Appendix – 11

Results of Corn Penetration Test and

Vertical Electrical Sounding

. MAIN HEADING	A Geotechnical investigation was requested for, Tamovic Nigeria Limited was invited to carry it out. The investigation involved thirty dynamic Cone Penetration tests, otherwise referred to as the Sounding - test. The tests were carried out between 3 rd of December 2003 and 7 th of December 2003.	Transmission of load causes the soil on the soil and to a reasonable depth such transmission of load causes the soil to settle. This settlement must however be within a permissible limit so as not to cause any adverse effect to the structure.	and the international organization for standardization (ISO). The depths and results referred to in this report are below the natural ground surface in millimeter and to an average depth of 1.50 meter as requested.	コーン stre Location.	The investigation covers seventeen locations in the local government areas of Niger State. Two test points were conducted in each of the site. The site of investigation were 的 some of the existing primary schools under the Local Government Education Authority.	HRPOSE OF INVESTIGATION.	To determine the sub-soil conditions of the sites to suitable depths, which could have an influence on the proposal development. (ii) To evaluate through the field properties of the soil and the effects it could	have on the structural / geotechnical design. (iii) To identify and recommend the suitability of the soil being investigated from the result of the geotechnical data required for economic, safe and stable design	
.2	BASIC DESIGN STUDY ON THE PROJECT FOR CONSTRUCTION OF ADDITIONAL CLASSROOMS FOR PRIMARY SCHOOLS IN THE FEDERAL REPUBLIC OF NIGERIA		C. P. T. INVESTIGATION	II	NIGER STATE	CONDUCTED	BY		TAMOVIC NIGERIA LTD
	PROJECT -		CONTRACT -						

	/ driving a cone into the soil from ground	incommenced, by lengur by lengur, as the upment consists of a striker plate and a	90° apex angle cone with a base area of p height of 0.5m.	penetration of the probe is counted and tration depths. However in the analysis	l's properties. Istance (o) and approximate allowable			Bearing Capacity	142.9 KN/sqm @ 1.50m	97.2 KN/sqm @ 1.50m	77.4 KN/sqm @ 1.55m	119.6 KN/sqm @ 1.50m	105.6 KN/sqm @ 1.50m	86.3 KN/sqm @ 1.50m	206.5 KN/sqm @ 1.50m	66.6 KN/sqm @ 1.50m	182.7 KN/sqm @ 1.05m	94.3 KN/sqm @ 1.50m	85.6 KN/sqm @ 1.50m	111.9 KN/sqm @ 1.50m	
PENETRATION TESTS	The dynamic penetration test is carried out by driving a cone into the soil from ground level. The cone is fixed to hollow rods which are connected by levels.	cone penetrates into the soil. The driving equipment consists of a striker plate and a free drop hammer, which is lifted by hand.	The light dynamic probe is characterized by a 90° apex angle cone with a base area of 5cm and a hammer weight of 10kg, with a drop height of 0.5m.	The number of blows required for every 10cm penetration of the probe is counted and plotted as a function of the respective penetration depths. However in the analysis	table, 300mm interval is used to predict the soil's properties. The relative density, angle of shearing resistance (o) and approximate allowable	bearing capacity (.KN/m) were predicted.	RESULTS AND RECOMMENDATIONS		1. Barkin Sale Niger State	2. Sarkin-pawa	3. Rafin-Kuka	4. Ibrahim Tako - Bida LGA	5. Sangi Edati	6. Gbara – Mokwa LGA	7. Makafu Gbako Niger State	8. Etsu Nuhu - Agaie LGA	9. Karaya Nom Rafi	10. Bangi Central Area Mairiga Niger State	11. Rafin Karma - Kotangora	12. Salka Magama Niger State	
91								× .			•						-				
	1. <u>Bearing Capacity</u>	(KN) X X (W) H	$D_{(m)} = \begin{cases} 0 \\ D_{(m)} \times A_{(sqm)} \\ D_{(m)} \times A_{(sqm)} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		Where: Units	BC = Bearing Capacity (KN/sqm)	H = Height of Falling (m) W = Weight of Hammer (M)	= Depth of Penetration	= Base Area of Cone	N = No of Blows		1000 - 200 200		2. Relative Density & Angle of Shearing Resistance:		According to DIN 4094 (Deutshe Standard) and the international organisation		64			

Formulas

2

A12 - 2

	g Beccommende					8 = 0		3 - 5					6			4835	5505 							292					- 1.12		= 31						4
D	Allowable Approximate Bearing Capacity (KN/sqm)		66.6	126.5	173.2	123.2	3	146.5	193.1	239.8	193.1	83.3	142.9		000	103.2	6 66	69	63.3		143.2	133.2	6.69	6.66	97.2		10 061	76.6	66.6	73.5	. 97.5	· · · · · · · · · · · · · · · · · · ·	56.6	59.9	46.6	116.6	
IMITE	Angle of Shearing Resistance (o)		30-35	35-40	35-40	35-40		35-40	40-45	40-45	40-45	30-35	verage BC =		30-35	30-35	30-35	30-35	30-35	9E AD	04-00	30-35	30-35	30-35	verage BC =		35-40	30-35	30-35	30-35	35-40	30.35	30-35	30-35	30-35	35-40	-
RIA L	Relative Density		Medium	Dense	Dense	Dense Medium		Dense	Very Dense	Very Dense	Very Dense	Medium	@1500mm Average BC =		Medium	Medium	Medium	Medium	Medium	Danea	Danso	Medium	Medium	Medium	@1500mm Average BC =		Dense	Medium	Medium	Medium	Dense	Medium	Medium	Medium	Medium	Dense	
IGE	No. of blows (N)		20	38	52	3/ 25		44	58	72	82				30	T		21		43	T	27	Π	T			33		20			15				35	
TAMOVIC NIGERIA LIMITED	Depth of Penetration in (mm)		000 - 300	•	'	1201 - 1200	Εł	1	•	'	1007 - 100 1004 - 100	•			000 - 300	301 - 600	601 - 900		1201 - 1500	000 - 300	1.	1	1	1201 - 1500			000 - 300	301 - 600	601 - 900	901 - 1200	1201 - 1600	000 - 300	301 - 600		1	1201 - 1500	
TAI	Test Point			-					. 7	T	-	-						-		1	T	5		T		1				-		ľ		2	T	1	-
	Site Location	əte	ns -	Jəɓ	N '	∀อา	eu	niM	l ,9	leS	up	Bark	-	əte	is i	iəßi	IN '	Ά£) e	ƙing	Ν,	ewe	d-u	arkir	s	ete	stS	Jec	ΫN	,Aé	010	nonir	IS '	eyr		uye	2
	<u> </u>		<u> </u>	1	z	-	П	Т	T				t	• •	T			••••	*	э.	÷	1	_	- 7		1	8	-		1		22	•		T	Т	T

220.5 KN/sqm @ 1.15m 123.9 KN/sqm @ 1.50m 134.5 KN/sqm @ 1.15m

13. Rijau – Rafin Mota 14. Korokpa - Paikolo 15. Bakin Iku – Suleja LGA

1. N.

TAMOVIC NIGERIA LIMITED

4

١

d Recommende	Zm	/N)	1 01	81	= 31	a pa	pu	iəu	uw	009	Я	1	zw	/N)	Я	9>	= ;	98 6	oəp	uə	աւ	uoo	эЯ		081	= (5 9 B C		NX		uoo	ъЯ
Allowable Approximate Bearing Capacity (KN/sqm)	110.0	186.5	163.2	183.2	206.5	236.4	236.4	213.1	2 622	239.8	206.5		46.6	36.6	26.6	30.0	30.0	189.8	86.6	56.6	63.3	99.9	66.6		123.2	366.3		89.9	109.9	146.5	223.8	
Angle of Shearing Resistance (o)	35-40	40-45	35-40	40-45	40-45	40-45	40-45	40-45	>45	40-45	verage BC =		30-35	30-35	25-30	25-30	25-30	40-45	30-35	30-35	30-35	30-35	/erage BC =		35-40	>45		00-00	35-40	30-40	40-45	- UQ ODUA
Relative Density	Dense	Very Dense	Dense	Very Dense	Very Dense	Very Dense	Very Dense	Very Dense	Very Dense	Very Dense	@1500mm Average BC =		Medium	Medium	Loose	Loose	Loose	Very Dense	Medium	Medium	Medium	Medium	@1500mm Average BC =		Dense	Very Dense	Modium	IIIIII	Dense	Very Danca	Very Dense	@1050mm Austra BC -
No. of blows (N)	36	56		55	62	11	11	64	84	72				1		6		57				30			37 C	110 \	97 A	T	T	1 09	T	
Depth of Penetration in (mm)	000 - 300				1201 - 1500	000 - 300	301 - 600	601 - 900	901 - 1200	1201 - 1500		000 000	000 - 700		•		1201 - 1500	000 - 300				1201 - 1500				301 - 600	000 - 300	301 - 600			1201 - 1500	
Point			-		1		2	·		T	Π	T	T	+	-	•	T		2			Ť	Ħ	T		-			•	ł	H	·
Site Location	ətet	S 1	əGil	N '1	vອາ	оуе	eqe) 'n	ite>	IeM		ette	etS	er :	6IN	1 '1	/91	eis	6¥	'nı	IUV	i I nst	з	l det	!N '	AÐ.	sti L te	R ata		I N I	eve	Kai

	p Recommende	Zw	/N)	4 09)< =	вс	pə	pue	əw	шо:	Sec		Zm	/N)	4 0	01	= 38	a be	pu	əш	шо	Sec	ē Ì	Zm	/N)	N 01	8 =	21	a ba	pu	ouu	uo:	Sec	4
D	Allowable Approximate Bearing Capacity (KN/sqm)		33.3	33.3	50.0	59.9	109.9	163.2	243.1	239.8	236.4	119.6	110.0	20.01	89.9	138.6	129.9	79.9	76.6	129.9	109.9	93.2	105.6		59.9	59.9	83.3	109.9	119.9	143.2	73.3	40.0	46.6	126.5
IMITE	Angle of Shearing Resistance (o)	26.30	25-30	25-30	30-35	30-35	35-40	35-40	40-45	40-45	40-45	verage BC =	35-40	30-35	30-35	35-40	35-40	30-35	30-35	35-40	35-40	30-35	/erage BC =		30-35	30-35	30-35	35-40	35-40	35-40	30-35	30-35	30-35	35-40
RIA L	Relative Density	loce	Loose	Loose	Medium	Medium	Dense	Dense	Very Dense	Very Dense	very uense	@1500mm Average BC =	Dense	Medium	Medium	Dense	Dense	Medium	Medium	Dense	Dense	Medium	@1500mm Average BC =		Medium	Medium	Medium	Dense	Dense	Dense	Medium	Medium	Medium	01500mm Average RC =
IGE	No. of blows (N)	ď	10	10	15	0	33		73	74	=		36	Г				24		39			Π		18				36	Т				38
TAMOVIC NIGERIA LIMITED	Depth of Penetration in (mm)	000 - 300		601 - 900	901 - 1200		000 - 300		1	1201 - 1200	•		000 - 300	1.	601 - 900		1201 - 1500	000 - 300	1	1		1201 - 1500				•	'		1201 - 1500	000 - 300	301 - 600		1	0091 - 1071
TA	Test Point		:- -			T		2	•	Ì	T	T		T	-			-		2	1	T				+	-	+	1	j)		7	+	1
	Site Location	etate	əbil	N 'Y	้อา	BWX	łow	'0)	lns	Τm	iider	qı	ə	lete	6L 2	6IN	1 49	, це	PE	,ig	ueç	5		et I	eta	er S	611	1 'E	: Swyc	oM ,	818	i 99	1	

A12 - 4

1.1

	-	g Recommende	89.9 Sect	220.5
Δ		Allowable Approximate Bearing Capacity (KN/sqm)		22
IMITE		Angle of Shearing Resistance (o)	30-35	@1150mm Average BC =
RIA L		Relative Density	Medium	@1150mm
IGE		No. of blows (N)	27	
TAMOVIC NIGERIA LIMITED		Depth of Penetration in (mm)	1201 - 1500	
TAI		Point 1		
		Site	l nite	в

-	abnemmoceR B	zu	u/N)	4 0	6 =	36	g pa	pu	əu	ш	00	эЯ			2	ш/N	ĸ	09	< =	- D8	3 Pi	pu	iəu	iu	009	Ы	z	ш/	ки	00	L'= ;	BB	pəp	uə	աս	loo	ъя	c	001	= (m/N Deb		աա
۵	Allowable Approximate Bearing Capacity (KN/sqm)		96.6	56.6	66.6	83.3	109.9	130.0	53.2	0.00	10.04	8.8C	230.4	0.45		86.6	186.5	179.8	153.2	106.6	202	86.6	129.9	63.3	56.6	85.6		6'67L	0.00	06.60 06.6	109.9	158.5	76.6	116.6	139.9	166.5	111.9	150.8	763.1	575.0		243.1	0.061	106.6
LIMITED	Angle of Shearing Resistance (o)		30-35	30-35	30-35	30-35	35-40	35-40	30.35	30.35	30.35	00-00	Average BC -	- on affe and -		30-35	40-45	40-45	35-40	35-40	30.35	30-35	35-40	30-35	30-35	verage BC >	36 40	30.40	30-35	30-35	35-40	35-40	30-35	35-40	35-40	35-40	Average BC =	35-40	>45	>45		40-45	35-40	35.40
NIGERIA L	Relative Density		Medium	Medium	Medium	Medium	Dense	Dense	Medium	Medium	Medium	Vary Danea	@1500mm A			Medium	Dense	Dense	Dense	Dense	Madium	Medium	Dense	Medium	Medium	@1500mm Average BC >		Madium	Medium	Medium	Dense	Dense	Medium	Dense	Dense	Dense	@1500mm A	Dense	Very Dense	Very Dense		Very Dense	Very Dense	Danca
9 9	No. of blows (N)		29	17	20	25	33	42	16	10	4 8					26	Τ	Τ		32	17	T	T	19			00			29		47				50	1	48	1				39	
TAMOVIC N	Depth of Penetration in (mm)		000 - 300	301 - 600	-	901 - 1200	1201 - 1500	000 - 300		1.	901 - 1200	1			11	•	301 - 600	·		1201 - 1500	000 - 200				1201 - 1500		000 - 300		601 - 900	901 - 1200	1201 - 1500	000 - 300	301 - 600			1201 - 1500		000 - 300	301 - 600				601 - 900	
IA	Test Point				-		1	T	T	T	6		T	ľ		Ţ	-				T	3	Ī			T	1	Ī	•			T	T		2	-+		T	-		İ		2	4
	Site	Ber T	δiΝ ,	٩Ð	7 e		sM,I st2	lette	uə;	D it	Bue	, 89			jer	βiN	,A6	רפ	ora	əşe DÖu		4'e	m16	ĸ	uye	8	let	Bin	,A;		eme	eev detS		sutn	90	exil	es	Jet			חרכ	ieli <i>F</i> oteta	, e S	iot

A12 - 5

	abnemmende Recommende	8	Zm	/N	я о	8 =	= D8	pə	pu	ш	шс	Seco	i i	zw	N	1 01	zi =	вс	pə	pu	əu	шо	рэЯ
D	Allowable Approximate Bearing Capacity (KN/sqm)		93.2	279.7	216.51	73.3	63.3	53.3	199.8	76.6	79.9	103.2	123.9		83.3	66.6	330.0	109.9	53.3	83.3	143.2	206.5	124 5
	Angle of Shearing Resistance (o)		30-35	>45	40-45	30-35	30-35	30-35	40-45	30-35	30-35	35-40	verage BC =		30-35	30-35	40-45	35-40	30-35	30-35	35-40	40-45	/erage BC =
	Relative Density		Medium	Very Dense	Very Dense	Medium	Medium	Medium	Very Dense	Medium	Medium	Dense	@1500mm Average BC =		Medium	Medium	Very Dense	Dense ·	Medium	Medium	Dense	Very Dense	@1150mm Average BC =
	No. of blows (N)		28	84	65	22	19	16	60	23							99	33		25 1		62	
	Depth of Penetration in (mm)						1201 - 1500	000 - 300		-		1201 - 1500					601 - 800	000 - 300	301 - 600		.1	1201 - 1500	
	Test Point				-		T	t	Ì	2		T	Ħ			-				2		•••	-
	Site Location	ite .		er	6iN - :	' '¥	101	kolo	ie9	'e		Kord	-	etete	91 (61	1 'Ys	ле тт	(əlı	ns	'ny	II uix	! !8

A12 - 6

	MAIN HEADING	A geotechnical investigation was requested for, Tamovic Nigeria Limited was invited to carry it out. The investigation involved twenty eight dynamic Cone Penetration tests, otherwise referred to as the Sounding - test. The tests were carried out between 28 th of November 2003 and 01 st of December 2003. Civil engineering structures stand on the soil and to a reasonable depth such	transmission or load causes the soli to serie. This settlement must however be within a permissible limit so as not to cause any adverse effect to the structure. The investigation was conducted in accordance with DIN 4094 (Deutsche Standard) and the international organization for standardization (ISO). The depths and results referred to in this report are below the natural ground surface in millimeter and to an average depth of 1.50 meter as requested.	SITE LOCATION.	The investigation covers seventeen locations in the local government areas of Plateau State. Two test points were conducted in each of the site. The site of investigation were some of the existing primary schools under the Local Government Education Authority.	erm nen	 (ii) To evaluate through the field properties of the soil and the effects it could have on the structural/geotechnical design. (iii) To identify and recommend the suitability of the soil being investigated from the result of the geotechnical data required for economic, safe and stable design 	
		ECT - BASIĆ DESIGN STUDY ON THE PROJECT FOR CONSTRUCTION OF ADDITIONAL CLASSROOMS FOR PRIMARY SCHOOLS IN THE FEDERAL REPUBLIC OF NIGERIA	CONTRACT- C. P. T. INVESTIGATION	N	PLATEAU STATE	CONDUCTED	BY TAMOVIC NIGERIA LTD	
7		PROJECT -	A12 - 7					