Туре	Vessel Size	DWT	Units	Remarks
	1,000 - 2,000	703	1	
	2,000 - 4,000	46,404	15	
Containor	4,000 - 8,000	320,611	53	
Container	8,000 - 12,000	112,495	11	
	over 12,000	253,114	17	
	Total	733,327	98	
	0 - 1,000	318,351	637	
	1,000 - 2,000	296,347	198	
Conventional	2,000 - 4,000	471,909	157	
Conventional	4,000 - 8,000	809,923	162	
	over 8,000	543,070	54	
	Total	2,439,600	1208	
	1,000 - 4,000	12,790	5	
	4,000 - 8,000	73,673	12	
Bulker	8,000 - 15,000	101,300	9	
	over 15,000	399,059	13	
	Total	586,822	40	
	2,500 - 5,000	391,215	104	Barges of sizes below 2,500 DWT are
Barge	5,000 - 10,000	307,383	41	assumed to operate in rivers and are
	10,000 - 15,000	18,629	1	not included
	Total	717,227	147	
	0 - 1,000	50,638	101	
	1,000 - 4,000	531,700	213	
	4,000 - 8,000	371,346	62	
Tankar	8,000 - 15,000	247,564	23	
Tanker	15,000 - 25,000	360,093	18	
	25,000 - 35,000	405,105	14	
	over 35,000	180,047	5	
	Total	2,146,493	434	
	0 - 1,500	72,000	162	Not including Ferries considered to be
	1,500 - 4,000	42,000	17	operating beyond the scope of the
Passenger	4,000 - 6,000	136,000	25	Study
	over 6,000	118,000	10	
	Total	368,000	214	
	0 - 4,000	15,000	5	Not including RoRo Ferries
Dessenger/DoDo	4,000 - 6,000	29,000	6	considered to be operating beyond the
r assenger/KoKo	over 6,000	8,000	1	scope of the Study
	Total	52,000	12	
	0 - 2,000	5,806	4	Not including small RoRo vessels
DoDo	2,000 - 4,000	9,282	3	considered to be operating beyond the
NUKU	over 4,000	14879	3	scope of the Study
	Total	29,967	10	

Table 4.26Estimated Domestic Fleet

4.6. Required Fleet Expansion

4.6.1. Methodology and Key Parameters

(1) Approach to Fleet Expansion

The fleet estimation requires the estimation of the total fleet tonnage per vessel type and the estimation of the optimal vessel size distribution per vessel type.

There are two approaches used. The first approach is the extrapolation of the current fleet based on the increase of demand. This approach is used in the case where packaging type of the commodity is static and where demand is projected not to increase significantly. This approach is used in the case of liquid cargo. This approach is also used to provisionally estimate the fleet requirement for passenger shipping. The fleet requirement for passenger shipping will vary depending on the nature of the passenger shipping network adopted – which at the moment is still under discussion.

The second approach is to select the vessel type that will be able to serve the transport demand between two ports (or route in the case of multi-port route) at the least cost and feasibly in terms of port facilities and draft requirements. In this case the type of packaging that will be used to serve the demand between two ports will depend on the type of vessel selected to optimally serve between the two ports. Through this approach packaging type is dynamic and will depend on several factors such as the volume of demand, cost parameters, etc. Vessel requirement for dry cargo is analyzed using this vessel cost minimization approach. This approach is necessary because packaging type of dry cargo is interchangeable, for example cement can be carried either by container, conventional or bulker vessel. Moreover, traffic demand for dry cargo will significantly increase thus it is expected that vessel size profile will change markedly. The vessel cost minimization logic is illustrated as follows.

(2) Shipping Cost for Vessel Cost Minimization Approach

In the vessel cost minimization approach, it is necessary to formulate the cost function of each vessel type and each vessel size. Vessel cost has the following components:

- Fixed cost capital cost and fixed operational cost which includes repair, dockage, crew wages, food expenses, insurance and lubricants;
- Distance related cost cost which is increases as the distance traveled by the vessel increases and is composed of fuel cost;
- Cargo related cost cost which increases as the volume of cargo increases and primarily includes stevedore cost; and,

• Call related cost – cost which increases as the number of port calls increases, which includes berthage, anchorage and pilotage.

Туре	DWT	Capital Cost	Fixed Operation Cost	Dist. Cost	Cargo cost	Call cost
		(mill. Rp/yr)	(mill. Rp/yr)	(mill. Rp/mile)	(mill. Rp)	(mill. Rp/call)
Container	5,000	9,600	3,300	0.04	0.12/TEU	0.98
Container	10,000	10,800	3,700	0.06	0.12/TEU	1.56
Conventional	3,000	6,000	3,000	0.04	0.002/MT	0.71
Conventional	10,000	9,600	4,400	0.07	0.002/MT	1.38
Bulker	10,000	7,200	3,600	0.04	0.002/MT	1.56
Bulker	20,000	13,200	12,000	0.12	0.002/MT	4.53

 Table 4.27
 Summary of Cost Parameters of Selected Representative Vessels

Source: STRAMINDO Surveys and interviews

(3) Port Conditions for Vessel Cost Minimization Approach

Port conditions are necessary input to check the feasibility of ship calls and to calculate port related costs. Considered port conditions involve (1) port depth, (2) waiting and approach time, (3) cargo handling efficiency and (4) technical feasibility (i.e. if a certain type of vessel can technically operate at the certain port). Port conditions were taken from the DGSC port inventory (dated 1999) and port productivity indicators from a report from PELINDO.

Vessel Type	Cargo handling productivity
Container	10 TEU/hr/gang
Conventional	20 MT/hr/gang
Bulker	For clean cargo (e.g. cement)
	• 50 MT/hr/gang
	For dirty cargo (e.g. coal)
	· 30,000 DWT – 1,000 MT/hr
	· 10,000 DWT – 500 MT/hr
	• 5,000 DWT – 300 MT/hr

 Table 4.28
 Cargo Handling Productivity

Note: figures taken from coal handling performance at Suralaya Coal Terminal

Table 4.29	Notes on Te	chnical Fe	asibility of	f Port O	peration
-------------------	-------------	------------	--------------	----------	----------

Commodity	Notes
Petroleum, CPO and other	Only tankers are used
liquid products	
Coal and mining products	Only bulkers are used
General cargo, rice and fresh	Only containers and conventional vessels are used
products	
Agri grains, fertilizer, cement,	Only containers, conventional vessels and bulkers are used
other grains and wood	

	Port Name	Container	Conventional	Bulker		Port Name	Container	Conventional	Bulker
1	Malahayati	4.5	4.5	10.0	51	Meneg / Tanjung W	12.5	12.5	12.5
2	Lhokseumawe	8.5	8.5	10.0	52	Pasuruan	1.8	1.8	1.8
3	Sabang	9.5	9.5	8.0	53	Panarukan	1.0	1.0	1.0
4	Meulaboh	6.5	6.5	6.5	54	Kalianget	10.0	10.0	12.0
5	Kuala Langsa	5.0	5.0	5.0	55	Benoa	8.0	8.0	8.0
6	Belawan	8.0	8.0	8.0	56	Padangbai	5.0	5.0	5.0
7	Pangkalan Susu	5.5	5.5	5.5	57	Celukan Bawang	13.5	13.5	13.5
8	Tanjung Balai As	3.0	3.0	3.0	58	Lembar	6.5	6.5	6.5
9	Kuala Tanjung	10.5	10.5	10.5	59	Bima	8.0	8.0	8.0
10	Sibolga	7.5	7.5	7.5	60	Badas	17.0	17.0	17.0
11	Gunung Sitoli	10.0	10.0	10.0	61	Kupang / Tenau	8.0	8.0	8.0
12	Dumai	10.0	10.0	10.0	62	Waingapu	10.0	10.0	10.0
13	Tanjung Pinang	3.5	3.5	3.5	63	Ende	6.0	6.0	6.0
14	Pekanbaru	5.0	5.0	5.0	64	Maumere	8.0	8.0	8.0
15	Tanjung Balai Ka	5.0	5.0	5.0	65	Kalabahi	5.0	5.0	5.0
16	Kuala Enok	8.0	8.0	8.0	66	Pontianak	7.0	7.0	7.0
17	Bagan Siapi-api	4.0	4.0	4.0	67	Teluk Air	7.0	7.0	7.0
18	Bengkalis	7.5	7.5	7.5	68	Sintete	9.5	9.5	9.5
19	Selat Panjang	10.0	10.0	10.0	69	Ketapang	2.0	2.0	2.0
20	Tembilahan	4.2	4.2	4.2	70	Sampit	5.5	5.5	5.5
21	Rengat	3.0	3.0	3.0	71	Kuala Pembuang	5.0	5.0	5.0
22	Sungai Pakning	10.0	10.0	10.0	72	Samuda	7.5	7.5	7.5
23	Kijang	7.0	7.0	7.0	73	Pulang Pisau	4.5	4.5	4.5
24	Batam	15.0	15.0	15.0	74	Pangkalan Bun	2.0	2.0	2.0
25	Teluk Bayur	10.0	10.0	10.0	75	Sukamara	6.0	6.0	6.0
26	Kuala Tangkal	5.0	5.0	5.0	76	Kumai	2.0	2.0	2.0
27	Talang Dukuh / Ja	5.0	5.0	5.0	77	Pengatan Mendawa	4.0	4.0	4.0
28	Muara Sabak	5.0	5.0	5.0	78	Banjarmasin	5.0	5.0	5.0
29	Pulau Baai	10.0	10.0	10.0	79	Kotabaru	6.0	6.0	15.0
30	Palembang	6.5	6.5	7.5	80	Balikpapan	12.0	12.0	12.0
31	Pangkal Balam	4.0	4.0	4.0	81	Samarinda	6.6	6.6	6.6
32	Tanjung Pandang	3.0	3.0	3.0	82	Tarakan	8.0	8.0	8.0
33	Muntok	2.0	2.0	2.0	83	Nunukan	6.0	6.0	6.0
34	Panjang	12.0	12.0	12.0	84	Bitung	8.0	8.0	8.0
35	Bakauheuni	6.5	6.5	6.5	85	Manado	3.5	3.5	3.5
36	Tanjung Priok	14.0	10.5	10.5	86	Gorontalo	10.0	10.0	10.0
37	Sunda Kelapa	2.0	2.0	2.0	87	Pantoloan	9.0	9.0	9.0
38	Marunda	5.0	5.0	5.0	88	Toli-toli	8.2	8.2	8.2
39	Kepulauan Seribu	5.0	5.0	5.0	89	Ujung Pandang	11.0	11.0	11.0
40	Kalibaru	5.0	5.0	5.0	90	Pare-pare	9.8	9.8	9.8
41	Muara Karang / M	5.0	5.0	5.0	91	Kendari	5.0	5.0	5.0
42	Muara Baru	9.0	9.0	9.0	92	Ambon	10.0	10.0	10.0
43	Cirebon	7.0	7.0	7.0	93	Bandaneire	7.0	7.0	7.0
44	Banten	14.0	14.0	14.0	94	Ternate	9.0	9.0	9.0
45	Semarang	9.0	9.0	9.0	95	Sorong	11.0	11.0	11.0
46	Cilacap	8.3	8.3	7.5	96	Jayapura	11.0	11.0	11.0
47	Tegal	1.8	1.8	1.8	97	Biak	12.0	12.0	12.0
48	Surabaya	10.5	8.3	8.3	98	Merauke	4.0	4.0	4.0
49	Gresik	3.6	3.6	13.0	99	Manokwari	9.0	9.0	9.0
50	Probolinggo	2.5	2.5	2.5	100	Fak-fak	6.0	6.0	6.0

Table 4.30 Port Depth Conditions

Note: /1 in meters

/2 in LWS

/3 non-commercial ports are aggregated per province and are represented by an imaginary port. It is assumed that all representative imaginary ports have port depth of 3.5 meters

	Dent Name	0	0	Dulling		Dant Name	O antain an	0	Dulling
_	Port Name	Container	Conventional	Buiker		Port Name	Container	Conventional	Buiker
1	Malanayati	5.0	5.0	5.0	51	Meneg / Tanjung W	5.0	12.7	5.0
2	Lnokseumawe	5.0	10.0	5.0	52	Pasuruan	5.0	5.0	5.0
3	Sabang	5.0	5.0	5.0	53	Panarukan	5.0	5.0	5.0
4	Meulabon	5.0	5.0	5.0	54	Kallanget	5.0	5.0	5.0
5	Kuala Langsa	5.0	5.0	5.0	55	Benoa	10.0	15.0	5.0
6	Belawan	48.0	72.0	24.0	56	Padangbai	5.0	5.0	5.0
/	Pangkalan Susu	5.0	5.0	5.0	57	Celukan Bawang	5.0	5.0	5.0
8	Tanjung Balai Asi	5.0	5.0	5.0	58	Lembar	5.0	22.1	5.0
9	Kuala Tanjung	5.0	25.7	5.0	59	Bima	5.0	5.0	5.0
10	Sibolga	5.0	32.2	5.0	60	Badas	5.0	5.0	5.0
11	Gunung Sitoli	5.0	5.0	5.0	61	Kupang / Tenau	40.0	48.0	24.0
12	Dumai	36.0	48.0	36.0	62	Waingapu	5.0	5.0	5.0
13	Tanjung Pinang	24.0	48.0	5.0	63	Ende	5.0	5.0	5.0
14	Pekanbaru	12.0	24.0	5.0	64	Maumere	5.0	5.0	5.0
15	Tanjung Balai Ka	5.0	5.0	5.0	65	Kalabahi	5.0	5.0	5.0
16	Kuala Enok	5.0	5.0	5.0	66	Pontianak	24.0	48.0	5.0
17	Bagan Siapi-api	5.0	5.0	5.0	67	Teluk Air	5.0	13.8	5.0
18	Bengkalis	5.0	5.0	5.0	68	Sintete	5.0	5.0	5.0
19	Selat Panjang	5.0	5.0	5.0	69	Ketapang	5.0	5.0	5.0
20	Tembilahan	5.0	5.0	5.0	70	Sampit	5.0	9.6	5.0
21	Rengat	5.0	5.0	5.0	71	Kuala Pembuang	5.0	5.0	5.0
22	Sungai Pakning	5.0	5.0	5.0	72	Samuda	5.0	5.0	5.0
23	Kijang	5.0	5.0	5.0	73	Pulang Pisau	5.0	5.0	5.0
24	Batam	12.0	24.0	12.0	74	Pangkalan Bun	5.0	5.0	5.0
25	Teluk Bayur	15.0	25.0	10.0	75	Sukamara	5.0	5.0	5.0
26	Kuala Tangkal	5.0	5.0	5.0	76	Kumai	5.0	46.0	5.0
27	Talang Dukuh / Ja	5.0	52.9	5.0	77	Pengatan Mendawa	5.0		5.0
28	Muara Sabak	5.0	5.0	5.0	78	Baniarmasin	48.0	72.0	30.0
29	Pulau Baai	5.0	5.0	5.0	79	Kotabaru	5.0	58.9	5.0
30	Palembang	48.0	72.0	48.0	80	Balikpapan	48.0	72.0	5.0
31	Pangkal Balam	5.0	77.8	5.0	81	Samarinda	24.0	48.0	20.0
32	Taniung Pandang	5.0	50.2	5.0	82	Tarakan	5.0	5.0	5.0
33	Muntok	5.0	5.0	5.0	83	Nunukan	5.0	5.0	5.0
34	Paniang	3.0	4.0	4.0	84	Bitung	40.0	60.0	24.0
35	Bakauheuni	5.0	5.0	5.0	85	Manado	5.0	5.0	5.0
36	Taniung Priok	24.0	30.0	12.0	86	Gorontalo	5.0	5.0	5.0
37	Sunda Kelana	5.0	5.0	5.0	87	Pantoloan	5.0	5.0	5.0
38	Marunda	5.0	5.0	5.0	88	Toli-toli	5.0	5.0	5.0
30	Kenulauan Serihi	5.0	5.0	5.0	80	Lliung Pandang	3.0	5.0	3.0 4.0
40	Kalibaru	5.0	5.0	5.0	00	Daro paro	5.0	5.0	
40	Muara Karang / M	5.0	5.0	5.0	01	Kondari	5.0	5.0	5.0
12	Muara Baru	5.0	5.0	5.0	31	Ambon	5.0	10.0	5.0
42	Cirobon	5.0	5.0	5.0	32	Randanoire	5.0	10.0 E 0	5.0
43	Banton	5.0	41.4	5.0	93	Tornoto	5.0	5.0	5.0
44	Somorong	Z4.0	30.0	12.0	94	Sorong	5.0	0.0	5.0
45	Gilagon	5.0	10.0	5.0	95	Jovopuro	48.0	70.0	5.0
40		5.0	5.0	5.0	96	Jayapura	48.0	72.0	24.0
4/	i egai	5.0	5.0	5.0	97	DidK	35.0	60.0	5.0
48	Surabaya	24.0	40.0	20.0	98	Manalawa-i	5.0	5.0	5.0
49	Gresik	5.0	5.0	5.0	99		5.0	5.0	5.0
50	Probolinggo	5.0	14.0	5.0	100	⊢ak-tak	5.0	5.0	5.0

 Table 4.31
 Waiting Time and Approach Time Conditions

Note: /1 waiting time includes waiting time for berth and waiting time for cargo

/2 non-commercial ports are aggregated per province and are represented by an imaginary port. It is assumed that all representative imaginary ports have port waiting time of 5 hrs

/3 units in hours

(4) Vessel Specifications for Vessel Cost Minimization Approach

The vessel cost minimization approach requires the specifications of vessel characteristics in order to facilitate the computation of vessel cost and checking of draft requirements.

Туре	DWT	Draft (m)	Speed (knot)	Commissionable days
Container 1	15,000	8.5	12.0	346
Container 2	10,000	7.4	11.0	346
Container 3	5,000	6.0	10.0	346
Conventional 1	10,000	8.4	11.0	338
Conventional 1	5,000	6.0	10.0	338
Conventional 1	3,000	4.5	9.0	338
Conventional 1	1,500	3.0	9.0	338
Bulker 1	30,000	8.5	12.0	350
Bulker 2	10,000	7.8	11.0	350
Bulker 3	5,000	6.7	10.0	350

 Table 4.32
 Vessel Specifications of Representative Vessels

Note: 20,000 DWT containers and 30,000 DWT containers are also considered

4.6.2. Cargo Ship Expansion

(1) Growth in Vessel Requirement for Liquid Cargo Demand

The domestic tanker fleet will have to be able to cope with the increase in liquid cargo traffic. Table 4.6.7 summarizes the growth in traffic of liquid cargo. Based on the growth of demand, it is expected that the tanker fleet tonnage will also increase by 1.33 times by 2014 and by 1.43 times by 2024.

	2002	2014	2024
MT	86,686,697	113,105,219	120,430,694
MT Growth (2002 = 1.00)	1.00	1.30	1.39
'000 MT-mile	40,808,389	54,272,041	57,227,078
MT-mile Growth $(2002 = 1.00)$	1.00	1.33	1.40

Note: Liquid cargo is composed of petroleum, CPO and other liquid cargo. At least 85% of the liquid cargo traffic in ton-mile is petroleum

(2) Growth in Vessel Requirement for Dry Cargo Demand

Based on a port-to-port network structure the vessel requirement for dry cargo is simulated using the minimum cost vessel selection approach. The growth pattern in the simulated vessel requirement is then used as the basis for extrapolation of the current fleet to estimate future fleet requirements.

There are three scenarios considered in the estimation of fleet requirement for dry cargo.

<u>Case 0: Base Case</u> – No changes in fleet specification and port conditions

<u>Case 1: Improved Fleet Case</u> – Improved fleet conditions brought about by ship replacement and modernization. It is assumed that vessels over 35 years old will be replaced by second hand vessels in the next ten years. Vessels over 30 and 25 years old will be replaced in the periods of 2014~2019 and 2019~2024 respectively. As a result vessel speed and commissionable days will improve. Improvement in vessel speed is assumed to apply only to container and conventional vessels.

Vascal Tura	Average Speed (knots)				
vessei Type	2002	2014	2024		
Container (5,000 DWT)	10.0	12.2	11.9		
Container (10,000 DWT)	11.0	15.5	13.8		
Container (15,000 DWT)	12.0	16.1	14.7		
Conventional (1,500 DWT)	9.0	10.8	11.7		
Conventional (3,000 DWT)	9.0	10.8	11.7		
Conventional (5,000 DWT)	10.0	12.0	13.0		
Conventional (10,000 DWT)	11.0	13.2	14.3		
Bulker (all)	No change				

 Table 4.34
 Improved Average Speed of Fleet Scenario

 Table 4.35
 Improved Commissionable Days Scenario

Vagaal Tuma	Commissionable days				
vesser Type	2002	2014	2024		
Container (all)	346	353	359		
Conventional (all)	338	349	359		
Bulker (all)	350	355	359		

Table 4.6.10 shows the summary of waiting time per vessel type at Indonesian ports (based on PELNDO Statistics). Waiting time is comprised of time spent for non- cargo operational activities, including waiting for berth, waiting for cargo, repair time, and approach time.

	Container	Bulker	Conventional
Average (hrs)	10.3	7.3	18.0
Minimum (hrs)	3.0	4.0	4.0
Maximum (hrs)	48.0	48.0	77.8

It can be clearly seen that conventional vessels exhibit very inefficient management of vessel waiting time at ports, thus leading to very low vessel utilization. Berth availability is a contributory factor, but because only a few ports are very congested and that berthing allocation in many cases is on equal terms with containers and bulkers, thus berth space availability is not a significant factor. It is more likely to be because of logistics management and over tonnage. It is therefore possible to improve port waiting time of conventional vessels through the control of national tonnage and through improved management of port vessel time, by coordinating cargo availability at port and vessel calling.

Thus as part of improved fleet case, it is assumed that conventional vessel operators be able to duplicate the level of efficiency of container vessel operators and bulker operators in terms of minimizing waiting time. Moreover, as a support mechanism, the government is assumed be able to sufficiently control over tonnage in conventional vessels as this will greatly aid in minimizing waiting time for cargo at ports.

<u>Case 2: Improved Port Productivity</u> - Improved port productivity in terms of minimizing waiting time and improving cargo handling speed

-		•	
	2002	2014	2024
Waiting time $(2002 = 1.0)$	1.0	0.5	0.5
Cargo handling speed $(2002 = 1.0)$	1.0	1.2	1.2

 Table 4.37
 Improved Port Productivity Scenario

Based on the scenarios described, the expansion growth of each representative vessel is calculated. The following summarizes the results.

Vessel Type	DWT	Flee	et DWT (1,0	00)	Growth ('02-sim = 1.00)		
vesser Type	DWI	'02-sim	'14	·24	'02-sim	·14	·24
	15,000	32	316	789	1.00	9.86	24.68
Container	10,000	78	176	233	1.00	2.25	2.99
Container	5,000	379	843	1,275	1.00	2.23	3.37
	all	489	1,334	2,298	1.00	2.73	4.70
	10,000	0	0	0	1.00	1.00	1.00
	5,000	0	0	0	1.00	1.00	1.00
Conventional	3,000	170	424	768	1.00	2.49	4.50
	1,500	1,749	2,564	3,736	1.00	1.47	2.14
	all	1,919	2,987	4,503	1.00	1.56	2.35
Bulker	30,000	51	150	167	1.00	2.92	3.25
	11,000	174	382	578	1.00	2.20	3.33
	6,000	618	747	850	1.00	1.21	1.38
	all	843	1,279	1,595	1.00	1.52	1.89
Dry Cargo Fleet		3,251	5,600	8,396	1.00	1.72	2.58

 Table 4.38
 Case 0: Base Case Simulation Results

Note: /1 minimum growth set at 1.0

/2 '02-sim refers to the estimated fleet based on 2002 demand

Table 4.39	Case 1: Improved Fleet Case Simulation Results
-------------------	---

Vergel Terre	DWT	Fleet DWT (1,000)			Growth (' 02 -sim = 1.00)		
vesser Type		'02-sim	ʻ14	·24	'02-sim	ʻ14	·24
	15,000	32	288	713	1.00	9.02	22.29
Container	10,000	78	149	208	1.00	1.91	2.66
Container	5,000	379	790	1,192	1.00	2.09	3.15
	all	489	1,227	2,112	1.00	2.51	4.32
	10,000	0	0	0	1.00	1.00	1.00
	5,000	0	0	0	1.00	1.00	1.00
Conventional	3,000	170	411	706	1.00	2.41	4.14
	1,500	1,749	2,479	3,517	1.00	1.42	2.01
	all	1,919	2,890	4,223	1.00	1.51	2.20
Bulker	30,000	51	148	163	1.00	2.88	3.17
	11,000	174	377	563	1.00	2.17	3.24
	6,000	618	717	794	1.00	1.16	1.29
	all	843	1,242	1,520	1.00	1.47	1.80
Dry Cargo Fleet		3,251	5,359	7,855	1.00	1.65	2.42

Note: /1 minimum growth set at 1.0

/2 '02-sim refers to the estimated fleet based on 2002 demand

Vessel Type	DWT	Fleet	DWT (1,00)0)	Growth ('02-sim = 1.00)		
vesser Type	DWI	'02-sim	ʻ14	·24	'02-sim	·14	·24
	15,000	32	236	597	1.00	7.38	18.67
Container	10,000	78	133	176	1.00	1.71	2.26
Container	5,000	379	654	1,008	1.00	1.73	2.66
	all	489	1,023	1,782	1.00	2.09	3.65
	10,000	0	0	0	1.00	1.00	1.00
	5,000	0	0	0	1.00	1.00	1.00
Conventional	3,000	170	335	586	1.00	1.96	3.44
	1,500	1,749	2,123	2,990	1.00	1.21	1.71
	all	1,919	2,458	3,576	1.00	1.28	1.86
Bulker	30,000	51	134	148	1.00	2.61	2.88
	11,000	174	322	477	1.00	1.86	2.75
	6,000	618	607	674	1.00	0.98	1.09
	all	843	1,063	1,299	1.00	1.26	1.54
Dry Cargo Fleet		3,251	4,544	6,656	1.00	1.40	2.05

 Table 4.40
 Case 2: Improved Port Productivity Case Simulation Results

Note: /1 minimum growth set at 1.0

/2 '02-sim refers to the estimated fleet based on 2002 demand

Comparison of the simulated and actual tonnage shows that the actual tonnage is about 1.3 to 1.5 times greater than the simulated fleet tonnage as shown in Table 4.6.15. This is rather expected as the simulated fleet tonnage is very near the theoretical optimum, i.e. the minimum required fleet under perfect conditions such as information of cargo availability and vessel space availability is perfectly known by all, no over competition, etc. In the practical world, such perfect conditions can never be achieved. Thus the simulated results have to be adjusted to account for such factors. This is achieved through the extrapolation of the actual fleet using the simulated growth factors.

 Table 4.41
 Comparison of Simulated and Actual Fleet DWT per Vessel Type

	Container Conventional		Bulker ^{/1}	Dry cargo fleet
Actual ^{/3}	733,327	2,439,600	1,304,049	4,476,976
Simulated	488,700	1,919,365	842,587	3,250,658
Act/Sim	1.50	1.27	1.55	1.38

Note: /1 includes bulkers and barges

/2 Year 2002

/3 provisionary estimated figures

(3) Growth in Vessel Requirement for Passenger Traffic

The domestic passenger fleet will have to be able to cope with the increase in passenger traffic (Table 4.6.16).

	2002	2014	2024
Pax	12,500,000	18,714,597	18,800,539
Pax Growth $(2002 = 1.00)$	1.00	1.50	1.50
'000 pax-mile	5,081,850	7,896,568	7,931,057
Pax-mile Growth $(2002 = 1.00)$	1.00	1.55	1.56

 Table 4.42
 Growth in Passenger Traffic

To be able to estimate the fleet requirements for passenger service, the passenger network needs to be clarified, and the proposed network is as follows.

Figure 4.17 Assumed Network for Passenger Fleet Estimate

Passenger service needs to fulfill minimum frequency of services. Generally shorter distance voyages requires higher frequency of service than longer distance voyages. The following illustrates the minimum frequency requirements assumed for fleet estimation.

	1 0
Voyage Distance	Minimum Voyage Frequency
< 500 naut. miles	7 times a week
$500 \sim 1,500$ naut. miles	3 times a week
over 1,500 naut. miles	1 times a week

Table 4.43Minimum Frequency of Service

There are five representative vessels that were used to estimate the fleet requirements. The physical specifications of each representative type are shown in Table 3.6.18. To calculate for transport cost per vessel type, the cost parameters for each vessel type shown in Table 3.8.19 is used.

Vessel ID	Capacity (pax)	GT	Speed (knots)	Draft (m)	Commissionable days
1	2,000	12,000	20	6.0	350
2	1,000	6,000	14	4.2	350
3	500	1,000~2,500	14	3.0	350
4	315	900	12	2.3	350
5	210	700	12	2.0	350
6	150	600	12	1.8	350

 Table 4.44
 Representative Passenger Vessel Physical Specifications

 Table 4.45
 Representative Passenger Vessel Cost Specifications

Vessel ID	Capacity (pax)	Capital Cost (mill. Rp/yr)	Fixed Operating Cost (mill. Rp/yr)	Distance Cost (mill. Rp/nm)	Passenger Cost (mill. Rp/pax) ^{/1}	Call Cost (mill. Rp/call)	Fare (Rp/pax -nmile)
1	2,000	9,400	22,000	0.114	0.030	2.74	333
2	1,000	5,300	12,280	0.046	0.024	0.93	333
3	500	4,500	7,000	0.031	0.021	0.50	333
4	315	3,955	6,490	0.026	0.020	0.41	333
5	210	3,753	6,030	0.024	0.020	0.37	333
6	150	3 642	5 782	0.023	0.019	0.34	333

/1 Passenger cost are estimated based on long distance voyages – cost is adjusted based on voyage distance as follows: < 500 nmile, 25%; 500~1,500 nmile, 50%; over 1,500 nmile, 100%.</p>

The selection of the type of passenger vessel is incorporated in the fleet estimate. Passenger vessel type in this case includes: (1) purely passenger vessel; (2) passenger cum Ro-Ro vessel; and (3) passenger cum cargo vessel. Assuming that Ro-Ro services and cargo services could be competitively priced, there will be sufficient cargo, especially general cargo that will use the service. The selection is based on the appropriateness of the type of service according to the following criteria:

Table 4.46	Criteria for	Passenger	Vessel Type	Selection
1 abic 7.70		1 assenger	vesser rype	Sciection

Туре	Criteria						
Passenger	For trunk routes (routes which serve as backbone of the network). Trunk route						
Vessel	vessels have to serve large amounts of passengers and have to call at many						
	ports serving as the linkage between main regions. Operation needs to be						
	simplified so that efficient passenger operation can be achieved – thus only						
	passenger vessels with no or limited cargo carrying capacity only.						
Passenger cum	For vessels that serve high passenger demand and routes that have potential						
Ro-Ro Vessel	demand for Ro-Ro (for example routes that are currently being served by						
	Ro-Ro vessels) and at mid-distances – i.e. 500~700 nautical miles. These type						
	of conditions are very typical for cross-Jawa Sea routes between Jawa and						
	Kalimantan and Kalimantan and Sulawesi. The use of Ro-Ro vessels is						
	advantageous because it will yield at higher revenues.						
Passenger cum	All other routes. However, the cargo carrying capacity will vary depending on						
Cargo Vessel	the situation. If cargo demand is present, cargo services will lead to higher						
	revenues for operators – thus considered more advantageous than operating						
	purely passenger vessel only.						

Based on these assumptions, the following fleet requirements will be required. Based on the demand forecast for maritime passengers, demand will be flat from 2014 onwards. Thus, it is taken that fleet requirements will increase from the present up to 2014 and will be stable from thereon. The following is the results of the fleet estimation.

Vessel	Capacity	Passenger	Passenger/	Passenger/	All
ID	(pax)	Туре	RoRo Type	Cargo Type	Types
1	2,000	16	-	-	16
2	1,000	25	10	8	42
3	500	27	6	19	52
4	315	-	-	-	-
5	210	-	1	12	13
6	150	-	-	31	31
	All	68	17	70	154

 Table 4.47
 Estimated Passenger Fleet Requirements from 2014 Onwards

(4) Estimated Future Fleet Expansion

Based on the estimated growth in fleet requirement, the current fleet is extrapolated for the benchmark years 2014 and 2024. In the case of dry cargo fleet, the tonnage per vessel size (in DWT) is first extrapolated then the total tonnage per vessel type (i.e. container, conventional and bulker) is adjusted to conform to the simulated growth of tonnage per vessel type.

Table 4.6.22, Table 4.6.23, and Table 4.6.24 summarizes the estimated fleet for Case 0, Case 1, and Case 2 respectively.

Tuna	DWT	DW/T 2002 2014		4	2024		
туре	DWI	DWT ^{/3}	Units	DWT ^{/3}	Units	DWT ^{/3}	Units
	1,000 - 2,000	1	1	1	1	1	1
<u> </u>	2,000 - 4,000	46	15	58	19	69	23
ine	4,000 - 8,000	321	53	400	67	476	79
Itaj	8,000 - 12,000	112	11	142	14	148	15
Conts	12,000 - 18,000	192	14	1,062	76	2,088	149
0	Over 18,000	61	3	339	17	666	34
	Sub-total	733	97	2,002	194	3,448	301
	0 - 1,000	318	637	517	1,034	812	1,625
	1,000 - 2,000	296	198	481	321	756	504
vei na	2,000 - 4,000	472	157	1,300	433	2,539	846
0n Lio	4,000 - 8,000	810	162	897	179	967	193
0.	over 8,000	543	54	602	60	649	65
	Sub-total	2,440	1,208	3,797	2,028	5,724	3,233
	1,000 - 4,000	13	5	9	4	11	4
er	4,000 - 8,000	74	12	53	9	64	11
alk	8,000 - 15,000	101	9	133	12	213	19
B	over 15,000	399	13	695	23	822	27
	Sub-total	587	40	890	48	1,111	62
	2,500 - 5,000	391	104	473	126	451	120
g	5,000 - 10,000	307	41	676	90	856	114
Ba	10,000 - 15,000	19	1	54	4	51	4
[Sub-total	717	147	1,203	221	1,358	238
	0 - 1,000	51	101	67	135	71	142
	1,000 - 4,000	532	213	707	283	746	298
<u> </u>	4,000 - 8,000	371	62	494	82	521	87
ke	8,000 - 15,000	248	23	329	30	347	32
lan	15,000 - 25,000	360	18	479	24	505	25
	25,000 - 35,000	405	14	539	18	568	19
	over 35,000	180	5	239	6	252	6
	Sub-total	2,146	434	2,855	578	3,010	609
Cargo	Vessels Total	6,653	1,869	10,710	2,977	14,780	4,374
2	0 - 1,500 GT	72	162	18	44	18	44
lge	1,500 - 4,000 GT	42	17	81	46	81	46
ser 2	4,000 - 6,000 GT	136	25	180	33	180	33
as	over 6,000 GT	118	10	189	16	189	16
1	Sub-total	368	214	467	139	467	139
~ •	0 - 4,000 GT	15	5	21	7	21	7
-Re	4,000 - 6,000 GT	29	6	48	10	48	10
Pa Ro-	over 6,000 GT	8	1	-	-	-	-
	Sub-Total	52	12	69	17	69	17
Passen	ger Vessels Total	420	226	536	156	536	156

 Table 4.48
 Case 0: Base Case Fleet Estimate

/1 in thousands

/2 Includes purely passenger and passenger cum cargo vessels

/3 Pure Ro-Ro vessels are considered to be part of container and conventional fleet tonnage

True	DWT	200)2	201	2014		2024	
туре	DWI	DWT ^{/3}	Units	DWT ^{/3}	Units	DWT ^{/3}	Units	
ar .	1,000 - 2,000	1	1	1	1	1	1	
ine	2,000 - 4,000	46	15	55	18	65	22	
ıta	4,000 - 8,000	321	53	377	63	451	75	
0	8,000 - 12,000	112	11	121	12	134	13	
Ŭ	12,000 - 18,000	192	14	977	70	1,910	137	
	Over 18,000	61	3	311	16	609	31	
	Sub-total	733	97	1,842	180	3,170	279	
	0 - 1,000	318	637	493	986	756	1,512	
	1,000 - 2,000	296	198	459	306	704	469	
vei na	2,000 - 4,000	472	157	1,243	414	2,309	770	
On	4,000 - 8,000	810	162	885	177	957	191	
0.1	over 8,000	543	54	593	59	641	64	
	Sub-total	2,440	1,208	3,673	1,942	5,367	3,007	
	1,000 - 4,000	13	5	9	3	10	4	
er	4,000 - 8,000	74	12	50	8	59	10	
ulk	8,000 - 15,000	101	9	129	12	204	19	
B	over 15,000	399	13	676	23	786	26	
	Sub-total	587	40	865	46	1,059	59	
e	2,500 - 5,000	391	104	454	121	418	111	
arg	5,000 - 10,000	307	41	667	89	827	110	
Ä	10,000 - 15,000	19	1	54	4	49	4	
	Sub-total	717	147	1,175	214	1,294	226	
	0 - 1,000	51	101	67	135	71	142	
	1,000 - 4,000	532	213	707	283	746	298	
5	4,000 - 8,000	371	62	494	82	521	87	
ıke	8,000 - 15,000	248	23	329	30	347	32	
lan	15,000 - 25,000	360	18	479	24	505	25	
<u> </u>	25,000 - 35,000	405	14	539	18	568	19	
	over 35,000	180	5	239	6	252	6	
	Sub-total	2,146	434	2,855	578	3,010	609	
Cargo	Vessels Total	6,653	1,869	10,367	2,871	14,029	4,114	
1	0 - 1,500	72	162	18	44	18	44	
lge	1,500 - 4,000	42	17	81	46	81	46	
Sel 2	4,000 - 6,000	136	25	180	33	180	33	
as	over 6,000	118	10	189	16	189	16	
—	Sub-total	368	214	467	139	467	139	
~ 0	0 - 4,000	15	5	21	7	21	7	
-R	4,000 - 6,000	29	6	48	10	48	10	
Pa Ro	over 6,000	8	1	-	-	-	-	
	Sub-Total	52	12	69	17	69	17	
Passen	ger Vessels Total	420	226	536	156	536	156	

 Table 4.49
 Case 1: Fleet Estimate under Improved Fleet Conditions

/1 in thousands

 $\ensuremath{/2}$ Includes purely passenger and passenger cum cargo vessels

/3 Pure Ro-Ro vessels are considered to be part of container and conventional fleet tonnage

True			2002		2014		2024	
туре	DWI	DWT ^{/3}	Units	DWT ^{/3}	Units	DWT ^{/3}	Units	
	1,000 - 2,000	1	1	1	1	1	1	
5	2,000 - 4,000	46	15	46	15	55	18	
Container	4,000 - 8,000	321	53	315	53	383	64	
	8,000 - 12,000	112	11	110	11	114	11	
	12,000 - 18,000	192	14	806	58	1,608	116	
	Over 18,000	61	3	257	12	513	26	
	Sub-total	733	97	1,535	150	2,674	236	
	0 - 1,000	318	637	399	798	614	1,229	
± -	1,000 - 2,000	296	198	371	248	572	381	
vei	2,000 - 4,000	472	157	957	319	1,831	610	
0 n Lio	4,000 - 8,000	810	162	836	167	914	183	
0.	over 8,000	543	54	561	56	613	61	
	Sub-total	2,440	1,208	3,124	1,588	4,545	2,464	
	1,000 - 4,000	13	5	7	3	8	3	
er	4,000 - 8,000	74	12	41	7	48	8	
alk	8,000 - 15,000	101	9	106	10	165	15	
B	over 15,000	399	13	587	20	683	23	
	Sub-total	587	40	740	39	905	49	
0	2,500 - 5,000	391	104	384	102	356	95	
rge	5,000 - 10,000	307	41	571	76	705	94	
Ba	10,000 - 15,000	19	1	49	4	45	4	
	Sub-total	717	147	1,004	182	1,106	193	
	0 - 1,000	51	101	67	135	71	142	
	1,000 - 4,000	532	213	707	283	746	298	
5	4,000 - 8,000	371	62	494	82	521	87	
ıke	8,000 - 15,000	248	23	329	30	347	32	
lan	15,000 - 25,000	360	18	479	24	505	25	
	25,000 - 35,000	405	14	539	18	568	19	
	over 35,000	180	5	239	6	252	6	
	Sub-total	2,146	434	2,855	578	3,010	609	
Cargo	Vessels Total	6,653	1,869	9,243	2,465	12,368	3,500	
J.	0 - 1,500	72	162	18	44	18	44	
lge	1,500 - 4,000	42	17	81	46	81	46	
Sel	4,000 - 6,000	136	25	180	33	180	33	
as	over 6,000	118	10	189	16	189	16	
-	Sub-total	368	214	467	139	467	139	
~ 0	0 - 4,000	15	5	21	7	21	7	
-R	4,000 - 6,000	29	6	48	10	48	10	
Pa Ro	over 6,000	8	1	-	-	-	-	
	Sub-Total	52	12	69	17	69	17	
Passen	ger Vessels Total	420	226	536	156	536	156	

 Table 4.50
 Case 2: Fleet Estimate under Improved Fleet and Port Productivity

/1 in thousands

/2 Includes purely passenger and passenger cum cargo vessels

/3 Pure Ro-Ro vessels are considered to be part of container and conventional fleet tonnage

Study on the Development of Domestic Sea Transportation and Maritime Industry in the Republic of Indonesia (STRAMINDO) - Technical Report 1 -

4.6.3. Cabotage Analysis

According to DGSC, the government intends to carry out cabotage right for seven commodities: coal, oil, CPO, fertilizer, rice and rubber within a couple of years. It is also envisioned that in the long-term DGSC will be able to fully implement cabotage. This section intends to roughly estimate the effect of such polices.

(1) Current Conditions

STRAMINDO conducted an OD survey and with this data, the current share of Indonesian and foreign flagged vessels in the carriage of each commodity may be determined. The following Tables illustrate the results of the estimation.

	Share in tons carried			
	Indonesian Flag	Foreign Flag		
Break	60%	40%		
Container	81%	19%		
Dry Bulk	40%	60%		
Liquid Bulk	39%	61%		
All	47%	53%		

 Table 4.51
 Distribution of Domestic Sea Traffic carried per Vessel Flag

 Table 4.52
 Distribution of Flag of Carrier for Each Select Commodity

	Flag of Carrier				
Commodity	Indonesian	Foreign			
Oil	39%	61%			
СРО	62%	38%			
Coal	40%	60%			
Fertilizer	74%	26%			
Wood	72%	28%			
Rice	62%	38%			
Rubber ^{/1}	65%	35%			

/1 No data – assumed to be 2% of general cargo (STRAMINDO Survey)

/2 % refers to percentage of sea traffic in MT – estimated from sample data /3 see Appendix for complete profile of all key commodities

Source: STRAMINDO Survey

Comm	Pack	Indonesian	Foreeign	MT - all	MT - Indo	MT - For
Oil	L. Bulk	39%	61%	82.6	32.1	50.5
Oli	Total	39%	61%	82.6	32.1	50.5
CDO	L. Bulk	62%	38%	2.5	1.6	0.9
CFU	Total	62%	38%	2.5	1.6	0.9
Oliquid	L. Bulk	34%	66%	1.6	0.5	1.1
Oliquid	Total	34%	66%	1.6	0.5	1.1
Caal	D. Bulk	40%	60%	16.3	6.5	9.8
Coar	Total	40%	60%	16.3	6.5	9.8
Mine	D. Bulk	23%	77%	4.4	1.0	3.4
	Total	23%	77%	4.4	1.0	3.4
	Break	44%	56%	1.2	0.5	0.7
Rice	Cont	100%	0%	0.1	0.1	-
	Total	48%	52%	1.3	0.6	0.7
	Break	46%	54%	0.1	0.0	0.0
Agrain	Cont	93%	7%	0.7	0.7	0.0
Ayrain	D. Bulk	13%	87%	0.4	0.1	0.4
	Total	62%	38%	1.2	0.7	0.5
	Break	83%	17%	2.7	2.2	0.5
Fortilizor	Cont	100%	0%	-	-	-
i ertilizer	D. Bulk	66%	34%	3.1	2.0	1.1
	Total	74%	26%	5.8	4.3	1.5
	Break	42%	58%	4.3	1.8	2.5
Cement	Cont	100%	0%	0.3	0.3	-
Cement	D. Bulk	81%	19%	0.4	0.3	0.1
	Total	48%	52%	5.0	2.4	2.6
	Break	69%	31%	1.8	1.2	0.6
Ograin	Cont	85%	15%	0.3	0.2	0.0
Ogram	D. Bulk	24%	76%	0.2	0.1	0.2
	Total	66%	34%	2.3	1.5	0.8
	Break	87%	13%	0.2	0.1	0.0
Fresh	Cont	99%	1%	0.1	0.1	0.0
	Total	93%	7%	0.3	0.3	0.0
	Break	70%	30%	9.6	6.7	2.9
Wood	Cont	97%	3%	0.4	0.4	0.0
WOOd	D. Bulk	52%	48%	0.4	0.2	0.2
	Total	70%	30%	10.4	7.3	3.1
	Break	54%	46%	12.2	6.5	5.7
GC	Cont	78%	22%	9.4	7.4	2.0
	Total	64%	36%	21.6	13.9	7.7

Table 4.53	Details of Flag of Carrie	er per Kev Commodity
	2 cours of 1 ing of earth	

All Commodities	Break	60%	40%	32.0	19.2	12.8
	Cont	81%	19%	11.3	9.2	2.1
	D. Bulk	40%	60%	25.3	10.2	15.1
	L. Bulk	39%	61%	86.7	34.2	52.5
	TOTAL	47%	53%	155.3	72.8	82.5

*MT in millions

Oliquid – Other liquid cargo (e.g. chemicals) Mine – Mining and quarry products Agrain – Agricultural grains (e.g. legumes) Ograin – Other granular cargo (e.g. sugar) Fresh – fresh products (e.g. fruits and meat) GC – others or general cargo

Source: STRAMIDNO Survey

(2) Projected MT Carried per Flag Type

The projected share in sea traffic carriage between Indonesian and foreign flagged vessels is calculated by assuming that there will be no shifting service of national or foreign flag vessel from one commodity to another. Once cabotage is imposed, foreign flagged vessels will no longer operate in Indonesia and will be subsequently replaced by a newly acquired (new or second-hand); or, that the foreign flag vessel will change registry to Indonesian registry.

The cabotage program of DGSC is envisioned be implemented as follows:

Commoditor	De els True e	Case 1:	Without	Case 2: With			
Commonly	Раск Туре	2002	Up to 2014	2002	Up to 2014		
Oil	L. Bulk	38.9%	38.9%	38.9%	100%		
СРО	L. Bulk	62.0%	62.0%	62.0%	100%		
Coal	D. Bulk	39.8%	39.8%	39.8%	100%		
Fertilizer	Break	82.9%	82.9%	82.9%	100%		
	Container	100.0%	100.0%	100.0%	100%		
	D. Bulk	65.6%	65.6%	65.6%	100%		
	Break	69.8%	69.8%	69.8%	100%		
Wood	Container	97.4%	97.4%	97.4%	100%		
	D. Bulk	51.7%	51.7%	51.7%	100%		
D.	Break	43.6%	43.6%	43.6%	100%		
Rice	Container	100.0%	100.0%	100.0%	100%		
	Break	36.2%	36.2%	36.2%	100%		
Kubber	Container	97.0%	97.0%	97.0%	100%		

Table 4.54Assumption of Share of Indonesian Vessel in Carriage of the Selected SevenPriority Commodities With and Without Cabotage Program

Table 4.55	Assumption of Share of Indonesian Vessel in Carriage of Other Commodities
	With and Without Cabotage Program

Do als True a	Case 1:	Without	Case 2	: With
Pack Type	2002	Up to 2024	2002	Up to 2024
Break Bulk	52.5%	52.5%	52.5%	100%
Container	80.4%	80.4%	80.4%	100%
Dry Bulk	26.6%	26.6%	26.6%	100%
Liquid Bulk	33.9%	33.9%	33.9%	100%

(3) Estimation Results

The following Tables details the results of the estimation of the effect of the envisioned Cabotage Program.

			% Indonesian			ton - All Flags			ton - Indonesiar			ton - Foreign	
Commodity	Pack Type	2002	2014	2024	2002	2014	2024	2002	2014	2024	2002	2014	2024
ē	L. Bulk	38.9%	38.9%	38.9%	82,573,069	105,122,702	106,144,487	32,135,217	40,910,927	41,308,578	50,437,853	64,211,775	64,835,909
5	TOTAL	38.9%	38.9%	38.9%	82,573,069	105,122,702	106,144,487	32,135,217	40,910,927	41,308,578	50,437,853	64,211,775	64,835,909
	L. Bulk	62.0%	62.0%	62.0%	2,519,402	5,729,058	11,089,751	1,562,354	3,552,755	6,877,076	957,048	2,176,303	4,212,675
5	TOTAL	62.0%	62.0%	62.0%	2,519,402	5,729,058	11,089,751	1,562,354	3,552,755	6,877,076	957,048	2,176,303	4,212,675
	D. Bulk	39.8%	39.8%	39.8%	16,631,433	31,347,858	38,029,664	6,617,394	12,472,836	15,131,425	10,014,039	18,875,023	22,898,240
200	TOTAL	39.8%	39.8%	39.8%	16,631,433	31,347,858	38,029,664	6,617,394	12,472,836	15,131,425	10,014,039	18,875,023	22,898,240
	Break	82.9%	82.9%	82.9%	2,720,575	2,842,498	2,988,021	2,255,625	2,356,711	2,477,364	464,950	485,787	510,657
Cortilizor	Container	100.0%	100.0%	100.0%	-	222,457	209,826	-	222,457	209,826	-	-	•
	D. Bulk	65.6%	65.6%	65.6%	3,057,733	2,989,911	2,940,740	2,006,519	1,962,014	1,929,747	1,051,214	1,027,897	1,010,993
	TOTAL	73.8%	75.0%	75.2%	5,778,308	6,054,866	6,138,587	4,262,144	4,541,182	4,616,938	1,516,164	1,513,684	1,521,650
	Break	69.8%	69.8%	69.8%	9,029,230	7,138,141	7,162,438	6,302,402	4,982,422	4,999,382	2,726,827	2,155,718	2,163,056
10000	Container	97.4%	97.4%	97.4%	779,057	644,432	653,035	758,801	627,677	636,056	20,255	16,755	16,979
	D. Bulk	51.7%	51.7%	51.7%	172,630	134,110	85,449	89,250	69,335	44,177	83,380	64,775	41,272
	TOTAL	71.6%	71.7%	71.9%	9,980,916	7,916,683	7,900,922	7,150,453	5,679,434	5,679,615	2,830,463	2,237,249	2,221,307
	Break	43.6%	43.6%	43.6%	740,283	838,672	859,557	322,730	365,622	374,728	417,554	473,049	484,830
Rice	Container	100.0%	100.0%	100.0%	349,305	437,496	497,715	349,305	437,496	497,715	-		•
	TOTAL	61.7%	62.9%	64.3%	1,089,589	1,276,168	1,357,272	672,035	803,119	872,443	417,554	473,049	484,830
Dubber (2001)	Break	36.2%	36.2%	36.2%	245,144	611,108	1,069,359	88,742	221,221	387,108	156,402	389,887	682,251
Kubber (assumed	Container	97.0%	97.0%	97.0%	218,494	658,688	1,171,439	211,939	638,927	1,136,295	6,555	19,761	35,143
ar 2% or ບບ)	TOTAL	64.9%	67.7%	68.0%	463,638	1,269,795	2,240,798	300,681	860,148	1,523,403	162,957	409,647	717,394
	Break	70.4%	69.3%	68.2%	12,735,232	11,430,418	12,079,376	8,969,499	7,925,977	8,238,582	3,765,733	3,504,441	3,840,794
Oil, CPO, Coal,	Container	98.0%	98.1%	97.9%	1,346,856	1,963,073	2,532,014	1,320,046	1,926,557	2,479,892	26,810	36,516	52,122
Fertilizer, Wood,	D. Bulk	43.9%	42.1%	41.7%	19,861,795	34,471,880	41,055,853	8,713,163	14,504,185	17,105,349	11,148,632	19,967,695	23,950,504
Rice, Rubber	L. Bulk	39.6%	40.1%	41.1%	85,092,471	110,851,760	117,234,238	33,697,571	44,463,682	48,185,654	51,394,900	66,388,078	69,048,584
	TOTAL	44.3%	43.4%	44.0%	119,036,355	158,717,131	172,901,482	52,700,279	68,820,400	76,009,477	66,336,076	89,896,731	96,892,005
		414			1000	/000		100/	/000	100	/000	1001	110/
Oil. CPO. Coal.	DICAN	A/N	A/N	A/M	0/ AC	0/. C7	0/.01	40./0	0/.07	3.2	73.70	1070	0/ 11
Fertilizer. Wood.	Container	N/A	N/A	N/A	11%	6%	4%	14%	%1	5%	1%	1%	%0
Rice. Rubber (% c	f D. Bulk	N/A	N/A	N/A	/6%	%6/	/4%	83%	85%	82%	1.2%	/9%	69%
all commodifies)	L. Bulk	N/A	N/A	N/A	%66	98%	67%	%66	98%	98%	98%	98%	97%
(TOTAL	N/A	N/A	N/A	76%	66%	55%	71%	58%	47%	80%	73%	63%
	Brook	70 E 0/	/02 C2	/02 C3	10 711 760	20 075 507	67 265 601	10 240 150		2E 26E 117	0 262 610	01 01 01	221 000 00
	DICAN	0/ 0.70	0/ 0.70	0/ 07 00	10,111,100	20,020,004	10,000,024	0,040,100	20,000,000	11,000,041	3,000,000	10,440,134	04,000,41 -
Non-Select	Container	80.4%	80.4%	80.4%	10,553,144	31,393,927	50,419,980	8,488,918	25,253,183	45,384,070	2,064,226	0,140,745	11,035,915
Commodities	D. BUIK	20.0%	20.0%	20.0%	6,234,205	9,217,120	14,428,147	1,058,520	2,408,053	3,838,415	4,5/5,6/8	0,809,007	10,589,732
	L. Bulk	33.9%	33.9%	33.9%	1,223,529	2,253,240	3,196,762	414,258	/62,894	1,082,349	809,270	1,490,345	2,114,413
	TOTAL	55.4%	59.8%	60.6%	37,722,645	81,749,869	141,410,518	20,909,852	48,866,520	85,669,981	16,812,793	32,883,349	55,740,538
	Break	50 0%	56 3%	54 Q%	32 447 000	50 256 000	79 445 000	19 441 306	28 308 366	43 603 728	13 005 694	21 947 634	35 841 272
	Container	81.2%	81.5%	81.2%	11 000 000	33 357 000	58 952 000	0.664.547	27 170 740	17 863 063	2 235 453	6 177 260	11 088 037
All Commodities		01.2% 2013%	%0''0 %8'8%	37 70/	76 006 000	13 740 000	56,332,000	9,004,347 10 516 307	16 077 738	20 043 764	15 570 603	0, 171, 200 26.776.762	34 540 236
		20.50%	10.002	10.00	20,030,000	112 105 000	120,424,000	24 006 101	10,312,230	10.260.003	E2 220 000	67 070 A7A	71 162 007
		02.070	40.070	40.870	4 EE 7ED 000	2 40 427 000	944 949 000	73 700 764	40,220,010	48,200,000	02,223,033	101,010,424	11,102,331
	IUIAL	41.U%	40.3%	0.1.4%	1.00,7.03,000	Z40,401,000	314,512,UUU	13,700,201	11 / ,000,3 zu	101,0/9,400	83,000,105	122,18U,UOU	152,032,542

Table 4.56 Estimated Share of Indonesian and Foreign Flag Vessel in Domestic Sea Traffic Without Cabotage Program

67

	Table 4.	57 Estin	nated Sha	re of Indor	esian and F	Foreign Flag	g Vessel in]	Domestic	Sea Traffic	With Cab	otage Prog	ram	
			% Indonesian			ton - All Flags		-	on - Indonesia	2		ton - Foreign	
Commodity	Pack Type	2002	2014	2024	2002	2014	2024	2002	2014	2024	2002	2014	2024
ïĊ	Bulk	38.9%	100.0%	100.0%	82,573,069	105,122,702	106,144,487	32,135,217	105,122,702	106,144,487	50,437,853		
5	TOTAL	38.9%	100.0%	100.0%	82,573,069	105,122,702	106,144,487	32,135,217	105,122,702	106,144,487	50,437,853		
	Bulk	62.0%	100.0%	100.0%	2,519,402	5,729,058	11,089,751	1,562,354	5,729,058	11,089,751	957,048		ı
5	TOTAL	62.0%	100.0%	100.0%	2,519,402	5,729,058	11,089,751	1,562,354	5,729,058	11,089,751	957,048		
	D. Bulk	39.8%	100.0%	100.0%	16,631,433	31,347,858	38,029,664	6,617,394	31,347,858	38,029,664	10,014,039		
COal	TOTAL	39.8%	100.0%	100.0%	16,631,433	31,347,858	38,029,664	6,617,394	31,347,858	38,029,664	10,014,039	•	•
	Break	82.9%	100.0%	100.0%	2,720,575	2,842,498	2,988,021	2,255,625	2,842,498	2,988,021	464,950		
Lortilizor	Container	100.0%	100.0%	100.0%	-	222,457	209,826	-	222,457	209,826	-		
	D. Bulk	65.6%	100.0%	100.0%	3,057,733	2,989,911	2,940,740	2,006,519	2,989,911	2,940,740	1,051,214		
	TOTAL	73.8%	100.0%	100.0%	5,778,308	6,054,866	6,138,587	4,262,144	6,054,866	6,138,587	1,516,164		
	Break	69.8%	100.0%	100.0%	9,029,230	7,138,141	7,162,438	6,302,402	7,138,141	7,162,438	2,726,827	-	
-	Container	97.4%	100.0%	100.0%	779,057	644,432	653,035	758,801	644,432	653,035	20,255		
	D. Bulk	51.7%	100.0%	100.0%	172,630	134,110	85,449	89,250	134,110	85,449	83,380	-	
	TOTAL	71.6%	100.0%	100.0%	9,980,916	7,916,683	7,900,922	7,150,453	7,916,683	7,900,922	2,830,463		
	Break	43.6%	100.0%	100.0%	740,283	838,672	859,557	322,730	838,672	859,557	417,554	1	I
Rice	Container	100.0%	100.0%	100.0%	349,305	437,496	497,715	349,305	437,496	497,715	1	1	I
	TOTAL	61.7%	100.0%	100.0%	1,089,589	1,276,168	1,357,272	672,035	1,276,168	1,357,272	417,554		
Dubber (assumed	Break	36.2%	100.0%	100.0%	245,144	611,108	1,069,359	88,742	611,108	1,069,359	156,402	I	I
	Container	97.0%	100.0%	100.0%	218,494	658,688	1,171,439	211,939	658,688	1,171,439	6,555		ı
ar z /0 0 00)	TOTAL	64.9%	100.0%	100.0%	463,638	1,269,795	2,240,798	300,681	1,269,795	2,240,798	162,957	I	I
	Break	70.4%	100.0%	100.0%	12,735,232	11,430,418	12,079,376	8,969,499	11,430,418	12,079,376	3,765,733		
Oil, CPO, Coal,	Container	98.0%	100.0%	100.0%	1,346,856	1,963,073	2,532,014	1,320,046	1,963,073	2,532,014	26,810		
Fertilizer, Wood,	D. Bulk	43.9%	100.0%	100.0%	19,861,795	34,471,880	41,055,853	8,713,163	34,471,880	41,055,853	11,148,632		
Rice, Rubber	Bulk	39.6%	100.0%	100.0%	85,092,471	110,851,760	117,234,238	33,697,571	110,851,760	117,234,238	51,394,900		ı
	TOTAL	44.3%	100.0%	100.0%	119,036,355	158,717,131	172,901,482	52,700,279	158,717,131	172,901,482	66,336,076		
	Joor	2110	VIV		7000	7000	150/	160/	7000	150/	7000	700	N//
Oil, CPO, Coal,	Deter				00.00	/02	0/ CI	40/0	00 00 20/02	0/ CI	/01	0/0	
Fertilizer, Wood,				A/M	76.0/	700/2	740/	0.20/	7020	710/2	7002	0.0	A/N
Rice, Rubber (% of	D. DUIN				%0/ 00%	0/ 6 / 0/8/0	%4/	00 CO 00%	%00 %00	0/ 1-1/0	0/ Z /0 0/8/0	%0 %0	
all commodities)	TOTAL	N/A	N/A	N/A	26%	66%	55%	71%	76%	55%	80%	% 0	N/A
	Break	52.5%	52.5%	100.0%	19,711,768	38,825,582	67,365,624	10,348,150	20,382,390	67,365,624	9,363,618	18,443,192	
Non-Select	Container	80.4%	80.4%	100.0%	10,553,144	31,393,927	56,419,986	8,488,918	25,253,183	56,419,986	2,064,226	6,140,745	
Commodities	D. Bulk	26.6%	26.6%	100.0%	6,234,205	9,277,120	14,428,147	1,658,526	2,468,053	14,428,147	4,575,678	6,809,067	
	Bulk	33.9%	33.9%	100.0%	1,223,529	2,253,240	3,196,762	414,258	762,894	3,196,762	809,270	1,490,345	ı
	TOTAL	55.4%	59.8%	100.0%	37,722,645	81,749,869	141,410,518	20,909,852	48,866,520	141,410,518	16,812,793	32,883,349	
	Sreak	50 0%	63 3%	100 0%	32 447 000	50 256 000	70 445 000	10 / 11 306	31 812 808	70 445 000	13 005 604	18 443 102	
	Containor	0/ 2/20	0/ 0.00	100.0%	11 000 000	22,257,000	F 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.664.547	01,012,000	F0 0F2 000	7 7 26 462	6 140 745	
All Commodities		01.2.70 AD 20/2	0/ 0.1 0	100.0%	76,006,000	12,331,000	56 A B A DOD	3,004,047	26 030 033	20,332,000 FE 494 000	15 570 602	6 900 067	
		30.5%	08 7%	100.0%	86.316.000	113 105 000	120 431 000	34 086 101	111614655	120 431 000	F2 229 800	1 400 345	
<u>.</u>	rotal	47.0%	86.3%	100.0%	156.759,000	240.467,000	314.312.000	73.708.261	207.583.651	314.312,000	83.050.739	32.883.349	

Study on the Development of Domestic Sea	Transportation and Maritim	ne Industry in the Repu	blic of Indonesia (STF	RAMINDO)
- Technical Report 1 -				

5. DATABASE AND DEMAND ANALYSIS LEARNING SESSION

5.1. Technology Transfer Program for STRAMINDO

As an integral part of the STRAMINDO study objective, technology transfer programs are consciously and actively pursued throughout the implementation of the study. One strategic request of the partner agency, DGSC, is that they be given training in maritime system planning. STRAMINDO then provided in-depth learning sessions in this regard. Training sessions were conducted from 28 October to 31 October, 2003 in STRAMINDO Project Office in Jakarta. In all, seven DGSC staffs working in strategic offices in DGSC Headquarters participated in and completed the program.

Figure 5.1 Learning Session

Top-right: Participants learning practical skills in maritime transport planning

Top-left: Program participants (from bottom-left clock-wise) Mr. Budi (DGSC), Ms. Indah (DGSC), Mr. Erwin (DGSC), Mr. Andri (Teaching assistant), Mr. Agus (DGSC), Ms. Een (DGSC). Not on photo Mr. Robin (DGSC) and Mr. Darmawan (DGSC).

Bottom-left: Dr. Espada (trainor) giving hands-on instructions to Ms. Indah and Mr. Budi.

5.2. Program Outline

The four-day training session covers items listed in the succeeding pages. To maximize the absorption of practical skills in maritime planning, session covers essential theoretical concepts, practical methodology and computer skills. Computer skills training covers working knowledge in Advanced MSECxel, Visual Basic and JICA-STRADA. Hands-on exercises were given much emphasis to ensure that participant will be able to gain workable knowledge as much as possible.

Lectures notes of the program are attached as Annex.

Session 1

10:00 ~ 15:00, 28 October

- Overview of the program
- Practical planning methodology for maritime transport system planning
- Developing Models for G/A Forecast
- Sea traffic forecast: regression analysis using MSExcel
- Loading/unloading forecast: exercise in using two-tier models
- Practical forecasting under limited data availability

Session 2

10:00 ~ 15:00, 29 October

- OD Matrix Development
- Data Requirements for OD Forecast
- OD forecast: Fratar Method
- OD Forecast exercise: introduction to Visual Basic and MSExcel

Session 3

10:00 ~ 15:00, 30 October

- Data requirements for Fleet Estimation
- Fleet estimation based on port-to-port network
- Fleet estimation exercise: using Visual Basic and MSExcel

Session 4

10:00 ~ 15:00, 31 October

- Fleet estimation based on multi-port liner network system
- Introduction to Transit Assignment of JICA-STRADA
- Simulation preparation and simulation
- Using the simulation results
- Wrap-up and graduation

ANNEXES

ANNEX OF SECTION 1

1.1 Contents of Technical Report 1 Data CD

Filename	Folder	Description
FILES IN SURVEY RESULTS FO	LDER	
A001 – A075	Organisasi_A	 Organization chart
		 Filename correspond to shipping
		comp. interview form-A Q5
C_01 – C_37	Organisasi_C	 Organization chart
	- —	 Filename correspond to shippers
		and forwarders interview form Q4
Multiple files	Report	 Survey report
		 Survey manual
		 Coding System
AB Perusahaan	Seaport Survey	
1. Comm code		 Commodity code
2. Perusahaan AB		 Shipping company interview survey
=		results - Form A
3. Perusahaan A FA		 Shipping company interview survey
= =		results - Form A
4. Perusahaan A FA English		 Shipping company interview survey
3		results - Form A
5. Perusahaan B Kapal		 Shipping company interview survey
'		results - Form B
6. Port		 Port survey result
7. Port Code		 Coding System of port
8. Shipcomp Code		 Coding System of shipping
		company
9. Zone Code		 Coding System of zone
-		5,
C Ekspedisi	Seaport Survey	
1. Comm code	, ,	 Commodity code
2. Ekspedisi C		 Cargo owner/forwarder interview
· _		survey results
3. Ekspedisi C FA		 Cargo owner/forwarder interview
·		survey results
4. Ekspedisi C FA English		 Cargo owner/forwarder interview
		survey results
5. Forwarder Code		 Coding System of forwarder
		company
6. Port		 Port survey results
7. Port Code		 Coding System of port
8. Zone Code		 Coding System of zone
D Penumpang	Seaport Survev	
1. D Penumpang		Passenger interview survey result
<u> </u>		 Port survey result
2. Port		 Coding System of port
3. Port Code		 Coding System of province
4. Pro Code		 Coding System of zone
5. Zone Code		0,
E Cargo	Seaport Survey	
1. Comm Code		 Commodity code
2. E Cargo		 Database of cargo moving
3. Flag Code		 Coding System of Flag
4. Index Code		 Coding System of Index type

5. Load Code		 Coding System of Loading and
—		Unloading
6. Pack Code		 Coding System of Packaging type
7. Port		 Port survey result
8. Port Code		 Coding System of port
9. Pro Code		 Coding System of province
10. Ship_Code		 Coding System of ship
11. Zone_Code		 Coding System of zone
FILES UNDER MARITIME TRAFF	IC DATABSE	
2002 Freight OD adjusted		 Estimated current freight OD
2002 Passnger OD adjusted		 Estimated current passnger OD
FILES UNDER MARITIME TRAFF	IC DATABSE	
C01 – C13	Freight	 Forecasted freight OD
	Demand	
	Forecast	
Passnger OD Forecast	Passnger	 Forecasted sea passenger OD
	Demand	
	Forecast	

ANNEX OF SECTION 4

4.1 Models for Domestic Sea Freight Forecast by Commodity

(1) Forecasted Petroleum Sea Traffic

/ Source: BPS

/1 Source: Directorate of Oil and Petroleum

Figure 4.1.3 Trend in Import and Export of Petroleum

Table 4.1.1	Assumptions	Used in the	Forecast of Peti	oleum Sea Traffic
I WOLC IIIII	1 issumptions	esca m me	I OICCUSE OI I CO	oreann sea rraine

ITEM	ASSUMPTION
Consumption	Consumption of petroleum has a elasticity of 1.33 with respect to GDP
	- calibrated from the data from 1993 to 2000
Export	Share of exports of domestically produced petroleum decreases by 5%
	year on year - average rate of decline from 1996 to 2000
Import	Import volume will adjust based on the deficit/surplus of production,
	consumption, and export
Production	Production from active reserves per province will naturally decline and
	is somewhere in the range of 3% to 15% per annum. There are three
	scenarios assumed for the opening of new major reserves: (1) no new
	reserves are found {low case}, (2) the rate of new reserve opening is
	the same as that of the period 1992 to 2001 {mid case}, the rate of
	new reserve opening is double that of the period 1992 to 2001 {mid
	case}
Sea traffic	Sea traffic increases by 0.2 times for every unit increase of
	domestically consumed oil production but decreases by 0.1 times for
	every unit increase of petroleum import – based on the trend from 1996
	to 1997

Figure 4.1.4 Projected Demand and Production of Petroleum

Study on the Development of Domestic Sea Transportation and Maritime Industry in the Republic of Indonesia (STRAMINDO) - Technical Report 1 -

(2) Forecasted General Cargo Sea Traffic

Figure 4.1.6 General Cargo and GDP Trend

 Table 4.1.2
 Assumptions Used in the Forecast of General Cargo Sea Traffic

ITEM	ASSUMPTION
Sea traffic	Based on trend from 1996 to 2001, the elasticity of general cargo sea
	traffic to GDP is 1.2. However, an independent assessment of DGSC,
	pegs the elasticity of general cargo sea traffic to GDP at 1.5. Both
	parameters are used to forecast General Cargo sea traffic based on the
	low GDP and high GDP growth scenario.

Figure 4.1.7 Forecasted General Cargo Sea Traffic

(3) Forecasted Coal Sea Traffic

Figure 4.1.8 Trend in Production and Consumption of Coal

 Table 4.1.3
 Assumptions Used in the Forecast of Sea Traffic of Coal

ITEM	ASSUMPTION
Consumption	Consumption will increase by 2,000,000 MT per year as the base case
	- adopted modified from government estimates. The growth however,
	is expected to slow down in the future by half starting from 2010 as a
	result of shifting to gas as the primary energy source. For the low case
	and high case scenario, the rate of increase is half and double of the
	mid-case rate respectively.
Export	Export will increase annually by 2,500,00 MT per year up to 2010.
	From thereon, the rate will slow down by 50%.
Import	No imports
Production	Production will follow demand (domestic consumption + export) – of
	which the control total is adjusted to conform to government estimates.
Sea traffic	In 2001, for every 1 MT of coal domestic demand results in 0.67 MT
	of coal sea traffic. This trend is assumed to continue in the future.

Figure 4.1.9 Projected Demand and Supply of Coal

(4) Forecasted Wood Sea Traffic

Figure 4.1.11 Trend in Wood Production

ITEM	ASSUMPTION
Consumption	Consumption will be constrained by supply
Export	Production is assumed to be maintained at the current level
Imports	No imports
Production	In 2002, production is 12 million cubic meter (\approx 8 million MT). Based
	on government regulation, annual production is constrained at 7
	million MT (\approx 5 million MT). At the high case, it is assumed that the
	current levels are maintained and at the low case, the government
	regulation is reached. The mid-case is taken as the average of the low
	and high case.
Sea Traffic	In 2001, for every 1 MT of wood domestic demand results in 1.24 MT
	of wood sea traffic. This trend is assumed to continue in the future.

 Table 4.1.4
 Assumptions Used in the Forecast of Future Sea Traffic of Wood

Figure 4.1.13 Forecasted Wood Production

Figure 4.1.14 Forecasted Forestry Products Sea Traffic

(5) Forecasted Fertilizer Sea Traffic

ITEM	ASSUMPTION
Consumption	Consumption will follow the growth in agricultural production (with
	rice as the benchmark). As a base case, it is assumed that agricultural
	production will be constrained by land and that self-sufficiency will not
	be reached. At the high case (1), Urea, SP-36 and Amsul fertilizer
	utilization rate will continue to decrease as the trend from 1996 to 2001
	and other types of fertilizers continue it 5-year declining trend. As
	upper mid-case (2), Urea, SP-36 and Amsul fertilizer utilization rate
	will remain as it is and other types of fertilizers continue decline. As
	lower mid-case (3), Urea, SP-36 and Amsul fertilizer utilization rate
	will remain as it is and other types of fertilizers remain at current
	levels. For discussion purposes, it is also assumed that self-sufficiency
	will be attained – which will result in much higher consumption of
Export	Export has remained stable for the last four years and is assumed to
	continue this trend.
Imports	No imports
Production	Production level can be able to cope with domestic and export demands
Sea Traffic	In 2001, for every 1 MT of domestic demand results in 1.07 MT of sea
	traffic. This trend is assumed to continue in the future.

 Table 4.1.5
 Assumptions Used in the Forecast of Sea Traffic of Fertilizer

Figure 4.1.17 Forecast Seaborne Traffic of Fertilizer

(6) Forecasted Cement Traffic

ITEM	ASSUMPTION						
Consumption	Based on the trend from 1996 to 2001, the elasticity of consumption to						
	GDP is 0.9 (model 1). According to an Indonesian Cement Association						
	estimate, the elasticity of demand to GDP is 1.4 (Model 2). Based on						
	this two models – two scenarios are assumed, low GDP growth and						
	high GDP growth						
Export	Exports have remained stable since 1999 and is assumed to remain						
	stable at 7 million MT						
Import	No imports						
Production	Production can cope with both domestic demand and exports						
Sea Traffic	In 2001, for every 1 MT of domestic demand results in 0.22 MT of sea						
	traffic. This trend is assumed to continue in the future.						

 Table 4.1.6
 Assumptions Used in the Forecast of Sea Traffic of Cement

Figure 4.1.20 Forecasted Seaborne Cement Traffic

(7) Forecasted CPO Sea Traffic

ITEM	ASSUMPTION						
Consumption	CPO Consumption rate per capita has an elasticity of 0.97 to GDP per						
	capita – based on the trend from 1993 to 1998. Both the low GDP						
	growth and high GDP growth scenario is assumed						
Export	Export will increase at a constant rate of 400,000 MT per year – based						
	on the average rate of growth from 1990 to 2001						
Import	No imports						
Production	Production can cope with domestic demand and export						
Sea Traffic	In 2001, for every 1 MT of domestic demand results in 0.86 MT of sea						
	traffic. This trend is assumed to continue in the future.						

 Table 4.1.7
 Assumptions Used in the Forecast of Sea Traffic of CPO

(8) Forecasted Rice Sea Traffic

Figure 4.1.24 Trend in Demand and Supply of Rice

ITEM	ASSUMPTION
Consumption	Consumption per capita is 250 kg per annum – based on average for
	the period 1993 to 2001
Export	No export
Import	Import would be able to cover the slack between demand and domestic
	production
Production	Low estimate - production is constrained by land; Mid estimate -
	time-series trend from 1991 to 2001 will be sustained; High estimate -
	self-sufficiency can be attained
Sea Traffic	In 2001, for every 1 MT of domestic demand results in 0.03 MT of sea
	traffic. This trend is assumed to continue in the future.

 Table 4.1.8
 Assumptions Used in the Forecast of Future Demand and Supply of Rice

Figure 4.1.26 Forecasted Rice Sea Traffic

(9) Forecast of Non-key Commodities Sea Traffic

 Table 4.1.9
 Assumptions Used in the Forecast of Future Demand and Supply of Rice

ITEM	ASSUMPTION				
Sea Traffic	Non-key commodities sea traffic will increase in line with the weighted				
	average of all key commodities – basically assuming that the key				
	commodities growth is representative of all other commodities				

Figure 4.1.27 Forecasted Sea Traffic of Non-Key Commodities

Study on the Development of Domestic Sea Transportation and Maritime Industry in the Republic of Indonesia (STRAMINDO) - Technical Report 1 -

4.2 Passenger Demand Forecast Models

4.2.1. Passenger Generation and Attraction Model

(1) Regional level air + inter island + ferry trip generation/attraction model

$$\begin{split} Trate_r &= \exp(a)G^bD^c\\ Trate_r &= air + \text{int er island + ferry trips per 100 population}\\ G &= \text{Gross Domestic Product per capita}\\ D &= \begin{cases} 2 & \text{if Bali}\\ 0 & \text{otherwise} \end{cases}\\ r &= region\\ a, b, c &= parameters \end{split}$$

 Table 4.2.1
 Trip Generation/Attraction per Region Model Calibration Results

Calibration Data Set	Trips generated and attracted per region (2002)					
	Population per region (2002)					
	GDP per region (2002)					
Observations	10					
Model fitness	$R^2 = 0.95$					
Parameters	a = 2.92 t-stat = 40.8					
	b = 0.51 t-stat = 5.4					
	c = 2.03 t-stat = 8.4					

Figure 4.2.1 Comparison of Estimated and Actual Trip Generation/Attraction per Region

(2) Zone level air + inter island trip generation/attraction model

$$Trate_{t}^{z} = Trate_{t=0}^{z} \left(\frac{Trest_{t}^{z}}{Trest_{t=0}^{z}} \right)$$
$$Trest = \text{Estimated trip per 100 population}$$
$$= a + b \ln(G) + c \ln(D1) + d \ln(D2)$$
$$z = zone$$
$$t = year$$
$$G = GDP/cap$$
$$D1 = \begin{cases} 1 & \text{if } z = \text{Riau or Papua} \\ 0 & \text{otherwise} \end{cases}$$
$$D2 = \begin{cases} 1 & \text{if } z = \text{NAD} \\ 0 & \text{otherwise} \end{cases}$$
$$a, b, c, d = parameter$$

Table 4.2.2	Trip Generation/Attraction	per Zone Model Calibration Results
-------------	-----------------------------------	------------------------------------

Calibration Data Set	Trips generated and attracted per zone (2002)					
	Population per zone (2002)					
	GDP per zone (2002)					
Observations	30					
Model fitness	$R^2 = 0.54$					
Parameters	a = 53.9 t-stat = 3.4					
	b = 107.8 t-stat = 5.4					
	c = -74.6 t-stat = -1.3					
	d = -153.3 t-stat = -2.1					

Annex-21

Study on the Development of Domestic Sea Transportation and Maritime Industry in the Republic of Indonesia (STRAMINDO) - Technical Report 1 -

4.2.2. Air vs. Inter-island Modal Split Model

(1) Macroscopic Model

 $S_t = \exp(a)G^bGR^cP^d$ S = share of inter-island trips vs. air trips G = GDP per capita in millions $\text{GR} = \text{GDP}_t/\text{GDP}_{t-1}$ P = population in million t = yeara,b,c,d = parameters

Table 4.2.3 Macroscopic Airline vs. Inter-island Modal Split Model Calibration Results

Calibration Data	Inter-island passengers and airline passengers from 1993 to
Set	2001
	GDP and population from 1992 to 2001
Observations	9
Model fitness	0.88
Parameters	a = -15.0 t-stat = -3.5
	b = -1.7 t-stat = -3.8
	c = -0.5 $t-stat = -1.3$
	d = 5.5 t-stat = 5.1

ANNEX OF SECTION 5

5.1 Lecture Notes of Martime System Planning Technology Transfer Program

STRAMINDO TECHNOLOGY TRANSFER PROGRAM

Session 1

STRAMNDO Conference room, BBD Plaza, Jakarta 28 ~ 31 October 2003

Lecture Notes

1. Practical planning methodology to maritime transport planning

One important aspect of maritime transport planning is the determination of the future fleet requirements, for the purpose of determining the extent and nature of needed investment and to determine how proposed projects will affect the performance of the maritime transport system.

The process typically involves two models: (1) The demand forecast model and (2) fleet simulation model. The demand forecast model inputs socio-economic information and outputs the future sea traffic. The fleet simulation model inputs the future demand as well as the properties of the future maritime transport system, such as configuration of liner routes, port depth, etc to determine the performance of the system, including fleet requirements, transport cost, etc.

Fundamentally, the process can be illustrated as follows:

Physical elements of the transport system

- Zones
- Network
- Modes

Since transportation involves the movement of people and cargo from one place to another, transport system planning invariably requires the representation of the geographical space of the study area. This is usually achieved by a zoning system.

A **zone** is an area taken to be homogeneous and demand coming to and coming from the zone is explained by the characteristics of the zone (e.g. population, GDP, etc.). The zone is represented geographically by a single point called the zone centroid. For cargo or passengers to move from one zone to another, the linkages between zone centroids have to be defined. These linkages represent shipping routes or generally it is called the transport **network**, which is comprised of nodes and links. Finally, to allow cargo and passenger to move along the links, the transportation system requires transport **modes** (for example ships, airplanes, railroad, etc.)

 \clubsuit Zones are typically made to coincide with administrative borders – e.g. provincial borders, to take advantage of available statistic (e.g. population) which is usually aggregated by administrative region.

4-Step Demand Model

The 4-Step demand forecast is the most popular methodology in transport planning and. The 4-step model essentially divides the process into 4 distinct steps, making the process easier to manage.

Step 1: Generation and attraction (G/A) – how much traffic is generated or attracted by a zone

Step 2: Origin and Destination (OD) – how much of the generated traffic goes one zone to another

Step 3: Modal Split – if there are more than two modes between two zones, how much of the demand will using each mode

Step 4: Network Assignment – given the network, how will the demand move around the network to go from one zone to another

Study on the Development of Domestic Sea Transportation and Maritime Industry in the Republic of Indonesia (STRAMINDO) - Technical Report 1 -

2. Developing Models for G/A forecast

G/A forecast is done using the following model:

$$G_i = g(\alpha, Z_i)$$
$$A_i = a(\beta, Z_i)$$

G = demand generated by zone *i* A = demand attracted by zone *i* Z = attributes of zone *i* g(.) = demand generation model a(.) = demand attraction model α , β = parameters

In maritime transport, total sea traffic statistics is generally available. Thus, a two-tier model is sometimes used. And it is has the following form.

$$S = s(\gamma, Z)$$

$$G_i = S \frac{g(\alpha, Z_i)}{\sum_{x} g(\alpha, Z_x)}$$

$$A_i = S \frac{a(\beta, Z_i)}{\sum_{x} a(\beta, Z_x)}$$

S = sea traffic s(.) = sea traffic model $\gamma =$ parameters

The key to G/S forecast is therefore to develop the model. A model, is a terminology used to denote something that represents a system in a simplified form for the purpose of analyzing the system. One of the most important purposes is to predict how the system will react to a stimulus. In the case of demand forecast, models are used to predict how sea traffic demand will change in relation changes in the socio-economic nature of the study area (e.g. GDP).

The development of the model requires the analyst to specify two items: model form and model parameters.

The model form means the form of the equation used. The following are some examples illustrating the difference in the results of the model as a result of the choice of model form.

The choice of parameters is the other aspect of model development. The following illustrates the difference of results based on the selection of model parameters.

As can be seen in the two examples, the choice of model form and model parameters will greatly affect the results of the model developed. Thus, the analyst should be very careful when developing the models to be used for analysis.

The selection of model form and model parameters is done by trying to **imitate past trends as closely as possible** – with the assumption that the relationships between key variables will remain valid in the future.

It is therefore important to have good data - in terms of quantity and quality - to calibrate the model.

The typical data needed for G/A model development are as follows:

- Sea traffic for several years
- Loading and unloading at ports for several years
- GDP data
- Production and consumption data
- Population
- Etc.

3. Sea traffic forecast: regression analysis using MSExcel

The most widely used methodology to calibrate G/A models is regression analysis. Regression analysis is a methodology to determine model parameters that will minimize the errors of the model. Error is a measure of deviation between the observed (or measured) results and the results of the model.

As an illustrative example, the development of the sea traffic model for dry cargo will be illustrated.

(Million ton/year)												
	GDP		GDP International Cargo			Domestic						
Year	1993 price (Trillion)	Growth Rate(%)	General	Bulk	Container	Liquid	Total	General	Bulk	Container	Liquid	Total
1988	226.4											
1989	244.7	8.1		37.2		95.0	132.3		31.8		45.1	76.9
1990	264.0	7.9		46.2		92.1	138.2		41.3		53.6	94.9
1991	283.5	7.4		59.6		106.7	166.3		48.3		71.2	119.5
1992	305.7	7.8		72.9		107.9	180.8	60.2		72.5	132.7	
1993	328.3	7.4		109.7		107.0	216.7	55.1		74.4	129.5	
1994	354.6	8.0		138.1		100.6	238.8	69.6		77.5	147.1	
1995	383.8	8.2		189.5		88.7	278.2		62.3		84.4	146.7
1996	413.8	7.8	72.5	62.1	36.4	166.1	337.1	52.6	26.3	0.9	90.4	170.1
1997	433.2	4.7	61.3	39.1	13.4	153.3	267.1	38.6	13.4	0.0	81.6	133.6
1998	376.4	-13.1	40.2	71.5	12.8	142.3	266.8	28.3	14.3	3.5	79.0	125.2
1999	379.4	0.8	47.0	105.0	22.2	164.5	338.8	52.0	38.7	7.5	82.1	180.2
2000	397.9	4.9	53.1	90.8	15.0	205.6	364.5	37.5	22.2	3.5	88.9	152.1
2001	411.1	3.3	55.8	124.9	22.4	209.7	412.7	32.5	26.1	4.3	87.1	149.9
2002	426.3	3.7										
2003	440.8	3.4										
2004	458.5	4.0										

The first requirement is data and the following data is used.

Source: Cargo data are from DGSC annual statistics and economic data are from BPS annual year book. GDP in 2002 - 2004 are estimates in "Asian Development Outlook 2003" by ADB

A graphical representation of the GDP and the sea traffic shows an unclear trend as follows. Prior to 1997, the trend was clear between GDP and sea traffic, but after the financial crisis, the trend exhibited a new relationship between GDP and sea traffic. To remedy this situation other factors are considered or a dummy variable is used.

After a series of trial and error a log-linear model is used and has the following form:

$$S_{t} = \alpha + \beta \ln(GDP_{t}) + \gamma \ln\left(\frac{GDP_{t}}{GDP_{t-1}}\right) + \sigma \ln(D_{t})$$

The basic data is as follows:

Year	Dry Cargo	GDP	Growth	Dummy
1989	31.8	244.7	1.08	1.0
1990	41.3	264.0	1.08	1.0
1991	48.3	283.5	1.07	1.0
1992	60.2	305.7	1.08	1.0
1993	55.1	328.3	1.07	1.0
1994	69.6	354.6	1.08	1.0
1995	62.3	383.8	1.08	1.0
1996	79.8	413.8	1.08	1.0
1997	52	433.2	1.05	10.0
1998	46.1	376.4	0.87	10.0
1999	98.2	379.4	1.01	0.5
2000	63.2	397.9	1.05	2.0
2001	62.9	411.1	1.03	2.0

Regression analysis requires that the model form is linear (i.e. Y = a + bX1 + cX2 + ...) thus it is necessary to transform the model form into a linear form.

Annex-29

Study on the Development of Domestic Sea Transportation and Maritime Industry in the Republic of Indonesia (STRAMINDO) - Technical Report 1 -

d If using exponential model forms, the transformation is done as follows:

$$S = \alpha \exp(\beta GDP)$$
$$Y = a + bX$$
$$Y = \ln(S)$$
$$a = \ln(a)$$
$$bX = \beta GDP$$

The basic data is converted is as follows:

Year	Dry Cargo	GDP	Growth	Dummy	Y	X1	X2	X3
1989	31.8	244.7	1.08	1.0	31.8	5.5	0.08	-
1990	41.3	264.0	1.08	1.0	41.3	5.6	0.08	-
1991	48.3	283.5	1.07	1.0	48.3	5.6	0.07	-
1992	60.2	305.7	1.08	1.0	60.2	5.7	0.08	-
1993	55.1	328.3	1.07	1.0	55.1	5.8	0.07	-
1994	69.6	354.6	1.08	1.0	69.6	5.9	0.08	-
1995	62.3	383.8	1.08	1.0	62.3	6.0	0.08	-
1996	79.8	413.8	1.08	1.0	79.8	6.0	0.08	-
1997	52	433.2	1.05	10.0	52.0	6.1	0.05	2.3
1998	46.1	376.4	0.87	10.0	46.1	5.9	(0.14)	2.3
1999	98.2	379.4	1.01	0.5	98.2	5.9	0.01	(0.7)
2000	63.2	397.9	1.05	2.0	63.2	6.0	0.05	0.7
2001	62.9	411.1	1.03	2.0	62.9	6.0	0.03	0.7

To perform regression analysis using MSExcel follow the following steps:

- 1) Open regression analysis dialog box: Tool >Data Analysis > Regression
- 2) Input the Y-Range and X-Range as well as the output range
- 3) Click OK and interpret the results

The resulting parameters are as follows:

Parameters	Value	t-stat	R coeff.
а	-423.9	-6.48	
b	84.5	7.54	0.04
с	-83.9	-2.09	0.94
d	-17.8	-6.36	

Exercise: Perform the same analysis for liquid cargo.

4. Loading/unloading forecast

Exercise: Calculate the future generated and attracted demand for each zone using the two-tier model

The generated and attracted dry cargo for each zone was calculated using the following model:

$$G_{i} = g(\alpha, GDP_{i})$$
$$A_{i} = g(\beta, GDP_{i}, pop_{i})$$

The resulting generation and attraction results are as follows.

	20	02	20	14	20	24
Zone	Gen	Att	Gen	Att	Gen	Att
1	0.5	0.1	0.8	0.1	1.5	0.2
2	1.4	4.3	3.0	5.8	3.7	12.1
3	3.6	0.8	4.6	0.9	11.8	2.4
4	6.6	7.1	16.4	8.5	22.6	21.4
5	0.9	0.4	2.2	0.7	2.5	1.1
6	3.9	0.5	10.1	0.8	13.1	1.7
7	0.9	0.5	1.8	1.1	2.0	1.7
8	0.0	0.1	0.1	0.2	0.1	0.2
9	8.4	0.8	10.6	0.8	30.6	1.9
10	6.2	7.3	7.9	10.1	16.5	17.1
11	0.0	0.5	0.0	0.9	0.1	1.1
12	1.0	10.8	1.0	28.0	2.4	37.7
13	2.0	7.9	2.9	10.5	5.7	26.8
14	-	-	-	-	-	-
15	5.5	7.2	6.1	16.5	19.4	21.7
16	0.1	1.0	0.1	2.0	0.2	3.0
17	0.6	0.9	1.2	1.2	2.0	2.5
18	0.8	0.3	1.8	0.3	2.4	0.8
19	10.3	6.5	25.3	14.9	37.0	14.4
20	10.9	4.3	16.5	8.1	31.5	9.5
21	0.3	1.1	0.7	1.4	0.9	3.3
22	0.0	0.1	0.0	0.1	0.0	0.2
23	0.6	0.6	1.2	0.9	1.7	1.2
24	3.7	3.4	4.0	8.3	7.3	8.7
25	0.1	0.9	0.3	2.4	0.4	2.8
26	0.2	0.6	0.4	1.0	0.6	1.3
27	0.1	0.5	0.1	0.6	0.3	1.1
28	1.0	0.6	2.0	1.0	3.1	1.4
29	0.2	0.2	0.2	0.4	0.4	0.5
30	0.5	1.2	1.1	2.8	1.9	4.0
TOTAL	70.4	70.4	122.7	130.2	222.0	201.8

million tons/year

Using the sea traffic forecast model developed above and the assumption that GDP will increase by 7% from 2005 and onwards. Calculate for years 2014 and 2024.

5. Practical forecasting under limited data availability

In actual practice, data is in a lot of times limited, thus the analyst must be resourceful to be able to make do with whatever data is available. For example, in Indonesia, it is past data on loading and unloading of coal is not available. However, past data on production and consumption of coal per zone is available. In such case, one solution is to assume that the current ratio of loading and production and the ratio of unloading and consumption is assumed to remain constant. The model for is as follows:

$$G_{i} = \mu \times P(\cdot), \ \mu = \frac{G_{i}}{P} \text{ for year } 2003$$
$$A_{i} = \kappa \times C(\cdot), \ \kappa = \frac{A_{i}}{C} \text{ for year } 2003$$

P(.) = production a function C(.) = consumption a function

STRAMINDO TECHNOLOGY TRANSFER PROGRAM

Session 2

STRAMNDO Conference room, BBD Plaza, Jakarta 28 ~ 31 October 2003

Lecture Notes

1. OD Matrix Development

The Origin-Destination (OD) Matrix (or Table) is a database showing the quantity of demand between any two-zones. It has the typical form as follows:

	D(1)	D(2)	D(3)	•••••	•••••	D(j)	•••••	D(J)	Σ
O(1)	v(1,1)	v(1,2)	v(1,3)			v(1,j)		v(1,J)	G(1)
O(2)	v(2,1)	v(2,2)	v(2,3)			v(2,j)		v(2,J)	G(2)
O(3)	v(3,1)	v(3,2)	v(3,3)			v(3,j)		v(3,J)	G(3)
•••••									•••••
•••••									•••••
O(i)	v(i,1)	v(i,2)	v(i,3)			v(i,j)		v(i,J)	G(i)
O(I)	v(I,1)	v(I,2)	v(I,3)			v(I,j)		v(I,J)	G(I)
Σ	A(1)	A(2)	A(3)	•••••	•••••	A(j)		A(J)	

$$\sum_{j} V_{i,j} = G_i$$

$$\sum_{i} V_{i,j} = A_j$$

$$S = \sum_{i} G_i = \sum_{i} A_j = \sum_{i} \sum_{j} V_{i,j}$$

O(i) is grain gaps i

O(i) is orgin zone *i*

D(j) is destination zone j

v(i,j) is the demand from zone *i* to zone *j*

To estimate the OD Table, it is in many cases not practical to collect all the OD data due to large amount of data needed – for example in Indonesia, to collect one year data from all ports would require more than 180,000 data entries. To handle such large volume of data would require significant manpower and time to encode and analyze. It is more practical to take a sample. To determine the sample size, the analyst must balance cost and accuracy. In STRAMINDO for example, the sampling rate is 1 month data.

Usually a survey is taken to determine the distribution of destination of demand originating from a zone and/or the distribution of origin of demand destining to a zone.

Using the former, the following illustrates the methodology of OD Matrix development.

$$\begin{split} \sum_{j} \widetilde{v}_{i,j} &= \widetilde{G}_i \\ r_{i,j} &= \frac{\widetilde{v}_{i,j}}{\widetilde{G}_i} \approx \frac{V_{i,j}}{G_i}, \ \sum_{i} r_{i,j} = 1.0 \\ v_{i,j} &= r_{i,j} \times G_i \quad \rightarrow \text{expansion} \\ \widetilde{v}_{i,j} &= \text{sampled volume of demand from zone i to zone j} \\ \widetilde{G}_i &= \text{sampled volume of demand from zone i} \\ r_{i,i} &= \text{OD rate} \end{split}$$

Similar equations can be easily derived if we use demand coming to a zone, instead of demand originating from a zone.

2. Data Requirements for OD Forecast

As described above, to develop the OD Matrix, we need to determine two items either from a survey or from published statistics: (1) OD rates and (2) expansion factor. In actual practice, OD rates are determined through an OD survey, while the expansion factor is determined from published statistics.

In the case of STRAMINDO the OD rates were determined from voyage reports and the LK3. The LK3 reports were collected from 23 strategic ports. Since the LK3 covers only the 23 strategic ports, to determine OD rates between non-strategic ports, the voyage reports were use. The LK3 documents were given higher credence, because the LK3 is well documented and compliance is higher than the Voyage Report. The following figure illustrates how the two data sources were used.

	Strategic port	Other ports
Strategic ports	LK3	LK3
Other ports	LK3	Voyage Report

The expansion factor is determined from annual loading and unloading data collected from ADPEL. As can be easily discerned, the expansion factor is very critical to ensure that there is no "bias" in the results, especially of the OD Matrix desired details the type of commodity.

Exercise: Using the sample OD data below and the loading data, develop the OD Matrix.

	30		•	565	•		•	2,432	•		25,057	•	•	6,834	•	22,039				9,154	2,987	1,157		•	40,209	6,802	1,192	•	1,595	4,637	79,434
	29			482	91			•	•	•	•	•	-	142	•	6,657		2		2,224	357	5,780	0		9,087	•	•	•	4,782	39	2,254
	28				403						809		-	163		20,930		37		946		6,156	-		28,575	83	2,685	83	37,452	1,062	7,450
	27	420	3,388		-						814	1,292	-		•	7,770	3,869	91		277		-			9,480	938	1,808	6,148	924	1	
	26				553		277				128	480	-			19,956 3	11	27		19,665	9,781	151	-		9,963 1	176	659	730	1,510		3,169
	25		•	386	5,884		8						-			2,113			655	31,315	6,029	-	-		13,961		37		92,532		1,073
	24		716								35,806		400	115		36,691		152	63	62,498	85,740	-	687	1,090	431	11		27	7,649	31	3,243
	23	-	451		099		24				1,878		103			7,271 1		28	351	5,524	220			841	5,682			3,168			
	22												-			802			4	304 3	,923	664			,358 4					216	30
	21	1,012			-						7,513		-			6,607	7,861		98	2,365 2	1,099 1	7,455	3	397	8,158 2		8		9,599	3,813	146
	20	5,087		879	2,654	1,420	3			2,295	39,673	4	17	287	-	06,091 5		37	711	25,770	17,481	-	51	46,518	55,531 8		-	-	-		582
	19			1,869	11	1,982	151			33,435	52,015	296	17,492	24,736		96,454 1		12	8,777	175,660	41,880 1	2,923	-	47	78,469	11,786		635	4,765	370	380
	18	-			1,589	165	1			19	186	193	225	2,507		8,909		2,109	2,092	3,037	5,544	2	0	4	4	69				1	16
	17		23		9,187	1,824	62	65			74,698	12	-	152		1,253		194	292	317	5,420	-	-	•	-						•
	16		•	•	-		•	•	•		492	•	-		•	23,982	10	2	2,138	49,236	18,082	-	-	1,305	3,342	•	3,648	65	•		
	15	953	56,175	3	8,307	1,560	209	3,638	89	33,546	10,596	656	6,395	224		54,692	2,766	13,621	55,535	130,842	167,479	27,721	191	746	281,652	3,014	2,154	6,752	4,105	525	11,750
	14	-	•		•		•									,								•							
	13	58	657	219,569	699	7,362	490,518	16,575		4,410	104,621	99	37,903	27,335		3,557		1,797	12,179	60,067	51,105	-		7,673	11,944	1,358			5,420	53	006
	12		•		2,408	8	123,173			1,665,667	3,521		6,374			6,149			798	369,951	2,081	-	-	•	-					15	112
	11		4,953		44	1,682	4,327	285	•		1,065	166	•	24,896	•	67		20	4,422	11,013	•			2,120	•		•	•			2,372
	10		88,479	137,303	247,530	40,297	1,411	130,744	3,308	95,752	23,742	4,425	31,098	12,453		22,354		41,320	4,973	99,298	38,003	19,046	-	335	107,560	8	33	85	21,879	1,156	7,208
	6	84	-	4,987	15,906		2,075	503			23,743	125	5,669	6,375	•	11,243		251	719	569	8,957				2,109	•	4,702	•	•		
	8			1,345	•	3,556	21		69	•	221		174			5,359						•	•		•					•	•
	7				1,046	1,809	855	2,609		16,426	28,618			28		9,140		23												•	9,568
	9		9,677	578	6,947	225	17	489	1,625	22,121	23,132	1,476	2,703			5,990			1,073	160	331	-	-								
	5		47		3,397	4,116	397	18	1,848	7 0	2,052 2	221	30	416		561		209	9,176	142	2,358	L ·	L -		L ·				-	1,734	-
	4	16,253	51,222	46,210	64,439	9,292 2	35,902	7,850		46,275	94,715	61		545		35,427		19		12,022	8,947				20,695	921			690	2,340	1
	3		2,953	3,168	18 5		6,272		193	2,326	52,473		•	6,736		19,939			486	2,581					330						1,949
	2	25,470	71,592	00,740	99,478	1,554	1,756	2,752		8,684	66,505 5	246	1,008	51,112		65,523		28,338	3,168	14,985	1,948	-	-	•	2,128						
	-	2,036	1,462	-	- 1						1,987					,					302										31
Results of Survey		1	2	3	4	5	9	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30

Expansion	on Data
Zone	Loading
1	520,404
2	1,372,699
3	3,582,742
4	6,587,720
5	905,390
6	3,941,684
7	909,867
8	31,118
9	8,406,785
10	6,182,175
11	44,644
12	1,046,807
13	2,012,029
14	-
15	5,454,989
16	62,692
17	635,983
18	795,046
19	10,278,049
20	10,949,090
21	336,466
22	8,749
23	561,924
24	3,651,635
25	135,566
26	184,252
27	110,778
28	1,002,850
29	189,738
30	540,903
TOTAL	70,442,775

3. OD Forecast: Fratar Method

OD Forecast intends to forecast the future OD Matrix. There are two mainly used methodologies: Gravity Model and the Fratar Model. For urban transport planning, the Gravity Model is often used but for maritime transport, the Fratar Model is typically used. The Fratar Model uses two important assumptions:

- The distribution of future trips from a given origin is proportional to the present trip distribution
- The future distribution is modified by the growth factor for the zone to which these trips are attached

The Fratar Model has the following form:

$$\hat{v}_{i,j} = (G_i \times f_i) \frac{v_{i,j} \times h_j}{\sum_{x} (v_{i,x} \times h_x)}$$

$$\begin{split} \hat{v}_{i,j} &= \text{future } v_{i,j} \\ f_i &= \text{growth of generation of demand from zone } i \\ h_i &= \text{growth of attraction of demand to zone } j \end{split}$$

The growth factor is determined from the loading and unloading forecast.

$$f_{i} = \frac{G_{i} \rightarrow future}{G_{i} \rightarrow present}, \quad h_{j} = \frac{A_{j} \rightarrow future}{A_{i} \rightarrow present}$$

4. OD Forecast Exercise: Introduction to Visual Basic

In actual practice, it is necessary to develop a tool to perform the Fratar Model to estimate the future OD Matrix. There are commercially available tools such as the JICA-STRADA but by combining Visual Basic (VB) and MSExcel, the analyst can effectively perform the same task. This approach will be introduced as part of an exercise to solve the following problem.

Exercise: Estimate the Future OD Matrix for the Year 2014 and 2024, using the following present OD Matrix and growth factors.

Study on the Development of Domestic Sea Transportation and Maritime Industry in the Republic of Indonesia (STRAMINDO,)
- Technical Report 1 -	

TOTAL	520,404	1,372,699	3,582,742	6,587,720	905,390	3,941,684	909,867	31,118	8,406,785	6,182,175	44,644	1,046,807	2,012,029		5,454,989	62,692	635,983	795,046	10,278,049	10,949,090	336,466	8,749	561,924	3,651,635	135,566	184,252	110,778	1,002,850	189,738	540,903	70,442,775
30			3,906				13,174			229,130			83,301		152,658		•		66,169	56,572	5,477			178,695	36,546	12,975		8,292	55,012	326,322	1,228,229
29			3,333	408									1,735		46,112		15		16,079	6,762	27,372	1	-	40,384				24,861	457	9,259	176,779
28		-	•	1,804	-	-	•	-		7,400	•	-	1,989	-	144,976	-	265	-	6,838		29,148	-	-	126,993	446	29,229	521	194,703	12,596	30,606	587,515
27	4,258	15,940	•	•			•			7,440	5,933		•		261,621	16,708	655		2,001		•		•	86,574	5,039	19,677	38,490	4,802	12		469,151
26		•		2,477	•	3 1,634	•	•		1,171	2,206	•	•	•	3 138,231	45	194		3 142,145	2 185,259	713	•	•	7 44,277	944	2 7,173	4,572	3 7,851	•	3 13,018	551,909
25		- 6	2,66	26,34		4	•			- L	•	8	- 2		4 14,63		- 9	7 4,83	0 226,356	8 114,20	•	4	- 1	7 62,04	2 -	40:	- 0.	5 481,04	- 8	4,40	8 936,99
24		3,36								327,42		3,81	1,39		946,82		1,09	46	451,75	1,624,03		6,45	10,03	1,91	41		- 17	39,76	36	13,32	3,432,62
23		2,122	•	2,955	•	141	•	•		17,177	•	986	•	•	50,362	•	204	1 2,592	4 256,778	3 4,172	- 6	•	7,740	0 203,020	•	•	19,834	•	- +	-	4 568,086
22	52 -	•	•	•	•	•	•	•		- 20	•	•	•	•	01 5,556	- 09	•	20 3.	32 16,654	22 36,418	3,146		54 -	38 10,48(•	- 68	•	- 10	37 2,564	125	36 74,974
21	8 10,2		6	4		- 0			۔ ۳	5 68,7	' 0	- 2	- 0		5 392,1	33,9	4	5 7	0 17,0	0 20,8	35,3	9	7 3,6	391,7				49,9	45,2	9 0	3 1,070,2
20	51,52		6,07	11,88	13,27.	2			66'6	362,78	2	16	3,50		734,86		26	5,24	186,27	2,225,24	•	47	427,97	246,78	•		•		•	2,39	4,288,76
19	•	•	12,928	49	18,527	894	•	•	145,566	475,643	1,358	167,083	301,535	•	668, 114	•	84	64,784	3,438,200	793,271	13,841	•	428	348,730	63, 327	•	3,973	24,774	4,394	1,560	6,549,064
18		-	•	7,115	1,542	2	•	-	84	1,702	886	2,151	30,564	-	61,713	-	15,192	15,440	21,954	105,009	12	1	36	19	696		•		11	99	263,873
17		108	•	41,135	17,052	467	351			683,074	55		1,853		8,683		1,400	2,157	2,291	102,653	•		•		•		•		•		861,279
16		•	•	•	•	•	•	•		4,497	•	•	•	•	166,117	44	13	15,783	355,892	342,492	•	•	12,011	14,852	•	39,717	409	•	•	•	951,827
15	6,650	264,263	21	37,195	14,582	1,233	19,707	06E	146,047	968'96	3,012	61,086	2,730	-	378,837	11,945	98,120	409,927	945,765	3,172,278	131,267	1,792	6,864	1,251,706	16,194	23,449	42,275	21,342	6,230	48,269	7,223,071
14	583 -	- 060	- 666'	- 966	. 817 -	.684 -	- 062		- 199	- 269	301 -	- 047	214 -		- 629		. 943 -	- 006	- 177	- 066			- 965	- 180	,295 -		•	- 178	625 -	- 869'	940 -
13			- 1,518	81 2	72 68	378 2,896	. 89		00 19	93 956		362 362	. 333		i95 24		. 12	94 89	09 434	15 967			- 70	. 53	- 1		_	. 28	81	61 3	67 7,944
12				8 10,7		727,3			7,251,8	32,1		9'09			42,5			5,8	2,674,1	39,4									1	4	10,845,7
11	•	3 23,30;	· 0	1 19	3 15,72	4 25,55:	7 1,54	3	4	5 9,74(9/ 19	2 -	0 303,471	•	0 46	•	5 14	9 32,631	2 79,60	2 -	- 1	•	4 19,503	- 9	- 4	- 6	2 -	- 9	- 9	0 9,74	2 522,396
10		416,23	949,50	1,108,37	376,70	8,33	708,26	14,43	416,87	217,10	20,32	297,04	151,80		154,84		297,64	36,70	717,75	719,82	90,18		3,06	478,01	4	36	22	113,74	13,71	29,61	7,341,05
6	840	4	2 34,487	71,224	8	2 12,256	2,725	- 6		7 217,113	575	2 54,149	77,705	•	0 77,875	•	1,806	5,308	4,113	169,660	•	•	•	9,374	•	51,183	•	•	•	•	5 790,406
8		•	9,30	84 -	09 33,24	47 12	32 -	29	13 -	98 2,01	•	1,66	40 -	•	13 37,12	•	- 63	•	•	ľ	•	•	•	•	•	•	•	•	•	- 50	04 83,76
2		- 23	- 26	06 4,6	04 16,9	01 5,0	48 14,1	- 88	06 71,5	26 261,6	81 -	- 18	÷.		88 63,3		-	- 18	- 09	63 -										39,3	28 477,1
9		223 45,5	- 3,9	210 31,1	144 2,1	347 1	96 2,6	0'2 2'0	0 96,3	767 211,5	017 6,7	286 25,8	- 110		385 41,4		- 205	7,29 7,9	1,1 1,1	362 6,2									- 170		915 489,8
2	643	963 2	561	489 15,2	866 225,4	016 2,5	528	- 8,0	469	114 18,7	278 1,C	-	647 5,0		392 3,5		138 1,5	- 67,7	897 1,C	463 44,6				971	949			588	763 20,5	е	738 415,5
4	164,	91 240.	10 319,	81 4,318,	.98	37 212,1	42,	43	27 201,	35 866,			07 6,4		10 245,			87	59 86,	169.				67 91.	4			e,	27,	07	60 7,089,
°		792 13,85	52 21,9	60	- 061	169 37,0.	- 80	ð,	10,1,	51 479,8,	- 06	- 727	159 82,1		138,1		- 32	181 3,56	14 18,6				-	1,4,			-		-	- 8,0	85 815,6
2	7 258,0	6 336,7	696,6	893,2	14,5	10,3	14,9		37,8	3 608,1	1,1	9'6	623,0		453,8		204,1	23,3	108,3	9 36,8				9,4						6.	3 4,340,2
-	20,62	6,87	' ~	-	-		-	-	- -	0 18,17.	-	2	3	4	- 2	- 9	- 2	8	- 6	0 5,72	-	- 2	3	4	- 9	- 9	- 2	. 8	- 6	0 12	TAL 51,53
	Ĺ		6	4	ŝ	9		3	S	1	1	1	1	1	Ĩ	Ĩ	1	1	Ĩ	Ñ	2	2	2	2	2	2	2	2	2	ŝ	TOT

	20	02	20	14	20	24
Zone	Gen	Att	Gen	Att	Gen	Att
1	1.0	1.0	1.9	1.8	3.2	3.2
2	1.0	1.0	1.7	1.6	3.1	3.3
3	1.0	1.0	2.1	2.1	2.8	2.8
4	1.0	1.0	1.8	1.6	2.4	2.4
5	1.0	1.0	1.2	1.3	2.5	2.4
6	1.0	1.0	1.8	1.9	3.1	3.2
7	1.0	1.0	1.6	1.8	2.5	2.6
8	1.0	1.0	1.2	1.3	1.9	2.0
9	1.0	1.0	1.7	1.5	2.2	2.1
10	1.0	1.0	1.3	1.3	2.4	2.5
11	1.0	1.0	1.9	1.8	2.7	2.9
12	1.0	1.0	1.3	1.3	2.6	2.4
13	1.0	1.0	1.5	1.4	2.7	2.8
14	1.0	1.0	1.5	1.6	2.8	2.6
15	1.0	1.0	1.6	1.4	2.7	2.6
16	1.0	1.0	1.2	1.1	2.0	2.2
17	1.0	1.0	1.9	2.1	2.8	2.6
18	1.0	1.0	1.8	1.9	2.8	2.9
19	1.0	1.0	2.1	2.0	2.9	2.8
20	1.0	1.0	1.2	1.2	2.3	2.1
21	1.0	1.0	1.6	1.6	2.3	2.4
22	1.0	1.0	1.4	1.4	1.9	2.0
23	1.0	1.0	1.3	1.4	2.7	2.6
24	1.0	1.0	1.1	1.1	2.3	2.1
25	1.0	1.0	1.4	1.4	2.0	2.1
26	1.0	1.0	1.8	1.7	2.5	2.7
27	1.0	1.0	1.9	2.0	3.4	3.6
28	1.0	1.0	1.9	1.7	2.5	2.4
29	1.0	1.0	2.0	2.1	2.6	2.6
30	1.0	1.0	1.2	1.2	1.7	1.7

GF = X(20??)/X(2002)

The simulation flow to solve the Fratar Model problem is as follows.

The "looping" of calculation can actually be done manually (for example using MSExcel), but in the case of actual practice the number of zones is usually more than 100, which will result in more than 10,000 calculation steps – very impractical to be done manually. An easy way is employ a user-defined computer program to perform the "looping" automatically. If using MSExcel, the use of Visual Basic is the best way in terms of ease of development. The role of MSExcel and VB is illustrated in the figure above.

Introduction to Visual Basic

Visual Basic is available as a stand-alone programming software and it is also embedded as a sub-program in MSExcel.

VB interacts with the program user using a Windows environment – thus the user will find the interaction with VB very similar to operating any Windows application. Thus the programmer has to provide the interface of the user and VB.

The most common used interface is the "Command Button". The command button is a simple "button" when clicked will activate a set of commands. Moreover, the "Command Button" has to be placed in a "User Form" as shown below.

l	J	56	٢	F	Dľ	'n	n İ	1																						IJ	×	1
	•	•	•	٠	٠	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•	•				•	•	•	•			•		•	•		•	•	•	•	•	•			•			•	•	•	•	
	•																															
																							e.									
											-						_						ŀ									
											Q	οr	ηr	na	эг	D	Вι	JC	tc	n	1		ŀ									
									e.	-		-	-	-	-		-	-	-	-	-	-	٩.									
	•	•					•					·	·	·						·		·	•		·		·					
																					•											
																																١,

To create the "User Form" use the following steps:

Step 1: Activate VB Editor

From Excel click, [Tool>Macro>Visual Basic Editor]

Step 2: Create the "user form"

From VB editor click, [Insert>User Form] From VB editor/toolbox window click, [command button icon] and drag along the user form to define the location and size of the command button.

If the toolbox menu is not visible click, [View>Toolbox]

At this stage, the interface is formed than when the software is run [from VB, Run>Run Sub/UserForm] the user can activate a set of commands by clicking onto the "command button".

To enter the commands which the software will execute, double click the command button when running the VB editor or when the command button is selected click [View>Code] and to return to edit the user form click [View>object].

There are many commands that can be performed by Visual Basic but the most useful for "looping" is the For/Next command and it has the following example syntax.

In the above commands, the value of xxx is first set as 1 then the software executes all succeeding commands and when the computer reads the "Next" command line, the computer goes back to the "For xxx = 1 to 30" line and assigns the value of xxx as 2 and again repeats the same calculation until the "Next" command line is reached and the process is repeated all over again until the final value of xxx = 30 is reached. In this case, the value of variable v changed 30 times starting from 1 up to 30.

This "For/Next" command is therefore very useful when solving the Fratar Model problem.

Another useful command for VB use is the Cells(i,j) command. This command is particularly important when we integrate VB and MSExcel. The cells command allows the VB to get the value of any particular cell from MSExcel and also to input any value into a MSExcel worksheet.

Study on the Development of Domestic Sea Transportation and Maritime Industry in the Republic of Indonesia (STRAMINDO) - Technical Report 1 -

For example:

xxx = Cells(1,2), variable xxx is assigned to the value of *cell 1B* in Excel worksheet Cells(3,2) = 3, *cell 3B* in Excel worksheet is assigned value of 3 Cells(4,1) = Cells(4,2), *cell 4A* in Excel worksheet is assigned value of *cell 4B* Cells(5,1 + 2) = cells(6, 1), *cell 5C* is assigned value of *cell 6A* Cells(5,1 + x) = cells(6, 1), if x = 2 *cell 5C* is assigned value of *cell 6A*

d Make sure when you run the VB sub program, you run VB under the appropriate worksheet.

Combining the "looping" capability of VB and its excellent compatibility with MSExcel, the Fratar Method could be easily solved.

Some Useful Commands in MSExcel

Two very useful commands in MSExcel is the command "vlookup()" and "hlookup()".

Vlookup () Searches for a value in the leftmost column of a table, and then returns a value in the same row from a column you specify in the table.

Vlookup(value to be searched, table to be searched, column to be searched)

Hlookup () Searches for a value in the top row of a table or an array of values, and then returns a value in the same column from a row you specify in the table or array.

Hlookup(value to be searched, table to be searched, row to be searched)

Using the "vlookup()" or the "hlookup()" function, elements of an OD table can be easily extracted for calculation. This is particularly useful in solving the Fratar Model problem.

Solving the Fratar Model using VB and MSExcel

The approach used in this case to solve the Fratar Model is to calculate the v(i,j) using MSExcel and to use VB to "loop" the calculations.

Step 1: Set-up the calculation for v(i,j) using MSExcel

-								
	A	В	С	D	E	F	G	Н
1								
2	GF	1	2	3	4	5	6	7
3	Gen	1.85	1.73	2.10	1.76	1.22	1.76	1.59
4	Att	1.84	1.59	2.10	1.63	1.32	1.89	1.75
5	G	520,404	1,372,699	3,582,742	6,587,720	905,390	3,941,684	909,867
6	A	51,533	4,340,285	815,660	7,089,738	415,915	489,828	477,104
7								
8	Oport	30		Use hloo	kup() or	vlookup()) based on	
9	Dnort	30		Onartan	Deart			
10	G	540,903		Oport and	1 Dport			
1	t(i,j)	326,322						
12	GF(i)	12						
13	GF(j)	1.2						
4	t(i,x)	129	-	8,007	3	-	-	39,305
12	t(I,x)*GF(x)	238	-	10.001				68,943
16	sum	733,622		Calculate	using Fra	tar Model		
I ₹	v(I,j)	227,000						
18								
19								
20		1	2	3	4	5	6	7
21	1	44,820	524,147	-	340,990	-	-	-
22	2	14,694	67 <mark>2 902</mark>	33.649	490.826	L	92,480	-
23	3	-	1,74	Forecast	Results	-	10,194	-
24	4	-	1,72			20,784	61,259	8,315
25	5	-	21,788	-	132,792	238,492	3,208	23,239
26	6	-	22,473	97,321	468,473	3,588	222	10,026
					-			

NOTE: The current OD Matrix is in a separate worksheet.

Step 2: Make VB sub-program to "loop" the calculation using the "For/Next" routine and to record the results in MSExcel.

For oport = 1 To 30	'loop oport	
For dport = 1 To 30	'loop dport	
Cells(8, 2) = oport Cells(9, 2) = dport	ʻinput oport ʻinput dport	
Cells(20 + oport, 1 +	dport) = Cells(17, 2)	'record results

Next

Next

Step 3: Provide the appropriate inputs and run the program.

STRAMINDO TECHNOLOGY TRANSFER PROGRAM

Session 2 (supplemental)

STRAMNDO Conference room, BBD Plaza, Jakarta $28 \sim 31$ October 2003

Lecture Notes

It is often instructive for the analyst to graphically see the "desire lines". Desire lines are a graphical representation of the OD Matrix. Zones are plotted on a map and the demand between two zones is represented by a line between the two zone centroids. The extent of the volume of the demand is shown in the thickness of the line.

JICA-STRADA can make such a map. The following exercise will illustrate the basic procedure. Make the desire Line for dry cargo in Indonesia using a regional zoning system.

	1	2	3	4	5	6	7
1	8,677	17,148	339	48	24	6	17
2	4,641	3,693	3,506	1,863	433	202	465
3	969	11,449	6,979	2,778	330	30	123
4	117	2,156	1,102	736	138	224	221
5	51	107	4	20	70	30	13
6	52	184	29	619	13	233	63
7	47	92	4	18	13	40	326

7 - Papua

1 – Sumatra

4 – Sulawesi

2 – Jawa & Bali 3 – Kalimantan 5 – NTT & NTB

6 – Maluku

STEP 1: Input the OD matrix using OD Matrix Manipulator

Make new OD Table [File>New] Specify number of zones Enter OD data Save file and Exit

STEP 2: Develop zone map using Point Reader

Open Bitmap file of Map of Indonesia Establish distance scale Input zone centroid location Job Menu>Get Zone Specify zone coordinate file Specify number of zones Locate zone location Trace map borders End Job

STEP: Develop OD Lines Using Desire Line Viewer

Open zone coordinates Open OD Matrix Specify OD Display parameters

STRAMINDO TECHNOLOGY TRANSFER PROGRAM

Session 3

STRAMNDO Conference room, BBD Plaza, Jakarta 28 ~ 31 October 2003

Lecture Notes

1. Types of Network Used in Maritime Transport Planning

There are three main types of network used in maritime transport planning. The choice of network significantly affects the fleet composition.

Type 1: Port-To-Port

Type 2: Multi-Port Liner Network

Type 3: Hub-Spoke Liner Network

2. Fleet Estimation Based on Port-to-Port Network

The port-to-port network is the easiest network to estimate the fleet requirements. The following is the fundamental procedure when estimating fleet requirements. Because vessels under the port-to-port network voyage back and forth between two ports, it is suffice to analyze separately each OD pair. The fleet requirement is the summation of vessel requirement for all OD pairs.

The following is the computation needed to solve for the vessel requirement to serve the demand between the two zones.

Assumption regarding vessel specifications:

Cap = vessel capacity (MT) Sp = vessel speed (naut. mile/hr) Ch = Cargo handling speed (MT/hr) Wt = waiting time at port (hr) Com = commissionable days Study on the Development of Domestic Sea Transportation and Maritime Industry in the Republic of Indonesia (STRAMINDO) - Technical Report 1 -

$$rVcap = \frac{\max(v_1, v_2)}{cap}$$

$$aveL1 = \frac{v_1}{rVcap}, aveL2 = \frac{v_2}{rVcap}$$

$$timeV = \frac{2 \times (aveL1 + aveL2)}{Ch} + \frac{2d}{sp} + 2Wt$$

$$Vm = \frac{com}{timeV}$$

$$Vreq = \frac{rVcap}{Vm}$$

note: User has to make sure that units of variables are consistent by applying appropriate conversion factors.

$$rVcap$$
 = required voyages to serve the demand
 $aveL1$ = ave. cargo loaded and unloaded per voyage
 $timeV$ = required time needed to complete one voyage
 Vm = number of voyages a vessel can make in 1 year
 $Vreq$ = required number of vessels

In transport system planning, it is necessary to calculate transport cost. Typically for maritime transport planning, transport cost is decomposed into four types:

- Fixed Cost (Rp/yr)
 - Capital cost depreciation and interest
 - Fixed operation cost crew, administration, food, lubrication, insurance, etc.
- Distance related cost (Rp/mile) fuel cost
- Cargo related cost (Rp/MT) cargo handling cost
- Call related cost (Rp/call) berthage, anchorage, pilotage, etc.

Based on the operational variables calculated, the transport cost is calculated as follows:

$$Fixed = price \times Vreq$$

$$Dist = price \times (2 \times rVcap \times d)$$

$$Cago = price \times 2 \times (v1 + v2)$$

$$Call = price \times 2 \times rVcap$$

$$Total Cost = Fixed + Dist + Cago + Call$$

Depending on the nature analysis, the analyst may either (1) assume a particular vessel type or (2) provide a set of vessel types for which the optimal vessel type may be chose.

In the former case, the calculation is very straightforward, while in the latter case it is necessary

for the analyst to define the definition of what is the optimal vessel.

Typical case is that the optimal vessel is the vessel the will have the least transport cost. To determine the optimal vessel, the analyst has to calculate the transport cost of each *representative* vessel type and select the vessel that will lead to the lowest transport cost.

There are many factors that will affect the selection of the least cost vessel, including distance, volume, etc.

Selection of Optimal Tanker Size based on Demand and Distance

/1 Draft conditions are not considered

Selection of Optimal Bulk Vessel Size and Type based on Demand and Distance

Other factors that need to be considered are port depth, suitability of vessel type to cargo, minimum frequency of service, and other special concerns.

It is important to check the correspondence of the estimated fleet based on the current demand and the actual fleet in operation. If there is deviation between the two, the estimated fleet must be adjusted to conform to the actual fleet in recognition of the factors that prevent the realization of the theoretical optimal fleet. Examples of factors are imperfect information, weather, contractual issues, over competition, etc. For example in STRAMINDO, the simulated fleet has to be adjusted to account for such factors.

	Container	Conventional	Bulker ^{/1}	Dry cargo fleet
Actual ^{/3}	733,327	2,439,600	1,304,049	4,476,976
Simulated	488,706	1,919,365	842,587	3,250,658
Act/Sim	1.50	1.27	1.55	1.38

Comparison of Simulated and Actual Fleet DWT per Vessel Type in STRAMINDO

/1 includes bulkers and barges

/2 Year 2002

/3 estimated figures

3. Data Requirements for Fleet Estimation

The most critical aspect for fleet estimation is the quality of input data. The following are the input data used in the STRAMINDO. The summary is as follows.

INPUT DATA	SOURCE			
Cost parameters (Cargo)	Company survey and interview			
Cargo handling productivity	PELINDO port report and other port data			
Vessel Specifications (Cargo)	On-board survey and typical ship designs			
Passenger Vessel Specifications	PELNI financial data and company interviews			
Port Depth	DGSC Port Inventory			
Port Waiting and Approach Time	PELINDO port report			

Cost Parameters of Selected Representative Vessels

Туре	DWT	Capital Cost (mill. Rp/yr)	Fixed Oper. Cost (mill. Rp/yr)	Dist. Cost (mill. Rp/mile)	Cargo cost (mill. Rp)	Call cost (mill. Rp/call)
Container	5,000	9,600	3,300	0.04	0.12/TEU	0.98
Container	10,000	10,800	3,700	0.06	0.12/TEU	1.56
Conventional	3,000	6,000	3,000	0.04	0.002/MT	0.71
Conventional	10,000	9,600	4,400	0.07	0.002/MT	1.38
Bulker	10,000	7,200	3,600	0.04	0.002/MT	1.56
Bulker	20,000	13,200	12,000	0.12	0.002/MT	4.53

Vessel Type	Cargo handling productivity				
Container	10 TEU/hr/gang				
Conventional	20 MT/hr/gang				
Bulker	For clean cargo (e.g. cement) o 50 MT/hr/gang For dirty cargo ^{/1} (e.g. coal) o 30,000 DWT – 1,000 MT/hr o 10,000 DWT – 500 MT/hr o 5,000 DWT – 300 MT/hr				

Cargo Handling Productivity

/1 figures taken from coal handling performance at Suralaya Coal Terminal

	-		_			
Туре	DWT	Draft (m)	Speed (knot)	Commissionable days		
Container 1	15,000	8.5	12.0	346		
Container 2	10,000	7.4	11.0	346		
Container 3	5,000	6.0	10.0	346		
Conventional 1	10,000	8.4	11.0	338		
Conventional 1	5,000	6.0	10.0	338		
Conventional 1	3,000	4.5	9.0	338		
Conventional 1	1,500	3.0	9.0	338		
Bulker 1	30,000	8.5	12.0	350		
Bulker 2	11,000	7.8	11.0	350		
Bulker 3	6,000	6.7	10.0	350		

Vessel Specifications of Representative Vessels (Cargo)

/1 20,000 DWT containers and 30,000 DWT containers are also considered

Туре	Cap (Pax)	Req'd Draft (m)	Speed (knot)	Com days	Call time (hr)	Capital cost/yr	Fixed oper cost/yr	cost/n mile	cost/ pax	cost/ call
1	2000	5.90	20	350	3.0	9,400	22,200	0.114	0.030	2.74
2	1000	4.20	14	350	3.0	5,300	12,280	0.046	0.024	0.93
3	500	2.90	14	350	3.0	4,500	7,000	0.031	0.021	0.50
4	315	2.34	12	350	1.0	3,955	6,490	0.026	0.020	0.41
5	210	2.01	14	350	1.0	3,753	6,030	0.024	0.020	0.37
6	150	-	12	350	1.0	3,642	5,782	0.023	0.019	0.34

Vessel Specifications of Representative Vessels (Passenger)

Cost in million Rp
	Port Name	Container	Conventional	Bulker	-	Port Name	Container	Conventional	Bulker
1	Malahayati	4.5	4.5	10.0	51	Meneg / Tanjung W	12.5	12.5	12.5
2	Lhokseumawe	8.5	8.5	10.0	52	Pasuruan	1.8	1.8	1.8
3	Sabang	9.5	9.5	8.0	53	Panarukan	1.0	1.0	1.0
4	Meulaboh	6.5	6.5	6.5	54	Kalianget	10.0	10.0	12.0
5	Kuala Langsa	5.0	5.0	5.0	55	Benoa	8.0	8.0	8.0
6	Belawan	8.0	8.0	8.0	56	Padangbai	5.0	5.0	5.0
7	Pangkalan Susu	5.5	5.5	5.5	57	Celukan Bawang	13.5	13.5	13.5
8	Tanjung Balai As	3.0	3.0	3.0	58	Lembar	6.5	6.5	6.5
9	Kuala Tanjung	10.5	10.5	10.5	59	Bima	8.0	8.0	8.0
10	Sibolga	7.5	7.5	7.5	60	Badas	17.0	17.0	17.0
11	Gunung Sitoli	10.0	10.0	10.0	61	Kupang / Tenau	8.0	8.0	8.0
12	Dumai	10.0	10.0	10.0	62	Waingapu	10.0	10.0	10.0
13	Tanjung Pinang	3.5	3.5	3.5	63	Ende	6.0	6.0	6.0
14	Pekanbaru	5.0	5.0	5.0	64	Maumere	8.0	8.0	8.0
15	Tanjung Balai Ka	5.0	5.0	5.0	65	Kalabahi	5.0	5.0	5.0
16	Kuala Enok	8.0	8.0	8.0	66	Pontianak	7.0	7.0	7.0
17	Bagan Siapi-api	4.0	4.0	4.0	67	Teluk Air	7.0	7.0	7.0
18	Bengkalis	7.5	7.5	7.5	68	Sintete	9.5	9.5	9.5
19	Selat Panjang	10.0	10.0	10.0	69	Ketapang	2.0	2.0	2.0
20	Tembilahan	4.2	4.2	4.2	70	Sampit	5.5	5.5	5.5
21	Rengat	3.0	3.0	3.0	71	Kuala Pembuang	5.0	5.0	5.0
22	Sungai Pakning	10.0	10.0	10.0	72	Samuda	7.5	7.5	7.5
23	Kijang	7.0	7.0	7.0	73	Pulang Pisau	4.5	4.5	4.5
24	Batam	15.0	15.0	15.0	74	Pangkalan Bun	2.0	2.0	2.0
25	Teluk Bayur	10.0	10.0	10.0	75	Sukamara	6.0	6.0	6.0
26	Kuala Tangkal	5.0	5.0	5.0	76	Kumai	2.0	2.0	2.0
27	Talang Dukuh / Ja	5.0	5.0	5.0	77	Pengatan Mendawa	4.0	4.0	4.0
28	Muara Sabak	5.0	5.0	5.0	78	Banjarmasin	5.0	5.0	5.0
29	Pulau Baai	10.0	10.0	10.0	79	Kotabaru	6.0	6.0	15.0
30	Palembang	6.5	6.5	7.5	80	Balikpapan	12.0	12.0	12.0
31	Pangkal Balam	4.0	4.0	4.0	81	Samarinda	6.6	6.6	6.6
32	Tanjung Pandang	3.0	3.0	3.0	82	Tarakan	8.0	8.0	8.0
33	Muntok	2.0	2.0	2.0	83	Nunukan	6.0	6.0	6.0
34	Panjang	12.0	12.0	12.0	84	Bitung	8.0	8.0	8.0
35	Bakauheuni	6.5	6.5	6.5	85	Manado	3.5	3.5	3.5
36	Tanjung Priok	14.0	10.5	10.5	86	Gorontalo	10.0	10.0	10.0
37	Sunda Kelapa	2.0	2.0	2.0	87	Pantoloan	9.0	9.0	9.0
38	Marunda	5.0	5.0	5.0	88	Toli-toli	8.2	8.2	8.2
39	Kepulauan Seribu	5.0	5.0	5.0	89	Ujung Pandang	11.0	11.0	11.0
40	Kalibaru	5.0	5.0	5.0	90	Pare-pare	9.8	9.8	9.8
41	Muara Karang / M	5.0	5.0	5.0	91	Kendari	5.0	5.0	5.0
42	Muara Baru	9.0	9.0	9.0	92	Ambon	10.0	10.0	10.0
43	Cirebon	7.0	7.0	7.0	93	Bandaneire	7.0	7.0	7.0
44	Banten	14.0	14.0	14.0	94	Ternate	9.0	9.0	9.0
45	Semarang	9.0	9.0	9.0	95	Sorong	11.0	11.0	11.0
46	Cilacap	8.3	8.3	7.5	96	Jayapura	11.0	11.0	11.0
47	Tegal	1.8	1.8	1.8	97	Biak	12.0	12.0	12.0
48	Surabaya	10.5	8.3	8.3	98	Merauke	4.0	4.0	4.0
49	Gresik	3.6	3.6	13.0	99	Manokwari	9.0	9.0	9.0
50	Probolinaao	2.5	2.5	2.5	100	Fak-fak	6.0	6.0	6.0
/1 i	n meters	2.0	2.0				0.0	0.0	0.0

Port Depth Conditions

/2 in LWS

/3 non-commercial ports are aggregated per province and are represented by an imaginary port. It is assumed that all representative imaginary ports have port depth of 3.5 meters

F	Port Name	Container	Conventional	Bulker		Port Name	Container	Conventional	Bulker
1 1	Malahavati	5.0	5.0	5.0	51	Meneg / Taniung W	5.0	12 7	5.0
21	hokseumawe	5.0	10.0	5.0	52	Pasuruan	5.0	5.0	5.0
3 5	Sabang	5.0	5.0	5.0	53	Panarukan	5.0	5.0	5.0
4 N	Meulaboh	5.0	5.0	5.0	54	Kalianget	5.0	5.0	5.0
5 1	Kuala Langsa	5.0	5.0	5.0	55	Benoa	10.0	15.0	5.0
6 E	Belawan	48.0	72.0	24.0	56	Padangbai	5.0	5.0	5.0
7 F	Pangkalan Susu	5.0	5.0	5.0	57	Celukan Bawang	5.0	5.0	5.0
8 1	Taniung Balai Asi	5.0	5.0	5.0	58	Lembar	5.0	22.1	5.0
9 1	Kuala Taniung	5.0	25.7	5.0	59	Bima	5.0	5.0	5.0
10 5	Sibolga	5.0	32.2	5.0	60	Badas	5.0	5.0	5.0
11 (Gununa Sitoli	5.0	5.0	5.0	61	Kupang / Tenau	40.0	48.0	24.0
12 [Dumai	36.0	48.0	36.0	62	Waingapu	5.0	5.0	5.0
13 1	Tanjung Pinang	24.0	48.0	5.0	63	Ende	5.0	5.0	5.0
14 F	Pekanbaru	12.0	24.0	5.0	64	Maumere	5.0	5.0	5.0
15 1	Taniung Balai Kai	5.0	5.0	5.0	65	Kalabahi	5.0	5.0	5.0
16 H	Kuala Enok	5.0	5.0	5.0	66	Pontianak	24.0	48.0	5.0
17 E	Bagan Siapi-api	5.0	5.0	5.0	67	Teluk Air	5.0	13.8	5.0
18 E	Bengkalis	5.0	5.0	5.0	68	Sintete	5.0	5.0	5.0
19 5	Selat Paniang	5.0	5.0	5.0	69	Ketapang	5.0	5.0	5.0
20 1	Tembilahan	5.0	5.0	5.0	70	Sampit	5.0	9.6	5.0
21 F	Rengat	5.0	5.0	5.0	71	Kuala Pembuang	5.0	5.0	5.0
22 5	Sungai Pakning	5.0	5.0	5.0	72	Samuda	5.0	5.0	5.0
23 H	Kiiang	5.0	5.0	5.0	73	Pulang Pisau	5.0	5.0	5.0
24 E	Batam	12.0	24.0	12.0	74	Pangkalan Bun	5.0	5.0	5.0
25 1	Teluk Bayur	15.0	25.0	10.0	75	Sukamara	5.0	5.0	5.0
26 H	Kuala Tangkal	5.0	5.0	5.0	76	Kumai	5.0	46.0	5.0
27 1	Talang Dukuh / Ja	5.0	52.9	5.0	77	Pengatan Mendawa	5.0		5.0
28 M	Muara Sabak	5.0	5.0	5.0	78	Banjarmasin	48.0	72.0	30.0
29 F	Pulau Baai	5.0	5.0	5.0	79	Kotabaru	5.0	58.9	5.0
30 F	Palembang	48.0	72.0	48.0	80	Balikpapan	48.0	72.0	5.0
31 F	Pangkal Balam	5.0	77.8	5.0	81	Samarinda	24.0	48.0	20.0
32 1	Tanjung Pandand	5.0	50.2	5.0	82	Tarakan	5.0	5.0	5.0
33 N	Muntok	5.0	5.0	5.0	83	Nunukan	5.0	5.0	5.0
34 F	Panjang	3.0	4.0	4.0	84	Bitung	40.0	60.0	24.0
35 E	Bakauheuni	5.0	5.0	5.0	85	Manado	5.0	5.0	5.0
36 1	Tanjung Priok	24.0	30.0	12.0	86	Gorontalo	5.0	5.0	5.0
37 5	Sunda Kelapa	5.0	5.0	5.0	87	Pantoloan	5.0	5.0	5.0
38 N	Marunda	5.0	5.0	5.0	88	Toli-toli	5.0	5.0	5.0
39 H	Kepulauan Seribu	5.0	5.0	5.0	89	Ujung Pandang	3.0	5.0	4.0
40 k	Kalibaru	5.0	5.0	5.0	90	Pare-pare	5.0	5.0	5.0
41 N	Muara Karang / M	5.0	5.0	5.0	91	Kendari	5.0	5.0	5.0
42 M	Muara Baru	5.0	5.0	5.0	92	Ambon	5.0	10.0	5.0
43 (Cirebon	5.0	41.4	5.0	93	Bandaneire	5.0	5.0	5.0
44 E	Banten	24.0	30.0	12.0	94	Ternate	5.0	5.0	5.0
45 8	Semarang	5.0	10.0	5.0	95	Sorong	48.0	70.0	5.0
46 0	Cilacap	5.0	5.0	5.0	96	Jayapura	48.0	72.0	24.0
47 1	Tegal	5.0	5.0	5.0	97	Biak	35.0	60.0	5.0
48 5	Surabaya	24.0	40.0	20.0	98	Merauke	5.0	5.0	5.0
49 (Gresik	5.0	5.0	5.0	99	Manokwari	5.0	5.0	5.0
50 F	Probolinggo	5.0	14.0	5.0	100	Fak-fak	5.0	5.0	5.0

Waiting Time and Approach Time Conditions

/1 waiting time includes waiting time for berth and waiting time for cargo

/2 non-commercial ports are aggregated per province and are represented by an imaginary port. It is assumed that all representative imaginary ports have port waiting time of 5 hrs

/3 units in hours

4. Fleet Estimation Exercise

Based on the following OD demand, estimate the fleet requirement based on a port-to-port network using only one container type (10,000 DWT). Neglect the effect of port depth and assume that waiting time at all ports is the following:

Case 1: 12 hours Case 2: 6 hours

	1	2	3	4	5	6	7	8	9	10	11	12	13	4 1	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	TOTAL
1	20,627	258,014		164,643					849				583 -	5	550 -				51,528	10,252						4,258				520,404
2	6,876	336,792	13,891	240,963	223	45,523			4	416,233	23,302		3,090 -	264	263 -	108						2,122	3,369			15,940				1,372,699
3		696,652	21,910	319,561		3,997		9,302	34,487	949,500			1,518,399 -		21 -			12,928	6,079					2,667				3,333	3,906	3,582,742
4		893,209	81	4,318,489	15,210	31,106	4,684		71,224	1,108,371	198	10,781	2,996 -	37	195 -	41,135	7,115	49	11,884			2,955		26,347	2,477		1,804	408		6,587,720
5		14,530		86,866	225,444	2,104	16,909	33,243		376,703	15,725	72	68,817 -	14	582 -	17,052	1,542	18,527	13,274											905,390
6		10,369	37,037	212,016	2,347	101	5,047	122	12,256	8,334	25,552	727,378	2,896,684	1	233 -	467	5	894	20			141		46	1,634					3,941,684
7		14,908		42,528	96	2,648	14,132		2,725	708,267	1,541		89,790 -	19	707 -	351													13,174	909,867
8			843		8,065	7,088		299		14,433					- 098	-														31,118
9		37,805	10,127	201,469	0	96,306	71,513			416,874		7,251,800	19,199 -	146			84	145,566	9,993											8,406,785
10	18,173	608,151	479,835	866,114	18,767	211,526	261,698	2,017	217,113	217,105	9,740	32,193	956,697 -	96	396 4,4	683,074	1,702	475,643	362,785	68,703		17,177	327,427		1,171	7,440	7,400		229,130	6,182,175
11		1,130		278	1,017	6,781			575	20,329	764		301 -		. 112	55	886	1,358	20						2,206	5,933				44,644
12		9,627			286	25,818		1,662	54,149	297,042		60,888	362,047	61	. 386		2,151	167,083	162			988	3,818							1,046,807
13		623,059	82,107	6,647	5,077		340		77,705	151,800	303,476		333,214 -	2	730 -	1,853	30,564	301,535	3,500				1,397				1,989	1,735	83,301	2,012,029
14			-		-											-						-				-	-	-		
15		453,858	138,110	245,392	3,885	41,488	63,313	37,120	77,878	154,840	464	42,595	24,639 -	378	337 166,1	7 8,683	61,713	668,114	734,865	392,101	5,556	50,362	946,824	14,638	138,231	261,621	144,976	46,112	152,658	5,454,989
16														11	345	- 14				33,950					45	16,708				62,692
17		204,132	-	138	1,507	-	163		1,806	297,645	145		12,943 -	98	120	1,400	15,192	84	264			204	1,096		194	655	265	15		635,983
18		23,381	3,587		67,729	7,918			5,308	36,709	32,638	5,894	89,900 -	409	327 15,7	3 2,157	15,440	64,784	5,246	720	31	2,592	467	4,835						795,046
19		108,314	18,659	86,897	1,028	1,160			4,113	717,752	79,605	2,674,109	434,177 -	945	765 355,8	2,291	21,954	3,438,200	186,270	17,092	16,654	256,778	451,750	226,356	142,145	2,001	6,838	16,079	66,169	10,278,049
20	5,729	36,895		169,463	44,662	6,263			169,660	719,822		39,415	967,990 -	3,172	278 342,4	102,653	105,009	793,271	2,225,240	20,822	36,418	4,172	1,624,038	114,202	185,259			6,762	56,572	10,949,090
21										90,187				131	- 267		12	13,841		35,302	3,146	-			713		29,148	27,372	5,477	336,466
22			-		-									1	- 792	-	1		476	24		-	6,454			-	-	1		8,749
23										3,084	19,503		70,596 -	6	364 12,0	1 -	36	428	427,977	3,654		7,740	10,031							561,924
24		9,458	1,467	91,971	-	-			9,374	478,015			53,081 -	1,251	706 14,8	12 -	19	348,730	246,789	391,788	10,480	203,020	1,917	62,047	44,277	86,574	126,993	40,384	178,695	3,651,635
25				4,949						44			7,295 -	16	194 -		369	63,327					412		944	5,039	446		36,546	135,566
26									51,183	359				23	449 39,7	7 -				89		-		402	7,173	19,677	29,229		12,975	184,252
27										532				42	275 4	19 -		3,973				19,834	170		4,572	38,490	521			110,778
28				3,588						113,745			28,178 -	21	342 -	-		24,774		49,901			39,765	481,048	7,851	4,802	194,703	24,861	8,292	1,002,850
29				27,763	20,571					13,715		181	625 -	6	- 230	-	11	4,394		45,237	2,564		368			12	12,596	457	55,012	189,738
30	129		8,007	3			39,305			29,610	9,745	461	3,698 -	48	269 -		66	1,560	2,390	600	125		13,324	4,408	13,018		30,606	9,259	326,322	540,903
TOTAL	51,533	4,340,285	815,660	7,089,738	415,915	489,828	477,104	83,765	790,408	7,341,052	522,398	10,845,767	7,944,940	7,223	071 951,8	861,279	263,873	6,549,064	4,288,763	1,070,236	74,974	568,085	3,432,628	936,997	551,909	469,151	587,515	176,779	1,228,229	70,442,775

Use VB and MSExcel to calculate efficiently. Moreover, use 10MT/TEU average loading factor of containers.

Estimate the improvement in fleet requirements due to improvement in port conditions.

STRAMINDO TECHNOLOGY TRANSFER PROGRAM

Session 4

STRAMNDO Conference room, BBD Plaza, Jakarta 28 ~ 31 October 2003

Lecture Notes

1. Fleet Estimation Based on a Multi-Port Liner Network

The multi-port liner network is typically used in passenger shipping, wherein the vessels calls at several ports. Because the same vessel is used to traverse along a route, the nature of the demand served is different from a port-to-port network demand. The following illustrates the difference.

In the case of port-to-port network, the demand between one OD pair is handled by one vessel and the demand for another OD pair is handled by another vessel. Thus the planner can assign a different type of vessel for OD pair. In the case of multi-port liner network, the same vessel serving one OD pair will have to serve another adjunct OD pair. Thus the formula for calculating vessel requirement will have to be adjusted as follows.

$$\begin{split} rVcap &= \frac{\max[\max(v_1, v_2)_i, \max(v_1, v_2)_2, \Lambda, \max(v_1, v_2)_i, \Lambda]}{cap} \quad i \text{ refers to voyage leg} \\ aveL_i &= \frac{(v_1 + v_2)_i}{rVcap} \\ timeV &= \frac{2 \times \left(\sum aveL_i\right)}{Ch} + \frac{2\sum d_i}{sp} + 2\sum_{\forall call \ port} Wt \\ Vm &= \frac{com}{timeV} \\ Vreq &= \frac{rVcap}{Vm} \end{split}$$

Transport cost is calculated similarly as the port-to-port case. The fleet requirement is the summation of vessel requirement for all routes.

Thus, the computational procedure for multi-port liner network fleet estimation is the determination of demand at each leg of each route. This is done using network assignment.

Network assignment mimics the decision made by travelers in selecting routing system. The analyst must decide how the traveler decides through an assumption. Typical case is that the traveler will choose the route that will take the least time – or the so-called shortest path method. There are many widely used definition of what is the shortest path (cost, time, or any combination of attributes), but the simplest is the path with the shortest distance.

The following illustrates the scheme.

2. Introduction to Transit Assignment of JICA STRADA

To perform transit assignment, the following items needs to be prepared:

- OD Matrix transport demand
- Network connectivity between zone centroids and framework of transit routes
- Transit routes Form and nature of transit routes
- Assignment parameters cost parameters, identity of zone centroids, etc.

The following example is illustrated to guide the learner to be familiar of transit assignment:

OD	Table	
()))	гаріе	

0										
	1	2	3	4						
1	-	-	-	1000						
2	-	-	-	500						
3	-	-	-	-						
4	-	-	-	-						

STEP 1: Make OD Matrix using OD Matrix Manipulator

STEP 2: Make Network Using Point Reader

A transit line must be laid on a network link

A transit line should not start at a zone centroid, thus it is necessary to utilize a small link between the zone centroid and the starting node of a transit line.

Annex-55

STEP 3: Make Transit Lines Using Transit Line Editor

STEP 4: Set Network Assignment Parameters Using Parameter Editor TRN

STEP 5: Simulate Using Transit Assignment

STEP 6: Check Simulation Results Using Transit Reporter

3. Practical Usage of Transit Assignment Results

The results of the Transit Assignment is stored in text format in filename with extension of *.tre. For practical fleet assignment estimation the analyst should extract segment demand for the NSEGMENT REPORT. Check JICA STRADA Manual for the format of the output results.

Once segment demand is extracted, the analyst can then perform fleet estimation using the formulas developed in Section 1 of this document.