |               |           |                           |                |                |                                                  |                |           |           |            | •            |              |             |              |           |                                |                |                       |
|    |   |                |     |               |               |               |               |              |                |               |               |                      |            |                      |              |                      |              |              |               |           |                           |                |                |                                                  |                |           |           |            |              |              |             |              |           |                                |                |                       |
|    |   |                |     |               |               |               |               |              |                |               |               |                      |            |                      |              |                      |              |              |               |           |                           |                |                |                                                  |                |           |           |            |              |              |             |              |           |                                |                |                       |
|    |   |                |     |               |               |               |               |              |                |               |               |                      |            |                      |              |                      |              |              |               |           |                           |                |                |                                                  |                |           |           |            |              | SH           | APE A       | ND DIN       | MENSIC    | N MEA                          | SURE           | MENT                  |



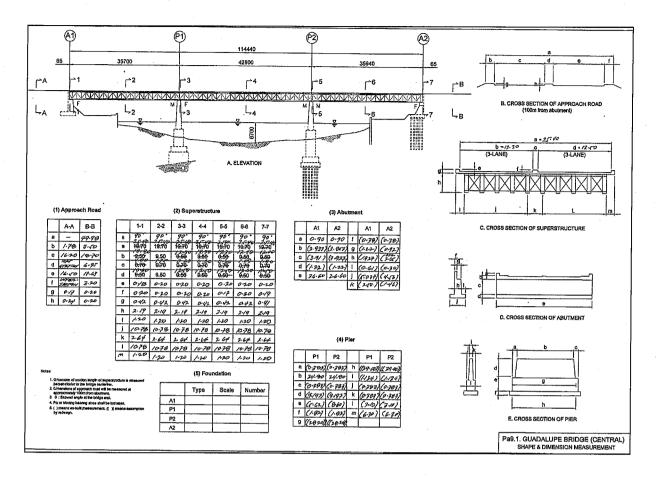


#### Appendix 7.1.2-2 (7/14)

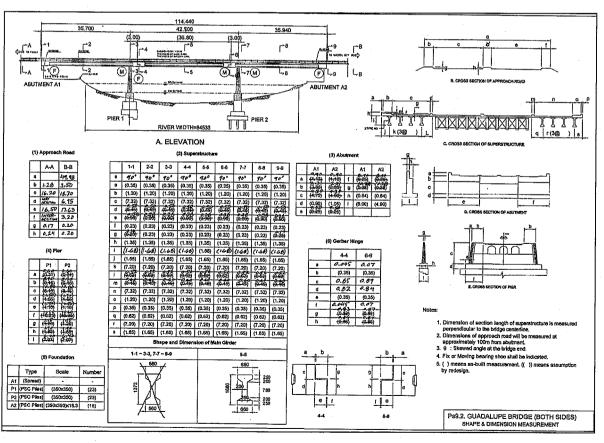




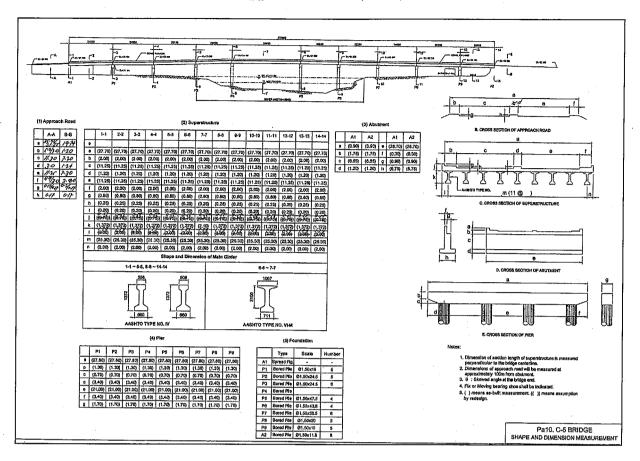


#### Appendix 7.1.2-2 (8/14)

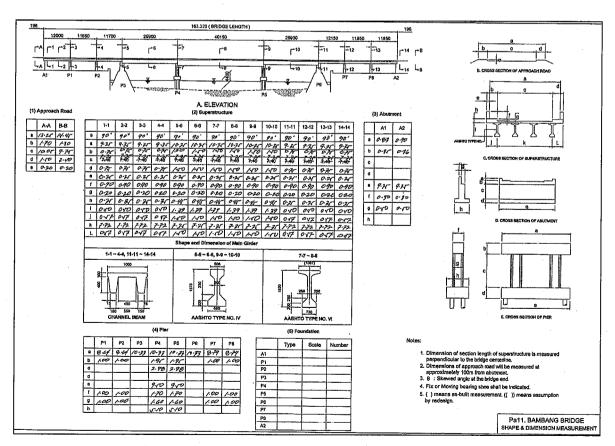




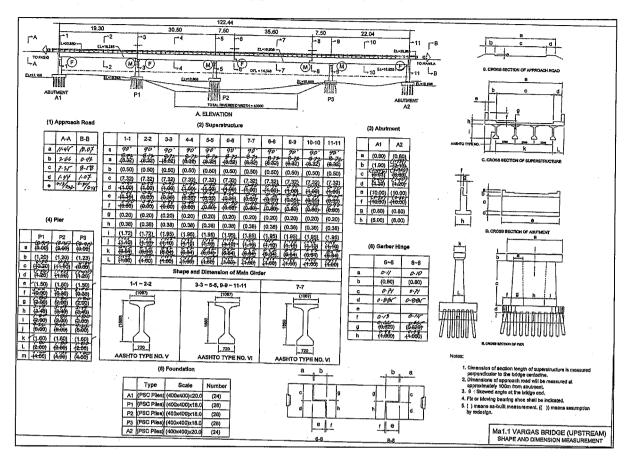


#### Appendix 7.1.2-2 (9/14)

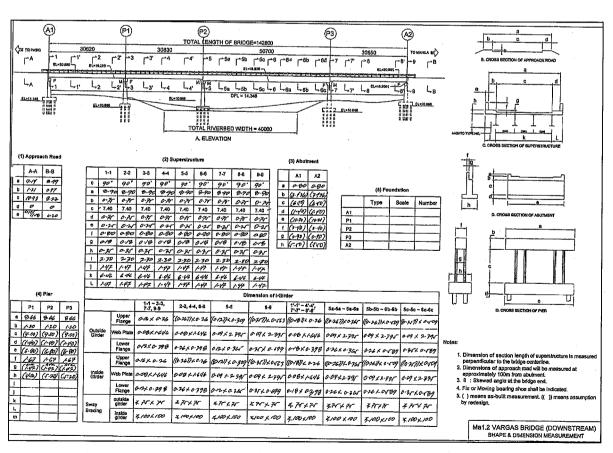




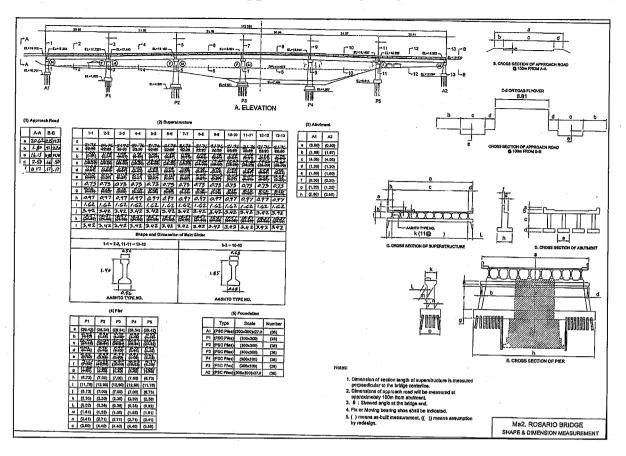


#### Appendix 7.1.2-2 (10/14)

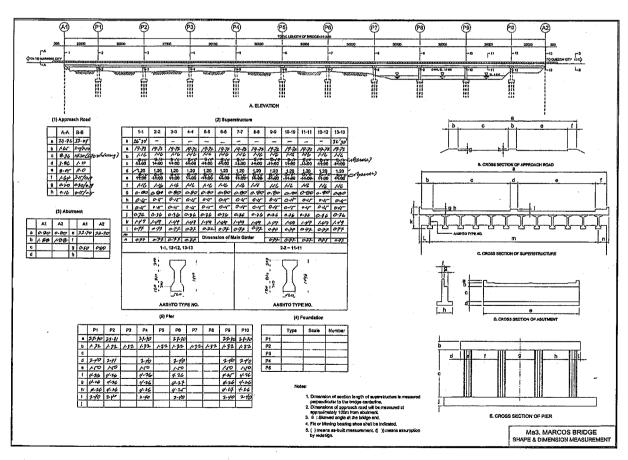




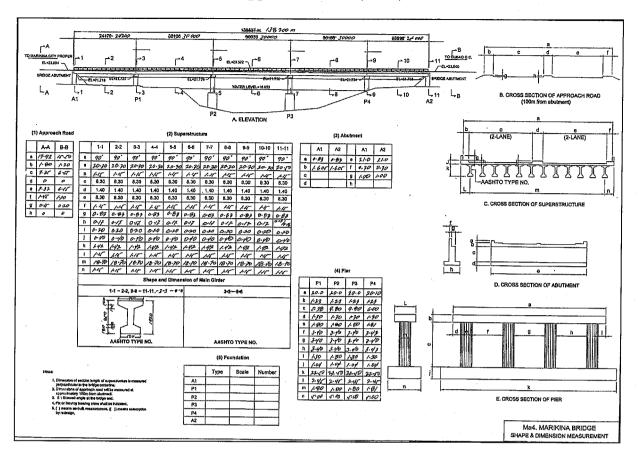


#### Appendix 7.1.2-2 (11/14)

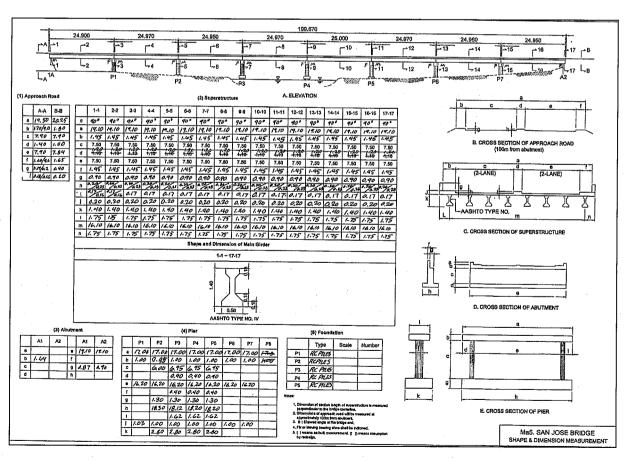






#### Appendix 7.1.2-2 (12/14)





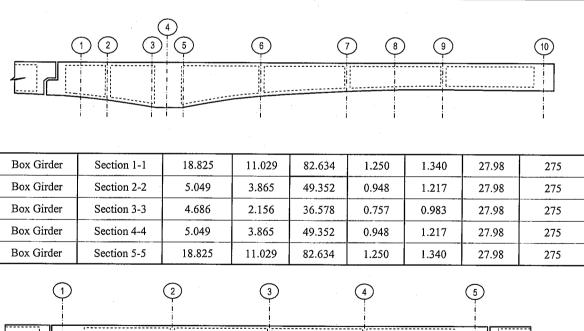


#### Appendix 7.1.2-2 (13/14)





#### Appendix 7.1.2-2 (14/14)



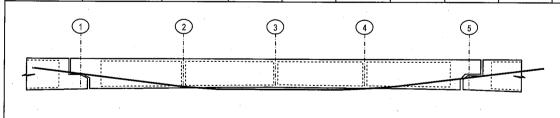



#### **APPENDIX 7.4.3-1 (1/14)**

#### MATERIAL AND SECTION PROPERTIES

**BRIDGE NAME: DELPAN BRIDGE (UPSTREAM)** 

|               |               |                   | SECTI             | ON PROPER         | TIES  |         | MAT   | ERIAL |
|---------------|---------------|-------------------|-------------------|-------------------|-------|---------|-------|-------|
| Member        | Location      | Area, Ax          | Ix                | Iy                | Ytop  | Ybottom | fc    | fy    |
|               |               | (m <sup>2</sup> ) | (m <sup>4</sup> ) | (m <sup>4</sup> ) | (m)   | (m)     | (Mpa) | (Mpa) |
| Pier 1 & 4    | Upper         | 33.850            | 7.650             | 1174.480          | 0.830 | 0.830   | 21    | 275   |
| Pier 2 & 3    | Upper         | 36.590            | 8.280             | 1483.030          | 0.830 | 0.830   | 21    | 275   |
| Pier 1 to 4   | Lower         | 49.750            | 20.750            | 2012.615          | 1.130 | 1.130   | 21    | 275   |
| PC Box Girder | Section 1-1   | 4.843             | 1.287             | 36.578            | 0.714 | 0.926   | 27.98 | 275   |
| PC Box Girder | Section 2-2   | 4.843             | 1.287             | 36.578            | 0.714 | 0.926   | 27.98 | 275   |
| PC Box Girder | Section 3-3   | 5.814             | 1.993             | 39.407            | 0.882 | 1.138   | 27.98 | 275   |
| PC Box Girder | Section 4-4   | 14.675            | 4.495             | 76.594            | 0.903 | 0.987   | 27.98 | 275   |
| PC Box Girder | Section 5-5   | 11.576            | 33.753            | 82.634            | 2.131 | 2.529   | 27.98 | 275   |
| PC Box Girder | Section 6-6   | 5.697             | 5.867             | 43.648            | 1.139 | 1.451   | 27.98 | 275   |
| PC Box Girder | Section 7-7   | 4.933             | 2.269             | 37.322            | 0.757 | 0.983   | 27.98 | 275   |
| PC Box Girder | Section 8-8   | 4.933             | 2.269             | 37.322            | 0.757 | 0.983   | 27.98 | 275   |
| PC Box Girder | Section 8-9   | 4.933             | 2.269             | 37.322            | 0.757 | 0.983   | 27.98 | 275   |
| PC Box Girder | Section 10-10 | 13.574            | 3.602             | 71.640            | 0.829 | 0.911   | 27.98 | 275   |

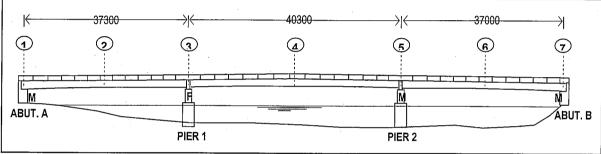



# APPENDIX 7.4.3-1 (2/14)

# MATERIAL AND SECTION PROPERTIES

|            |               |                   |                   | SECTION PR        | OPERTIES          |                  |                     | MAT    | ERIAL |
|------------|---------------|-------------------|-------------------|-------------------|-------------------|------------------|---------------------|--------|-------|
| Member     | Location      | Area, Ax          | Ix                | Iy                | Iz                | Y <sub>top</sub> | Y <sub>bottom</sub> | fc     | fy    |
|            |               | (m <sup>2</sup> ) | (m <sup>4</sup> ) | (m <sup>4</sup> ) | (m <sup>4</sup> ) | (m)              | (m)                 | (Mpa)  | (Mpa  |
| Pier 1     | Upper         | 35.009            | 11.522            | 896.720           | 908.250           |                  | -                   | 21.676 | 275   |
| Pier 1     | Lower         | 31.191            | 32.618            | 1092.298          | 1124.916          | -                | -                   | 21.676 | 275   |
| Pier 2     | Upper         | 30.906            | 8.249             | 761.320           | 769.570           |                  | -                   | 21.676 | 275   |
| Pier 2     | Lower         | 27.836            | 16.713            | 986.750           | 1003.465          | -                | -                   | 21.676 | 275   |
| Box Girder | Section 1-1   | 9.724             | 9.688             | 201.400           | 211.090           | 1.084            | 1.476               | 27.983 | 275   |
| Box Girder | Section 2-2   | 10.394            | 14.204            | 214.290           | 228.490           | 1.275            | 1.725               | 27.983 | 275   |
| Box Girder | Section 3-3   | 18.433            | 42.052            | 344.740           | 386.790           | 1.787            | 2.233               | 27.983 | 275   |
| Box Girder | Section 4-4   | 52.989            | 75.797            | 763.940           | 839.730           | 1.939            | 2.081               | 27.983 | 275   |
| Box Girder | Section 5-5   | 18.433            | 42.052            | 344.740           | 386.790           | 1.787            | 2.233               | 27.983 | 275   |
| Box Girder | Section 6-6   | 10.106            | 12.142            | 208.750           | 220.900           | 1.197            | 1.618               | 27.983 | 275   |
| Box Girder | Section 7-7   | 8.905             | 5.465             | 185.650           | 191.120           | 0.846            | 1.168               | 27.983 | 275   |
| Box Girder | Section 8-8   | 8.693             | 4.591             | 181.580           | 186.180           | 0.785            | 1.088               | 27.983 | 275   |
| Box Girder | Section 9-9   | 9.034             | 6.040             | 188.130           | 194.170           | 0.883            | 1.217               | 27.983 | 275   |
| Box Girder | Section 10-10 | 33.558            | 18.880            | 502.770           | 521.650           | 1.177            | 1.313               | 27.983 | 275   |
|            |               |                   |                   |                   |                   |                  |                     |        |       |
|            | 2 3           | (5)               | 6)                | 7                 | (8)               | 9)               |                     | (10)   |       |
|            |               |                   |                   |                   |                   |                  |                     |        |       |
|            |               | 4                 |                   | į                 | į                 | i<br>i           |                     |        |       |
| Box Girder | Section 1-1   | 18.825            | 11.029            |                   |                   | 1.250            | 1.340               | 200000 | 275   |
| Box Girder | Section 2-2   | 9.034             | 6.040             | 188.130           | 194.170           | 0.883            | 1.217               | 27.983 | 275   |
| Box Girder | Section 3-3   | 9.034             | 6.040             | 188.130           | 194.170           | 0.883            | 1.217               | 27.983 | 275   |

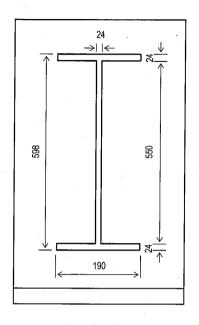
| Box Girder | Section 1-1 | 18.825 | 11.029 |         |         | 1.250 | 1.340 | 200000 | 275 |
|------------|-------------|--------|--------|---------|---------|-------|-------|--------|-----|
| Box Girder | Section 2-2 | 9.034  | 6.040  | 188.130 | 194.170 | 0.883 | 1.217 | 27.983 | 275 |
| Box Girder | Section 3-3 | 9.034  | 6.040  | 188.130 | 194.170 | 0.883 | 1.217 | 27.983 | 275 |
| Box Girder | Section 4-4 | 9.034  | 6.040  | 188.130 | 194.170 | 0.883 | 1.217 | 27.983 | 275 |
| Box Girder | Section 5-5 | 18.825 | 11.029 |         |         | 1.250 | 1.340 | 200000 | 275 |




# APPENDIX 7.4.3-1 (3/14)

# MATERIAL AND SECTION PROPERTIES

#### **BRIDGE NAME: MAC ARTHUR BRIDGE**


|                    |             | S                 | ECTION PR         | OPERTIES          |                   | MATE   | ERIAL PROF | ERTIES |
|--------------------|-------------|-------------------|-------------------|-------------------|-------------------|--------|------------|--------|
| Member             | Location    | Area, Ax          | Ix                | Įу                | Iz                | Es     | fc         | Fy     |
|                    |             | (m <sup>2</sup> ) | (m <sup>4</sup> ) | (m <sup>4</sup> ) | (m <sup>4</sup> ) |        | (Mpa)      | (Mpa)  |
| Pier 1 & 2         | Upper       | 19.920            | 10.000            | 435.840           | 2.474             | 200000 | 21         | 275    |
| Pier 1 & 2         | Lower       | 30.500            | 15.000            | 707.360           | 8.329             | 200000 | 21         | 275    |
| Steel Plate Girder | Section 1-1 | 0.959             | 0.018             | 11.613            | 0.486             | 200000 |            | 250    |
| Steel Plate Girder | Section 2-2 | 0.959             | 0.018             | 11.613            | 0.486             | 200000 | -          | 250    |
| Steel Plate Girder | Section 3-3 | 0.959             | 0.018             | 11.613            | 0.486             | 200000 | -          | 250    |
| Steel Plate Girder | Section 4-4 | 0.959             | 0.018             | 11.613            | 0.486             | 200000 | -          | 250    |
| Steel Plate Girder | Section 5-5 | 0.959             | 0.018             | 11.613            | 0.486             | 200000 | -          | 250    |
| Steel Plate Girder | Section 6-6 | 0.959             | 0.018             | 11.613            | 0.486             | 200000 | -          | 250    |
| Steel Plate Girder | Section 7-7 | 0.959             | 0.018             | 11.613            | 0.486             | 200000 |            | 250    |



#### **APPENDIX 7.4.3-1 (4/14)**

#### **BRIDGE NAME: NAGTAHAN BRIDGE**

# **SECTION PROPERTIES - UPPER CHORD (REDUCED)**





| Torsiona      | Torsional Moment of Inertia about x-axis |     |                                   |  |  |  |  |  |  |  |
|---------------|------------------------------------------|-----|-----------------------------------|--|--|--|--|--|--|--|
| Element       | b                                        | h   | l <sub>x</sub> (mm <sup>4</sup> ) |  |  |  |  |  |  |  |
| Top Flange    | 24                                       | 190 | 805865                            |  |  |  |  |  |  |  |
| Bottom Flange | 24                                       | 190 | 805865                            |  |  |  |  |  |  |  |
| Girder Web    | 24                                       | 550 | 2464727                           |  |  |  |  |  |  |  |

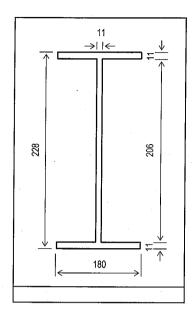
$$I_x = 4.076E + 06 \text{ mm}^4$$

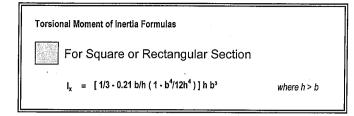
|               |            | Mom                | ent of Inertia abo | ut z-axis   |           |               |
|---------------|------------|--------------------|--------------------|-------------|-----------|---------------|
| Element       | A<br>(mm²) | Y (bottom)<br>(mm) | AY<br>(mm³)        | l₀<br>(mm⁴) | d<br>(mm) | A d²<br>(mm⁴) |
| Top Flange    | 4560       | 586                | 2672160            | 218880      | 287       | 375602640     |
| Bottom Flange | 4560       | 12                 | 54720              | 218880      | 287       | 375602640     |
| Girder Web    | 13200      | 299                | 3946800            | 332750000   | 0         | 0             |

$$Y' = \frac{\sum AY}{\sum A} = 299 \text{ mm}.$$

$$I_z = \sum I_o + \sum Ad^2 = 1.084E + 09 \text{ mm}^4$$

|               |            | Mom                | ent of Inertia abo | ut y-axis   |           |               |
|---------------|------------|--------------------|--------------------|-------------|-----------|---------------|
| Element       | A<br>(mm²) | Y (bottom)<br>(mm) | AY<br>(mm³)        | l₀<br>(mm⁴) | d<br>(mm) | A d²<br>(mm⁴) |
| Top Flange    | 4560       | 95                 | 433200             | 13718000    | 0         | 0             |
| Bottom Flange | 4560       | 95                 | 433200             | 13718000    | 0         | 0             |
| Girder Web    | 13200      | 95                 | 1254000            | 633600      | 0         | 0             |


$$Y' = \frac{\sum AY}{\sum A} = 95 \text{ mm}.$$


$$I_y = \sum I_o + \sum Ad^2 = 2.807E + 07 \text{ mm}^4$$

#### SUMMARY of PROPERTIES

Total Area, A 0.022320000  $m^2$  Tosional Moment of Inertia about x-axis 0.00004076  $m^4$  Moment of Inertia about y-axis, I $_z$  0.001084393  $m^4$  Centroid of Section from the bottom, Y $_b$  0.299000000 m. Centroid of Section from the top, Y $_t$  0.29900000 m.

# SECTION PROPERTIES - DIAGONAL/VERTICAL MEMBER ( REDUCED )





| Torsional     | Moment of Ine | rtia about x-axis |                      |
|---------------|---------------|-------------------|----------------------|
| Element       | b             | h                 | l <sub>x</sub> (mm⁴) |
| Top Flange    | 11            | 180               | 76785                |
| Bottom Flange | 11            | . 180             | 76785                |
| Girder Web    | 11            | 206               | 88321                |

$$l_x = 2.419E+05 \text{ mm}^4$$

|               |            | Mor                | nent of Inertia abo | ut z-axis   |           |                            |
|---------------|------------|--------------------|---------------------|-------------|-----------|----------------------------|
| Element       | A<br>(mm²) | Y (bottom)<br>(mm) | AY<br>(mm³)         | l₀<br>(mm⁴) | d<br>(mm) | A d²<br>(mm <sup>4</sup> ) |
| Top Flange    | 1980       | 223                | 440550              | 19965       | 109       | 23309055                   |
| Bottom Flange | 1980       | 6                  | 10890               | 19965       | 109       | 23309055                   |
| Girder Web    | 2266       | 114                | 258324              | 8013331     | 0         | 0                          |

$$Y' = \frac{\sum AY}{\sum A} = 114 \text{ mm}.$$

$$I_z = \sum I_o + \sum Ad^2 = 5.467E + 07 \text{ mm}^4$$

|              | Moment of Inertia about y-axis |                    |             |                         |           |               |  |  |  |  |  |  |
|--------------|--------------------------------|--------------------|-------------|-------------------------|-----------|---------------|--|--|--|--|--|--|
| Element      | A<br>(mm²)                     | Y (bottom)<br>(mm) | AY<br>(mm³) | l <sub>o</sub><br>(mm⁴) | d<br>(mm) | A d²<br>(mm⁴) |  |  |  |  |  |  |
| Top Flange   | 1980                           | 90                 | 178200      | 5346000                 | 0         | 0             |  |  |  |  |  |  |
| ottom Flange | 1980                           | 90                 | 178200      | 5346000                 | . 0       | 0             |  |  |  |  |  |  |
| Girder Web   | 2266                           | 90                 | 203940      | 22849                   | 0         | 0             |  |  |  |  |  |  |

$$Y' = \frac{\sum AY}{\sum A} = 90 \text{ mm}.$$

$$I_y = \sum I_o + \sum Ad^2 = 1.071E + 07 \text{ mm}^4$$

#### **SUMMARY of PROPERTIES**

Total Area, A 0.006226000  $m^2$  Tosional Moment of Inertia about x-axis 0.00000242  $m^4$  Moment of Inertia about y-axis,  $I_y$  0.000010715  $m^4$  Moment of Inertia about z-axis,  $I_z$  0.000054671  $m^4$  Centroid of Section from the bottom,  $Y_b$  0.114000000 m. Centroid of Section from the top,  $Y_t$  0.114000000 m.

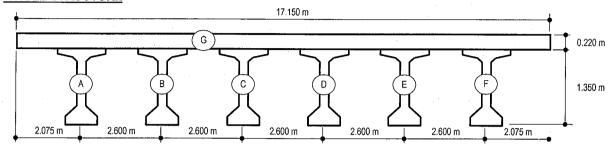
#### **APPENDIX 7.4.3-1 (5/14)**

#### **BRIDGE NAME: PANDACAN BRIDGE**

# **SECTION PROPERTIES**

Modulus of elasticity of prestressed concrete girder,  $\boldsymbol{E}_{\!c}$ 

Modulus of elasticity of reinforced concrete slab,  $E_{cs}$ 


Modular ratio,  $n = E_{cs} / E_{c}$ 

= 27983.06 Mpa

21675.58 Mpa

= 0.774597

#### WHOLE STRUCTURE



#### A) Total Area $(A_X)$ for Weight Computation

Girder : No. of girders x  $A_{girder} = 6 \times 0.505 = 3.031 \text{ m}^2$ 

Slab : bt =  $17.150 \times 0.220$  =  $3.773 \text{ m}^2$ 

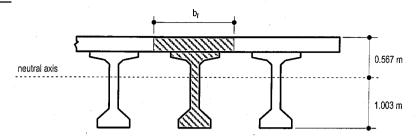
Haunch: No. of haunch x  $A_{haun} = 6 \times 0.036 = 0.216 \text{ m}^2$ 

Total =  $7.020 \text{ m}^2$ 

B) For I<sub>X</sub>

Girder: No. of girders  $x I_x = 6 \times 0.007 = 0.039 \text{ m}^4$ 

Slab :  $nbt^3/3 = 0.775 \times 17.150 \times 0.220^3 \div 3 = 0.047 \text{ m}^4$ 


Total =  $0.087 \text{ m}^4$ 

#### C) For $I_Y$

| Item  | Area, A | У      | Ау     | d     | Ad <sup>2</sup> | I <sub>Y-Y</sub> | $I_{Y} = I_{Y \cdot Y} + Ad^{2}$ |
|-------|---------|--------|--------|-------|-----------------|------------------|----------------------------------|
| item  | (m²)    | (m)    | (m³)   | (m)   | (m⁴)            | (m⁴)             | (m⁴)                             |
| Α     | 0.505   | 15.075 | 7.616  | 6.500 | 21.344          | 0.022            | 21.365                           |
| В     | 0.505   | 12.475 | 6.302  | 3.900 | 7.684           | 0.022            | 7.705                            |
| С     | 0.505   | 9.875  | 4.989  | 1.300 | 0.854           | 0.022            | 0.875                            |
| D     | 0.505   | 7.275  | 3.675  | 1.300 | 0.854           | 0.022            | 0.875                            |
| E     | 0.505   | 4.675  | 2.362  | 3.900 | 7.684           | 0.022            | 7.705                            |
| F     | 0.505   | 2.075  | 1.048  | 6.500 | 21.344          | 0.022            | 21.365                           |
| G     | 2.923   | 8.575  | 25.061 | 0.000 | 0.000           | 71.632           | 71.632                           |
| Total | 5.954   |        | 51.052 |       |                 |                  | 131.524                          |

| Item   | Area, A | У     | Ay    | d     | Ad²   | I <sub>z-z</sub> | $I_Z = I_{Z-Z} + Ad^2$ |
|--------|---------|-------|-------|-------|-------|------------------|------------------------|
| ILEITI | (m²)    | (m)   | (m³)  | (m)   | (m⁴)  | (m⁴)             | (m <sup>4</sup> )      |
| Α      | 0.505   | 0.603 | 0.305 | 0.421 | 0.089 | 0.102            | 0.192                  |
| В      | 0.505   | 0.603 | 0.305 | 0.421 | 0.089 | 0.102            | 0.192                  |
| С      | 0.505   | 0.603 | 0.305 | 0.421 | 0.089 | 0.102            | 0.192                  |
| D      | 0.505   | 0.603 | 0.305 | 0.421 | 0.089 | 0.102            | 0.192                  |
| E      | 0.505   | 0.603 | 0.305 | 0.421 | 0.089 | 0.102            | 0.192                  |
| F      | 0.505   | 0.603 | 0.305 | 0.421 | 0.089 | 0.102            | 0.192                  |
| G      | 2.923   | 1.460 | 4.267 | 0.436 | 0.556 | 0.012            | 0.568                  |
| Total  | 5.954   |       | 6.095 |       | -     |                  | 1.719                  |

#### **INTERIOR GIRDER**



Effective flange width, b<sub>f</sub>: (minimum)

a) 1/4 span length =  $27.500 \div 4$  = 6.875 mb) Center-to-center spacing of girde = 2.600 = 2.600 m

c) Web width + 12 times slab thickr =  $0.203 + 12 \times 0.220 = 2.843 \text{ m}$ 

Use  $b_f = 2.600 \text{ m}$ 

#### A) Total Area (A<sub>X</sub>) for Weight Computation

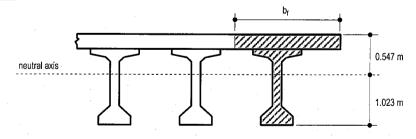
Girder : =  $0.505 \text{ m}^2$ Slab :  $b_i t = 2.600 \times 0.220$  =  $0.572 \text{ m}^2$ Haunch : =  $0.036 \text{ m}^2$ 

Total =  $1.113 \text{ m}^2$ 

#### B) For I<sub>X</sub>

Girder : =  $0.007 \text{ m}^4$ Slab :  $nb_t t^3 / 3 = 0.775 \times 2.600 \times 0.220^3 \div 3 = 0.007 \text{ m}^4$ 

Total =  $0.014 \text{ m}^4$ 


#### C) For ly

| 1      |                   |       |       |       |                   |                  |                            |
|--------|-------------------|-------|-------|-------|-------------------|------------------|----------------------------|
| Item   | Area, A           | у     | Ау    | d     | Ad <sup>2</sup>   | l <sub>Y-Y</sub> | $I_{Y} = I_{Y-Y} + Ad^{2}$ |
| ILGIII | (m <sup>2</sup> ) | (m)   | (m³)  | (m)   | (m <sup>4</sup> ) | (m⁴)             | (m <sup>4</sup> )          |
| Girder | 0.505             | 1.300 | 0.657 | 0.000 | 0.000             | 0.022            | 0.022                      |
| Slab   | 0.443             | 1.300 | 0.576 | 0.000 | 0.000             | 0.250            | 0.250                      |
| Total  | 0.948             | ,     | 1.233 |       |                   |                  | 0.271                      |

#### D) For Iz

| Item   | Area, A | у     | Ау                | d     | Ad <sup>2</sup>   | l <sub>z-z</sub> | $I_Z = I_{Z-Z} + Ad^2$ |
|--------|---------|-------|-------------------|-------|-------------------|------------------|------------------------|
| ILEIII | (m²)    | (m)   | (m <sup>3</sup> ) | (m)   | (m <sup>4</sup> ) | (m⁴)             | (m <sup>4</sup> )      |
| Girder | 0.505   | 0.603 | 0.305             | 0.400 | 0.081             | 0.102            | 0.183                  |
| Slab   | 0.443   | 1.460 | 0.647             | 0.457 | 0.092             | 0.002            | 0.094                  |
| Total  | 0.948   |       | 0.951             |       |                   |                  | 0.278                  |

#### **EXTERIOR GIRDER**



Effective flange width, b<sub>f</sub>: (minimum)

a) 1/4 span length =  $27.500 \div 4$  = 6.875 m b) 1/2 girder spacing + length of cantile =  $1.300 \div 2.075$  = 3.375 m c) Web width + 12 times slab thicknes =  $0.203 \div 12$  × 0.220 = 2.843 m

Use  $b_f = 2.843 \text{ m}$ 

#### A) Total Area (A<sub>X</sub>) for Weight Computation

Girder

 $0.505 \text{ m}^2$ 

Slab  $b_f t = 2.843 \times 0.220$   $0.625 \text{ m}^2$  $0.036 \text{ m}^2$ 

Haunch :

Total = 1.167 m<sup>2</sup>

B) For I<sub>X</sub>

Girder

Slab

 $0.007~\text{m}^4$  $0.008 \text{ m}^4$  $nb_it^3/3 = 0.775 \times 2.843 \times 0.220^3 \div 3$ 

0.014 m<sup>4</sup> Total =

C) For I<sub>Y</sub>

| Item   | Area, A | У     | Ау                | d     | Ad²   | l <sub>Y-Y</sub> | $I_{Y} = I_{Y-Y} + Ad^{2}$ |
|--------|---------|-------|-------------------|-------|-------|------------------|----------------------------|
| Item   | (m²)    | (m)   | (m <sup>3</sup> ) | (m)   | (m⁴)  | (m⁴)             | (m <sup>4</sup> )          |
| Girder | 0.505   | 2.075 | 1.048             | 0.320 | 0.052 | 0.022            | 0.073                      |
| Slab   | 0.484   | 1.422 | 0.689             | 0.334 | 0.054 | 0.326            | 0.380                      |
| Total  | 0.990   |       | 1.737             |       |       |                  | 0.453                      |

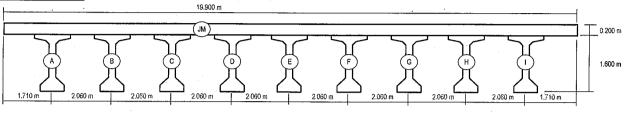
| Item   | Area, A | у     | Ау    | d     | Ad <sup>2</sup> | l <sub>z-z</sub>  | $I_Z = I_{Z-Z} + Ad^2$ |
|--------|---------|-------|-------|-------|-----------------|-------------------|------------------------|
| item   | (m²)    | (m)   | (m³)  | (m)   | (m⁴)            | (m <sup>4</sup> ) | (m <sup>4</sup> )      |
| Girder | 0.505   | 0.603 | 0.305 | 0.420 | 0.089           | 0.102             | 0.191                  |
| Slab   | 0.484   | 1.460 | 0.707 | 0.437 | 0.093           | 0.002             | 0.095                  |
| Total  | 0.990   |       | 1.012 |       |                 |                   | 0.286                  |

#### **APPENDIX 7.4.3-1 (6/14)**

#### **BRIDGE NAME: MAKATI-MANDALUYONG BRIDGE**

#### **SECTION PROPERTIES (TYPE 5)**

Modulus of elasticity of prestressed concrete girder, E.


Modulus of elasticity of reinforced concrete slab, E<sub>cs</sub>

Modular ratio,  $n = E_{cs} / E_{c}$ 

27983.06 Mpa

21675.58 Mpa 0.774597

#### WHOLE STRUCTURE



#### A) Total Area (A<sub>x</sub>) for Weight Computation

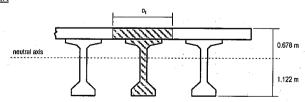
No. of girders x A<sub>girder</sub> = 5.878 m<sup>2</sup> Girder : 0.653  $bt = 19.900 \times 0.200$ Slah 3.980 m<sup>2</sup> 0.324 m<sup>2</sup> Haunch : No. of haunch x A<sub>haur</sub> = 0.036

10.182 m<sup>2</sup>

B) For I<sub>x</sub>

No. of girders  $x i_x = 9$ × 0.007 0.062 m<sup>4</sup> Girder  $nbt^3/3 = 0.775 \times 19.900 \times 0.200^3 \div 3$ 0.041 m<sup>4</sup> Slab 0.103 m<sup>4</sup>

Total =


#### C) For I<sub>Y</sub>

| Item  | Area, A | у      | Ay                | d ·   | Ad²    | l <sub>Y-Y</sub>  | $I_Y = I_{Y-Y} + Ad^2$ |
|-------|---------|--------|-------------------|-------|--------|-------------------|------------------------|
| Rem   | (m²)    | (m)    | (m <sup>3</sup> ) | (m)   | (m⁴)   | (m <sup>4</sup> ) | (m⁴)                   |
| Α     | 0.653   | 18.190 | 11.881            | 8.240 | 44.348 | 0.025             | 44.373                 |
| В     | 0.653   | 16.130 | 10.535            | 6.180 | 24.946 | 0.025             | 24.971                 |
| С     | 0.653   | 14.070 | 9.190             | 4.120 | 11.087 | 0.025             | 11.112                 |
| D     | 0.653   | 12.010 | 7.844             | 2.060 | 2.772  | 0.025             | 2.797                  |
| E     | 0.653   | 9.950  | 6.499             | 0.000 | 0.000  | 0.025             | 0.025                  |
| F     | 0.653   | 7.890  | 5.153             | 2.060 | 2.772  | 0.025             | 2.797                  |
| G     | 0,653   | 5.830  | 3.808             | 4.120 | 11.087 | 0.025             | 11.112                 |
| Н     | 0.653   | 3.770  | 2.462             | 6.180 | 24.946 | 0.025             | 24.971                 |
| -     | 0.653   | 1.710  | 1.117             | 8.240 | 44.348 | 0.025             | 44.373                 |
| J     | 3.083   | 9.950  | 30.675            | 0.000 | 0.000  | 101.738           | 101.738                |
| Total | 8.961   |        | 89.165            |       |        |                   | 268.271                |

#### D) For I<sub>2</sub>

| Item   | Area, A | у     | Ay     | d     | Ad <sup>2</sup> | l <sub>z-z</sub> | $I_Z = I_{Z-Z} + Ad^2$ |
|--------|---------|-------|--------|-------|-----------------|------------------|------------------------|
| 110111 | (m²)    | (m)   | (m³)   | (m)   | (m⁴)            | (m⁴)             | (m⁴)                   |
| Α      | 0.653   | 0.840 | 0.549  | 0.296 | 0.057           | 0.217            | 0.274                  |
| В      | 0.653   | 0.840 | 0.549  | 0.296 | 0.057           | 0.217            | 0.274                  |
| C      | 0.653   | 0.840 | 0.549  | 0.296 | 0.057           | 0.217            | 0.274                  |
| D      | 0.653   | 0.840 | 0.549  | 0.296 | 0.057           | 0.217            | 0.274                  |
| E      | 0.653   | 0.840 | 0.549  | 0.296 | 0.057           | 0.217            | 0.274                  |
| F      | 0.653   | 0.840 | 0.549  | 0.296 | 0.057           | 0.217            | 0.274                  |
| G      | 0.653   | 0.840 | 0.549  | 0.296 | 0.057           | 0.217            | 0.274                  |
| H      | 0.653   | 0.840 | 0.549  | 0.296 | 0.057           | 0.217            | 0.274                  |
|        | 0.653   | 0.840 | 0.549  | 0.296 | 0.057           | 0.217            | 0.274                  |
| 7      | 3.083   | 1.700 | 5.241  | 0.564 | 0.981           | 0.010            | 0.992                  |
| Total  | 8.961   |       | 10.179 |       |                 |                  | 3,461                  |

#### **INTERIOR GIRDER**



Effective flange width, b<sub>f</sub>: (minimum)

a) 1/4 span length 36.200 9.050 m 4 b) Center-to-center spacing of girde = 2.060 2.060 m 2.603 m c) Web width + 12 times slab thickr = 12 0.203 0.200

2.060 m Use b,

A) Total Area (A<sub>X</sub>) for Weight Computation

 $0.653~\text{m}^2$ Girder 0.412 m<sup>2</sup> Slab $b_i t = 2.060 \times 0.200$ Haunch: 0.036 m<sup>2</sup>

1.101 m<sup>2</sup> Total =

B) For I<sub>X</sub>

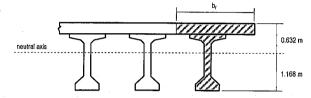
Girder :

Slab

 $nb_it^3/3 = 0.775 \times 2.060 \times 0.200^3 \div 3$ 

0.007 m<sup>4</sup>

0.004 m<sup>4</sup> 0.011 m<sup>4</sup> Total =


C) For I<sub>Y</sub>

| item   | Area, A           | у     | Ау    | d     | Ad²   | l <sub>Y-Y</sub>  | $I_{Y} = I_{Y \cdot Y} + Ad^{2}$ |
|--------|-------------------|-------|-------|-------|-------|-------------------|----------------------------------|
| nem    | (m <sup>2</sup> ) | (m)   | (m³)  | (m)   | (m⁴)  | (m <sup>4</sup> ) | (m⁴)                             |
| Girder | 0.653             | 1.030 | 0.673 | 0.000 | 0.000 | 0.025             | 0.025                            |
| Slab   | 0.319             | 1.030 | 0.329 | 0.000 | 0.000 | 0.113             | 0.113                            |
| Total  | 0.972             |       | 1.001 |       |       |                   | 0.138                            |

D) For Iz

| 14     | Area, A | У     | Ay                | d     | Ad <sup>2</sup> | l <sub>z-z</sub>  | $I_Z = I_{Z-Z} + Ad^2$ |
|--------|---------|-------|-------------------|-------|-----------------|-------------------|------------------------|
| Item   | (m²)    | (m)   | (m <sup>3</sup> ) | (m)   | (m⁴)            | (m <sup>4</sup> ) | (m <sup>4</sup> )      |
| Girder | 0.653   | 0.840 | 0.549             | 0.282 | 0.052           | 0.217             | 0.269                  |
| Slab   | 0.319   | 1.700 | 0.543             | 0.578 | 0.107           | 0.001             | 0.108                  |
| Total  | 0.972   |       | 1.091             | ·     |                 |                   | 0.377                  |

#### **EXTERIOR GIRDER**



Effective flange width, b<sub>f</sub>: (minimum)

a) 1/4 span length 9.050 m = 36.200 2.060 3.090 m

b) 1/2 girder spacing + length of cantile = 1.030 c) Web width + 12 times slab thicknes = 0.203 12 0.200 == 2.603 m

Use b<sub>f</sub> 2.603 m

A) Total Area (A<sub>X</sub>) for Weight Computation

0.653 m² Girder : Slab  $b_i t = 2.603 \times 0.200$ 0.521 m<sup>2</sup>

Haunch:  $0.036 \text{ m}^2$ 

Total = 1.210 m<sup>2</sup>

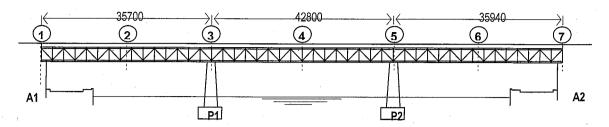
B) For I<sub>X</sub>

0.007 m<sup>4</sup> Girder

Slab  $nb_it^3/3 = 0.775 \times 2.603 \times 0.200^3 \div 3$ 0.005 m<sup>4</sup>

0.012 m<sup>4</sup> Total =

C) For I<sub>Y</sub>


| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Area, A | У     | Ау                | ď     | Ad <sup>2</sup> | l <sub>Y-Y</sub> | $I_Y = I_{Y,Y} + Ad^2$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|-------------------|-------|-----------------|------------------|------------------------|
| The state of the s | (m²)    | (m)   | (m <sup>3</sup> ) | (m)   | (m⁴)            | (m⁴)             | (m⁴)                   |
| Girder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.653   | 2.060 | 1.346             | 0.290 | 0.055           | 0.025            | 0.080                  |
| Slab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.403   | 1.302 | 0.525             | 0.469 | 0.089           | 0.228            | 0.316                  |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.056   |       | 1.870             |       |                 |                  | 0.397                  |

| <i>'</i> |          |       |                   |       |                   |                  |                        |
|----------|----------|-------|-------------------|-------|-------------------|------------------|------------------------|
| Item     | Area, A  | у     | Ay                | d     | Ad²               | I <sub>z-z</sub> | $I_Z = I_{Z-Z} + Ad^2$ |
| lien     | ' (m²)   | (m)   | (m <sup>3</sup> ) | (m)   | (m <sup>4</sup> ) | (m⁴)             | (m⁴)                   |
| Girde    | er 0.653 | 0.840 | 0.549             | 0.328 | 0.070             | 0.217            | 0.288                  |
| Slat     | 0.403    | 1.700 | 0.686             | 0.532 | 0.114             | 0,001            | 0.115                  |
| Tota     | 1,056    |       | 1.234             |       |                   |                  | 0.403                  |

# **APPENDIX 7.4.3-1 (7/14)**

# BRIDGE NAME : GUADALUPE BRIDGE (CENTRAL)

# **SECTION PROPERTIES**

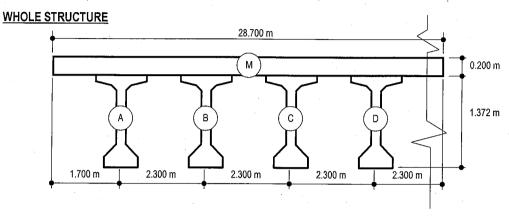


|                |                    |                    |                   |                      |        |                        | ·                      |                        |                  |
|----------------|--------------------|--------------------|-------------------|----------------------|--------|------------------------|------------------------|------------------------|------------------|
|                |                    | SECTION P          | ROPERTIE          | S                    | ,      | ALLOWABL               | E STRESSE              | s                      |                  |
| MEMBER<br>I.D. |                    |                    |                   |                      |        |                        |                        |                        | LOCATION         |
|                | A <sub>gross</sub> | A <sub>shear</sub> | C <sub>n.a.</sub> | l <sub>bending</sub> | fy     | σ <sub>a</sub> (allow) | σ <sub>b</sub> (allow) | σ <sub>ν</sub> (allow) |                  |
|                | (m²)               | (m²)               | (m) ·             | (m <sup>4</sup> )    | (MPa)  | (MPa)                  | (MPa)                  | (MPa)                  |                  |
| UC - 1         | 0.0230949          | 0.0154             | 0.25              | 0.0003703            | 248.00 | 136.4                  | 136.4                  | 81.84                  | Top Arch Chord   |
| UC - 2         | 0.0230949          | 0.0154             | 0.25              | 0.0003703            | 248.00 | 136.4                  | 136.4                  | 81.84                  | Top Arch Chord   |
| UC - 3         | 0.0230949          | 0.0154             | 0.25              | 0.0003703            | 248.00 | 136.4                  | 136.4                  | 81.84                  | Top Arch Chord   |
| UC - 4         | 0.0230949          | 0.0154             | 0.25              | 0.0003703            | 248.00 | 136.4                  | 136.4                  | 81.84                  | Top Arch Chord   |
| UC - 5         | 0.0230949          | 0.0154             | 0.25              | 0.0003703            | 248.00 | 136.4                  | 136.4                  | 81.84                  | Top Arch Chord   |
| UC - 6         | 0.0230949          | 0.0154             | 0.25              | 0.0003703            | 248.00 | 136.4                  | 136.4                  | 81.84                  | Top Arch Chord   |
| UC - 7         | 0.0230949          | 0.0154             | 0.25              | 0.0003703            | 248.00 | 136.4                  | 136.4                  | 81.84                  | Top Arch Chord   |
| LC - 1         | 0.0230949          | 0.0154             | 0.25              | 0.0003703            | 248.00 | 136.4                  | 136.4                  | 81.84                  | Lower Arch Chord |
| LC - 2         | 0.0230949          | 0.0154             | 0.25              | 0.0003703            | 248.00 | 136.4                  | 136.4                  | 81.84                  | Lower Arch Chord |
| LC - 3         | 0.0230949          | 0.0154             | 0.25              | 0.0003703            | 248.00 | 136.4                  | 136.4                  | 81.84                  | Lower Arch Chord |
| LC - 4         | 0.0230949          | 0.0154             | 0.25              | 0.0003703            | 248.00 | 136.4                  | 136.4                  | 81.84                  | Lower Arch Chord |
| LC - 5         | 0.0230949          | 0.0154             | 0.25              | 0.0003703            | 248.00 | 136.4                  | 136.4                  | 81.84                  | Lower Arch Chord |
| LC - 6         | 0.0230949          | 0.0154             | 0.25              | 0.0003703            | 248.00 | 136.4                  | 136.4                  | 81.84                  | Lower Arch Chord |
| LC - 7         | 0.0230949          | 0.0154             | 0.25              | 0.0003703            | 248.00 | 136.4                  | 136.4                  | 81.84                  | Lower Arch Chord |
| V - 1          | 0.009099           | 0.003345           | 0.128             | 0.000111             | 248.00 | 136.4                  | 136.4                  | 81.84                  | Vertical Member  |
| V - 2          | 0.009099           | 0.003345           | 0.128             | 0.000111             | 248.00 | 136.4                  | 136.4                  | 81.84                  | Vertical Member  |
| V - 3          | 0.009099           | 0.003345           | 0.128             | 0.000111             | 248.00 | 136.4                  | 136.4                  | 81.84                  | Vertical Member  |
| V - 4          | 0.009099           | 0.003345           | 0.128             | 0.000111             | 248.00 | 136.4                  | 136.4                  | 81.84                  | Vertical Member  |
| V - 5          | 0.009099           | 0.003345           | 0.128             | 0.000111             | 248.00 | 136.4                  | 136.4                  | 81.84                  | Vertical Member  |
| V-6            | 0.009099           | 0.003345           | 0.128             | 0.000111             | 248.00 | 136.4                  | 136.4                  | 81.84                  | Vertical Member  |
| V - 7          | 0.009099           | 0.003345           | 0.128             | 0.000111             | 248.00 | 136.4                  | 136.4                  | 81.84                  | Vertical Member  |
| D - 1          | 0.009099           | 0.003345           | 0.128             | 0.000111             | 248.00 | 136.4                  | 136.4                  | 81.84                  | Diagonal Member  |
| D - 2          | 0.009099           | 0.003345           | 0.128             | 0.000111             | 248.00 | 136.4                  | 136.4                  | 81.84                  | Diagonal Member  |
| D - 3          | 0.009099           | 0.003345           | 0.128             | 0.000111             | 248.00 | 136.4                  | 136.4                  | 81.84                  | Diagonal Member  |
| D - 4          | 0.009099           | 0.003345           | 0.128             | 0.000111             | 248.00 | 136.4                  | 136.4                  | 81.84                  | Diagonal Member  |
| D - 5          | 0.009099           | 0.003345           | 0.128             | 0.000111             | 248.00 | 136.4                  | 136.4                  | 81.84                  | Diagonal Member  |
| D-6            | 0.009099           | 0.003345           | 0.128             | 0.000111             | 248.00 | 136.4                  | 136.4                  | 81.84                  | Diagonal Member  |
| D-7            | 0.009099           | 0.003345           | 0.128             | 0.000111             | 248.00 | 136.4                  | 136.4                  | 81.84                  | Diagonal Member  |

|                |          | SECTION P          | ROPERTIES         | S                 | ,      | ALLOWABL               | E STRESSE              | s                      |                  |
|----------------|----------|--------------------|-------------------|-------------------|--------|------------------------|------------------------|------------------------|------------------|
| MEMBER<br>I.D. |          |                    |                   |                   |        |                        |                        |                        | LOCATION         |
|                | Agross   | A <sub>shear</sub> | C <sub>n.a.</sub> | bending           | fy     | σ <sub>a</sub> (allow) | σ <sub>b</sub> (allow) | σ <sub>ν</sub> (allow) |                  |
|                | (m²)     | (m²)               | (m)               | (m <sup>4</sup> ) | (MPa)  | (MPa)                  | (MPa)                  | (MPa)                  |                  |
| UC-1           | 0.025661 | 0.0154             | 0.25              | 0.0003703         | 248.00 | 186                    | 186                    | 111.6                  | Top Arch Chord   |
| UC - 2         | 0.025661 | 0.0154             | 0.25              | 0.0003703         | 248.00 | 186                    | 186                    | 111.6                  | Top Arch Chord   |
| UC-3           | 0.025661 | 0.0154             | 0.25              | 0.0003703         | 248.00 | 186                    | 186                    | 111.6                  | Top Arch Chord   |
| UC - 4         | 0.025661 | 0.0154             | 0.25              | 0.0003703         | 248.00 | 186                    | 186                    | 111.6                  | Top Arch Chord   |
| UC - 5         | 0.025661 | 0.0154             | 0.25              | 0.0003703         | 248.00 | 186                    | 186                    | 111.6                  | Top Arch Chord   |
| UC - 6         | 0.025661 | 0.0154             | 0.25              | 0.0003703         | 248.00 | 186                    | 186                    | 111.6                  | Top Arch Chord   |
| UC - 7         | 0.025661 | 0.0154             | 0.25              | 0.0003703         | 248.00 | 186                    | 186                    | 111.6                  | Top Arch Chord   |
| LC - 1         | 0.025661 | 0.0154             | 0.25              | 0.0003703         | 248.00 | 186                    | 186                    | 111.6                  | Lower Arch Chord |
| LC - 2         | 0.025661 | 0.0154             | 0.25              | 0.0003703         | 248.00 | 186                    | 186                    | 111.6                  | Lower Arch Chord |
| LC - 3         | 0.025661 | 0.0154             | 0.25              | 0.0003703         | 248.00 | 186                    | 186                    | 111.6                  | Lower Arch Chord |
| LC - 4         | 0.025661 | 0.0154             | 0.25              | 0.0003703         | 248.00 | 186                    | 186                    | 111.6                  | Lower Arch Chord |
| LC - 5         | 0.025661 | 0.0154             | 0.25              | 0.0003703         | 248.00 | 186                    | 186                    | 111.6                  | Lower Arch Chord |
| LC - 6         | 0.025661 | 0.0154             | 0.25              | 0.0003703         | 248.00 | 186                    | 186                    | 111.6                  | Lower Arch Chord |
| LC - 7         | 0.025661 | 0.0154             | 0.25              | 0.0003703         | 248.00 | 186                    | 186                    | 111.6                  | Lower Arch Chord |
| V - 1          | 0.01011  | 0.003345           | 0.128             | 0.000111          | 248.00 | 186                    | 186                    | 111.6                  | Vertical Member  |
| V - 2          | 0.01011  | 0.003345           | 0.128             | 0.000111          | 248.00 | 186                    | 186                    | 111.6                  | Vertical Member  |
| V - 3          | 0.01011  | 0.003345           | 0.128             | 0.000111          | 248.00 | 186                    | 186                    | 111.6                  | Vertical Member  |
| V - 4          | 0.01011  | 0.003345           | 0.128             | 0.000111          | 248.00 | 186                    | 186                    | 111.6                  | Vertical Member  |
| V - 5          | 0.01011  | 0.003345           | 0.128             | 0.000111          | 248.00 | 186                    | 186                    | 111.6                  | Vertical Member  |
| V - 6          | 0.01011  | 0.003345           | 0.128             | 0.000111          | 248.00 | 186                    | 186                    | 111.6                  | Vertical Member  |
| V - 7          | 0.01011  | 0.003345           | 0.128             | 0.000111          | 248.00 | 186                    | 186                    | 111.6                  | Vertical Member  |
| D - 1          | 0.01011  | 0.003345           | 0.128             | 0.000111          | 248.00 | 186                    | 186                    | 111.6                  | Diagonal Member  |
| D - 2          | 0.01011  | 0.003345           | 0.128             | 0.000111          | 248.00 | 186                    | 186                    | 111.6                  | Diagonal Member  |
| D - 3          | 0.01011  | 0.003345           | 0.128             | 0.000111          | 248.00 | 186                    | 186                    | 111.6                  | Diagonal Member  |
| D - 4          | 0.01011  | 0.003345           | 0.128             | 0.000111          | 248.00 | 186                    | 186                    | 111.6                  | Diagonal Member  |
| D - 5          | 0.01011  | 0.003345           | 0.128             | 0.000111          | 248.00 | 186                    | 186                    | 111.6                  | Diagonal Member  |
| D - 6          | 0.01011  | 0.003345           | 0.128             | 0.000111          | 248.00 | 186                    | 186                    | 111.6                  | Diagonal Member  |
| D - 7          | 0.01011  | 0.003345           | 0.128             | 0.000111          | 248.00 | 186                    | 186                    | 111.6                  | Diagonal Member  |

## **APPENDIX 7.4.3-1 (8/14)**

#### **BRIDGE NAME: C-5 BRIDGE**


#### **SECTION PROPERTIES - TYPE IV**

Modulus of elasticity of prestressed concrete girder,  $E_c$  Modulus of elasticity of reinforced concrete slab,  $E_{cs}$ 

Modular ratio,  $n = E_{cs} / E_{c}$ 

= 27983.06 Mpa = 21675.58 Mpa

= 0.774597



#### A) Total Area (A<sub>X</sub>) for Weight Computation

Girder : No. of girders  $\times$  A<sub>girder</sub> = 12  $\times$  0.509 = 6.102 m<sup>2</sup>

Slab : bt =  $28.700 \times 0.200$  =  $5.740 \text{ m}^2$ 

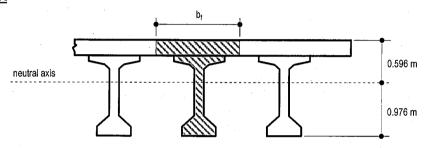
Haunch : No. of haunch x  $A_{haun}$  = 12  $\times$  0.500 = 6.000  $\text{m}^2$ 

Total =  $17.842 \text{ m}^2$ 

B) For IX

Girder : No. of girders x  $I_{X.}$  = 12 × 0.006 = 0.078 m<sup>4</sup> Slab : nbt<sup>3</sup> / 3 = 0.775 × 28.700 × 0.200<sup>3</sup> ÷ 3 = 0.059 m<sup>4</sup>

Total =  $0.137 \text{ m}^4$ 


#### C) For I<sub>Y</sub>

| Item  | Area, A | У      | Ау      | d      | Ad²    | Γ <sub>γ-Υ</sub>  | $I_{Y} = I_{Y-Y} + Ad^{2}$ |
|-------|---------|--------|---------|--------|--------|-------------------|----------------------------|
| Itom  | (m²)    | (m)    | (m³)    | (m)    | (m⁴)   | (m <sup>4</sup> ) | (m⁴)                       |
| Α     | 0.509   | 27.000 | 13.730  | 12.650 | 81.374 | 0.021             | 81.395                     |
| В     | 0.509   | 24.700 | 12.560  | 10.350 | 54.474 | 0.021             | 54.494                     |
| С     | 0.509   | 22.400 | 11.391  | 8.050  | 32.953 | 0.021             | 32.974                     |
| D     | 0.509   | 20.100 | 10.221  | 5.750  | 16.813 | 0.021             | 16.834                     |
| E     | 0.509   | 17.800 | 9.052   | 3.450  | 6.053  | 0.021             | 6.073                      |
| F     | 0.509   | 15.500 | 7.882   | 1.150  | 0.673  | 0.021             | 0.693                      |
| G     | 0.509   | 13.200 | 6.712   | 1.150  | 0.673  | 0.021             | 0.693                      |
| H     | 0.509   | 10.900 | 5.543   | 3.450  | 6.053  | 0.021             | 6.073                      |
| l     | 0.509   | 8.600  | 4.373   | 5.750  | 16.813 | 0.021             | 16.834                     |
| J     | 0.509   | 6.300  | 3.204   | 8.050  | 32.953 | 0.021             | 32.974                     |
| K     | 0.509   | 4.000  | 2.034   | 10.350 | 54.474 | 0.021             | 54.494                     |
| L     | 0.509   | 1.700  | 0.864   | 12.650 | 81.374 | 0.021             | 81.395                     |
| M     | 4.446   | 14.350 | 63.803  | 0.000  | 0.000  | 305.190           | 305.190                    |
| Total | 10.548  |        | 151.370 |        |        | *                 | 690.117                    |

D) For Iz

| Item  | Area, A | У     | Ау                | d     | Ad <sup>2</sup> | I <sub>Z-Z</sub> | $I_Z = I_{Z-Z} + Ad^2$ |
|-------|---------|-------|-------------------|-------|-----------------|------------------|------------------------|
| Item  | (m²)    | (m)   | (m <sup>3</sup> ) | (m)   | (m⁴)            | (m⁴)             | (m⁴)                   |
| A     | 0.509   | 0.628 | 0.320             | 0.356 | 0.064           | 0.109            | 0.173                  |
| В     | 0.509   | 0.628 | 0.320             | 0.356 | 0.064           | 0.109            | 0.173                  |
| С     | 0.509   | 0.628 | 0.320             | 0.356 | 0.064           | 0.109            | 0.173                  |
| D     | 0.509   | 0.628 | 0.320             | 0.356 | 0.064           | 0.109            | 0.173                  |
| E     | 0.509   | 0.628 | 0.320             | 0.356 | 0.064           | 0.109            | 0.173                  |
| F     | 0.509   | 0.628 | 0.320             | 0.356 | 0.064           | 0.109            | 0.173                  |
| G     | 0.509   | 0.628 | 0.320             | 0.356 | 0.064           | 0.109            | 0.173                  |
| Н     | 0.509   | 0.628 | 0.320             | 0.356 | 0.064           | 0.109            | 0.173                  |
|       | 0.509   | 0.628 | 0.320             | 0.356 | 0.064           | 0.109            | 0.173                  |
| J     | 0.509   | 0.628 | 0.320             | 0.356 | 0.064           | 0.109            | 0.173                  |
| K     | 0.509   | 0.628 | 0.320             | 0.356 | 0.064           | 0.109            | 0.173                  |
| L     | 0.509   | 0.628 | 0.320             | 0.356 | 0.064           | 0.109            | 0.173                  |
| E     | 4.446   | 1.472 | 6.545             | 0.488 | 1.059           | 0.015            | 1.074                  |
| Total | 10.548  |       | 10.380            |       |                 |                  | 3.147                  |

### **INTERIOR GIRDER**



Effective flange width, b<sub>f</sub>: (minimum)

a) 1/4 span length =  $24.950 \div 4$  = 6.238 m b) Center to contar spacing of girds = 2.300 = 2.300 m

b) Center-to-center spacing of girds = 2.300 = 2.300 m c) Web width + 12 times slab thickr = 0.508 + 12  $\times$  0.200 = 2.908 m

Use  $b_f = 2.300 \text{ m}$ 

A) Total Area (A<sub>X</sub>) for Weight Computation

Girder : =  $0.509 \text{ m}^2$ 

Slab :  $b_i t = 2.300 \times 0.200$  = 0.460 m<sup>2</sup> Haunch : = 0.500 m<sup>2</sup>

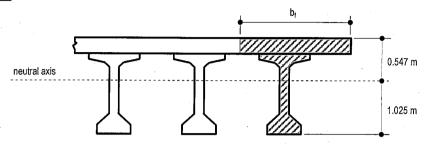
 $Total = 1.469 \text{ m}^2$ 

B) For I<sub>X</sub>

Girder:  $= 0.006 \text{ m}^4$ 

Slab :  $nb_1t^3/3 = 0.775 \times 2.300 \times 0.200^3 \div 3 = 0.005 \text{ m}^4$ 

Total = **0.011** m<sup>4</sup>


C) For ly

| Item   | Area, A | У     | Ау    | d .   | Ad²               | l <sub>Y-Y</sub> | $I_{Y} = I_{Y-Y} + Ad^{2}$ |
|--------|---------|-------|-------|-------|-------------------|------------------|----------------------------|
| Item   | (m²)    | (m)   | (m³)  | (m)   | (m <sup>4</sup> ) | (m⁴)             | (m⁴)                       |
| Girder | 0.509   | 1.150 | 0.585 | 0.000 | 0.000             | 0.021            | 0.021                      |
| Slab   | 0.356   | 1.150 | 0.410 | 0.000 | 0.000             | 0.157            | 0.157                      |
| Total  | 0.865   |       | 0.995 |       |                   |                  | 0.178                      |

D) For I<sub>7</sub>

| Item   | Area, A | У     | Ау    | d     | Ad²   | l <sub>z-z</sub>  | $I_Z = I_{Z-Z} + Ad^2$ |
|--------|---------|-------|-------|-------|-------|-------------------|------------------------|
| Item   | (m²)    | (m)   | (m³)  | (m)   | (m⁴)  | (m <sup>4</sup> ) | (m⁴)                   |
| Girder | 0.509   | 0.628 | 0.320 | 0.348 | 0.061 | 0.109             | 0.170                  |
| Slab   | 0.356   | 1.472 | 0.524 | 0.496 | 0.088 | 0.001             | 0.089                  |
| Total  | 0.865   |       | 0.844 |       |       |                   | 0.259                  |

#### **EXTERIOR GIRDER**



Effective flange width, b<sub>f</sub>: (minimum)

a) 1/4 span length 24.950 6.238 m 4 b) 1/2 girder spacing + length of cantile = 1.150 + 2.300 3.450 m c) Web width + 12 times slab thicknes: = 0.508 12 2.908 m 0.200 Use b<sub>f</sub> 2.908 m

A) Total Area (A<sub>X</sub>) for Weight Computation

Girder : =  $0.509 \text{ m}^2$ Slab :  $b_f t = 2.908 \times 0.200$  =  $0.582 \text{ m}^2$ 

Haunch :  $= 0.500 \text{ m}^2$ 

Total =  $1.590 \text{ m}^2$ 

B) For I<sub>X</sub>

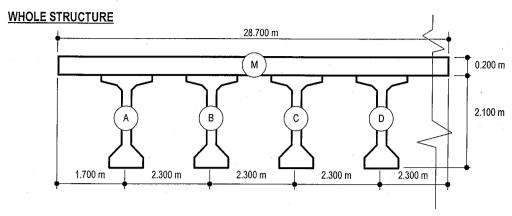
Girder:  $= 0.006 \text{ m}^4$ 

Slab :  $nb_1t^3/3 = 0.775 \times 2.908 \times 0.200^3 \div 3 = 0.006 \text{ m}^4$ 

Total =  $0.013 \text{ m}^4$ 

C) For I<sub>Y</sub>

| -      |         |       |       |       |                   |                  |                            |
|--------|---------|-------|-------|-------|-------------------|------------------|----------------------------|
| Item   | Area, A | у     | Ау    | d     | Ad <sup>2</sup>   | I <sub>Y-Y</sub> | $I_{Y} = I_{Y-Y} + Ad^{2}$ |
| Item   | (m²)    | (m)   | (m³)  | (m)   | (m <sup>4</sup> ) | (m⁴)             | (m⁴)                       |
| Girder | 0.509   | 2.300 | 1.170 | 0.397 | 0.080             | 0.021            | 0.101                      |
| Slab   | 0.451   | 1.454 | 0.655 | 0.449 | 0.091             | 0.317            | 0.408                      |
| Total  | 0.959   |       | 1.825 |       |                   |                  | 0.509                      |


| Item   | Area, A | у     | Ау                | d     | Ad²   | I <sub>Z-Z</sub> | $I_Z = I_{Z-Z} + Ad^2$ |
|--------|---------|-------|-------------------|-------|-------|------------------|------------------------|
| Item   | (m²)    | (m)   | (m <sup>3</sup> ) | (m)   | (m⁴)  | (m⁴)             | (m <sup>4</sup> )      |
| Girder | 0.509   | 0.628 | 0.320             | 0.396 | 0.080 | 0.109            | 0.188                  |
| Slab   | 0.451   | 1.472 | 0.663             | 0.447 | 0.090 | 0.002            | 0.092                  |
| Total  | 0.959   |       | 0.983             |       |       |                  | 0.280                  |

#### **SECTION PROPERTIES - TYPE VI**

Modulus of elasticity of prestressed concrete girder,  $E_c$  Modulus of elasticity of reinforced concrete slab,  $E_{cs}$  Modular ratio,  $n = E_{cs} / E_c$ 

= 27983.06 Mpa = 21675.58 Mpa

= 0.774597

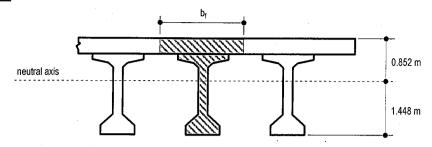


#### A) Total Area (A<sub>X</sub>) for Weight Computation

Girder : No. of girders  $\times$  A<sub>girder</sub> = 12  $\times$  0.755 = 9.056 m<sup>2</sup> Slab : bt = 28.700  $\times$  0.200 = 5.740 m<sup>2</sup> Haunch : No. of haunch  $\times$  A<sub>haun</sub> = 12  $\times$  0.500 = 6.000 m<sup>2</sup>

Total =  $20.796 \text{ m}^2$ 

B) For I<sub>X</sub>


Girder : No. of girders x  $I_X$  = 12 × 0.008 = 0.099 m<sup>4</sup> Slab : nbt³ / 3 = 0.775 × 28.700 × 0.200³ ÷ 3 = 0.059 m<sup>4</sup> Total = 0.158 m<sup>4</sup>

#### C) For ly

| Item   | Area, A           | у      | Ay      | d      | Ad²     | I <sub>Y-Y</sub> | $I_{Y} = I_{Y-Y} + Ad^{2}$ |
|--------|-------------------|--------|---------|--------|---------|------------------|----------------------------|
| 110111 | (m <sup>2</sup> ) | (m)    | (m³)    | (m)    | (m⁴)    | (m⁴)             | (m⁴)                       |
| Α      | 0.755             | 27.000 | 20.376  | 12.650 | 120.762 | 0.026            | 120.788                    |
| В      | 0.755             | 24.700 | 18.640  | 10.350 | 80.841  | 0.026            | 80.866                     |
| С      | 0.755             | 22.400 | 16.904  | 8.050  | 48.904  | 0.026            | 48.929                     |
| D      | 0.755             | 20.100 | 15.169  | 5.750  | 24.951  | 0.026            | 24.977                     |
| E      | 0.755             | 17.800 | 13.433  | 3.450  | 8.982   | 0.026            | 9.008                      |
| F      | 0.755             | 15.500 | 11.697  | 1.150  | 0.998   | 0.026            | 1.024                      |
| G      | 0.755             | 13.200 | 9.961   | 1.150  | 0.998   | 0.026            | 1.024                      |
| Н      | 0.755             | 10.900 | 8.226   | 3.450  | 8.982   | 0.026            | 9.008                      |
|        | 0.755             | 8.600  | 6.490   | 5.750  | 24.951  | 0.026            | 24.977                     |
| J      | 0.755             | 6.300  | 4.754   | 8.050  | 48.904  | 0.026            | 48.929                     |
| K      | 0.755             | 4.000  | 3.019   | 10.350 | 80.841  | 0.026            | 80.866                     |
| L.     | 0.755             | 1.700  | 1.283   | 12.650 | 120.762 | 0.026            | 120.788                    |
| M      | 4.446             | 14.350 | 63.803  | 0.000  | 0.000   | 305.190          | 305.190                    |
| Total  | 13.502            | -      | 193.755 |        |         |                  | 876.374                    |

| Item  | Area, A | У     | Ау     | d     | Ad <sup>2</sup> | l <sub>z-z</sub> | $I_Z = I_{Z-Z} + Ad^2$ |
|-------|---------|-------|--------|-------|-----------------|------------------|------------------------|
| Lem   | (m²)    | (m)   | (m³)   | (m)   | (m⁴)            | (m⁴)             | (m⁴)                   |
| A     | 0.755   | 1.093 | 0.824  | 0.365 | 0.100           | 0.434            | 0.535                  |
| В     | 0.755   | 1.093 | 0.824  | 0.365 | 0.100           | 0.434            | 0.535                  |
| С     | 0.755   | 1.093 | 0.824  | 0.365 | 0.100           | 0.434            | 0.535                  |
| D     | 0.755   | 1.093 | 0.824  | 0.365 | 0.100           | 0.434            | 0.535                  |
| Е     | 0.755   | 1.093 | 0.824  | 0.365 | 0.100           | 0.434            | 0.535                  |
| F     | 0.755   | 1.093 | 0.824  | 0.365 | 0.100           | 0.434            | 0.535                  |
| G     | 0.755   | 1.093 | 0.824  | 0.365 | 0.100           | 0.434            | 0.535                  |
| Н     | 0.755   | 1.093 | 0.824  | 0.365 | 0.100           | 0.434            | 0.535                  |
|       | 0.755   | 1.093 | 0.824  | 0.365 | 0.100           | 0.434            | 0.535                  |
| J     | 0.755   | 1.093 | 0.824  | 0.365 | 0.100           | 0.434            | 0.535                  |
| K     | 0.755   | 1.093 | 0.824  | 0.365 | 0.100           | 0.434            | 0.535                  |
| L     | 0.755   | 1.093 | 0.824  | 0.365 | 0.100           | 0.434            | 0.535                  |
| E     | 4.446   | 2.200 | 9.782  | 0.743 | 2.453           | 0.015            | 2.468                  |
| Total | 13.502  |       | 19.675 |       |                 |                  | 8.884                  |

#### INTERIOR GIRDER



Effective flange width, b<sub>f</sub>: (minimum)

a) 1/4 span length =  $45.880 \div 4$  = 11.470 m b) Center-to-center spacing of girde = 2.300 = 2.300 m c) Web width + 12 times slab thickr = 1.067 + 12 × 0.200 = 3.467 m

Use  $b_f = 2.300 \text{ m}$ 

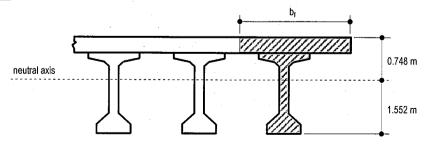
A) Total Area (A<sub>X</sub>) for Weight Computation

Girder :  $= 0.755 \text{ m}^2$ Slab :  $b_t t = 2.300 \times 0.200$   $= 0.460 \text{ m}^2$ Haunch :  $= 0.500 \text{ m}^2$ Total = 1.715 m<sup>2</sup>

B) For  $I_X$ 

Girder : =  $0.008 \text{ m}^4$ Slab :  $nb_f t^3 / 3 = 0.775 \times 2.300 \times 0.200^3 \div 3 = 0.005 \text{ m}^4$ 

Total =  $0.013 \text{ m}^4$ 


C) For I<sub>Y</sub>

|        | Area, A           | У     | Ay                | d     | Ad <sup>2</sup> | l <sub>Y-Y</sub> | $I_{Y} = I_{Y-Y} + Ad^{2}$ |
|--------|-------------------|-------|-------------------|-------|-----------------|------------------|----------------------------|
| Item   | (m <sup>2</sup> ) | (m)   | (m <sup>3</sup> ) | (m)   | (m⁴)            | (m⁴)             | (m <sup>4</sup> )          |
| Girder | 0.755             | 1.150 | 0.868             | 0.000 | 0.000           | 0.026            | 0.026                      |
| Slab   | 0.356             | 1.150 | 0.410             | 0.000 | 0.000           | 0.157            | 0.157                      |
| Total  | 1.111             |       | 1.278             |       |                 |                  | 0.183                      |

D) For Iz

| Item   | Area, A | У     | Ay    | d     | Ad²   | I <sub>Z-Z</sub> | $I_Z = I_{Z-Z} + Ad^2$ |
|--------|---------|-------|-------|-------|-------|------------------|------------------------|
| Item   | (m²)    | (m)   | (m³)  | (m)   | (m⁴)  | (m⁴)             | (m <sup>4</sup> )      |
| Girder | 0.755   | 1.093 | 0.824 | 0.355 | 0.095 | 0.434            | 0.530                  |
| Slab   | 0.356   | 2.200 | 0.784 | 0.752 | 0.202 | 0.001            | 0.203                  |
| Total  | 1.111   |       | 1.608 |       |       |                  | 0.732                  |

#### **EXTERIOR GIRDER**



Effective flange width, b<sub>f</sub>: (minimum)

a) 1/4 span length =  $45.880 \div 4$  = 11.470 m

b) 1/2 girder spacing + length of cantile = 1.150 + 2.300 = 3.450 mc) Web width + 12 times slab thicknes =  $1.067 + 12 \times 0.200 = 3.467 \text{ m}$ 

c) Web width + 12 times slab thicknes: =  $1.067 + 12 \times 0.200 = 3.467 \text{ m}$ Use b<sub>f</sub> = 3.450 m

#### A) Total Area (A<sub>X</sub>) for Weight Computation

 $0.755 \text{ m}^2$ Girder 0.690 m<sup>2</sup> Slab  $b_{\rm f}t = 3.450 \times 0.200$ 

Haunch:

 $0.500 \text{ m}^2$ 

 $1.945 \text{ m}^2$ Total =

B) For I<sub>x</sub>

Girder :  $0.008 \text{ m}^4$ 

Slab  $nb_{t}t^{3}/3 = 0.775 \times 3.450 \times 0.200^{3} \div 3$  $0.007 \text{ m}^4$ 

> Total = 0.015 m<sup>4</sup>

C) For I<sub>Y</sub>

| -      |         |       |       |       |       |                   |                                  |
|--------|---------|-------|-------|-------|-------|-------------------|----------------------------------|
| Item   | Area, A | у     | Ay    | d     | Ad²   | I <sub>Y-Y</sub>  | $I_{Y} = I_{Y \cdot Y} + Ad^{2}$ |
| l item | (m²)    | (m)   | (m³)  | (m)   | (m⁴)  | (m <sup>4</sup> ) | (m <sup>4</sup> )                |
| Girder | 0.755   | 2.300 | 1.736 | 0.238 | 0.043 | 0.026             | 0.069                            |
| Slab   | 0.534   | 1.725 | 0.922 | 0.337 | 0.061 | 0.530             | 0.591                            |
| Total  | 1.289   |       | 2.658 |       |       |                   | 0.659                            |

| Item      | Area, A | у     | Ay    | d     | Ad <sup>2</sup> | l <sub>z-z</sub>  | $I_Z = I_{Z-Z} + Ad^2$ |
|-----------|---------|-------|-------|-------|-----------------|-------------------|------------------------|
| literii _ | (m²)    | (m)   | (m³)  | (m)   | . (m⁴)          | (m <sup>4</sup> ) | (m⁴)                   |
| Girder    | 0.755   | 1.093 | 0.824 | 0.459 | 0.159           | 0.434             | 0.593                  |
| Slab      | 0.534   | 2.200 | 1.176 | 0.648 | 0.225           | 0.002             | 0.226                  |
| Total     | 1.289   |       | 2.000 |       |                 |                   | 0.820                  |

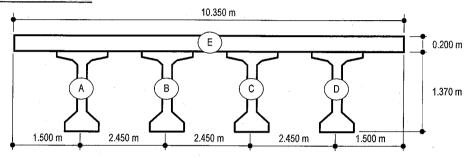
#### **APPENDIX 7.4.3-1 (9/14)**

#### **BRIDGE NAME: BAMBANG BRIDGE**

# **SECTION PROPERTIES - TYPE IV**

Modulus of elasticity of prestressed concrete girder, Ec

Modulus of elasticity of reinforced concrete slab, Ecs


Modular ratio,  $n = E_{cs} / E_{c}$ 

30653.90 Mpa

21675.58 Mpa

0.707107

#### WHOLE STRUCTURE



#### A) Total Area (A<sub>X</sub>) for Weight Computation

Girder No. of girders  $x A_{oirder} =$ 0.508 2.031 m<sup>2</sup>

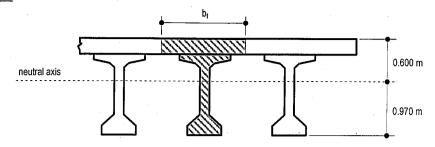
Slab  $bt = 10.350 \times 0.200$ 2.070 m<sup>2</sup>

Haunch No. of haunch  $x A_{haun} =$  $0.000 \text{ m}^2$ 0.000

> 4.101 m<sup>2</sup> Total =

B) For I<sub>X</sub>

Girder No. of girders  $x I_x =$ 0.026 m<sup>4</sup>  $nbt^3/3 = 0.707 \times 10.350 \times 0.200^3$ Slab 0.020 m<sup>4</sup>


0.045 m<sup>4</sup> Total =

#### C) For I<sub>Y</sub>

| Item  | Area, A | У     | Ау     | d     | .Ad²  | I <sub>Y-Y</sub> | $I_Y = I_{Y-Y} + Ad^2$ |
|-------|---------|-------|--------|-------|-------|------------------|------------------------|
| пспп  | (m²)    | (m)   | (m³)   | (m)   | (m⁴)  | (m⁴)             | (m⁴)                   |
| A     | 0.508   | 8.850 | 4.493  | 3.675 | 6.857 | 0.021            | 6.878                  |
| В     | 0.508   | 6.400 | 3.249  | 1.225 | 0.762 | 0.021            | 0.783                  |
| С     | 0.508   | 3.950 | 2.005  | 1.225 | 0.762 | 0.021            | 0.783                  |
| D     | 0.508   | 1.500 | 0.762  | 3.675 | 6.857 | 0.021            | 6.878                  |
| E     | 1.464   | 5.175 | 7.575  | 0.000 | 0.000 | 13.066           | 13.066                 |
| Total | 3.495   |       | 18.084 |       |       |                  | 28.387                 |

| Item  | Area, A | У     | Ау    | d     | Ad <sup>2</sup>   | l <sub>z-z</sub> | $I_Z = I_{Z - Z} + Ad^2$ |
|-------|---------|-------|-------|-------|-------------------|------------------|--------------------------|
| Item  | (m²)    | (m)   | (m³)  | (m)   | (m <sup>4</sup> ) | (m⁴)             | (m <sup>4</sup> )        |
| Α     | 0.508   | 0.629 | 0.319 | 0.352 | 0.063             | 0.108            | 0.171                    |
| В     | 0.508   | 0.629 | 0.319 | 0.352 | 0.063             | 0.108            | 0.171                    |
| C     | 0.508   | 0.629 | 0.319 | 0.352 | 0.063             | 0.108            | 0.171                    |
| D     | 0.508   | 0.629 | 0.319 | 0.352 | 0.063             | 0.108            | 0.171                    |
| Е     | 1.464   | 1.470 | 2.152 | 0.489 | 0.350             | 0.005            | 0.355                    |
| Total | 3.495   |       | 3.429 |       |                   |                  | 1.040                    |

#### **INTERIOR GIRDER**



Effective flange width, b<sub>f</sub>: (minimum)

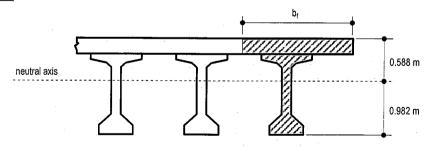
a) 1/4 span length =  $26.700 \div 4$  = 6.675 m b) Center-to-center spacing of girde = 2.450 = 2.450 m c) Web width + 12 times slab thickr = 0.203 + 12 × 0.200 = 2.603 m Use  $b_f$  = 2.450 m

A) Total Area (A<sub>X</sub>) for Weight Computation

Girder : =  $0.508 \text{ m}^2$ Slab :  $b_f t = 2.450 \times 0.200$  =  $0.490 \text{ m}^2$ Haunch : =  $0.000 \text{ m}^2$ Total =  $0.998 \text{ m}^2$ 

B) For I<sub>X</sub>

Girder : =  $0.006 \text{ m}^4$ Slab :  $nb_i t^3 / 3 = 0.707 \times 2.450 \times 0.200^3 \div 3 = 0.005 \text{ m}^4$ Total =  $0.001 \text{ m}^4$ 


C) For I<sub>Y</sub>

| Item   | Area, A | У     | Ау                | d     | Ad <sup>2</sup> | I <sub>Y-Y</sub>  | $I_{Y} = I_{Y-Y} + Ad^{2}$ |
|--------|---------|-------|-------------------|-------|-----------------|-------------------|----------------------------|
| item   | (m²)    | (m)   | (m <sup>3</sup> ) | (m)   | (m⁴)            | (m <sup>4</sup> ) | (m⁴)                       |
| Girder | 0.508   | 1.225 | 0.622             | 0.000 | 0.000           | 0.021             | 0.021                      |
| Slab   | 0.346   | 1.225 | 0.424             | 0.000 | 0.000           | 0.173             | 0.173                      |
| Total  | 0.854   |       | 1.046             |       |                 |                   | 0.194                      |

D) For Iz

| Item   | Area, A | у     | Ау                | d     | Ad <sup>2</sup> | I <sub>z-z</sub> | $I_Z = I_{Z \cdot Z} + Ad^2$ |
|--------|---------|-------|-------------------|-------|-----------------|------------------|------------------------------|
| Item   | (m²)    | (m)   | (m <sup>3</sup> ) | (m)   | (m⁴)            | (m⁴)             | (m <sup>4</sup> )            |
| Girder | 0.508   | 0.629 | 0.319             | 0.341 | 0.059           | 0.108            | 0.167                        |
| Slab   | 0.346   | 1.470 | 0.509             | 0.500 | 0.087           | 0.001            | 0.088                        |
| Total  | 0.854   |       | 0.829             |       |                 |                  | 0.255                        |

#### **EXTERIOR GIRDER**



Effective flange width, b<sub>f</sub>: (minimum)

a) 1/4 span length =  $26.700 \div 4$  = 6.675 m b) 1/2 girder spacing + length of cantile =  $1.225 \div 1.500$  = 2.725 m c) Web width + 12 times slab thicknes =  $0.203 \div 12 \times 0.200$  = 2.603 m Use b<sub>f</sub> = 2.603 m

# A) Total Area (A<sub>X</sub>) for Weight Computation

Girder :  $= 0.508 \text{ m}^2$ Slab :  $b_f t = 2.603 \times 0.200$   $= 0.521 \text{ m}^2$ 

Haunch :  $= 0.000 \text{ m}^2$ 

Total =  $1.028 \text{ m}^2$ 

B) For  $I_X$ 

Girder:  $= 0.006 \text{ m}^4$ 

Slab :  $nb_1t^3/3 = 0.707 \times 2.603 \times 0.200^3 \div 3 = 0.005 \text{ m}^4$ 

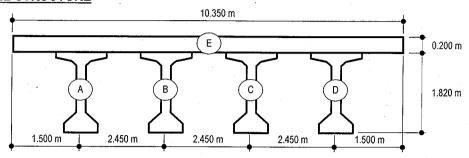
Total = **0.011** m<sup>4</sup>

C) For I<sub>Y</sub>

| Item   | Area, A | у     | Ау                | d     | Ad²               | l <sub>Y-Y</sub> | $I_{Y} = I_{Y-Y} + Ad^{2}$ |
|--------|---------|-------|-------------------|-------|-------------------|------------------|----------------------------|
| 116111 | (m²)    | (m)   | (m <sup>3</sup> ) | (m)   | (m <sup>4</sup> ) | (m⁴)             | (m⁴)                       |
| Girder | 0.508   | 1.500 | 0.762             | 0.083 | 0.004             | 0.021            | 0.024                      |
| Slab   | 0.368   | 1.302 | 0.479             | 0.115 | 0.005             | 0.208            | 0.213                      |
| Total  | 0.876   |       | 1.241             |       |                   |                  | 0.237                      |

D) For  $I_Z$ 

| Item   | Area, A | у .   | Ау    | d ·   | Ad²   | l <sub>z-z</sub> | $I_Z = I_{Z-Z} + Ad^2$ |
|--------|---------|-------|-------|-------|-------|------------------|------------------------|
| ILCIII | (m²)    | (m)   | (m³)  | (m)   | (m⁴)  | (m⁴)             | (m <sup>4</sup> )      |
| Girder | 0.508   | 0.629 | 0.319 | 0.354 | 0.063 | 0.108            | 0.172                  |
| Slab   | 0.368   | 1.470 | 0.541 | 0.488 | 0.088 | 0.001            | 0.089                  |
| Total  | 0.876   |       | 0.860 |       |       |                  | 0.260                  |


# **SECTION PROPERTIES - TYPE VI**

Modulus of elasticity of prestressed concrete girder,  $E_c$  Modulus of elasticity of reinforced concrete slab,  $E_{cs}$  Modular ratio,  $n = E_{cs} / E_c$ 

= 30653.90 Mpa = 21675.58 Mpa

0.707107

#### **WHOLE STRUCTURE**



#### A) Total Area (A<sub>X</sub>) for Weight Computation

 Girder
 :
 No. of girders  $x A_{girder} = 4 \times 0.709$  =
  $2.835 \text{ m}^2$  

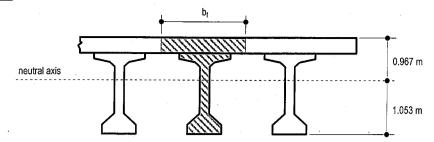
 Slab
 :
 bt =  $10.350 \times 0.200$  =
  $2.070 \text{ m}^2$  

 Haunch
 :
 No. of haunch  $x A_{haun} = 4 \times 0.000$  =
  $0.000 \text{ m}^2$ 

Total =  $4.905 \text{ m}^2$ 

B) For I<sub>X</sub>

Girder : No. of girders x  $I_X$  = 4 × 0.008 = 0.030 m<sup>4</sup> Slab : nbt<sup>3</sup> / 3 = 0.707 × 10.350 × 0.200<sup>3</sup> ÷ 3 = 0.020 m<sup>4</sup>


Total =  $0.050 \text{ m}^4$ 

#### C) For ly

| Item  | Area, A | У     | Ау     | d     | Ad²   | I <sub>Y-Y</sub> | $I_{Y} = I_{Y-Y} + Ad^{2}$ |
|-------|---------|-------|--------|-------|-------|------------------|----------------------------|
| Item  | (m²)    | (m)   | (m³)   | (m)   | (m⁴)  | (m⁴)             | (m⁴)                       |
| Α     | 0.709   | 8.850 | 6.273  | 3.675 | 9.573 | 0.027            | 9.599                      |
| В     | 0.709   | 6.400 | 4.536  | 1.225 | 1.064 | 0.027            | 1.090                      |
| С     | 0.709   | 3.950 | 2.800  | 1.225 | 1.064 | 0.027            | 1.090                      |
| D     | 0.709   | 1.500 | 1.063  | 3.675 | 9.573 | 0.027            | 9.599                      |
| E     | 1.464   | 5.175 | 7.575  | 0.000 | 0.000 | 13.066           | 13.066                     |
| Total | 4.299   |       | 22.247 |       |       |                  | 34.446                     |

| Item  | Area, A | У     | Ау    | d     | Ad <sup>2</sup> | I <sub>Z-Z</sub>  | $I_Z = I_{Z-Z} + Ad^2$ |
|-------|---------|-------|-------|-------|-----------------|-------------------|------------------------|
| пен   | (m²)    | (m)   | (m³)  | (m)   | (m⁴)            | (m <sup>4</sup> ) | (m <sup>4</sup> )      |
| Α     | 0.709   | 0.629 | 0.446 | 0.440 | 0.137           | 0.309             | 0.446                  |
| В     | 0.709   | 0.629 | 0.446 | 0.440 | 0.137           | 0.309             | 0.446                  |
| С     | 0.709   | 0.629 | 0.446 | 0.440 | 0.137           | 0.309             | 0.446                  |
| D     | 0.709   | 0.629 | 0.446 | 0.440 | 0.137           | 0.309             | 0.446                  |
| E     | 1.464   | 1.920 | 2.810 | 0.852 | 1.061           | 0.005             | 1.066                  |
| Total | 4.299   |       | 4.593 |       |                 |                   | 2.849                  |

#### **INTERIOR GIRDER**



Effective flange width, b<sub>f</sub>: (minimum)

a) 1/4 span length =  $26.700 \div 4$  = 6.675 m b) Center-to-center spacing of girde = 2.450 = 2.450 m c) Web width + 12 times slab thickr = 0.203 + 12 × 0.200 = 2.603 m

Use  $b_f = 2.450 \text{ m}$ 

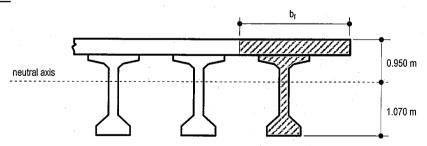
#### A) Total Area (A<sub>X</sub>) for Weight Computation

Girder :  $= 0.709 \text{ m}^2$ Slab :  $b_i t = 2.450 \times 0.200$   $= 0.490 \text{ m}^2$ Haunch :  $= 0.000 \text{ m}^2$ Total = 1.199 m<sup>2</sup>

B) For I<sub>X</sub>

Girder : =  $0.008 \text{ m}^4$ Slab :  $nb_1t^3/3 = 0.707 \times 2.450 \times 0.200^3 \div 3 = 0.005 \text{ m}^4$ 

Total =  $0.012 \text{ m}^4$ 


#### C) For I<sub>Y</sub>

| Item   | Area, A | У     | Ау    | d     | Ad²   | l <sub>Y-Y</sub> | $I_{Y} = I_{Y-Y} + Ad^{2}$ |
|--------|---------|-------|-------|-------|-------|------------------|----------------------------|
| Item   | (m²)    | (m)   | (m³)  | (m)   | (m⁴)  | (m⁴)             | (m <sup>4</sup> )          |
| Girder | 0.709   | 1.225 | 0.868 | 0.000 | 0.000 | 0.027            | 0.027                      |
| Slab   | 0.346   | 1.225 | 0.424 | 0.000 | 0.000 | 0,173            | 0.173                      |
| Total  | 1.055   |       | 1.293 |       |       |                  | 0.200                      |

#### D) For Iz

| Item   | Area, A | у     | Ау    | d     | Ad²   | I <sub>Z-Z</sub> | $I_Z = I_{Z-Z} + Ad^2$ |
|--------|---------|-------|-------|-------|-------|------------------|------------------------|
| Item   | (m²)    | (m)   | (m³)  | (m)   | (m⁴)  | (m⁴)             | (m⁴)                   |
| Girder | 0.709   | 0.629 | 0.446 | 0.424 | 0.127 | 0.309            | 0.436                  |
| Slab   | 0.346   | 1.920 | 0.665 | 0.867 | 0.261 | 0.001            | 0.262                  |
| Total  | 1.055   |       | 1.111 |       |       |                  | 0.698                  |

#### **EXTERIOR GIRDER**



Effective flange width, b<sub>f</sub>: (minimum)

a) 1/4 span length =  $26.700 \div 4$  = 6.675 mb) 1/2 girder spacing + length of cantile =  $1.225 \div 1.500$  = 2.725 mc) Web width + 12 times slab thicknes =  $0.203 \div 12 \times 0.200$  = 2.603 mUse  $\mathbf{b_f}$  = 2.603 m

# A) Total Area (A<sub>X</sub>) for Weight Computation

Girder  $0.709 \text{ m}^2$ 

Slab  $b_f t = 2.603 \times 0.200$  $0.521 \text{ m}^2$  $0.000 \, m^2$ Haunch:

1.229 m<sup>2</sup> Total =

B) For I<sub>X</sub>

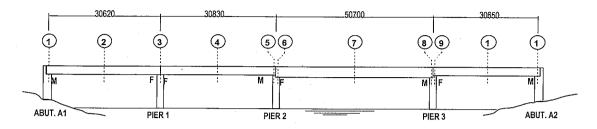
Girder  $0.008 \text{ m}^4$ 

Slab  $nb_{t}t^{3}/3 = 0.707 \times 2.603 \times 0.200^{3} \div 3$  $0.005 \text{ m}^4$ 

> 0.012 m<sup>4</sup> Total =

C) For l<sub>Y</sub>

| Item   | Area, A | у     | Ау                | d     | Ad²   | l <sub>Y-Y</sub> | $I_{Y} = I_{Y-Y} + Ad^{2}$ |
|--------|---------|-------|-------------------|-------|-------|------------------|----------------------------|
| item   | (m²)    | (m)   | (m <sup>3</sup> ) | (m)   | (m⁴)  | (m⁴)             | (m⁴)                       |
| Girder | 0.709   | 1.500 | 1.063             | 0.068 | 0.003 | 0.027            | 0.030                      |
| Slab   | 0.368   | 1.302 | 0.479             | 0.131 | 0.006 | 0.208            | 0.214                      |
| Total  | 1.077   |       | 1.542             |       |       |                  | 0.244                      |


D) For I<sub>z</sub>

| Item   | Area, A | У     | Ay                | d     | Ad <sup>2</sup> | l <sub>z-z</sub> | $I_Z = I_{Z-Z} + Ad^2$ |
|--------|---------|-------|-------------------|-------|-----------------|------------------|------------------------|
| Item   | (m²)    | (m)   | (m <sup>3</sup> ) | (m)   | (m⁴)            | (m⁴)             | (m <sup>4</sup> )      |
| Girder | 0.709   | 0.629 | 0.446             | 0.441 | 0.138           | 0.309            | 0.447                  |
| Slab   | 0.368   | 1.920 | 0.707             | 0.850 | 0.266           | 0.001            | 0.267                  |
| Total  | 1.077   |       | 1.153             |       |                 |                  | 0.714                  |

# APPENDIX 7.4.3-1 (10/14)

BRIDGE NAME : VARGAS BRIDGE (DOWNSTREAM)

#### **SECTION PROPERTIES**

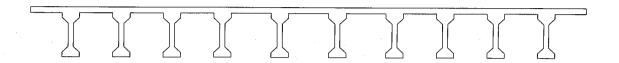


A.1 - SUPERSTRUCTURE (Interior Steel Girder)

|         |                       | (                  | COMPOSITE          | SECTION I | PROPERTIE | S                    | NON-COMPOSITE SECTION PROPERTIES |                    |                |         |                      | ALLOWABLE STRESSES |            |                        |
|---------|-----------------------|--------------------|--------------------|-----------|-----------|----------------------|----------------------------------|--------------------|----------------|---------|----------------------|--------------------|------------|------------------------|
| SECTION | LOCATION /<br>REMARKS | A <sub>gross</sub> | A <sub>shear</sub> | Сь        | Ct        | l <sub>bending</sub> | Agross                           | A <sub>shear</sub> | C <sub>b</sub> | Ct      | l <sub>bending</sub> | fy                 | QP (allow) | σ <sub>v</sub> (allow) |
|         |                       | (m²)               | (m²)               | (m)       | (m)       | (m⁴)                 | (m²)                             | (m²)               | (m)            | (m)     | (m⁴)                 | (MPa)              | (MPa)      | (MPa)                  |
| 1       | @ Abutment A1         | 0.09410            | 0.01339            | 1.54800   | 0.12600   | 0.02500              | 0.02210                          | 0.01339            | 0.81200        | 0.86200 | 0.00912              | 338.00             | 185.9      | 111.54                 |
| 2       | @ Midspan of Span 1   | - 0.10228          | 0.01358            | 1.48770   | 0.21030   | 0.03829              | 0.03028                          | 0.01358            | 0.75000        | 0.94800 | 0.01463              | 338.00             | 185.9      | 111.54                 |
| 3       | @ Pier 1              | 0.09410            | 0.01339            | 1.54800   | 0.12600   | 0.02500              | 0.02210                          | 0.01339            | 0.81200        | 0.86200 | 0.00912              | 338.00             | 185.9      | 111.54                 |
| 4       | @ Midspan of Span 2   | 0.10228            | 0.01358            | 1.48770   | 0.21030   | 0.03829              | 0.03028                          | 0.01358            | 0.75000        | 0.94800 | 0.01463              | 338.00             | 185.9      | 111.54                 |
| 5       | @ Pier 2 (left side)  | 0.09410            | 0.01339            | 1.54800   | 0.12600   | 0.02500              | 0.02210                          | 0.01339            | 0.81200        | 0.86200 | 0.00912              | 338.00             | 185.9      | 111.54                 |
| 6       | @ Pier 2 (right side) | 0.10164            | 0.02177            | 2.12900   | 0.29000   | 0.05976              | 0.02964                          | 0.02177            | 1.18200        | 1.23700 | 0.02200              | 338.00             | 185.9      | 111.54                 |
| 7       | @ Midspan of Span 3   | 0.13773            | 0.02219            | 1.88700   | 0.57800   | 0.14458              | 0.06576                          | 0.02219            | 1.14400        | 1.32100 | 0.07505              | 338.00             | 185.9      | 111.54                 |
| 8       | @ Pier 3 (left side)  | 0.10164            | 0.02177            | 2.12900   | 0.29000   | 0.05976              | 0.02964                          | 0.02177            | 1.18200        | 1.23700 | 0.02200              | 338.00             | 185.9      | 111.54                 |
| 9       | @ Pier 3 (right side) | 0.09410            | 0.01339            | 1.54800   | 0.12600   | 0.02500              | 0.02210                          | 0.01339            | 0.81200        | 0.86200 | 0.00912              | 338.00             | 185.9      | 111.54                 |
| 10      | @ Midspan of Span 4   | 0.10228            | 0.01358            | 1.48770   | 0.21030   | 0.03829              | 0.03028                          | 0.01358            | 0.75000        | 0.94800 | 0.01463              | 338.00             | 185.9      | 111.54                 |
| 11      | @ Abutment A2         | 0.09410            | 0.01339            | 1.54800   | 0.12600   | 0.02500              | 0.02210                          | 0.01339            | 0.81200        | 0.86200 | 0.00912              | 338.00             | 185.9      | 111.54                 |

|         |                       | (                  | COMPOSITE          | SECTION | PROPERTIE | s                    | NON-COMPOSITE SECTION PROPERTIES |                    |         |         |                   | ALLOWABLE STRESSES |                        |                        |
|---------|-----------------------|--------------------|--------------------|---------|-----------|----------------------|----------------------------------|--------------------|---------|---------|-------------------|--------------------|------------------------|------------------------|
| SECTION | LOCATION /<br>REMARKS | A <sub>gross</sub> | A <sub>shear</sub> | Сь      | Ct        | l <sub>bending</sub> | A <sub>gross</sub>               | A <sub>shear</sub> | Сь      | Cį      | bending           | fy                 | O <sub>b</sub> (allow) | σ <sub>v</sub> (allow) |
|         |                       | (m²)               | (m²)               | (m)     | (m)       | (m <sup>4</sup> )    | (m²)                             | (m²)               | (m)     | (m)     | (m <sup>4</sup> ) | (MPa)              | (MPa)                  | (MPa)                  |
| 1       | @ Abutment A1         | 0.09410            | 0.01339            | 1.54800 | 0.12600   | 0.02500              | 0.02210                          | 0.01339            | 0.81200 | 0.86200 | 0.00912           | 338.00             | 253.5                  | 152.1                  |
| 2       | @ Midspan of Span 1   | 0.10228            | 0.01358            | 1.48770 | 0.21030   | 0.03829              | 0.03028                          | 0.01358            | 0.75000 | 0.94800 | 0.01463           | 338.00             | 253.5                  | 152.1                  |
| 3       | @ Pier 1              | 0.09410            | 0.01339            | 1.54800 | 0.12600   | 0.02500              | 0.02210                          | 0.01339            | 0.81200 | 0.86200 | 0.00912           | 338.00             | 253.5                  | 152,1                  |
| 4       | @ Midspan of Span 2   | 0.10228            | 0.01358            | 1.48770 | 0.21030   | 0.03829              | 0.03028                          | 0.01358            | 0.75000 | 0.94800 | 0.01463           | 338.00             | 253.5                  | 152.1                  |
| 5       | @ Pier 2 (left side)  | 0.09410            | 0.01339            | 1.54800 | 0.12600   | 0.02500              | 0.02210                          | 0.01339            | 0.81200 | 0.86200 | 0.00912           | 338.00             | 253.5                  | 152.1                  |
| 6       | @ Pier 2 (right side) | 0.10164            | 0.02177            | 2.12900 | 0.29000   | 0.05976              | 0.02964                          | 0.02177            | 1.18200 | 1.23700 | 0.02200           | 338.00             | 253.5                  | 152.1                  |
| 7       | @ Midspan of Span 3   | 0.13773            | 0.02219            | 1.88700 | 0.57800   | 0.14458              | 0.06576                          | 0.02219            | 1.14400 | 1.32100 | 0.07505           | 338.00             | 253.5                  | 152.1                  |
| 8       | @ Pier 3 (left side)  | 0.10164            | 0.02177            | 2.12900 | 0.29000   | 0.05976              | 0.02964                          | 0.02177            | 1.18200 | 1.23700 | 0.02200           | 338.00             | 253.5                  | 152,1                  |
| 9       | @ Pier 3 (right side) | 0.09410            | 0.01339            | 1.54800 | 0.12600   | 0.02500              | 0.02210                          | 0.01339            | 0.81200 | 0.86200 | 0.00912           | 338.00             | 253.5                  | 152.1                  |
| 10      | @ Midspan of Span 4   | 0.10228            | 0.01358            | 1.48770 | 0.21030   | 0.03829              | 0.03028                          | 0.01358            | 0.75000 | 0.94800 | 0.01463           | 338.00             | 253.5                  | 152.1                  |
| 11      | @ Abutment A2         | 0.09410            | 0.01339            | 1.54800 | 0.12600   | 0.02500              | 0.02210                          | 0.01339            | 0.81200 | 0.86200 | 0.00912           | 338.00             | 253.5                  | 152.1                  |

A.2 - SUPERSTRUCTURE (Exterior Steel Girder)


|         |                       | (                  | COMPOSITE          | SECTION F | PROPERTIE | S                    | NON-COMPOSITE SECTION PROPERTIES |                    |         |         |                   | ALLOWABLE STRESSES |                        |                        |
|---------|-----------------------|--------------------|--------------------|-----------|-----------|----------------------|----------------------------------|--------------------|---------|---------|-------------------|--------------------|------------------------|------------------------|
| SECTION | LOCATION /<br>REMARKS | A <sub>gross</sub> | A <sub>shear</sub> | Ср        | Ct        | l <sub>bending</sub> | Agross                           | A <sub>shear</sub> | СЬ      | Ct      | bending           | fy                 | Q <sup>ρ</sup> (allow) | σ <sub>v</sub> (allow) |
|         |                       | (m²)               | (m²)               | (m)       | (m)       | (m <sup>4</sup> )    | (m²)                             | (m²)               | (m)     | (m)     | (m <sup>4</sup> ) | (MPa)              | (MPa)                  | (MPa)                  |
| 1       | @ Abutment A1         | 0.09410            | 0.01339            | 1.54800   | 0.12600   | 0.02500              | 0.02210                          | 0.01339            | 0.81200 | 0.86200 | 0.00912           | 338.00             | 185.9                  | 111.54                 |
| 2 .     | @ Midspan of Span 1   | 0.10228            | 0.01358            | 1.48770   | 0.21030   | 0.03829              | 0.03028                          | 0.01358            | 0.75000 | 0.94800 | 0.01463           | 338.00             | 185.9                  | 111.54                 |
| 3       | @ Pier 1              | 0.09410            | 0.01339            | 1.54800   | 0.12600   | 0.02500              | 0.02210                          | 0.01339            | 0.81200 | 0.86200 | 0.00912           | 338.00             | 185.9                  | 111.54                 |
| 4       | @ Midspan of Span 2   | 0.10228            | 0.01358            | 1.48770   | 0.21030   | 0.03829              | 0.03028                          | 0.01358            | 0.75000 | 0.94800 | 0.01463           | 338.00             | 185.9                  | 111.54                 |
| 5       | @ Pier 2 (left side)  | 0.09410            | 0.01339            | 1.54800   | 0.12600   | 0.02500              | 0.02210                          | 0.01339            | 0.81200 | 0.86200 | 0.00912           | 338.00             | 185.9                  | 111.54                 |
| 6       | @ Pier 2 (right side) | 0.10164            | 0.02177            | 2.12900   | 0.29000   | 0.05976              | 0.02964                          | 0.02177            | 1.18200 | 1.23700 | 0.02200           | 338.00             | 185.9                  | 111.54                 |
| 7       | @ Midspan of Span 3   | 0.13773            | 0.02219            | 1.88700   | 0.57800   | 0.14458              | 0.06576                          | 0.02219            | 1.14400 | 1.32100 | 0.07505           | 338.00             | 185.9                  | 111.54                 |
| 8       | @ Pier 3 (left side)  | 0.10164            | 0.02177            | 2.12900   | 0.29000   | 0.05976              | 0.02964                          | 0.02177            | 1.18200 | 1.23700 | 0.02200           | 338.00             | 185.9                  | 111.54                 |
| 9 .     | @ Pier 3 (right side) | 0.09410            | 0.01339            | 1.54800   | 0.12600   | 0.02500              | 0.02210                          | 0.01339            | 0.81200 | 0.86200 | 0.00912           | 338.00             | 185.9                  | 111.54                 |
| 10      | @ Midspan of Span 4   | 0.10228            | 0.01358            | 1.48770   | 0.21030   | 0.03829              | 0.03028                          | 0.01358            | 0.75000 | 0.94800 | 0.01463           | 338.00             | 185.9                  | 111.54                 |
| 11      | @ Abutment A2         | 0.09410            | 0.01339            | 1.54800   | 0.12600   | 0.02500              | 0.02210                          | 0.01339            | 0.81200 | 0.86200 | 0.00912           | 338.00             | 185.9                  | 111.54                 |

|         |                       | (       | COMPOSITE          | SECTION I | PROPERTIE | s                    | NO                 | N-COMPOS           | ITE SECTIO | N PROPER | TIES              | ALLOWABLE STRESSES |                        |                        |
|---------|-----------------------|---------|--------------------|-----------|-----------|----------------------|--------------------|--------------------|------------|----------|-------------------|--------------------|------------------------|------------------------|
| SECTION | LOCATION /<br>REMARKS | Agross  | A <sub>shear</sub> | Ср        | Ct        | l <sub>bending</sub> | A <sub>gross</sub> | A <sub>shear</sub> | Сь         | Ct       | [bending          | fy                 | σ <sub>b</sub> (allow) | σ <sub>v</sub> (allow) |
|         |                       | (m²)    | (m²)               | (m)       | (m)       | (m⁴)                 | (m²)               | (m²)               | (m)        | (m)      | (m <sup>4</sup> ) | (MPa)              | (MPa)                  | (MPa)                  |
| 1       | @ Abutment A1         | 0.09410 | 0.01339            | 1.54800   | 0.12600   | 0.02500              | 0.02210            | 0.01339            | 0.81200    | 0.86200  | 0.00912           | 338.00             | 253.5                  | 152.1                  |
| 2       | @ Midspan of Span 1   | 0.10228 | 0.01358            | 1.48770   | 0.21030   | 0.03829              | 0.03028            | 0.01358            | 0.75000    | 0.94800  | 0.01463           | 338.00             | 253.5                  | 152.1                  |
| 3       | @ Pier 1              | 0.09410 | 0.01339            | 1.54800   | 0.12600   | 0.02500              | 0.02210            | 0.01339            | 0.81200    | 0.86200  | 0.00912           | 338.00             | 253.5                  | 152.1                  |
| 4       | @ Midspan of Span 2   | 0.10228 | 0.01358            | 1.48770   | 0.21030   | 0.03829              | 0.03028            | 0.01358            | 0.75000    | 0.94800  | 0.01463           | 338.00             | 253.5                  | 152.1                  |
| 5       | @ Pier 2 (left side)  | 0.09410 | 0.01339            | 1.54800   | 0.12600   | 0.02500              | 0.02210            | 0.01339            | 0.81200    | 0.86200  | 0.00912           | 338.00             | 253.5                  | 152.1                  |
| 6       | @ Pier 2 (right side) | 0.10164 | 0.02177            | 2.12900   | 0.29000   | 0.05976              | 0.02964            | 0.02177            | 1.18200    | 1.23700  | 0.02200           | 338.00             | 253.5                  | 152.1                  |
| 7       | @ Midspan of Span 3   | 0.13773 | 0.02219            | 1.88700   | 0.57800   | 0.14458              | 0.06576            | 0.02219            | 1.14400    | 1.32100  | 0.07505           | 338.00             | 253.5                  | 152.1                  |
| 8       | @ Pier 3 (left side)  | 0.10164 | 0.02177            | 2.12900   | 0.29000   | 0.05976              | 0.02964            | 0.02177            | 1.18200    | 1.23700  | 0.02200           | 338.00             | 253.5                  | 152.1                  |
| 9       | @ Pier 3 (right side) | 0.09410 | 0.01339            | 1.54800   | 0.12600   | 0.02500              | 0.02210            | 0.01339            | 0.81200    | 0.86200  | 0.00912           | 338.00             | 253.5                  | 152.1                  |
| 10      | @ Midspan of Span 4   | 0.10228 | 0.01358            | 1.48770   | 0.21030   | 0.03829              | 0.03028            | 0.01358            | 0.75000    | 0.94800  | 0.01463           | 338.00             | 253.5                  | 152.1                  |
| 11      | @ Abutment A2         | 0.09410 | 0.01339            | 1.54800   | 0.12600   | 0.02500              | 0.02210            | 0.01339            | 0.81200    | 0.86200  | 0.00912           | 338.00             | 253.5                  | 152.1                  |

#### **APPENDIX 7.4.3-1 (11/14)**

#### **BRIDGE NAME: ROSARIO BRIDGE**

#### **SECTION PROPERTIES**



Area:

12252000.0000

Perimeter:

85396.4502

Bounding box:

X: -1001.3459 -- 20758.6541

Y: 4354.4067 -- 6474.4067

Centroid:

X: 9878.6541

Y: 5760.0564

Moments of inertia: X: 4.1286E+14

Y: 1657227907488009

Product of inertia: XY: 6.9716E+14

Radii of gyration: X: 5804.9391

Y: 11630.2118

Principal moments and X-Y directions about centroid:

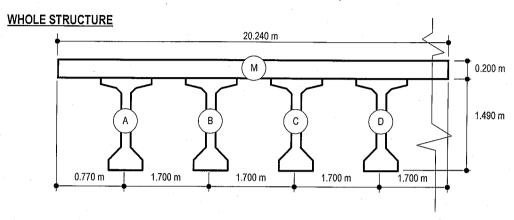
I: 6.3596E+12 along [1.0000 0.0000]

J: 4.6158E+14 along [0.0000 1.0000]

#### **APPENDIX 7.4.3-1 (12/14)**

#### **BRIDGE NAME: MARCOS BRIDGE**

#### **SECTION PROPERTIES**


Modulus of elasticity of prestressed concrete girder,  $E_{c}$  Modulus of elasticity of reinforced concrete slab,  $E_{cs}$ 

Modular ratio,  $n = E_{cs} / E_{c}$ 

= 27983.06 Mpa

= 21675.58 Mpa

= 0.774597



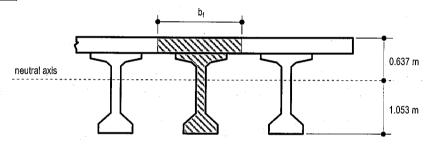
#### A) Total Area (A<sub>X</sub>) for Weight Computation

Girder : No. of girders  $\times$  A<sub>girder</sub> = 12  $\times$  0.535 = 6.414 m<sup>2</sup> Slab : bt = 20.240  $\times$  0.200 = 4.048 m<sup>2</sup> Haunch : No. of haunch  $\times$  A<sub>haun</sub> = 12  $\times$  0.500 = 6.000 m<sup>2</sup>

Total =  $16.462 \text{ m}^2$ 

B) For I<sub>X</sub>

Girder : No. of girders x  $I_X$  = 12 × 0.007 = 0.078  $m^4$  Slab :  $nbt^3/3 = 0.775 \times 20.240 \times 0.200^3 \div 3 = 0.042 m^4$  Total = 0.120  $m^4$ 


#### C) For iy

| Item  | Area, A | У      | Ay     | d     | Ad <sup>2</sup> | l <sub>Y-Y</sub> | $I_{Y} = I_{Y \cdot Y} + Ad^{2}$ |
|-------|---------|--------|--------|-------|-----------------|------------------|----------------------------------|
| HOIT  | (m²)    | (m)    | (m³)   | (m)   | (m⁴)            | (m⁴)             | (m⁴)                             |
| Α     | 0.535   | 19.470 | 10.407 | 9.350 | 46.728          | 0.020            | 46.748                           |
| В     | 0.535   | 17.770 | 9.498  | 7.650 | 31.281          | 0.020            | 31.301                           |
| С     | 0.535   | 16.070 | 8.589  | 5.950 | 18.923          | 0.020            | 18.943                           |
| D     | 0.535   | 14.370 | 7.681  | 4.250 | 9.654           | 0.020            | 9.675                            |
| E     | 0.535   | 12.670 | 6.772  | 2.550 | 3.476           | 0.020            | 3.496                            |
| F     | 0.535   | 10.970 | 5.864  | 0.850 | 0.386           | 0.020            | 0.407                            |
| G     | 0.535   | 9.270  | 4.955  | 0.850 | 0.386           | 0.020            | 0.407                            |
| H     | 0.535   | 7.570  | 4.046  | 2.550 | 3.476           | 0.020            | 3.496                            |
|       | 0.535   | 5.870  | 3.138  | 4.250 | 9.654           | 0.020            | 9.675                            |
| J     | 0.535   | 4.170  | 2.229  | 5.950 | 18.923          | 0.020            | 18.943                           |
| K     | 0.535   | 2.470  | 1.320  | 7.650 | 31.281          | 0.020            | 31.301                           |
| L     | 0.535   | 0.770  | 0.412  | 9.350 | 46.728          | 0.020            | 46.748                           |
| M     | 3.136   | 10.120 | 31.732 | 0.000 | 0.000           | 107.042          | 107.042                          |
| Total | 9.550   |        | 96.642 |       |                 |                  | 328.182                          |

#### D) For Iz

| Item  | Area, A | У     | Ау     | d     | Ad²   | l <sub>z-z</sub> | $I_Z = I_{Z-Z} + Ad^2$ |
|-------|---------|-------|--------|-------|-------|------------------|------------------------|
| Item  | (m²)    | (m)   | (m³)   | (m)   | (m⁴)  | (m⁴)             | (m <sup>4</sup> )      |
| A     | 0.535   | 0.789 | 0.422  | 0.263 | 0.037 | 0.145            | 0.182                  |
| В     | 0.535   | 0.789 | 0.422  | 0.263 | 0.037 | 0.145            | 0.182                  |
| С     | 0.535   | 0.789 | 0.422  | 0.263 | 0.037 | 0.145            | 0.182                  |
| D     | 0.535   | 0.789 | 0.422  | 0.263 | 0.037 | 0.145            | 0.182                  |
| E     | 0.535   | 0.789 | 0.422  | 0.263 | 0.037 | 0.145            | 0.182                  |
| F     | 0.535   | 0.789 | 0.422  | 0.263 | 0.037 | 0.145            | 0.182                  |
| G     | 0.535   | 0.789 | 0.422  | 0.263 | 0.037 | 0.145            | 0.182                  |
| Н     | 0.535   | 0.789 | 0.422  | 0.263 | 0.037 | 0.145            | 0.182                  |
|       | 0.535   | 0.789 | 0.422  | 0.263 | 0.037 | 0.145            | 0.182                  |
| J     | 0.535   | 0.789 | 0.422  | 0.263 | 0.037 | 0.145            | 0.182                  |
| K     | 0.535   | 0.789 | 0.422  | 0.263 | 0.037 | 0.145            | 0.182                  |
| L     | 0.535   | 0.789 | 0.422  | 0.263 | 0.037 | 0.145            | 0.182                  |
| E     | 3.136   | 1.590 | 4.986  | 0.538 | 0.907 | 0.010            | 0.918                  |
| Total | 9.550   |       | 10.047 |       |       |                  | 3.100                  |

# **ONE PIECE GIRDER**



Effective flange width, b<sub>f</sub>: (minimum)

a) 1/4 span length =  $30.000 \div 4$  = 7.500 m

b) Center-to-center spacing of girde = 1.700 = 1.700 m

c) Web width + 12 times slab thickr =  $0.203 + 12 \times 0.200 = 2.603 \text{ m}$ Use b<sub>f</sub> = 1.700 m

A) Total Area (A<sub>X</sub>) for Weight Computation

Girder:  $= 0.535 \text{ m}^2$ 

Slab :  $b_f t = 1.700 \times 0.200$  = 0.340 m<sup>2</sup>

Haunch :  $= 0.500 \text{ m}^2$ 

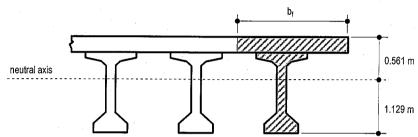
Total =  $1.375 \text{ m}^2$ 

B) For  $I_X$ 

Girder :  $= 0.007 \text{ m}^4$ 

Slab :  $nb_1t^3/3 = 0.775 \times 1.700 \times 0.200^3 \div 3 = 0.004 \text{ m}^4$ 

 $Total = 0.010 \text{ m}^4$ 


C) For I<sub>Y</sub>

| Item   | Area, A | у     | Ау    | d     | Ad²   | lyy   | $I_{Y} = I_{Y-Y} + Ad^2$ |
|--------|---------|-------|-------|-------|-------|-------|--------------------------|
| item   | (m²)    | (m)   | (m³)  | (m)   | (m⁴)  | (m⁴)  | (m <sup>4</sup> )        |
| Girder | 0.535   | 0.850 | 0.454 | 0.000 | 0.000 | 0.020 | 0.020                    |
| Slab   | 0.263   | 0.850 | 0.224 | 0.000 | 0.000 | 0.063 | 0.063                    |
| Total  | 0.798   |       | 0.678 |       |       |       | 0.084                    |

D) For Iz

| Item   | Area, A | У     | Ау    | d     | Ad²   | l <sub>z-z</sub> | $I_Z = I_{Z-Z} + Ad^2$ |
|--------|---------|-------|-------|-------|-------|------------------|------------------------|
| Item   | (m²)    | (m)   | (m³)  | (m)   | (m⁴)  | (m⁴)             | (m <sup>4</sup> )      |
| Girder | 0.535   | 0.789 | 0.422 | 0.264 | 0.037 | 0.145            | 0.182                  |
| Slab   | 0.263   | 1.590 | 0.419 | 0.537 | 0.076 | 0.001            | 0.077                  |
| Total  | 0.798   |       | 0.841 |       |       |                  | 0.259                  |

# **EXTERIOR GIRDER**



Effective flange width, b<sub>f</sub>: (minimum)

a) 1/4 span length 30.000 4 7.500 m b) 1/2 girder spacing + length of cantile = 0.850 1.700 2.550 m c) Web width + 12 times slab thicknes: = 0.203 12 0.200 2.603 m

Use b<sub>f</sub> 2.550 m

A) Total Area (A<sub>X</sub>) for Weight Computation

Girder  $0.535 \text{ m}^2$ Slab  $b_f t = 2.550 \times 0.200$  $0.510 \text{ m}^2$ =

Haunch:  $0.500 \text{ m}^2$ 

1.545 m<sup>2</sup> Total =

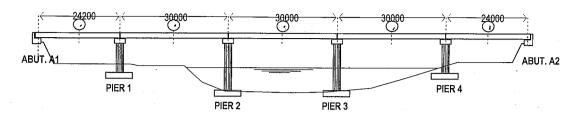
B) For I<sub>X</sub>

Girder 0.007 m<sup>4</sup> Slab

 $nb_{t}t^{3}/3 = 0.775$ 0.005 m<sup>4</sup> 2.550

> 0.012 m<sup>4</sup> Total =

C) For I<sub>Y</sub>


| Item   | Area, A | У           | Ау                | d     | Ad²               | I <sub>Y-Y</sub> | $I_{Y} = I_{Y-Y} + Ad^{2}$ |
|--------|---------|-------------|-------------------|-------|-------------------|------------------|----------------------------|
| iteiii | (m²)    | <u>(</u> m) | (m <sup>3</sup> ) | (m)   | (m <sup>4</sup> ) | (m⁴)             | (m <sup>4</sup> )          |
| Girder | 0.535   | 1.700       | 0.909             | 0.181 | 0.017             | 0.020            | 0.038                      |
| Slab   | 0.395   | 1.275       | 0.504             | 0.244 | 0.024             | 0.214            | 0.238                      |
| Total  | 0.930   |             | 1.412             |       |                   |                  | 0.276                      |

| Item   | Area, A | У     | Ау                | d     | Ad <sup>2</sup> | I <sub>Z-Z</sub> | $I_Z = I_{Z-Z} + Ad^2$ |
|--------|---------|-------|-------------------|-------|-----------------|------------------|------------------------|
| Item   | (m²)    | (m)   | (m <sup>3</sup> ) | (m)   | (m⁴)            | (m⁴)             | (m <sup>4</sup> )      |
| Girder | 0.535   | 0.789 | 0.422             | 0.340 | 0.062           | 0.145            | 0.207                  |
| Slab   | 0.395   | 1.590 | 0.628             | 0.461 | 0.084           | 0.001            | 0.085                  |
| Total  | 0.930   |       | 1.050             |       |                 |                  | 0.292                  |

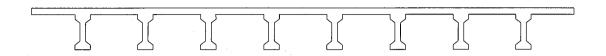
# APPENDIX 7.4.3-1 (13/14)

#### **BRIDGE NAME: MARIKINA BRIDGE**

#### **SECTION PROPERTIES**



A - SUPERSTRUCTURE (AASHTO GIRDER)


| SECTION | LOCATION / REMARKS  | COMPOSITE SECTION PROPERTIES |                |       |         | NO. OF<br>TENDONS                        |                    | ALLOWABLE STRESSES @ SERVICE |               |
|---------|---------------------|------------------------------|----------------|-------|---------|------------------------------------------|--------------------|------------------------------|---------------|
|         |                     | A <sub>gross</sub>           | C <sub>b</sub> | Ct    | bending | (Grade 270)<br>12-12.7mm dia<br>per duct | TENDON ECC.<br>(m) | COMPRESSION (Mpa)            | TENSION (Mpa) |
|         |                     | (m²)                         | (m)            | (m)   | (m⁴)    |                                          |                    |                              |               |
| 1       | @ Midspan of Span 1 | 0.70150                      | 0.998          | 0.422 | 0.22204 | 3                                        | 0.848              | 21.00                        | 2.95          |
| 2       | @ Midspan of Span 2 | 0.70150                      | 0.998          | 0.422 | 0.22204 | 3                                        | 0.898              | 21.00                        | 2.95          |
| 3       | @ Midspan of Span 3 | 0.70150                      | 0.998          | 0.422 | 0.22204 | 3                                        | 0.898              | 21.00                        | 2.95          |
| 4       | @ Midspan of Span 4 | 0.70150                      | 0.998          | 0.422 | 0.22204 | 3                                        | 0.898              | 21.00                        | 2.95          |
| 5       | @ Midspan of Span 5 | 0.70150                      | 0.998          | 0.422 | 0.22204 | 3                                        | 0.848              | 21.00                        | 2.95          |

| SECTION | LOCATION / REMARKS  | COMPOSITE SECTION PROPERTIES |       |                |                      | NO. OF<br>TENDONS            |       | ALLOWABLE STRESSES @ SERVICE |               |
|---------|---------------------|------------------------------|-------|----------------|----------------------|------------------------------|-------|------------------------------|---------------|
|         |                     | $A_{gross}$                  | Сь    | c <sub>t</sub> | l <sub>bending</sub> | (Grade 270)<br>12-12.7mm dia | (m)   | COMPRESSION (Mpa)            | TENSION (Mpa) |
|         |                     | (m²)                         | (m)   | (m)            | (m <sup>4</sup> )    | per duct                     |       |                              |               |
| 1       | @ Midspan of Span 1 | 0.70150                      | 0.998 | 0.422          | 0.22204              | 3                            | 0.848 | 21.00                        | 2.95          |
| 2       | @ Midspan of Span 2 | 0.70150                      | 0.998 | 0.422          | 0.22204              | 3                            | 0.898 | 21.00                        | 2.95          |
| 3       | @ Midspan of Span 3 | 0.70150                      | 0.998 | 0.422          | 0.22204              | 3                            | 0.898 | 21.00                        | 2.95          |
| 4       | @ Midspan of Span 4 | 0.70150                      | 0.998 | 0.422          | 0.22204              | 3                            | 0.898 | 21.00                        | 2.95          |
| 5       | @ Midspan of Span 5 | 0.70150                      | 0.998 | 0.422          | 0.22204              | 3                            | 0.848 | 21.00                        | 2.95          |

#### **APPENDIX 7.4.3-1 (14/14)**

#### **BRIDGE NAME: SAN JOSE BRIDGE**

#### **SECTION PROPERTIES**



Area:

8580724.0000

Perimeter:

64324.8964

Bounding box:

X: -601.5497 -- 18998.4503

Y: -7.6254 -- 1613.3746

Centroid:

X: 9204.8821

Y: 1140.5379

Moments of inertia: X: 1.3374E+13

Y: 9.8368E+14

Y: 10706.9471

Product of inertia: XY: 9.0064E+13

Radii of gyration: X: 1248.4562

Principal moments and X-Y directions about centroid:

I: 2.2122E+12 along [1.0000 -0.0001]

J: 2.5664E+14 along [0.0001 1.0000]