## CHAPTER 9. URBAN CONDITIONS

### 9.1 Buildings

1) Characteristics of NSO data, Distribution of Residential Buildings

## (1) General

In order to estimate building damage against earthquake occurrence, detailed information on each building is indispensable. Therefore, the Study Team visited relevant organizations to find the best resources for the Study. Fortunately, the " 2000 Census of Population and Housing" was implemented by National Statistics Office (hereinafter referred to as "NSO") and results will be published soon. Therefore, the Study Team officially requested to receive the data in a form that could be converted to building units, since the original data is in the form of each dwelling unit. Because damage estimation of buildings is calculated for each building, the Study Team requested to include building serial number in the data.

The Study Team received data in early January 2003 consisting of various information, such as 1) Number of Households, 2) Number of Habitants, 3) Type of Building, 4) Construction Materials of the Outer Wall, and 5) Construction Year.

In general, for the damage estimation of buildings, the fundamental information is: 1) Structure, 2) Construction Year, and 3) Number of Story. However, from the Census, number of story information cannot be gathered. The Study Team will consider how to assume this information in the later stage, or how to make the fragility function of the buildings without the number of story information.

Table 9.1.1 shows the general information on buildings by district. According to the Census 2000, total number of buildings in Metropolitan Manila is counted as $1,325,896$ buildings and its building density is 22 buildings/hectare.

Figure 9.1.1 shows building distribution by Barangay and Figure 9.1.2 shows Building density distribution by Barangay. In detail, Quezon City has the largest number of buildings in Metropolitan Manila, counted as 302,818 . However, area of Quezon City is rather large compared to other cities in Metropolitan Manila and its building density is 18 buildings /ha, which is less than average.

Pateros and Manila have the largest building density at 45 buildings/ha and 41 buldings/ha respectively. On the contrary, Valenzuela City, Muntinlupa City, Makati City, and Paranaque City have the lowest building density at 14 buildings/ha, 15 buildings/ha, 16 buildings/ha, and 16 buildings/ha respectively. However, this argument is focused on LGU level, therefore, in Barangay level, more detailed special characteristics can be found.

Table 9.1.1 General Information on Building by LGU

| LGU Name | Area (ha) | Total No. of <br> Building | Building Density <br> (buildings/ha) | Total No. of <br> Household | Total No. of <br> Habitant | Total Floor Area <br> (m2) |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Manila | 4,130 | 168,528 | 41 | 333,546 | $1,569,581$ | $11,475,903$ |
| Mandaluyong City | 1,107 | 32,942 | 30 | 59,681 | 275,106 | $2,149,173$ |
| Marikina City | 2,265 | 53,422 | 24 | 80,159 | 389,758 | $4,217,033$ |
| Pasig City | 3,189 | 72,143 | 23 | 107,834 | 503,674 | $4,856,306$ |
| Quezon City | 16,539 | 302,818 | 18 | 480,623 | $2,166,314$ | $22,194,266$ |
| San Juan | 588 | 11,793 | 20 | 24,604 | 117,392 | $1,253,073$ |
| Kalookan City | 5,314 | 168,480 | 32 | 249,566 | $1,174,669$ | $9,116,205$ |
| Malabon | 1,597 | 51,694 | 32 | 74,136 | 336,511 | $2,498,690$ |
| Navotas | 1,095 | 35,124 | 32 | 49,449 | 229,710 | $1,537,689$ |
| Valenzuela City | 4,454 | 62,778 | 14 | 106,381 | 481,039 | $3,866,230$ |
| Las Pinas City | 3,228 | 73,919 | 23 | 97,961 | 471,764 | $5,600,672$ |
| Makati City | 3,197 | 50,381 | 16 | 103,980 | 470,304 | $5,031,045$ |
| Muntinlupa City | 3,814 | 55,522 | 15 | 78,015 | 370,329 | $3,398,054$ |
| Paranaque City | 4,563 | 72,230 | 16 | 94,108 | 447,901 | $6,084,705$ |
| Pasay City | 1,779 | 39,968 | 22 | 78,179 | 354,011 | $2,597,026$ |
| Pateros | 195 | 8,726 | 45 | 12,028 | 57,389 | 470,536 |
| Taguig | 2,753 | 65,428 | 24 | 102,722 | 464,552 | $3,825,264$ |
| MM: Total | 59,809 | $1,325,896$ | 22 | $2,132,972$ | $9,880,004$ | $90,171,870$ |

[^0]

Figure 9.1.1 Number of Buildings per Barangay

Figure 9.1.2 Building Density per Barangay

## (2) Building Type

In the Census 2000, type of building is indicated to identify scale of building. Type of building is classified into 6 categories, 1) Single House, 2) Duplex, 3) Multi-Unit Residential (3 or more units), 4) Commercial/Industrial/Agricultural, 5) Institutional living quarters, and 6) Other housing units. The definition of each category is shown in Table 9.1.2.

Table 9.1.2 Definition of Building Type

| No. | Type of Building | Definition |
| :---: | :--- | :--- |
| 1 | Single House | This is an independent structure intended for one household separated <br> by an open space or walls from all other structures. |
| 2 | Duplex | This is a structure intended for two households, with complete living <br> facilities for each. It is divided vertically or horizontally into two separate <br> housing units, which are usually identical. |
| 3 | Multi-Unit Residential <br> (3 or more units) | This is a building intended for residential use only, consisting of 3 or more <br> housing units. |
| 4 | Commercial/Industrial/Agricultu <br> ral | These buildings are not intended mainly for human habitation but used as <br> living quarters of households at the time of the pilot census. |
| 5 | Institutional living quarters | hotel, lodging house, dormitory, hospital, convent, school, penal <br> institution, refugee camp, military camp, etc. |
| 6 | Other housing units | This refers to living quarters which are not intended for human habitation <br> nor located in permanent buildings but which are nevertheless, used as <br> living quarters at the time of the pilot census. |

Source: NSO, Census 2000

Since Census 2000 does not include number of story information, this building type can be used to identify scale of building to estimate building story. For instance, Single house and Duplex can be a one or two story buildings and Multi-Unit Residential can be considered as rather high story buildings. However, it has been cleared that this type of building are not correctly answered at the time of survey. Table 9.1 .3 shows counts of households in each category of building type. As indicated in the definition of building type, Single houses are occupied by one household which should be only available in " 1 " in the table ( 74,559 households). However, sometimes there are more than 2 households existing in this category. Likewise, duplex should have only " 2 households". However, these are sometimes occupied by only 1 household or more than 3 households. Therefore, this information cannot be used to assume building story, unfortunately.

Table 9.1.3 Number of Household by Type of Building

| LGU | Type | 1 | 2 | 3 | 4 | 5-10 | 11-20 | 21-50 | $\begin{aligned} & 51- \\ & 100 \end{aligned}$ | $\begin{aligned} & 101- \\ & 200 \end{aligned}$ | 200- |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MANILA | Single house | 74,559 | 14,860 | 6,307 | 3,098 | 3,661 | 253 | 38 | 4 | 3 | 0 |
| MANILA | Duplex | 6,263 | 3,910 | 1,000 | 416 | 461 | 31 | 9 | 1 | 0 | 0 |
| MANILA | Multi-unit residential | 21,374 | 7,189 | 6,464 | 4,024 | 6,220 | 795 | 248 | 63 | 21 | 3 |
| MANILA | Commercial/indust rial/Agricultural | 1,013 | 190 | 96 | 52 | 109 | 28 | 15 | 2 | 0 | 0 |
| MANILA | Others | 5,132 | 335 | 104 | 62 | 96 | 10 | 9 | 0 | 0 | 0 |

Source: NSO, Census 2000

Table 9.1.4 Building Type Distribution by District

|  | No of Buildings |  |  |  |  |  |  |  | Percentage (\%) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LGU Name | 1 | 2 | 3 | 4 | 5 | 6 | 9 | LGU: Total | 1 | 2 | 3 | 4 | 5 | 6 | 9 |
| Manila | 102,783 | 12,091 | 46,401 | 1,505 | 153 | 1,547 | 4,048 | 168,528 | 61.0 | 7.2 | 27.5 | 0.9 | 0.1 | 0.9 | 2.4 |
| Mandaluyong City | 21,215 | 2,493 | 8,487 | 157 | 18 | 40 | 532 | 32,942 | 64.4 | 7.6 | 25.8 | 0.5 | 0.1 | 0.1 | 1.6 |
| Marikina City | 41,370 | 4,204 | 6,456 | 206 | 21 | 180 | 985 | 53,422 | 77.4 | 7.9 | 12.1 | 0.4 | 0.0 | 0.3 | 1.8 |
| Pasig City | 53,956 | 6,398 | 10,115 | 245 | 15 | 38 | 1,376 | 72,143 | 74.8 | 8.9 | 14.0 | 0.3 | 0.0 | 0.1 | 1.9 |
| Quezon City | 207,345 | 24,364 | 60,574 | 1,535 | 201 | 1,709 | 7,090 | 302,818 | 68.5 | 8.0 | 20.0 | 0.5 | 0.1 | 0.6 | 2.3 |
| San Juan | 6,322 | 718 | 4,189 | 122 | 8 | 65 | 369 | 11,793 | 53.6 | 6.1 | 35.5 | 1.0 | 0.1 | 0.6 | 3.1 |
| Kalookan City | 122,133 | 14,662 | 26,441 | 1,023 | 66 | 269 | 3,886 | 168,480 | 72.5 | 8.7 | 15.7 | 0.6 | 0.0 | 0.2 | 2.3 |
| Malabon | 38,183 | 5,072 | 6,945 | 295 | 26 | 76 | 1,097 | 51,694 | 73.9 | 9.8 | 13.4 | 0.6 | 0.1 | 0.1 | 2.1 |
| Navotas | 28,084 | 2,564 | 3,483 | 179 | 10 | 102 | 702 | 35,124 | 80.0 | 7.3 | 9.9 | 0.5 | 0.0 | 0.3 | 2.0 |
| Valenzuela City | 41,040 | 6,971 | 13,044 | 485 | 32 | 81 | 1,125 | 62,778 | 65.4 | 11.1 | 20.8 | 0.8 | 0.1 | 0.1 | 1.8 |
| Las Pinas City | 60,904 | 4,097 | 6,784 | 265 | 26 | 127 | 1,716 | 73,919 | 82.4 | 5.5 | 9.2 | 0.4 | 0.0 | 0.2 | 2.3 |
| Makati City | 29,652 | 4,838 | 14,251 | 271 | 37 | 247 | 1,085 | 50,381 | 58.9 | 9.6 | 28.3 | 0.5 | 0.1 | 0.5 | 2.2 |
| Muntinlupa City | 41,781 | 5,190 | 7,385 | 97 | 17 | 40 | 1,012 | 55,522 | 75.3 | 9.3 | 13.3 | 0.2 | 0.0 | 0.1 | 1.8 |
| Paranaque City | 58,310 | 4,950 | 7,097 | 275 | 26 | 139 | 1,433 | 72,230 | 80.7 | 6.9 | 9.8 | 0.4 | 0.0 | 0.2 | 2.0 |
| Pasay City | 25,607 | 3,097 | 10,035 | 275 | 39 | 231 | 684 | 39,968 | 64.1 | 7.7 | 25.1 | 0.7 | 0.1 | 0.6 | 1.7 |
| Pateros | 6,624 | 859 | 1,016 | 30 |  | 14 | 183 | 8,726 | 75.9 | 9.8 | 11.6 | 0.3 | 0.0 | 0.2 | 2.1 |
| Taguig | 48,312 | 7,012 | 8,975 | 148 | 19 | 28 | 934 | 65,428 | 73.8 | 10.7 | 13.7 | 0.2 | 0.0 | 0.0 | 1.4 |
| MM: Total | 933,621 | 109,580 | 241,678 | 7,113 | 714 | 4,933 | 28,257 | 1,325,896 | 70.4 | 8.3 | 18.2 | 0.5 | 0.1 | 0.4 | 2.1 |

Source: NSO, Census 2000
Note: 1. Single house, 2.Duplex, 3.Multi-unit residential (three units or more), 4.Commercial/industrial/agricultural (office, factory, rice mill, etc.), 5.institutional living quarters (hotel, hospital, etc.), 6.Other housing unit (boat, cave, etc.), 9.Not Reported

## (3) Outer Wall Material

In Census 2000, Building Outer Wall Material is classified into 10 types, 1) Concrete/brick/stone, 2)Wood, 3) Half concrete/brick/stone/ and half wood, 4) Galvanized iron/aluminum, 5) Bamboo/sawali/cogon/nipa, 6) Asbestos, 7) Glass, 8) Makeshift/salvaged/improvised materials, 9) Others, and 10) No walls. This information is used to identify type of structure of each building.

Table 9.1.5 shows building outer wall material distribution in each LGU. As a whole for Metropolitan Manila, $44.4 \%$ of buildings are constructed with Concrete/brick/stone, $30.1 \%$ Half
concrete/brick/stone/ and half wood, and $18.6 \%$ Wood. Those three types of structure occupies $93.1 \%$ of buildings existing in Metropolitan Manila.

Focusing on each LGU, buildings in Marikina City, Kalookan City, Valenzuela City, Las Pinas City, Taguig are mostly constructed with Concrete/brick/stone, which comprises $56.2 \%, 53.5 \%$, $54.6 \%, 53.5 \%$, and 54.3 respectively. For the buildings constructed with Wood, these are remarkably distributed in Malabon and Navotas, which occupies $32.4 \%$, and 36.2 respectively. However, most of LGU have more than $15 \%$ of buildings constructed with Wood. In addition, buildings in Manila, Mandaluyong City, and Pasay City are constructed with Half concrete/brick/stone/ and half wood, which comprises $41.7 \%, 45.4 \%$, and $39.1 \%$ respectively.

In Barangay level, characteristics of building distribution by structure is different. Therefore, data were prepared in Barangay level as well and these data are attached in the end of this report. To understand the distribution visually, several GIS maps are prepared. Figure 9.1.3 illustrates Concrete/brick/stone Structure Distribution by Barangay, Figure 9.1.4 illustrates Wood Structure Distribution by Barangay, and Figure 9.1.5 illustrates Half concrete/brick/stone/ and half wood Structure Distribution by Barangay.

Table 9.1.5 Building Outer Wall Material Distribution by LGU

|  | No of Buildings |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LGU | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 99 | LGU: Total |
| Manila | 45,489 | 42,013 | 70,319 | 1,193 | 84 | 55 | 59 | 3,828 | 89 | 245 | 5,154 | 168,528 |
| Mandaluyong City | 9,796 | 6,449 | 14,947 | 282 | 24 | 19 | 16 | 599 | 4 | 17 | 789 | 32,942 |
| Marikina City | 30,015 | 6,795 | 13,276 | 683 | 64 | 23 | 42 | 876 | 18 | 62 | 1,568 | 53,422 |
| Pasig City | 32,391 | 16,422 | 19,387 | 381 | 112 | 37 | 40 | 1,139 | 14 | 128 | 2,092 | 72,143 |
| Quezon City | 141,864 | 42,181 | 94,089 | 3,676 | 594 | 162 | 204 | 9,024 | 122 | 497 | 10,405 | 302,818 |
| San Juan | 4,340 | 2,670 | 4,002 | 79 | 4 | 3 | 3 | 88 | 6 | 15 | 583 | 11,793 |
| Kalookan City | 90,085 | 20,961 | 45,754 | 1,721 | 670 | 99 | 60 | 3,406 | 183 | 240 | 5,301 | 168,480 |
| Malabon | 16,324 | 16,729 | 15,889 | 411 | 64 | 17 | 31 | 595 | 5 | 78 | 1,551 | 51,694 |
| Navotas | 9,295 | 12,718 | 10,979 | 210 | 55 | 13 | 13 | 769 | 34 | 56 | 982 | 35,124 |
| Valenzuela City | 34,307 | 9,672 | 15,567 | 448 | 109 | 30 | 40 | 1,067 | 24 | 102 | 1,412 | 62,778 |
| Las Pinas City | 39,558 | 14,425 | 13,151 | 374 | 356 | 13 | 49 | 3,397 | 18 | 81 | 2,497 | 73,919 |
| Makati City | 23,825 | 7,497 | 15,370 | 276 | 34 | 10 | 34 | 1,746 | 32 | 142 | 1,415 | 50,381 |
| Muntinlupa City | 25,552 | 10,765 | 14,783 | 649 | 398 | 18 | 49 | 1,593 | 22 | 66 | 1,627 | 55,522 |
| Paranaque City | 33,669 | 15,763 | 17,740 | 597 | 140 | 27 | 76 | 1,730 | 9 | 87 | 2,392 | 72,230 |
| Pasay City | 13,324 | 8,516 | 15,645 | 302 | 15 | 8 | 26 | 1,098 | 37 | 64 | 933 | 39,968 |
| Pateros | 3,670 | 1,866 | 2,676 | 52 | 5 | 1 | 2 | 152 | 0 | 6 | 296 | 8,726 |
| Taguig | 35,552 | 10,886 | 14,893 | 751 | 237 | 21 | 31 | 1,443 | 12 | 80 | 1,522 | 65,428 |
| MM: Total | 589,056 | 246,328 | 398,467 | 12,085 | 2,965 | 556 | 775 | 32,550 | 629 | 1,966 | 40,519 | 1,325,896 |
|  | Percentage (\%) |  |  |  |  |  |  |  |  |  |  |  |
| LGU | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 99 | LGU: Total |
| Manila | 27.0 | 24.9 | 41.7 | 0.7 | 0.0 | 0.0 | 0.0 | 2.3 | 0.1 | 0.1 | 3.1 | 100 |
| Mandaluyong City | 29.7 | 19.6 | 45.4 | 0.9 | 0.1 | 0.1 | 0.0 | 1.8 | 0.0 | 0.1 | 2.4 | 100 |
| Marikina City | 56.2 | 12.7 | 24.9 | 1.3 | 0.1 | 0.0 | 0.1 | 1.6 | 0.0 | 0.1 | 2.9 | 100 |
| Pasig City | 44.9 | 22.8 | 26.9 | 0.5 | 0.2 | 0.1 | 0.1 | 1.6 | 0.0 | 0.2 | 2.9 | 100 |
| Quezon City | 46.8 | 13.9 | 31.1 | 1.2 | 0.2 | 0.1 | 0.1 | 3.0 | 0.0 | 0.2 | 3.4 | 100 |
| San Juan | 36.8 | 22.6 | 33.9 | 0.7 | 0.0 | 0.0 | 0.0 | 0.7 | 0.1 | 0.1 | 4.9 | 100 |
| Kalookan City | 53.5 | 12.4 | 27.2 | 1.0 | 0.4 | 0.1 | 0.0 | 2.0 | 0.1 | 0.1 | 3.1 | 100 |
| Malabon | 31.6 | 32.4 | 30.7 | 0.8 | 0.1 | 0.0 | 0.1 | 1.2 | 0.0 | 0.2 | 3.0 | 100 |
| Navotas | 26.5 | 36.2 | 31.3 | 0.6 | 0.2 | 0.0 | 0.0 | 2.2 | 0.1 | 0.2 | 2.8 | 100 |
| Valenzuela City | 54.6 | 15.4 | 24.8 | 0.7 | 0.2 | 0.0 | 0.1 | 1.7 | 0.0 | 0.2 | 2.2 | 100 |
| Las Pinas City | 53.5 | 19.5 | 17.8 | 0.5 | 0.5 | 0.0 | 0.1 | 4.6 | 0.0 | 0.1 | 3.4 | 100 |
| Makati City | 47.3 | 14.9 | 30.5 | 0.5 | 0.1 | 0.0 | 0.1 | 3.5 | 0.1 | 0.3 | 2.8 | 100 |
| Muntinlupa City | 46.0 | 19.4 | 26.6 | 1.2 | 0.7 | 0.0 | 0.1 | 2.9 | 0.0 | 0.1 | 2.9 | 100 |
| Paranaque City | 46.6 | 21.8 | 24.6 | 0.8 | 0.2 | 0.0 | 0.1 | 2.4 | 0.0 | 0.1 | 3.3 | 100 |
| Pasay City | 33.3 | 21.3 | 39.1 | 0.8 | 0.0 | 0.0 | 0.1 | 2.7 | 0.1 | 0.2 | 2.3 | 100 |
| Pateros | 42.1 | 21.4 | 30.7 | 0.6 | 0.1 | 0.0 | 0.0 | 1.7 | 0.0 | 0.1 | 3.4 | 100 |
| Taguig | 54.3 | 16.6 | 22.8 | 1.1 | 0.4 | 0.0 | 0.0 | 2.2 | 0.0 | 0.1 | 2.3 | 100 |
| MM: Total | 44.4 | 18.6 | 30.1 | 0.9 | 0.2 | 0.0 | 0.1 | 2.5 | 0.0 | 0.1 | 3.1 | 100 |

Source: NSO, Census 2000
Note: 1. Concrete/brick/stone, 2.Wood, 3.Half concrete/brick/stone/and half wood, 4.Galvanized iron/aluminum,
5.Bamboo/sawali/cogon/nipa, 6.Asbestos, 7.Glass, 8.Makeshift/salvaged/improvised materials, 9.Others, 10.No walls, 99.Not

Reported


Figure 9.1.3 Concrete-Walled Buildings per Barangay (2000)


Figure 9.1.4 Wood-Walled Buildings per Barangay (2000)


Figure 9.1.5 Half Concrete-Walled Buildings per Barangay (2000)

## (4) Construction Year

In Census 2000, Construction Year is divided into 10 categories, 1) 2000, 2) 1999, 3) 1998, 4) 1997 , 5) 1996, 6) 1991-1995, 7) 1981-1990, 8) 1971-1980, 9) 1961-1970, and 10) 1960 and earlier. From the original data, to understand urban development pattern clearly, data have been re-categorized into 5 categories, 1) 1960 and earlier, 2) 1961-1970, 3) 1971-1980, 4) 1981-1990, and 5) 1991-2000. Table 9.1.6 is a summarized table of construction year distribution by LGU.

Table 9.1.6 Building Construction Year Distribution by LGU

|  | No of Buildings |  |  |  |  |  |  | Percentage (\%) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LGU Name | 1 | 2 | 3 | 4 | 5 | 6 | LGU: Total | 1 | 2 | 3 | 4 | 5 | 6 |
| Manila | 32,651 | 20,061 | 25,156 | 33,269 | 32,507 | 24,884 | 168,528 | 19.4 | 11.9 | 14.9 | 19.7 | 19.3 | 14.8 |
| Mandaluyong City | 2,959 | 3,471 | 5,175 | 7,627 | 9,809 | 3,901 | 32,942 | 9.0 | 10.5 | 15.7 | 23.2 | 29.8 | 11.8 |
| Marikina City | 2,632 | 4,249 | 8,562 | 15,065 | 18,314 | 4,600 | 53,422 | 4.9 | 8.0 | 16.0 | 28.2 | 34.3 | 8.6 |
| Pasig City | 3,147 | 4,700 | 10,290 | 18,756 | 27,283 | 7,967 | 72,143 | 4.4 | 6.5 | 14.3 | 26.0 | 37.8 | 11.0 |
| Quezon City | 15,709 | 18,636 | 41,915 | 82,085 | 109,616 | 34,857 | 302,818 | 5.2 | 6.2 | 13.8 | 27.1 | 36.2 | 11.5 |
| San Juan | 2,672 | 1,652 | 1,642 | 1,659 | 1,931 | 2,237 | 11,793 | 22.7 | 14.0 | 13.9 | 14.1 | 16.4 | 19.0 |
| Kalookan City | 7,702 | 8,356 | 14,865 | 51,013 | 71,864 | 14,680 | 168,480 | 4.6 | 5.0 | 8.8 | 30.3 | 42.7 | 8.7 |
| Malabon | 4,162 | 4,713 | 8,260 | 13,960 | 15,119 | 5,480 | 51,694 | 8.1 | 9.1 | 16.0 | 27.0 | 29.2 | 10.6 |
| Navotas | 2,726 | 2,317 | 6,326 | 9,995 | 11,293 | 2,467 | 35,124 | 7.8 | 6.6 | 18.0 | 28.5 | 32.2 | 7.0 |
| Valenzuela City | 2,290 | 3,703 | 8,920 | 16,880 | 23,176 | 7,809 | 62,778 | 3.6 | 5.9 | 14.2 | 26.9 | 36.9 | 12.4 |
| Las Pinas City | 1,072 | 2,852 | 11,451 | 23,351 | 29,925 | 5,268 | 73,919 | 1.5 | 3.9 | 15.5 | 31.6 | 40.5 | 7.1 |
| Makati City | 5,764 | 6,070 | 7,235 | 11,813 | 12,406 | 7,093 | 50,381 | 11.4 | 12.0 | 14.4 | 23.4 | 24.6 | 14.1 |
| Muntinlupa City | 1,506 | 2,485 | 8,290 | 18,522 | 19,979 | 4,740 | 55,522 | 2.7 | 4.5 | 14.9 | 33.4 | 36.0 | 8.5 |
| Paranaque City | 2,935 | 3,522 | 9,242 | 21,432 | 28,051 | 7,048 | 72,230 | 4.1 | 4.9 | 12.8 | 29.7 | 38.8 | 9.8 |
| Pasay City | 4,693 | 4,567 | 7,114 | 9,894 | 8,089 | 5,611 | 39,968 | 11.7 | 11.4 | 17.8 | 24.8 | 20.2 | 14.0 |
| Pateros | 912 | 1,124 | 1,756 | 2,071 | 2,242 | 621 | 8,726 | 10.5 | 12.9 | 20.1 | 23.7 | 25.7 | 7.1 |
| Taguig | 1,485 | 2,193 | 7,855 | 19,439 | 29,508 | 4,948 | 65,428 | 2.3 | 3.4 | 12.0 | 29.7 | 45.1 | 7.6 |
| MM: Total | 95,017 | 94,671 | 184,054 | 356,831 | 451,112 | 144,211 | 1,325,896 | 7.2 | 7.1 | 13.9 | 26.9 | 34.0 | 10.9 |

Source: NSO, Census 2000
Note: 1. 1960 or earlier, 2.1961-1970, 3.1971-1980, 4.1981-1990, 5.1991-2000, 6. Unknown
According to the original data, up to Year 1960, number of buildings in Metropolitan Manila was only 95,017 ( $7.2 \%$ of total number of buildings in year 2000). Development in Metropolitan Manila rapidly increased from 1980's. Old town like City of Manila is almost equally developed and even from 1981-1990, new construction increased only to $19.3 \%$. Other LGU constructed more than $30 \%$ of the buildings in this decade, except for San Juan, Makati City, Pasay, and Pateros. However, Makati City mostly constructed high-rise buildings. Therefore, from the statistical table, this trend cannot be observed clearly.

In this study, construction year data is used to visualize the urban development pattern in Metropolitan Manila (Figure 9.1.6 to Figure 9.1.10). These figures clearly show the urban development trend in Metropolitan Manila in each Barangay. Data table for each Barangay is attached in the last part of this report.


Figure 9.1.6 Buildings Built in Year 1960 or Earlier per Barangay (2000)


Figure 9.1.7 Building Built in Year 1961-1970 per Barangay (2000)


Figure 9.1.8 Building Built in Year 1971-1980 per Barangay (2000)


Figure 9.1.9 Building Built in Year 1981-1990 per Barangay (2000)


Figure 9.1.10 Building Built in Year 1991-2000 per Barangay (2000)

## 2) Distribution of Mid-rise and High-rise Buildings

The Study Team identified locations and heights of each building, with height over 12 m , using the aerophoto taken in 2003. These include commercial and residential buildings. Table 9.1.7 shows the summary of mid-rise and high-rise buildings in Metropolitan Manila.

Table 9.1.7 Mid-rise and High-rise Buildings in Metropolitan Manila

| Number of Stories | Building Count |
| ---: | ---: |
| $10-30$ Stories | 981 |
| Over 30 Stories | 119 |

## 3) Distribution of Major Public Facility Buildings

Public and governmental facility buildings examined in the Study are described here and shown in Table 9.1.8. Data source are shown in the table. Number of facilities in each LGU is summarized in Table 9.1.8 to Table 9.1.12. Location maps are shown in Figure 9.1.11 to Figure 9.1.15.

Table 9.1.8 Contents of Public and Governmental Facility Buildings

| Type | Data | Data Source (year) |
| :--- | :--- | :--- |
| Police Station | Location of Police Regional, District HQ \& Stations <br> Police Districts in Metropolitan Manila | ROD, NCRPO <br> (2003) |
| Fire Fighting Station | Location of Fire District HQ, Stations \& Substations <br> Fire Districts in Metropolitan Manila <br> Location of Fire Hydrants in Metropolitan Manila | BFP <br> $(2003)$ |
| Hospitals | Location of Hospitals <br> Hospital Districts | DOH <br> (2003) |
| Public schools <br> Private Schools | Location of Public Elementary and High Schools <br> Location of Private Elementary and High Schools <br> Department of Education Divisions <br> Location of Higher Educational Institutions | DepED(2003) <br> CHED(2003) |
| 17 LGU City and Municipality Hall <br> MMDCC organizing Department and <br> Agencies | Building Location | The Study Team <br> (2003) |

Table 9.1.9 Police Stations in Metropolitan Manila

| LGU Code | LGU | No. of Police Stations |  |  |  |
| :---: | :---: | ---: | ---: | ---: | ---: |
|  |  | Stations | District HQ | Regional HQ | Total |
| 390 | Manila | 11 | 1 | 0 | 12 |
| 741 | Mandaluyong | 1 | 0 | 0 | 1 |
| 742 | Marikina | 1 | 0 | 0 | 1 |
| 743 | Pasig | 1 | 1 | 0 | 2 |
| 744 | Quezon | 11 | 1 | 0 | 12 |
| 745 | San Juan | 1 | 0 | 0 | 1 |
| 751 | Valenzuela | 1 | 0 | 0 | 1 |
| 752 | Kalookan | 1 | 1 | 0 | 2 |
| 753 | Malabon | 1 | 0 | 0 | 1 |
| 754 | Navotas | 1 | 0 | 0 | 1 |
| 761 | Las Pinas | 1 | 0 | 0 | 1 |
| 762 | Makati | 1 | 1 | 0 | 2 |
| 763 | Muntinlupa | 1 | 0 | 0 | 1 |
| 764 | Paranaque | 1 | 0 | 0 | 1 |
| 765 | Pasay | 1 | 0 | 0 | 1 |
| 766 | Pateros | 1 | 0 | 0 | 1 |
| 767 | Taguig | 1 | 0 | 1 | 2 |
| Total |  |  |  |  |  |
|  |  | 37 | 5 | 1 | 43 |

Table 9.1.10 Fire Stations in Metropolitan Manila

| LGU Code | LGU | No. of Fire Station |  |  |  |
| :---: | :---: | ---: | ---: | ---: | ---: |
|  |  | Head Quarter |  | Station | Sub - station |
| 390 | Manila | 1 | 1 | 13 | Total |
| 741 | Mandaluyong | 0 | 1 | 2 | 15 |
| 742 | Marikina | 0 | 1 | 6 | 3 |
| 743 | Pasig | 1 | 1 | 9 | 7 |
| 744 | Quezon | 1 | 0 | 17 | 11 |
| 745 | San Juan | 0 | 1 | 1 | 18 |
| 751 | Valenzuela | 0 | 1 | 6 | 2 |
| 752 | Kalookan | 0 | 1 | 10 | 7 |
| 753 | Malabon | 0 | 1 | 3 | 11 |
| 754 | Navotas | 0 | 1 | 6 | 4 |
| 761 | Las Pinas | 0 | 1 | 8 | 7 |
| 762 | Makati | 1 | 0 | 10 | 9 |
| 763 | Muntinlupa | 0 | 1 | 3 | 11 |
| 764 | Paranaque | 0 | 1 | 6 | 4 |
| 765 | Pasay | Pateros | 0 | 1 | 2 |

Table 9.1.11 Hospitals in Metropolitan Manila

| LGU Code | LGU | No. of Hospitals |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Primary | Secondary | Tertiary | Total |
| 390 | Manila | 1 | 11 | 20 | 32 |
| 741 | Mandaluyong | 0 | 2 | 3 | 5 |
| 742 | Marikina | 0 | 5 | 1 | 6 |
| 743 | Pasig | 4 | 6 | 4 | 14 |
| 744 | Quezon | 12 | 12 | 25 | 49 |
| 745 | San Juan | 0 | 1 | 2 | 3 |
| 751 | Valenzuela | 4 | 3 | 1 | 8 |
| 752 | Kalookan | 6 | 7 | 2 | 15 |
| 753 | Malabon | 3 | 1 | 0 | 4 |
| 754 | Navotas | 1 | 0 | 0 | 1 |
| 761 | Las Pinas | 2 | 5 | 3 | 10 |
| 762 | Makati | 1 | 1 | 4 | 6 |
| 763 | Muntinlupa | 2 | 3 | 3 | 8 |
| 764 | Paranaque | 0 | 4 | 1 | 5 |
| 765 | Pasay | 3 | 1 | 4 | 8 |
| 766 | Pateros | 0 | 0 | 0 | 0 |
| 767 | Taguig | 1 | 2 | 0 | 3 |
| Total |  | 40 | 64 | 73 | 177 |

Table 9.1.12 Schools in Metropolitan Manila

| LGU Code | LGU | No. of Public Schools |  |  |  | No. of Private Schools |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Elementary School | High School | CHED | Total | $\begin{gathered} \hline \text { All } \\ \text { Category } \\ \hline \end{gathered}$ | CHED | Total |
| 390 | Manila | 71 | 31 | 7 | 109 | 81 | 67 | 148 |
| 741 | Mandaluyong | 15 | 5 | 1 | 21 | 10 | 4 | 14 |
| 742 | Marikina | 18 | 8 | 1 | 27 | 19 | 6 | 25 |
| 743 | Pasig | 27 | 10 | 1 | 38 | 39 | 7 | 46 |
| 744 | Quezon | 98 | 42 | 3 | 143 | 82 | 61 | 143 |
| 745 | San Juan | 9 | 1 | 0 | 10 | 13 | 7 | 20 |
| 751 | Valenzuela | 36 | 11 | 0 | 47 | 27 | 7 | 34 |
| 752 | Kalookan | 50 | 23 | 1 | 74 | 23 | 19 | 42 |
| 753 | Malabon | 28 | 6 | 1 | 35 | 20 | 1 | 21 |
| 754 | Navotas | 15 | 6 | 1 | 22 | 6 | 1 | 7 |
| 761 | Las Pinas | 20 | 6 | 1 | 27 | 32 | 8 | 40 |
| 762 | Makati | 30 | 7 | 2 | 39 | 21 | 16 | 37 |
| 763 | Muntinlupa | 17 | 4 | 1 | 22 | 27 | 7 | 34 |
| 764 | Paranaque | 20 | 6 | 0 | 26 | 38 | 5 | 43 |
| 765 | Pasay | 19 | 8 | 3 | 30 | 17 | 11 | 28 |
| 766 | Pateros | 6 | 2 | 0 | 8 | 3 | 0 | 3 |
| 767 | Taguig | 22 | 6 | 2 | 30 | 15 | 2 | 17 |
| Total |  | 501 | 182 | 25 | 708 | 473 | 229 | 702 |



Figure 9.1.11 Location Map of Police Station


Figure 9.1.12 Location Map of Fire Fighting Station


Figure 9.1.13 Location Map of Hospitals


Figure 9.1.14 Location Map of Public Schools and Private Schools


Figure 9.1.15 Location Map of 17 LGU City and Municipality Hall, MMDCC Departments and Agencies

## 4) Structural Features of Residential Buildings

## (1) Classification of Residential Buildings

In Metropolitan Manila, qualities of the residential buildings have wide variety. Few buildings are well designed, well constructed and well maintained while almost all buildings are of moderate and/or low quality. Although NSO (National Statistics Office) gives building and population census, data regarding the buildings' structural classification and its quality are limited to several items. They are;

1. Floor area of housing unit
2. Construction materials of the outer walls
3. Year of construction
4. Construction materials of the roof

From the site observation, it is found that the residential buildings have the façade that uses the same material as that of the structure. Therefore it is reasonable to classify the residential buildings by using the classification of construction materials of the outer walls. Construction materials of the outer walls are categorized into four groups by Census data. They are as shown in the photographs;

1. Concrete/brick/stone
2. Half concrete/brick/stone and half wood
3. Wood
4. Others (Galvanized iron, Bamboo, Makeshift etc)

Through the observation in the study area, many residential buildings are of concrete frames with reinforcing bars that are very often filled with C.H.B (Concrete Hollow Brick). Exceptionally, very few and new tall condominium buildings are made of reinforced concrete shear wall structures.


## (2) Construction Material

## Concrete structure

Individual house: Regarding the concrete residential buildings in Metropolitan Manila, it is usual that the house owner himself constructs his house with low-engineered construction method. For example, concrete is mixed by human laborers without proper mixing criteria. Sometimes, mere sand is used as aggregate material and the non-skilled laborers often ignore to mix coarse aggregate, which means that the constructor is never concerned with the proper mix proportioning of concrete. Very often, the in-filled CHB wall is first constructed, and then a portion of the CHB wall is used as form to make concrete column. The column depth is, in general, equal to that of the CHB. Although the reinforcing bars of column are placed with ties, the spacing is not strictly defined. It was not found that design and construction code is enforced during the construction of this type of structure.

Large condominium: On the other hand, few large-scale residential buildings such as condominium buildings apply proper construction methods. A mixer mixes concrete with appropriate mix proportioning practice. Sometimes most updated techniques such as Jumping forms for structural wall and Flying shores for floor systems are used. Even the concrete strength of 8000 psi for core concrete and 6000 psi for floor slab is sometimes allocated in the structural design. In order to pour the concrete, concrete bucket by crane for vertical members is used while pumping is used for horizontal members such as beams and slabs. Concrete test specimen are taken and cured for the strength verification. In general, quality assurances in the large-scale building construction are rather in a good condition.


Individual house


Large condominium (Good Quality)

## Wood Structure

Wood structure is composed of lumber, wooden structural panel, particleboard, end-jointed lumber, fiberboard sheathing and hardboard siding (if latter two materials are used structurally). It is observed in Metropolitan Manila that structural quality of this type is widely scattered due to
their conditions for design, construction and maintenance. For example, low-cost house lacks structural component to resist earthquake forces while, in a subdivision area, the large wooden structure looks much stronger than the badly constructed concrete structure.

## (3) Legal Procedure of Building Construction

Construction approval
All the private buildings are to be constructed after getting the construction approval (Construction Permit) from the Building Officials in LGU. Building officials in LGU have to check the legality on the light of the use of the land and other items.

## Role of Building officials

However, the building officials do not review the design of the applied buildings, which means that, although structural code exists for implementation, only law-abiding designer and/or owner of the building can assure the safeness of the building structure. Building officials have to check the legality at the time of completion of the building

## (4) Supply of Construction Material

Study Team visited factories for Rebar, Ready mixed concrete and Concrete Hollow Brick (CHB) for understanding of the present condition of building industry in view of structural and earthquake engineering. Names of the factory are STEEL ASIA Company, DAROMAR Ready Mix Industries Inc., and ALLIED Concrete Products, Inc. respectively. Through the visit and interview with local engineers and/or with those who are involved in the building industry, study team could, to some extent, clarify the overall conditions regarding the building construction. It is to be pointed out that, in all the factories, the product machines are under good operational conditions with proper quality assurance process. The produced building materials are kept under appropriate quality control even after the delivery to the construction sites. Therefore, it was found so far that the quality of the building material products in the factory is as good as in Japan.


Rebar Factory


Concrete Hollow Brick Factory

On the other hand, many of concrete hollow bricks, those are actually supplied at construction sites, have very low strength. These are hand-made brick, often prepared at construction site. Some construction site manager said that there are serious strength problem even with factory-made bricks.

## 5) Structural Features of Major Public Facilities

## (1) Design and Construction of Public Building Facilities

All the public buildings such as school, hospital and other governmental facilities are designed and constructed by DPWH. The organizational chart is shown in the Figure 9.1.16.

For instance, engineers in BOD (Bureau of Design) are in charge of review and check of designed structures. The engineers in DPWH are strictly referring to the national building code. On the other hand, buildings, which belong to the LGU, such as city hall and barangay hall, are designed and constructed through the building officials in LGU.

## (2) Seismic Performance of Public Buildings in View of Seismic Diagnosis

## A. Procedure of Building Diagnosis

## a) For Reinforced Concrete Buildings with Medium Heights

According to the Japanese practice in order to briefly estimate seismic performance of existing medium heights' reinforced concrete (RC) buildings, basic structural index Is is used as diagnosis index by using following equation(s).
$\left.\mathrm{Is}=\beta\left(\mathrm{C}_{2}+0.7 \mathrm{C}_{3}\right)\right] 1.0---(1)$
$\mathrm{Is}=\beta\left(\mathrm{C}_{1}+0.7 \mathrm{C}_{2}+0.5 \mathrm{C}_{3}\right) \square 0.8---(2)$
Larger Is value are adopted
Where $\quad \beta=(\mathrm{n}+1) /(\mathrm{n}+\mathrm{i})$
$\mathrm{n}=$ total number of stories
$\mathrm{i}=$ story level under consideration
$\mathrm{Cj}=\Sigma \mathrm{Q}_{\mathrm{j}} / \Sigma \mathrm{w}_{\mathrm{k}}(\mathrm{j}=1$ Extremely short column, $\mathrm{j}=2$ Column, $\mathrm{j}=3$ Wall $)$
$\Sigma \mathrm{Q}_{\mathrm{j}}=$ sum of story shear of Group-j at ultimate stage
$\Sigma \mathrm{w}_{\mathrm{k}}=$ building weight above the story
$\mathrm{Q}_{\mathrm{j}}=\tau \square \mathrm{A}$
$\tau=$ Shear Stress
$\mathrm{A}=$ cross sectional area

During calculation of the equation above, the building weight should be assumed as, for instance, 1 ton per square meter. Is value is obtained for each story level, but the ground floor level's Is is
the most important. Threshold value of Is is more or less 0.6 if the building would be located in Japan.


Figure 9.1.16 Organization Chart of DPWH

## b) Tall RC Buildings and Steel Buildings and Others

Except medium height RC buildings described above, taller RC buildings and Steel ( S ) buildings and others are not possibly estimated by numerical procedure. Therefore, Study Team uses a rapid visual screening (RVS) method developed by FEMA as a brief diagnosis for the existing buildings.

RVS was designed to be a procedure in which no structural analysis calculations are performed. The judgment whether the building is safe or not is based on the scoring system. In this RVS, the inspection, data collection and decision making process typically will occur at the building site. Threshold score value of this scoring system is 2.0 , which means that the buildings with score higher than 2 is considered potentially safe at the time of earthquake.

## c) Combination of two diagnosis methods

As described above, Japanese and FEMA methods' threshold value is 0.6 and 2.0 respectively. Therefore, by using factor 0.3 , FEMA results are adjusted to be compatible to Japanese method.

## B. Buildings to be Inspected

Study Team conducted the diagnostic survey of existing public buildings located in Metropolitan Manila composed of 17 LGUs. The number of the building inspected by diagnosis is total 80 . Selection of 68 buildings was done by MMDA based on the requests from 17 each LGU. The rest of 12 buildings were selected by MMDA and PHIVOLCS.

## C. Results of Diagnostic Inspection and discussion

Result of diagnostic inspection is summarized in Table 9.1.13, Figure 9.1.17.
Table 9.1.13 Results of Building Diagnosis for Public Buildings

| Type | Total | Evaluation |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Low | Moderate | High |
| Government Building | 11 | 3 | 2 | 6 |
| City Hall | 16 | 2 | 7 | 7 |
| School Building | 27 | 4 | 6 | 17 |
| Hospital Building | 19 | 4 | 7 | 8 |
| Barangay Hall | 7 | 0 | 1 | 6 |
| Total | 80 | 13 | 23 | 44 |

In this figure, low seismic performance buildings have Is values less than 0.6 , moderate ones have Is values between 0.6 and 0.8 and high performance buildings have Is values larger than 0.8 .

The correlation between Is and the degrees of structural damage was examined by Umemura (1980) and others applying it to the case of 1968 Tokachi-oki earthquake and 1978 Miyagiken earthquake both in Japan, and it is suggested that the value of Is of 0.6 is the border between
damaged and undamaged buildings experienced $25-30 \%$.g level ground motion. It is noteworthy that $55 \%$ of the inspected buildings have high performance.

Low performance buildings have, in general, small number of columns in comparison of the occupant area. There are very few concrete shear walls. Although the construction year was not identified, it was observed that these buildings were possibly constructed before and during the 1960s before the establishment of structural code.

High performance buildings have, on the contrary, large sized concrete columns and sometimes sufficient shear walls. They are relatively new buildings and maintenance condition is good. According to the Japanese experience, these buildings are supposed to resist to the earthquake strong motion with 0.3 g maximum acceleration without any damage. It is difficult to predict ultimate strength of these buildings. However, considering the Japanese experiences, it is also supposed that these buildings would survive the severer earthquake strong motion with 0.6 g maximum acceleration.

It is also difficult to how to judge the seismic performance of Moderate performance buildings. It is desired to inspect by using more accurate method, and, if any, some strengthening therapy may be necessary to avoid fatal damages.






Figure 9.1.17 Results of Building Diagnosis for Public Building

## 6) Structural Code

## (1) Chronology of Changes in the Seismic base Shear Formula

Since 1977, the National Building Code of the Philippines (NBCP) promulgated as Presidential Decree (PD) 1096, has been adopting by referral the National Structure Code for Buildings (NSCB) (previously developed by the Association of Structural Engineers of the Philippines (ASEP) and Philippines Association of Civil Engineers (PICE) in 1972) or its successors codes. The referral code NSCB has since metamorphosed into the National Structure Code of the Philippines (NSCP) Volume 1 - Buildings, Towers and Other Vertical Structures.

The various editions of the NSCP, now in its 5th edition are reviewed to provide historical insights into the seismic design practices and experiences in the Philippines. A comparison of pertinent seismic provisions of the codes from the NSCB 1972 to NSCP 2001 is presented in Table 9.1.14. Table 9.1.14 is a comparison of the general procedure in computing for the base shear coefficient by the static lateral force procedure.

The static lateral force procedure, and most features of Philippine seismic codes for buildings, has been patterned after the Uniform Building Code (UBC) and/or the Bluebook of the Structural Engineers Association of California (SEAOC). In terms of seismic zone, Metropolitan Manila has always been categorized as one zone - the highest zone. In 2001, near-source factors have been introduced that add to the design requirement for buildings within 15 km of such known sources as the West Valley Fault.

Historically, the effect of changes in the several factors that contribute to seismic base shear is such as to generally increase the base shear according to NSCB 1981, and to reduce (back to almost NBCP 1977 level) according to NSCP 1992. By NSCP 2001, design base shear increases again when within 15 km of known major earthquake source. It is noteworthy that design base shear is not necessarily bigger in NSCP 1992 than previously, even after the 1990 Luzon Earthquake. The increase by NSCP 2001 (associated mainly with near source factors) is mainly motivated by observations in the 1994 Northridge Earthquake and 1995 Kobe Earthquake. What the NSCP 1992 edition has strengthened are the additional requirements for reinforced concrete members that are part of the earthquake lateral-force resisting systems.

The more important change between NSCP 1992 and NSCB 1972 are summarized below:
The minimum concrete compressive strength f'c is changed to 20 MPa (NSCP 1992) from 21 MPa (NSCB 1972).
Minimum width to depth ratio the flexural members is changed to 0.3 (NSCP 1992) from 0.4 (NSCB 1972).
Additional maximum longitudinal steel ratio $(\mathrm{r}=0.025)$ in beams is added in NSCP 1992.

Additional requirement to assure a strong column, weak beam behavior in NSCP 1992 is given by the condition.

Maximum spacing of hoops in beams is replaced by $8 *$ smallest longitudinal bar (NSCP 1992) from 16*smallest longitudinal bar (NSCB 1972).
Maximum longitudinal steel ratio for columns is replaced by 0.06 (NSCP 1992) from 0.08 (NSCB 1972).

Additional requirement in transverse reinforcement spacing in columns in NSCP 1992 states that tie spacing should be spaced no more than $1 / 4$ minimum member dimension or 100 mm . New equations for development length is defined in NSCP 1992.

Table 9.1.14 Chronologies of Coefficients and Factors in Seismic Design
(a)


## (2) National Structural code of Philippines and its comparison with Japanese Code

Present national structural code of Philippines, Volume 1 covering Buildings, Towers, and Other Vertical Structures, is the fifth edition following to, in turn, the first (1972), second (1981), third (1986) and fourth (1992) edition. The code itself is composed of 7(seven) chapters; 1.General Requirements, 2.Minimum Design Loads and Lateral Forces, 3.Foundations and Excavations, 4.Structural Concrete, 5 Structural Steel, 6 Wood, and 7. Masonry. Volume II of National Structural Code of the Philippines covers Bridges and issued in 1997 as 2nd Edition. Seismic
items such as Seismic Criteria, Earthquake loadings and Computational procedures are described in the Section 208 of Chapter 2 as Earthquake Design. Besides, special seismic provisions for each structure are described in several sections. For example, Section 421 of Chapter 4. Structural Concrete describes the Special Provisions For Seismic Design. By comparison of the main factors that constitute the seismic code provisions of Building Standard Low in Japan and National Structural Code of Philippines, it is pointed out that while the two codes differ in detail, they have essential common features and are comparable. Both codes include the effect of seismic risk, spectral content, structural behavior and soil/foundation effect for seismic load. The force levels to be applied to the building structure are almost compatible in the 5th edition.

However, in the actual design practice, design earthquake force by NSCP become to small in comparison with Japanese Code. This is because large ductility factor ( R ) is applied to the structure in case of NSCP. For instance, in case of concrete structure, although the detail of column and beam connection does not allow high ductility factor ( R ), the code of the Philippines specifies the R value up to 8.5 . The ductility of this grade is not assured even in Japanese.

## Reference to Section 9.1

Applied Technology Council, Rapid Visual Screening of Buildings for Potential Seismic Hazards: A Handbook, FEMA-154, ATC-21, 1988.

Applied Technology Council, Rapid Visual Screening of Buildings for Potential Seismic Hazards: Supporting Documentation, FEMA-155, ATC-21-1, 1988.
Association of structural engineers of the Philippines (ASEP); National Structural Code of the Philippines 2001, Volume 1, Buildings, Towers, and Other Vertical Structures.

Umemura; Hajime, A guideline to evaluate seismic performance of existing medium-and low-rise reinforced concrete buildings and its application; Proceedings of the 7th World conference on Earthquake Engineering, 1980.

### 9.2 Infrastructures

### 9.2.1 Roads

Road network in Metropolitan Manila is the most important infrastructure for transportation that maintains urban lives. The road network also has a function as lifelines and communication since lifelines and communication facilities are buried under it. Therefore, there are two aspects on earthquake disaster of the road network as follows:,

1) Damages on each individual structure
2) Dysfunction of the whole network system due to damage of individual structure.

Furthermore, road plays important roles for evacuation, fire fighting operation and medical service as well as transportation of relief goods and rehabilitation activity.

In this point of view, it is essential to seize current status and function of the road network in order to carry out planning of earthquake disaster prevention and reconstruction. It is also important for this purpose to foresee damages of the road network by earthquake.

Table 9.2.1 shows distribution of road network in each category of road in Metropolitan Manila. Road width less than 6.5 meters are considered as narrow roads which will have serious difficulty to enter the area surrounded by narrow streets at the time of seismic disaster to do rescue activities and emergency goods delivery and so on. Therefore, pointing out such area will help to prepare for widening roads to keep safer area against seismic disaster.

Table 9.2.1 Distribution of Road Network in Metropolitan Manila

| LGU | All Roads |  |  |  |  | Outside Subdivisions Roads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Road (6.5m or over) |  | Narrow Road (3-6.5m) |  |  | Road (6.5m or over) |  | Narrow Road (3-6.5m) |  |  |
|  | Length | Density | Length | Density | Ratio | Length | Density | Length | Density | Ratio |
|  | (m) | (m/Ha) | (m) | (m/Ha) | (\%) | (m) | ( $\mathrm{m} / \mathrm{Ha}$ ) | (m) | (m/Ha) | (\%) |
| KALOOKAN CITY | 650,012.69 | 122.38 | 39,078.81 | 7.36 | 6.01 | 398,158.19 | 74.96 | 28,789.96 | 5.42 | 7.23 |
| LAS PINAS CITY | 461,672.68 | 143.09 | 97.85 | 0.03 | 0.02 | 185,781.92 | 57.58 | 97.85 | 0.03 | 0.05 |
| MAKATI CITY | 512,744.28 | 160.43 | 921.63 | 0.29 | 0.18 | 394,737.07 | 123.51 | 340.34 | 0.11 | 0.09 |
| MALABON | 170,300.65 | 106.69 | 10,571.40 | 6.62 | 6.21 | 146,300.43 | 91.65 | 9,475.83 | 5.94 | 6.48 |
| MANDALUYONG CITY | 144,509.22 | 130.56 | 2,006.69 | 1.81 | 1.39 | 125,608.89 | 113.48 | 2,006.69 | 1.81 | 1.60 |
| MANILA | 746,599.79 | 180.85 | 36,037.06 | 8.73 | 4.83 | 696,995.10 | 168.83 | 35,713.41 | 8.65 | 5.12 |
| MARIKINA CITY | 350,735.66 | 154.88 | 3,155.52 | 1.39 | 0.90 | 179,758.28 | 79.38 | 2,754.59 | 1.22 | 1.53 |
| MUNTINLUPA CITY | 396,029.18 | 103.87 | 7,988.58 | 2.10 | 2.02 | 203,699.96 | 53.42 | 6,049.11 | 1.59 | 2.97 |
| NAVOTAS | 91,968.52 | 84.00 | 14,049.11 | 12.83 | 15.28 | 84,425.11 | 77.11 | 13,908.33 | 12.70 | 16.47 |
| PARANAQUE CITY | 593,826.98 | 130.21 | 813.73 | 0.18 | 0.14 | 327,514.52 | 71.81 | 710.09 | 0.16 | 0.22 |
| PASAY CITY | 195,883.72 | 110.18 | 789.63 | 0.44 | 0.40 | 194,352.43 | 109.32 | 789.63 | 0.44 | 0.41 |
| PASIG CITY | 399,651.73 | 125.35 | 2,282.78 | 0.72 | 0.57 | 303,010.54 | 95.04 | 1,612.68 | 0.51 | 0.53 |
| PATEROS | 19,232.89 | 98.60 | 982.49 | 5.04 | 5.11 | 18,439.02 | 94.53 | 982.49 | 5.04 | 5.33 |
| QUEZON CITY | 1,902,123.52 | 115.05 | 56,420.52 | 3.41 | 2.97 | 1,141,286.13 | 69.03 | 45,760.75 | 2.77 | 4.01 |
| SAN JUAN | 102,500.83 | 174.33 | - | - | - | 82,266.63 | 139.92 | - | - | - |
| TAGUIG | 259,954.90 | 94.46 | 1,041.51 | 0.38 | 0.40 | 221,326.98 | 80.42 | 1,041.51 | 0.38 | 0.47 |
| VALENZUELA CITY | 332,740.37 | 74.74 | 27,511.67 | 6.18 | 8.27 | 262,868.09 | 59.05 | 25,908.35 | 5.82 | 9.86 |
| Total | 7,330,487.61 | 122.61 | 203,748.98 | 3.41 | 8.27 | 4,966,529.29 | 109.19 | 175,941.61 | 3.87 | 3.54 |



Figure 9.2.1

### 9.2.2 Bridges and Flyovers

## 1) Introduction

A bridge, in general, is a structure carrying a pathway or roadway over a depression or obstacles such as rivers or creeks and roads in the case of a flyover bridge. These structures are basically vulnerable to earthquakes. Collapse or damage to these structures would make it non-functional and would prohibit the movement of emergency vehicles such as ambulance, fire trucks, police, etc. In this study, data for bridges around the National Capital Region (NCR) were collected to analyze vulnerability of these structures.

For this study, it was necessary to get vital information on the bridges in the NCR especially the year of construction, number of lanes, length, girder type, bearing type, height of abutment, retrofitting or strengthening works, etc to prepare database. The Study Team prepared a data table from the original data received from the Department of Public Works and Highways (DPWH) Bridge Inspection of 1995, to characterize these bridges. Of all the bridges in the NCR, 189 bridges and 38 flyovers were inspected and described as per the engineering data requirements.

It must be noted that in parallel to this study, another JICA Study called " The Study on the Improvement of Existing Bridges along Pasig River and Marikina River in the Republic of the Philippines" is in progress. This study is only focused on the bridges along Pasig and Marikina River, however, very much detailed information is collected for each bridge. Therefore, results of mentioned study must be considered to be in higher priority.

## 2) Relevant Organizations/Divisions pertaining to Bridges

DPWH is the governing body that designs, constructs, manages and maintains the bridges in the NCR. Municipalities are responsible for monitoring the status of these structures.

## 3) Data Set up

The data received from DPWH were very limited for purposes of this study as the list of bridges is not complete, and some needed data were missing. The Study Team conducted its own inventory of the existing bridges in the National Capital Region (NCR). The Team, however, used the data received from DPWH as a guide for naming, locating and dating the year of construction of the bridges.

Table 9.2.2 is the summary of bridge inventory implemented in the Study. Figure 9.2.2 shows location of 189 bridges and 38 flyovers. The field investigation undertaken by the study team covers most of major bridges and flyovers, however, due to time limitation, not all of the bridges and flyovers that exist in Metropolitan Manila can be investigated, therefore, bridge data must be updated in the future. It is to be noted that most of bridges were investigated but flyover data is limited.

Table 9.2.2 Summary of Bridges and Flyovers Inventory in NCR



Figure 9.2.2 Bridge Distribution in Metropolitan Manila

## 4) General Features of the Bridge in the National Capital Region (NCR)

## (1) Superstructure

The superstructure of most of the bridges in the National Capital Region which were inspected are pre-stressed concrete girders which is expected due to construction limitations at the bridge site and the volume of traffic in the area. The use of pre-cast AASHTO girders has been a trend in the National Capital Region since installation of these girders are easier and reduces construction time as compared to reinforced concrete deck girder and other types of superstructure. However, there are still some bridges with RCDG superstructures. It is also noticeable that there are only few bridges with steel superstructures. These few old bridges have steel beams, which are already severely corroded. In contrast to this, recently constructed bridges/flyovers with longer spans have resorted to the use of steel superstructure specially if horizontal curves cannot be avoided.

From the bridge survey, old bridges have simply supported girders even if they are multi-span while recently built bridges were made continuous through diaphragms at the piers or through continuous slabs over the piers.

Because of the July 1990 earthquake, restrainers were attached to the superstructures of some major bridges/flyovers, which were constructed before the release of the latest AASHTO Code and DPWH requirements. In addition, bridge seats were extended and shear keys were installed between girders as part of seismic retrofitting.

## (2) Substructure

The hammerhead type T pier was observed in most of the bridges in the National Capital Region since it poses the least obstruction to traffic (as in the case of flyovers) and is cheaper than the solid wall type. However the number of solid wall piers does not lag behind that of the hammerhead as observed during the survey. For massive superstructures and very tall piers, the double hammerhead or multi-column piers were adopted. It is only in few old bridges that one can find pier pile bents.

Seismic retrofitting or strengthening works on the piers have already started with the major bridges and flyovers.

The type of abutment generally adopted in the bridges cannot be ascertained because of the presence of slope protection or shanties totally covering a portion of the coping down to the foundation.

## (3) Foundation

The type of foundation for most of the bridges inspected could not be determined because they are not exposed except for one bridge, which has a pile bent pier. In general, for the new bridges /
flyovers constructed in the late 1980's, bored pile were used because they eliminate huge excavation and construction of massive footings which obstruct traffic flow.

Spread footing was adopted in the municipalities located on stable and hard soil foundation such as Quezon City.

It can be assumed that pile foundation is predominant since most of the municipalities are located in alluvial deposits and in low lying areas where the presence of water table is a problem.

A detailed breakdown of the types and features of the bridges per municipality is discussed in the next section.

### 9.2.3 Ports and Harbors

As Metropolitan Manila faces the Manila Bay, several important Ports and Harbors facilities exists along the Manila Bay. Role of Ports and Harbors facilities are also important at the time of earthquake events. Therefore, to understand existing condition of those facilities are necessary for future preparedness against earthquake. Mainly, at the time of earthquake, ports and harbors will function as major transport and stock facility from outside Metropolitan Manila and neighboring country. Therefore, maintain the function will be important to keep smooth transportation from outside.

In Metropolitan Manila, there are three main harbors, as follows;

- Manila North Harbor,
- Manila International Container Terminal, and
- Manila South Harbor

Those Ports and Harbors are operated by 2 private enterprises under control of the Philippine Ports Authority (hereinafter referred to as "PPA") and another one is directly operated by PPA. PPA is the main government agency concerned with the planning and development of the country's seaports, a vital link in both domestic and international trade. Established in 1974, the PPA's charter was amended by Executive Order 857 which expanded its functions to cover the integration and coordination of port development nationwide while promoting the creation of autonomous port development bodies in trading centers in the region.

In the Philippines, Ports and Harbors are basically classified by the Port Authority namely Government and Private Ports, and importance is recognized but no official declaration of the classification according to importance.

According to the interview and meeting with PPA, ICTSI, ATI, regarding countermeasures against possible earthquakes, there are no specific preparations, unfortunately.


Figure 9.2.3 Port Facilities of Metropolitan Manila

## 1) Manila North Harbor

Manila North Harbor is function as Domestic Vessels Passenger Terminal, Domestic Container Terminal, Domestic Non-container Terminal directly operated by PPA. This Harbor has eleven (11) facilities as shown in Table 9.2.3.

Table 9.2.3 Facilities of Manila North Harbor

| Fsality | Function | $\begin{gathered} \text { Beth } \\ \text { Lexyth } 1 \text { mi } \end{gathered}$ | N. of <br> Bets | Peir Ava <br> (m) | Back-p <br> Axa (m) | Pasuegr <br> Tertinal <br> Ballong <br> (m) | $\begin{aligned} & \text { Contuling } \\ & \text { Dovel men } \end{aligned}$ | Trenct Sind (m) | Feridering <br> Bpiser | Moweng <br> Facilis: |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Per 2 | Mafthpe cractunuth am sidn being <br>  | 5 m | 3 | 35,300 | * | 2,220 | 5.6 | . | Auther <br> Fender: | Polyans, <br> Bias 3 <br> Cest |
| Per 4 | Figer pie ipe flocity whtwe pande Fefing ciles tr lage wesson and cee wral werpol buth stefe if tep pier | 654 | 5 | 17,641 | - | - | 5-6 | 1,200 | - | - |
| Perr 6 | Froger Plere nit I tertiog sides. | 662 | 6 | 12, 413 | - | * | 5-6 | * | . | . |
| Pere 8 | - | 681 | 8 | 18,180 | - | - | 5-8 | 1.500 | - | - |
| Pier 10 |  <br>  <br>  | 61 | 6 | 11,100 | * | * | $5 \cdot 6$ | 1,500 | * | * |
| Pere 18 | Fryerpise not 3 benting jids. | 661 | 6 | 17.80 | - | - | 5-5 | 1580 | - | - |
| Plor 14 | Figer pie ipe flocily whinw panle vefing cilea tr loge wossu ani cet setincg ribe pocuqring pral werpol. | 63 | 5 | 17,124 | - | - | 5-6 | . | - | - |
| Plor 16 |  costructel comstion Pler 16. | 65 | 5 | 101,65 | 54,58 | * | 5-6 | 31300 | " | * |
|  | Fsiling ngivilerts 1 beth which is <br>  | 97 | 3 | \$4,336 | - | - | 5-6 | - | - | - |
| Pert18 | Cxers to usell bost, tryens and ater uinlur vecpots. | 343 | - | 2,96 | 1,76 | - | $5-5$ | - | - | - |
| Helatan Bito (EP) | . | 651 |  |  | 501 |  |  |  |  |  |

Source: PPA, 2002


Figure 9.2.4 Existing Plan of North Harbor, Port of Manila
Source: PPA, 2002

## 2) Manila International Container Terminal

Manila International Container Terminal (MICT) has function of International Container and Non-container Terminal operated by private enterprise named International Container Terminal Services, Inc (ICTSI). The MICT is located in Manila, which lies between the North Harbor and the South Harbor, protruding westward into the Manila Bay with total port area of $606,740 \mathrm{~m}^{2}$. It is situated just north of the mouth of Pasig River off Pier 2 of the PMO-North Harbor. The MICT has a 1,300 meter wharf divided into five berths as shown detail in Table 9.2.4.

Table 9.2.4 List of Berths in MICT

| Berth | Length (m.) | Controlling Depth (m) |
| :---: | :---: | :---: |
| 1 | 250 | 10.0 |
| 2 | 250 | 10.0 |
| 3 | 250 | 10.0 |
| 4 | 250 | 10.0 |
| 5 | 300 | $10.0-11.0$ |

Source: ICTSI, 2002


Figure 9.2.5 Existing Plan of MICT, Port of Manila

[^1]
## 3) Manila South Harbor

Manila South Harbor has function of International Cargo and Container Terminal operated by a private enterprise named Asia Terminal Incorporated (ATI), located South of International Container Terminal. Manila South Harbor has 3 functions as follows;
Container Terminal ( 900 m Berth-Pier 3, 5)
General Stevedoring (9 Berths, Pier 5, 9, and 15)
Domestic Cargo Terminal (5 Berths, Pier 15)
According to ATI personal, regarding strengthening of Piers, Pier 3, 5, 9 and 15 are old piers constructed 30 to 40 years ago with the old design code. The Pier 5 extension was design and constructed with seismic standard code of 1995.


Figure 9.2.6 Existing Plan of International Container Terminal, Port of Manila
Source: ATI, 2002


[^0]:    Source: NSO, 2002

[^1]:    Source: ICTSI, 2002

