3.7 Identified Problems and Solutions

3.7.1 Frequency

As described in the previous chapter, the Andhra Pradesh system operated in severe low frequency conditions in May 2002, but this cannot be solved only using APTRANSCO because the Southern India Grid including the system operates at the same frequency. Low frequency problems in the Southern India Grid were considered problems by the Central Electricity Regulatory Commission in March 2002. Since the ABT was enforced in January 2003, the frequency has been maintained by 49.0 Hz or more.

Sustained low frequency operation or wide frequency variation causes damage to the electrical equipment of power plants as well as that of consumers. In power plants, this kind of operation may damage not only auxiliary equipment such as motors and pumps, but also turbines and generators. Low frequency also decreases the security level of power system operation.

The quality of products of a number of process industries such as rolling mills is heavily dependent on the quality of supply. Poor quality power supply not only results in reduced life of equipment, but also in poor quality products. In case of irrigation pumps, the total operating hours of the pumps increases for pumping the same amount of water if the frequency of operation is low.

To advance the industry with advanced technology in the area, it is necessary to supply electricity with a stabilized frequency. For this, APTRANSCO/APCPDCL are required to establish an organization to supply a stable electricity supply by strengthening power generating facilities and promoting Demand Side Management (DSM) with the cooperation of customers.

3.7.2 Voltage

The voltage of the distribution system is decided by the voltage of the upper stream transmission system. The voltages of domestic and industry feeders remain within the specified level and no problem is observed at this moment. For agriculture feeder, it is considered that distance is comparatively long and load is fluctuated so a large voltage variation is occurred. APCPDCL is recommended to make efforts continuously to maintain the voltages and reduce the distribution losses with suitable distribution of the loads and the reactive power sources. (Also please refer to Chapter 5)

3.7.3 Number of Outages

Analysis results show that some feeders stopped 100 times or more in 2002/03 and proper countermeasures have to be taken.

Table 3.8 shows the major causes of outages and considerable countermeasures for reducing the number of outages which were obtained through the analysis of outage records and discussions with APCPDCL.

Causes	Description	Temporary measures	Permanent measures
Tree contact to the conductors		Reexamination of range and opportunity of trees cutting.	Adoption of insulated conductors for the span where there is a probability of tree contact to the conductor.
Bird contact to the charging parts			Adoption of insulated conductors
Loose conductors	Short circuit at the mid-span due to excess of sag.	(1)Adjustment of sag of a conductor. (2)Adoption of spacer.	 (1) Insert the pole at the mid-span for reducing sag. (2) Increase the phase clearance. (3) Adoption of insulated conductors.
Bad connection of joint parts	Poor contact of twist type jointing.		Adoption of compression type clamp.
Inferiority of insulators		Exchange with excellent one	
Contamination of insulators	Due to salt or dust of factories.	Cleaning of insulators.	Adoption of longer leakage path insulators.

Table 3.8 Major causes of outages and considerable countermeasures

An insulated conductor is considered an effective means for reducing the number of outages. They should be used in locations where contact between trees and conductors is unavoidable by cutting trees or contact of conductors at the mid span is not solved by adjustment of their sagging.

Troubles of joints of conductors/jumpers frequently occur, but they can be solved by the adoption of compression type clamps instead of the twist type joint used at the moment. The average number and duration of a customer per year in Japan where insulated conductor and compressed type clamp are used are 0.2 times and 25 minutes, respectively.

As pointed out in 3.6.3(4), Details of Unknown Causes and Equipment, approximately 51 % of outages are classified as OTH/OTH that is equipment and cause of outages is not identified. However, the number of outages cannot be reduced if their cause is not known. Therefore, APCPDCL should take actions such as making an accurate record of the outage and perform a patrol of distribution facilities as much as possible to identify the condition of equipment and cause of fault and make a preventive plan for recurrence of the same troubles. If the number of outages is reduced the duration of outages will also decrease as a result, the burden on the maintenance crew will also decrease, and therefore, it can be utilized for preventive maintenance and can result in improvement in the quality of maintenance.

3.7.4 Duration of Outages

Approximately 98 % of outages are restored within 120 minutes in the RBAN case (See 3.6.3(3)) and the cases in which duration of outages was prolonged are not particularly significant large. However, APCPDCL has to try hard in the future to reduce the duration of outages.

3.7.5 Overload

The monitoring of the overload of the transformers is carried out by the section office continuously and the same procedures are necessary to maintain carefully. (Refer to 5.7 Recommendations of Chapter 5)

3.7.6 Correspondence to DISTRIBUTION CODE

Since the DISTRIBUTION CODE will be enforced in 2004, APCPDCL must establish a system corresponding to it as soon as possible. Figure 3.25 shows the flow of required quality control work for it.

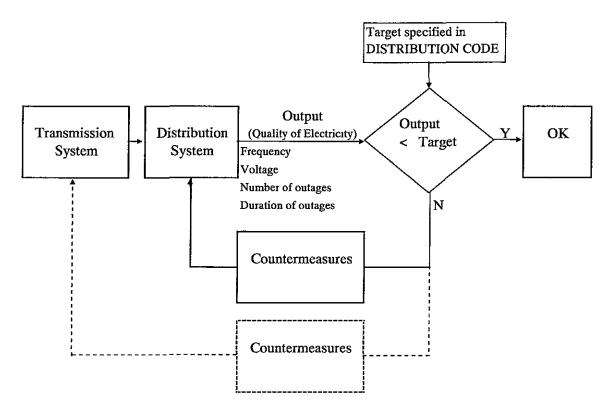


Figure 3.25 Quality control flow for DISTRIBUTION CODE

When output from the distribution system (frequency, voltage, number and duration of interruptions) is compared with the target (regulations of DISTRIBUTION CODE) and the former does not satisfy the latter, it is necessary to take action in pursuit of the cause.

For this reason, understanding the output of the distribution system and the setup of target are indispensable. Although the target of outages may not be specified in the DISTRIBUTION CODE for the time being such as the GRID CODE, APCPDCL should to setup an in-house target and try to supply better quality electricity to the consumers than at present.

The concrete step is;

- (a) Data collection and its analysis for understanding the output from the distribution system
- (b) Setup the target value, if any
- (c) Planning and execution of the countermeasures, if system output does not satisfy the specified level. (Target)

It is necessary to carry out systematic analysis of outage records especially.

(1) Category

Analysis of the outage records shows that the applied categories differ depending on the persons in charge. For example, the same outage is classified into the three categories, such as scheduled maintenance, emergency maintenance and others so it should be follow the common philosophy of the

office.

(2) Coding System for Remarks

Some times, the descriptions of remarks include very useful information for data analysis. Therefore, feeder name, equipment, cause of outage, pole no., etc which are included in description of remarks will be converted to a suitable codes and used as data of analysis.

(3) Format of Duration of Outages

APCPDCL uses the following format of "the hour" (xx h, xx m, xx s), for duration of outages, but this system is not suitable for more than 24 hours. The study team suggests applying "minutes" for analysis. GRID CODE also uses "minutes."

(4) Review of CODE LIST

CODE LIST attached in Annex 3.2 should be reviewed/revised as per the present situation.

(5) Application to other districts

Regarding the data analysis, the similar system is to be applied to other districts.

(6) Data Centers

For utilization of this system effectively, setup data centers in the corporate office and districts and these are linked with a communications channel, for example by Internet. It is necessary to train required personnel in parallel to the above.

In addition, out-sourcing should be considered if it takes some time for preparation of the required system and training of the personnel.

3.7.7 Others

(1) Operation and Maintenance Manual

An operation and maintenance manual in conformity with the DISTRIBUTION CODE that will be applied from 2004 should be arranged as soon as possible. The same will be distributed to all the offices concerning operation including substations and should be made so that the personnel in charge of the substation share common knowledge and a sense of thoroughness.

(2) Rearrangement of low voltage wiring

The present arrangement of a low voltage wiring, especially the branch part to customers, is very disorderly and management must be difficult. Rearrangement of the same wiring is suggested.

(3) Safety Measures to the Public

It is observed that a passer-by may often unconsciously touch the bare energized terminals/wires of a low -voltage distribution/switch box which its cover is kept opened and, in the rural area, some transformers are installed near the ground surface and charged parts are exposed without protective covers so that the general public may touch them easily.

Especially, in case the equipment is installed in or near a public road, it is recommended to take suitable measures urgently to prevent people approaching to the energized parts of the said equipment such as to install a fence surrounding the transformer or close the cover of the same box.

3.8 Recommendations

The study team found some problems through the study on the quality of electricity, frequency, voltage, number and duration of outages, in Range Reddy and Medak and presents suggestions to solve them.

Regarding the frequency, it is out of control for APCPDCL and no serious problems are observed for the voltage.

(1) Correspondence to the DISTRIBUTION CODE

Since the DISTRIBUTION CODE deliberated now by APERC is due to be enforced in 2004, it is necessary that to construct a system to collect and analyze the data efficiently and train the necessary personnel as soon as possible.

(2) Reduction of the Number of Outages

Analysis results show that some feeders stopped 100 times or more in 2002/03 and proper countermeasures have to be taken to reduce this number. It is recommended to use insulated conductors in locations where contact between trees and conductors cannot be preventing by cutting along or contact of conductors at the mid span that is not solved by adjustment of sagging.

Troubles of joints of conductors/jumpers occur frequently and they will be solved by an adoption of a compression type clamp instead of the twist type joint used at the moment.

In the RBAN system, approximately 51 % of outages are classified as OTH/OTH which is equipment and the cause of outages is not identified. However, the number of outages cannot be reduced if their cause remains unknown. Therefore, APCPDCL should take actions such as making an accurate record of outages and perform a patrol of distribution facilities as much as possible to identify the equipment and cause of faults and make a preventive plan for recurrence of the same problems.

(3) Operation and Maintenance Manual

An operation and maintenance manual that in conformity with the DISTRIBUTION CODE that will be applied from 2004 should be arranged as soon as possible. The same will be distributed to all offices concerning operation including substations and should be made even so that the personnel in charge of the substation attain common knowledge and a sense of thoroughness.

(4) Rearrangement of Low Voltage Wiring

The present arrangement of a low voltage wiring, especially the branch part to the customers, is very disorderly and management must be difficult. Rearrangement of the same wiring is suggested.

(5) Safety Measures for the Public

It is often observed that the low-voltage energized parts are exposed without protective covers so that the general public may touch them easily, therefore, it is recommended to take suitable measures urgently to prevent people from being injured.

Note:

One CD-R is separately attached for reference;

JICAO & M Data (Data used for preparation of the report)

Text (How to analyze the data)

Annextures

Annex 3.1	Form of Data Collection of Outage Records
Annex 3.2	Code List of Substations and Feeders
Annex 3.3	Frequency Records in May and November 2002 and 2003
Annex 3.4	Records of Voltage Measurement at the End-customers of
	Model Feeders
Annex 3.5	Summary of Outage Records Collected

Annex 3.1 Form of Data Collection of Outage Records

Interruption Records (due to Fault and Maintenance)

Γ		T-			1	_				- 1		- 1	-т	\neg	7	\neg	_т	1	1		1		_	_	7-	-			_		_	_	_	_	Τ-		
	Notes	(25)																												 							
	Remarks	(24)																1																			
-	Equip't	(23)		-		-							1	-			_[1	+	+	+	-		-				1	+	1	+	+	+		-
31.5	Tugger B	(22)	\vdash	-	-				-	-	+	+		+	+	-	+	-		-	1	+	1	-	+	-			1	+	+	+	+	+	_		-
Cation		<u> </u>	\vdash	-					+	1	+	1		+	1		1		-	+	-	+	+	-		-				-	1	1	+	1	-		+
Auto-recipel Location	native fro	(20)							1	1	-				-	1	-	+		+		-	1		 					-	1	-	-		-		
Auf	thers alter	(19) (20)					_	_	-		+	1	1	+	+	-	+	ļ	+	+	+		-						-	+		$\frac{1}{1}$	-				+
v onerated	<u>-</u>	(18)		<u> </u>					_		-				-				-				-} -									<u>-</u> -	<u> </u>		<u> </u>		
Rela	Maın B	(11)	 	 -			+		+	-	+		+		-					}-	-				 			-				-	-	- }			
Insupplied	nergy (kWh)	(16)																			T																
Duration of Unsupplied	Interruption energy (Min) (kWi	(12)				i					1	-	1							1																	
No of		(14)							+	1	1			1	1			1	\dagger	+	\uparrow	 								1	1	<u> </u>	+	 -	-		
-		(13)	\dagger			+			+	1	-		+	1		+	+		-	+	-	+					7	+	1	+	-	+	-	-		1	
	Д	(12)									+									1		-	İ							1							
-	—	<u>:</u>	_		-	_		_	1	1	1			1	1		1	-	\downarrow	+	_	1	-		 			-		4	-	_	-	-			
2		<u>g</u>	+		_	-	+	+	+	+	+	+	+	<u> </u>	-	+	+	-	_	-	+	+-	-	-	-		-	-	+	+		+	-			-	+
Catego		<u></u>				_				1			_			1	1	1	_			<u> </u>					\downarrow	1		1	_						
equipment	kV Name	89																						_										_			
Feeder		3																																		\downarrow	
Substation	Name	9																			1	_						1									
	*	ઉ																																			
system		(4)					\int			<u> </u>		1							_									_							\int		$\prod_{i=1}^{n}$
Sub		ଚ		_	-	4	4	+	1	1	-	-	1	1	1	1	1		1	-	-	-	_	_		1	_	\downarrow	\downarrow	\downarrow	1	-	1		4	1	- -
		8			_	\downarrow	1	1	1	1	1	-		-			1	1	1		-	_	-	_			_	\downarrow	\perp	\downarrow		<u> </u> _			\downarrow	1	
132kV	System	Ē					_											į																			

Annex 3.1 - 1

Low Voltage Interruption Records (due to Fault and Maintenance)

Remarks		(20)																														
Sc	Equip't	(19)																														
Cause	Tngger	(18)													-											_						
L		\blacksquare	Ħ							F		Ė		-			_									_		Ξ			\exists	\equiv
Location	from TR(km)	(17)																														ļ
n operate	Others from TR(kı	(16)											_																			
Protectio	Maın	(15)																														
Unsupplied Protection operated Location	energy (kWh)	(14)																														
No of Duration of		(13)																														
No of	Tnps	(12)																														
L	Time	(11)																													i	
	Q	(10)		Ì	Ì	Ì)						'						١									
	×	6)																														
	>	(8)																														٦
ment/Feeder	kV Name	(2)																														
		(9)																														
33 kV Substation 11 kV Feeder 11/0 4 kV Transformer	Name	(5)																														
11 kV Feeder	Name	(4)					-																									į
33 kV Substation	Маше	(3)																														
F	ė				╗			_			-					_				H	\exists	╡	\exists	\exists	\exists	\exists	\exists	7		\exists	\exists	\exists
kV	em No.	(2)																								_		_		-	\dashv	-
132kV	System	(1)																														╛

Same day

Same faults (One event)

How to fill in Outage Form

Important note to fill in the form;

 $\Xi \Im$

- For sorting, each outage should be filled in one(1) row.
- Same column should be filled in a same format. (Mixed use of digits and characters is not allowed)
- At least, same code system should be applied in a circle.

Note on each column

- Code name of 132/33 kV substation. District name R or M + Code name. Common for all the circles. Column No
- Serial no. Each outage is given specified number and no change will be allowed after fixed the number...
 - (3),(4) Blank
- Voltage class of substation (Digit)
- Code name of substation.
- Voltage class equipment/feeder troubled. (Digit)
- Code name of equipment/feeder troubled. (Refer to note)
 - Category of feeder

 - 20022, Year
- Day (Digit) (12)

Month (Digit)

- Time of an outage started. Time of 24 hour system (Digit): Minute (Digit) (13)
 - No. of trips in a event (Digit). One(1) is preferable. (14)
 - Duration of an outage (Digit) (15)
- Unsupplied energy during the outage, if available. (Digit) (16)
- (17),(18),(19) Protective device operated in code name. (Refer to note)
- Distance from substation (Digit) Recloser has operated. (Y or N)

 - Cause of outage (Refer to note)
- Equipment damaged or maintained. (Refer to note)
 - Supplementary information, if any
 - Memorandum, if any

NOTE on Columns:

Code name of equipment (8)

For easy sorting of kind of equipment, first character indicates major Equipment, for example, F: feeder,

) shows information to identify the equipment, code name of feeder, if any TR: Transformer, CB: Circuit breaker, etc.

Relay (17)(18)(19)

DIR : Power direction relay

OC : Over-current relay

OCG : Over-current ground relay

F : Differential relay

UV : Under-voltage relay
F : Power fuse

: Power fuse X : Un-known : Bad weather, heavy rain/ strong wind

Cause of interruption (22)

: Improper erection/maintenance

ERE

INS

: Contact of obstacles : Mistake of 3rd party

: Contamination of insulator : Deterioration of insulator

: Lightning

LTG CNT

Equipment (23)

YS : 132 kVand above system

POL : Supporting structure INS : Insulator

INS : Insulator COND : Conductor JNT : Joint of conductors
BUS : Substation bus

TR : Transformers

CB : Circuit breaker SWG : Switchgear (LA,PT,CT.DS, etc.

RLY : Protective relay AUX : Auxiliary circuit

DC : Battery, charger, DC circuit

OTH : Others

Emergency (extraordinary) inspection

Scheduled maintenance

: Mistake of worker

WOK

ZSM

PUB

UR(LR) : Load relief L/C : Line clear = ZEM Annex 3.2 Code List of Substations and Feeders

Ranga Reddy (1/18)

220/132/33 kV 5	Substation	33 kV Fe	eder	33/11kV Sub	station	11 kV F	eeder		0.4 kV	Line
Name	Cade	Name	Code	Name	Code	Name	Code	Category	Name	Code
1 Dharmasagar	RHA	Chevella	F(CHE)	Chevella	CHE	Chevella	SHE			
2 (S)					ļ	Starchik	STA			
3	- 1	ł	1		ł	Kothapally	KOT	! !		1
4	ì					Alur	ALU			1
5					ļ	Gundala	GUN			
6	1	<u></u>				Mudimiyal	MUD] ,
7		Moinabad	F(MOI)	Moinabad	MOI	Momabad	MOI			
8						S.P.Steels	SPS			
9	1 .	j	,	ļ		Peddamangalaram	PED			J
10		i				Kankamamidi	KAN	1		
11			ľ			Himayathnagar	HIM]
12	j,					Surangal	SUR			
13		Pargı	F(PAR)	Manneguda	MAN	Super Daiy	SUP			
14						Chenngamul	OHN			
15						Pudur	PUD			
16						Мегдариг	MER			jj
17				Pargi	PAR	Pargi Town	PAR			
18					1	Rakamcherla	RAK			
19						Shadnagar	SHA	1		1 1
20						Roopkhanpet	ROO			
21						Gandı singaram	GAN]
22	1 1	Shabad	F(SHA)	Shabad	SHA	Shabad	SHA			
23						Nagarkunta	NAG			
24						Polaram	POL			
25	1 1		1 4			Sardarnagar	SAR	<u></u> l		<u> </u>
26				Tallapally		R.Dosado	RDO			
27						Rudraram	RUD			
28						Tallapally	TAL J	L		<u>[</u>]

Ranga Reddy (2/18)

220/132/33 kV Su	bstation	33 kV Fee	der	33/11kV Substati	on.	11 kV F	eeder		0.4 kV	Line
Name	Code	Name	Code	Name	Code	Name	Code	Сатедоту	Name	Coc
Ibrahimpatnam	RIBR	Ibrahimpatnam	F(IBR)	Ibrahimpatnam	IBR	Ibrahimpatnam	IBA	Ī		1
(S)						Sheriguda	SHE	[[
	1					Eliminedu				
						Raipole		i I		
		Kandukur	F(KAN)	Kandukur	KAN	Kandukur	KAN			1
						Gudur	GUD	l [
						Pulimamıdi	PUL			ŀ
	í :]	ĺ		Bachepally	BAC	1		ł
	1					Nednoor	NED			
						Mucherla	MUC			
	1 1		1	Rachaloor	RAC	Rachaloor	BAC	1		1
	ì					Gundavally	GUN			1
						Thimmmmarpur	тні			
	1		1	}		Lemur	LEM			1
	1									
		Mall	F(MAL)	Bodakonda(Unmanned	BOD	Bodakonda	BOD	$\neg \neg$		
	1 1					Yellamma Tanda	YEL	J		ļ
				Mall	MAL	Mall	MAL			<u> </u>
						Nallavally	NAL			
)]			j		Kothapally	кот	1		
		Manchal	F(MAN)	Dandumailaram	DAN	Dandumaılaram	DAN			
	1					Nerapally	NER	1		
			1		l	Mukkunoor	MUK			ļ
			1 1	Manchal	MAN	Manchal	MAN	T	*~	
						Nomula	NOM			
	1			i		Japal	JAP			
	1 1		1 1	i		Arutla	ARU	ľ		ľ
			1 . 1			Tallapallyguda	TAL			
	i I	Turkayamzal	F(TUK)	Turkayamzal	TUR	Turkayamzal	TUR			Ī
	1 1		<u> </u>	<u> </u>		Manneguda	MAN	. 1	_	1
	1	Yacharam	F(YAC)	Yacharam	YAC	Yacharam	YAC		_	
						Medipally	MED			
	1 1		1 1	ļ		Gungal	GUN	J]
						Chintapatla	CHI			l
] 		1			Chowderpally	сно			l
	, ,]	J		Nandivanaparthy	NAN	ŀ		1

Ranga Reddy (3/18)

	220/132/33 kV Sub		33 kV Feed		33/11kV Subs	tation	11 kV Fe	eder		0,4 kV	Line
	Name	Code	Name	Code	Name	Code	Name	Code	Category	Name	Code
1	Medehal	RMED	Aliabad	F(ALI)	Aliabad	ALI	Bavileela	BAV	1		
2	(N)	[[- 1	S.V S Milla	svs	[[i [
3						1	Turkapally	TUR			
4						1	Alıabad	ALI	i I		l l
5		1				1	Tumkunta	TUM			
6							Jaganguda	JAG			i l
7					Medicity	MED	Medicity	MED	TT		11
8		}			ŀ	-	Pudur	PUD			
9					[Rajbllaram	RAJ			1 (
10					ICICI	ICI	ICICI	ICI	TT		71
11							Bharath Bio-Tech	BHA			
12			Bandamadaram	F(BAN)	Bandamadaram	BAN	Srirangavaram	SRI			
13		1			1	- 1	Nutankal	NUT			1 1
14	1			1	1		Raılapur	RAI			
15			G P.Pally	F(GPP)	G.P.Pally	GPP	IDA	IDA			
16							G P Pally	GPP			
17				1			Maisammaguda	MAJ			l I
18				1		- 1	Doolapally	D00			
19					Kompally	KOM	Kompally	KOM	TT		11
20						1	Jeedimelta	JEE			
21							Jayabheri	JAY			
22		ł	Keshavaram	F(KES)	Keshavaram	KES	Uddamarrı	UDD		•	i I
23							Anantharam	ANA			1 1
24		i .			<u></u>		Laxmapur	LAX] j] [
25					Koltur	KOL	Koltur	KOL	T		1
26		1			Thumukunta	THU	Nalsar	NOL	T		
27							Shameerpet	SHA			1 1
28							Thumukunta	THU			
29			Medehal	F(MED)	Medehal	MED	IDA I	ID1			
30							IDA II	ID2			
31							Medcal Town	MED			
32							Kandlakoya	KAN			
33							Medchal Rural	MER	1		
34							Yellampet	YEL			
35		-					Ravalkole	RAV			
36		1	Shapurnagar	F(SHA)	Aleap	ALE	Pragathinagar	PRA			\Box
37							Aleap	ALE			

Ranga Reddy (4/18 - 1)

220/132/33 kV	Substation	33 kV Fe	eder	33/11kV Sub	station	11 kV Fee	der	I	0 4 kV	Line
Name	Code	Name	Code	Name	Code	Name	Code	Category	Name	Cod
Moulalı	RMOU	L.G.Mint	F(LGM)	Cherlapally	CHE	Nagaram	NAG			1
(N)				ĺ		Rampally	RAM			1
1				I		Кигрра	KUR			1
	i			1		IDA Phse-I	ID1			1
ļ	l l	ļ]	- { .	IDA Phase-II	ID2			ł
						ECIL	ECI			1
				Keesara	KEE	Keesara	KEE			T
						Cheryal	CHE			1
	1	Moulalı	F(MOU)	Malkajgırı	MAL	Suryanagar	SUR			
						Алалdbagh	ANA			1
						Durganagar	DUR			1
						Maliiikbarjunanagar	MAL			
				Moulali	MOU	HMT	HMT	T		1
						HCL	HCL	1		1
		İ				Meerpet	MEE			
			1			Mirzalaguda	MIR			
	1	Í	_ i _			Spectra	SPE	ĺĺ		Í
		1]	Malkajgira	MAL			
						Moulalı	MOU			l
		L				Flash Butt	FLA			1
	j	Nacharam	F(NAC)	Mallapur	MLL	A.P.Foods	APF			
				1		Bell	BEL	1		
						IDA Mallapur Phase-II	IDA			ŀ
						Mallapur(V)	MAL	I		J
				Nacharam	NAC	NILE	MIL]
		1				Laxımi starch	LAX	l [
				ŀ	1	Telephone Exchange	TEL			1
	1	1	- 1	Ì	-	Indian Extrusion	IND	! !		ł
		l				Multi Steel	MUL			
						Sanjay Re-Roll	SAN			
						Tunggabhadra	TUN			

Ranga Reddy (4/18 - 2)

	220/132/33 kV Sul	station	33 kV Fe	eder	33/11kV Sub	station	11 kV I	Feeder		0 4 kV	Line
ı	Name	Code	Name	Code	Name	Code	Name	Code	Category	Name	Code
	Moulalı	RMOU	NGRI	F(NGR)	NGRI	NGR	Kalyanpuri	KAL			
	(N)				i	ļ	SOI	SOI			
34		} .	ł	1		Į,	Penguintextiles	PEN	ļ)]
35			1	1			нмт	HMT			
36				1			Habsigunda	HAB	ŀ		
37		1			<u> </u>		NGRI	NGR			J J
38					Mohan Nagar	MOH	Laxmı Nagar	LAX			[<u>-</u>
39		i					Kothapet	кот			
40		1 .	Samkpuri	F(SAI)	Samkpuri	SAI	Kushaiguda	KUS			
41				<u> </u>			Kamalanagar	KAM			
42							A S Rao nagar	ASR			
43							Neredmet	NAR			1 1
44							Sainikpurı	SAI	ſ		ĺĺ
45		1 1					Карга	KAP			
46							Yapral	YAP			
47			Uppal	F(UPP)	Uppal	UPP	Boduppal	BOD	1		
48		1 1					Indl Ghatkesar	IND	ľ		
49		1					Door Darshan	DOO	i		
50				1	'		Navabharath	NAV	l		1 1
51							Uppal	UPP	1		
52							Gangappa	GAN			l
53		<u> </u>					Ramanthpur	RAM			

Ranga Reddy (5/18)

220/132/33 kV	Substation	33 kV Fe	eder	33/11kV Subs	station	11 kV	Feeder		0.4 kV	Line
Name	Code	Name	Code	Name	Code	Name	Code	Category	Name	Code
1 Puttapabad	RPUT	Doma	F(DOM)	Dirsampally	DIR	Mallepally	MAL	\neg		
2](S)						Brahamapally	BRA			
3						Badempally	BAD	- 1		ŀ
4	- }		1	ţ		Dirsampally	DIR			
5				Doma	DOM	Doma	DOM	T		1
6						Baspally	BAS	- 1		
7						Palepally	PAL	- 1		
8		Puttapahad	F(PUT)	Chowdapur	CHO	Chowdapur	ОНО			
9						Мајадриг	MAJ	1		
0						Marikal	MAR	1		
1			1 .	Puttapahad	PUT	Puttapahad	PUT	T]
2						Rusumpally	PUS			
3						Nancherla	NAN			1
4		_		l		Kulkacherla	PUL	- 1		ł
5		Salkarpet	F(\$AL)	Salkarpet	SAL	Pagidiyal	PAG			
6						Gandeed	GAN			
7		_			1	Salkarpet	SAL	- 1		

Ranga Reddy (6/18)

220/132/33 kV S	ubstation	33 kV Fe	eder	33/11kV Sub	station	11 kV I	eeder		0 4 kV	Line
Name	Code	Name	Code	Name	Code	Name	Code	Category	Name	Cod
Rama							- 			7
Chandrapuram	MRAN	Chandanagar	F(CHA)	Chandanagar	CHA	Taranagar	TAR	l		
(Medak)		(N)				Chandanagar	CHA			
	1	J		}	- 1	Hafeezpet	HAF	ļ ļ]
				<u> </u>		Mıyapur	MIY	[
		Gachibowli	F(CAC)	Gachibowli	GAC	Lingampally	LIN			
		(N)		1	- 1	Gachibowli	GAC]]		
	1					Kothaguda	KOT	1		
						University	UNI			
i)			<u> </u>		Alınd	ALI			
		Gridhar Ispot	F(GRI)	Garge Steels	GAR	Garge Steels	GAR			
		(S)				Vanasthalipuram	VAN			
		Shankarpally	F(SHA)	Donthanpally	DON	Maharajpet	MAH			
		(S)			Í	Janwada	JAN			i
				Shankarpally	SHA	Shankarpally	SHA	T		
						Parwada	PAR	ŀ		
	í i		1 1	ľ	- 1	Kondekal	KON			1
] :			Dhobipet	DHO			}
	1 1		1 .	SJB TUBES	SJB	Indl feeder	IND	1		T
			1 1	•	- 1 - 1	Mokila	MOK	' 1		[

Ranga Reddy (7/18)

220/132/33 kV	Substation	33 kV Fe	eder	33/11kV Subs	tation	11 kV Fe	eder		0.4 kV	Line
Name	Code	Name	Code	Name	Code	Name	Code	Category	Name	Code
Shaprunagar	RSHA	AFA-I	F(AF1)	D.P.PALLY	DPP	Gagıllapur	GAG			
(N)		(N)				Dundigal	DUN	i I		
3					1	Bowrampet	BOW			
:						Satyamcomputers	SAT			ļ
5		Jeedimetla-I	F(JE1)	Jeedimetla-I	JE1	Phase-I	PHI			
i	- }	(N)		l		Phase-II	PH2			
7 1				!		Phase-V	PH5			1
3						Subhashnagar	SUB	! I		1
			1	ì		Agarwal Foundry	AGA	!!		1
)					İ	Virco	VIR			
i l	1					Sudarshan Drugs	SUD			
2					- 1	*****				
3		Jeedimetla-II	F(JE2)	Jeedimetla-II	JE2	Gajuralaramaram	GAJ			
1		(N)				Kompally	KOM			İ
5						Suraram	SUR			ĺ
5						Phase-III	Ph2	i I		
7	ŀ				i	Phase-IV	PH4			
3					Ì	Phase-V	PH5			
	ŀ	Shaprunagar	F(SHA)	Ushamullapudı	USH	Ushamullapudı	USH			
)		(N)		· ·		Shaprunagar	SHA			1
ı !		ĺ		ŀ		Gajuralaramaram	GAJ			1
2	ı					Chandragiricolony	CHA			1

Ranga Reddy (8/18)

220/132/33 k	V Substation	33 kV Fe	eder	33/11kV Sub	station	11 kV F	eeder		0.4 kV	Line
Name	Code	Name	Code	Ñame	Code	Name	Code	Category	Name	Code
1 Shivarampally	RSHI	Gaganpahad	F(GAG)	Gaganpahad	GAG	Мападе	MAN			
2 (S)			1			Shivashakthi	SHI			
3	1					Jai Bhavani	JAI			
4						Rajendranagar	RAJ			
5						Gaganpahad	GAG			i l
6			·			NPA	NPA	ll		
7		Ibrahımbagh	F(IBR)	Ibrahımbagh	IBR	Osmansagar	OSM			
8						Mılıtary-I	MI1			
9						Mılıtary-II	MI2			
10	ļ					Peddamangalram	PED	<u> </u>		
11	į.			APPA	APP	Hımayathsagar	HIM			
12						Police Academy	POL			
13						Azıznagar	AZI			
14		N P.A	F(NPA)	N.P.A	NPA	Kattedan	KAT			1 1
15		ļ				Sivarampally	SIV	!		
16						N P.A	NPA	i 1		1 1
17				[Shastripuram	SHA			1 1
18						Upparipally	UPP			

Ranga Reddy (9/18)

220/132/33 kV	Substation	33 kV Fe	eder	33/11kV Substa	tion	11 kV Fe	eder		0 4 kV	Line
Name	Code	Name	Code	Name	Code	Name	Code	Category	Name	Cod
Tandur	RTAN	Basheerabad	F(BAS)	Basheerabad	BAS	Basheerabad	BAS			
(S)						Agnoor				
						Neelapally				<u></u>
	1			Yallal	YAL	Yallal	YAL			1
		l i	ł		ļ	Веппиг	BEN	1 1		ļ
						Devnoor				
•			<u>l</u>	Laxmınarayanpur	LAX	Chennaram	CHE			
			l			Laxmunarayanpur	LAX			1
						Dennur	DEN			
	1	Karankote	F(KAR)	Karankote	KAR	Karankote	KAR			
						Ogipur	QGI			1
		Tandur	F(TAN)	Tandur	TAN	Kodengal	KOD			
						Water Works	WAT	[[ĺ
						Adıkcherla	ADI			1
						Aлtaram	ANT	[l
						Chengole	CHE			
						Tandur Old	TAN			
		Turimamidi	F(TUR)	Peddamul	PED	Peddamul	PED			
		ł				Kandavally	KAN			
	- (1			Jangaоп	JAN	1 1		l
						Kotepally	кот			<u> </u>
				Turimamıdı	TUR	Turımamıdı	TUR			
						Tatepally	TAT			l
						Bentaram	BEN			<u> </u>
		Vikarabad	F(VIK)	Dharur	DHA	Dharur	DHA			l
						Kukkında	KUK			i
						Gutkepally	GUT	<u> </u>		<u> </u>
				Vikarabad	VIK	Vikarabad+P Press	VIK			1
			1		i l	AnanthGiri Gutta	ANA			
			1			Sivareddypet	SKA			
						Ekamamıdı	EKA			l

Ranga Reddy (10/18)

220/132/33 kV	Substation	33 kV Feed	ler	33/11kV Subst	ation	11 kV Fe	eder	0.4 kV	Line
Name	Code	Name	Code	Name	Code	Name	Code Category	Name	Code
Bandlaguda	RBAN	Abdullapurmet	F(ABD)	Abdullapur	ABD	Abdullapurmet	ABD		-
(N)		(S)		[Sanghi	SAN		1
	ł					Апајрит	ANA		
				Fılm Cıty	FLM	Film City	FLM		
				Peddamberpet	PED	Peddamberpet	PED		
						Taramathipet	TAR		<u> </u>
		Ghatkesar	F(GHA)	Narapally	NAR	Medipally	MED		
		(N)	1			Prathapap <u>singram</u>	PRA		
		Hayathnagar	F(HAY)	Hayathnagar	HAY	Mansurabad	MAN		
		(S)				Mother dairy	MOT		1
			-			High Court Colony	HCC		
			ł			Autonagar	AUT		
			1 ,			L.B.Nagar	LBN		1
						AJR	AIR		
	i					Siris	SIR		
			l'			Hayathnagar	HAY		
	-	Vanasthalipuram	F(VAN)	Vanasthalipuram	VAN	Vanasthalipuram	VAN		1
		(S)				Barramalguda	BAL		
						Injapur	INJ		
				Bandlaguda	BAN	A;kapuri	AKA		T
					1 1	Nagole	NAG		ĺ
					.	GSI	GSI		
						Huda	NUD		1
						Kothapet	KOT		[
						Saroornagar	SAM		ĺ
						Kamalanagar	KAM _		

Ranga Reddy (11/18)

220/132/33 kV Sub	station	33 kV Fe	eder	33/11kV Sub	station	11 kV F	eeder		0 4 kV	Line
Name	Code	Name	Code	Name	Code	Name	Code	Category	Name	Code
Chandrayanagutta	RCHA	Champapet	F(CHA)	Champapet	CHA	Siulthanvala	SIU			T.
(S)						Champapet	CHA] [
J.						Karmanghat	KAR			
1						Balapur	BAL			1
5						Meerpet	MEE			
i	Į.	Kattendan	F(KAT)	Kattendan	KAT	Kattendan-I	KT1			
'				[Kattendan-II	KT2			
3				l		Kattendan-III	KT3			
}				1		Kattendan-IV	KT4			i
				l		Balapur	BAL	<u> </u>		
ļ .		Maheswaram	F(MAH)	Maheswaram	MAH	Maheswaram	MAH			
2]	ļ		ļ	- 1	Lemur	LEM	}		ļ
\$ <mark> </mark>	1					Ghatpally	GHA	1		
						Tımmalur	TIM			
i		l				Nagaram	NAG			
5	ŀ			Mamidipally	MAM	Pahadisharif	PAH			L
' 			İ			Thukkunguda	THU			
3				Mankal	MAN	Mankal	MAN			
}				L		IDA	IDA			<u> </u>
		Shamshabad	F(SHA)	Shamshabad	SHA	Om Jaibhavani	OMJ			1
l.						Shamshabad	SHA			
!			1			Narkoda	NAR			
3			1			Habeebullanagar	HAB			
4						****				ļ
5				Shapurkalan	SHP	Indi feeder	IND			
5						Palmakunta	PAL			
' 			ĺ	[Gandıguda	GAN			
B				1		Shapurkalan	SHA			<u> </u>

Ranga Reddy (12/18)

	220/132/33 kV Sub	station	33 kV Feed	er	33/11kV Substat	ion	11 kV Fee	der		0 4 kV	Line
-	Name	Code	Name	Code	Name	Code	Name	Code	Category	Name	Code
1	Erragadda	CERR	Kukatpally	F(KUK)	Kukatpally	KUK	Kukatpally	KUK			
2	(Hyderabad)	Į.					Hydernagar	HYD			
3	,						Air force	AIR			l i
4]					Venkatecohwaranngar	VEN			
5		1			1		Bhagyanagar	BHA			
6					1		JNTU	JNT			
7]			КРНВ	KPH			i

Ranga Reddy (13/18)

1	220/132/33 kV Sub	station	33 kV Fee	der	33/11kV Subs	tation	11 kV	Feeder		0 4 kV	Line
	Name	Code	Name	Code	Name	Code	Name	Code	Category	Name	Code
1	Ghanapur	RGHA	Ghatkesar	F(GHA)	Ghatkesar	GHA	NTPC	NTP			
2	(N)	ł i			ŀ		Medipally	MED			
3					 		Syndicate	SYN			
4		i			•		Ghatkesar	GHA			
5					1		Keesara	KEE			
6							Edulabad	EDU	1		
7							Aushapur	AUS			

Ranga Reddy (14/18)

ſ	220/132/33 kV Subs	station	33 kV Feed	er -	33/11kV Substatio	n	11 kV Feeder			0.4 kV Line	
Ī	Name	Code	Name	Code	Name	Code	Name	Code	Category	Name	Code
1	Jublee Hılls	CJUB	CMC	F(OMC)	ESCI	ESO	Guchibowli	GUC			
2	(Hyderabad)						Nanakramguda	NAN			
3	, ,						ESCI	FSC			<u> </u>
4					uir	ш	IIIT	III			

Ranga Reddy (15/18)

	220/132/33 kV Sub	station	33 kV Feed	ег	33/11kV Substati	ion	11 kV Fee	der		0.4 kV	Line
	Name	Code	Name	Code	Name	Code	Name	Code	Category	Name	Code
1	Kothur	нкот	Kothur	F(KOT)	Ameerpet	AME	Ameerpet	AME		-	
2	(Mahbubnagar)					1	Collur	COL			
3		1					Dubbacherla	DUB			

Ranga Reddy (16/18)

	220/132/33 kV Substation		33 kV Feeder		33/11kV Substation	n	11 kV Fee	der		0.4 kV Line	
	Name	Code	Name	Code	Name	Code	Name	Code	Category	Name	Code
1 M	ehaboobnagar	HMEH	Salkarpet	F(SAL)	Mohmmadabad	МОН	Noncherla	NON			
2 (M	(ahbubnagar)		_				Mohmmadabad	МОН			

Ranga Reddy (17/18)

ſ	220/132/33 kV Sub	0/132/33 kV Substation 33 kV Feeder		33/11kV Substati	11 kV Fee	der		0.4 kV Line			
ı	Name	Code	Name	Code	Name	Code	Name	Code	Category	Name	Code
1	Sadasıvpet	MSAD	Mominpet	F(MOM)	Marpally	MAR	Patlur	PAT			
2	(Medak)						Marpally	MAR	1		
3	` ′				:		Sripuram	SRI			
4					Mominpet	MOM	Mominpet	MOM			
5	i	,					Barwada	BAR			}
6							Enkatala	ENK		·	
7				l	Nawabpet	NAW	Havabpet	HAV]
8							Arkatala	ARK			
9							Dulmamıdı	DUL			

Ranga Reddy (18/18)

	220/132/33 kV Sub	station	33 kV Feeder		33/11kV Substation		11 kV Fee	eder	04 kV Line	
	Name	Code	Name	Code	Name	Code	Name	Code Category	Name Code	
1	Bollaram	MBOL	***	F(**)	Reddy Labs	RL1	(HT)			
4	(Medak)				Reddy Diagonostic	RED	(HT)	1 1	}	
5					Reddy Labs	RL2	(HT)			
7					Kukatpally	LUK	***			
8				i	i		***	1 1		
9							***	1		

Medak (1/7)

Ì	132/33 kV Subst	ation	33 kV Fe	eder	33/11kV Substat	ion	11 kV Fee	der	
	Name	Code	Name	Code	Name	Code	Name	Code Cate	едогу
1	Siddipet	MSID	Rampur	F(RAM)	Rampur(Nangnoor)	RAM	Paiamakulu	PAI	
2	_		ŕ	, ,	, , ,		Narmeta	NAR	
3							Badojpadga	BAD	
4					Mittapally	MIT	Bakrıchepyal	BAK	
5					• •	i	Watsol (I)	WAT	
6							Velkatoor	VEL	
7					Kondamrajpally	KON	Kodarajampally	KOD	
8							Katha	KAT	
9					Narmetta	NAM	Narmetta	NAR	\neg
10					Ponnal		Ponal	PON	\neg
11					TOIMIUI	1011	Rangampally	RAM	
12			Duddeda	E(D) (D)	Duddeda	DUD	Bandram	DAN	
13			Buadeaa	1(000)	Daddeda	202	Deddeda	DED	
14							Velkatta	VEL	
15					Medinipur	MED	Mangote	MAN	
16					Medilipui	WILL	Kukunurpally	KUK	
17							Lakdarama	LAK	
18					Kondapak	KON	Kondapak	KON	
					Konuapak	KON	Nacharam	NAC	
19 20]		Marpadaga	NAR	1 aCliataili	INAC	
			Tornal	F(TOM)	Tomal	TOM		 	
21 22			1 Offiai	L(10M)	Irkode	IRK	Irkode	IRK	
23						CHI	nkode	1,0,0	
					Chiiapur Pothareddypet		D-41	POT	
24					Pomareduyper	POT	Pothareddypet	THA	
25			Dulahala	E(DDD)	Doddo Cundovolly	DED	Thalapally	 	
26			Dubbak	L(DRR)	Pedda Gundavally	PED	Peddagundavelly	PED	
27]		D. 1.1. 1.	DIID	Dumpalapally	DUM	
28					Dubbak	DUB	Dubbaka	DUB	i
29		İ	Í I	i			Lachapet	LAC	1
30						:	Habsipur	HAB	
31					D 43 11	7.40	Chellapur	CHE	
32					Ragothampally	KAG	Raghqthampally	RAG	
33							Ramakkapet	RAM	
34		ļ					Gosanpaily Akaram	GOS	
35					PeddaChikode	DDD	Akaram Chekode	AKA	
36					reddaCnikode	RED		CHE	
37		1]				Potharam	POT	
38				ŀ	CIL II	CTTA	Achmaipally	ACH	
39					Challapur	CHA	Division	DITA	
40					Dharmajipet	DHA	Dharmajipet	ВНА	
41			B 1	D(D 4 C)	D - 1	73.4.0	Lachapet	LAC	
42			Raghavapur	F(RAG)	Raghavapur	RAG	Narayanraopet	NAR	
43							Chintamadaka	CHI	
44				1	V 0.00001.010000000000000000000000000000	T 437	Pulkur	PUL	
45]	!		Laxmidevpally	LAX		LAX	
46		1	1		Correla Correla	CITE	Machapur	MAC	-
47			l		Gurrale Gondi	GUR	Gurralagondi	GUR	
48		ľ	i	ĺ	V	77.43.5	Jakkapur	JAK	
49					Kammarlapally	KAM	Allipur	ALL	
50]				Waterworks	WAT	1
51		1				1446	Kammarlaparly	KAM	
52			L		Machapur		Machapur	MAC	
53			Pedda Kodur	f(RED)	Narsapur(Shiddipet	NAK	Lingareddypally (I)	LIN	
54					•	1	Market Yard (U)	MAR	i
55]]	!			Narsapur (I)	NAR	
56		1	1		<u></u>	<u> </u>	Karım Nagar Road	KAR	
57					Peddakodur	PED		YES	
58					Meddipally	MED	Ibrahimnagar	IBR	
59 60			1	1	1		Medipally	MED	
		I	1	1	I	I	Ananthasagar	ANA	

Medak (2/7)

	132/33 kV Subst	ation	33 kV F	eeder	33/11kV Substa	tion	11 kV F	eeder	
	Name	Code	Name	Code	Name	Code	Name	Code	Category
61					Thornal	ТНО	Tornal	TOR	
62						1	Timmapur	TIM	
63					Nedipally	NED		 	
64		ł	l	1	Condipally	CON		_	-
65	Thukkapur	МТНЦ	Dommat	E(DOM)	Dommat	DOM	Dommat	DOM	
66	1101mpu			(2011)			Suranpally	SUR	
67				1	Doulthabad	DOU		IND	
68					Dodimagad	200	Konnaipally	KON	
69				İ			Doultabad	DOU	
70]]]	Chittapur	CHI	Dharmajipet	DHA	
71				į	Cartapar		Chittapur	СНІ	
72				ı			Mothey	мот	
73				l	Peddachpyal	PED	Widay	11101	
74			Thukkapur	E(LHII)	Thukkapur	THU	Togita	TOG	
75			Thukkapai	(1110)	пикари	****	Yellareddypet	YEL	
76							Y. G. Kıstapur	YGK	
77						[Pouce Station	POU	
77 78			Mirdoddi	F(MIR)	Mirdoddy	MIR	Mirdoddy	MIR	
76 79			TOPOURIES	1.(111111)	1 TITLOGUY	'''	Mallepally	MAL	
80]		Andha	AND	
81					Mettu(Bandarpapply)	MET	/ Midia	77.40	
82					Gudikandula	GUD	Gudikandula	GUD	
83		ĺ		ľ	Jangampally	JAN	Jangapally	JAN	
84					Jangampany	ואמו	Veerareddypally	VEE	
85					Peddachepyal	PED	Veerarcudypany	1 125	
86					Khajipur	KHA	Khajipur	KHA	-
87			Ligapur	EG IC)	Lingapur		Lingapur	LIN	
88 88			Ligapui	r(sac)	l rungahan	""	Venkatraopet	VEN	
89	·			i	Raipole	RAI	Raipole	RAI	
90					Kaipoie	KAI	Thirmalapur	THI	
91							Thmmakpally	THM	
92							Anajpur	ANA	
92 93							Kothapally	KOT	
93					Pallepahad Pallepahad	PAL	Pallepahad	PAL	
94 95				}	ганеранац	FAL	Vemulghat	VEM	
	<u> </u>		0.1	7/2 / 7		C 1 7			
	Gajwel		Gajwel	F(GAJ)	Gajwel		Dharmareddypall	DHA	_
97			Jagadevpur	F(JAG)	Jagadevpur		Jagadevpur	JAG	
98							Itikyal	ITI	
99					77 1 1 11	TTOTA	Allirajpet	ALL	
100		j	1		Kodakandla	1	Kodakandla	KOD	
101							Mohank K/S(I)	MOH	
102							Kuknoor Pally	KUK	
103					\		Burugpally	BUR	
104					Munigadapa	MUN	Munigadapoa	MUN	
105							Basvapur	BAS	
106		Ì]	Ganeshpally		Ganeshpally	GAN	
107		1			Pregnapur		Pregnapur	PRE	ſ
108	}	į.					Serigiripally	SER	
109		ŀ	Ahmedipur	F(AHM)	Ahmedipur		Ahmedipur	AHM	
110							Pidched	PID	
111	ļ				Bejgoam		Bejgoan	BEJ	
112	1						Plingareddypally	PLI	
113		ľ			Gurralasofa	GUR	Waddepally	WAD	í
114							Ramaram	RAM	1
115	ļ						Machaipally	MAC	
116	J				BangliaVenkatapur		B. Venkatapur	BE	1
117		ł				ı	Yelkal	YEL	ſ
118							Muktmamasanpally	MUK	
_									

Medak (3/7)

1	132/33 kV Substation		33 kV Feeder		33/11kV Substa	tion	11 kV Fe	eder	
ŀ	Name	Code	Name	Code	Name	Code	Name	1 - 1	Category
119	Traile				Mulugu	MUL	ranc	Code	Calegory
120			Willings	r(MOL)	Vntimamidi	ONT		+	
121					Thunkikalsa	THU	Tunkikalsa	TUN	
122					Пинкікаіза	Inc	Narsapur	NAR	
					Kokkonda	KOK	Natsapur	NAR	
123			Gowraram	E(COM)	Gowraram		Paamulaparthy	PAA	
124			Gowraram	r(GOW)	Gowraram	GOW	Pathur	PA1	
125						i	Pathur	PA2	
126								NAV	
127							Navodaya	WAR	
128						 	Wargal	-	
129		1			26.1.1	1	Express	EXP	
130					Markook	MAR		1	
	Chegunta	MCHE	Chegunta	F(CHE)	Chegunta	CHE	Checunta	CHE	
132						1	Karnalpally	KAR	
133							Reddypally	RED	
134							Volluru	VOL	
135			Yeldurthy	F(YEL)	Yeldurthy	YEL	Yeldurthy	YEL	
136							Uppulingapur	UPP	
137							Shetpally	SHE	
138					Suraram	SUR	Chandampet	CHA	
139							Suram	SUR	
140	,				Колариг	KON	Колариг	KON	
141					Nizampet	NIZ	Nızampet	NIZ	
142							Chelmada	CHE	. 1
143						1	Maskal	MAS	
144							Kalwakunta	KAL	
145					Mangalparthy	MAN			
146						<u> </u>			
147			Bonale	F(BON)	Bonala	BON	Bonala	BON	
148							B Kondapur	BKO	
149					Narlapur	NAR	Narlapur	NAR	
150		ļ				ļ	Venkatapur (K)	VEN	
151					Nızmpur	NIZ			
152	Minpur	MMIN	Міприг	F(MIN)	Minpur	MIN	Minpur	MIN	
153							Kodpak	KOD	
154		(NPDCL)	Nizampet						
155			Podochanpal	F(POD)	Podochanpally	POD	Podchanpally	POD	
156						ļ	Gandharpally	GAN	
157			Narsingi	F(NAR)	Narsingi	NAR	Narsıngi	NAR	
158							Narsampally	NAP	
159						1	Sankapur	SAN	
160							Vallebapur	VAL	
161					Tekmal	TEK	Ellapally	ELL	
162						<u> </u>	Tekmal	TEK	
163		<u> </u>	<u> </u>		Kodapak	KOD		<u> </u>	
164	Kowdipally	MKOW	Ch.Ghanpur	F(CHG)		CHG			
165					Engandia	ENG			
166			<u></u> _	L]		
167			Kowdıpally	F(KOW)	Kowdipally	KOW	Kowdipally	KOW	
168			l]			Devaipally	DEV	
169			L	<u></u>		<u></u>	Mohobad	мон	
170		[Venkatraoper		Venkatraopet	VEN			
171			Amsanpally		Amsanpally	AMS	Amsanpally	AMS	
172			l	<u> </u>			Kongode	KON	
	Medak	MMDK	Medak	F(MDK)	Medak	MDK	Medak T-I(U)	MD1	
174				`			Medak T-II(U)	MD2	
175						1	Komtur	KМ	
176				1		1	Ausalapally	AUS	
177						1	Balanagar	BAL	
178		1	I			ł	Kuchanpally	KUC	
179		1					Nagapur	NAG	
180		1					H Ghanapur	HGH	
100	<u> </u>		<u> </u>	<u> </u>	<u> </u>		1		

Medak (4/7)

	132/33 kV Subs	tation	33 kV Fe	eder	33/11kV Substa	tion	11 kV Fe	eder
	Name	Code	Name	Code	Name	Code	Name	Code Category
181			NSF	F(NSF)	NSF(Mombojipally	NSF		
182				` ′	Pillikottala	PIL		
183			Shankarampe	F(SHA)	Shankarampet	SHA	Shankrampet	SHA
184		ł)	` '	!		Jangarai	JAN
185							Maadoor	MAA
186					Shalipet	SHL	Shalpet	SHL
187			B.B.Pur	F(BBP)		BBP	B. Boopathipally	BBP
188				` ′			Burugupally	BUR
189							Sardana	SAR
190		J			Wadi	WAD	Wadı	WAD
191							Dhupsinghthanda	DHU
192			Ramayampet	F(RAM)	Ramayampet	RAM	Ramayampet	RAM
193	-		 		-		Копариг	KON
194			1				D. Dharmaram	DDH
195			1		1		Akkannapet	AKK
196					Laxmapur	LAX	Laxmapur	LAX
197			[ı	Lumapui		Tunigandla	TUN
198							Industi (I)	IND
199							Katryal	KAT
200	:				Pathur	PAT	Pathur	PAT
201							Shamnapur	SHA
	Narayankhed	MNAR	Narayankhed	F(NAR)	Narayankhed	NAR	Abbenoa	ABB
203	ivarayankiicu	MINA	i	rany	i vara yankilea	142 201	Rayalamadgu	RAY
204							Regode	REG
205							Pipri	PIP
206							Narayankhed	NAR
207			Shankaramne	F(SHA)	Shankarampet	SHA	Shankrampet	SHA
208			Onankarampe	1 (0111)	Ondiskurumpet	0141	Mizampet	MIZ
209		ł	!		ļ		Velur	VEU
210							Alladurg	ALL
211							Regode	REG
212					Bodagattu	BOD		
213			Kalher	F(KAL)	Kalher	KAL	Kalher	KAL
214				- ()			Капароог	KAN
215							Mardi	MAR
216					Sanjeeveraopet	SAN	Sanjeevaraopet	SAN
217					,		Kadpal	KAD
218		1			Bachepally	BAC	Bacheppally	BAC
219					,		Ramreddypet	RAM
220			Poosalpahad	F(POO)	Poosalpahad		Mandoor	MAN
221]	1	(')	•		Shapur	SHA
222					Borancha	BOR	Dhanwar	DHA
223					-		Nap	NAP
224			Waser		Waser	WAS	- '	
225			[]	Tadakal	TAD		[
	Manoharabad	MMAN	Masaipet	F(MAS)	Masaipet		Masaipet	MAS
227		~ ``		er			Lingareddypally	LIN
228			ľ				PD Shivanur	PDS
229			:		Islampur		Islampur	ISL
230					Nacharam		Nacharam	NAC
231							Vallur	VAL
232					Chandaipet	СНА	Chandaipet	CHA
233			j				Makkarajpet	MAK
234	ł		Тооргап	F(TOO)	Toopran		Тооргап	тоо
235	ļ		F		·-r		Ravelly	RAV
236						- 1	Padalpally	PAD
237	1						Asian Coffee (I)	ASI
238	ĺ		1		Gonepally	GON	Gonepally	GON
239			l		- onopuny		Ramunipatla	RAM

Medak (5/7)

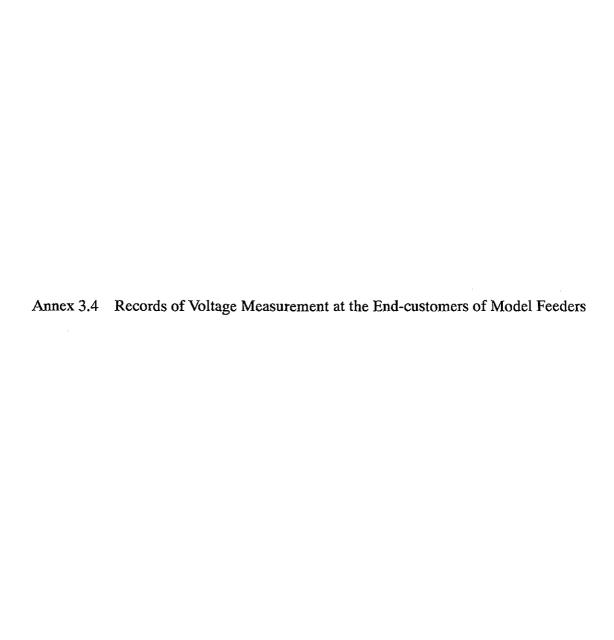
	10000011101		22 137 17-		22/11)-X/ Cultate		11 LV E	don
	132/33 kV Substa Name		33 kV Fe Name	Code	33/11kV Substat	Code	11 kV Fee Name	Code Category
040	Name	Code						
240			Мапонагарас	F(MAN)	Manoharabad	MAN	Kucharam	KUC
241							Mulugu	MUL
242			Kallakal	F(KAL)	Kallakal	KAL	Kallakal	KAL
243					i		K. P Steel (I)	KPS
244							Karan Textile (I)	TEX
245			Shivampet	F(SHI)	Shivampet	SHI	Shivampet- I	SH1
246		İ					Shivampet-II	SH2
247							Donthy	CDN
248							Indl Feeder	IND
249							Pambanda	PAM
250					Sikındlapur	SIK		
251	Gummadıdala	MGUM	Gummadidal	F(GUM)	Gummadıdala	GUM	Kanukunta	KAN
252							Abgrobel (I)	ABG
253							Bell Remedies (I)	BEL
254			Narsapur	F(NAR)	Narsapur	NAR	Narsapur	NAR
255			,	. `	•		K. Maddor	KMA
256							Narayanpur	NAR
257	· · ·		···		· · · · · · · · · · · · · · · · · · ·		Avancha	AVA
258		İ					Reddypally	RED
259					Kothapet	KOT	Kothapet	кот
260					ixomuper		Lingojigda	LIN
	200/120 1	L	T:		T:	JIN	Zangojiguu	LAT.
	220/132 kv		Jinnaram		Jinnaram		<u> </u>	
	(RRS)				Dundigal	DUN GAD		
263		<u> </u>			Gaddapotaram	GAD		
264			(RRS)			ļ		
	Bollaram	MBOL		F(KUK)		L		
266			Bachepally	F(BAC)				<u> </u>
267			Shathavachana	F(SHA)				
268	l		Bollaram		Bollaram-I	BO1	Soubhagya	SOU
269		[ł			<u> </u>	Pavan	PAV
270					Bollaram-II	BO2	Charminar	CHA
271							Vipla	VIP
272							Kottam	KOT
273			;				Rupa	RUP
274	132/11kV Bollar	am						
275	Zaheerabad	MZAH	Zaheerabad	F(ZAH)	Zaheerabad	ZAH	Zaheerabad - I	ZA1
276				` ′			Zaheerabad - II	ZA2
277							Ranjole	RAN
278							Aligole .	ALI
279			Маппариг	F(MAN)	Маппариг	MAN	Hottab	нот
280		ļ		-(-//			Manapur	MAN
281							Gopanpally	GOP
282							Magdoompally	MAG
283					Malchelma	MAL	Malchelma	MAL
284			l		1VIAICIOINIA	111111	J. Malkapur	JMA
285							Parsapally	PAR
286					Satwar	SAT	Satwar	SAT
	1		7	TOTATA				KUP
287			Jarasangam	F(JAL)	Jarasangam	JAL	Киррападаг	
288		}	ļ	ļ	ļ		Jeerrlapally	JEE
289		}	<u> </u>				Raikode	RAI
290			Hadnoor	F(HAD)	Hadnoor	HAD	Rejintal	REJ
291				ŀ	1		Hadnoor	HAD
292			1				Nyalkal	NYA
293		I	1				Mamidigi	MAM
294		}	l		Chalki	СНА	Raghavapur	RAG
295		1		l	l	1	Chalki	CHA
296			I	1	1		Nap W.W.	NAP
297			l		Raikode	RAI	Raikode	RAI
298			1				Pampad	RAM
299			ŀ			ļ	Pipalpally	PIP
300		1		1	Metalkunta	MET	Metalkunta	MET
301							Rajol	RAJ
201		Ь	L	L			<u></u>	

Medak (6/7)

	132/33 kV Substation		33 kV Feeder		33/11kV Substa	ation	11 kV Fe	eder	
	Name	Code	+	Code	Name	Code	 	Code	Category
302	Jogipet	MJOG	Jogipet		Jogipet	JOG		JOG	
303			1 -84	1,000	, og. per	""	Dakoor	DAK	
304							Dhanura	DHA	ŀ
305	1	1	ļ.	ļ]	Į.	Posanpet	POS]
306				1			Shankarmpet	SHA	
307			Chitkul	F(CHI)	Chitkul	CHI	Chitkul	CHI	
308		j		1 (0111)	Seelampally	SEE	Seelampally	SEE	 -
309	1)	""	Faizabad	FAI	
310	1	1	Gadipeddapı	F(GAD)	Gadipeddapur	GAD	 	GAD	<u> </u>
311	4]] (31)	Journal of the state of the sta		Muslapur	MUS	
312			i		Alladurg	ALL		ALL	<u> </u>
313	ŀ		i		[1	Chilvera	CHI	ļ
314	ŀ				Medikonda	MED		DRG	
315				ſ		[Devanoor	DEV	ĺ
316							Khadiraad	KHA	
317	1		Laximisagar	F(LAX)	Laximisagar	LAX	 	LAX	
318	•	ĺ		-(Pothuepdypally	POT	
319					Talelma	TAL	r omm-p-ypuny	1.0.	
	Pashamailaram	MPAS	Isnapur	F(ISN)	Isnapur	ISN	Patodia	PAT	
321				1 (101.)		1011	Muthangi	MUT	
322							Ida - I	ID1	
323					Ì		Ida - II	ID2	
324		ł	ł i			}	Rudraram	PUD	
325							Widia	WID	
326			SOL	F(SQL)	SOL	SQL	Sol Town	SQL	
327		}	SOL	I (SQL)	SOL	SQL	Dexo	DEX	
328		1			Inole	INO	P. Kanjarla	PKA	
329					liloic	1110	Indresham	IND	
330		l	,			EPI	murcsnam	11111	
230		1	Manjeera			1.11		-	
331			Water	F(WAT)	E P IP(Pashamaılaram)	EPI			
332		j	INOX	F(INO)	C i ii (i asiiaiitanarani)	12.1		 	
	R.C.Puram	 	Gachibowli	1(1110)				-	
334	XX.C.12 Grain		Patancheru						
335		J .	Ambuja		-				
336			Manjeera W.	W.					
337			NSL	11.				-	
338			Аппаригла Го	nils	Annapurna Foils	ANN			
339				J11 0	MIG	MIG		-	
340					Kollur	KOL		- 1	
341			Chandanagar		Chandanagar	CHA		\vdash	
342					Ashoknagar	ASH			
343					Giridhar Ispat	GIR		-	
- 1	Sadasivpet	MSAD	Jogipet	F(IOG)	Nizampur	_	Nîzampur	NIZ	
345	Suddon't por		Sipor	1(000)	r teampar	7415	Venkatapur	VEN	ľ
346					Mudaipet	MUD	Singoor	SIN	
347					iridaipot		Mudimanikyam	MUD	
348			1				Pulkal	PUL	ł
349	İ				Sultanpur		Sultanpur	SUL	
350	Ì			1	Onitanha:		Когроlе	KOR	
351	ĺ		Manjeera	F(MAN)			2201 poro	77.01	
352				F(MRF)					
353		(RRS)		F(VIK)					
354	ŀ			F(KOH)	Kohir	кон	Kohir	кон	
355				· (mon)	1201111		Nagireddypally	NAG	
356			l		}		Nagreddypany Sajjapur	SAJ	
357	ļ		ļ	l l	Digwal		Chintalghat	CHI	
358	i	ŀ	ļ		n'Ewai		Digwal	DIG	
359							Digwai Global Bluk Drugs		ļ
L	L		<u></u>	i	<u></u> _		CHOOM DIEK DRIES	Gro	

Medak (7/7)

ſ	132/33 kV Substation		33 kV Feeder		33/11kV Substation		11 kV Feeder		
	Name	Code	Name	Code	Name	Code	Name	Code Cate	egory
360			Munipally	F(MUN)	Munipally	MUN	Budhera	BUD	
361				` ´	•		Khammampally	KHA	
362							Jackwell	JAC	
363					Athmakur	ATH	Athemakur	ATH	
364							Yellaram	YEL	- 1
365			 Priyadarshini	F(PRI)					i
	132/11kV Sac	lasivnet							
1	Kandi	MKAN	Sanoareddy-I	F(SR1)	Sangareddy-I	SR1	Sangareddy - I	SR1	
368]	- ()	Jg, -	Ī .	Sangareddy - II	SR2	- 1
369							Sangareddy - III	SR3	
370							Junguroday 111	KAL	
371							Kandi	KAN	
372							Kolsa	KOS	
373							Water Works	WAT	1
374					Rajampet	RAJ	Kalabcur (Filter bed)	WAI	
375					Sangareddy-II	SR2	Sangareddy - I	SA1	
					Sangareudy-11	SR2	Sangareddy - II	SA1	
376				!			Sangareddy - III	SA2 SA3	1
377					V and annua	YCON	Sangareddy - 111 Kondapur	KON	
378					Kondapur	KON	•	1 6	
379							Marepally	MAR	
380					3.6.13	2647	Gangaram	GAN	
381					Malkapur	MAL	Malkapur	MAL	
382		<u> </u>					Mundevunipally	MUN	
383							Pepsi	PPS	
384					Ismailkanpet	ISM	Ismaılkhanpet	ISM	
385		1					Arutla	ARU	
386							Erdanoor	ERD	
387			HFC-I	F(HF1)	Cheriyal	CHE	Kandi	KAN	
388							Kalvemula	KAL	
389							Indrakaram	IND	
390							Cheriyal	CHE	
391			HFC-II	F(HF2)	TurakalaKhanapur	TUR	Borpatra	BOR	
392							Doultabad	DOU	
393							Indl	INL	
394					Hathnoora	HAT	Hathnoora	HAT	
395							Gondaraıpally	GON	
396							Sikindlapur	SIK	
397]		Nasthipur	NAS			
398			BharathStrips	F(BHA)					
399		1	Isnapur	F(ISN)					
400			BDL	F(BDL)	BDL	BDL		1	
401		1		` ′	Nangigama	NAN		 	
402			Alkabir	F(ALK)			†————		
.02	L		<u> </u>	- ()	<u> </u>		L		


Annex 3.3 Frequency Records in May and November 2002 and 2003

(Hz)

	May-	02-2002	Nov	-02-2002	May-	02-2003	Nov-(03-2003
Day	Max	Min	Max	Min	Max	Min	Max	Min
1	47.78	47.75	49.71	49.44	50.65	49.42	49.85	49.10
2	47.92	47.87	50.84	49.29	50.38	49.62	50.25	49.70
3	47.96	47.88	50.25	50.00	50.40	49.73	50.15	49.60
4	47.95	47.86	50.75	48.58	50.62	49.48	50.10	49.30
5	47.86	47.84	50.00	49.96	50.75	49.64	50.15	49.50
6	47.86	47.81	50.44	50.17	50.34	49.25	50.25	49.20
7	48.01	47.82	50.41	49.13	50.14	49.14	50.50	49.50
8	48.50	47.87	49.67	49.59	50.32	49.64	49.85	49.40
9	48.53	47.88	50.72	49.75	50.26	49.50	50.50	49.55
10	47.86	47.86	50.25	49.77	49.95	49.15	50.25	49.40
11	50.01	47.86	50.86	48.65	50.50	49.85	50.20	49.55
12	47.96	47.83	50.77	48.69	50.21	49.60	50.32	49.50
13	47.90	47.80	49.05	48.61	50.25	49.75	50.20	49.45
14	47.90	47.81	49.06	48.88	50.70	49.65	50.15	49.50
15	47.99	47.78	49.40	49.31	50.42	49.12	50.20	49.65
16	48.24	47.95	49.09	48.84	50.35	49.32	50.10	49.75
17	49.70	48.10	49.87	49.37	50.24	49.30	50.25	49.34
18	49.76	47.77	49.95	49.42	50.18	49.22	49.85	49.42
19	47.88	47.84	49.54	49.38	50.15	48.65	50.00	49.50
20	47.90	47.87	49.36	49.16	50.23	49.43	49.85	49.42
21	47.88	47.86	49.83	48.95	50.56	49.50	49.95	49.25
22	47.86	47.83	49.25	49.16	50.10	49.26	50.12	49.32
23	47.84	47.84	49.71	49.35	50.35	49.15	50.15	49.52
24	48.02	47.95	49.15	48.95	49.82	49.32	50.12	49.62
25	47.96	47.77	49.97	49.79	50.28	49.45	49.85	49.42
26			49.42	48.90	50.50	49.48	50.05	49.52
27	48.82	47.89	49.35	49.07	50.25	49.50	50.20	49.30
28	50.00	47.90	49.39	49.09	50.22	49.45	50.15	49.35
29	48.85	48.16	49.54	49.25	49.85	49.00	50.05	49.40
30	48.55	47.86	49.62	49.33	49.80	49.10	50.25	49.60
31	49.05	47.88	-	*	49.78	49.21	-	-
Max.	50.01	48.16	50.86	50.17	50.75	49.85	50.90	50.17
Min.	47.78	47.75	49.05	48.58	49.78	48.65	49.10	48.58
Ave.	48.34	47.87	49.84	49.26	50.28	49.38	49.84	49.26
SD	0.680	0.080	0.560	0.420	0.256	0.255	0.560	0.420
%Max	49.69	48.03	50.95	50.51	50.78	49.88	51.00	50.50
%Min	47.00	47.70	48.74	48.45	49.77	48.88	48.70	48.50

Source: LDC, APTRANSCO

Note: SD stands for Standard Deviation

		3	ŀ			ſ			,			ŀ	ľ	į	,			(Volt)	;
Day		5	beak	(3 o'clock)		Í		Day 1	peak (11	<u> </u>	اچ	1		Night peak (20	eak (70	٥l	ž	Low voitage Distribution	MUSOU
	Tr	Transformer	. 1	ပ	Customer	Í	Tra	Transformer		ð	Customer		Tran	Transformer	+	Ö	Customer	7	
	¥	В	၁	A	В	C	Y_	В	၁	A	В	၁	Ą	В	C	A	В	C Nov. 2003	
1	240	240	240	235	233	235	235	236	235	228	228	227	230	230	230	220	220	_	
2	240	240	240	235	233	235	235	236	235	228	228	227	230	230	230	220	220	220 33/11 kV Kothapet Substation	bstation
3	240	240	240	235	233	235	235	236	235	228	228	-227	230	230	230	220	220	220 11 kV Kamalanagar feeder	eder
4	240	240	240	235	233	235	235	236	235	228	228	227	230	230	230	220	220		
2	240	240	240	235	233	235	235	236	235	228	228	227	230	230	230	220	220	220 Transformer TN14 (315 kVA)	5 kVA)
9	240	240	240	235	233	235	235	236	235	228	228	227	230	230	230	220	220	220	
7	240	240	240	235	233	235	235	236	235	228	228	227	230	230	230	220	220	220 Customer: Mr. Vijetra Shelters	helters
∞	240	240	240	235	233	235	235	236	235	228	228	227	230	230	230	220	220	220 (#1)	
6	240	240	240	235	233	235	235	236	235	228	228	227	230	230	230	220	220	220	
10	240	240	240	235	233	235	235	236	235	228	. 228	227	230	230	230	220	220	220	
11	240	240	240	235	233	235	235	236	235	228	228	227	230	230	230	220	220	220	
12	240	240	240	235	233	235	235	236	235	228	228	227	230	230	230	220	220	220	
13	240	240	240	235	233	235	235	236	235	228	228	227	230	230	230	220	220	220	
14	240	240	240	235	233	235	235	236	235	228	228	227	230	230	230	220	220	220	
15	240	240	240	235	233	235	235	236	235	228	228	227	230	230	230	220	220	220	
16	240	240	240	235	233	235	235	236	235	228	228	227	230	230	230	220	220	220	
17	240	240	240	235	233	235	235	236	235	228	228	227	230	230	230	220	220	220	
18	240	240	240	235	233	235	235	236	235	228	228	227	230	230	230	220	220	220	
19	240	240	240	235	233	235	235	236	235	228	228	227	230	230	230	220	220	220	
20	240	240	240	235	233	235	235	236	235	228	228	227	230	230	230	220	220	220	
21	240	240	240	235	233	235	235	236	235	228	228	227	230	230	230	220	220	220	
22	240	240	240	235	233	235	235	236	235	228	228	227	230	230	230	220	220	220	
23	240	240	240	235	233	235	235	236	235	228	228	227	230	230	230	220	220	220	
24	240	240	240	235	233	235	235	236	235	228	228	227	230	230	230	220	220	220	
25	240	240	240	235	233	235	235	236	235	228	228	227	230	230	230	220	220	220	
56	240	240	240	235	233	235	235	236	235	228	228	227	230		230	220	220	220	
27	240	240	240	235	233	235	235	236	235	228	228	227	230	230	230	220	220	220	
28	240	240	240	235	233	235	235	236	235	228	228	227	230		230	220	220	220	
29	240	240	240	235	233	235	235	236	235	228	228	_	230		230	220	220	220	
30	240	240	240	235	235	235	235	236	235	228	228	227	230		230	220	220	220	
31																			
Max.	240	240	240	235	235	235	235	236	235	228	228	227		230		220	220	220	
Min.		240	240	235					_	228	228			230				220	
Ave.	;·	240.0	240.0	235.0	233.1		235.0	236.0	235.0 2	228.0 2	228.0 2.	227.0 23	230.0 2	230.0 2	230.0 2	220.0 2	220.0 2	220.0	
SD	0.0002	0.0002	0.0002	0.0002		002			_	0.0002 0	0.0002 0.0002	_	0002 0.	0.0002 0.0002 0.0002		0.0002 0.0002	0002 0.	0.0002	
%Мах	240.0 240.0	240.0		235.0		235.0			_	228.0 2				230.0 230.0		220.0 220.0	20.0	220.0	
%Min	240.0 240.0	240.0	240.0	235.0	232.4	5.0	235.0	236.0	235.0 2	228.0 228.0		227.0 23	230.0 2	230.0 230.0		220.0 220.0 220.0	20.0 2.	0.0	
	Note)	ST. Stand	SD: Standard deviation	ion														ı	

Annex 3.4 - 1

Transformert Tran	;	Low Voltage Distribution		Nov. 2003		33/11 kV Kothapet Substation	11 kV Kamalanagar feeder	5	Transformer TN11 (250 kVA)		Customer: Sanscript College	(#2)																														
Transformer	Volt)			ပ	220	220	220	220	220	220	220			220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220		220	220	220.0	0.0002	220.0	220.0	
Tanasformer	1	ock)	ustomei	æ	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220		220	220	+		220.0	220.0	
Transformer		0	Ö	٧	219	219	219	219	219	219	219	219	219	219	219	219	219	219	219	219	219	219	219	219	219	219	219	219	219	219	219	219	219	219		219	219	219.0	0.0002	219.0	219.0	
Transformer	Į.	t peak (ter	၁	229	229	229	229	229	229	229	229	229	229	229	229	229	229	229	229	229	229	523	1			229	229	229	229	229	229	229	229		229	229	229.0	0.0002	229.0	229.0	1
Transformer		T Sign	ansform			230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230		L	L	230.0	0.0002	230.0	230.0	
A Defi Posek (1) c/olock) A B C A B			Tr	Ą	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230				_			_	
V Off peak (3 o'clock) Corlock) Day peak (11 o'clock) A Transformer Customer Transformer Transformer Transformer Transformer Transformer Transformer Transformer A mass former B m mass former A mass former B m mass former B m mass former B m m mass former B m m m m m m m m m m m m m m m m m m m				C	230	230	230	230	230	230	230	230	230	230	230	230				230	230	230	230	230	230	230	230	230	230	230	230	230	230	230		230	230	230.0	1		230.0	
V Off peak (3 o'clock) Corlock) Day peak (11 o'clock) A Transformer Customer Transformer Transformer Transformer Transformer Transformer Transformer Transformer A mass former B m mass former A mass former B m mass former B m mass former B m m mass former B m m m m m m m m m m m m m m m m m m m	:	ČK)	ustome	В	229	229	229	229	229	229	229	229	229	229	229	229	229	229	229	229	229	229	229	229	229	229	229	229	229	229	229	229	229	229		229	229	229.0	0.0002	229.0	229.0	
No. 20H peak (3 oclock) A B C A B		ខ្ល	<u>د</u>	Ą	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230		230	230	230.0	0.0002	230.0	230.0	
Off peak (3 o'clock) A B C oslock) A b B c c oslock) A b B c c oslock) A c oslock) B c c oslock) A c oslock) B c c oslock) B c c oslock) A c oslock) B c c c oslock) B c c c oslock) B c c c oslock) B c c c oslock) B c c c c oslock) B c c c c c oslock) B c c c c c c c c c c c c c c c c c c c		Peak	. 6	ပ	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	_	235		1	0.0002	-	┾—.	
Off peak (3 o/clock) A B C A B C A 238 238 239 234 233 234 23 238 238 239 234 233 234 23 238 238 239 234 233 234 23 238 238 239 234 233 234 23 238 238 239 234 233 234 23 238 238 239 234 233 234 23 238 238 239 234 233 234 23 238 238 239 234 233 234 23 238 238 239 234 233 234 23 238 238 239 234 23 234 23 238 238 239 234 23 234 23		a)	storme	<u></u>	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234		234	L	<u> </u>	L		L	1
Off peak (3 o'clock) A B C A B C 238 238 234 233 234 233 234 238 238 239 234 233 234 233 234 238 238 239 234 233 234 233 234 238 238 239 234 233 234 233 234 238 238 239 234 233 234 233 234 238 238 239 234 233 234 233 234 238 238 239 234 233 234 233 234 238 238 239 234 233 234 233 234 238 238 238 239 234 233 234 238 238 239 234 233 234 238 238				Ą	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235		235	235				L	
A B C A B C 238 239 234 233 238 238 239 234 233 238 239 234 233 238 239 234 233 238 239 234 233 238 238 238 239 234 233 238 238 239 234 233 238 238 239 234 233 238 238 239 234 233 238 238 239 234 233 238 238 239 234 233 238 238 239 234 233 238 238 239 234 233 238 238 238 239 234 233 238 238 238 239 234 233 238 238 238 239 234 233 238 238 239 234 233 238 238 238 239 234 233 238 238 239 234 233 238 238 239 234 233 238 238 238 239 234 233 238 238 239 234 233 238 238 239 234 233 238 238 238 239 234 233 238 238 239 234 233 238 238 239 234 233 238 239 234 233 238 239 234 233 238 238 239 234 233 238 238 239 234 233 238 238 239 234 233 238 238 239 234 233 238 238 239 234 233 238 238 238 239 234 233 238 238 238 239 234 233 238 238 238 239 234 233 238 238 238 239 234 233 238 238 238 239 234 233 238 238 238 238 239 234 233 234 233 238 238 238 239 234 233 234 233 238 238 238 239 234 233 234 233 238 238 239 234 233 234 233 238 238 239 234 233 234 233 238 238 239 234 233 234 233 238 238 239 234 233 234 233 238 238 239 234 233 234 233 238 238 239 234 233 234 233 238 238 239 234 233 234 233 238 238 239 234 233 234 233 238 238 238 239 234 233 234 233 238 238 238 239 234 233 234 233 238 238 238 239 234 233 234 233 238 238 238 239 234 233 234 233 238 238 238 239 234 233 234 233 238 238 238 239 234 233 234 233 234 233 234 233 234 233 234 233 234 233 234 233 234 233 234 233 234 233 23	ŀ	+	-	c	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	_	234	234		-		_	4
A B C A 238 238 239 234 238 238 238 239 234 238 238 239 234 238 238 239 234 238 238 239 234 238 238 239 234 238 238 239 234 238 238 239 234 238 238 239 234 238 238 239 234 238 238 238 239 234 238 238 238 239 234 238 238 238 239 234 238 238 238 239 234 238 238 238 239 234 238 238 238 239 234 238 238 238 239 234			tomer		233	233	233	233	233	233	233	233	233	233	233	233	233	233	233	233	233	233	233	233	233	233	233	233	233	233	233	233	233	233		233			L			
A Doi: Off peak Transformer A B C 238	(10010	o clock)	- 1		234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234		234			Ļ			
A B Off Jansformer A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B				`}						**										,																		-	_		9.0	
y		֓֟֟֟֟֟֟֓֟֓֟֓֟֓֟֓֟֓֟֟֓֟֓֟֟֓֟֓֟֓֟֟֓֟֓֟֟												l]															8.0 23	1002 0.0	8.0 23	$8.0 \mid 23$	deviation
y		E	Irans	_ I		ŀ								1																											18.0 23	Standard
	100	<u>,</u>		1		2	3	4	S.	9	7			10	 ==	12	13			,			<u>.</u>		21	22				ļ				Į	-			ě,			.5	

Annex 3.4 - 2

_
Ę.
Ē
Ë
Ä
ge
彗
)
*
ĭ

Nov. 2003

33/11 kV Kothapet Substation 11 kV Kamalanagar feeder fransformer TN23 (315 kVA)

Customer: Mr. K. Ramulu (#3)

	(3 O'ClOCK)			Day	peak ((11 o'clock)	ck)			Nigh	Night peak (20		o'clock)	
	Customer		Tr	Transformer			Customer		Ë	Transformer	<u>5</u>		Customer	
C A	В	ပ	Ą	В	ပ	٧	B	ပ	₹	m	၁	Ą	B	၁
		230	240	233	235	220	220	220	230	232	230	218	220	218
	230	230	240	230	233	220	220	220	230	232		218	220	218
		228	235	233	235	220	220	220	230	232		218	220	218
10 230		228	234	230	233	220	220	220	228	229	L	218	220	218
240 228		229	234	230	233	220	220	220	228	229	L	218	220	218
L		230	235	233	235	220	220	220	228	229	228	218	220	218
		230	230	230	231	220	220	220	230	232	230	220	222	220
	<u>.</u>	230	233	232	230	220	220	220	230	232	230	220	222	220
240 230	230	230	233	232	230	220	220	220	230	232	230	220	222	220
		230	234	230	233	220	220	220	230	232	230	220	222	220
	230	230	234	230	233	220	220	220	230	232	230	220	222	220
		230	234	230	233	220	220	220	230	232	230	220	222	220
	230	230	230	230	229	220	220	220	230	232	230	220	222	220
		230	230	230	229	220	220	220	230	232	230	220	222	220
240 230		230	233	232	230	220	220	220	230	232	230	220	222	220
		230	233	232	230	220	220	220	230	232	230	220	222	220
		230	230	230	229	220	220	220	230	232	230	220	222	220
240 230	230	230	230	230	229	219	220	220	230	232	230	220	222	220
		230	235	233	235	220	220	220	230	232	230	220	222	220
40 230	230	230	235	233	235	220	220	220	230	230	230	220	224	220
240 230		230	234	230	233	219	220	220	230	232	230	220	222	220
40 230		230	234	230	233	220	220	220	230	232	230	220	222	220
		230	234	230	233	220	220	220	230	232	230	220	222	220
	230	230	234	230	233	220	220	220	230	232	230	220	222	220
241 230		230	234	230	233	220	220	220	230	232	230	220	222	220
		230	234	230	233	220	220	220	230	232	230	220	222	220
	230	230	234	230	233	220	220	220	230	232	230	220	222	220
		230	234	230	233	220	220	220	230	232	230	220	222	220
40 230	230	230	234	230	233	220	220	220	230	232	230	220	222	220
		230	234	230	233	220	220	220	230	232	230	220	222	220
		1	240			ů.c.	Š	000	1000	000		\perp	1700	220
270 275	228	220	230	230	220	210	220	220	228	226	228	218	220	218
15	157	12	233.7	230.8	12	219.9	220.0		229.8	231.6	[2	2	221.7	219.6
-	4	0.531	2.333		1.953	0.254		_	0.61	0.964		0.814	0.922	0,814
		230.9	238.3		236.2	220.4	220.0	220.0	231.0	233.5	231.0	221.2	223.5	221.2
238.8 228.8	228.7	228.8	229.2	228.4	2285	210.4	0000	0000	2000	7000	2000	2100	210 0	210 0

Low Voltage Distribution

Nov. 2003

11kV Kattedan #2 Line
Customer #6 (3 phase)
Chocolate Factory
Customer #8(3 phase)
Jaya & Company

Dav		Ö	Off peak ((3 o'clock)	[3	Γ		Dav	neak ((11 o'clock)	<u>ا</u> ج			Ni de	Might near (20	- 1	1	(Volt)
`	Ö	Customer #6	1	Z	Customer #8	#8	ੋ	44		1	Customer #8	8#	Ĉ	Customer #6	4 7 years	1	Chetomer #8	8
	A	В	1	A	В	၁	Ą	В	1 -	A	В	υ E	A	В	ر د	\ \ \	B	ွ
1	265	266	265	597	264		249	250	250	248	249	250	246	247	247	247	245	248
2	265					267	249	250	ı	249	249	250	247	247	246	247	248	248
e	263						249	250	¦ ;	249	249	250	247	247	246	248	248	248
4	263						250	250		250	249	250	248	248	246	248	248	249
S	263		ł			268	250	250		250	249	250	248	248	247	248	248	249
9	263		ĺ			267	250	250		250	249	250	248	247	247	248	249	250
7	265		i			267	250	251	-	251	249	250	248	247	246	248	249	250
∞	265		i				249	251		251	249	250	249	248	246	249	249	250
6	265				265	266	249	251	•	251	249	250	248	248	246	249	250	251
10	263						250	251		251	249	250	248	248	247	248	250	251
11	263						250	250		249	249	250	247	247	246	248	249	249
12	264						250	250		248	250	249	247	246	247	247	250	249
13	264		į				250	250	249	248	250	249	249	246	245	247	250	249
14	265						249	250	249	248	250	249	249	246	245	248	250	249
15	265						249	250	249	249	250	251	250	247	246	248	249	250
16	265						249	250	249	249	250	251	250	247	246	249	249	250
17	266			.			249	250	250	249	250	251	251	247	246	249	249	251
18	566		ł	l			249	250	250	249	250	251	251	248	245	249	250	251
19	566		- 1	1	j	;	250	249	250	250	250	251	251	248	245	249	250	250
20	265		ĺ	l	264	264	250	249	251	250	250	251	250	248	246	248	250	250
21	265		l		أ	265	250	249	251	250	250	251	249	247	246	248	249	249
22	265				264	265	249	251	251	250	250	250	249	247	247	248	249	250
23	265		- :	263		264	249	251	251	250	249	250	248	247	246	248	249	251
77	566	 	į			263	250	251	. 251	250	249	249	247	247	245	249	250	249
25	766				ĺ	263	249	249	249	250	249	249	248	248	248	248	248	248
56	266		ŀ	- 1	Ĺ	263	249	250	249	250	249	250	249	249	249	248	249	249
27	267			- 1	263	263	248	250	249	250	249	250	251	250	250	249	249	249
78	267			-		263	248	248	248	250	249	249	249	249	250	250	249	250
50	267				263	263	248	248	249	250	249	249	255	255	255	255	256	255
30	267					263	248	248	249	250	250	250	253	254	254	255	255	255
31				- 1														
Мах.	267	268	267	997	266	268	250	251	251	251	250	251	255	255	255	255	256	255
Min.	263	262	262	-	263	- }		248	248	248		249	246			247	245	248
Ave.	265.0	265.0	264.6	٠.		265.0	249.3	249.9	249.6	249.6	249.4	250.0	249.0	247.9	247.0	248.7	249.4	249.9
S)	1.287	1.7221	1.564	0.973	1.106	1.712	169.0		0.814	68.0	0.498	0.695	. 1.93	1.999		1.863	1.942	1.668
%Мах	267.5	268.4	267.7	266.0	7.997	268.3	250.6	251.6	251.2	251.4	250.4		252.8		251.8	252.3	253.2	253.2
%Min	262.5	261.6	261.6	262.2	262.3	261.6	247.9	248.2	248.0	247.9	248.4	248.6	245.2	244.0	_	245.0	245.6	246.6
	Note)	SD: Stand	andard deviation	tion														1

Meter Serial No.: APE13611

Measuring Item: Transformer Sub Station:

Itansionnet Suo Station.
Place of Measuring: Malkapur Sub Station, Malkapur Feeder Measuring item: Voltage (V)

-1.0 indicates ALL POTENTIALS MISSING

Note) shows data adopted cells.

190.9 188.6 190.9 193.2 190.9 190.9 188.6 88 186, 248.4 243.8 246.1 241.5 9 190,9 190.5 193 8 190 190.9 25/09/2003 26/09/2003 27/09/2003 28/09/2003 29/09/2003 30/09/2003 2003/1/10 20/09/2003 21/09/2003 22/09/2003 23/09/2003 24/09/2003 2003/10/9 13/09/2003 6/09/2003 19/09/2003 2003/9/9 2003/8/9

Load survey data from 05-09-03 to 04-10-03 30 days

Annex 3.5 Summary of Outage Records Collected

Summary of Outage Records Collected for 2002/03 (1/4)

	132 kV System	33 kV feeder	33 kV substation	11 kV feeder	Cause	recorded	Nun	nber of out	ages	Durat	ion of outag	ges (Min)	Remarks
	(Mother substation)	·	ļ		Cause	Equipment	33 kV	11 kV	Total	33 kV	11 kV	Total	1
1	нкот		AME	AME	х			14	14		3,158	3,158	
	(Kothur)			COL	x			30	30	i	4,645	4,645	İ
				DUB :	x			21	21	1	6,330	6,330	<u> </u>
2	HRAM		SHA	DHO	х			25	25		3,135	3,135	ĺ –
				KON	х			15	15		1,720	1,720	
	•			PAR	x			48	48	İ	4,176	4,176	
_				SHA	х			40	40		2,305	2,305	<u></u>
3	MRAM		GAR	VAN	X			50	50	<u> </u>			
.	(R.ama Chandrapu	ram)	SHA	DHO	x			25	25		3,135	3,135	
				KON	x			15	15		1,720	1,720	
- 1				PAR	x			48	48		4,176	4,176	
- [SHA	х			40	40	l	2,305	2,305	
			SJB	IND	х			2	2	l	295	295	
				MOK	х			130	130	l	12,816	12,816	
				HAB	х			45	45 48		3,582	3,582 4,792	
				NAR	x			48 25	46 25		4,792	2,082	
				OMJ	X	1		69	43 69	[2,082		
-1	1645			SHA	x		77	09		2 202	4,633	4,633 2,292	
	MSAD (Sadasiumat)	VKB	MAD	KAL	<u>x</u>		77	24	77 24	2,292	5,755	5,755	
I	(Sadasivpet)		MAR		X			24 17	17		1,403	1,403	
Į				MAR PAT	X			43	43		6,468	6,468	
ļ				SRI	x			21	21		4,254	4,254	
ļ			MOM	BAR	x x			59	59		7,123	7,123	
ŀ				ENK.	x x			127	127		17,296	17,296	
ŀ		,		MOM	x			10	10		676	676	
				MPT	x			11	11		675	675	
				MRP	x		-	1	1		45	45	
				MVP	x			125	125		13,435	13,435	
- 1				ARK	<u>x</u>			174	174		5,453	5,453	
- 1		-		NAW	x			13	13		490	490	
- }				PUL	x			283	283		10,588	10,588	
5	MKAN			MAL	х		444	524	968	51,854		153,472	
	(Kandi)			MUN	x			675	675	'	103,335	103,335	
ì	` ,			TWN	x			157	157		22,190	22,190	
				KOT	x	1		150	150	<u> </u>	29,710	29,710	
ſ			KON	KON	x		279	356	635	47,240	5,767	53,007	
ŀ			•	TER	x			261	261		63,918	63,918	
				MAR	x			477	477			0	
_[BAN	x			430	430		105,351	105,351	
6	MNAR		BOR	BPR	х		679	154	833	70,462	4,135	74,597	
- 1	(Narayankhed)			DHA	x			213	213			0	
				NAP	x			191	191		2,731	2,731	
				MAN	x	[599	518	1,117	68,575	33,829	102,404	
J	ļ			SHA	x			373	373		33,168	33,168	
- 1	ļ		~	GUD	x			21	21		3,239	3,239	
- 1				MAR	x		422	368	790		89,540	142,180	
- [KAL	x		422	348	770	52,640	88,895	141,535	
_	140.4P	100		KAN	x		422	360	782	52,640	88,466	141,106	
		JOG KOU		}	х -	1	169		,	16,797	İ	16,797	!
- ['		КОН			x	j	156		156			15,779	
Į		MRT			x		22		22	2,825		2,825 1,220	
		PSML			х		24		24	1,220			
		MAN		- 1	х		87 119		87 119	4,315 9,173	Į	4,315 9,173	
- }		MUN VIK		1	X .		167		167		İ	13,071	
	ŀ		SAD	SAD	<u>x</u>		72	395	467	4,739	26,987	31,726	
				BUD	x		63	169	232	4,739	5,690	10,566	
ľ				TSM	X	ļ	63	192	255	4,876	6,849	11,725	
				MAN	x	-	71	789	860	5,068	119,433	124,501	
	ŀ	JOG		NIZ	<u>x</u>	-	113	156	269		5,245	17,085	
- 1	•	,		VEN	x x	ĺ	143	197	340		12,295	29,035	
1	·	MUN		MUN			220	261	481	17,504	2,253	19,757	
-1	<u> </u>			ATH	×		190	147	337	22,433	5,248	27,681	
-	İ			YEL	x x		144	194	338	14,956	6,101	21,057	
g I	RBAN	F(VAN)			x	x	81	1,7-4	81	3,747	9,101	3,747	
	(Bandlaguda)		ABD	ABD	×	<u>^</u>		122	122		5,730	5,730	
ď	(Danisiagua)			ANA	x	x		42	42	ļ	2,920	2,920	
ı				SAB	x	x		1	1	1	950	950	
												3,400	

Summary of Outage Records Collected for 2002/03 (2/4)

7	132 kV System	33 kV feeder	33 kV substation	11 kV feeder	Cause	recorded	Nun	iber of out	ages	Duratio	on of outage	es (Min)	Remarks
	Mother substation)				Cause	Equipment	33 kV	11 kV	Total	33 kV	11 kV	Total	
			PED	PED	х	х		57	57		2,084	2,084	
				TAR	х	х		33	33	 	1,108	1,108	
			RFC	RFC	х	х		51	51		710	710	
J			VAN	BAL	x	x		19		j j	1,080	1,080	
ļ				INJ	х	X		31	31	(- L	1,835	1,835	
- 1				NGO VAN	x	x		7 42	7 42	i l	265 2,110	265 2,110	
. [BAN	ALK	<u>X</u>	x		55	55	 	661	661	
			DAILY	GSI	x	x		36			226	226	
				NAG	x	x		106			1,798	1,798	
- 1			HAY	AIR	<u></u>	×		24	24		203	203	
			1	AUT	x	х		38			382	382	
1			}	HAY	x	x	}	26	26	1 1	148	148	!
				HCO	x	x		12	12		228	228	
l				LBN	x	х		33	33		453	453	
- 1				MAN	х	x		29	29		459	459	
				MOT	х	x		51	51		468	468	
- 1		,		SIR	x	X		34	34		719	719	
1			KOT	KAM	х	х		91	91	1 1	4,090	4,090	I
				KOT	х	x		162	162		6,310	6,310	I
ĺ			{	LNR	Х	X	(39 7			1,995	1,995 245	1
				MAN NOD	X	X		48	48		245 1,070	1,070	,
- [SAM	x x	x x		155			5,061	5,061	I
	RCHA	33 F(KAT)		37UVI			57	100	57		2,001	4 684	Bus 1, TR 2 are include
- 1	Chandrayanagutta		CHA	ALK & other	x		-'-' -	3	3	2004	18	18	
l'	(ĺ		BAL	x			297			5,185	5,185	I
				CHA	х		:	76			863	863	
J				KAR	x	}] .	179	179]	2,554	2,554	İ
- 1				LBV-I	x			1	1	1	2	2	I
-				LV-I	x			21	21		134	134	I
				LV-II	х		ļ	1	1		5	5	I
-				MEE	х			251	251		2,606	2,606	I
ĺ				SLU	x			35	35		386	386	
			KAT	KT1	х		ļ	109		i i	2,456	2,456	İ
				KT2	x	1		87			2,547	2,547	
- 1			}	KT3 KT4	x		,	95	95 101		2,319	2,319	
				BAL	x			101	132		2,553 4,151	2,553 4,151	I
-			МАН	GHA	x			132 23	23		2,583	2,583	
			MAG	LEM	x			25	25		2,385	2,115	Į
ĺ		,		MAH	x			2	2		270	270	
- 1				NAG	×	1		18			2,007	2,007	
-				TIM	x	,		20	20		2,480	2,480	
- 1			MAN	IDA	x			175	175		4,895	4,895	
1		1	l	MAN	×	<u> </u>		132	132		5,579	5,579	<u> </u>
			SHAM	HAB	x			45	45		5,582	5,582	
- [NAR	х		l '	48			4,192	4,192	į
			1	ОМЈ	x			25	25		2,082	2,082	l
- }	•	,		SHA	x			69			4,673	4,673	
			SHP	GAN	×			4	1		215	215	
			ĺ	IND	x		l	5			468	468	
- [1	PAL	x			6			800	800 2,155	l
101	RDHA	CHE	 	SHA	X		87	7	7 87		2,155	2,155 764	
		PAR	l		x x		134		134			1,524	į
- ['		PRA	1		x x		134		134		ĺ	682	l
		SHA			x		63		63	2,804		2,804	l
			CHE	ALU	x			70	70		11,913	11,913	
			I -	CHE	x			7			715	715	l
- []	GUD	x		l	10			2,025	2,025	İ
ļ			1	GUN	×	}	1	9	9	j j	2,290	2,290	
			}	кот	x		l	24	24		4,400	4,400	
- 1			i	MUD	x			61	61		6,130	6,130	l
1			1	SHE	x			1			210	210	į
- 1				STA	×			4	1		300	300	
				(Bus)	х.			1	1		120	120	ļ
J			12 / 12 /	IMCED.	x	E .	i	37	37	1 1	3,239	3,239	1
			MAN	MER	t		1						
			MAN	OHN PUD	x x			63 55	63		9,342 8,049	9,342 8,049	

Summary of Outage Records Collected for 2002/03 (3/4)

	132 kV System	33 kV feeder	33 kV substation	11 kV feeder	Cause	recorded		nber of out	· · · · · ·		on of outag		Remarks
	(Mother substation)				Cause	Equipment	33 kV	11 kV	Total	33 kV	11 kV	Total	
	1		2401	SUP	х			68 264		ļ	2,652	2,652	
		-	MOI	HIM KAN	X			250	264 250	 -	35,243 34,233	35,243 34,233	
				MOI	x x			33	1		3,191	3,191	
				PED	x			250			33,300	33,300	
		•		SPS	×			70	70		6,110	6,110	
	1			SUR	х			268	268		35,168	35,168	
			PAR	GAN	×			31	31		1,434	1,434	
				PAR	х			21	21		261	261	
				ROO	х			17	17		431	431	
				RAK	х			20	20		764	764	
	1		CITA	SHA	X			31	31 24	L	942	942 8,945	
			SHA	NAG POL	x x			24 9	9		8,945 3,575	3,575	
				SAR	x			16	16		3,955	3,955	
]		TAL	RAO	x			19	19		284	284	
			1	RDO	x			23	23		399	399	
	1			RUD	х			31.	31		574	574	
			<u>'</u>	TAL	x			42	42		568	568	
11	RIBR		BOD	BOD	х	х		158	158		2,048	2,048	-
	(Ibrahimpatnam)			YEL	<u>x</u>	<u>x</u>		158	158		1,818	1,818	
	1		DAN	DAN	х	x		116	116		1,809	1,809	
			1	MUK	x	x		75	75 122		1,137	1,137 1,624	
			IBR	NER ELM	<u>x</u>	x		133 57	133 57		1,624 1,028	1,624 1,028	
			אמון	IBA	x x	x x		134	134		2,448	2,448	
			1	RAP	x	x		135	135		1,935	1,935	
			1	SHE	x	x		90	90		2,172	2,172	
			KAN	BAC	х	х		106	106	*	1,159	1,159	
				GUD	х	x		60	60		868	868	
			ĺ	KAN	x	х		69	69		814	814	
			•	MUC	x	x		90	90		1,611	1,611	
		l		NED	x	x		221	221		3,139	3,139 1,005	
			NAAT	PUL KOT	<u>x</u>	<u>×</u>		64 156	64 156		1,005 2,762	2,762	
	į		MAL	MAL	x x	x x		95	95		1,497	1,497	
				NAL	x	$\hat{\mathbf{x}}$		123	123]	2,092	2,092	
		ĺ	MAN	ARU	<u>x</u> [x -		69	69		1,091	1,091	
				JAP	x	x		86	86		1,569	1,569	
				MAN	x	х	ŀ	65	65		1,566	1,566	
		}		мом	x	x		111	111		1,380	1,380	
				TAL	x	<u>x</u>		142	142		1,990	1,990	
			RAC	BAC	x	x		206	206	İ	474	474	
				GUD	×	x		54	54		921	921	
				GUN LEM	×	x x	i	170 167	170 167	.	3,106 2,258	3,106 2,258	•
				RAC	x x	x		155	155	i	1,850	1,850	
				THI	x	x		133	133		2,190	2,190	
			TUR	MAN		<u>-</u>		126	126		1,774	1,774	
	1			TUR	x	×		151	151		2,621	2,621	
	1		YAC	CHI	×	х		91	91		1,452	1,452	
				СНО	х	х		123	123		1,861	1,861	
				CHU	х	x [26	26	f	395	395	
	1			GUN	х	x		173	173		2,583	2,583	
				MED	x	×		163 98	163 98		1,969	1,969	
	1		,	NAN YAC	x x	x x		63	63		1,451 1,144	1,451 1,144	
12	(ROTH) ???		LNPOOR	BAN	x			215	215		6,267	6,267	-
				CHR	x	l		268	268		10,801	10,801	
				LAX	x			176	176		1,609	1,609	
13	RPUT	CHW			х		29		29	684		684	
	(Puttapahad)	DOM			x	-	99	ł	99	4,344	- 1	4,344	
		PUT			x		34		34	1,550	1	1,550	
		SAL		<u> </u>	х		139		139	4,743		4,743	
			DMA	BSP	х			39	39		279	279	
				DMA.	x			42	42		716	716	
	 -			PLP BRP	<u>х</u>			41 54	41 54		353 1,128	353 1,128	
				DSP	x x			25	25	-	310	310	
	,			MLP	^			32	32	i i	433	433	

Summary of Outage Records Collected for 2002/03 (4/4)

Oktober substation PUT XUL XUL X XUL XUL XUL X XUL XUL X XUL X XUL X XUL X XUL X XUL X XUL	132 kV System	33 kV feeder	33 kV substation	11 kV feeder	Cause	recorded	Nun	ber of out	ages	Duratio	on of outag	es (Min)	Remarks
NAN	(Mother substation)				Cause	Equipment	33 kV	11 kV	Total	33 kV	11 kV	Total	
RUIS x 6 6 875			PUT		х		_						
RUS		-	•	MAN	х	ļ		8	8		960		
SKP GAN x 31 31 252 25			<u> </u>	PUT	х			6					
SKP GAN x 31 31 252 252 252 252 252 253 254 24 26 659		T	L	RUS	х			6	6		1,290	1,290	
APP	ĺ		SKP	GAN				31	31		252		
ARH (Shivarampally)				PGDL	x			42	42		659	659	
A SHI				SKP	l			39	39		977	977	
(Shivarampally) HIM	14 RSHI	· -	APP						148		10,977	10,977	
POL		1							60		3,665	3,665	
GAG GAG x 131 31 150 150 150 150 150 150 150 150 150 15	(1						- 1					
IAI			GAG		r			31	31				
MAN			-						35	1	1.033	1,033	
NPA X	-	ł	}			ļ	1 1						
RAJ							1						
SHI					•	ľ		1		i			
IBR Mil		1			1		1						
M12	· ·		TDD									5 955	
OSM			III.					,		1		901	
PED X 777 77 2,236 2,236 2,246			ļ	1		-							
NPA KTD x SHA x 100 100 2,456 2,456 2,456 101 102 102 102 102 2,429 2,429 1,151 4,151 4,151 1,51 1,51 1,51 1,51 1,55 1,565 1,65 1,665		1	1										
SHA X 102 102 2,429 2,429 1,151 15 15 17 17 17 15 16 17 17 17 17 18 18 18 18			NIDA					100	100		2,430		
SIV			TYPE		l	ſ	[ĺ	2,430	2,430	
New Part New Part		Į.			Į.						2 420	2 420	
15 RTAN BAS			ļ										
Candur C			ļ	UPP			226	132		0.000	4,151		
TDR				ŀ	1		•				1		
TUR VYK X 101	(Tandur)		l	1	I .								
VIK	1			l									
BAS AGN x 114 114 8,005 8,005 BAS x 74 74 74 72,758 2,758 NLP x 127 127 14,051 14,051 DHA DHA x 77 7 15,863 15,863 KUK x 63 63 14,531 14,531 KAR KAR x 68 68 4,111 4,111 MTK x 70 70 7,381 7,381 OGI x 101 101 7,840 7,840 PED JAN x 32 32 2,894 2,894 KAN x 20 20 3,357 3,357 KOT x 85 8,828 8,828 PED x 6 6 430 430 TUR BEN x 12 12 1,865 1,865 TAT x 48 48 6,700 6,700 TUR TUR x 1 1 50 50 VIK ANA x 52 52 4,451 4,451 EKA x 103 103 7,761 7,761 SKA x 178 11,899 11,899 VIK x 165 165 6,034 6,034 BAM x 1 1 110 110 BEN x 151 151 9,797 9,797 DEN x 217 217 30,970 30,970 SAN x 100 100 11,155 11,155 VAL x 2 2 15 15 VAL x 2 2 15 15 VAL x 42 2 15 15 VAL x 133 133 8,709 8,709 VAL + x 98 98 1,155 1,155	[•	x								
BAS	}	VIK			x		58			3,850			.,
NLP x			BAS		×								
DHA					x		!						
DHA	·	1 .			×				127				
KUK x 63 63 14,531 14,531 14,531 14,531 14,531 14,531 14,531 14,111 MTK x 70 70 7,381 7,381 OGI x 1011 101 7,840 7,840 PED JAN x 32 32 2,894 2,894 KAN x 20 20 3,357 3,357 KOT x 85 85 8,828 8,228 PED x 6 6 430		l	DHA	DHA	X.						58		
KAR KAR x x 70 70 7,381 7,381 7,381 OGI x 101 101 7,840 7,840 PED IAN x 32 32 2,894 2,894 KAN x 20 20 3,357 3,357 KOT x 85 85 8,828 8,828 PED x 6 6 430 430 TUR BEN x 12 12 1,865 1,865 TAT x 48 48 6,700 6,700 TUR x 1 1 50 50 VIK ANA x 52 52 4,451 4,451 EKA x 103 103 7,761 7,761 SKA x 178 178 11,899 11,899 VIK x 165 165 6,034 6,034 BAM x 1 1 110 110 BEN x 151 151 9,797 9,797 DEN x 217 217 30,970 30,970 SAN x 100 100 11,155 11,155 VAL x 2 2 15 15 YAL x 133 133 8,709 8,709 YAL x 98 98 1,155 1,155		ŀ			x								
KAR	İ			KUK	x		J	63			14,531		
OGI x 101 101 7,840 7,840 PED JAN x 32 32 2,894 2,894 KAN x 20 20 3,357 3,357 KOT x 85 85 8,828 8,828 PED x 6 6 6 430 430 TUR BEN x 12 12 1,865 1,865 TAT x 48 48 6,700 6,700 TUR x 1 1 50 50 VIK ANA x 52 52 4,451 4,451 EKA x 103 103 7,761 7,761 SKA x 178 178 11,899 11,899 VIK x 165 165 6,034 6,034 BAM x 1 1 110 110 BEN x 151 151 9,797 9,797 DEN x 217 217 30,970 30,970 SAN x 100 100 11,155 11,155 VAL x 2 2 15 15 YAL x 133 133 8,709 8,709 YAL x 98 98 1,155 1,155			KAR	KAR	×	T			68		4,111	4,111	
PED JAN x 20 20 20 3,357 3,357 KOT x 85 85 8,828 8,828 PED x 66 66 430 430 TUR BEEN x 12 12 1,865 1,865 1,865 TAT x 48 48 6,700 6,700 TUR x 1 1 50 50 50 TUR ANA x 52 52 4,451 4,451 EKA x 103 103 7,761 7,761 SKA x 178 178 11,899 11,899 VIK x 165 165 6,034 6,034 BAM x 1 1 1 110 110 BEEN x 151 151 9,797 9,797 DEN x 217 217 30,970 30,970 SAN x 100 100 11,155 11,155 VAL x 2 2 2 15 15 15 YAL x 98 98 1,155 1,155	j			MTK	x		1	70	70		7,381	7,381	
PED JAN x 20 20 3,357 3,357 KAN x 20 20 20 3,357 3,357 KOT x 85 85 8,828 8,828 PED x 6 6 6 430 430 TUR BEN x 12 12 1,865 1,865 TAT x 48 48 6,700 6,700 TUR x 1 1 50 50 VIK ANA x 52 52 4,451 4,451 EKA x 103 103 7,761 7,761 SKA x 178 178 11,899 11,899 VIK x 165 165 6,034 6,034 BAM x 1 1 1 110 110 BEN x 151 151 9,797 9,797 DEN x 217 217 30,970 30,970 SAN x 100 100 11,155 11,155 VAL x 2 2 2 15 15 YAL x 98 98 1,155 1,155	1			OGI	x	ſ	[]	101	101	[7,840	7,840	
KAN			PED	JAN				32	32		2,894	2,894	
KOT		ļ		KAN	x			20	20		3,357	3,357	•
PED x 6 6 430 430 430 TUR BEN x 12 12 1,865 1,865 1,865 TAT x 48 48 6,700 6,700 TUR x 1 1 50 50 50 50 50 50		i										8,828	
TUR BEN x 12 12 1,865 1,865 TAT x 48 48 48 6,700 6,700 TUR x 1 1 50 50 50 VIK ANA x 52 52 52 4,451 4,451 EKA x 103 103 7,761 7,761 SKA x 178 178 11,899 11,899 VIK x 165 165 6,034 6,034 BAM x 1 1 1 110 110 BEN x 151 151 9,797 9,797 DEN x 217 217 30,970 30,970 SAN x 100 100 11,155 11,155 VAL x 2 2 15 15 YAL x 98 98 1,155 1,155													
TAT x 48 48 6,700 6,700 TUR x 1 1 50 50 50 VIK ANA x 52 52 4,451 4,451 EKA x 103 103 7,761 7,761 SKA x 178 178 11,899 11,899 VVK x 165 165 6,034 6,034 BAM x 1 1 10 110 BEN x 151 151 9,797 9,797 DEN x 217 217 30,970 30,970 SAN x 100 100 11,155 11,155 VAL x 2 2 2 15 15 15 YAL x 98 98 1,155 1,155			TUR		-p		1						
TUR x 1 1 50 50 VIK ANA x 52 52 4,451 4,451 EKA x 103 103 7,761 7,761 SKA x 178 178 11,899 11,899 VIK x 165 165 66,034 6,034 BAM x 1 1 110 110 BEN x 151 151 9,797 9,797 DEN x 217 217 30,970 30,970 SAN x 100 100 11,155 11,155 VAL x 2 2 2 15 15 YAL x 98 98 1,155 1,155	1		1				1	i			,		
VIK ANA x 52 52 4,451 4,451 EKA x 103 103 7,761 7,761 SKA x 178 178 11,899 11,899 VIK x 165 165 6,034 6,034 BAM x 1 1 110 110 BEN x 151 151 9,797 9,797 DEN x 217 217 30,970 30,970 SAN x 100 100 11,155 11,155 VAL x 2 2 15 15 YAL x 98 98 1,155 1,155			1		1				1				
EKA x 103 103 7,761 7,761 SKA x 11,899 11,899 VIK x 165 165 6,034 6,034 BAM x 1 1 110 110 BEN x 151 151 9,797 9,797 DEN x 217 217 30,970 30,970 SAN x 100 100 11,155 11,155 VAL x 2 2 15 15 15 YAL x 98 98 1,155 1,155	1	ł	lvik						52				
SKA		i	, AA										
VIK x 165 165 6,034 6,034 BAM x 1 1 1 110 110 BEN x 151 151 9,797 9,797 DEN x 217 217 30,970 30,970 SAN x 100 100 11,155 11,155 VAL x 2 2 15 15 15 YAL x 133 133 8,709 8,709 YAL + x 98 98 1,155 1,155			1										
BAM	ļ	1					1						
BEN x 151 151 9,797 9,797 DEN x 217 217 30,970 30,970 SAN x 100 100 11,155 11,155 VAL x 2 2 15 15 YAL x 133 133 8,709 8,709 YAL + x 98 98 1,155 1,155			1		1		1						
DEN x 217 217 30,970 30,970 SAN x 100 100 11,155 11,155 VAL x 2 2 2 15 15 YAL x 133 133 8,709 8,709 YAL + x 98 98 1,155 1,155					1				_				
SAN x 100 100 11,155 11,155 15 15 15 15		ł	1		ı		Į.						
VAL x 2 2 15 15 15 YAL x 133 133 8,709 8,709 YAL + x 98 98 1,155 1,155		1	1		[
YAL x 133 133 8,709 8,709 YAL + x 98 98 1,155 1,155	l		1				1						
YAL+ x 98 98 1,155 1,155	ĺ	1	1			Í	ſ .			[
		1			•		1						
	1	1] x		1		ř .	1	-	1,155	
TTL 16 61 244 6,376 23,522 29,898 611,984 1,760,718 2,372,702		<u> </u>	<u> </u>	****	x	<u> </u>	<u> </u>	1	1 1	L		5	

Chapter 4 SCADA System

Contents

Chapter 4 SCADA System	
4.1 General.	
4.1.1 Assessment of the Existing SCADA System	
4.1.2 Study of Distribution SCADA Introduction	
4.1.3 Proposition of Distribution SCADA System	
4.2 Assessment of Existing SCADA System	
4.2.1 First Survey of Existing SCADA	
4.2.2 Follow-up Survey Regarding SCADA Improvement	
(1) Restoration Procedure for Feeder Fault	
(2) Priority of Introduction of DMS Functions	4 - 10
(3) One Idea of Communication System Configuration for Distribution SCADA	4 - 10
(4) Feeder Fault Frequency and Feeder Specification Study	4 - 12
4.3 Introduction of Distribution SCADA System	. 4 - 13
4.3.1 Area to be covered	4 - 13
4.3.2 Assessment of the Existing System	
(1) Substation Configuration and Monitoring Items	
(2) Some Review Items for Existing SCADA	
(3) Effectiveness of Distribution SCADA	. 4 - 16
4.3.3 Design	4 - 17
(1) Communication Method	. 4 - 17
(2) Faulty Zone Sectionalization	. 4 - 18
(3) Load Balancing by Back Up from a Neighboring Feeder	. 4 - 19
4.3.4 Cost Estimate	
(1) Costs of Components	. 4 - 20
(2) Benefits of System Introduction	. 4 - 20
(3) Conditions for Estimate	
4.3.5 Plan of Introduction	. 4 - 23
(1) Section Number and Number of Pole-mounted Automatic Switches (SWs)	. 4 - 23
(2) Number of SWs and Economical Estimate	. 4 - 24
(3) Policy for Introducing Distribution SCADA	. 4 - 24
4.4 Recommendation on Distribution SCADA System	. 4 - 28
4.4.1 Functions of Existing SCADA and of Distribution SCADA	
(1) Call Center at SCADA Center	
(2) Load Monitoring System at SCADA Center	. 4 - 29
4.4.2 System Design	. 4 - 29
(1) Communication System	. 4 - 29
(2) Equipped System Specification	. 4 - 30
4.4.3 Cost for Every System Configuration	. 4 - 34
4.4.4 Cost Estimate for Individual Substation	
4.5 Recommendations	4 - 55

Chapter 4 SCADA System

The study was planned for the purpose of proposing an improvement plan of the existing SCADA to introduce distribution supervisory control and data acquisition functions (distribution SCADA) and achieve the following items.

- Improve electricity supply reliability through reduction of the interruption period and outage duration and improve availability of electric supply.
- Automatically change the transformer taps for maintaining desired voltages and switching on and
 off of capacitor banks for reducing reactive power, and optimally deliver loads to the feeders by
 monitoring and analyzing voltage and current on feeder, and in turn, improve the utilization rate
 of distribution feeder as well as reduce distribution losses.

To be more specific, the existing SCADA is covering as far as the 11kV feeder circuit breakers in the distribution substation, and the distribution SCADA functions should be introduced into the existing SCADA by the manners as shown below:

- Install remote-controlled switches with control device and voltage and current instrument devices on a feeder including voltage booster and capacitor banks.
- Connect the above-mentioned devices with the existing SCADA through a new communication system.

4.1 General

This study includes the following steps:

- Assessment of the existing SCADA System
- Study on introduction of distribution SCADA System
- Proposal of distribution SCADA System

4.1.1 Assessment of the Existing SCADA System

The existing SCADA system is covering up to 11kV feeder circuit breakers in substations. First, the system configuration and its functions were studied. Based on the findings, the additional hardware and software that are required to introduce the distribution SCADA functions were identified. They were reflected in the proposed distribution SCADA system design.

4.1.2 Study of Distribution SCADA Introduction

The system configuration and introduction cost were studied and feasibility of introducing the system was also assessed on the proposal of distribution SCADA.

■ Study area

- Conceptual design: As for the substations covered by the existing SCADA system, collect as many data as possible and summarize them.
- Detail design study: Survey almost all the substations for study of amount of required distribution SCADA system equipments and information data etc.
- Follow up of the existing SCADA assessment

The follow up study was conducted with respect to the operation and reliability of equipments duly considering the findings of the 1st site survey.

Design study

- Study of total system configuration

The conceptual design was studied with respect to the installation of remote controlled switches with control device and voltage and current measuring instruments on feeders, computer system configuration and communication method between RTUs (control device) and computer system in distribution control center.

- Study of additional functions

The study was conducted with respect to which DMS functions are to be introduced, such as feeder monitoring, control and data recording.

- Study of communication system

As for the communication method between feeder devices, substation and DCC, the study of hardware and cost was assessed with respect to radio, wire cable and fiber optic cable.

- Detail study of system configuration

The study was conducted with respect to the really installed functions, alteration of DCC computer system, alteration of distribution equipment and system configuration.

Estimation of cost

Based on the studied design for typical substations, the cost was estimated with respect to the system alteration, distribution equipment alteration and newly installed equipment.

Study of introduction of distribution SCADA to feeders

As for the introduction to the covered area, the priority of introduction to feeders was studied from the viewpoint of reducing the outage period and feeder importance, and the phases of introduction were considered. The cost for each introduction phase was estimated as well.

4.1.3 Proposition of Distribution SCADA System

The plan for improvement of SCADA was proposed with the following contents:

- Existing SCADA and introduction of distribution SCADA functions
 The existing SCADA system configuration and its functions, communication system and the operation status were assessed and the necessity to introduce a distribution SCADA was proposed.
- Design of distribution SCADA system
 - Based on the following study results, the optimal system design was proposed.
 - Installation of remote-controlled switches and control devices on the feeders
 - Installation of voltage and current measuring instruments on the feeders
 - Linking n with DMS (including "DMS functions and its adopted functions")
 - Installation of communication system (radio, control wire and optic fiber cable).

In this case, the optimal design may depend on the location of the corresponding substation and feeders.

- Introduction plan of distribution SCADA to feeders

 Based on the study results and consideration of the reliability and importance of feeders, the introduction plan was proposed.
- Cost The cost plan corresponding to the above-mentioned plan was proposed.

4.2 Assessment of Existing SCADA System

The existing SCADA system is covers up to the distribution feeder circuit breakers in the distribution substation. First, the system configuration and its functions will be studied. Based on this result, the additional hardware and software required will be identified in order to introduce the distribution SCADA functions, which will be reflected in the distribution SCADA design.

4.2.1 First Survey of Existing SCADA

At the first survey, the general functioning of the existing SCADA was surveyed mainly based on the explanation document. The results are shown in Table 4.1.

Table 4.1 Functions of existing SCADA

	Table 4.1 Functions of existing SCADA
Items	Outline
a. Monitor and	The existing SCADA system covers Hyderabad, 10 municipals in Ranga
control area	Reddy. Hyderabad is separated into 3 circles, South, North and Central, and
	SEs (Superintending Engineers) are assigned to these circles including one
	block of 10 municipalities in Ranga Reddy.
	In this area, the SCADA is centrally monitoring and controlling 13 EHV
	substations (220/132kV) and 93 middle voltage substations (33/11kV) from the
	DCC (Distribution Control Center) at Erragadda.
b. Communication	The basic communication system for Hyderabad SCADA system is the state of
system	the art Microwave Communication Network, comprising of two separate
(Refer to Figure	Networks.
4.1)	The primary backbone communication network on the Time Division Multi
,	Access (TDMA) principle operating on 2.3 GHz frequency band connects the
	central station to all the nodal stations – 220/132kV stations. This will carry
	data of SCADA, voice communication etc.
	The Secondary Communication Network that is based on the Multiple
	Address Radio System (MARS) principle interlinks all the 33/11kV substations
	to the nearest nodal station (TDMA station).
c. Outline of	The Master Control Center has ABB's S.P.I.D.E.R. System with three high
DCC Computer	end servers, namely, a main standby redundant SCADA application server pair
System	and one for the DMS (Distribution Management System) application functions.
(Refer to Figure	The programmer's office has one operator's programming workstation. This is
4.2)	an engineering console used for database generation, maintenance and
	modification of existing pictures and /or addition of new network pictures/data.
	Additionally, 2 remote communication servers are provided to control and
	acquire data from 33kV feeders emanating from EHV substations, incoming
	33kV circuits and 33/11kV substations, through the substation RTUs.
	Furthermore, 4 monitoring dual workstations are also provided in the control
	room.
	Besides general SCADA functions like Calculation of hourly active and
	reactive power values, Event & alarm list, Report Generation and Display of
	status indications etc., this system envisages integration of both Critical
	Distribution System Control functions such as Emergency Load Shedding,
	Fault Localization and Restoration of Supply and also application functions
	such as Automated Meter Reading of the HV customers connected to the city
	distribution network.
	Pole-type RTUs (not installed in reality) are envisaged for Feeder SCADA
	and Automatic Meter Reading functions. It is an integral unit comprising of an

	RTU, Radio Transceiver, equipment power supplies & backup battery supplies.
(Table 4.1 Continue)	T
Items	Outline
d. DMS Application functions	The following additional DMS function modules have been integrated into the S.P.I.D.E.R. SCADA software.
	-Emergency load shedding (for HV customer) This facility enables operators to select a group of breakers with a single command and shed blocks of load. However, for protection against operator errors load shedding will be initiated through a two-step procedure.
	-Load control (for HV customer) Load control of HV loads for single discrete loads or groups of loads brings out effective management of System peak load hours. Synthesis of load peak curves of the feeders to which the HV customers are attached is also done simultaneously for flattening the load curve.
	-Automatic meter reading (for HV customer) For the various HV bulk consumers that APTRANSCO caters to, such as Railways, heavy industries and others, ABB uses the output of electronic meters installed by APTRANSCO for retrieving and integrating the meter data into the SCADA system through RTUs. This arrangement vastly eases the traditional tasks of the utility company like procurement of billing information, monitoring of customer's load and voltage besides being an effective way of detecting any attempt to temper with meters.
	-Fault location The operator, through SCADA, can perform identification and isolation of the faulty section through the Fault Localization application function module.
	-Load balancing Automatic operation of transformer taps from the control center, in the event of actual or likely overloads, distributes the total load on the system.
	-Automated mapping and facilities management (AM/FM) The latest geographical maps with the electrical network merged on it are a boon for both Troubleshooting and Routine field maintenance of devices such as relaying of under-ground cables etc.
,	-Trouble call management system In APTRANSCO project the information of outage of supply reported by the customers will be collected at fuse-off call centers. By connecting up all the fuse-off call centers to DCC, the operator at DCC can make an analysis and send rectification gangs for supply restoration.

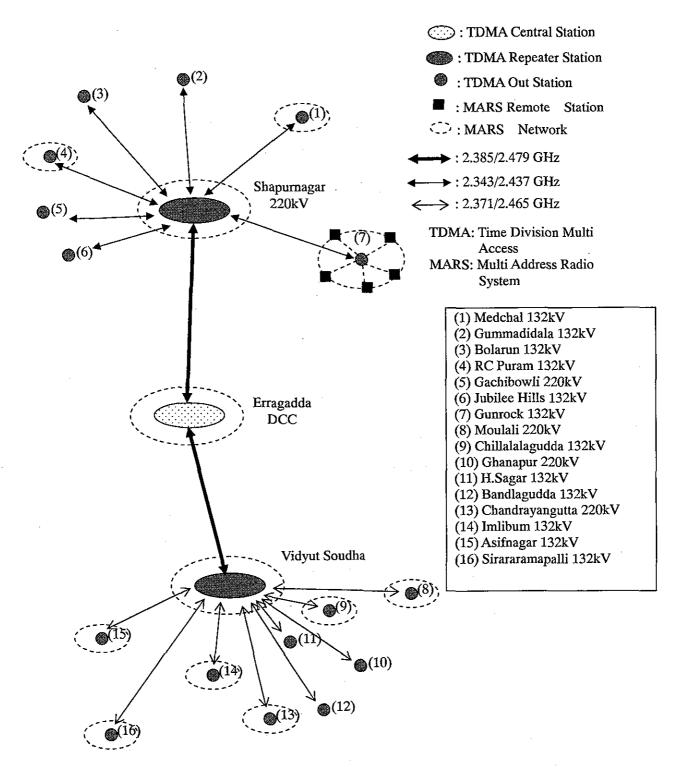


Figure 4.1 Network connection for Hyderabad SCADA system

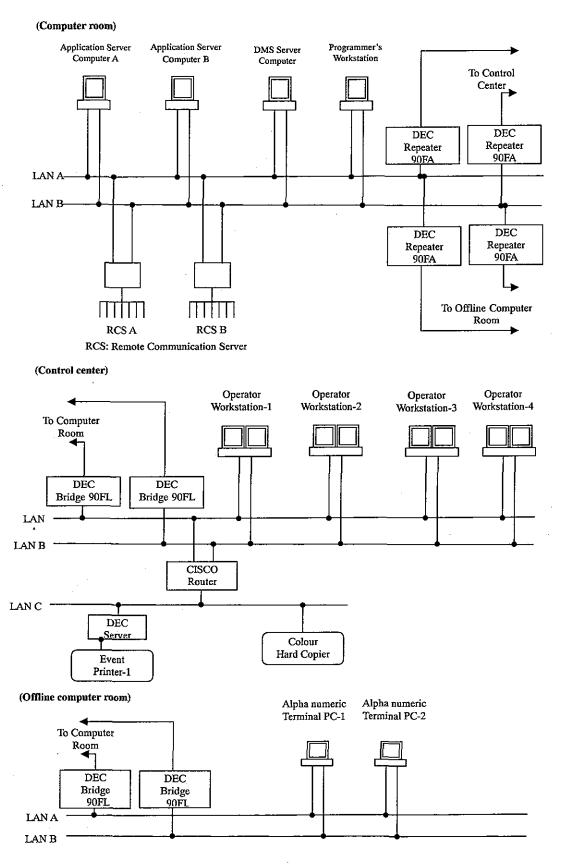


Figure 4.2 DCC computer system

As a conceptual design example, a design such as Figure 4.3 is expected. This design is based on the idea that the existing RF communication route should be most used.

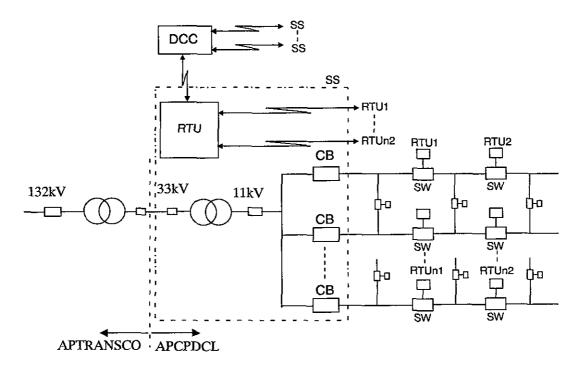
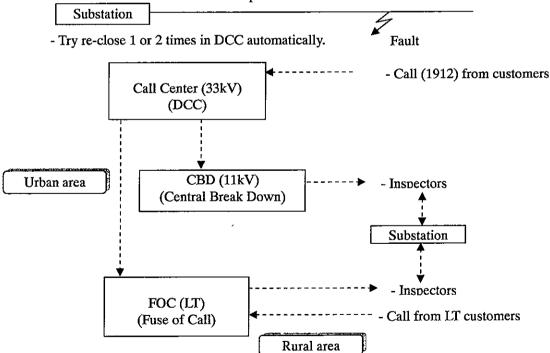


Figure 4.3 Distribution SCADA configuration

4.2.2 Follow-up Survey Regarding SCADA Improvement

For the purpose of SCADA improvement, the following items were also studied through the persons in charge of Indian side.

- Restoration procedure for feeder fault
- Priority of functions for DMS (Distribution Management System)
- Communication system configuration for distribution SCADA
- Feeder fault frequency and feeder specification study
- Substation configuration and monitoring items
- Some review items for existing SCADA


(1) Restoration Procedure for Feeder Fault

With respect to the purpose of a distribution SCADA system, a reduction of outage time is expected through measures such as automatic separation of the fault section and remote restoration operation. Therefore, the possibility of improvement for this reduction was studied.

(a) Procedure

Figure 4.4 shows the procedure to be taken when a feeder fault occurs. Operators at substation learn a fault by alarms and customers call to the Call Center or FOC. The CBD does not receive a call but is put in charge of 11 kV feeder affairs.

After fault, re-closing of feeder circuit breaker is tried twice. If the fault remains, the fault section detection is executed with connection to inspectors. For separating the fault section, manual AB switches (Refer to Annex 4.1) are operated on the field side. In urban area, the Call Center connects with CBD operators.

- Restoration period: 10~15 minutes for a small feeder, 30~60 minutes generally

Figure 4.4 Feeder fault and restoration procedure

(b) Outage Time

A period of one outage is from 10 to 15 minutes for a small size feeder and generally, from 30 to 60 minutes. Two categories of interruption and break down exist; the period of the former is less than 30 minutes and that of the latter is more than 30 minutes.

(2) Priority of Introduction of DMS Functions

The existing SCADA has functions of DMS. Some of these functions should be put to use, and the priority of introduction is as shown in Table 4.2 that is based on a SCADA operator's opinion.

Fault location has the first priority and Load balancing the second. These contribute to improvement of reliability and reduction of loss, respectively.

Table 4.2 Priorities of DMS functions

Function	Priority
a. Emergency load shedding (for HV customer)	6
b. Load control (for HV customer)	4
c. Automatic meter reading (for HV customer)	3
d. Fault location	1
e. Load balancing	2
f. Automated mapping and facilities management (AM/FM)	7
g. Trouble call management system	5

(3) One Idea of Communication System Configuration for Distribution SCADA

The communication structure is already shown in Figure 4.1. In this section, one idea of extending the network for distribution SCADA communication is shown in Figure 4.5. In this case a polling master is newly installed at substation where a master MARS is equipped. In another case pole top RTUs can be directly connected with DCC.

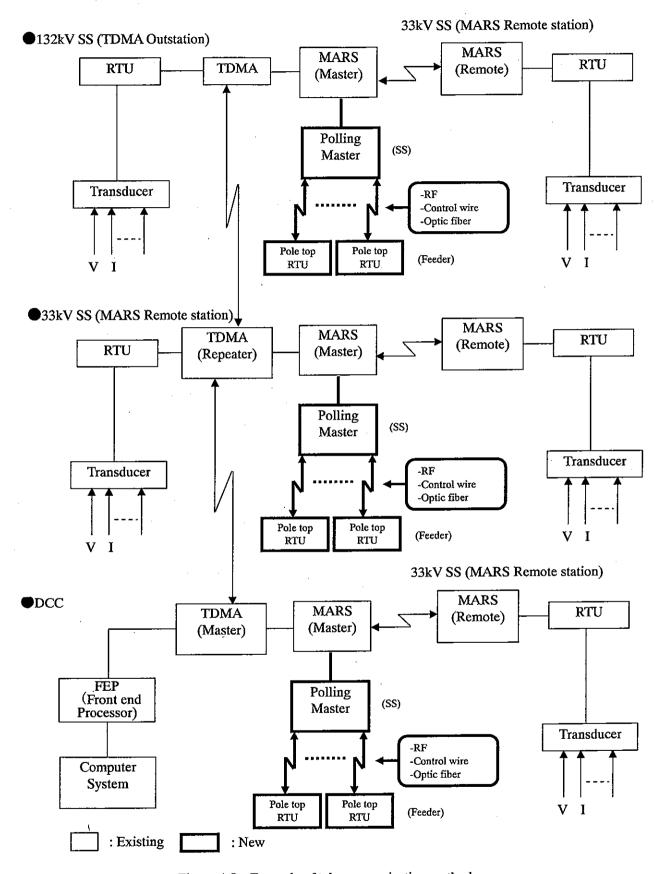


Figure 4.5 Example of telecommunication method

(4) Feeder Fault Frequency and Feeder Specification Study

In order to study the introduction of distribution SCADA, the study was done with respect to feeder specifications such as length, maximum load and expanding form (Refer to Figure 4.6) and the outage period caused by interruption and break down faults. The results are shown in Annex 4.2.

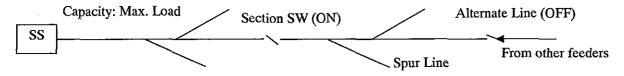


Figure 4.6 Feeder data items

Table 4.3 shows the summary of results. As for the data per one feeder, maximum load is approximately identical in both Ranga Reddy and Hyderabad, but Ranga Reddy is a little longer than Hyderabad in length. The amount of outage in Ranga Reddy is also larger than that in Hyderabad.

Table 4.3 Results of feeder survey

Team	I	Ranga Red	dy		Hyde	rabad		Total
Item	North	South	Total	North	Central	South	Total	Total
Number of substations	22	13	35	30	14	17	61	96
Number of feeders	121	58	179	178	87	102	367	546
Max load (A/F)	111	107	109	100	100	116	104	106
Length (km/F)	9.9	12.3	10.7	4.7	5.0	3.9	4.5	6.5
Sec. SW (Nos./F)	2.0	1.5	1.8	1.6	1.4	1.5	1.5	1.6
Spur line (Nos./F)	4.2	5.5	4.6	4.9	4.7	5.0	4.9	4.8
Alternate line (Nos./F)	0.5	0.9	0.6	1.7	1.3	1.8	1.6	1.3
Outage I+B(Nos./F/M)	5.7	9.1	6.9	4.2	3.7	4.6	4.1	5.0
Outage I+B (minutes/F/M)	56	171	93	78	62	82	75	81

I: interruption, B: breakdown, F: feeder, M: month

4.3 Introduction of Distribution SCADA System

In this section, the possibility for Distribution SCADA introduction is studied with respect to the mainly economical estimate for the substations covered by the existing SCADA. This estimate is conducted on the basis of the average data derived from "4.2.2(4) Feeder Fault Frequency and Feeder Specification Study".

4.3.1 Area to be covered

Among the substations (106) monitored and controlled by the existing system, the study was focused on 96 substations because the data of these 96 substations are available. The details of 106 substations are shown in Table 4.4.

The details of the survey are shown in The Annex 4.2 and summarized in Table 4.5. This table includes some outage energy data regarding the area substations. The amount of energy is nearly equal to the accumulating base value shown in the following section.

			e 4.4 Details	s of substation	number		
	•		Total A	Area			
			100	5			
	N	lorth	•		So	uth	
		49			5	7	
Hyderaba	ad City	Ranga	Reddy	Hyderaba	d City	Ranga F	Reddy
34	•	1.	5	33		24	
EHV	33/11kV	EHV	33/11kV	EHV	33/11kV	EHV	33/11kV
(132/33kV)		(132/33kV)		(132/33kV)		(132/33kV)	
4	30	3	12	2	31	4	20

Table 4.4 Details of substation number

Table 4.5 Nos. of substations and feeders with some outage energy data

	74			Ranga Redy	Ranga Redy	Kanga Kedy	Hyderabad	Hyderabad	Hyderabad	Hyderabad	Hydera.+R.R.
	Item			North	South	Gross (1)	North	Central	South	Gross (2)	(1) + (2)
	Current(A/fe		•	110.6	107.0	109.3	100.0	100.4	116.1	104.0	
Maximum load					1					1	
	(kVA/feeder) (1)		2,107.2	2,038.6	2,082.4	1,905.2	1,912.8	2,211.9	1,981.4	
Power factor (b)			0.85	0.85	0.85	0.85	0,85	0.85		
Load factor (c)				0.7	0.7	0.7	0.7	0.7	0.7	0.7	
Average load(k	W) (2)			1,253.8	1,212.9	1,239.0	1,133.6	1,138.1	1,316.1	1,178.9	
A	(m/feeder/M) (d)		55.6	170.7	93.3	78.1	62,2	81.5	74.7	
Outage period	(m/feeder/Y)	(3)		667.2	2048.4	1119.6	937.2	746.4	978	896.4	
Outage energy	(kWh/feeder,	/Y) (4)		13,942	41,410	23,120	17,707	14,158	21,452	17,613	
Substation Nos				22	13	35	30	14	17	61	96
Feeder Nos(e)				121	58	179	178	87	102	367	546
Outage energy	(kWh/Area/Y	Y) (5)		1,686,952	2,401,778	4,138,494	3,151,799	1,231,774	2,188,152	6,464,092	10,602,587
	(Rs/kWh)	Rs	46.5	4.000	4.000	4.000	4.000	4.000	4.000	4.000	
Tariff (f)	(US\$/kWh)	US\$	1	0.086	0.086	0.086	0.086	0.086	0.086	0.086	
	(Yen/kWh)	Yen	120	10.323	10.323	10.323	10.323	10.323	10,323	10.323	
Tariff incom	(Rs/Y)			6,747,810	9,607,111	16,553,978	12,607,198	4,927,094	8,752,609	25,856,369	42,410,346
	(US\$/Y)			145,114	206,605	356,000	271,123	105,959	188,228	556,051	912,050
reduction (6)	(Yen/Y)			17,413,702	24,792,545	42,719,942	32,534,704	12,715,082	22,587,378	66,726,113	109,446,055

 $⁽¹⁾⁼⁽a)\times 11kV\times 3^{0.5}$

⁽b): JICA Information booklet

⁽c): O&M data

⁽²⁾=(1)×(b)×(c)

 $⁽³⁾⁼⁽d)\times 12$

 $^{(4)=(2)\}times(3)/60$

⁽⁵⁾⁼⁽⁴⁾x(e)

 $^{(6)=(5)\}times(f)$

4.3.2 Assessment of the Existing System

(1) Substation Configuration and Monitoring Items

The basic substation structures and the monitoring items are shown in Figure 4.7. Circuit breakers in substations of DISCOM are also monitored and remotely operated from SCADA center as well.

(2) Some Review Items for Existing SCADA

Officers in charge pointed out some items to be improved as follows. Among these items, there are some points that will improve the existing SCADA and need the distribution SCADA functions.

(a) All outdoor substations

Problem:

Only one GC breaker on 33 kV is available; Transformer protection relays (Buchholz + Temperature) for all 3 phases transformers are connected to one GC breaker. If any fault happens on any transformer at an outdoor substation, the GC breaker will trip. In this case, 2 transformers cannot be charged from SCADA, since no independent breaker is available for each transformer.

Improvement:

Propose to install an independent 33 kV breaker for each transformer.

(b) All the isolators

Problem: All the isolators (AB switches) are now of manual operation type.

Improvement: They may be motorized.

(c) Transducer supply power

Problem: AC power is supplied. Even when the incoming supply fails, total remote operation will be lost.

Improvement: Change all transducers to DC power supply type.

(d) Bus Coupler Breaker

Provide instead of isolator (AB switch) for all outdoor substations.

(e) Operation of transformer and breaker

All transformers and breakers should be loaded up to 50 % of capacity, so that an alternate supply can be arranged from SCADA.

(f) Operation of 11 kV feeder

All 11 kV feeders should be loaded up to 100 amperes, since CT ratio of almost all 11 kV feeders is 200/5 amperes. In case of emergency, one feeder should be able to take alternate feeder load by choosing sectionalizer.

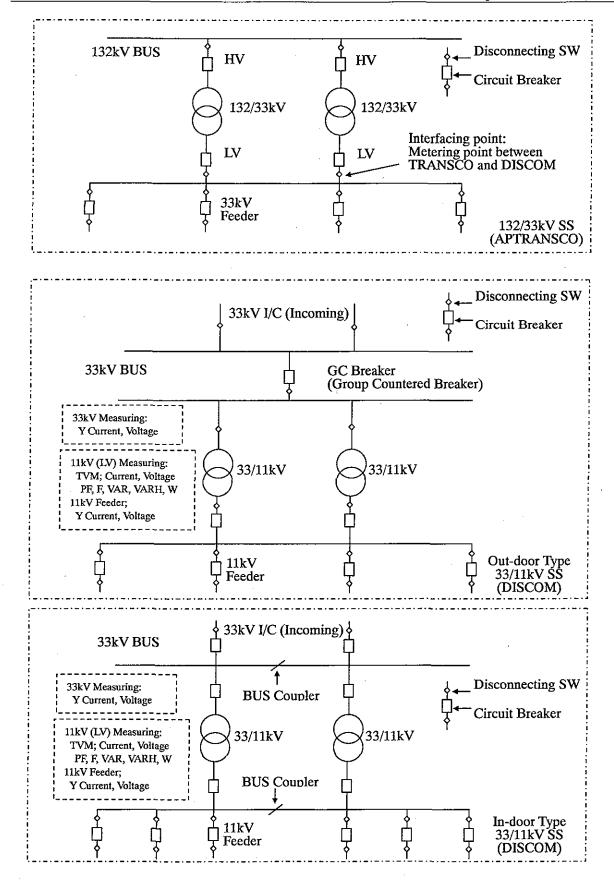


Figure 4.7 Substation configuration and monitoring items

(3) Effectiveness of Distribution SCADA

As mentioned above, the existing SCADA seems to monitor the system and control up to the distribution substations. The functions such as monitoring and controlling feeder current or transformer load, however, are expected to be present in the SCADA system. These functions indirectly realize load leveling of feeders in a substation and reduce feeder ohm loss.

In addition to these functions, the faulty zone sectionalization seems to be needed because the outage period is very long as shown in Annex 4.2.

Therefore, loss recovery energy by balancing of feeder load and lost energy by outage are estimated as follows.

(a) Outage Energy Estimate

Lost energy (kWh) by outage is calculated for every feeder based on its fault data. The equation is as follows.

 $E (kWh/year) = MA \times V \times 3^{1/2} \times PF \times LF \times OPM/60 \times 12 (months)$

MA: Maximum ampere for a month, V: 11 kV, PF: Power factor 0.85,

LF: Load factor 0.7, OPM: Outage period for a month (minutes)

The result is shown in Annex 4.3.

(b) Recovery Energy by Load Balancing of Feeders in a Substation

Loss energies at maximum amperes and at leveled amperes are calculated as follows and recovery energy is derived as the difference between the two calculated energy values.

Em (kWh/year) = $3 \times MA^2 \times Ru \times L \times 24(h) \times 365(days) \times LF \times DLF$

MA: Maximum ampere, Ru: Ohm/km, L: Feeder length(km), LF: Loss factor= $aF+(1-a)F^2=0.553$ at a=0.3 F(load factor)=0.7, DLF(Dispersal loss factor): 0.33 at flat load on feeder

El (kWh/year) = $3 \times LA \times Ru \times L \times 24(h) \times 365(days) \times LF \times DLF$

LA: Leveled ampere, others are same as above.

The result is shown in Annex 4.4.

4.3.3 Design

(1) Communication Method

The communication methods between pole top RTUs and DCC (Distribution control center) are shown in Table 4.6. Every method has merits and demerits, respectively. In this survey, Radio and Fiber Optic Cable methods seem to be available from the view point of cost as studied in the following section and because a lot of fiber optic cables have been laid in Hyderabad. The Power Line Carrier (PLC) method is not available here because the distribution network is directly earthed and PLC cannot be used.

Table 4.6 Comparison of communication methods

Method	Merit	Demerit
Radio Communication	 No selection for cable route and it's number, Freedom for places, where RTUs are installed, Easy for increase of facility. 	- Low reliability of transmission.
Control Cable	(par km) of switches is large.	 Not proper for the case where the distance between switches is large because of expensive cost Need an amplifier, in some case.
Power Line Carrier (V0 Signal)	distribution lines exist.	 Low reliability of transmission. Some influence because of using distribution line. Unusable for direct earth network.
Fiber Optic	signal transmission. -Few number of cables because of large capacity par one cable.	 Need the special technique for cable connecting etc. Impossible to make a small radial curve. Low efficiency for small scale transmission signals.

(2) Faulty Zone Sectionalization

Figure 4.8 shows a mechanism for detecting a faulty zone. This function is expected to be equipped first while introducing distribution SCADA.

- ◆ Step 1 : CB opens because of a fault on the section 2.
- ◆ Step 2 : CB closes and charges the section 1.
- ◆ Step 3: The first SW tries to close.
- ◆ Step 4 : CB opens again because the fault remains in the section2. The first SW is locked not to close next.
- ◆ Step 5 : CB closes again and the first section is charged. The first SW, however, is not able to close because of lock mode.
- ◆ Step 6: The SW tied to a neighboring feeder closes to charge a no-fault section.

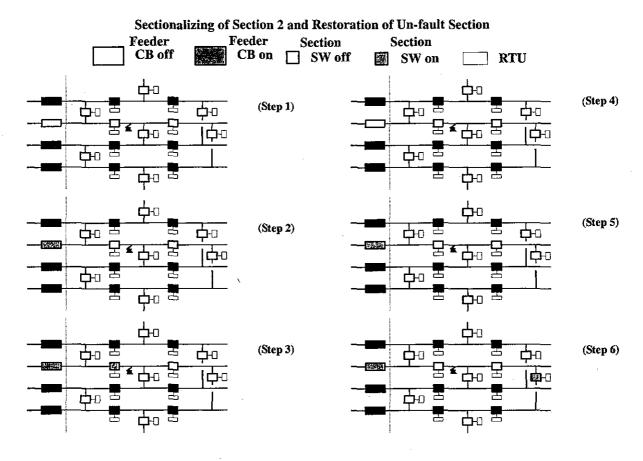


Figure 4.8 Faulty zone sectionalization method

(3) Load Balancing by Back Up from a Neighboring Feeder

Figure 4.9 shows an example of network connection for load balancing. Every section on a feeder can be also supplied with electric power from another feeder. Tie-line switches are usually open and they will be closed depending on feeder load conditions, namely, if a back up supply is available.

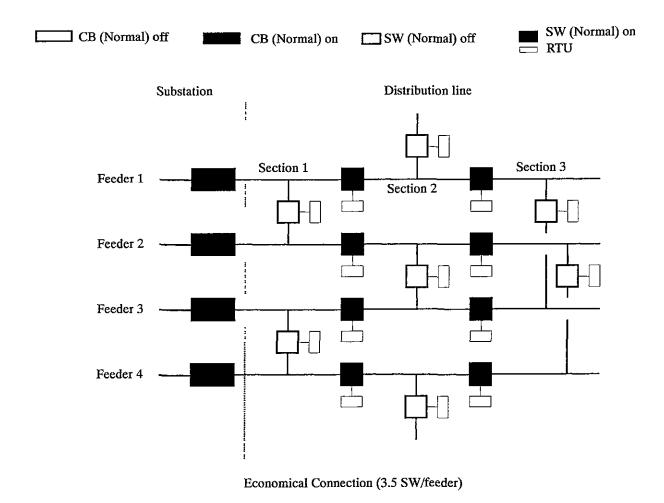


Figure 4.9 Example of distribution connection for load balancing

4.3.4 Cost Estimate

The NPV (Net Present Value) method is adopted in this cost estimation. This method is considered practical or theoretical when a social discount is difficult to decide.

(1) Costs of Components

At first, the costs of components used in distribution SCADA system were surveyed in India and Japan. The results are shown in Table 4.7. Based on this table, every component cost is decided for economical estimate of system introduction.

(2) Benefits of System Introduction

As for benefits of the distribution SCADA, three advantages are considered in this estimate as follows.

(a) Reduced outage period and recovery of supply energy and tariff income

The amount of outage energy is described in "4.3.2 (3) (a)". But the amount of energy recovered depends on the number of sections on a feeder that are made by automatic switches. For example, if a feeder is separated into two sections by one automatic switch, the amount of power (kW) during outage period decreases by half and the outage period also decreases by half because the inspection zone is reduced by half. As a result, the outage energy (kWh) is reduced by quarter. This means that the energy is recovered by 3/4 by means of faulty zone sectionalization.

- ✓ Section Nos. = 2 : Recovered energy 3/4 (1-1/4) (mentioned above)
- ✓ Section Nos. = 3 : Recovered energy 8/9 (1-1/9)
- ✓ Section Nos. = 4 : Recovered energy 15/16 (1-1/16)

(b) Loss energy recovery by load balancing of distribution feeders

The amount of loss recovery energy is described in "4.3.2 (3) (a)". The procedure for load balancing seems to be difficult but the calculated amount is applied to the estimate.

(c) Reduced personnel expense

Distribution SCADA enables reduction of the service crew because the fault section can be isolated by remote- control facilities installed at a distribution control center. The crew can be reduced by about one person in every substation.

(3) Conditions for Estimate

Conditions for approximate estimate are shown in Table 4.8 considering above (1) and (2). This table includes other values than cost and benefit such as social discount rate and price index increasing rate etc.

3,871

Table 4.7 Costs of components

Exchange Rate US\$ Rs Yen Yen/Rs 1 46.5 120 2.58 Pole mounted device Bold font: original value Rs Yen Remark Item unit Materials Construction Materials Construction (Example in Japan) Controle cable Automatic SW 142,360 26,956 367,380 69,564 41,543 107,208 23,180 8,982 method Power supply transformer device (metallic,optic fiber) Pole mounted RTU 540,284 209,360 36,659 94,604 393,263 72,597 1,014,872 187,348 Sub total set Distribution PLC 26,956 Automatic SW 142,360 367,380 69,564 32,819 method Power supply transformer device 144,658 12,717 373,312 Pole mounted RTU 193,860 30,661 500,284 79,124 Sub total set 480,878 70,334 1,240,976 181,507 Current sensor device 24,800 11,548. 64,000 29,800 (Example in India) Radio Frequency Automatic SW 362,500 935,484 1.25×below method (with pole top RTUs cum set 748,387 Value in 1996 290,000 tranceiver and 3 phase PTs) 221,250 570,968 1.25×below Pole mounted RTU cum tranceiver at DTR device Value in 1996 177,000 456,774 (Old) Remote metering HV service 1,064,516 1.25×below 412,500 with Pole mounted set and 11kV breaker, metering 851,613 Value in 1996 330,000 sets. (Latest) Remote metering HV service 1,500 3,871 GSM Modem(12500Rs) 13,500 34,839

| Labour inc. wire cost(1500) | Data: Development of 'Distribution Automation' Project at 33/11 kV Gachibowli SS jointly with M/s CMC Limited.

23,500

1.500

60.645

7,380,418

6,150,348

1.2×below

Value in 1998

SIM Card(1000),Labour(1500)

LV,CT TVM with box(10000) Modem(12500),SIM Card(1000)

(Read DTR or LV)

Master RTU (DCC) Master RTU (DCC) Repeat RTU(SS) Sub total	device	9,687,500 7,750,000	Construction 116,250	Materials 25,000,000	Construction	Remark
Master RTU (DCC) Repeat RTU(SS) Sub total			116,250	25,000,000	200.000	
Master RTU (DCC) Repeat RTU(SS) Sub total			116,250	25,000,000	200.000	1
Repeat RTU(SS) Sub total p))	device	7,750,000			300,000	
Sub total	device		116,250	20,000,000	300,000	
p))		3,875,000	38,750	10,000,000	100,000	
	set	11,625,000	155,000	30,000,000	400,000	
• < >>	km	212,738	400,094	549,000	1,032,500	
16p))_	km	116,250	581,250	300,000	1,500,000	
tanceiver	device	27,125		70,000		<u></u> .
Communication equipment(SS) MARS Master, radio Tower, Anntennas,	set	5,775,000		14,903,226		1.25×below
ables Communication I/F and Testing equipment)		4,620,000		11,922,581		Value in 1996
substation RTU with		955,000		2,464,516		1.25×below
Tele signal and tele comand,	device	764,000		1,971,613		Value în 1996
	oiect at	33/11 kV G	achihowli SS is	nintly with M/s	CMC Limited	
AAR System (Master or	<u>ojeci ui</u>	300,390		775,200		1.2×below
tepeater Station)		250.325	••••••	646,000		Value in 1998
AAR System (Remote			· -	158,895		1.2×below
tation at 33/11kV SS)	i	51,310		132,413		Value in 1998
TU(96staus inputs, 72		490,987		1,267,064	-	1.2×below
		409,156		1.055,886	***************************************	Value in 1998
TU(96staus inputs, 72		855,360		2,207,381		1.2×below
utputs for 33/11kV SS)		712,800		1,839,484		Value in 1998
	il 1998))	-			
		25,000		64,516		minimum
•		50,000		129,032		maxmum
	MARS Muster, radio Tower, Anntennas, these Communication IF and Testing equipment) ubstation RTU with ranceiver, transducer/TVM, ele signal and tele comand, harger etc. Toistribution Automation' Properties of the properties of	MARS Muster, radio Tower, Anntennas, bet Schmidter Communication IF and Testing equipment) substation RTU with an energy of the signal and tele comand, harger etc. To istribution Automation' Project at MAR System (Master or tepeater Station) MAR System (Remote tation at 33/11kV SS) TU(96staus inputs, 72 analog inputs, 48 control utputs for 33/11kV SS) TU(96staus inputs, 72 analog inputs, 48 control utputs for 33/11kV SS) TU(96staus inputs, 72 analog inputs, 48 control utputs for 33/11kV SS) ment of SCADA System (April 1998) 20 c) km	ARS Muster, radio Tower, Anntennas, best S,775,000	ARS Muster, radio Tower, Anntennas, bet 25,775,000	ARS Master, radio Tower, Anntennas, bet S,775,000 14,903,226	Set S,773,000 14,903,226

300)
Data: Contract Agreement of SCADA System (April 1998)

Radio Frequency

method

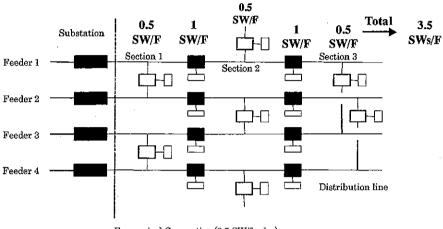
Remote Communication

Server (Reddundant RCS

2,859,912

Table 4.8 Conditions for estimate

	Item	 1		Value	Remark
Social Discount				0.05	
Price Index Increa	sing			0.01	1
Exchange Rate	_	Yen/US\$	•	120	
_		Rupee/US\$		46.5	
		Yen/Rupee		2.58	1
Facilities					·
Feeder Number	Nos/SS (RR and	Hyderabad)		6.00	T
Feeder Length	km/Feeder(RR a	,		6.50	
	`	,			
Construction Cost	(Rs)				
		Materials(India)	362,500	405.005	1
	SW,RTU etc.	Construction(Japan)	72,597	435,097	
Pole Mounted	SW,RTU etc. (for	Materials(Japan)	480,878	554.040	
Device (per unit)	PLC)	Construction(Japan)	70,334	551,212	
. ,	Radio Communication	Materials(India)	13,500	4.7.000	_
	Device (GSM Mobile)	` ' '	1,500	15,000	
		Materials(Japan)	212,738		
Communication	Metaric Cable	Construction(Japan)	400,094	612,832	
Line (per km)		Materials(India)	50,000		
, u	Fiber Optic cable	Construction(Japan)	581,250	631,250	
		Materials(India)	490,987	540.006	
	For RF at SS (RTU)	Construction(Japan)	49,099	540,086	
·	T. D. C. (60	Materials(Japan)	3,875,000	2.042.550	
	For PLC at SS	Construction(Japan)	38,750	3,913,750	
i	MAR for RF at SS	Materials(India)	300,390	220 420	_
	(MAR Master)	Construction(Japan)	30,039	330,429	·
RTU etc. at SS,	MAR for RF at SS	Materials(India)	61,572		
DCC per unit)	(MAR Remote)	Construction(Japan)	6,157	67,729	
<u> </u>	For Metallic Cable,	Materials(Japan)	9,687,500		
	Fiber at DCC	Construction(Japan)	116,250	9,803,750	
	 -	Materials(India)	7,750,000		_
	For PLC at DCC	Construction(Japan)	,	7,866,250	
		Materials(India)	2,859,912	 -	-
	RCS for RF at DCC	Construction(Japan)		2,976,162	
Maintenannce(%)	 -	[(<u></u>)	,	3	† '
Benefit Estimate					<u> </u>
Tarrif(Rs/kWh)				5	
Outage Energy Re	duction	kWh/Feeder/Y(RR and I	Hyderabad)	19,729	(*1)
Loss Energy Reco		kWh/SS/Y(RR and H	· 'I	97,096	(*1)
Woerkers' Number		Rs/SS/Y	.j.uv.avauj	120,000	One person
Julius rumiyo	2.00001011	20,00,4		220,000	Jane Person
(*1): Refer to Ann	ov 4.4	<u> </u>		<u> </u>	<u> </u>


	Outage Energy	Loss Energy		
	(kWh/Y)	Recovery (kWh/Y)	Feder NO	SS NO
RR	4,772,941	6,287,610	179	35
Hyderabad	5,999,138	3,033,577	367	61
Total	10,772,079	9,321,187	546	96
A	19,729	97,096		
Average	(kWh/Feeder/Y)	(kWh/SS/Y)		

4 - <u>2</u>2

4.3.5 Plan of Introduction

(1) Section Number and Number of Pole-mounted Automatic Switches (SWs)

At first, the relation of section number and SW number is considered as Figure 4.10. For example, in case of 2 sections per one feeder needs 1 SW for separation and 0.5+0.5 SW for 2 sections to be connected with neighboring feeders. Here, 0.5 SW means that 1 SW is connected with 2 feeders. As a result, isolation of 2 sections needs 2 SWs per one feeder. The relation is concluded on the basis of Table 4.9 as follows. The relation between section number and recovery energy is also shown in Figure 4.11 and Table 4.9.

Economical Connection (3.5 SW/feeder)

Figure 4.10 Section number and SW number

Section NOs Vs Recovery Energy Rate

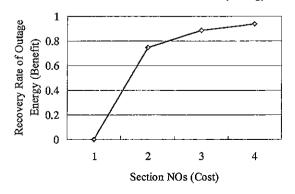


Figure 4.11 Section number and energy recovery rate

Table 4.9 Relation between section number, and SW number and energy recovery rate

Section Number/feeder	SW Number/Feeder	Energy Recovery Rate
2	2	3/4
3	3.5	8/9
4	5	15/16

(2) Number of SWs and Economical Estimate

Based on Tables 4.8 and 4.9, cost and benefit were estimated by changing the number of SWs. Table 4.11 shows the result of a case of 2 to 5 per feeder SWs.

The estimate conditions are as follows:

- Cost only includes pole-mounted automated switches and its attached devices.
- ◆ Substation Nos and Feeder Nos are 96 and 546, respectively.
- ♦ Construction period is 5 years.

From this result shown in Table 4.10, feeders of 2 or 3 sections seem to be available with Fiber Optic Cable or RF method of communication.

Table 4.10 Number of section switch and economical estimate

(Million Rs)

Number of sections	No. of switches /feeder	Equipment Cost	NPV (20 Year)	Recovery Period
2	2	511	528	8 years
3	3.5	894	137	16 years
4	5	1,277	▲313	Over 20 years

(3) Policy for Introducing Distribution SCADA

(a) Section number

2 or 3 (Number of switches is 2 or 3.5 per feeder).

(b) Communication method

Fiber Optic Cable or RF depending on the site condition.

(c) Priority for introduction

Economical aspects are considerably different from substation to substation. Hence priority should be given to introducing the system to substations.

Table 4.11 Example of estimate

Section SW No.: 2/Feeder

Cash Flo	ow Analysis (I	Cash Flow Analysis (Money unit: 10° Rs)	S)																						
Relative Year	Year			0	1	2	E	4	5 6	7	×	6	2	11	12	13	14	15	16	17	18	19	20	-	Total
Calender Year(n)	r Year(n)			2004	2005	2006	2007	2008 20	2009 20	2010 2011	1 2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024 T	Total E	Equip.
Discount=1/(1+i)	t=1/(1+i)"	rate i= 0.05		000.1	1.000 0.952 0.907	-	0.864 0.	0.823 0.7	0.784 0.746	46 0.711	1 0,677	7 0.645	0.614	0.585	0.557	0.530	0.505	0.481	0.458	0.436 0.416		0.396	0.377		
Price=(1+i)	+i)"	rate r= 0.01		1,000	1,000 1,010 1,020		1.030 1.	1.041 1.0	1.051 1.0	1.062 1.072	72 1.083	3 1.094	1,105	1.116	1.127	1.138	1.149	1.161	1.173	1.184	1.196	1,208	1.220		
Amount	Amount of Construction Facilities	on Facilities					1																	1	
Substatio	Substation Number			20	20	20	22	16	F	L	0 0	L	0	0	0	0	0	0	0	0	F	-	6	96	
Feeder Number	\umber	(SS/soN) 9		120	120	120	120	96	0	0	0 0	0	0	ō	0	0	0	0	-	0	-	0	0 5	576	
Feeder L	Feeder Length(km)	6.5 (km/Feeder)		780	780	780	780	624	0	0	0 0	_	0	0	0	0	0	0	=	0	0	0	0 3,	3,744	
Cost										l											1	1		1	
Pole	a.SW,RTU	0.4351 (106 Rs/Unit) Acquisition Cost 104.42 105.47	Acquisition Cost 1	04.42		106.52 10	107.59 86	86.93 0.	0.00	0.00 0.00	00.0	0.00	0.00	0.00	0.00	000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	511	
Mounted	d etc.	2 (Nos/Feeder)	(Nos/Feeder) Maintenance	3.13	6,30	9,49 12	12.72 15	15,33 15,	15.33 15.33	33 15.33	3 15.33	15.33	15.33	15.33	15.33	15.33	15.33	15.33	15.33	15,33	15.33	15.33	15.33 2	292	
Device	Maintenance Factor	3 (%)		┝		_		_	-		_							Γ	T		 		\vdash		
	Total Cost	130	Current Value 107.6	07.6	111.8	116.0 12	120.3 10	102.3	15.3 15	15.3 15.3	3 15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3 8	803.1	5111
	TOIGI		Present Value 107.6 106.4 105.2	07.6	106.4		103.9	84.1 12	12.0 11	11.4 10.9	9 10.4	6.6	9.4	0.6	8,5	8.1	7.7	7.4	7.0	6.7	6.4	6.1	5.8 2	292.2	
Benefit																1	1	1	1		1		4		
Outage	19,729	(kWh/Feeder/Y) Current Value	Current Value	6.8	17.8	26.6	35.5 4	42.6 42	42.6 42	42.6 42.6	5 42.6	42.6	42.6	42.6	42.6	42.6	42.6	42.6	42.6	42.6	42.6	42.6	42.6	813	
sso ₁	94,096	(kWh/SS/Y)	Current Value	6.7	19.4	29.1	38.8 4	46.6 46	46.6 46	46.6 46.6	5 46.6	46.6	46.6	46.6	46.6	46.6	46.6	46.6	46.6	46.6	46.6	╄	46.6	688	
Worker	r 0.12	(10° Rs/SS/Y)	Current Value	2,4	4.8	7.2	9.6	11.5 11	11.5 11	11.5 11.5	5 11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	220	
Tariff Rate	ite 5	(Rs/kWh)			_	-	-	\vdash	H	L	_	L	L			Γ			T	T	T	٠.	╄	Τ	
Outage F	Outage Reduction Rate	0.75											-										_		
 					7		-	_	-																
Total	i		Current Value	21.0	42.0	63.0 8	84.0 10	100.7 100	100.7 100.7	1.7 100.7	7 100.7	100.7	100.7	100.7	100.7	100.7	100.7	100.7	100.7	100.7	100.7	100.7	100.7 1,	1,922	
Benefit	1		Present Vallue	21.0	40.0	57.1	72.5 8	82.9 78	78.9 72	75.2 71.6	6 68.2	64.9	61.8	58.9	56.1	53.4	50.9	48.5	46.2	44.0	41.9	39.9	38.0 1,	1,172	
Return]	
	Benefit . Total Cost	tal Cost	Current Value -86,6		8.69-	-53.1	-36.4	-1.5 85	85.4 85	85.4 85.4	4 85.4	85.4	85.4	85.4	85.4	85.4	85.4	85.4	85.4	85.4	85.4	85.4	85.4 1,	1,119	
	or - monor	ter Cost	Present Vallue -86.6		-66.5	-48.1	-31.4	-1.2 66	6.99	63.7 60.7	7 57.8	55.1	52,4	49.9	-47.6	45,3	43.1	41.1	39.1	37.3	35.5	33.8	32.2 5	528	
Return,	Return Accumulation	υ						į]]	
	Benefit - Total Cost	tal Cost	Current Value -86.6 -156.4 -209.4	-86.6	156.4	-	-245.8 -24	-247.3 -161.9	1.9 -76.5		9.0 94.4	179.8	265.2	265.2 350.6 436.0	436.0	521,4	521,4 606.8	692.3	17.7.7	692.3 777.7 863.1 948.5		1033.9 1119.3	19.3		
	~~ **********	tar Cour	Present Value -86.6 -153.0 -201.2	-9.98-	153.0 -		-232.6 -23	-233.8 -166.9 -103.1	6.9 -10	3.1 -42.4	4 15.4	70.4	122.9	122.9 172.8 220.4	220.4	265.7	308.8	349.9	389.0	426.3	61.8 4	265.7 308.8 349.9 389.0 426.3 461.8 495.6 527.8	27.8		
											l	l						1	1	ĺ		1	1		

(Table 4.11 Continue) Section SW No.: 3.5/Feeder

Cash	h # low Anaiysis (Cash # low Analysis (Money unit: 10 KS)																							
Relai	Relative Year			0	1	2	3	4	9 2	7	8	6	10	11	12	13	14	15	16	17	18	19	20	⊢	Total
Cale	Calender Year(n)			2004	2005	2006	2007 2	2008	2009 20	2010 2011	11 2012	2 2013	3 2014	2015	2016	2017	2018	2019	2020	2021	2022 2	2023 2	2024	I otal	Equip.
Disc	Discount=1/(1+i)"	rate i= 0.05	0.05	1.000	1.000 0.952 0.907	lo.	.864 0.823		0.784 0.7	0.746 0.711	11 0.67	0.677 0.645	5 0.614	0.614 0.585 0.557	0.557	0.530	0.505 0.481		0.458 0	0.436 0.416		0.396 0.	0.377	\vdash	
Price	Price=(1+i)"	rate r= 0.01		1.000 1.010		1.020 1	.030	1.041 1.0	1.051 1.062	62 1.072	72 1.083	3 1.094	1.105	1.116	1,127	1.138	1.149	1.161	1,173	1.184	1.196 1	1.208 1.	1.220	Γ	
Amo	Amount of Construction Facilities	ion Facilities		•																				}	
Subs	Substation Number			20	20	20	20	16	. 0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	5 0	96	
Feed	Feeder Number	(SS/soN) 9		120	120	120	120	96	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	576	
Feed	Feeder Length(km)	6.5 (km/Feeder)		780	780	. 082	780	624	0	0	0	0	0	٥	0	0	0	0	0	0	0	0	0 3,	3,744	
Cost																									
Ĕ	Pole a.SW,RTU	0.4351 (106 Rs/Unit) Acquisition Cost 182.74 184.57 186.41	Acquisition Cost 1	182.74	184.57	뜨	88.28 15	152,13 0.	0.00 0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0:00	0.00	0.00	0.00	0.00	0.00	0.00	894	
Mor	Mounted etc.	3.5 (Nos/Feeder) Maintenance		5.48	11.02 1	5.48 11.02 16.61 22.26		26.82 26.	26.82 26.82	32 26.82	2 26.82	26.82	26.82	26.82	26.82	26.82	26.82 2	26.82	26.82 26	26.82	26.82 26	26.82 26	26.82 5	511	
De	Device Maintenance Factor	3 (%)					H			L								Ħ				-			
<u> </u>	Tetal		Current Value 188.2	188.2	195.6 2	195.6 203.0 210.5		179.0	26.8 26.8	.8 26.8	8 26.8	26.8	26.8	26.8	26.8	26.8	26.8	26.8	26.8 2	26.8	26.8 2	26.8	26.8 1,4	1,405.5	894
	Total Cost	,	Present Value 188.2	188.2	186.3 1	186.3 184.2 181.9		147.2 2.	21.0 20.0	.0 19.1	1 18.2	17.3	16.5	15.7	14.9	14.2	13.5	12.9	12.3	11.7	11.1	10.6	10.1 51	511.4].
Benefit	efit																			ĺ]	
ō	Outage 19,729	(kWh/Feeder/Y) Current Value		10.5	21.1	31.6 4	42.1 5	50.6	50.6 50.6	9.05	9.05	50.6	50.6	50.6	50.6	50.6	50,6	50.6	50.6 5	50.6	50.6	50.6	50.6 9	965	
	Poss 97,096	(kWh/SS/Y)	Current Value	6.7	19.4	29.1 3	38.8 4	46.6 46	46.6 46.6	.6 46.6	6 46.6	46.6	46.6	46.6	46.6	46.6	46.6	46.6	46.6	46.6	46.6	46.6 4	46.6 8	688	
0M - 2	Worker 0.12	(10° Rs/SS/Y)	Current Value	2.4	4.8	7.2	9.6 1	11.5 11	11.5 11.5	5 11.5	5 11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	220	
_	Tariff Rate 5	(Rs/kWh)	_		_		<u> </u>	 -	_	_	_	L					\mid	 - -	<u> </u>	\vdash	\vdash	L	H	Γ	
Outa	Outage Reduction Rate 0.89	. 0.89		-																					
																			_	_					
ĭ	Total)	Current Value	22.6	45.3	67.9	90.6	108.7 108	108.7 108.7	7 108.7	7 108.7	108.7	108.7	108,7	108.7	108.7	108.7	108.7	108.7	108.7	108.7 10	108.7 10	108.7 2,0	2,074	
Bei	Benefit	[Present Vallue	22.6	43.1	61.6	78.2 8	89.4 8.	85.2 81.1	.1 77.2	2 73.6	70.1	66.7	9'89	60.5	57.6	54.9	52,3	49.8	47.4	45.2 4	43.0 4	41.0 1,2	1,264	
Return	u.n																			!]	
	Ranefit - Total Cost		Current Value -165.6 -150.3 -135.1 -1	165.6	150.3	135.1 -1;	20.02	-70.3 81	81.9 81.9	9 81.9	9 81.9	81.9	81.9	81.9	81.9	61.8	81.9	81.9	8 6.18	81.9	81.9 8	81.9 8	81.9 6.	699	
	Deliciii - I.c.	al Cost	Present Vallue -165.6 -143.1 -122.5 -1	165,6	.143.1	122.5 -1	03.6 -5	-57.8 6	64.1 61.1	.1 58.2	2 55.4	52.8	50.3	47.9	45.6	43.4	41,4	39.4	37.5 3	35.7	34.0 3	32.4 3	30.9	137	
Retr	Return Accumulation	u																							
	Renefit - Total Cost		Current Value -165.6 -315.9 -451.0 -5	165.6	315.9 -	451.0 -5	70.9	-641.2 -55	-559.3 -477.4	.4 -395.	-395.6 -313.7		-231.8 -150.0	-68,1	13.8	95.7	77.5 2	95.7 177.5 259.4 341.3		423.1 50	505.0 586.9		668.8		
	AT - ITTOTOT		Present Value -165.6 -308.7 431.3 -5	165.6	308.7	131.3 -5.	34.9 -5	12.7 -52	34.9 -592.7 -528.5 -467.4 -409.2 -353.8 -301.1 -250.8 -202.9 -157.3 -113.9 -72.6	.4 -409.	2 -353.8	-301.1	-250.8	-202.9	157.3	113.9	72.6	-33.2	4.3 4	40.0	74.1 106.5	13	137.3		

(Table 4.11 Continue) Section SW No.: 5/Feeder

- [Cash Flow	r Analysis (A	Cash Flow Analysis (Money unit: 10" Rs)	s)															٠							
	Relative Year	ear			0	1	2	3	4	5	9	7 8	6	10	<u> </u>	11 12	2	14	15	16	17	18	19	20	١	Total
<u> </u>	Calender Year(n)	(ear(n)		i	2004	2002	2006	2007	2008	5005	2010	2011 20	2012 2013		2014 2015	5 2016	5 2017	7 2018	2019	2020	2021	2022	2023	2024	Total	Equip.
	Discount=1/(1+i)	1/(1+i)"	rate i= 0.05	0.05	1,000	1.000 0.952 0.90	2	0.864 0.823		0.784	0.746 0.	0.711 0.6	0.677 0.645	15 0.614	14 0.585	5 0.557	7 0.530	0.505	0.481	0.458	0.436	0.416	0.396	0.377		
	Price=(1+i)	(rate r= 0.01	0.01	1.000	1.010	1.020 1.030		1.041	1.051	1.062 1.	1.072 1.0	1.083 1.094	34 1.105	05 1.116	6 1.127	7 1.138	3 1.149	1.161	1.173	1.184	1,196	1.208	1.220		
~	Amount o	f Constructi	Amount of Construction Facilities					•			1			-	-]	
92	Substation Number	Number			20	70	20	20	16	-	0	0	0	L	0	0	0	0 0	Ĉ	0	0	0	0	0	96	
14	Feeder Number	mber	(SS/soN) 9		120	120	120	120	96	0	0	0	0	0	0	0	0 0	0	0	P	0	0	0	0	576	
)	Feeder Length(km)	ngth(km)	6.5 (km/Feeder)		780	08/	780	780	624	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3,744	
_	Cost	,																								
	Pole	a.SW,RTU	0.4351 (10 ⁶ Rs/Unit) Acquisition Cost 261.06 263.67 266.31	Acquisition Cost	261.06	263.67	266.31	268.97 217.33	ᆫ	0.00	0.00 0	0.00	0.00 0.00	0.00	00.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1,277	
	Mounted	etc.	5 (Nos/Feeder)	(Nos/Feeder) Maintenance		7.83 15.74 23.73	23.73	31.80	38.32 3	38.32 3	38.32 38	38.32 38.32	32 38.32	2 38.32	38.32	2 38.32	38.32	38.32	38.32	38.32	38.32	38.32	38.32	38.32	731	
	Device	Maintenance Factor	3 (%)								-		L	L					L		L			T		
		Total Cost	+50	Current Value 268.9 279.4 290.0	268.9	279.4		300.8	255.6	38.3	38.3 3	38.3 38	38.3 38.3	3 38.3	38.3	38.3	38.3	38.3	38.3	38.3	38.3	38.3	38.3	38.3	2,007.9	1,277
		Total	160	Present Value 268.9 266.1	268.9	266.1	263.1	1 259.8	210.3	30.0	28.6 2	27.2 25	25.9 24.7	7 23.5	.5 22.4	4 21.3	1 20.3	19.4	18.4	17.6	16.7	15.9	15.2	14.4	730.5]
-"	Benefit																									
4	Outage	19,729	(kWh/Feeder/Y)	Current Value	11.1	22.3	33.4	44.5	53.4	53.4	53.4 5	53.4 53	53.4 53.4	4 53.4	.4 53.4	4 53.4	53.4	53.4	53.4	53.4	53.4	53.4	53.4	53.4	1,019	
- 2	Loss	94,096	(kWh/SS/Y)	Current Value	£'6	19.4	29.1	38.8	46.6	46.6	46.6 4	46.6 46	46.6 46.6	6 46.6	.6 46.6	5 46.6	46.6	46.6	46.6	46.6	46.6	46.6	46.6	46.6	688	
27	Worker	0.12	(10° Rs/SS/Y)	Current Value	2.4	4.8	7.2	9.6	11.5	11.5	11.5	11.5 11	11.5 11.5	5 11.5	5 11.5	5 11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	220	
	Tariff Rate	5	(Rs/kWh)								_		_	L			L	_		L					Γ	
	Outage Re	Outage Reduction Rate	0.94																							
'										-														-		
	Total			Current Value	23.2	46.5	69.7	92.9	111.5	111.5 1	111.5 11	111.5 111.5	5 111.5	5 111.5		111.5 111.5	111.5	111.5	111.5	111.5	111.5	111.5	111.5	111.5	2,128	
	Benefit			Present Vallue	23.2	44.3	63.2	80.3	91.8	87.4	83.2 7	79.3 75	75.5 71.9	9 68.5	.5 65.2	2 62.1	59.2	56.3	53.7	51.1	48.7	46.3	44.1	42.0	1,297	
— <u>1</u>	Return																									
		Renefit . Total Cost	al Coet	Current Value -245.7 -232.9	-245.7	-232.9	-220,3	-207.8	-144.1	73.2	73.2	73.2 73	73.2 73.2	_	73.2 73.2	2 73.2	73.2	73.2	73.2	73.2	73.2	73.2	73.2	73.2	121	
		Denout - 10	iai Cost	Present Vallue -245.7 -221.8 -199.	-245.7	-221.8	-199.8	8 -179,5	-118.6	57.4	54.6	52.0 49	49.6 47.2	_	44.9 42.8	8 40.8	38.8	37.0	35.2	33.5	31.9	30.4	29.0	27.6	-313	
— į	Return A	Return Accumulation	ı																							
		Renefit . Total Cost	al Cost	Current Value -245.7 -478.6 -698.	-245.7	478.6	-698.9	-906.7	9 -906.7 -1050.8 -977.6 -904.4	9-17.6	04.4 -8.	-831.2 -758.0 -684.8	8.0 -684	8 -611.5	5 -538.3	3 -465.1	1 -391.9	-318.7	-245.5	-172.2	0.66-	-25.8	47.4	120.6		
		OT MINIOR	161 5031	Present Value -245.7 467.5 -667.3 -846.9 -965.4 -908.1 -853.4 -801.4 -751.8 -704.6 -659.7 -616.9 -576.1 -537.3 -500.3	-245.7	-467.5	-667.3	-846.9	-965.4	908.1	353.4 -8	11.4 -75	1.8 -704	9:	.7 -616	.9 -576.	1 -537.	3 -500.3	-465.1	-431.5	-399.6	-369.2	-465.1 -431.5 -399.6 -369.2 -340.2 -312.6	-312.6		

4.4 Recommendation on Distribution SCADA System

In this section, the more concrete ideas for distribution SCADA are studied. The previous section treated average data of substations and feeders in Ranga Reddy district and Hyderabad. This section treats more specific data of individual substations.

4.4.1 Functions of Existing SCADA and of Distribution SCADA

The existing SCADA mainly monitors and controls the facilities inside the distribution substations. But the existing SCADA software includes the distribution SCADA functions such as DMS (Distribution Management System). This indicates an intention to introduce the concrete hardware for distribution SCADA in the future.

In addition to these software functions, the communication facility of RF also has some marginal capacity to add distribution SCADA function, and fiber optic cables have been already laid in urban area of Hyderabad. This also means that some infrastructure is already available for introducing distribution SCADA functions.

Table 4.12 shows DMS software functions and recommendable addressing policy.

Table 4.12 DMS functions and priority

Function Priority Situation and Recommendable Policy for Addressing				
	Filority	Situation and Recommendable Policy for Addressing		
a. Emergency load shedding	6	Priority is low, so consider introduction after the primary		
(for HV customer)		functions.		
b. Load control	4	This is concerning load leveling, so also consider		
(for HV customer)	4	introduction after the primary functions.		
c. Automatic meter reading	3	Priority is middle and if distribution SCADA is introduced,		
(for HV customer)		this function is easy to introduce. Hence consider		
		introduction in the middle future.		
d. Fault location	1	Priority is the highest and this is the most basic function, so		
		consider introduction from the start.		
e. Load balancing	2	Priority is the second highest and this is an important		
		function, so consider introduction from the start.		
f. Automated mapping and	T -	Priority is low but GIS is prevailing and is studied in this		
facilities management	7	project, so better consider connecting GIS with distribution		
(AM/FM)	l	SCADA system.		
g. Trouble call management	5	This function is already installed independent of the existing		
system		SCADA as the following Call Center, so better consider		
	1	interconnecting them with each other.		

(1) Call Center at SCADA Center

- ◆ Telephone no: 1912, 24 independent lines connected to this Call Center
- ♦ 16 only incoming, 4 only outgoing
- ♦ Headed by ADE+AE + system engineers, Operators are outsourced, 24 hours basis.
- ◆ LAN network, Data is available for 1,040,624 (Hyderabad), to be added for Ranga Reddy circle 797,732.
- ◆ Data: Address, Telephone No, Customer ID, Name of the feeding substation, feeder, fuse off call office, electric and revenue office
- ◆ The customer can call 1912 for registering a complaint. A call can be registered, either by customer No or telephone No or by house No.

- Software : ORACLE data base
- ◆ This Center is proposed to be linked to SCADA DCC. Upon any feeder trip, the save will appear on every screen in Call Center

(2) Load Monitoring System at SCADA Center

Districts

6 Districts of Ranga Redy, Medak, Nalgonda, Mahaboob Nagar, Kurnool, Anatzapur.

◆ Numbers of substations and feeders 363 substations and 667 feeders (urban;800, rural;1,700) among 827 substations and 2,500 feeders.

Monitoring items

V, I, P, kVA, PF at feeder outlet and 2nd side of 4 DTRs for sample.

Communication method

Public telephone network, and GSM mobile network recently.

Point

Monitoring for change 3F supply (9 hours) and 1F supply (15 hours) on agricultural feeder.

◆ Operator

2 shifts (6 persons per 1 shift).

♦ Meter specification

Meter protocol: SEM by SECURE,

36 days data available

Optional port: use for remote metering

SECURE meter; RS-232C in Hyderabad SCADA project

Finance

World Bank: APL-1 (Adaptable Program of Lending 1)

Meter Number: 1000 (for 4 DISCOMs) Material and erection: M/S SECURE

Loan amount: US\$ 1 billion (Rs 4,000 crore)

4.4.2 System Design

(1) Communication System

Figure 4.12, Figure 4.13 and Figure 4.14 show the ideas of communication system configuration.

- ◆ Idea 1 (Figure 4.12): DCC directly communicates with the field device (pole top SW, RTU).
- ◆ Idea 2 (Figure 4.13): DCC communicates through TDMA Repeater Station and /or TDMA Out Station.
- ◆ Idea 3 (Figure 4.14): DCC communicates through TDMA Repeater Station, TDMA Out Station and MARS Remote Station.

Table 4.13 shows the devices to be considered for every idea.

RF MARS has a security problem and is not able to be used for non line of sight communication.

Fiber optic cables are already laid to total length of 200 km in Hyderabad and its surrounding area.

As for cost, the following section treats. If that result is also considered here, the

following methods are expected to be promising ones.

- ◆ Fiber Optic Cable (Case 1)
- ◆ RF Mobile System

(2) Equipped System Specification

As for the field equipment and the software functions, the following items are recommended.

- ◆ Isolated section number on a feeder should be 2 or 3.
- ◆ The software functions to be introduced in the first stage should be for, at least, Fault location and Load balancing.

Method		Pole-top Device	Installation of Com. Line	RTU etc. at SS, DCC
Idea1				
Fiber Optic Cable	Case 1 (Much infrastructure of fiber optic cable) Case 2 (A little infrastructure) Case 3 (Little infrastructure)	- Automated switch with RTU	- 1% of feeder length - 10% of feeder length - 50% of feeder length	- 10% improvement of RCS(Remote communication System) at DCC
Metallic Wire		- Same as above	- 100% of feeder length	
RF Mobile Sys	tem	- Automated switch with RTU and RF communication device	(Not need)	- 50% of improvemen of RCS at DCC
Idea2				
RF MARS		- Automated switch with RTU and RF communication device	(Not need)	- 50% of new MARS Master at SS and improvement of RCS a DCC
Idea3				
PLC (Vo Carrie	er)	- Automated switch	(Not need)	- New RTU at SS and

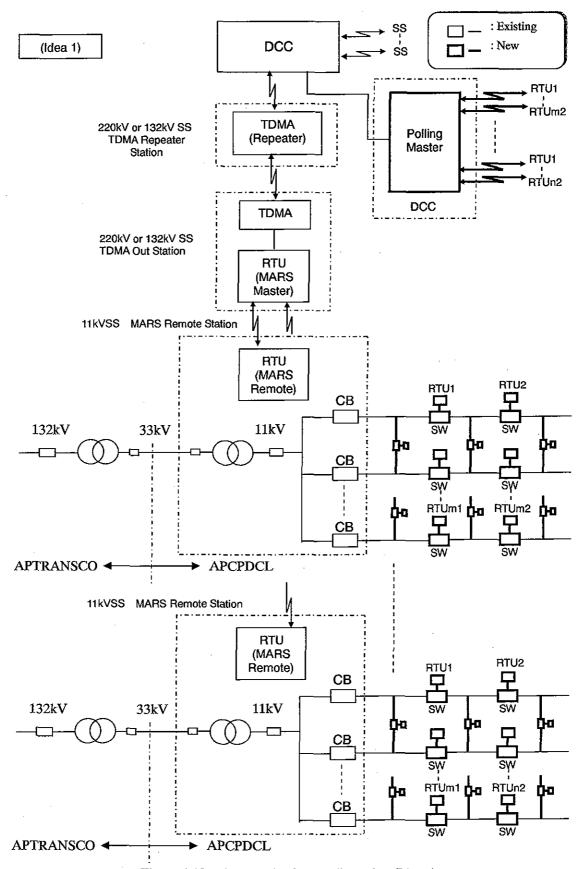
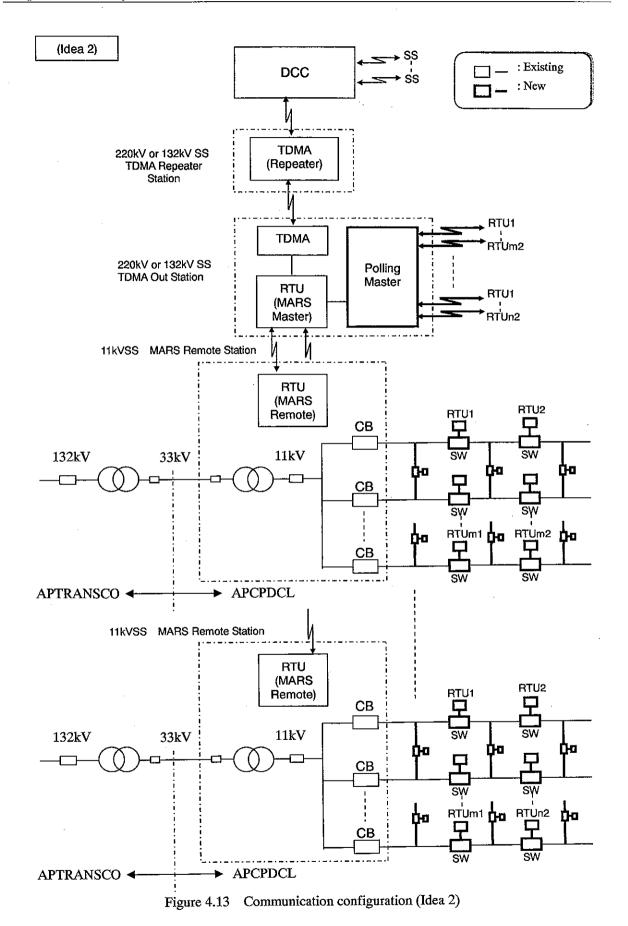
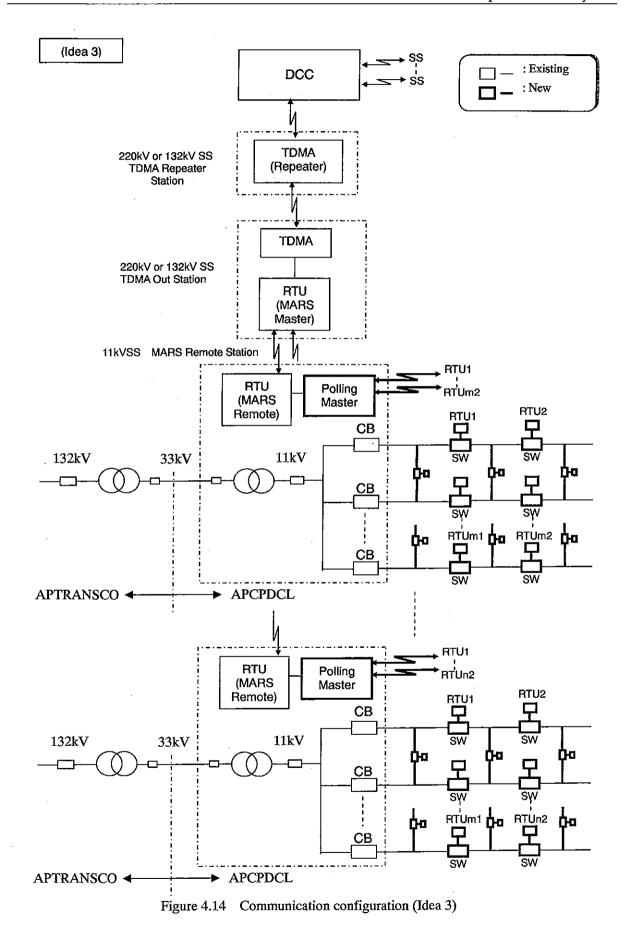




Figure 4.12 Communication configuration (Idea 1)

4 - 32

4 - 33