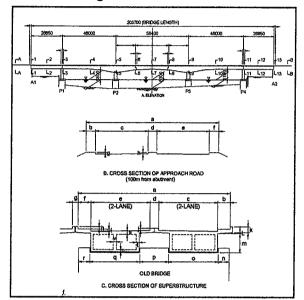
PART II MASTER PLAN

6. BRIDGE CONDITION SURVEY AND ASSESSMENT

SURVEY LEVEL AND ITEMS

The existing conditions of the bridges indicated different levels of deterioration and damages that require appropriate level of field survey and analysis. Three (3) levels of survey were carried out.


- Survey Level I : 3 bridges (Pandacan, C-5, Makati-Mandaluyong bridges)
- Survey Level II : 16 bridges
- Survey Level III : 1 bridge (Ayala Bridge)

VISUAL INSPECTION

Visual Inspection was conducted for the primary and secondary members of bridges. The types, scales and degree of damage were observed and reported in the Visual Inspection Sheets for assessment and diagnosis of damages.

SHAPE AND DIMENSION MEASUREMENTS

The shape and dimension of structural members were measured, and structural drawings of bridges were prepared. Nonmeasured structures such as foundation are assumed based on the presumption of original structural design.

Shape and Dimension Measurement

			Survey Level and Items	
Survey Level		I	II	III
Main Objectives		Data Collection Level	Master Plan Level	Feasibility Study Level
Superstructure	Concrete Bridge	 a) Visual Inspection. b) Inspection on Structural Shapes. c) Inspection on Damage Type, Scale and Severity. 	 a) Visual Inspection. b) Measurement of Structural Shapes. c) Evaluation on Damage Type, Scale and Severity. d) Non-destructive Test (Schmidt Hammer Test). 	 a) Close-up Visual Investigation. b) Measurement of Structural Shapes/Dimension. c) Non-destructive Test (Schmidt Hammer Test). d) Material Test (Core, Neutralization, Alkali Aggregate). e) Electromagnetic Wave Radar (Location of Reinforcing Bar).
Supers	Steel Bridge	 a) Visual Inspection. b) Inspection on Structural Shapes. c) Inspection on Damage Type, Scale and Severity. 	 a) Visual Inspection. b) Measurement of Structural Shapes. c) Evaluation on Damage Type, Scale and Severity. d) Damage Survey (Damage Detection by Penetrant Test). 	 a) Close-up Visual Investigation. b) Measurement of Structural Shapes/Dimensions. c) Structural Survey d) Material Test (Chemical Analysis, Vickers Hardness Test). e) Damage Survey (Damage Detection by Penetrant Test).
Su	bstructure	 a) Visual Inspection. b) Inspection on Structural Shapes. c) Inspection on Damage Type, Scale and Severity. 	 a) Visual Inspection. b) Measurement of Structural Shapes. c) Evaluation on Damage Type, Scale and Severity. d) Non-destructive Test (Schmidt Hammer Test). 	 a) Close-up Visual Investigation. b) Measurement of Structural Shapes/Dimensions. c) Displacement Survey (Vertical, Horizontal). d) Non-destructive Test (Schmidt Hammer Test).
Fo	oundation	-	Depending on bridge condition, stability test and scour survey are required.	 a) Stability Test (Impact Vibration Test). b) Scour Survey (Echo Sounder). c) Topographic and Geotechnical Survey.
Cap	ding acity of erstructure	-	Depending on bridge condition, load test is required.	a) Static Load Test.

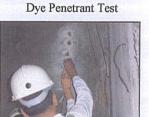
Survey Level and Items

NON-DESTRUCTIVE TESTS OF MATERIALS

The tests aimed to measure the physical characteristics and damage that may be present in the material.

Schmidt Hammer Test

Test Method for determining compressive strength of hardened concrete.


Dye Penetrant Test

Test to find and measure the crack on the steel components.

- Brinell Hardness Test Test to measure the hardness of the steel members.
- Ultrasonic Pulse Velocity Test Test to estimate surface crack depth.
- Ultrasonic Flaw Detection Test Test to determine the presence of any internal defects in the steel sections.

Schmidt Hammer Test

Brinell Hardness Test Ultrasonic Flaw Detection Test

SPECIAL TESTS

• Impact Vibration Test

To evaluate the substructure soundness by focusing on the natural frequency of the pier.
Bridges conducted under this test: the Ayala Bridge, Jones Bridge and Vargas Bridge.

Microtremor Measurement Survey

- To identify and confirm the modes relevant to the deformations due to the dead load, governing live load cases (MS 18 lane loadings) and seismic load considered in Modeling of Structure.

- Bridges conducted under this test: the Ayala Bridge, Jones Bridge and Vargas Bridge.

Data Acquisition System for Microtremor Survey

Pendulum in Swing for Impact Test

Static Load Test

- This activity aims to obtain the data for use in modeling of structures and load rating.

- Bridges conducted under this test: the Ayala Bridge and Lambingan Bridge.

Step Load Pattern of Trucks

Scour Survey

- The riverbed configurations were determined using a Digital Echo Sounder combined with Total Station. Data Points were taken at 1-meter interval. Using sound waves, the time it takes the sound to travel from the source to the riverbed and back to the source was electronically determined.

- Bridges conducted under this test: the Ayala Bridge, Jones Bridge and Vargas Bridge.

Scour Survey using Echo Sounder

Total Station

- 8 -

PRESUMPTION OF ORIGINAL DESIGN

Procedure for Presumption

Complete set of as-built drawings on design drawings are usually not available, especially for old bridges. While shapes and dimensions of visible or exposed parts can be determined from measurement survey, invisible parts such as substructures and foundations under water or ground, and arrangement or volume of reinforcing bars have to be presumed with analytical method with reference to the old code requirements at the time of design/construction or relevant data and materials.

- Step 1: Prepare the general plan, elevation and section of the existing bridge.
- Step 2: Identify missing structural data and information.
- Step 3: Perform structural analysis to determine member requirements.
- Step 4: Determine the basic structural section requirements.
- Step 5: Prepare existing bridge structure drawings.

DAMAGE RATING AND DIAGNOSIS

XYZ Damage Rating Method

This method has been developed by Public Works Research Institute, Ministry of Construction, Japan in 1985. The method is mainly used as the close-up inspection method to evaluate the severity of damages. It presents a systematic guideline and overview to a structure under study.

By this method, the location or pattern (X) is to be known through observation. The depth of damage (Y) is identified by the type of damage to the member. Scale (Z) will provide an idea to the degree of damage. Such damage degree includes the following: Large/Many, Medium, Small, Few, Entire and others. The scale varies depending on the type of structure and member under study.

HMS Damage Rating Method

This method was developed by the Study Team to be used easily and conveniently in evaluating the severity of damages of each member, based on the XYZ method.

The principal concept of damage rating of this method is the same as the XYZ method. However, in this method, only one primary or two secondary factors are considered.

The damages are then evaluated in three (3) basic damage ratings, namely H (heavy), M (medium) and S (small). However, an additional rating "HH" equivalent to XYZ Method rating "I" is used in the diagnosis. The damages with rating "H" are candidate for "HH" diagnosis rating but the decision to increase the rating rank shall not be made automatically from the inspection results but by the Engineer (Responsible Person-in-Charge) after consultation with the Road Administrator or Official. An "HH" or "I" rating is a sensitive and crucial decision that should be made by a responsible person.

Damage Rating and Diagnosis

	Damage I	Rating		Diagnosis				
X, Y, Z Method	H,M,S Method	Condition	Category	Action to be taken				
		• Damage is serious		•Emergency measures shall be taken immediately				
I	нн	• Traffic safety is in danger	A	•Detailed study shall be conducted to decide remedial measures				
11	н	H Damage is big • Detailed survey is necessary to ensure traffic safety B • Damage is found • Follow-up inspection is required		•Detailed survey or follow-up inspection shall be done to evaluate the severity of damage and to decide necessity of remedial measures				
HI .	М			•Remedial measures shall be undertaken after evaluation of damages, if necessary				
١V	s	Small damage is observed Damage is recorded	с	•No immediate action is necessary •Ordinary inspection				
ок		• No damage is observed		shall be continued				
po	lote: A higher diagnosis rank shall be given to bridges with high possibility of falling damaged parts or elements and with possibility of people entering the bridge from under.							

7. OVERALL EVALUATION OF BRIDGE CONDITION

EVALUATION ITEMS

Structural Soundness

The results of damage inspection on bridge members and components were categorized into superstructure, substructure, foundation and Damages accessories. observed on different bridge components are assessed using HMS or XYZ Methods with reason of assessment indicated. The diagnosis evaluation was indicated using Diagnosis Category A, B or C with recommendations on the next action to be done.

Vulnerability to Disaster

The bridge existing physical condition and its environment were assessed to determine its vulnerability to earthquake, wind and typhoon, and flood. Assessment can either be high, moderate or low vulnerability. Comments are included in the evaluation item.

Traffic Functionality

The condition of the bridge to perform its intended function to allow traffic to pass is assessed considering its load capacity, average daily traffic, number of lanes, volume/capacity (V/C) ratio and level of service (LOS) and the bridge geometry to allow ideal driving condition. An overall evaluation of the traffic functionality should be given which will be used later for the priority ranking of bridges. The distance and length of the nearest detour route should also be noted.

Special Issues

Other special issues included in the overall evaluation are river navigation clearances (both horizontal and vertical) for bridges crossing bodies of water, public/private utilities being supported by the bridge and the presence of informal dwellers.

OVERALL EVALUATION

Observation

• Most of the bridge superstructures under the Study had local damages such as concrete cracks, steel corrosion, reinforcing bar exposure, etc. However, due to lack of bridge inventory data particularly on old bridges, a more in-depth study/survey should be conducted to determine the seismic resistance and stability of the substructures and foundations.

• Old bridges, especially steel bridges are assessed relatively more sound compared to newer concrete bridges. Defects on concrete bridges could be traced to construction quality and workmanship on site.

• With steel members/girders being fabricated in the fabrication yard, the quality of workmanship seems to be properly controlled resulting to a more durable structure.

• Lack of daily and periodic maintenance, including cleaning and painting, leads to the deterioration of steel structures.

• Damages on piers and superstructure soffits are usually caused by vessel collision. Proper vessel collision protection and measures should be placed on the bridge to prevent further collisions.

The following five (5) bridges were evaluated to show very serious damages other than the Ayala Bridge:

• Jones Bridge

- Rupture and horizontal deformation of exterior girders.

- Quezon Bridge
 Heavily corroded joint connections of floor system.
- Lambingan Bridge

- Cracks on gerber hinge parts and girders on pier top, vertical deformation of superstructure.

- Guadalupe Bridge (Both Sides)
 - Cracks on gerber hinge.
- Vargas Bridge

- Cracks on gerber hinge parts and girders on pier top, and

- Vertical deformation of superstructure.

An Example of Overall Evaluation

Refere	nce / Bridge Name			JONES	BRIDGE										
Locati	on / Name of Road	City of Manil	a / Q. Paredes St.				Year 1948 Constructed								
		A1 P1 P2 TOTAL LENGTH OF BRIDGE = 114410 300 35460 43310					(A2) 300								
						35460									
1	Elevation														
		Bal	CORRODED BEARING SANCET BODY OF GSC A1 ++ 162 porroded bearing supports at A1 Rur	stured bottom flange and	1 1/3 height of we	b Lateral de	formation 280mm								
Le	ngth of bridge		114.43m (35	.46m + 43.31m + 35.46i	m)		No. of Lanes 4 Lane Width 2 - 7.66 n								
Supe	erstructure Type		Steel I-Girder (3-span cont		Demos	Substructure Type	Abutment: Wall (footing), Pier: Wa (existing caisson)								
		Member	Location of Damage Members	Damage Assessment (XYZ) ^{*1}	Damage Assessment (HMS) ^{*2}	Re	ason for Assessment								
	Superstructure		Span 1: Weld portion of steel plates	П	H	Remarkable deteriorati									
				Span 1: Lower plate of main girders (near Span 2: Bottom flange and web of exterior		Н	Extensive corrosion of								
			5	h	girder at upstream side	I	HH	Ruptured bottom flange and 1/3 height of web due to ve collision.							
			Steel I-Girder	Span 2: Main girder, G8, Near P2	П	Н	Lateral deformation is 280mm due to vessel collision.								
)-II	Span 2: Sway bracings	П	H	Ruptured sway braces of	on <u>2 locations</u> .						
		Stee	Span 1,2,3: Sway bracings	П	н	Missing top members in	n <u>10 locations</u> .								
			Span 3: Sway bracing (A2)	П	Н	Corrosion spreads over	entire member.								
			Span 3: Downstream exterior girder	ш	М	Lateral deformation is :	50mm.								
			Span 3: Interior girder G4, Near A2	П	Н	Extensive corrosion.									
ness		Deck Slab	Span 3: Bottom of Deck Slab	Ш	М	Cracks at bottom deck	with width of 0.3 – 0.8 mm								
punc			Span 3: Bottom of Deck Slab	III	М	Wide area of deteriorat	ion to poor construction								
Structural Soundness		Abutment	Abutment A2 Wall	IV	S	Horizontal cracks on w	all								
	Substructure	Pier	Pier 1 Body	IV	S	Vertical cracks of pier 1	body								
		Foundation	Existing Caisson	П	н	Does not meet latest co	de requirement								
	Accessory	Bearing	Abutment A1 Bearing Shoes	П	Н		bearing shoes at Abutment A1								
		Shoe	Pier 2 Bearing Shoes	r Girder at unstream s	H ide is necessary	Extensive corrosion of I	bearing shoes at Pier 1.								
	Diagnosis Evaluation ^{*3}	Category "A" • Urgent measure for Ruptured Exterior Girder at upstream side is necessary. • In-depth study necessary to determine permanent repair/rehabilitation of ruptured girder.													
	Seismic	Pier and Four	Repair / maintenance work necessary ndation (Existing Caisson) are insufficient un				termine required strengthening								
ity .	Resistance	 High vulnera 	bility.	der intest code seisinie i	equi entento, m-u	epui study is needed to de	termine required screngerening .								
sast	Wind Resistance Flood Resistance	Not critical to v					****								
Vulnerability to Disaster	PROOF Resistance	1													
Vu to	Evaluation	Bridge is highly vulnerable to seismic forces. In-depth study is needed to determine required strengthening of substructure. Bridge is sufficient to wind and flood action.													
È E	Traffic Limit	20 Tons 57,216 (2002) -	I ama Land of Carting D (0.74)	Dation 0.001	Land 0.200	the Level of the City	II								
Capacity and Function	Volume / Capacity Smooth Driving	<u></u>	4 Lanes Level of Service: D (0.74) Load	Rating: 0.00 Inventory	Level, 0.76 Opera	iting Level (Exterior Girde	er, Opstream Side)								
Cal Fur	Condition	Fair													
	Evaluation	Traffic function	onality reduced by decrease in live load cap	acity and steep slope a	t approach.										
	River Navigation	Vertical Cleara	nce < Regulated (Near Piers); Horizontal Cle	arance: Preferable											
al s	Utilities	46 – ¢100 mm	PVC Telecommunication Pipe, 2-\$100 mm	GI Telephone Line, 1 -	¢100 mm PVC E	lectrical Line, 1 – ¢340 m	m Water Line								
ues		46 - \$100 mm PVC Electrical Line, 1 - \$340 mm Water Line													
Special Issues	Informal Dwellers	No informal dw	vellers under Jones Bridge			No informal owellers under Jones Bridge Minimal social and environmental impact									
Specia Issues	Informal Dwellers Evaluation	Minimal social													

2. Damage Assessment (HMS Method) HH : Extremely Heavy H : Heavy M : Medium S : Small

- Damage Assessment (XYZ Method)

 Damage is serious, Traffic safety is in danger
 Damage is big, detailed survey is necessary
 Damage is found, follow-up inspection is required
 Small damage is observed, damage is recorded OK : No damage is observed

Diagnosis Evaluation
 "A": Urgent measures shall be applied: Conduct In-depth Survey
 "B": Urgent measures not required; Conduct In-depth Survey
 "C": In-depth Survey not required

Summary of Overall Evaluation

The overall evaluation of existing bridges are summarized with description of major damages and causes.

,	Summary of Overall Evaluation of Existing Bridges								
No.	Bridge Name (Year Const.)	Major Damages (Diagnosis Category)	Causes of Damages	Overall Evaluation					
1	Delpan Bridge – Upstream (1965)	Small cracks on concrete girders Water leaking B	 Insufficient vertical clearance for road traffic crossing under the bridge Aging and insufficient maintenance activities Poor treatment of expansion joint 	 Bridge is totally sound but repair works are necessary. 					
	Delpan Bridge – Downstream (1988)	Minor cracks at the superstructure Spalling out of the pier wall C	 Aging of concrete Vessel collision with the pier 	 Bridge is totally sound but small repair works are necessary. 					
2	Jones Bridge (1948)	• Two (2) ruptured and deformed exterior girders	• Vessel collision with girders	 Major rehabilitation of ruptured girder and sway braces is urgently necessary. Vessel collision protection is necessary. 					
3	McArthur Bridge (1948)	Pier Inclination, minor cracks of concrete structures B	 Aging and insufficient maintenance activities Insufficient resistance of foundation 	 Bridge is totally sound but repair works are necessary. 					
4	Quezon Bridge (1946)	Heavily corroded joint connections under the floor deck Poor treatment of expansion joint A	• Insufficient maintenance and repair activities	 Replacement of corroded joint connections at floor system is necessary. 					
5	Ayala Bridge (1935/1950)	Heavily corroded floor system Ruptured stringers and section loss of lower chords A	 Aging and insufficient maintenance activities Vessel collision with sway braces 	 Major rehabilitation of superstructure and retrofitting of substructure are necessary. Traffic load limit shall be adopted. 					
6	Nagtahan Bridge (1966)	Corrosion on steel members Cracks of substructures B	Aging and insufficient maintenance activities	 Bridge is totally sound but repair works are necessary. 					
7	Pandacan Bridge (1997)	Small cracks on deck slab C	Related to bridge design and/or construction quality	 Bridge is totally sound but repair works are necessary. 					
8	Lambingan Bridge (1979)	Cracks on girders at Gerber hinge parts and on pier tops Insufficient uplift devices A	• Related to bridge design and/or construction quality	• Traffic functionality shall be reduced due to the decrease of live load capacity.					
9	Makati- Mandaluyong Bridge (1986)	Cracks on PC box girders and substructures B	Aging and insufficient maintenance activities	 Bridge is totally sound but repair works are necessary. 					
	Guadalupe Bridge (Central) (1962)	Small corrosion on steel members Water leaking at the south abutment C	• Damaged water pipes	• Bridge is totally sound but repainting is necessary.					
	Guadalupe Bridge (Both Sides) (1979)	Cracks of girders at gerber hinge parts A	• Related to bridge design and/or construction quality	 Urgent measures are needed at gerber hinge support 					
11	C-5 Bridge (1998)	Small cracks of slab and substructures and honey comb B	 Increased traffic load Honeycomb is due to water leaking 	 Bridge is totally sound but repair works are necessary. 					
	Bambang Bridge (1991)	Cracks at the approach spans of superstructure C	 Related to bridge design and/or construction quality 	• Bridge is totally sound but small repair works are necessary.					
13	Vargas Bridge – Upstream (1992)	Large vertical deformation and cracks on girders at gerber hinge parts and on pier tops A	 Related to bridge design and/or construction quality 	 Urgent measures are for major crack portion. 					
	Vargas Bridge – Downstream (1973)	Corrosion of steel members Cracks on deck slab C	 Aging and insufficient maintenance activities 	 Bridge is totally sound but repair works are necessary. 					
	Rosario Bridge (1952)	Cracks on deck slab B	 Aging and increased traffic load 	 Bridge is totally sound but repair works are necessary. 					
15	(1978)	Many cracks of pier copings of widening portions C	 Related to bridge design and/or construction quality 	• Bridge is totally sound but small repair works are necessary.					
16	Marikina Bridge (1980)	Small cracks on deck slab	Increased traffic load	Bridge is totally sound but small repair works are necessary.					
	San Jose Bridge (1980)	Few cracks on the superstructure and water leaking Exposed foundation C	 Open expansion joints Scouring 	• Bridge is totally sound but small repair works are necessary.					

NOTE : Diagnosis Category

8. RECOMMENDED IMPROVEMENT MEASURES

COMPARATVE STUDY ON IMPROVEMENT MEASURES

Basic Policy

- To propose improvement measures which shall ensure at least the minimum structural safety and stability.
- To assess the structural soundness with the Load Rating Analysis (LRA).
- To employ Life Cycle Cost (LCC) Analysis in selecting the most economical improvement measures.
- To consider countermeasures against a vessel collision.
- To exclude the retrofit works against earthquakes from the measures.

Improvement Schemes

The three (3) possible schemes were prepared for each bridge in order to arrive at the best solution. These include the following with the different purposes. • Repair : to remedy deteriorated members/parts to the original condition

- Rehabilitation : to restore deteriorated members/parts to the service level it once had and extends the service life of a bridge.
- Strengthening : to prolong the bridge life by strengthening major bridge components in order to meet the latest design code requirements including traffic function improvement by widening.

Evaluation Criteria

The three (3) schemes prepared for each bridge were evaluated from the following evaluation factors.

- Reliability of the Structural Safety,
- Construction Period and Difficulty,
- Traffic Management during Construction
- Bridge Life-Cycle Cost

different purposes. Pa2 JONES BRIDGE Exchange Rate: 2.269 (As of May 5, 2003) (1) 1 @ P 21400 AND STREAM ۲ ۲ 2400 2400 7700 7700 Elevation and Cross Section Construction Year onstruction Year: 1948 Superstructure Type: 3-Span Continuous Steel Plate Girder Bridge Substructure Type: Abutment: Wall, Pier: Wall, Foundation Type: Abutment: Spread, Pier: (Caisson) nd Bridge Type Alternativ Repair Rehabilitation Strengthening Cleaning/Painting of steel structure for whole bridge Cleaning/Painting of corroded steel members Superstructure Cleaning/Painting of steel structure for whole bridge Repair of ruptured sway bracings Replacement of ruptured sway bracings Replacement of ruptured sway bracings Provide additional girder w/ new bearing shoes Repair of ruptured exterior girder by plate patching Provide additional girder w/ new bearing shoes Repair of sole plate and girder section at bearing Repair & retain existing exterior girder to function Repair & retain existing exterior girder to function as vessel collision protection as vessel collision protection Major Remove and reconstruct deck slab, sidewalk, Remove and reconstruct deck slab, sidewalk, Works railing and expansion joint. railing and expansion joint. bstructure Sealing of concrete crack, spalling & exposed Retrofitting of pier wall by full concrete jacket rebars Foundation Enlargement of footing / pile cap and addition of bored piles RF = 0.00 (Load Rating 0 tons for ruptured girder) RF = 1.00 (Load Rating 32.7 tons) RF = 1.00 (Load Rating 32.7 tons) C/Dpl=0.37 (Body of Pier 1) C/Dpl=0.37 (Body of Pier 1) C/Dol=1.00 (Body of Pier 1) OReliability for the C/Dpl=0.86 (Foundation of Pier 1) C/Dpl=0.86 (Foundation of Pier 1) C/Dpl=1.00 (Foundation of Pier 1) structural safety Less resistance to latest seismic code) (Less resistance to latest seismic code) Construction Period and 4 Month (easy) 18 Months (moderate) 24 Months (Hard) Difficulty **③**Traffic Management No disturbance of existing traffic No disturbance of existing traffic Provision of temporary detour bridge during Construction Navigation Vertical Less by 15cm than a regulatory clearance of 3.75 Less by 15cm than a regulatory clea Sufficient Horizontal Clearance Less than preferable space of 43m Less than peferable space of 43m ess than preferable spa ace of 43m Construction Cost (MP) 32 161.8 227.2 valuation 2 Note: () Reference An Example of Comparative Study on Improvement Measures

Among evaluation items above, the reliability of the structural safety was given the highest weight.

STRUCTURAL SOUNDNESS BY LOAD RATING

• Bridge load rating provides a basis for determining the safe load capacity and evaluating the structural soundness of a bridge. In general, the resistance of a structural member (R) should be greater than demand (Q).

$$R \leq Q_d + Q_l + \sum Q_i$$

Where, Q_d is the effect of dead load, Q_l is the effect of live load and Q_i is the effect of load i.

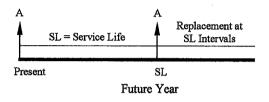
• In the bridge evaluation process, the maximum allowable live load Q_1 can be determined. It then becomes a question of whether a fully loaded or what portion of vehicle (rating vehicle) can be allowed on the bridge. The portion of the rating vehicle is given by the ratio between the available capacity for live load effect and the effect of the rating vehicle. This ratio is called the rating factor (RF) as defined by:

RF = Available capacity for live load effectRating vehicle load demand

• When the rating factor equals or exceeds unity, the bridge is capable of carrying the rating vehicle. On the other hand, when the rating factor is less than unity, the bridge may be overstressed while carrying the rating vehicle. Refer to page 27 for detailed discussion.

LIFE-CYCLE COST ANALYSIS

The alternative improvement schemes are analyzed with the life-cycle cost (LCC) considerations of the following basic models.

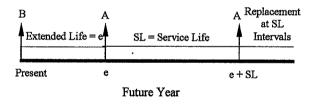

• Replacements

$$LCC_p(repl.) = A^*(pwf_{SL})$$

where:

 $LCC_p = Life-cycle$ (perceptual service)

A = Present worth of the cost of replacement



• Rehabilitation

$$LCC_p(rehab.) = B + A^*(pwf_{SL})^*(pwf_c)$$

where:

B = Present worth of the cost of rehabilitation and maintenance

e = extended life

Load Rating and Lifecycle Cost for Each Bridg	e
---	---

	Bridge Nam	Α	Load	Rating	Lifecy	cle Cost (M.pesos)	Level of Measures	
			Inventory	Operating	Repair	Rehab.	Strength.	Level of inteasures	
1	Delpan Bridge	Upstream	1.27	1.69	45.2	41.6	129.4	Rehabilitation	
		Downstream	1.26	1.67	20	-	-	Repair	
2	Jones Bridge		Negative	0.76	232.2	183.1	248.5	Rehabilitation	
3	McArthur Bridge		1.33	2.20	87.9	79.1	124.7	Rehabilitation	
4	Quezon Bridge		0.92	1.59	353.8	170.7	206.6	Rehabilitation	
5	Nagtahan Bridge		1.03	2.10	166.3	159.2	317.4	Rehabilitation	
6	Pandacan Bridge		1.22	2.39	13.6	-	-	Repair	
7	7 Lambingan Bridge		0.63	1.06	86.5	56,5	130.6	Rehabilitation	
8	Makati Mandaluyong Bridge		1.67	2.91	12.6		28.4	Repair	
9	Guadalupe Bridge	Central	1.01	2.07	98.0	97.6	100.6	Rehabilitation	
	Guadatupe Dildge	Both Sides	0.44	0.74	32.0	28.0	33.8	Rehabilitation	
10	C-5 Bridge		1.02	2.67	41.1	-	-	Repair	
11	Bambang Bridge		1.07	2.22	8.6	-	-	Repair	
12	Vargas Bridge	Upstream	0.83	1.39	83.3	25.9	31.1	Rehabilitation	
14		Downstream	1.00	1.65	11.7	-	-	Repair	
13	13 Rosario Bridge		1.03	1.95	44.48	42.85	56.45	Rehabilitation	
14	14 Marcos Bridge		1.78	2.98	36.0	-		Repair	
15	Marikina Bridge		1.01	2.20	15.1	-	-	Repair	
16	San Jose Bridge		1.22	2.17	17.5			Repair	

9. PREVENTION MEASURES AGAINST VESSEL COLLISION

PRESENT CONDITION OF VESSEL COLLISION

The present conditions of vessel collision are summarized as follows;

Damages of Superstructure due to Vessel Collision

- Jones Bridge
- Ruptured exterior girder at the center span
- No countermeasures
- The Ayala Bridge
- Ruptured/Broken Bracings
- No countermeasures
- Lambingan Bridge
- Cracks at the center span's exterior girder of upstream side
- No countermeasures

Damages of Substructure/Protection due to Vessel Collision

- Guadalupe Bridge
- Broken existing pier protection
- C-5 Bridge
- Broken existing pier protection
- Vargas Bridge
- Exposed rebars at Pier (Downstream Side)

Pier Protection Type Adopted

- Expanded Footing
- Nagtahan Bridge, Lambingan Bridge, Bambang Bridge, Vargas Bridge (downstream side), Rosario Bridge

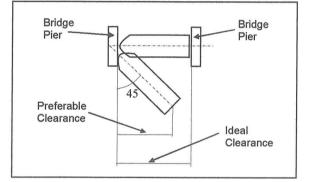
• RC Fender Type Connected with Expanded Footing

- Guadalupe Bridge, C-5 Bridge

• Wooden Fender Type Separated from Footing

- Bambang Bridge

RC Fender Type Connected with Expanded Footing (Guadalupe Bridge) Expanded Footing and Wooden Fender Type (Bambang Bridge)


NAVIGATION CLEARANCES

The recommended horizontal and vertical clearances based on the interview survey with the Philippine Coast Guard (PCG), regulations and present condition on navigation are as follows;

Horizontal Clearance

Ideal and Preferable Spaces of Bridge Piers for One Vessel

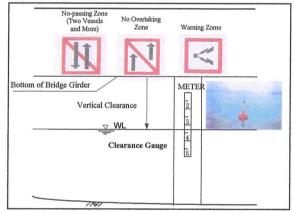
Stretch	Ideal Space	Preferable Space (Min. Req't)
Pasig River (Manila Bay to Laguna Lake) and Lower Marikina River (Napindan Weir to Rosario Weir)	L=60 m	Lx sin(45) = 42.4 m = around 43 m
Marikina River (Rosario Weir to Marikina River)	L=15.1 m	L x sin(45) = 10.7 m = around 11 m
Marikina River (Marikina Bridge to San Jose Bridge)	L=6 m	L x sin(45) = 4.2 m = around 5 m

Vertical Clearance

Ideal and Minimum Vertical Clearances between Girder Bottom and the Highest Water Surface *

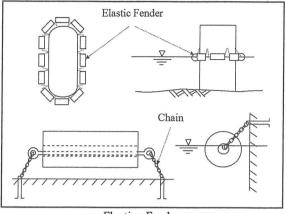
Stretch	Ideal Clearance	Preferable Clearance (Min. Req't)
Pasig River (Manila Bay to Laguna Lake) and Lower Marikina River (Napindan Weir to Rosario Weir)	5.0 m	3.75 (Regulatory Clearance)
Marikina River (Rosario Weir to Marikina Bridge)	3.0 m	3.0 m **
Marikina River (Marikina Bridge to San Jose Bridge)	1.5 m	1.5 m **

*:Recorded highest tide level or the water level at a run off discharge of 500 m³, the water level of which is the highest water level for safe navigation

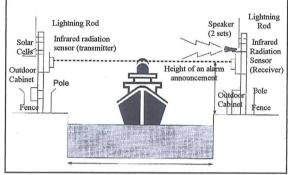

**:Actual required vertical clearance considering the possible scale of boats passing the river.

PREVENTION SYSTEM

Administrative Measures


To prevent vessel collision with bridges, the enforcement of administrative measures is indispensable, practical and economical, as specified below:

- No passing zone
- No ovetaking zone
- Warning zone:
- Clearance gauge
- Warning buoy


Signs and Marks for Safety Navigation

Protection to Pier and Abutment

Floating Fender

Protection for Bridge Girder

Bridge Collision Avoidance System with Infrared Radiation

Recommendation on Countermeasures against Vessel Collision

No.	Bridge Name	Countermeasures		Estimated Cost	Remarks		
INU.	Druge Maine	For Girders	For Piers	(million ₽)	Kemarks		
1	Delpan Bridge	-	-	-	Sufficient clearances.		
2	Jones Bridge	•Warning/Guide Buoy •Clearance Gauge •Detector Type	•Floating Fender	13.6	•Sections of exterior girders near piers have insufficient vertical clearance.		
3	McArthur Bridge	-	 Floating Fender 	4.5	Insufficient vertical clearance.		
4	Quezon Bridge	-	-	-	Sufficient clearances.		
5	Ayala Bridge	•Clearance Gauge •Detector Type	-	8.5	•Countermeasures for girders are recommended for bridges having a clearance less than 4.0m.		
6	Nagtahan Bridge	-	Warning/Guide Buoy Floating Fender	1.7	 This bridge is located in the meandering river section. Floating fender type may avoid causing damage to vessels. 		
7	Pandacan Bridge	-	-	-	Sufficient clearances.		
8	Lambingan Bridge	Warning/Guide Buoy Clearance Gauge Detector Type	Warning/Guide Buoy Floating Fender	12.2	 This bridge is located in the meandering river section. Countermeasures for girders are recommended for bridges having a clearance less than 4.0m. 		
9	Makati-Mandaluyong Bridge	-	-	-	Sufficient clearances.		
10	Guadalupe Bridge	-	 Floating Fender 	4.5	•Existing RC fender is broken. •Insufficient horizontal clearance.		
11	C-5 Bridge	Ξ.	Warning/Guide Buoy Floating Fender	5.7	•Existing RC fender is broken. •This bridge is located in the meandering river section.		
12	Bambang Bridge	-	 Floating Fender 	4.5	•Existing pier protection may not be enough.		
13	Vargas Bridge		 Floating Fender 	4.5	•There is evidence of vessel collision with bridge on downstream side.		
14	Rosario Bridge	-	-	-	•Existing Pier Protection.		
15	Marcos Bridge	-	-	-	Insufficient clearances.		
16	Marikina Bridge	-	•	-	 Insufficient clearances. 		
17	San Jose Bridge	-	-	-	 Insufficient clearances. 		

10. PROTECTION MEASURES AGAINST EARTHQUAKES

PRESENT PRACTICE

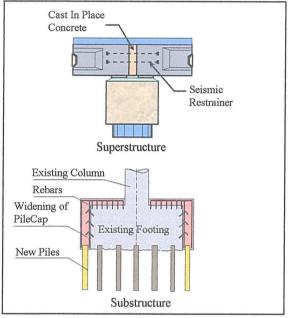
The DPWH has pursued the "Bridge Retrofit Program (BRP)" which aimed at minimizing the structural risk under the seismic actions. Therefore, protection work against earthquake are not included in the Study.

STABILITY ANALYSIS

Assumptions

Assumptions in calculating the Capacity-Demand (C/D) Ratio for Substructures and Foundations are as follows:

• A multi-mode 3-D analysis model was established


• Seismic load was based on the AASHTO Seismic Response Spectra using a Peak Ground Acceleration of 0.4 (A = 0.4)

• The Elastic and Plastic C/D Ratios calculated are the basic capacity-demand ratio based on the original condition of the bridge.

Main Points

The following factors involve major effects on the bridge performance during an earthquake:

- Bridge Site
- Construction Details
- Structural Configurations
- Date of Construction

Retrofitting measures for bridge structural members

DETROFFETRIC

BRIDGE NAME (Construction Year)		SUBSTRUCTURE C/D RATIO Structural Capacity / Demand Ratio		REQUIRED MEASURE AGAINST EARTHOUAKES	RETROFITTING COST
(0	construction Tear)	COLUMN/WALL	FOUNDATION		(MP)
Delpan Bridge	Upstream (1965)	1.00 (Pier 3)	1.25 (Pier 2)	• No retrofitting works required.	-
Del Brid	Downstream (1988)	1.03 (Pier 3)	2.01 (Pier 2 & 3)	No retrofitting works required.	-
Jones	Bridge (1948)	0.37 (Pier 1) 0.64 (Pier 2)	0.86 (Pier 1) 0.89 (Pier 2)	Install full height concrete jackets at piers to increase capacity of wall piers.	77.10
Mac A	Arthur Bridge (1948)	0.26 (Pier 1)	0.85 (Pier 1)	. Install full height concrete jackets at piers to increase capacity of wall piers and to provide bored piles.	48.10
Quezo	m Bridge (1946)	0.70 (Abut)	0.70 (Abut)	 Install full height concrete jackets at abutments to the increase capacity of mainwall and provide additional piles. 	35.90
Ayala	Bridge (1935, 1950)	0.60 (Abut.) 0.32 (Pier)	0.57 (Abut) 0.41(Pier)	Reconstruct abutment backwall and provide additional piles.	430.16
	han Bridge (1966)	0.56 (Pier 9 & 10)	0.64 (Pier 9 & 10)	• Install full height concrete jackets at piers to increase capacity of pier wall and provide additional piles.	132.50
	can Bridge (1997)	1.58 (Pier 4)	1.58 (Pier 4)	1.58 (Pier 4) No retrofitting works required.	
	ngan Bridge (1979)	0.64 (Pier 1)	1.11 (Pier 1)	 Install full height concrete jackets at piers to increase capacity of pier wall. 	4.80
	i-Mandaluyong e (1986)	0.81 (Pier 6)	0.81 (Pier 6)	 Install longitudinal restrainer cables at discontinuous spans. Increase full height concrete jackets at piers to increase capacity of pier wall and provide additional piles. 	25.20
Guadalupe Bridge	Central (1962)	1.27 (Pier 2)	1.05 (Pier 2)	•No retrofitting works required.	-
Guad Brid	Both Sides (1979)	0.85 (Pier 1& 2)	0.22 (Pier 1& 2)	• Install full height concrete jackets at piers to increase capacity of pier wall and provide additional piles.	6.40
C-5 B	ridge (1998)	0.74 (Pier 8)	0.74 (Pier 8)	 Install longitudinal cable restrainers at discontinuous spans. Increase full height concrete jackets at columns to increase capacity of piers and provide additional piles. 	81.90
Bamba	ang Bridge (1991)	2.05 (Pier 1)	4.89 (Pier 1)	No retrofitting works required.	-
gas Ige	Upstream (1992)	1.78 (Pier 1& 2)	6.18 (Pier 1& 2)	No retrofitting works required.	-
Vargas Bridge	Downstream (1973)	1.19 (Pier 1)	3.59 (Pier 1)	• No retrofitting works required.	-
Rosari	o Bridge (1952)	0.69 (Pier 4)	0.97 (Pier 4)	No retrofitting works required.	19.70
Marco	s Bridge (1978)	1.47 (Pier 4)	3.14 (PSC Piles)	Install full height concrete jackets at piers to increase capacity of wall piers and provide additional piles.	-
Mariki	na Bridge (1980)	1.49 (Pier 2 & 3)	9.65 (Pier 2 & 3)	No retrofitting works required.	-
San Jo	se Bridge(1980)	0.68 (Pier 3,4,5)	0.33 (PSC Piles)	 Provide longitudinal restrainer cables at discontinuous spans. Install full height concrete jackets at piers to increase capacity of wall piers and provide additional piles. 	75.40

C/D Ratio of Substructure and Retrofitting Cost

11. OVERALL IMPLEMENTATION PLAN

IMPLEMENTATION STRATEGY

The bridge condition survey and structural analysis on the nineteen (19) bridge structures except the Ayala Bridge revealed the fact that five (5) bridges were evaluated to require urgent improvement measures, based on the technical judgment.

The following strategy was adopted in proposing the overall implementation schedule of the project.

Time Frame

- Short Term; 10 years (2004~2013)
- Medium Term; 10 years (2014~2023)
- Long Term; 10 years (2024~2033)

Technical Urgency

20 Bridge structures were classified into three (3) priority group in accordance with the technical urgency of each bridges, among others.

- First Priority (Very Urgent or Urgent); Implementation (2004~2007)
 5 Bridges (Jones, Quezon, Lambingan, Guadalupe (both sides), Vargas)
- Second Priority (Minor Damage Condition); Implementation (2008~2013) 10 Bridges (Delpan (upstream), Mc Arthur, Nagtahan, Makati-Mandaluyong, Guadalupe (central), Vargas (downstream), Rosario, Marcos, Marikina, San Jose)
- Third Priority (Normal Condition); Implementation (Medium Term)
 4 Bridges (Delpan (downstream), Pandacan, C-5, Bambang)

Measures against Vessel Collision (Fender)

• The implementation timing of the protection for piers may be separated from improvement works because no serious damages on piers were found.

Retrofitting to Earthquakes

• The implementation timing of retrofit against earthquakes is decided to be separated from improvement works of bridge because of their nature of necessity.

Balanced Annual Expenditure

• The annual expenditure for the project is to be maintained equal as much as possible.

Special Consideration of the Ayala Bridge and Second Ayala Bridge

• The Ayala Bridge shall be improved at the soonest possible time because of the existing deteriorated condition.

• The Second Ayala Bridge shall be constructed at the most economical timing.

PROPOSED IMPROVEMENT WORKS

The proposed improved works are shown in the table classifying the works under short, medium and long terms. In the table, the expected repair works are also included aside from the proposed improvement works.

The expected repair works are determined based on the engineering judgment that rehabilitated or repaired bridges may require further repair works for other structural members remained unrepaired, about every ten (10) years.

TOTAL COST

Project Cost	
Improvement Works	₽ 869.44 M
Protection of Piers to Vessel Collision	₽ 51.20 M
Ayala Bridge Improvement Works	₽ 1,256.90 M
Second Ayala Bridge Construction	₽ 941.00 M

The biggest annual fund is required at the second 2-Year amounting arrow 1,525.49 M for the Year 2006 and 2007.

Improvement Works not included in the Project

Succeeding Repair and Rehabilitation in the future.	₽	330.77 M
Retrofitting to Earthquakes	₽	507.00 M

Bridge No.	Bridge Name Delpan Br.	Superstructure Type	Construction	Chart The	M. C. T.	
1	Delnon Br	1	Year	Short Term (2004 – 2013)	Medium Term (2014 2023)	Long Term (2020 – 2033)
- 1	(Upstream)	PC Gerber Box Girder (5span)	1965	 Repair/sealing of concrete cracks Countermeasure for truck collision 	*Repair	*Repair
	Delpan Br. (Downstream)	PC Gerber Box Girder (5span)	1988	-	*Repair	*Repair
2	Jones Br.	3 Span Continuous Steel Plate Girder	1948	 Cleaning/painting of corroded steel members Additional steel girders adjacent to existing exterior girders 	*Cleaning/painting of corroded steel members	*Cleaning/painting of corroded steel members
3	Mc Arthur Br.	3 Span Continuous Steel Plate Girder	1948	 Cleaning/painting of corroded steel members Adding rivets to missing portion Sealing of concrete cracks honeycomb & spalling 	*Cleaning/painting of corroded steel members	*Cleaning/painting of corroded steel members
4	Quezon Br.	Single Steel Arch	1946	 Cleaning/painting of corroded steel member Replacement of corroded joint connections at floor system 	*Cleaning/painting of corroded steel members	*Cleaning/painting of corroded steel members
6	Nagtahan Br.	3-Span Continuous Steel Truss Br.	1966	 Cleaning/painting of corroded steel member & deformation Sealing of Concrete cracks honeycomb & spalling 	* Cleaning/painting of steel members * Repair	*Cleaning/painting of steel members * Repair
7	Pandacan Br.	PC I Girder (5span)	1997	*Repair/sealing of concrete cracks	*Repair	*Repair
8	Lambingan Br.	PC I Girder (3span)	1975	 Rehabilitation of Gerber Hinge parts Replacement of uplift/hold- down devices Repair/sealing of concrete cracks 	*Repair	*Repair
9	Makati- Mandaluyong Br.	PC Box Girder with Gerber I Girder (3span)	1986	 Repair of expansion joints Repair/sealing of concrete cracks 	*Repair	* Repair/sealing of concrete cracks
10	Guadalupe Br. (Central)	3-Span Continuous Steel Truss Br.	1962	 Cleaning/painting of corroded steel member Repair/sealing of concrete cracks 	*Cleaning/painting of corroded steel members	*Cleaning/painting of corroded steel members
10	Guadalupe Br. (Both Sides)	PC Gerber Girder (3span)	1979	 Rehabilitation of Gerber Hinge parts Sealing of concrete cracks 	*Repair	*Repair
11	C-5 Br.	PC I Girder (9span)	1998	-	*Repair	*Repair
12	Bambang Br.	PCI Girder (9span)	1991	-	*Repair	*Repair
13	Vargas Br. (Upstream)	PC Gerber Girder (4span)	1992	 Rehabilitation of Gerber Hinge parts Installation of External Tendons Sealing of Concrete cracks 	*Repair	*Repair
13	Vargas Br. (Downstream)	Steel Plate Girder (4span)	1973	 Cleaning/painting of corroded steel member Rehabilitation of corroded steel member 	-	*Cleaning/painting of corroded steel members
14	Rosario Br.	PC I Girder (6span)	1952	 Rehabilitation of concrete deck slab Repair/sealing of concrete cracks 	*Repair	* Repair/sealing of concrete cracks
15	Marcos Br.	PC I Girder (11span)	1978	*Repair/sealing of concrete cracks	*Repair	* Rehabilitation of expansion joints bearing shoes
16	Marikina Br.	PC I Girder (5span)	1980	* Repair/sealing of concrete cracks	*Repair	* Rehabilitation of expansion joints bearing shoes
17	San Jose Br.	PC I Girder (8span)	1980	 Rehabilitation of expansion joints, bearing shoes Repair/sealing of concrete cracks 	*Repair	*Repair
	TOTAL (M	ILLION PESOS)		805.45	175.78	219.0
5	Ayala Br.	Single Steel Arch (2span)	1935 1950	 Strengthening of superstructure Strengthening of substructure 	•	-
_	Second Ayala Bridge			*New Construction	-	-
	TOTAL (MI	ILLION PESOS)		2,197.90		-

Summary of Recommended Improvement Measures

Note: • Proposed Improvement Measures * Expected Repair Works

No	REF. budge Name (Construction Year)	04 05	à	Short Term (Year 2004 - 2013)	1 - 2013)	-	+	Medium T	SH	14 - 2023)	H	H	Long Te	CB-	24 - 2033)			Retrofitting to
T	Delpan J	+	8	5	10 (23.7	12 13	cI +I	10 17	18 19	20 21 (9.0)	22 23	24 25	26 27	28 29	30 31	32 33	of Piers	Earthquak
<u> 1</u>	ral-1 (1965)														(0.2)			•
Pa	Pa1-2 Delpan Bridge (Downstream) (1988)						11.40)					(8.0)					1	,
P	Pa2 Jones Bridge (1948)	(97.1) (64.7) (64.7)				(12.0)					(12.0)					13.60	1.77
Pa3	a3 McArthur Bridge (1948)			(50.70)						(0.1)					(7.10)		4.50	48.1
Pa4	14 Quezon Bridge (1946)	(23.92)	(95.68					(17.0)					(17.0)					35.9
Pa6	16 Nagtahan Bridge (1966)			(124.75)							(21.0)					(21.0)	1.70	132.50
Pa7	8-10-S	70.2%	1.00				(12.20)					(2.0)						,
Pa8	18 Lambingan Bridge (1975)		(48,90)						(5.0)					(5.0)			12.20	4.8
Pa9	19 Makati-Mandaluyong Bridge (1986)					(9.4)					(3.0)				(17.70)			25.2
Pa	Pal0-1 Guadalupe Bridge (Central) (1962)				(47.4) (47.4)	47.4)				(15.0)					(15.0)			
Pa	Pa10-2 Guadalupe Bridge (Both Sides) (1979)	(15.3) (5.1)	(5.1)					(2.50)					(2.50)				4.50	6.4
Pa	Pall C-5 Bridge (1997)						(32.9)					(10.50)				(10.50)	5.70	81.9
Pa	Pa12 Bambang Bridge (1991)						(7.50)					(1.50)					4.50	,
M	Ma1-1 Vargas Bridge (Upstream) (1992)		(24.31)						(7.50)					(7.50)			4.50	
M	Ma1-2 Vargas Bridge (Downstream) (1973)					(18,64)						(1.50)						
M	Ma2 Rosario Bridge (1952)			(36,35)						(3.0)					(3.10)			19.7
M	Ma3 Marcos Bridge (1980)					(25.70)					(3.50)					(53,10)		
Ma4	a4 Marikina Bridge (1980)					(12.40)					(3.70)					(22.90)		
M	Ma5 San Jose Bridge (1980)				(17.0) (17.0)	(7.0)					(2.58)					(2.58)	- 	75.4
01	SUB TOTAL (MILLION PESOS)	136.32	238.69	211.8	88.1	130.54	76.00	19.50	12.50	34.00	33.78	35.50	19.50	12.50	51.90	110.08	51.20	507.0
Pa	Pa5-1 Ayala Bridge (1950)	(103.9)	(1,153)															
Pa	Pa5-2 Second Ayala Bridge		(133.8)	(451.2)	(356.0)												1	'
SU	SUB TOTAL (MILLION PESOS)	103.9	1,286.8	451.20	356.0	1			1					-	-			,
GRA	GRAND TOTAL (MILLION PESOS)	240.22	1,525.49	663.00	444.10	130.54	76.00	19.50	12.50	34.00	33.78	35.50	19.50	12.50	51.90	110.08	51.20	507.00

PART II MASTER PLAN

THE STUDY ON THE IMPROVEMENT OF EXISTING BRIDGES ALONG PASIG RIVER AND MARIKINA RIVER IN THE REPUBLIC OF THE PHILIPPINES