

THE STUDY ON THE IMPROVEMENT OF EXISTING BRIDGES ALONG PASIG RIVER AND MARIKINA RIVER IN THE REPUBLIC OF THE PHILIPPINES

FINAL REPORT MAIN TEXT (2/3)

JULY 2004

KATAHIRA & ENGINEERS INTERNATIONAL

CTI ENGINEEDING INTERNATIONAL CO. LTD.

PREFACE

In response to a request from the Government of the Republic of the Philippines, the Government of

Japan decided to conduct the Study on the Improvement of Existing Bridges along Pasig River and

Marikina River in the Republic of the Philippines and entrusted the study to the Japan International

Cooperation Agency (JICA).

JICA dispatched a study team headed by Mr. Tsuneo Bekki of Katahira & Engineers International, and

consisting of Katahira & Engineers International CTI Engineering International Co. LTD., to the

Republic of the Philippines, five times between October 2002 and June 2004.

The team held discussions with the officials concerned in the Government of the Republic of the

Philippines, and conducted field surveys on eighteen bridges (seventeen bridges: existing bridges, one

bridge: a new bridge). Upon returning to Japan, the team prepared this report.

I hope that this report will contribute to the improvement of the bridges in the Republic of the

Philippines and to the enhancement of friendly relations between our two countries.

Finally, I wish to express my sincere appreciation to the officials of the Government and those

concerned in the Republic of the Philippines for the close cooperation they extended to the study.

July 2004

Kazuhisa Matsuoka

Vice President

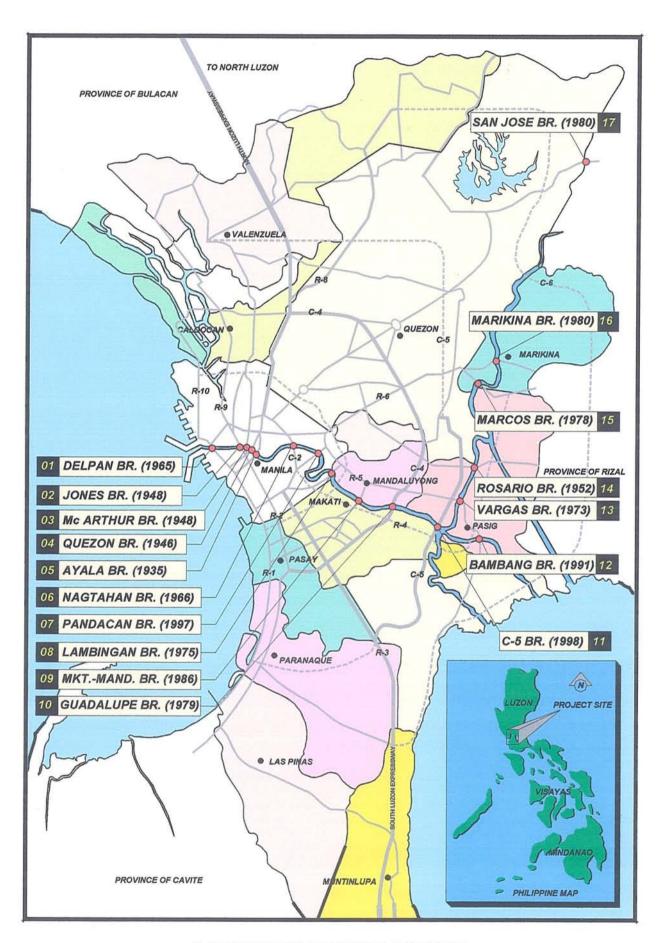
Japan International Cooperation Agency

Mr. Kazuhisa Matsuoka Vice President Japan International Cooperation Agency Tokyo, Japan

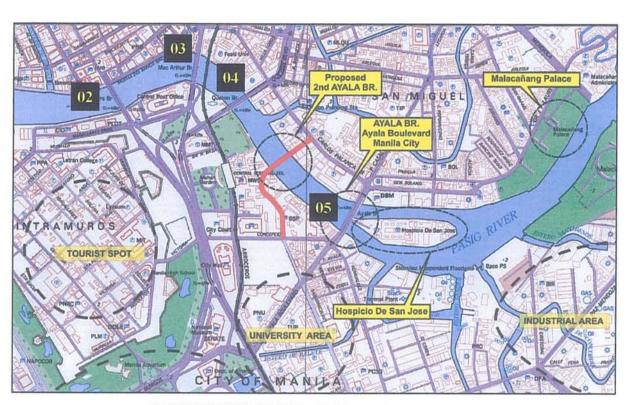
July 2004

Dear Mr. Matsuoka,

Letter of Transmittal

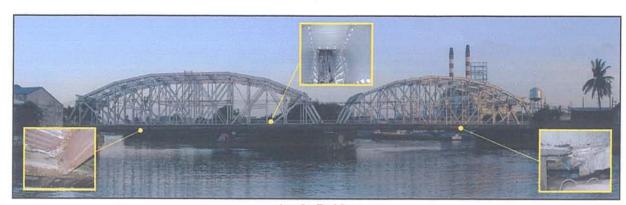

We are pleased to submit to you the report of "The Study on the Improvement of Existing Bridges along Pasig River and Marikina River in the Republic of the Philippines". The report includes the advises and suggestions of the authorities concerned of the Government of Japan and your agency as well as the comments made by the Department of Public Works and Highways and other authorities concerned in the Republic of the Philippines.

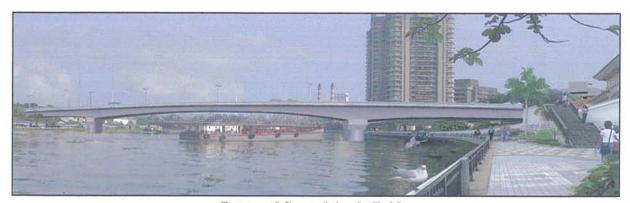
This report studies and analyses the condition of seriously and heavily damaged and deteriorated existing seventeen (17) bridges along Pasig River and Marikina River and presents the improvement works of these bridges. The report also studies the construction of new bridge in line with improvement of traffic function of Ayala Bridge. Moreover, this report proposed the urgent improvement works of seven (7) bridges (existing six (6) bridges and new construction of one (1) bridge) to be implemented in the period 2004 – 2010. The Study concludes that these projects are technically, economically, financially and environmentally viable and will contribute the socio-economic development in Metro Manila. In view of the urgency of improving bridges in Metro Manila, we recommend the Government of the Philippines to implement the projects with top priority.


We wish to take this opportunity to express our sincere gratitude to your agency, the Ministry of Foreign Affairs and the Ministry of Land, Infrastructure and Transport. We also wish to express our deep gratitude to the Governmental Agencies concerned in the Republic of the Philippines for the close cooperation and assistance extended to us during the Study. We hope this report will contribute to the development of Metro Manila.

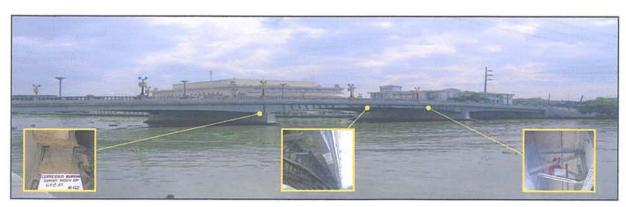
Very truly yours,

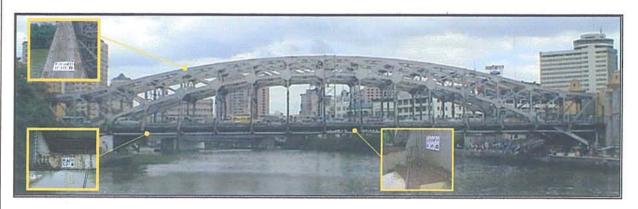
Mr. Tsuneo BEKKI
Team Leader
of the Study on the Improvement of Existing Bridges
along Pasig River and Marikina River
in the Republic of the Philippines

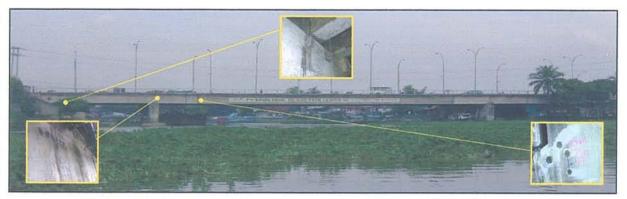

LOCATION MAP OF THE PROJECT


VICINITY OF PROPOSED SECOND AYALA BRIDGE

- 02 JONES BRIDGE (1948)
- 03 Mc ARTHUR BRIDGE (1948)
- 04 QUEZON BRIDGE (1946)
- 05 AYALA BRIDGE (1935)


PHOTOGRAPH OF MAIN BRIDGES


Ayala Bridge


Proposed Second Ayala Bridge

Jones Bridge

Quezon Bridge

Lambingan Bridge

Guadalupe Quezon

Vargas Bridge

TABLE OF CONTENTS

Location Map List of Tables List of Figures Abbreviations

PART I GENERAL

Chapter 1	INTRODUCTION	1-1			
Chapter 2	PROFILE OF THE STUDY AREA	2-1			
Chapter 3	BRIDGE ADMINISTRATION AND ENGINEERING				
Chapter 4	SOCIAL CONDITION SURVEY	4-1			
Chapter 5	TRAFFIC SURVEY AND ANALYSIS	5-1			
	PART II MASTER PLAN				
Chapter 6	METHODOLOGY FOR BRIDGE CONDITION SURVEY AND ASSESSMENT	6-1			
Chapter 7	BRIDGE CONDITION SURVEY AND DESIGN PRESUMPTION	7-1			
Chapter 8	OVERALL EVALUATION OF BRIDGE CONDITION	8-1			
Chapter 9	COMPARATIVE STUDY ON IMPROVEMENT MEASURES	9-1			
Chapter 10	PROTECTION MEASURES AGAINST EARTHQUAKE	10-1			
Chapter 11	PREVENTION MEASURES AGAINST VESSEL COLLISION	11-1			
Chapter 12	OVERALL IMPLEMENTATION PLAN	12-1			
PART		N			
Chapter 13	DETAILED BRIDGE SURVEY AND ASSESSMENT	10.1			
13.1	Review of Design and Repair Works	13-1			
	13.1.1 Review of Design	13-1 13-3			
	13.1.3 Historical Background	13-5			
13.2	Natural Condition Survey				
	13.2.1 Topographic Survey	13-8			
	13.2.2 Geotechnical Survey	13-9			
	13.2.3 Scour Survey	13-10			
13.3	Bridge Condition Survey and Identification of Damages	13-11			
	13.3.1 Measurement of Shapes and Dimensions	13-11			
	13.3.2 Close-Up Visual Inspection	13-15			
	13.3.3 Non-Destructive Test of Material	13-17			
	13.3.4 Static Load Test of Superstructure	13-19			
	13.3.5 Microtremor Measurement Survey	13-22			

	13.3.6 Impact Vibration Test of Substructure	13-
	13.3.7 Assessment of Critical Damages	13-
13.4	Presumption of Original Design and Load Rating	13-
	13.4.1 Objective	13-
	13.4.2 Structural Shapes and Dimensions	13-
	13.4.3 Load Rating	13-
13.5	Traffic Condition	13-
13.3	13.5.1 Traffic Condition on Ayala Bridge	13-
12.6	J	13-
13.6	Vulnerability to Disaster	13-
	13.6.1 Earthquake	13-
	13.6.2 Wind	13-
	13.6.3 Flood	13-
13.7	Special Issues	13-
	13.7.1 Vessel Collision	13-
	13.7.2 Utilities	13-
	13.7.3 Informal Settlers	13-
13.8	Overall Assessment of Existing Condition	13-
	o recommend of Zandaning Condition	10
Chapter 14	COMPARATIVE STUDY ON IMPROVEMENT MEASURES	
14.1	Policy for Improvement	14-
17.1		
		14-
110		
14.2	Proposition of Highly Possible Improvement Measures	14.
	14.2.1 Possible Improvement Measures	14-
		14-
	14.2.3 Evaluation Method and Results	14-
	14.2.4 Result of Evaluation	14-
14.3	Lifecycle Cost Analysis of the Ayala Bridge	14-
	14.3.1 Procedure	14-
		14-
	14.3.3 Improvement Schemes and Cost Estimate	14-
	14.3.4 Lifecycle Cost Analysis Model	
	14.3.5 Assumption of Extended Service Life of Improved Bridge	14-
	14.3.6 Calculation of the Lifecycle Cost of the Ayala Bridge	14-
14.4	Recommendation	14-
17.7	Recommendation	1 4 -
Chapter 15	PRELIMINARY DESIGN AND COST ESTIMATE	
15.1		15-
1.7.1	15.1.1 Bridge Design	15- 15-
	<i>y</i> = <i>y</i> = <i>y</i> =	15-
170	U	15-
15.2		15-
		15-
	1	15-
		15-
15.3	Highway Design	15-
		15-
		15-
	15.3.3 Intersections Design	
	٠	

	15.3.4	Access Road to Hospicio De San Jose	15-1
15.4	Protect:	ion for Vessel Collision	15-18
15.5	Constru	uction Plan and Traffic Management	15-19
	15.5.1	Superstructure	
	15.5.2	Substructure	
	15.5.3	Traffic Management Under Improvement Works	
15.6		inary Cost Estimate	15-2
13.0	15.6.1	Construction Cost.	
	15.6.2	Road Right-Of-Way Acquisition Cost	
	15.6.3		
	15.6.4	Engineering Cost	
157		Project Cost	15-33
15.7		nance Plan	15-35
	15.7.1	Budgetary Consideration	
	15.7.2	Recommendation	15-35
Chapter 16	ТРАГЕ	TIC ANALYSIS AND ECONOMIC EVALUATION	
16.1			16-1
10.1	16.1.1	Analysis	10-1
	16.1.1	Traffic Assignment	16-2
16.2		Result of Traffic Method	
10.2		nic Evaluation	
	16.2.1	Presumptions	
	16.2.2	Project Costs	16-6
	16.2.3	Estimation of Benefits	
	16.2.4	Economic Evaluation	16-8
Chapter 17		ONMENTAL IMPACT ASSESSMENT	
17.1		or Assessment of Environmental Impact	
	17.1.1	General Geology	
	17.1.2	Water Quality and Limnology	
	17.1.3	Air Quality	
	17.3.4	Noise Level	
17.2	Identific	ed Impacts and Mitigating Measures	
	17.2.1	Predicted Impacts and Mitigating Measures	17-9
	17.2.2	Perceived Impacts of the Project	17-14
17.3	Social A	Acceptability	
17.4	Resettle	ement Plan for Affected People	17-17
	17.4.1	Project Affected People	17-17
	17.4.2	Socio Economic Profile of Affected People	17-17
	17.4.3	Other Stakeholders of Ayala Bridge	17-19
	17.4.4	Social Development Program	17-22
Chapter 18		CT IMPLEMENTATION	
18.1	Implem	entation Plan	18-1
	18.1.1	Implementation Policy	18-1
	18.1.2	Outline of the Project	18-1
	18.1.3	Project Costs	
	18.1.4	Implementation Schedule	18-3
18.2		Load Limitation Plan	18-5
	18.2.1	Traffic Analysis	18-5
	18.2.2	Traffic Management Measure	

PART IV FEASIBILITY STUDY ON SELECTED BRIDGES

Chapter 19	FEASIBILITY STUDY OF THE SECOND AYALA BRIDGE CONSTRUCTION PLAN	19-1
Chapter 20	FEASIBILITY STUDY OF JONES BRIDGE REHABILITATION PLAN	20-1
Chapter 21	FEASIBILITY STUDY OF QUEZON BRIDGE REHABILITATION PLAN	21-1
Chapter 22	FEASIBILITY STUDY OF LAMBINGAN BRIDGE REHABILITATION PLAN	22-1
Chapter 23	FEASIBILITY STUDY OF GUADALUPE BRIDGE REHABILITATION PLAN	23-1
Chapter 24	FEASIBILITY STUDY OF VARGAS BRIDGE REHABILITATION PLAN	24-1
	·	
	PART V IMPLEMENTATION AND CONCLUSION	
Chapter 25	PROJECT IMPLEMENTATION	25-1
Chapter 26	CONCLUSIONS AND RECOMMENDATIONS	26-1

<u>List of Tables</u>		Page
Chapter 13	DETAILED BRIDGE SURVEY AND ASSESSMENT	
Table 13.2.1-1	Scope of Work	13-9
13.3.1-1	List of Drawings	
13.3.2-1	Damage Rating of Main Members by Close-Up Visual Inspection	13-17
13.3.3-1	Results of Non-Destructive Test	13-19
13.3.5-1	Most Probable Natural Frequencies	
13.3.6-1	Summary of Vibration Data	
13.3.6-2	Results of Eigenvalue Analysis	
13.3.6-3	Criteria for Substructure Soundness	
13.3.6-4	Rating Index of Test Result	
13.3.7-1	Evaluation of Damages for Main Members of Superstructure	
13.4.2-1	Reactions Estimated at Supporting Points	
13.4.3-1	Minimum RF per Location	13-37
13.5.2-1	LOS of Approach Roads and Intersections	
13.6.1-1	Capacity / Demand Ratio of the Substructure Using the Old Code	
13.6.1-2	Capacity / Demand Ratio of the Substructure Using the Latest Code	
13.8-1	Overall Assessment of Existing Condition of Ayala Bridge	
Chapter 14	COMPARATIVE STUDY ON IMPROVEMENT MEASURES	
Table 14.1.2-1		14-2
14.2.2-1	Study on Geometric Properties	
14.2.4-1	Highly Possible Improvement Schemes	14-4
14.2.4-1	Comparative Evaluation of Highly Competitive Scheme for Ayala Bridge (1/2)	14-8
14.2.4-1	Comparative Evaluation of Highly Competitive Scheme for Ayala Bridge (2/2)	
14.2.4-2	Summary of Evaluated Result	
14.4.3-1	Improved Schemes of Ayala Bridge	
14.3.6-1	Life Cycle Cost Estimates	14-15
Chapter 15	PRELIMINARY DESIGN AND COST ESTIMATE	
Table 15.2.1-1	Design Criteria	15-4
15.3.1-1	Relationship between Design Speed and Grade	
15.5.3-1	Forecasted Traffic Assignment on Bridges in 2006	
15.6.1-1	Unit Cost by Construction Items (1/2)	
15.6.1-1	Unit Cost by Construction Items (2/2)	
15.6.1-2	Estimated Construction Cost	15-32
15.6.2-1	Land Valuation of Area Along Ayala Bridge (Based on Tax Declaration)	15-32
15.6.2-2	Valuation of Improvements along Ayala Bridge	15-32
15.6.3-1	Estimated Engineering Cost	15-33
15.6.4-1	Summary of Estimated Project Cost	15-34
Chapter 16	TRAFFIC ANALYSIS AND ECONOMIC EVALUATION	
Table 16.1.2-1	Traffic Demand Forecast on the Ayala Bridge in 2010 and 2020	16-2
16.1.3-1	Traffic Demand Forecast on Ayala Bridge in 2010 and 2020	16-2
16.1.3-1	Comparative Analysis between With And Without Second	
4600	Ayala Bridge	16-4
16.2.2-1	Economic Cost Estimate	16-6

16.2.3-1	Basic Vehicle Operating Cost (Excluding Tax)	16-7
16.2.3-2	Vehicle Composition on Ayala Bridge	16-7
16.2.3-3	Composition of Trip Purpose	16-7
16.2.3-4	Vehicle Kilometers With and Without the Project	16-7
16.2.3-5	Vehicle Hours With and Without the Project	16-8
16.2.3-6	Estimation of Benefits	16-8
16.2.4-1	Economic Indicators of Benefit Cost Analysis	16-8
16.2.4-2	Benefit-Cost Stream of Ayala Bridge Improvement Project	16-9
16.2.4-3	Sensitivity Analysis Regarding Costs and Benefits of Ayala	
	Bridge Improvement Project (EIRR)	16-9
Chapter 17	ENVIRONEMENTAL IMPACT ASSESSMENT	
Table 17.1.2-1	Physical Properties of the Pasig River, Ayala Bridge Section	
	Manila City	17-3
17.1.2-2	Pasig River Sediment Test Data, Ayala Bridge Section Manila City	17-5
17.1.3-1	Observed Ambient Air Quality Along Ayala Bridge and Its Vicinity	17-7
17.1.4-1	Observed Noise Levels Along the Ayala Bridge and Its Vicinity	17-8
17.2.2-1	Perceived Impacts During the Rehabilitation / Construction Period	17-14
17.2.2-2	Perceived Impacts During the Operational Period	17-15
17.3-1	Project Awareness and Social Acceptability	17-16
17.4.2-1	Household Size, Income and Expenditures of PAF's	17-18
17.4.2-2	Residency, Type of Dwelling and Tenure of PAF's	17-18
17.4.2-3	Availability of Basic Social Services	17-19
17.4.3-1	Profile of Respondent Users of Ayala Bridge	17-19
17.4.3-2	Causes of Traffic Congestion at Ayala Bridge Based on Interview	17-20
17.4.3-3	Time of the Day When Traffic Congestion Occur at Ayala Bridge	17-20
17.4.3-4	Condition of the Ayala Bridge Based on Stakeholders' Perception	17-21
17.4.4-1	Annual Income, Years of Stay and Land Tenure of the PAFs'	17-22
Chapter 18	PROJECT IMPLEMENTATION	
Table 18.1.2-1	Outline of Improvement Works	18-2
18.1.4-1	Past Trend of DPWH Budget	18-3
18.1.4-2	Projected Road and Bridge Budget between 2004 and 2007	18-4
18.1.4-3	Implementation Schedule and Annual Requirement	18-4
18.1.4-4	Comparison on Road and Bridge Budget and Annual Investment Requirements	18-4
18.2.1-1	Traffic Volume by Vehicle Type, 2003	18-6
18.2.1-2	Traffic Volume on Ayala Bridge With and Without Vehicle Load Limitation, 2003	18-8
18.2.1-3	Traffic Congestion of Road Network in Cases of With and Without	
	Vehicle Load Limitation of Ayala Bridge, 2003	18-8
18.2.1-4	Travels Speed of Road Network in Cases of With and Without	
	Vehicle Load Lamination of Ayala Bridge	18-8
18.2.1-5	Level of Service (LOS) and V/C Ratio in Cases of With and	
	Without Vehicle Load Limitation of Avala Bridge	18-8

List of Figures		Page
Chapter 13	DETAILED BRIDGE SURVEY AND ASSESSMENT	
Figure 13.1-1	Flow Chart of Detailed Bridge Survey and Assessment	13-2
13.1.2-1		13-4
13.1.2-2		
13.1.3-1	Ayala Bridge (South Span Side)	13-5
13.1.3-2	Ayala Bridge After Repair Works (Added Pier at the Center of	
	Right Span) in 1890 (South Span Side)	13-6
13.1.3-3	Panoramic View of Present Ayala Bridge (Looking East)	13-6
13.2.3-1	Results of Scour Survey at Abutment and Pier	
13.3.4-1	Location of Deflection Survey Points and Strain Gauges	13-20
13.3.4-2	Step Load Pattern of Trucks	13-21
13.3.4-3	Results of Deflection Survey	13-22
13.3.4-4	Results of Strain Measurement	13-23
13.3.5-1	Location of Acceleration Sensors	13-24
13.3.5-2	First Vertical and Torsional Modes	13-25
13.3.5-3	South Span Sample Amplitude Spectra: Vertical Direction	13-26
13.3.5-4	North Span Sample Amplitude Spectra: Vertical Direction	13-27
13.3.6-1	Evaluation Procedure for Soundness of Pier	13-28
13.3.6-2	Sensor Location, Analysis and Response Acceleration at E Results of Fast Fourier	13-29
13.3.6-3	Cases for Eigenvalue Analysis	
13.3.7-1	Procedure of Diagnosis for the Soundness of Bridge	13-32
13.3.7-2	Damage Rating Example Adopting the X, Y, Z Method	13-32
13.3.7-3	Examples for Damage Rating Reference Used in the Field Inspection	13-33
13.3.7-4	Node Numbers for Reference	13-34
13.4.3-1	Member Below 1.0 of Rating Factor at Inventory Level	13-38
13.4.3-2	Member Below 1.0 Rating Factor at Operating Level	13-38
13.4.3-3	Effective Stress for Members with Section Loss	13-39
13.5.1-1	Hourly Traffic Volume Variation	13-40
Chapter 14	COMPARATIVE STUDY ON IMPROVEMENT MEASURES	
Figure 14.1.1-1	Flow Chart on the Best Improvement Scheme	14-1
14.3.1-1	Procedure for Bridge Lifecycle Cost Analysis	14-10
14.3.2-1	Deterioration Curve by Transportation System Center (TSC)	14-11
14.3.2-2	Deterioration Curve of the Ayala Bridge	14-11
14.3.4-1	Replacement Case	14-12
14.3.4-2	Rehabilitation Case	14-13
14.3.5-1	Relationship between Investment Cost and Improvement of Condition Rating	14-13
14.3.5-2	Deterioration Curve after Implementing Scheme S3	14-13
14.3.5-3	Life Cycle Analysis of the Ayala Bridge	14-14
	Life Cycle Cost Evaluation on Alternative Improvement Scheme	14-14
14.5.0 1	for the Ayala Bridge	14-15
Chapter 15	PRELIMINARY DESIGN AND COST ESTIMATE	
Figure 15.1.3-1	Proposed Access Road for PRRC	15-3
15.2.1-1	General View after Strengthening Works of Ayala Bridge	15-4
15.2.2-1	Standard Cross Section	
 -		

15.2.2-2	Main Dimensions of Cross Beams	15-6	
15.2.2-3	J		
15.2.3-1	Tabulation of Final Stresses and Capacity / Demand Ratio for		
	Abutment A	15-10	
15.2.3-2	Tabulation of Final Stresses and Capacity / Demand Ratio for		
	Abutment B	15-11	
15.2.3-3	Tabulation of Final Stresses and Capacity / Demand Ratio for Pier	15-12	
15.2.3-4	Comparison of the Proposed Access Road for PRRC Linear Park	15-9	
15.2.3-5	Proposed Access Road for PRRC	15-13	
15.3.2-1	Road Cross Sections after Improvement Works	15-15	
15.3.3-1	1	15-16	
15.3.4-1	Access Road to Hospicio De San Jose	15-17	
15.4-1	Vessel Collision Avoidance System	15-18	
15.5.1-1	Construction Sequence for West Side (1/2)	15-20	
15.5.1-1	Construction Sequence for West Side (2/2)	15-21	
15.5.1-2		15-22	
15.5.1-3	Main Dimensions of Temporary Cross Beam	15-23	
15.5.1-4	Utilization of Traveling Crane Track	15-24	
15.5.2-1	Construction Sequence of Substructure	15-25	
15.5.3-1	Traffic Management Plan under Improvement Works	15-26	
15.5.3-2	,		
	for Case 1	15-28	
15.5.3-3	Hourly Variation of Traffic Volume on Ayala Bridge in 2006		
	for Case 2	15-28	
Chapter 16	TRAFFIC ANALYSIS AND ECONOMIC EVALUATION		
Figure 16.1-1	Procedure for Traffic Analysis and Economic Evaluation	16-1	
16.1.1-1	Assumed Implementation of Ayala Bridge and Second		
	Ayala Bridge	16-2	
Chapter 17	ENVIRONMENTAL IMPACT ASSESSMENT		
Figure 17.1.2-1	Water Quality and Sediments Sampling Sites	17-4	
17.3-1	Air Quality and Noise Level Sampling Sites	17-6	
27.00 1	The Quanty and I toldo he to bamping blood infilm	1,0	
Chapter 18	PROJECT IMPLEMENTATION		
Figure 18.2.1-1	Study Procedure for Vehicle Load Limitation Plan	18-5	
18.2.1-2	Vehicle Composition of Traffic Volume on Ayala Bridge 2003	18-6	
18.2.1-3	Traffic Impact of Vehicle Load Limitations on Ayala Bridge	18-7	
18.2.1-4	Traffic Volume, LOS and Congestion Degree on Road Links of		
	Quezon Bridge and Quezon Boulevard	18-10	
18.2.2-1		18-11	
18.2.2-2			
18.2.2-3	Proposed Parking / Stopping Control on Quezon Bridge and	18-12	
	Quezon Boulevard	18-12	

ABBREVIATIONS

AADT : Average Annual Daily Traffic

AASHTO : American Association of State Highway and Transportation Officials

ADB : Asian Development Bank

ADT : Average Daily Traffic

AIP : Annual Infrastructure Program

AMSL : Above Mean Sea Level

APL : Adaptable Program Loan

AS : Allowable Stress

ASD : Allowable Stress Design

BCA : Benefit / Cost Analysis

BCGS : Bureau of Coast and Geodetic Survey

BMS : Bridge Management System

BOC: Bureau of Construction

BOD : Bureau of Design

BOE : Bureau of Equipment

BOM : Bureau of Maintenance

BORS : Bureau of Research and Standards

BOT : Built, Operation and Transfer

BPH : Bureau of Public Highways

BRP : Bridge Retrofit Project

BRS: Bureau of Research and Standard

BSP : Boy Scout of the Philippines

BSWM : Bureau of Soils and Water Management

CGS : Coast Guard Station

COD : Chemical Oxygen Demand

COE : Certificate of Exemption

CLUP : Comprehensive Lands Use Plan

CPDO : City Planning and Development Office

Danida : Danish International Development Assistance

DAO : Department Administrative Order

DBM : Department of Budget and Management

DENR : Department of Environment and Natural Resources

DEO : District Engineering Office

DIA : Direct Impact Area

DO : Department Order

DO : Dissolved Oxygen

DOTC : Department of Transportation and Communications

DPH : Department of Public Highways

DPWH : Department of Public Works and Highways

DPWTC: Department of Public Works, Transportation and Communications

ECA : Environmental Critical Area

ECC : Environmental Compliance Certificate

EIA : Environmental Impact Assessment

EIAPO : Environmental Impact Assessment Project Office

EIRR : Economic Internal Rate of Return

EIS : Environmental Impact Statement

EMB : Environmental Management Bureau

EMK : Equivalent Maintenance Kilometer

EO : Executive Order

EUAC : Equivalent Uniform Annual Cost

EVF : East Valley Fault

FCA : First Cost Analysis

FTI : Flood Terminal Incorporated

FYBCR: First Year Benefit Cost Ratio

GAA : General Appropriate Act

GMA : Greater Manila Area

GNP : Gross National Product

GOJ : Government of Japan

GOP : Government of the Philippines

GRDP : Gross Regional Domestic Product

HDSJ : Hospicio de San Jose

HPD: Historical and Preservation Division

HTL : Highest Tide Level

IBRD: International Bank for Reconstruction And Department

ICC : Investment Coordinating Committee

ID : Inspectorate Division

IEE : Initial Environmental Examination

IIA : Indirect Impact Area

IRR : Implementing Rules and Regulations

ISD : Inventory Statistics Division

JBIC: Japan Bank for International Corporation

JICA : Japan International Cooperation Agency

JRA : Japan Road Association

LBCR : Laguna de Bay Coastal Road

LCA : Lifecycle Analysis

LF : Load Factor

LFD : Load Factor Design

LGUs : Local Government Units

LOS : Level of Service

LR : Load Rating

LRF : Load and Resistance Factor

LRFD : Load Resistance Factor Design

LTFRB : Land Transportation Franchising and Regulatory Board

LTO : Land Transportation Office

LTPBMC : Long Term Performance Based Maintenance Contract

MARINA : Maritime Industry Authority

MBA : Maintenance By Administration

MBC : Maintenance By Contract

MBE : Manila Bay Expressway

MCGS : Marikina Central Gate Structure

MCTE : Manila-Cavite Toll Expressway

MGB : Mines and Geosciences Bureau

MHHW : Mean Higher High Water

MMDA : Metro Manila Development Authority

MMD : Monitoring and Method Division

MMETROPLAN: Metro Manila Transport, Land Use and Development Planning Project

MMUEN : Metro Manila Urban Expressway Network

MMUESS : Metro Manila Urban Expressway System Study

MMUSTRAP : Metro Manila Urban Transportation Strategy Planning Project

MMUTDP : Metro Manila Urban Transportation Development Plan

MMUTIP : Metro Manila Urban Transportation Improvement Project

MMUTIS : Metro Manila Urban Transportation Integration Study

MMUTPS : Metro Manila Urban Transportation Planning Study

MNT : Manila North Tollway

MOOE : Maintenance, Operations and Other Expenses

MPH : Ministry of Public Highways

MPW : Ministry of Public Works

MPWH : Ministry of Public Works and Highways

MRT : Metro Rail Transit

MSHW : Mean Springs High Water Level

MSL : Mean Sea Level

MTC : Ministry of Transportation and Communication

MTDP : Medium-Term Transportation Development Plan

MTPDP : Medium-Term Philippine Development Plan

MVFS : Marikina Valley Fault System

MVUC : Motors Vehicle Users Charge

NAIA : Ninoy Aquino International Airport

NAPOCOR : National Power Corporation

NEDA: National Economic Development Authority

NEPC : National Environmental Protection Council

NG : National Government

NHA : National Housing Authority

NHI : National Historical Institute

NLE : North Luzon Expressway

NLEE : North Luzon Expressway East

NPV : Net Present Value

NRIMP : National Roads Improvement and Management Program

NSCB : National Statistical Coordination Board

NSCP : National Structural Code of the Philippines

NSO : National Statistics Office

NCR : National Capital Region

NHI : National Historical Institute

OD : Origin Destination

OSG : Office of Solicitor General

PAF : Project Affected Families

PAGASA: Philippine Atmospheric Geophysical Astronomical Services Administration

PAP : Project Affected Person

PAR : Philippine Area of Responsibility

PCB: Polychlorinated Biphenyls

PCG: Philippine Coast Guard

PCU : Passenger Car Unit

PHIVOLCS: Philippine Institute of Volcanology and Seismology

PHMMS : Philippine Highway Maintenance Management System

PIAM : Participatory Impact Assessment Method

PIP : Public Investment Program

PLDT : Philippine Long Distance Telephone Company

PMO : Project Management Office

PMP : Preventive Maintenance Program

PNCC : Philippine National Construction Corp.

PPA: Philippine Ports Authority

PPD: Planning and Programming Division

PPP : Public-Private Partnership

PPP: Piso Para sa Pasig

PRDP : Pasig River Development Program

PRRC: Pasig River Rehabilitation Commission

PRRP: the Pasig River Rehabilitation Program

PS : Planning Service

PSCG: Pre-stressed Concrete Girder

PSG: Presidential Security Group

PTFRPR: Presidential Task Force on the Rehabilitation of the Pasig River

PTM : Philippine Transverse Mercator

PUB : Public Utility Bus

PUJ : Public Utility Jeep

PW : Present Worth

PWA: the Public Works Act

QA : Quarterly

RA : Republic Act

RBIA : Road and Bridge Information Applications

RDC : Regional Development Council

RF : Rating Factor

RHT : Recorded Highest Tide

RIS : Road Information System

RMS : Root-Mean-Square

RO : Regional Office

ROW: Right-of-Way

RRS : River Rehabilitation Secretariat

SAPROF : Special Assistance for Project Formation

SLE : South Luzon Expressway

STTC : Saving Travel Time Cost

SVOC : Saving Vehicle Operating Cost

TCM: Traffic Capacity Manual

TD : Tropical Depression

TSC : Transportation Systems Center

TSP: Total Suspended Particulate

TSS : Total Suspended Soil

TT : Tropical Typhoon

TTC : Travel Time Cost

TWG: Technical Working Group

UFG: Ultrasonic Flaw Detection Test

UP-NCTS: National Center for Transportation Study

UPV : Ultrasonic Pulse Velocity

URPO: Urban Road Projects Office

UTG : Ultrasonic Thickness Gauging

UTSMMA: Urban Transport Study in the Manila Metropolitan Area

VFC : Vehicle Fixed Cost

VOC : Vehicle Operating Cost

WDDT : Daily Traffic Volume at Weekday

WEDT : Daily Traffic Volume at Weekend

WVF : West Valley Fault

PART III

FEASIBILITY STUDY OF AYALA BRIDGE IMPROVEMENT PLAN

CHAPTER 13

DETAILED BRIDGE SURVEY AND ASSESSMENT

CHAPTER 13

DETAILED BRIDGE SURVEY AND ASSESSMENT

13.1 REVIEW OF DESIGN AND REPAIR WORKS

The detailed bridge survey and assessment is discussed in line with the flow chart shown in **Figure 13.1-1**. This survey level corresponds to the "Feasibility Study Level" as defined in the Manual prepared by the Study Team.

13.1.1 Review of Design

(1) Outline of Ayala Bridge

The following information are contained in the Design Notes of the Ayala Bridge As-Built drawings obtained by the Study Team:

- The east and middle trusses of the north span were constructed in 1935,
- The west truss of the north span was constructed in 1950,
- Three trusses of the south span were constructed in 1950,
- The east and middle trusses of the south span were replaced with the present two trusses,
- Two east trusses of the south span were originally constructed in the early 1900, but were reconstructed in 1950 due to bridge widening,
- The west parts of the abutment and the pier were added to the existing substructures in 1950.

(2) General Notes of Reconstruction of Ayala Bridge in 1950

- 1949 A.A.S.H.O. Standard Specifications For Highway Bridge
- Live Load MS18, Design Unit Stresses: fs = 124 MPa, fc = 6.9 MPa, n = 10.
- Philippine Government Standard Specifications for Highways and Bridges (August 1948) was adopted.

(a) Dimensions

Dimensions and elevations are based on the following sources of information:

- 1935 Bureau of Public Works Plan for the Original Bridge Addition.
- 1947 Plan of Bridge Site Survey by the Office of the City Engineer Manila
- 1948 Bureau of Public Works Plan for Bailey Addition; site of the west roadway.

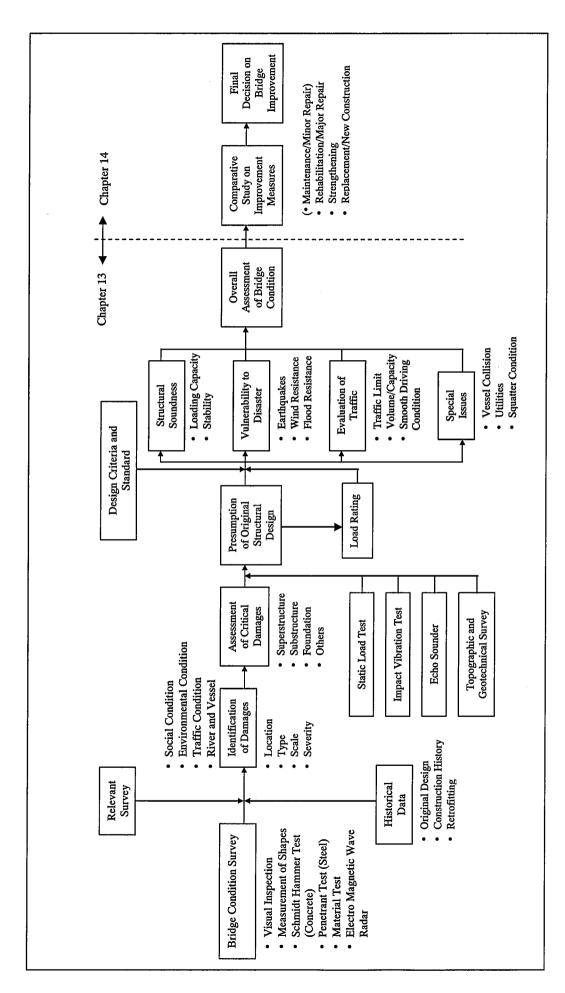


Figure 13.1-1 Flow Chart of Detailed Bridge Survey and Assessment

- 1945 U.S. Army Plan for Pony Trusses (At the site of the east roadway, south span)
- 1949 Joint Details and Camber Information Supplied by the Office of the City Engineer on the Basis of field measurement.
- 1949 U.S. Bureau of Public Road field measurements.

(b) Construction Materials

Concrete

Concrete used is Class "A" concrete with fc = 6.9 MPa.

Reinforcing Steel

Reinforcing steel bars used has allowable stress, fs = 124 MPa.

Structural Steel

Structural Steel with allowable stress of fs = 248MPa was used with \(\text{\text{\$\geq}} 22mm \) rivets.

13.1.2 Review of Rehabilitation Works

Figure 13.1.2-1 shows a comparison of the bridge condition before and after the rehabilitation works done using local funds for the Ayala Bridge in 2002.

(a) Outline of the Works

Rehabilitation of Lower Chords

After surface preparation with wire brushes, the lower chords were strengthened by welding steel plates and angle bars, as shown in Figure 13.1.2-2 (a) and (b).

Joint Area of Lower Chords

Joint area of lower chords were strengthened by fillet welding of steel plates onto existing gusset plates as shown in Figure 13.1.2-2 (c).

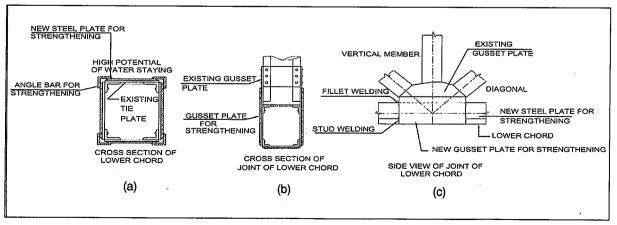


Figure 13.1.2-2 Rehabilitation of Lower Chords

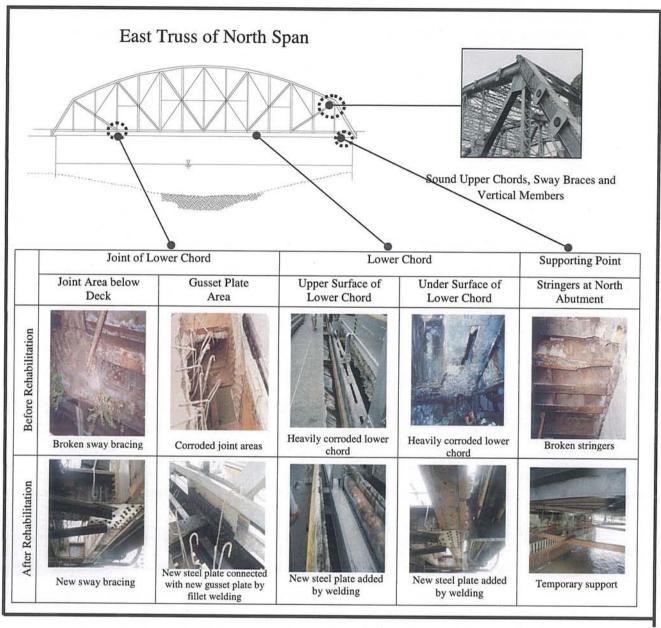


Figure 13.1.2-1 Before and After Rehabilitation Works for Ayala Bridge (Year 2002)

Floor System

The ends of stringers were heavily corroded and partially broken. Under the rehabilitation works, broken stringers on the upstream side of the north span were supported by a temporary structure support, as shown in **Figure 13.1.2-1**.

(b) Problems/Issues of Past Rehabilitation

An In-Depth Survey was recommended for the Ayala Bridge considering the conditions below following the rehabilitation works.

 The fillet welding of steel plates for strengthening onto existing gusset plates is considered to be insufficient in terms of the increase of structural capacity. Prime members should be connected (butt welded) with each other.

- Stud welding between steel plates strengthening for lower chords and gusset plates is considered to be insufficient for strong tension forces. New gusset plates should overlap with adequate length with new steel plates for strengthening.
- The level of present rehabilitation is considered to be a temporary emergency countermeasure because broken stringers are just supported by only a temporary structure.
- The inner faces of lower chords have high potential for corrosion because they are not closed completely. This will accelerate corrosion of the inner steel plate.
- New steel plate added to existing one of the lower chords is connected by two angle bars on each side as shown in Figure 13.1.2-2 (a). Leaking water will easily stay because water flow is blocked by these angle bars. This will accelerate corrosion of the new steel plate.

13.1.3 Historical Background

In 1871, the construction of two bridges was recommended, to connect the two opposite banks of the Pasig River. The first bridge would connect the Arrabal of San Miguel with the Isla de Convalecencia, which is located at the center of the Pasig River. The second bridge would connect the Isla de Convalecencia with the Barrio of Concepcion.

The project began in 1872 and the Ayala Bridge was opened to the public in 1880. When completed, the bridge was called as the Puente de Convalecencia. However, several years later, it was commonly referred to as the Puentes de Ayala, after the famous industrial factory owned by the Ayala-Roxas family at the Arrabal of San Miguel to which the bridge led.

Figure 13.1.3-1 shows the Ayala Bridge constructed in 1876, which crossed the river in two independent sections that converged on Convalecencia Island. Three low arches and a lower platform, all of which were timber-built, formed each of these sections.

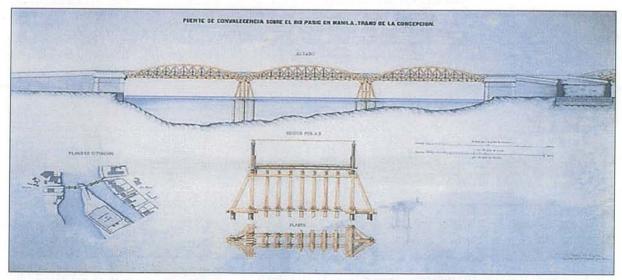


Figure 13.1.3-1 Ayala Bridge (South Span Side)

In 1882, repair works were made in the bridge, following which another re-assessment of the bridge was conducted for possible repairs to be executed as shown in **Figure 13.1.3-2.** Although scarcely ten years had passed since it was opened, by 1889 the Ayala Bridge was in a dangerous condition. The section between the island and the San Miguel district collapsed, and only a few months later the concepcion section followed suit.



Figure 13.1.3-2 Ayala Bridge After Repair Works (Added Pier at the Center of Right Span) in 1890 (South Span Side)

During the early American period, a new proposal to replace the old bridge with a new steel superstructure was made. New construction started in March 1906. The bridge which originally was composed of two bridges, thus plural nomenclature of Puentes de Ayala, became one continuous riveted structure with pin bearings, made up of two spans of Pratt double type with a curved upper chord, having a clear roadway width of 6.70m and two sidewalks of 1.75m wide. The new bridge was opened to public traffic on August 13, 1906. This new bridge became the original shape of the present Ayala Bridge.

In 1950 after the Second War, the replacement and additional new bridge construction works were conducted. Through these major works the present Ayala Bridge was constructed and has maintained its original configuration like the curved upper chord since 1906, as shown Figure 13.1.3-3.

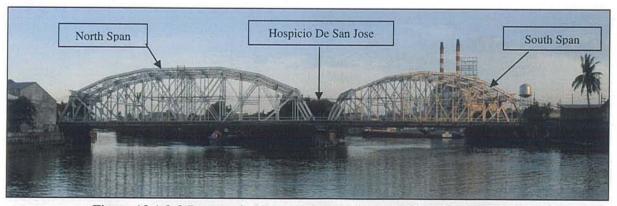


Figure 13.1.3-3 Panoramic View of Present Ayala Bridge (Looking East)

The National Historical Institute (NHI), which is one of government organizations endorsing the issuance of the ECC, has declared the Ayala Bridge as a historical legacy and landmark which should be preserved for posterity.

13.2 NATURAL CONDITION SURVEY

13.2.1 Topographic Survey

(1) Control Monuments

The control monument for the topographic survey is Station MMA-47, from Roxas Boulevard turning right to CCP Complex along Vicente Sotto Road. It is located in the center island of the said road between No. 2 and No. 3 round plant box about 25m from Roxas Blvd. fronting the Traders Hotel and North East side of CCP vicinity lawn. Station mark is the head of a 2 in. copper nail centered in cement putty with inscription "MM-47, 1995".

WGS84 Coordinates: N 14° 33¹ 28.92840¹¹ / E 120° 59¹ 13.27127¹¹ Ellipsoidal Ht: 48.6524 m The established station was used as take-off points and a closed loop traverse was conducted within the project area as prescribed in the Manual for Land Surveys in the Philippines. The elevation was established using the three wire differential leveling method.

(2) Stationing

The longitudinal stationing was reckoned from the center of the pier, which is Sta. 0+169.049 based on the original plan. The following are the established control points:

Station	Northing	Easting	Elevation	Description
BM 1 = GPS 1	1,613,829.09	498,348.90	12.159	A concrete monument with concrete nail driven on top, located inside the Muslim compound, 20 m. away from a basketball court and 1 m. from a wall, 70 m. downstream of the 2 nd bridge approach.
BM 2 = GPS 2	1,613,687.53	498,342.31	11.89	A concrete monument with concrete nail driven on top, located at the bank of Pasig River, 15 m. away from Ayala Bridge, left of the 1 st approach.
BM 3	1,613,596.90	498,434.76	13.269	A concrete monument with concrete nail driven on top, located near a sari sari store beside the PLDT Compound, 100 m. right of the 1 st approach.
BM 4	1,613,660.13	498,490.81	11.801	A concrete monument with concrete nail driven on top, located beside the canteen inside the Hospicio de San Jose compound. It is parallel to BM No. 3, 2 m. from a wall.
BM 5	1,613,730.19	498,515.07	12.106	A concrete monument with concrete nail driven on top, located inside Hospicio de San Jose, 3 m. from boundary wall, 110 m. from Ayala Bridge.
BM 6	1,613,782.35	498,522.40	12.022	Located on top of foothpath at the right side of Pasig River and is beside the DBM Building, 3 m. away from the boundary wall, 90m. from the bridge.

(3) Topographic Survey

Topographic survey was conducted using the established control points and through the use of a Total Station with an Electronic Field Book, sideshots were taken at all natural and manmade features. Also, sideshots were taken at ground points at suitable interval to come-up

with a terrain model reflecting the true topography of the site. The scope of work is listed in **Table 13.2.1-1** and the result is given in **Appendix 13.2.1-1**.

Description Original Scope		Actual Work
Control Point Survey (GPS)	1	2
Profile Leveling	Bridge Section (150m), and 200 m. each of approach road on both sides of the bridge, TOTAL = 550m.	Bridge Section (150m), and 200 m. each of approach road on both sides of the bridge, TOTAL = 500m. Six (6) intersecting Roads, TOTAL = 755m.
Cross Sectioning	Bridge section (150 m): 10m interval Approach Road (400 m): 20m. interval Width: Bridge width 25m+50m. each on both sides (125 m.) TOTAL = 35 sections	Bridge section (150 m): 10m. interval Approach Road (400 m): 20m. interval Width: Bridge width 25m+50m. each on both sides (125 m.), TOTAL = 38 sections Bridge section showing the river cross section, TOTAL = 14 sections
Topographic Survey	500m length by 125m width, TOTAL = 6.9 ha.	580m length by 240m width, TOTAL = 9.8 ha. Topo (features) of Hospicio de San Jose, TOTAL = 3.5 ha.
River Cross-Section Survey	Both sides of bridge: 2 sections, upstream side: 2 sections, downstream side: 2 sections, TOTAL = 6 sections	Both sides and centerline of bridge: 3 sections, upstream side: 3 sections, downstream side: 3 sections, TOTAL = 9 sections 1.0m interval sounding at abutments and pier, TOTAL = 0.162 ha.

Table 13.2.1-1 Scope of Work

13.2.2 Geotechnical Survey

One borehole was drilled near the bridge pier, which was accessed through the Hospicio de San Jose.

The borehole was advanced from the ground surface down to the 44.83m by the wash boring and rotary drilling method. The drilling on the upper 12m of the soil revealed clayey to non-plastic sands that exhibited loose to medium dense soil conditions. SPT values appeared erratic with no noticeable increasing/decreasing trend. Beneath -12m is a 4m thick layer of clay that relate to soft to very stiff consistency. Below is a 1.0m lens of medium dense, non-plastic silt. Following this layer is a two-meter thick, very loose, silty sand layer with SPT values that are less than 5 blows per 305mm sampler penetration.

Comprising the remainder of the drilling depths are 12m thick, moderate to highly plastic clays that exhibited medium to hard consistencies. It was noted that the continuous refusal blow counts, relating to more than 50 blows stated at -40.78m. The materials nearest to the bottom of the drilling (below -41.69m and until -44.83m) are very dense sands with refusal blow counts. Subsurface conditions are presented in the form of soil profile and boring logs, these are shown in **Appendix 13.2.2-2**.

13.2.3 Scour Survey

An Echo Sounder (Hondex PS-7 LCD Digital Sounder) combined with Total Station was used for the determination of the riverbed configuration, with observations taken at every 1 meter intervals at the abutments and pier.

Preparation of the Plan

The processing of the topographic and hydrographic data was done using SDR Mapping and Design Software. The processing includes Feature Codes and contour generation.

The riverbed configuration covering 115 meters downstream and 115 meters upstream portion with an estimated area of 2.85 hectares has been determined through the use of a Hondex PS-7 LCD Digital Sounder for depth measurement and a Total Station for position/coordinate.

River cross-sections parallel along the bridges structure were taken at 15, 40, 65 and 115 meters upstream and downstream portion of the river and along the centerline of the bridge structure.

Sufficient side shots and observations were taken at closer interval around the location of the substructures in order to determine a more detailed riverbed configuration. The scour survey results are illustrated in **Figure 13.2.3-1.**

From these results, scouring around foundation was not observed.

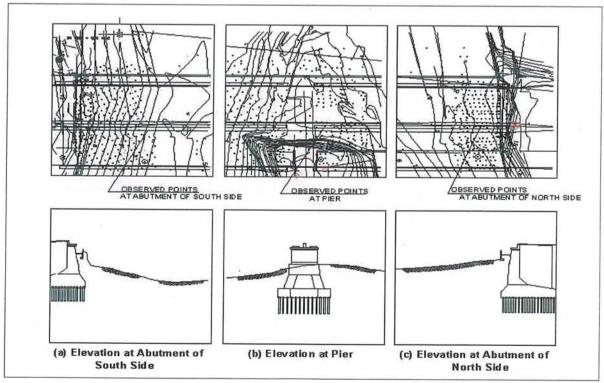


Figure 13.2.3-1 Results of Scour Survey at Abutment and Pier