VOLUME II

PAPER VI

WATER USE IN THE LOWER MEKONG BASIN

FINAL REPORT

MARCH 2004

WUP-JICA TEAM

TABLE OF CONTENTS

UMMAF	RY	
IN	TRODU	CTION
		WATER RESOURCE FACILITIES IN THE RIVER BASIN
2.1	Existi	ng Large Reservoirs
2.2		view of Water Resources Developments in the ong Countries
2.3	Existi	ng Hydropower Plants
2.4	Surfa	ce Water Extraction for Domestic Water Supply
2.5	Opera	ation Records of Existing Flow-Regulating Facilities
2.6	Seaso	onal Regulation Rate of Mekong Flow by Major Reservoirs .
		LE INFORMATION ON IRRIGATION AREA IN IEKONG BASIN
3.1	Overv	view of Land Use in the Lower Mekong Basin
3.2	Histor	ric Overview of Irrigation Areas
	3.2.1	Indicative Basin Plan in 1970
	3.2.2	Revised Indicative Plan in 1987
	3.2.3	Other Existing Reports
3.3		Resources Inventory for Agricultural Development ct by MRC
3.4	Surfa	ce Water Extraction by Pumping-up Irrigation
CU	J RRENT	WATER USE IN THE LOWER MEKONG BASIN
4.1	Gener	ral
4.2	Estim	ated Irrigation Diversion Requirements from Past Studies
4.3	Estim	ated Return Flows from Past Studies
4.4	Curre	nt Water Use in Thailand
4.5	Curre	nt Water Use in Lao PDR
4.6	Curre	nt Water Use in Cambodia
4.7	Curre	nt Water Use in Vietnam
NA	M NGU	CATION OF LOW FLOW INCREASE DUE TO M HYDROPOWER DEVELOPMENT PROJECT GUM RIVER
5.1	Nam	Ngum Hydropower Development Project
5.2	Opera	ation Records of Nam Ngum Hydropower System

	5.3	Operati	ion Pattern of Nam Ngum Hydropower Station	VI-66
	5.4	Low Fl	ow Increase in the Nam Ngum River	VI-69
6.	MU		ATION OF LOW FLOW CHANGE OF NAM LIVER DUE TO INTENSIVE WATER RESOURCES LIENT	VI-75
	6.1	Nam M	Iun-Chi River Basin in North-eastern Thailand	VI-75
	6.2	_	Scale Water Resources Development Projects in Eastern Thailand	VI-76
	6.3	Change	es in Low Flow Regime of the Nam Mun-Chi River	VI-78
	6.4	Low Fl	ow Check at the Confluence with Mekong Mainstream	VI-84
	6.5	Effect of	of Existing Reservoirs on River Runoff	VI-86
	6.6	Low Fl	ow Increases due to Existing Large Reservoirs	VI-86
7.			NT OF LOW FLOW INCREASE DUE TO LATERAL LONG THE MEKONG MAINSTREAM	VI-93
	7.1	Hydrol	ogical Network Stations	VI-93
	7.2	Selecte	d Hydrological Network Stations for Assessment	VI-94
	7.3	Basic C	Conditions for Assessment	VI-96
	7.4	Results	of Assessment	VI-97
		7.4.1	Chiang Saen-Luang Prabang	VI-98
		7.4.2	Luang Prabang-Chiang Khan	VI-99
		7.4.3	Chiang Khan-Vientiane and Vientiane-Nong Khai	VI-100
		7.4.4	Nong Khai-Nakhon Phanom	VI-107
		7.4.5	Nakhon Phanom-Mukdahan	VI-108
		7.4.6	Mukdahan-Kong Chiam	VI-109
		7.4.7	Kong Chiam-Pakse	VI-110
		7.4.8	Pakse-Stung Treng	VI-111
		7.4.9	Stung Treng-Kratie	VI-112
		7.4.10	Kratie-Kompong Cham	VI-113
		7.4.11	Kompong Cham-Chroui Changvar	VI-114
REFI	EREN(CES		VI-115

LIST OF TABLES

Table 2.1	Salient Features of Existing Large Reservoirs	VI-9
Table 2.2	Comparison of Total Storage Volume by Riparian Country	VI-9
Table 2.3	Hydropower Development in Lancang River in China	VI-12
Table 2.4	Percent Increase to Mean Monthly Flow on the Mekong Mainstream due to Cascade Power Development in China	VI-12
Table 2.5	Existing Hydropower Projects in Myanmar	VI-13
Table 2.6	Power Generation and Supply Balance in Lao PDR	VI-14
Table 2.7	Present Status of IPP Schemes in Lao PDR as of End 2001	VI-14
Table 2.8	Salient Feature of Existing Hydropower Plants	VI-18
Table 2.9	Detailed Features of Existing Run-of-river Plants in China	VI-21
Table 2.10	Comparison of Estimated Maximum Plant Discharges and Firm Discharges of Existing Run-of-river Plants in China	VI-22
Table 2.11	Monthly Operation Record at Houay Ho Hydropower Stations	VI-119
Table 2.12	Major River Intakes for Domestic Water Supply in Lao PDR (1999)	VI-24
Table 2.13	Major River Intakes for Domestic Water Supply in Cambodia (2002)	VI-25
Table 2.13	Water Abstractions for Domestic Water Supply in 1990	VI-26
Table 2.15	Projected Domestic Water Demand in 2000 and 2015 for Entire Mekong Delta	VI-26
Table 3.1	Drainage Area of Mekong River Basin	VI-28
Table 3.2	Land Use in the Lower Mekong Basin in 1997	VI-28
Table 3.3	Contributions Agriculture and Forestry to GDP of Each Riparian Country	VI-30
Table 3.4	Contributions of Agriculture and Forestry to LMB Country Exports	VI-30
Table 3.5	Cultivated Areas in Lower Mekong Basin (1965)	VI-31
Table 3.6	Irrigated Areas in Lower Mekong Basin (1970)	VI-31
Table 3.7	Irrigated Areas in Lower Mekong Basin (1987)	VI-32
Table 3.8	National Irrigation Projects in Lower Mekong Basin (1987)	VI-33
Table 3.9	Historic Irrigated Area (1990-2000) in Lao PDR	VI-33
Table 3.10	Existing Irrigation Schemes in Lao PDR	VI-35
Table 3.11	Existing Irrigated Area in Lao PDR (1995)	VI-35
Table 3.12	Existing Irrigated Area in Lao PDR (2000/2001)	VI-36
Table 3.13	Existing Irrigation Area of Mekong Basin in Lao PDR (2000)	VI-36
Table 3.14	Existing Irrigation Area of Mekong Basin in Thailand	VI-37
Table 3.15	Summary of Existing Irrigation Schemes in North-eastern Thailand (1/2) & (2/2)	VI-38
Table 3.16	Area of Rice Production by Year in Cambodia	VI-40
Table 3.17	Inventory of Existing Irrigation Systems in Cambodia (1992/93)	VI-41

Table 3.18	Cropping Patterns and Yields in Cambodia	VI-41
Table 3.19	Existing Irrigated Areas in Cambodia (1990)	VI-42
Table 3.20	Existing Irrigated Rice Areas in Mekong Delta in Vietnam	VI-43
Table 3.21	Cropping Patterns of Mekong Delta in Vietnam	VI-44
Table 3.22	Summary of Irrigation Projects under LRIAD in Lower Mekong Basin	VI-45
Table 3.23	Summary of Status of Irrigation Database under LRIAD	VI-46
Table 3.24	Summary of Projects and Irrigation Areas under LRIAD	VI-46
Table 3.25	Major Irrigation Projects at LMB in Lao PDR	VI-48
Table 3.26	Major Pumped Irrigation Schemes on Mekong River in North-eastern Thailand (1982)	VI-49
Table 3.27	Summary of Pumped Irrigation Schemes in North-Eastern Thailand	VI-120
Table 3.27	Major Pumped Irrigation Schemes in North-eastern Thailand	VI-51
Table 4.1	Collected Ranges of Diversion Requirements	VI-52
Table 4.2	Collected Irrigation Modules in Thailand	VI-53
Table 4.3	Collected Irrigation Modules in Lao PDR	VI-53
Table 4.4	Collected Irrigation Modules in Cambodia	VI-53
Table 4.5	Collected Irrigation Modules in Vietnam	VI-53
Table 4.6	Collected Diversion Requirements in Thailand (1/7)-(7/7)	VI-121
Table 4.7	Collected Diversion Requirements in Lao PDR	VI-124
Table 4.8	Collected Diversion Requirements in Cambodia (1/2)-(2/2)	VI-125
Table 4.9	Collected Diversion Requirements in Vietnam (1/4)-(4/4)	VI-126
Table 4.10	Collected Information on Return Flows	VI-54
Table 4.11	Category of Small Scale Projects in Thailand	VI-56
Table 4.12	Features of Trans-basin Projects in Thailand	VI-57
Table 4.13	Average Seasonal Water Use of Large Irrigation Projects in North-eastern Thailand	VI-57
Table 4.14	Estimated Irrigation Demand in North-eastern Thailand	VI-58
Table 4.15	Water Extraction Volume of Pump Irrigation in North-eastern Thailand (1983-1989)	VI-59
Table 4.16	Estimated Irrigation Demand of Proposed Projects in North-eastern Thailand	VI-60
Table 4.17	Current Water Demand, Lao PDR	VI-60
Table 4.18	Rice Production in Cambodia, 1993-2000	VI-61
Table 4.19	Rice Production in Cambodia, 1992-1993	VI-61
Table 4.20	Potential Cropping Areas and Water Resource Constraints, Cambodia	VI-62
Table 4.21	Estimated Dry Season Irrigation Water Demand of the Mekong Delta in 1990, 1998 and 2000	VI-63
Table 4.22	Estimated Dry Season Irrigation Water Demand of the Mekong Delta in 1985 and 1990	VI-63

Table 5.1	Stage-wise Development of Nam Ngum Hydropower Station	
Table 5.2	Monthly Mean Reservoir Inflow of Nam Ngum Dam	
Table 5.3	Monthly Mean Turbine Release of Nam Ngum Dam	
Table 5.4	Monthly Nam Ngum Water Level at 24:00 of the End of Month.	
Table 5.5	Monthly Mean Spillout Discharges of Nam Ngum Dam	
Table 5.6	Operation Schedule of Nam Ngum Hydropower System in 2001	
Table 5.7	Monthly Operation Record at Nam Leuk Hydropower Station	
Table 5.8	Expected Daily Plant Discharge of Nam Ngum Hydropower Station	
Table 5.9	Daily Operation of Nam Ngum Station (November 12-15, 2001)	
Table 5.10	Monthly Mean Discharge at Hinhuep in Nam Ngum River	
Table 5.11	Monthly Mean Discharge at Ban Pak Kanhoung in Nam Ngum River	
Table 5.12	Monthly Mean Discharge at Ban Tha Lat in Nam Ngum River .	
Table 5.13	Monthly Mean Discharge at Thangone in Nam Ngum River	
Table 5.14	Comparison of Monthly Mean Discharges in Dry Season at Hydrologic Stations in Nam Ngum River	
Table 5.15	Summary of Low Flow Increase in Dry Season at Hydrologic Stations in Nam Ngum River	
Table 5.16	Hydrological Data Analysis at Ban Pak Kanhoung Station	
Table 5.17	Mean Dry Season Flow Increase in the Nam Ngum River	
Table 5.18	Mean Dry Season Flow Increase in the Nam Ngum River	
Table 6.1	Summary of Existing Reservoirs and Irrigation Service Area in Thailand	
Table 6.2	Seasonal Regulation Rates in North-eastern Thailand	
Table 6.3	Monthly Mean Discharge at Ubon in Nam Mun-Chi River	
Table 6.4	Monthly Mean Discharge at Yasothon in Nam Mun-Chi River .	
Table 6.5	Monthly Mean Discharge at Rasi Salai in Nam Mun-Chi River	
Table 6.6	Monthly Mean Discharge at Kaeng Saphu in Nam Mun-Chi River	
Table 6.7	Comparison of Monthly Mean Discharges in Dry Season at Hydrologic Stations in Nam Mun-Chi River	
Table 6.8	Comparison of Mean Monthly Discharges of Nam Mun and Nam Chi Rivers	
Table 6.9	Comparison of Large Reservoir Storage in Nam Mun and Nam Chi Rivers	
Table 6.10	Comparison of Mean Monthly Discharges (1980-1993)	
Table 6.11	Influence of Large Reservoirs on the Flow in the Nam Mun-Chi River	
Table 6.12	Monthly Operation Record of Lam Takhong Dam	
Table 6.13	Monthly Operation Record of Lam Phra Ploeng Dam	
Table 6.14	Monthly Operation Record of Lam Pao Dam	

Table 6.15	Monthly Operation Record of Huai Luang Dam	VI-149
Table 6.16	Monthly Operation Record of Nam Oon Dam	VI-150
Table 6.17	Monthly Operation Record of Sirindhorn Dam	VI-151
Table 6.18	Monthly Operation Record of Chulabhorn Dam	VI-152
Table 6.19	Monthly Operation Record of Ubolratana Dam	VI-153
Table 6.20	Monthly Operation Record of Nam Pung Dam	VI-154
Table 6.21	Summary of Mean Low Flow Increases in the Nam Mun-Chi River due to Seasonal Regulation of Large Reservoirs .	VI-90
Table 6.22	Estimated Average Low Flow Increases in the Nam Chi River due to Seasonal Regulation of Large Reservoirs	VI-91
Table 7.1	Classification of Network Hydrological Station	VI-93
Table 7.2	Classification and Objectives of Network Station	VI-93
Table 7.3	Selected Hydrological Stations on the Mekong Mainstream	VI-94
Table 7.4	Monthly Mean Discharge at Chiang Saen	VI-155
Table 7.5	Monthly Mean Discharge at Luang Prabang	VI-156
Table 7.6	Monthly Mean Discharge at Chiang Khan	VI-157
Table 7.7	Monthly Mean Discharge at Vientiane	VI-158
Table 7.8	Monthly Mean Discharge at Chiang Nong Khai	VI-159
Table 7.9	Monthly Mean Discharge at Nakhon Phanom	VI-160
Table 7.10	Monthly Mean Discharge at Mukdahan	VI-161
Table 7.11	Monthly Mean Discharge at Khon Chiam	VI-162
Table 7.12	Monthly Mean Discharge at Pakse	VI-163
Table 7.13	Monthly Mean Discharge at Stung Treng	VI-164
Table 7.14	Monthly Mean Discharge at Kratie	VI-165
Table 7.15	Monthly Mean Discharge at Kompong Cham	VI-166
Table 7.16	Monthly Mean Discharge at Chrui Changvar	VI-167
Table 7.17	Data Availability of Selected Hydrological Stations	VI-96
Table 7.18	Contributing Catchment Area of Objective River Reaches	VI-97
Table 7.19	Comparison of Monthly Mean Discharge on Mekong Mainstream (1/5)-(5/5)	VI-168
Table 7.20	Specific Discharges in Dry Season at Hydrologic Stations	VI-98
Table 7.21	Specific Discharges at Vientiane and Nong Khai Stations	VI-105
Table 7.22	Comparison of Lateral Inflows in March	VI-108
Table 7.23	Comparison of Specific Discharge of Lateral Inflows in March	VI-109
Table 7.24	Specific Discharges at Khon Chiam and Pakse Stations	VI-110

LIST OF FIGURES

Fig. 2.1	Hydropower Development Projects on the Mekong Mainstream in China V	
Fig. 2.2	Longitudinal Profile of Cascade Hydropower Development on the Mekong Mainstream in China	VI-11
Fig. 2.3	Mean Monthly Discharge at Ubon Station	VI-15
Fig. 2.4	Location Map of Major Reservoirs in Thailand	VI-16
Fig. 2.5	Historic Water Resources Development in North-eastern Thailand	
Fig. 2.6	Location Map of Existing Hydropower Project in Mekong River Basin	VI-19
Fig. 2.7	Illustration of Run-of-river Type	VI-20
Fig. 2.8	Illustration of Base and Peak Load Operations	VI-21
Fig. 2.9	Relationship between Maximum Plant Discharge and Firm Discharge	VI-23
Fig. 2.10	Typical Run-of-River Type Operation in Wet and Dry Seasons	VI-23
Fig. 3.1	Land Use in the Lower Mekong Basin	VI-29
Fig. 3.2	Areas of Irrigated Land in Lao PDR (1990-2000)	VI-34
Fig. 3.3	Irrigation Projects in Lao PDR from MRC Irrigation Database .	VI-34
Fig. 3.4	Irrigation Projects in North-eastern Thailand from MRC Irrigation Database	VI-39
Fig. 3.5	Irrigation Projects in Cambodia from MRC Irrigation Database	VI-40
Fig. 3.6	Areas of Irrigated Land in Cambodia (1979-1993)	VI-42
Fig. 3.7	Areas of Irrigated Land in Mekong Delta in Vietnam (1980-1994)	VI-43
Fig. 3.8	Irrigation Projects in Mekong Delta in Vietnam from MRC Irrigation Database	VI-44
Fig. 3.9	Present Cropping Pattern in the Mekong Delta	VI-173
Fig. 3.10	Distribution of Irrigation Projects in Lower Mekong Basin	VI-47
Fig. 3.11	Irrigation Canals and Salinity Control Structures in Mekong Delta	VI-48
Fig. 3.12	Number of Irrigation Pump Stations in North-Eastern Thailand	VI-50
Fig. 3.13	Location Map of Pump Irrigation Project by DEDP as of 1989 .	VI-50
Fig. 4.1	Proposed Trans-basin Projects in Thailand	VI-56
Fig. 5.1	Nam Ngum River Diversion System	VI-65
Fig. 5.2	Comparison of Mean Monthly Plant Discharges	VI-65
Fig. 5.3	Annual Spillout Volume from Nam Ngum Dam	VI-66
Fig. 5.4	Typical Operation Pattern at Nam Ngum Power Station	VI-66
Fig. 5.5	Daily Operation Record of Nam Ngum Hydropower Station in November 12-15, 2001	VI-68

Fig. 5.6	Annual Power Output of Nam Ngum Power Station	VI-68
Fig. 5.7	Location Map of Selected Hydrological Stations in Nam Ngum River	VI-69
Fig. 5.8	Comparison of Dry-Season Flow Hydrographs in Nam Ngum River (1/2)-(2/2)	VI-174
Fig. 5.9	Comparison of Time-Series of Monthly Mean Discharges in Nam Ngum River	VI-176
Fig. 5.10	Low Flow Increases in Nam Ngum River in February	VI-71
Fig. 5.11	Low Flow Increases in Nam Ngum River in Dry Season	VI-71
Fig. 5.12	Time-Series of Monthly Mean Discharges in March at Ban Pak Kanhoung in Nam Ngum River	VI-73
Fig. 5.13	Flow Regime Change in Nam Ngum River in terms of Difference between Mean Inflow and Outflow at Nam Ngum Dam	VI-74
Fig. 5.14	Flow Regime Change in Nam Ngum River in terms of Duration Curves of Inflow and Outflow at Nam Ngum Dam	VI-74
Fig. 6.1	Location Map of Existing Large-Scale Reservoirs in North-Eastern Thailand	VI-75
Fig. 6.2	Diagram of Large Reservoirs in North-Eastern Thailand	VI-77
Fig. 6.3	Location Map of Selected Hydrological Stations in Nam Mun-Chi River	VI-78
Fig. 6.4	Comparison of Time-Series of Monthly Mean Discharges in Nam Mun-Chi River	VI-80
Fig. 6.5	Comparison of Dry-Season Flow Hydrographs in Nam Mun-Chi River (1/2)-(2/2)	VI-180
Fig. 6.6	Low Flow Increases in Dry Season in Nam Mun-Chi River	VI-81
Fig. 6.7	Relation between Annual Basin Rainfall and Runoff at Ubon	VI-82
Fig. 6.8	Comparison of Actual and Estimated Monthly Mean Discharges at Selected Stations in Nam Mun-Chi River	VI-83
Fig. 6.9	Location Map of Selected Hydrological Stations at the Confluence of Mekong River	VI-84
Fig. 6.10	Comparison of Actual and Estimated Monthly Mean Discharges at Pakse on Mekong River	VI-85
Fig. 6.11	Average Flow Regime Change in Terms of Difference between Mean Monthly Inflow and Outflow of Lam Thakhong Dam	VI-87
Fig. 6.12	Average Flow Regime Change in Terms of Difference between Mean Monthly Inflow and Outflow of Lam Phra Ploeng Dam	VI-87
Fig. 6.13	Average Flow Regime Change in Terms of Difference between Mean Monthly Inflow and Outflow of Lam Pao Dam	VI-88
Fig. 6.14	Average Flow Regime Change in Terms of Difference between Mean Monthly Inflow and Outflow of Huai Luang Dam	VI-88
Fig. 6.15	Average Flow Regime Change in Terms of Difference between Mean Monthly Inflow and Outflow of Nam Oon Dam	VI-88
Fig. 6.16	Average Flow Regime Change in Terms of Difference between Mean Monthly Inflow and Outflow of Sirindhorn Dam	VI-89

Fig. 6.17	Average Flow Regime Change in Terms of Difference between Mean Monthly Inflow and Outflow of Chulabhorn Dam	VI-89
Fig. 6.18	Average Flow Regime Change in Terms of Difference between Mean Monthly Inflow and Outflow of Ubolratana Dam	VI-89
Fig. 6.19	Average Flow Regime Change in Terms of Difference between Mean Monthly Inflow and Outflow of Nam Pung Dam	VI-89
Fig. 6.20	Comparison of Time-Series of Monthly Mean Discharges at Yasothon and Ubon in the Nam Chi River	VI-92
Fig. 7.1	Location Map of Selected Hydrological Stations for Flow Balance Calculation on Mekong Mainstream	VI-95
Fig. 7.2	Illustration of Flow Balance Calculation	VI-97
Fig. 7.3	Comparison of Monthly Mean Discharges on Mekong Mainstream (1/2)-(2/2)	VI-179
Fig. 7.4	Low Flow Increase of Mekong Mainstream due to Lateral Inflow in January (1/6)-(6/6)	VI-181
Fig. 7.5	Low Flow Increase of Mekong Mainstream due to Lateral Inflow in February (1/6)-(6/6)	VI-187
Fig. 7.6	Low Flow Increase of Mekong Mainstream due to Lateral Inflow in March (1/6)-(6/6)	VI-193
Fig. 7.7	Low Flow Increase of Mekong Mainstream due to Lateral Inflow in April (1/6)-(6/6)	VI-199
Fig. 7.8	Low Flow Increase of Mekong Mainstream due to Lateral Inflow in May (1/6)-(6/6)	VI-205
Fig. 7.9	Low Flow Balance in Chien Saen-Luan Stretch Prabang in March	VI-99
Fig. 7.10	Low Flow Balance in Luang Prabang-Chiang Khan Stretch in March	VI-100
Fig. 7.11	Comparison of Low Flows in April at Chiang Khan, Vientiane and Nong Khai	VI-101
Fig. 7.12	Comparison of Low Flow Balances in April at Chiang Khan, Vientiane and Nong Khai	VI-102
Fig. 7.13	Low Flow Balance in Chiang Khan-Nong Khai Stretch in March.	VI-103
Fig. 7.14	Comparison of Low Flows in March and April at Vientiane and Nong Khai	VI-104
Fig. 7.15	Comparison of Low Flow Balances in Vientiane-Nong Khai Stretch in March and April	VI-105
Fig.7.16	Comparison of Low Flow Balances in Chiang Khan-Vientiane Stretch in March and April	VI-106
Fig. 7.17	Low Flow Balances in Nong Khai-Nakong Phanom Stretch in March	VI-107
Fig. 7.18	Low Flow Balances in Nakhon Phanom-Mukdahan Stretch in March	VI-108
Fig. 7.19	Low Flow Balances in Mukdahan-Khong Chiam Stretch in March	VI-109
Fig. 7.20	Low Flow Balances in Khong Chiam-Pakse Stretch in March	VI-110

Vol. II: Supporting Report, Paper VI: Water Use in the Lower Mekong Basin WUP-JICA, March 2004

Fig. 7.21	Low Flow Balances in Pakse-Stung Treng Stretch in March and April	VI-111
Fig. 7.22	Low Flow Balances in Stung Treng-Kratie Stretch in March and April	VI-112
Fig. 7.23	Low Flow Balances in Kratie-Compong Cham Stretch in March and April	VI-113
Fig. 7.24	Low Flow Balances in Compong Cham-Chrui Changvar Stretch in March and April	VI-114

SUMMARY

INTRODUCTION

- 1. The water of the Mekong River is mostly used for irrigation, hydropower generation, domestic and industrial sectors. Both peak and low flows in the river are of major concern for sustainable development of the Lower Mekong Basin (LMB). However, the low flow regime on the mainstream has been affected and altered due to enhanced water use in various sectors and development activities in the LMB. Hence, the low flow regimes, at several key hydrological stations along the mainstream, were investigated to draw attention on some pertinent issues related to a future hydrological monitoring on the Mekong mainstream in accordance with the Rules for the Maintenance of Flows on the Mainstream. The Rules are now being drafted for approval by the MRC Council scheduled around the end 2004.
- 2. To investigate on changes in low flow regime in the LMB, studies were carried out focusing on: (i) identification of low flow increase in the Nam Ngum River due to the Nam Ngum hydropower project development in Lao PDR, (ii) identification of low flow regime changes in the Nam Mun-Chi River due to extensive development of water resources projects in the north-eastern Thailand, and (iii) assessment of low flow increase in the Mekong mainstream due to lateral inflow from tributaries.

WATER RESOURCES DEVELOPMENTS IN THE MEKONG BASIN

3. There are many seasonal storage facilities (reservoirs) in the LMB. At present the total storage capacity of the existing large reservoirs amounts to approx. 12.1 billion m³. The seasonal regulation rate of all of the existing reservoirs in the whole Mekong River Basin (MRB) is roughly estimated to be around 2.5%.

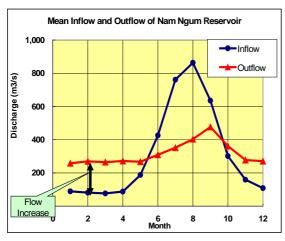
Country (Coverage of MRB)	No. of Reservoirs	Storage Volume (million m ³)
China (22%)	2	498
Myanmar (3%)	0	0
Lao PDR (25%)	3	5,408
Thailand (23%)	9	5,462
Cambodia (19%)	0	0
Vietnam (8%)	1	779
Total	15	12,147

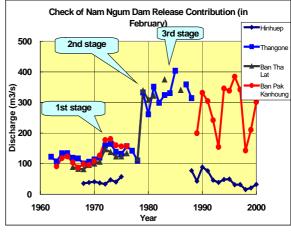
4. Over the Lancang River in China (22% area of the entire MRB falls in China) two hydropower development projects have already been completed, at Manwan and Dachaosan, as cascade hydropower developments on the Mekong mainstream. The effective storage capacity of both reservoirs is 498 million m³. Although these projects are provided with large reservoirs for hydropower generation, they are operated under the mode of run-of-river basically for maintaining the maximum water level in reservoir for maximizing energy output (in principle so called "inflow = outflow" operation without seasonal regulation). It might be said that these two hydropower dams have no significant impacts on the low flow regime of the Mekong mainstream.

- 5. However, the third on-going dam construction at Xiaowan (4200 MW) over the Lancang River, with storage capacity of 11,500 million m³ for seasonal flow regulation, is expected to increase dry season flow by around 555 m³/s. Further, after completion of all cascade projects, the low flow is expected to increase by around 1,230 m³/s. Hence, it is reported that the mean monthly flow in the Mekong downstream is expected to increase by about 28%, 27%, 27% and 17% at Chiang Saen, Luang Prabang, Vientiane and Mukdahan, respectively, in May.
- 6. The Mekong River forms part of the eastern border of Myanmar. In Myanmar, the Mekong River drains 28,000 km² (3% area of MRB) watershed. Water resources development activities in this watershed are quite few. Only a few mini-hydropower plants have been constructed along the tributaries of the Mekong, which do not have much impact in the flow regime at the downstream part of the mainstream.
- 7. Lao PDR, which covers 25% area of MRB, has a large potential for hydropower development. Currently there are 5 hydropower projects (above 10 MW) with an installed capacity of totally 615 MW. Among these projects, 3 are of reservoir type hydropower projects. Those 3 projects are: Nam Ngum and Nam Leuk hydropower projects in Nam Ngum River; and Houay Ho project in Se Kong River. The total effective storage capacity of these projects is about 5,200 million m³. The flow increase in terms of monthly mean discharges in the dry season (February to April) was estimated to be around 190 m³/s from the historic operation records of the Nam Ngum dam. The water used for power generation at the Nam Leuk Power Station is diverted into the Nam Ngum reservoir, enhancing the power generation of Nam Ngum Power Station. The Houay Ho Hydropower Project harnesses the high water head of 765 m using the maximum plant discharge of around 24 m³/s. The Houay Ho Hydropower Project therefore cannot expect any significant change in the low flow regime.
- 8. In Thailand, the Mekong River has about 170,000 km² of watershed lying on north-eastern part of the country, which is 22% of the area of MRB,. The Nam Mun-Chi River is the largest tributary with a catchment area of about 120,000 km². In this basin, intensive water resources development has been made from the mid-1960s to mid-1970s. At present, there are 9 seasonal regulating large-scale reservoirs, which are supplying water for irrigation during the dry season. Among the 9 reservoirs, the 4 reservoirs are also used for hydropower generation. In total the reservoirs have the storage capacity of about 5,460 million m³ and the command area for irrigation is about 240,000 ha. The seasonal regulation rate of all the reservoirs to the mean annual flow volume in the Nam Mun-Chi basin is estimated to be around 6.9%.
- 9. In Cambodia, about 155,000 km² watershed, which occupies 19% of the area of MRB and 90% of the area of the country, is drained by the Mekong River. The Tonle Sap River, which compose with largest freshwater Great Lake, is the major tributary of the Mekong River. The Great Lake, with storage capacity of about 150 billion m³, is not only the major source of inland fishery but also vital for mitigating flood at the downstream in the Mekong Delta. There are no other reservoirs existing in Cambodia at present.
- 10. In Vietnam, the Mekong Basin falls on two parts of the country, namely, the Mekong Delta (39,000 km²) and Central Highland Region (48,500 km²). Altogether, 8% of the area of MRB falls in Vietnam. The Se San (14,800 km²) and Sre Pok (18,200 km²) are the major tributaries of the Mekong River in the Central Highland Region, with great potential for hydropower and irrigation development. However, the Yali (720 MW), a reservoir type of hydropower project and the first seasonal regulation reservoir in MRB with 779 million m³ of effective storage capacity, was completed on the Se San River in 2000. Further, the Mekong Delta is the major agricultural zone, where irrigation and drainage networks have

- extensively developed, covering about 2.4 million hectares of land for paddy and mixed crops.
- 11. In the Mekong River Basin, as of 2000, there were 13 hydropower plants with installed capacity greater than 10 MW. Among those hydropower plants, 7 are seasonal storage (reservoir) type and 6 are run-of-river type. Moreover, seasonal storage type hydropower projects have significant roles in regulating the flow in the tributaries in the dry season, because the seasonal storages (reservoirs) retain wet season river flow to generate power in the dry season, whereas, in run-of-river type hydropower projects water release and inflow rates are maintained equal so as not to have any impact on the flow regime of the river.

WATER ABSTRACTIONS IN THE MEKONG BASIN

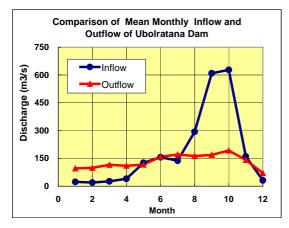

- 12. For domestic water use about 48.3 million m³/year was estimated for Lao PDR in 1999, however, 74% of this was estimated for Vientiane. Further, according to ESCAP (1991), in north-eastern Thailand the total domestic water use was estimated as 92.3 million m³/year, in which urban and rural water uses were estimated as 77.3 and 15.0 million m³/year, respectively. Similarly, in Cambodia 68 million m³/year was estimated as urban water use for Phnom Penh in 2002. Moreover, for the Mekong Delta in Vietnam, the domestic water use was estimated as 400 million m³/year in 2000. This indicates that domestic water use in the Mekong Delta is far higher than in other parts of the Mekong Basin.
- 13. About 75% of the population of LMB is dependent on agricultural activities, which includes fisheries as well. In 1999, the contributions of agriculture on the GDP in each riparian country were 47.2%, 18.3%, 36.5% and 22.7% in Lao PDR, Thailand, Cambodia and Vietnam, respectively. According to the LRIAD, MRC project report (2002), the total irrigated areas under LRIAD in each riparian country in the Mekong Basin were 224,232 ha, 941,425 ha, 392,117 ha, and 1,719,102 ha in Lao PDR, Thailand, Cambodia and Vietnam, respectively. However, the statistics of DOI, MOAF (2001) of Lao PDR shows that total irrigated area in Lao PDR was 152,000 ha in 1990/91. Further, the Lower Mekong Basin Water Balance Study Report (1984) shows that the total irrigated area in the Mekong Basin of north-eastern Thailand was 924,398 ha at that time. Similarly, the Cambodian Agricultural Development Option Review Report (1994) shows that total irrigated area was 306,000 ha in Cambodia in 1990. Based on the study reports, it could be concluded that the irrigated area has considerably increased in Lao PDR and Cambodia during the last decade, however, expansion of the irrigated area in the Mekong Basin in Thailand was negligible during that period.
- 14. The pumped irrigation system has been practiced to irrigate the agricultural land in the basin as usual. In total, there are 494 pumped irrigation systems in Lao PDR, which are irrigating 81,225 ha of land. Pumped irrigation is a significant portion of the current irrigation systems in Lao PDR, accounting for the irrigation of around 80% of the total irrigation area. In Thailand, pumped irrigation is very active along the Nam Mun-Chi River (283 systems by DEDP in 1994) as well as the Mekong mainstream (247 systems by DEDP in 1994). Although no recent data were available, according to the Lower Mekong Basin Water Balance Study Phase II Report (1984), there were 1,426 pumped irrigation systems (in total for DEDP, RID and MOI) in the Mekong Basin in Thailand, which had been irrigating 924,400 ha of agricultural land. This indicates that command areas of pumped irrigation systems are quite remarkable in the basin.
- 15. The irrigation diversion requirements have been estimated for irrigating agricultural land in the riparian countries of the LMB. The diversion requirements to irrigate paddy and other field crops during wet and dry seasons have been estimated in various study reports. In the

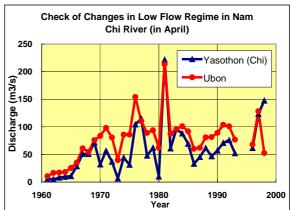

case of Vietnam, however, the diversion requirements were estimated for double paddy, triple paddy, field crops and perennial crops. The total dry season (January to April) irrigation diversion requirements are in the range of 1,423-2,495 mm (Lao PDR), 2,005-2,400 mm (Nam Chi basin in Thailand), 1,448-2,400 mm (Nam Mun basin in Thailand), 1224-2400 mm (Mekong tributaries in Thailand), and 1,505-2,100 mm (Cambodia). Similarly, the total dry season irrigation diversion requirements for the Mekong Delta in Vietnam are in the range of 410-1,089 mm (double paddy), 887-1,247 mm (triple paddy), 401-599 mm (field crops) and 381-535 mm (perennial crops). Currently there are no trans-basin irrigation diversion projects in the Lower Mekong Basin; however, a number of trans-basin projects are under consideration.

16. Based on the available information related to the current dry season irrigation areas and diversion requirements, preliminary estimation of current irrigation water use in the dry season is made for each riparian country. The total dry season irrigation demand is estimated to be around 18.1 billion m³; i.e., 3.5 billion m³ in Thailand, 1.2 billion m³ in Lao PDR, 1.8 billion m³ in Cambodia, and 11.6 billion m³ in Vietnam.

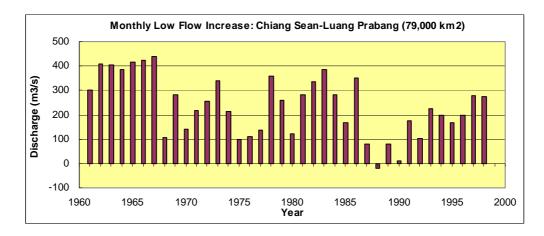
LOW FLOW INCREASES

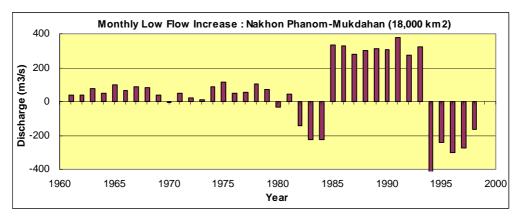
17. In Lao PDR, the Nam Ngum hydropower project was completed in three phases: Phase I (30 MW, 1972-78); Phase II (110 MW, 1979-84); and Phase III (150 MW, 1985-to date). Further, the Nam Song water diversion project was completed in 1995 to divert water to the Nam Ngum hydropower plant. Similarly, the Nam Leuk hydropower project (60 MW) was completed in 2000, and the water used for power generation is diverted to the Nam Ngum reservoir to enhance energy generation. Hence, the impact of Nam Ngum hydropower project on the low flow increase in the Nam Ngum River was analyzed. For this, a comparative study was performed in two approaches: (i) estimation of flow increases in the dry season from the reservoir operation data, and (ii) comparison of the observed mean monthly dry season (February to April) flows before and after the project at the hydrologic stations in the Nam Ngum River. Average flow increases due to release of the water from the reservoir are 188, 189 and 184 m³/s in February, March and April, respectively. On the other hand, the results show that the mean monthly dry season flow has increased annually in the period 1989-2000 by 169, 189 and 238 m³/s in February, March and April, respectively, after the completion of the project in the river.

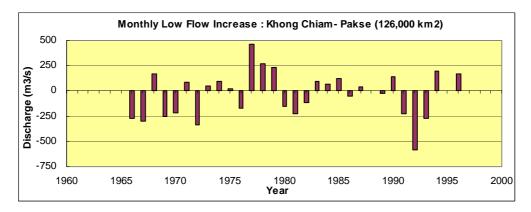




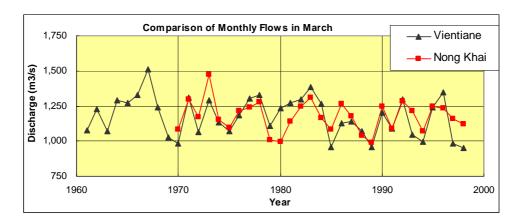
18. In Thailand, large storage reservoirs with total effective storage capacities of 1,626, 3,100 and 736 million m³ have been constructed on the Nam Mun River, Nam Chi River and other Mekong tributaries, respectively. These storage reservoirs play a significant role in


dry season flow regulation in those rivers systems. From the historical reservoir operation records, average dry season flow increases due to release of water from these reservoirs is estimated at around 2,561 million m³ in seasonal volume, and in the range of 220 to 290 m³/s in January to April. To estimate low flow increase into the Mekong mainstream due to the construction of these dams, it is assumed that water released from the dams are fully used for dry season irrigation, although 30% of the water is assumed to have returned to the rivers as return flow. Based on these assumptions, the estimated average low flow increase into the Mekong due to seasonal regulation of the reservoirs is around 74 m³/s in the dry season (January to April).


19. For instance, average low flow increase in the Chi River system is presented here. The average low flow increase in the Chi River during the dry season was estimated based on the operation records of three reservoirs, namely, Lam Pao (completed in 1971), Chulabhorn (1971) and Ubolratana (1966). The estimated average monthly low flow increases in the Chi River are 46, 50, 59 and 46 m³/s in January, February, March and April, respectively.



- 20. Finally, the low flow increase in the Mekong mainstream due to the lateral inflows from tributaries has been analyzed. For this, flow balance study was done in 12 river reaches along the Mekong mainstream in-between Chaing Saen (Thailand) to Chrui Changvar (Cambodia). The principle undertaken for flow balance study in a particular river reach along the Mekong mainstream is: the lateral inflow into the reach equalize to summation of the outflow at downstream of the reach and the water abstraction from the reach less the inflow at upstream of the reach. The flow balance was made by use of the monthly mean discharges during January to May, when the river flows are substantially reflecting the base flows almost without any contribution of local flood inflows from the contributing catchment.
- 21. Upstream and downstream flow balance inconsistencies (mean monthly discharge at the upstream station is larger than that at the downstream station) are observed in several years and at several stations. For instance, results of the flow balance study in March at the river reaches of Chiang Sean-Luang Prabang (79,000 km² in the remnant area), Nakhon Phanom-Mukdahan (18,000 km²) and Khon Chiam-Pakse (126,000 km²) are presented here. In many years the observed discharges at Chiang Khan are larger than at the upstream Luang Prabang station. The discharges at Khon Chiam are larger in many years compared with those at the downstream Pakse station.



- 21. For tributaries entering mainly from Lao PDR, the estimated specific discharges of lateral inflow in the dry season are 0.30 to 0.36 m³/s per 100 km², and for the Mun-Chi River in north-eastern Thailand, they are around 0.11 m³/s/100km². Likelihood of occurrence of flow balance inconsistencies between stations is closely related with the size of flow contributing area and the error range of water level-discharge rating curves at stations. Considering such relatively small specific discharges of lateral inflows in the dry season, flow balance inconsistency is highly likely to occur in such river reaches as the Luang Prabang-Chiang Khan (contributing area of 24,000 km²), Chieng Khan-Vientiane (7,000 km²), Vientiane-Nonk Khai (3,000 km²) and Nakon Phanom-Mukdahan (18,000 km²). At this moment the allowable error range of rating curve is unknown. Hence the practicalities of rating curve might be worthy of detailed examination.
- 22. From the hydrological viewpoints, both the Vientiane and Nong Khai stations are closely located to each other. The lateral inflow contributing area between stations is only 3,000 km². The lateral inflow in the dry season is expected to be as small as 9 m³/s applying 0.30

 ${\rm m}^3/{\rm s}/100{\rm km}^2$ in the Chiang Sean-Luang Prabang reaches. The estimated mean monthly discharges in the dry season are almost the same at both stations. However the results of flow balance on the monthly mean basis show wide-ranging lateral inflows varying from -200 to 200 ${\rm m}^3/{\rm s}$. This might be due to the errors of rating curve at both stations although it is unknown that there are spaces for avoiding or minimizing errors.

1. INTRODUCTION

There are many water resource development projects in the Mekong River Basin. The Mekong River water has been utilized for various sectors such as irrigation and hydropower generation, as well as domestic and industrial purposes. Such water uses influence more or less the low flow (dry season) regimes on the Mekong mainstream. It is evident that large-scale consumptive water extraction from rivers in the dry season would make impacts on the low flow regimes in the downstream as the dry season flows decrease. On the other hand, low flows are likely to increase due to water release by operation of seasonal-regulating reservoirs. Thus river flow regimes have changed historically due to the enhanced water usage and development activities carried out in the Basin.

The purpose this Paper VI, Water Use in the Lower Mekong Basin, is to present the results of the study on current water uses and preliminary check of changes in the low flow regimes at several key hydrologic stations due to various water resources development projects in the Mekong River Basin, and to draw attention on some pertinent issues related to a future hydrological monitoring on the Mekong mainstream in accordance with the Rules for the Maintenance of Flows on the Mainstream. The Rules are now being drafted for approval by the MRC Council scheduled around the end 2004.

Changes in low flow regimes are crucial technical factors for establishing the Rules as well as the future hydrological monitoring. This paper also aimed at providing material for the Regional Training Workshop on Water Allocation and Monitoring; namely, the International Experiences that were successfully carried out on 23-25 January 2002 at Ho Chi Minh City in Vietnam.

The preliminary check of changes in the low flow regimes was undertaken with the main focus on the:

- (1) Identification of low flow increase of the Nam Ngum River due to the Nam Ngum hydropower development project;
- (2) Identification of low flow regime change of the Nam Mun-Chi River due to intensive developments of water resources projects in north-eastern Thailand; and
- (3) Assessment of low flow increase due to lateral inflows at the selected hydrological stations along the Mekong mainstream

Low flows in the dry season usually reflect the "base flow" almost without any contribution of local flood flows. Predominant flow components of lateral inflows into the Mekong River in the dry season are subsurface flow and groundwater outflow from the contributing watersheds.

The analysis undertaken is based on the historic discharge records available in the HYMOS database and various but limited documents on water usages available at MRC. It is therefore noted that this document is still of a preliminary nature and requires further verification with inputs of accurate data on the historic water usages in the Basin.

2. EXISTING WATER RESOURCE FACILITIES IN THE MEKONG RIVER BASIN

2.1 Existing Large Reservoirs

The table below presents the salient features of the existing large-scale seasonal reservoirs in the entire Mekong River basin. It is highly likely from the hydrological viewpoints that historic operations of large-scale reservoirs have influenced the flow regimes in the downstream, reducing the high flows in the wet season and increasing the low flows in the dry season.

Table 2.1 Salient Features of Existing Large Reservoirs

Country	Name of Dam	River/ Major Tributary	Purpose	Catchment Area (km²)	Comp -letion Year	Dam Height (m)	Gross Storage (mil. m³)	Effective Storage (mil. m ³)
China	Manwan	Mekong	HY (Run-of-river)	114,500	1993	132	920	258
	Dachaoshan	Mekong	HY (Run-of-river)	121,000	2000	118	890	240
Lao PDR	Nam Ngum	Nam Ngum	НҮ	8,460	1971-8 5	75	7,030	4,700
	Houay Ho	Se Kong	НҮ	193	1999	93	620	523
	Nam Leuk	Nam Leuk	HY (water diversion to the Nam Ngum dam)	274	2000	45	185	-
Thailand	Lam Dong Noi (Sirindhorn)	Nam Mun	HY (36MW), IR (24,000 ha)	2,097	1968	42	1,966	1,191
	Lam Takong	Nam Mun	IR (22,000 ha)	1,430	1970	-	-	290
	Lam Phra Ploeng	Nam Mun	IR (10,097 ha)	807	1967	-	-	145
	Chulabhorn (Nam Phrom)	Nam Chi	HY (40MW), IR (9,600 ha)	545	1971	-	-	145
	Ubolratana (Nam Pong)	Nam Chi	HY (25MW), IR (40,700 ha)	14,000	1966	32	2,010	1,695
	Lam Pao	Nam Chi	IR (50,416 ha)	5,960	1971	-	-	1,260
	Huai Luang	Nam Luang	IR (12,800 ha)	666	1984	-	-	113
	Nam Oon	Nam Oon	IR (29,728 ha)	1,100	1973	-	-	475
	Huai Mong	Nam Mong	IR (8,640 ha)	1,307	1988	-	-	26
	Nam Pung	Nam Pung	HY (6.3MW), IR (32,000 ha)	297	1965	40	150	122
Vietnam	Ialy (Yali)	Se San	НҮ	7,455	2000-0	65	1,037	779

Note: HY: Hydropower; IR: Irrigation Source: MRCS and other related reports

From the table above the total effective storage of major reservoirs in each riparian country is summarized below.

Table 2.2 Com	parison of	Total	Storage	Volume	bv]	Riparian	Country

Country	No. of Reservoirs	Storage Volume (million m ³)
China (22%)	2	498
Myanmar (3%)	0	0
Lao PDR (25%)	3	5,408
Thailand (23%)	9	5,462
Cambodia (19%)	0	0
Vietnam (8%)	1	779
Total	15	12,147

Note: Figures in parenthesis are areas in % of the total Mekong River Basin.

Source: JICA Study Team

2.2 Overview of Water Resources Developments in the Mekong Countries

China

In China, the Mekong River is known as the Lancang River and flows mostly through Yunnan Province. The Lancang River drains a watershed area of 165,000 km², or 22% of the total area of the Mekong River Basin. Topographically, the Lancang watershed is quite steep. The north of the Lancang River Valley is parallel to the Gaoligonshan and Rushan mountains and the Yunling mountains and is characterized by such high mountains from 3,500 to 5,000 m and valleys above 2,000 m. The southern part of the Lancang is characterized with medium and low mountains and valleys below 1,000 m, with small population centers scattered along the mainstream and limited arable land.

Fig. 2.1 Hydropower Development Projects on the Mekong Mainstream in China

An average elevation drop of 6.5 m per kilometer (average river gradient of 1/154) demonstrates the hydropower potential of the Lancang River. Two dams have already been completed on the Lancang mainstream provided with run-of-river type hydropower generation station as a series of cascade hydropower development. In total 14 hydropower schemes were planned on the Lancang mainstream including two large reservoir type projects. A series of cascade hydropower projects on the Lancang mainstream is illustrated below.

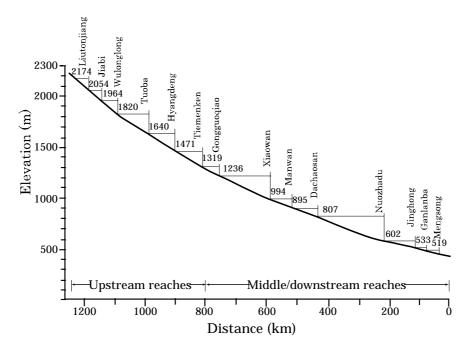


Fig. 2.2 Longitudinal Profile of Cascade Hydropower Development on the Mekong Mainstream in China

Photo: Lancang River in China (Source: MRCS)

It is reported that the construction of Xiaowan hydropower project has started as one of two large-scale reservoir-type projects (Xiaowan and Nuozhadu projects). Salient features of the cascade development are summarized below.

Table 2.3 Hydropower Development in Lancang River in China

No.	Name of Plant	Catchment Area (km2)	Dam Height (m)	Gross Storage (mil. m3)	Installed Capacity (MW)	Annual Output (GWh)	Average Inflow (m3/s)	Low Flow Increase (m3/s)	Status of Project
1	Liutonjiang	83,000	-	500	550	3,360	698	11	Desk Study
2	Jiabi	84,000	-	320	430	2,650	720	6	Desk Study
3	Wulonglong	85,500	-	980	800	4,890	754	22	Desk Study
4	Tuoba	88,000	-	5,150	1,640	7,630	809	219	Pre-F/S (?)
5	Hyangdeng	92,000	-	2,290	1,860	8,500	898	71	Pre-F/S (?)
6	Tiemenkan	93,400	-	2,150	1,780	8,270	929	62	Pre-F/S (?)
7	Gongguoqiao	97,300	130	510	900	4,670	985	8	F/S (?)
8	Xiaowan	113,300	290	15,130	4,200	18,540	1,220	555	Ongoing
9	Manwan	114,500	132	920	1,500	7,870	1,230	26	Completed in 1993
10	Dachaosan	121,000	118	880	1,350	7,090	1,340	15	Completed in 2000
11	Nuozhadu	144,700	260	24,670	5,000	22,670	1,750	212	Pre-F/S (?)
12	Jinghong	149,100	107	1,040	1,500	8,470	1,840	14	Pre-F/S (?)
13	Ganlanba	151,800	10	-	150	1,010	1,880	-	F/S (?)
14	Mengsong	160,000	28	-	600	3,740	2,020	-	F/S (?)
	Total		-	32,340	22,260	109,360	-	1,230	

Source: Yunnan Provincial Science and Technology Commission and Yunnan Institute of Geography (1993), Investigation and Study of the Current Status of the Lancang River-Mekong River Basin in Yunnan, P.R.C. Other related reports and international symposium papers.

Large-scale reservoir projects will have significant impacts on the downstream flow regime. It is highly expected that the ongoing Xiaowan Dam with active storage capacity of 11,500 million m³ for seasonal flow regulation will increase the dry season flow by around 555 m³/sec. The expected low flow increase due to full development of cascade projects is reportedly around 1,230 m³/s in total. Sustainable development of irrigation in the Lancang River Basin is unlikely because of a shortage of suitable land and the low fertility of soils. Over 86% of Yunan Province has a ground slope greater than 15%. Irrigation and dry-land agriculture areas are 3.5% and 17.4% of the entire Lancang basin. The table below indicates the predicted impacts of the cascade development on the Lancang River in Yunnan Province in China in terms of the contribution to dry season flows at selected stations on the Mekong downstream.

Table 2.4 Percent Increase to Mean Monthly Flow on the Mekong Mainstream due to Cascade Power Development in China

Location	Dec	Jan	Feb	Mar	Apr	May
Chiang Saen	32	48	73	89	80	28
Luang Prabang	22	38	52	80	66	27
Vientiane	22	38	52	72	60	27
Mukdahan	17	27	37	43	40	17

Source: David Plinston and He Daming, Australian Mekong Research Network, Water Resources and Hydropower in the Lancang River Basin (quoted from the paper entitled China's Mekong Dam Plans, David Blake, February 2001)

The implications from above are:

- (1) The ongoing large-scale reservoir development will have drastic impacts on the hydrological low flow regime of the Lower Mekong.
- (2) Large quantity of the dry season base flow will be generated by large scale regulation by reservoirs in China; at Chiang Saen the dry season flow increases are more than 80% in March and April.
- (3) From the viewpoint of water resources availability in the Lower Mekong, this significant contribution in the low flow regime would be crucially important.

Myanmar

The Mekong River forms part of the eastern border of Myanmar. A 350 km long reach of the Mekong River separates Myanmar from the northwest region of Lao PDR. The Mekong watershed drains an area of 28,000 km², or 3% of the total Mekong Basin. The major river in Myanmar is the Ayeyarwady River draining a catchment area of 193,000 km². Thus, the water resources of the Mekong catchment are quite few. Only a number of mini hydropower plants were constructed on the tributaries of the Mekong. Major projects are listed below.

Table 2.5 Existing Hydropower Projects in Myanmar

Project	Installed Capacity (kW)	Completed Year
Kyaington No.2	480	1991
Mainglor No.1	60	1992
Selu	20	1992
Kyaington No.1	3,000	1994

Source: MRC (1997), Mekong River Basin Diagnostic Study, Final Report

Lao PDR

Lao PDR is water rich and topographically favourable for hydropower generation. Thus Lao PDR has large potential for hydropower development. A number of potential hydropower projects on the Mekong tributaries have been identified. However only a few of its many possible projects have been developed. Currently there are five hydropower schemes generating a total of 615 MW although the total capacity is 640.6 MW including small-scale hydropower plants with less than 10 MW of installed capacity as well as diesel plants. Of these, three projects are reservoir type development. They are the Nam Ngum and Nam Leuk hydropower development projects in the Nam Ngum River, and the Houay Ho project in the Se Kong River. The total capacity of effective storage amounts to 5,200 million m³. These projects on the tributaries involve seasonal storage that will influence the flow regime in the downstream reaches of the Mekong mainstream as improved regulations of dry season flows. It is readily apparent that hydropower potential of Lao PDR exceeds its own electric demands. Prospects for future hydropower development depends on external demands from riparian countries such as Thailand and possibly Vietnam. Hydropower developments in Lao PDR are likely to become one of the mainstays of its future economic growth. The Nam Theun-2 Project of 1,080 MW will commence soon. This project is a large reservoir type development (effective storage of 2,607 million m³) involving the water diversion from the Nam Theun River to a power station in the upper reaches of the Se Bang Fai River. Table below shows the annual power generation and supply balance from 1990:

Table 2.6 Power Generation and Supply Balance in Lao PDR

	Capacity	Annual		Power St	apply (GWh)	
Year	(MW)	Output (GWh)	Domestic	Export	Import	Net Export
1990	163.56	833	165	595	28	567
1991	209.21	834	221	563	35	528
1992	209.90	752	253	460	41	419
1993	211.75	920	265	596	48	548
1994	217.39	1,199	279	829	57	772
1995	218.25	1,085	338	676	77	599
1996	218.60	1,248	380	792	88	704
1997	221.80	1,219	434	710	102	608
1998	415.00	948	513	405	142	263
1999	580.60	1,169	566	598	173	425
2000	640.60	1,579	640	863	163	700

Source: Electricite du Laos (EDL)

At present there are 23 IPP projects on tributaries of the Mekong. The table below shows the present status of IPP schemes:

Table 2.7 Present Status of IPP Schemes in Lao PDR as of End 2001

No.	Project	Capacity (MW)	Sponsor	Agreement Type	Signing
1	Theun-Hinboun	210	THPC	PPA	Jun. 1996
2	Houay Ho	150	Daewoo	PPA	Jun. 1997
3	Hongsa Lignite	720	Thai-Lao Lignite	CA	Jun. 1994
4	Nam Theun 2	980	NTEC	PPA (provisional)	Feb. 2002
5	Nam Ngum 2	615	Shlapak	CA	Mar. 1998
6	Nam Ngum 3	440	GMS Power	PDA	Nov. 1997
7	Xe Pian-Xe Namnoy	390	Dong Ah	CA	Aug. 1994
8	Xe Kaman 1	468	ALP Mgt	CA	Nov. 1997
9	Southern Laol Trans.	-	ALP Mgt	CA	Nov. 1997
10	Nam Theun 3	237	Heard Energy	PDA	Aug. 1994
11	Nam Mo	105	Mahawongse	PDA	Nov. 1999
12	Nam Tha 1	263	SPS	MOU	Oct. 1995
13	Nam Theun 1	540	SUSCO	MOU	Mar. 1994
14	Nam Lik	100	Hainana STT	MOU	Feb. 1994
15	Nam Ngum 5	90	Melkyma	MOU	Sep. 1996
16	Nam Ou	600	Pacific Rim	MOU	Nov. 1994
17	Xe Katam	100	Hydro Power	MOU	Oct. 1994
18	Nam Khan 2	126	Hydro Quebec	MOU	Jun. 1994
19	Nam Suang 2	190	VKS	MOU	Mar. 1995
20	Nam Niep 2+3	565	VKS	MOU	Mar. 1995
21	Xe Kong 5	250	Sondel	MOU	Apr. 2000
22	Phapheng (Thakho)	30	True Assess Ltd	MOU	
23	Nam Bak (Cha) 2B	120	Nisho Iwai	MOU	

Note: MOU: Memorandum of Understanding, PDA: Project Development Agreement, CA:

Concession Agreement, PPA: Power Purchase Agreement

Source: Power Sector Strategy Study, Draft Final Report, February 2001

Thailand

In North-eastern Thailand, the Mekong River drains an area of 170,000 km², which amounts to about 22% of the Mekong River basin and one-third of the total area of the country. The easterly flowing Nam Mun River and its major tributary, Nam Chi River (together known as the Nam Mun-Chi River) drains the southern two-thirds of the Mekong River basin (120,000 km²). A series of northerly and easterly flowing tributaries drain the remaining one-third of the Mekong River catchment (50,000 km²). The Nam Mun-Chi River basin consists of a shallow saucer-shaped plateau (part of the Korat Plateau of North-eastern Thailand), which has an average height of 100-200 m above sea level. Farmland covers about 43% of the total area, of which paddy fields account for about two-thirds (27%). Forests cover only 21% of the total area. Most surface water development projects in this area are based on the three rivers. The figure below is the mean monthly discharge at Ubon (1961-1966 before intensive water resources development in the Nam Mun-Chi Basin), the growth center in the Basin located in the downstream from the confluence of the Nam Mun and Chi Rivers.

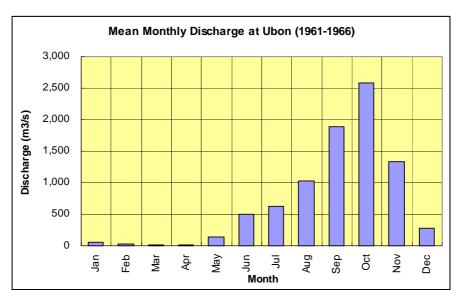


Fig. 2.3 Mean Monthly Discharge at Ubon Station

The Nam Mun-Chi River Basin is characterized hydrologically by relatively small annual rainfall (1,200-1,800 mm) and large difference of river flows in the wet and dry seasons. At Ubon, over 95% of the annual runoff occurs in the wet season. Only 3% occurs in the dry season (January to May). In this area, the agriculture sector has been the predominant one and thus irrigation is essential for cultivated crops. In the dry season irrigation virtually depends on the source of water.

Under the condition above, intensive water resources development mainly for irrigation development has been made from the mid-1960s to early 1970s. At present there are nine seasonal-regulating large reservoirs supplying the supplementary water for dry-season irrigation. Of nine reservoirs, four projects are provided with hydropower generating facilities. The total capacity of effective storage is approximately 5,460 million m³. The location map of major reservoirs is shown below.

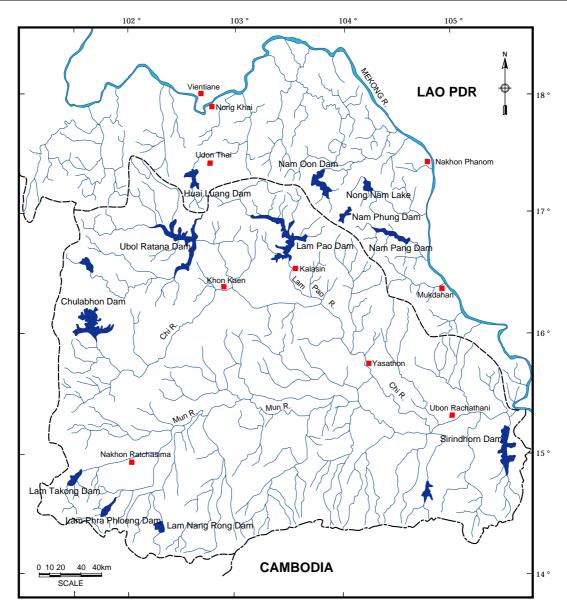


Fig. 2.4 Location Map of Major Reservoirs in Thailand

Historic water resources development in terms of the accumulation of developed effective storage in reservoirs is shown in Fig. 2.5 below. The total irrigation service area covered by the reservoirs is around 240,000 ha. Besides the large reservoirs, there are numerous small and medium scale irrigation reservoirs (ponds) in the area.

In Thailand, oppositions against new hydropower development projects are increasing concern. The Pak Mun run-of-river type hydropower project constructed at almost the outlet of the Nam Mun-Chi River into the Mekong River has been suspended (full gate opening at the intake weir) due to triggered local protests. It appears that Thailand has almost utilised the obvious hydropower potential of the major Mekong tributaries. Further medium to large-scale developments on the tributaries are unlikely.

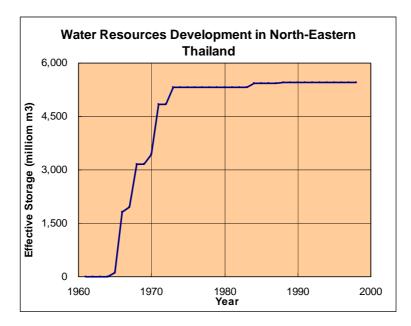


Fig. 2.5 Historic Water Resources Development in North-eastern Thailand

Cambodia

Cambodia is predominantly a low-lying country that occupies the central plains of the Mekong Basin. The Mekong River drains a catchment area of 155,000 km² in Cambodia, which amounts to about 19% of the whole Mekong Basin and about 90% of the total area of the country. The Tonle Sap River is a major tributary of the Mekong in Cambodia. At Prek Kdam located on the Tonle Sap River some 30 km upstream from its confluence with the Mekong, the Tonle Sap River has a drainage area of 84,000 km², or nearly 54% of the total Mekong catchment in Cambodia. The principal feature of Tonle Sap catchment is the Great (Tonle Sap) Lake, which covers an area of 13,750 km² and is the largest freshwater lake in the South-East Asia. The lake provides vital inland migrating fisheries to Cambodia and mitigates significantly downstream floods into the Mekong delta in Vietnam. The total natural storage capacity of the Great Lake is estimated to be some 150 billion m³. During the flood season, the water surface of the lake expands from 250,000 to 300,000 ha in the dry season to 1.0 to 1.4 million ha.

In Cambodia there are no existing reservoirs at present. The construction of Prek Thnot multipurpose dam has been interrupted since 1973 due to the political unrest in the country as well as the financial situation. There is a development plan for a series of run-of-river type hydropower schemes on the Mekong mainstream at Don Sahong, Stung Treng and Sambor. Cambodia is highly dependent on a migrating fishery for its annual protein. Construction of barrages on the mainstream has significant adverse effects on the existing fishery. In this respect, the possibility of implementing hydropower development on the mainstream might be very low.

Vietnam

There are two distinct regions in the Vietnam part of the Mekong River Basin; the Mekong Delta (39,000 km²) and the Highland of Central Region of Vietnam (48,500 km²). The Highland of Central Region is a part of the upstream watersheds of the Se San (14,800 km² in the territory of Vietnam) and Sre Pok (18,200 km²) rivers. The Mekong Delta includes the Mekong and Bassac rivers.

According to the 1987 Indicative Plan, the upper part of the Highland has the highest potential for hydropower generation with its relief. On the other hand the lower part has areas suitable for irrigation development. The Ialy (Yali) reservoir-type hydropower development project was

completed in the Se San River in 2000. The Yali reservoir is the first seasonal regulation reservoir in the Mekong watershed in Vietnam. The effective storage capacity is reportedly around 779 million m³. Although the operation procedure of Yali reservoir is unknown at the moment, it is highly expected that the low flow regime of the Se San River would be influenced due to the hydropower generating operation. The Mekong delta is the richest agricultural zone in Vietnam where irrigation and drainage infrastructure has been intensely developed covering around 2.4 million hectares of rice and mixed crops.

Notification of the construction of the Se San 3A Hydropower Project (run-of-river scheme) on the Se San River was submitted to the Joint Committee meeting in June 2003. This is based on the procedure as stipulated in Article 5: Reasonable and Equitable Utilization of the 1995 Mekong Agreement.

The description of the Notification is as follows: "Notification of the Se San 3A Project:, located on some 14km downstream of the Se San 3 Hydropower Project in Sa Thay district of Kon Tum province (right bank) and Chu Pah district of Gia Lai province (left bank). The total catchment area at project site of 8,084 km², the river has an average natural flow of 283 m³/sec while the peak flood flow is ranging from 14,900 – 15,700 m³/sec. The sole purpose of the project is electricity generation with total installed capacity of 108MW. The project is constituted by a concrete gravity dam; a spillway; a power station consisting of two pressured tunnels, a power house and transmission system in the left bank".

2.3 Existing Hydropower Plants

(1) Salient Features

As of the year 2000, there were 13 hydropower plants with an installed capacity above 10 MW in the whole Mekong River Basin. The salient features of the existing hydropower plants are presented in the next page.

Table 2.8 Salient Feature of Existing Hydropower Plants

Country	Name of Plant	River	Туре	Capacity (MW)	Comple -tion Year	Annual Output (GWh)	Rated Head (m)	Plant Discharge (m³/s)
China	Manwan	Mekong	RoR	1,500	1993	7,870	99	-
Cillia	Dachaoshan	Mekong	RoR	1,350	2000	5,931	80	-
	Nam Ngum	Nam Ngum	SS	150	1971-85	900	32	220
	Xeset	Xe Don	RoR	45	1991	180	157	-
Lao PDR	Theun Hinboun	Nam Theun, Nam Hinboun	RoR	210	1998	1,645	230	100
	Houay Ho	Se Kong	SS	150	1999	600	765	10.4
	Nam Leuk	Nam Leuk	SS	60	2000	184	-	-
	Sirindhorn	Nam Mun	SS	36	1968	115	30.3	-
Thailand	Chulabhorn	Nam Chi	SS	15	1971	62	85	-
Thanana	Ubolratana	Nam Chi	SS	25	1966	75	16.75	75
	Pak Mun	Nam Mun	RoR	136	1997	462	-	-
Vietnam	Dray Ling	Se Srepok	RoR	13	1995	70	-	-
v ietiiaiii	Ialy (Yali)	Se San	SS	720	2000-01	3,642	189	105

Note: SS: Seasonal storage; RoR: Run-of-River

Source: MRCS and other related reports

CHINA MYANMAR THAILAND Sirindro CAMBODIA GULF OF THAILAND

These projects above are indicated on the map below.

Fig. 2.6 Location Map of Existing Hydropower Project in Mekong River Basin (Source: MRC, MRC Hydropower Development Strategy, 2001)

(2) Type of Hydropower Development

Hydropower development is broadly divided into two types: a run-of-river type power plant scheme and a reservoir type (storage type) power plant scheme. An extensive hydroelectric cascade development on the mainstream of the upper Mekong (Lancang) River in China consists of a combination of both scheme types to utilize the full potential water head of the river. Both hydropower schemes impose new flow regimes in the rivers below the generating plants to a greater or less extent. Impacts on the downstream flow regime due to both schemes are defined below.

Reservoir (storage) scheme

Schemes which have storage reservoirs retain wet season river flows and to use them to generate energy during the dry season. Hence the downstream river flows are reduced in the wet season and increased in the dry season. An extensive impoundment of water in a reservoir allows for regulation of the river flow downstream. Reservoir scheme allows a relatively constant supply of energy over the year. Significant storage is often used for large base load plants. Due to the operation of reservoir type power plant, seasonal regulation of river water is expected although highly depending on the magnitude of storage capacity of a reservoir and installed capacity of power plants (plant discharge). As introduced earlier, the ongoing Xiaowan project in China on the Mekong mainstream, having a active storage capacity of 11,500 million m³, is expected to augment the dry season flow by around 555 m³/s in the downstream of Mekong River.

Run-of-river scheme

Run-of-river scheme is a type of hydropower plant that releases water at the same rate as the natural river flow, i.e. outflow equals inflow. Typically a weir or barrage is built across a river and the water head created is used to generate power energy. The completed large-scaled run-of-river type hydropower plants of Manwan (1,500 MW) and Dachaoshan (1,350 MW) in China are both provided with over-100 m high dams to obtain such huge plant capacity (higher water head for power generation). Basic operation process of run-of-river power plant is as illustrated below.

Usually a run-of-river hydropower plant has limited storage capacity without flow regulation compared to a storage type, and only use river water when available. Its firm

Fig. 2.7 Illustration of Run-of-river Type

capacity of power plant is low because the water available is not uniform throughout the year; however, it can serve as a base load plant. Some plants may have enough upstream pondage to provide partial flow regulation to meet daily power demand variations (peak load plant). Typical example of base load and peak load operations is shown below.

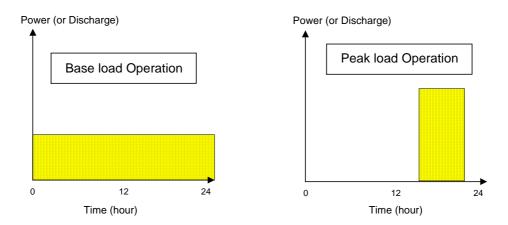


Fig. 2.8 Illustration of Base and Peak Load Operations

A peaking plant usually releases a large quantity of water during the day and little or no water during the night (off-peak) period. Constructing a downstream re-regulating pond can mitigate this situation. The pond collects the water from the power plant and releases them evenly over the 24-hour a day, or over the week where the cycle is weekly.

(3) Downstream flows of Run-of-river Type Power Plants

From the hydrological viewpoints on the likely influences to the downstream river flows due to the hydropower generation, run-of-river type hydropower plants would not cause significant impacts on the downstream flow regime, because no seasonal regulation capacity is provided.

As illustrated in Fig. 2.7, run-of-river plant operation is usually made to maintain the intake water supply level at reservoir or pondage for maximizing energy output. As a result, the outflow discharge comprising the spilling-out discharge and plant discharge for power generation is basically kept almost equal to the inflow discharge as the reservoir water level is maintained to the water supply level.

There are two huge run-of-river type hydropower plants in China. Both power plants have water storage on the Mekong mainstream with total effective capacity of 498 million m³ as detailed below.

Name of Power Plant	Storage Volume (million m³)	Average Rated Head (m)	Firm Power (MW)	Installed Capacity (MW)	Plant Factor (%)	Utilisatio n Hours (hour)
Manwan	258	99	796 (314)	1,500	68.1	5,260
Dachaoshan	240	80	680 (276)	1,350	60.3	5,200

Table 2.9 Detailed Features of Existing Run-of-river Plants in China

Note: See Tables 2.1 and 2.8 for other information on features. Firm power in bracket is based on the individual development instead of the cascade development.

Source: Yunnan Provincial Science and Technology Commission and Yunnan Institute of Geography (1993), Investigation and Study of the Current Status of the Lancang River-Mekong River Basin in Yunnan, P.R.C. Other related reports and international symposium papers.

The maximum plant discharges (Qmax) is defined as the discharge when full operation by means of the installed capacity is made. On the other hand, the firm discharge (Qf) is as the discharge for operation of firm power. These discharges at both stations are roughly estimated as follows:

Qmax of Manwan = $1,500,000 / (9.8 \times 0.84 \times 99) = \text{approx. } 1,840 \text{ m}^3/\text{sec}$

Qf of Manwan = $796,000 / (9.8 \times 0.84 \times 99) = \text{approx. } 980 \text{ m}^3/\text{sec}$

Qf of Manwan = $314,000 / (9.8 \times 0.84 \times 99) = \text{approx. } 390 \text{ m}^3/\text{sec}$

Qmax of Dachaoshan = $1,350,000 / (9.8 \times 0.84 \times 80) = \text{approx. } 2,050 \text{ m}^3/\text{sec}$

Qf of Dachaoshan = $680,000 / (9.8 \times 0.84 \times 80) = \text{approx. } 1,030 \text{ m}^3/\text{sec}$

Qf of Dachaoshan = $276,000 / (9.8 \times 0.84 \times 80) = \text{approx. } 420 \text{ m}^3/\text{sec}$

where, 1,500,000 and 1,350,000: Installed capacity of power plant (kW)

9.8 : Acceleration of gravity (m/s²)

0.84 : Combined efficiency of power plant (assumed)

99 and 80 : Rated head (m)

Table 2.10 Comparison of Estimated Maximum Plant Discharges and Firm Discharges of Existing Run-of-river Plants in China

Name of Power Plant	Average Annual Inflow (m³/s)	Storage Volume (million m ³)	Maximum Plant Discharge (m³/s)	Firm Discharge (m³/s)
Manwan	1,230	258	1,840	980 (390)
Dachaoshan	1,230	240	2,050	1,030 (420)

Note: Firm discharge in bracket is based on the individual development instead of the cascade development.

Source: WUP-JICA Study Team

Usually the firm discharge (Qf) of run-of-river hydropower plant is determined as the discharge as the 95-97% discharge of inflow duration curve at a plant site. In other wards, the firm discharge is the ensured (guaranteed) discharge that river flow exceeding the firm discharge is expected with a probability of 95-97% over a long period. The firm power is also defined as the capacity that is guaranteed for 95-97% over a long period. The installed capacity is determined as the optimal development scale through optimization. The relationship between the maximum plant discharge and firm discharge is illustrated below.

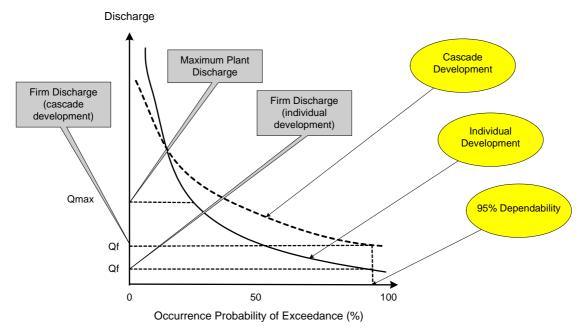


Fig. 2.9 Relationship between Maximum Plant Discharges and Firm Discharges

As shown above, the firm discharges at two run-of-river hydropower plants in China will be considerably increased after the completion of cascade development (the Xiaowan hydropower project in the upstream thereof). This is due to that the Mekong flow (or inflows into the reservoirs of run-of-river plant) is largely regulated by the large Xiaowan reservoir to be created (see the expected inflow duration curve change due to a cascade development as illustrated in Fig. 2.9). As a result, the annual energy out will be considerably increased.

Presently in the dry season, the Mekong flow decreases around 500-600 m³/s on average at two these hydropower plants. Full operation that requires the plant discharge of more than 2,000 m³/sec is thus difficult. Partial power generation is currently being made with a maximum use of the daily/weekly reservoir inflow volume, nevertheless whether it is operated in mode of "base load" or "peak load". Fig. 2.10 in the next page presents typical operations of the run-of-river type power generation in view of comparison of inflow and outflow relationship both in the wet and dry seasons.

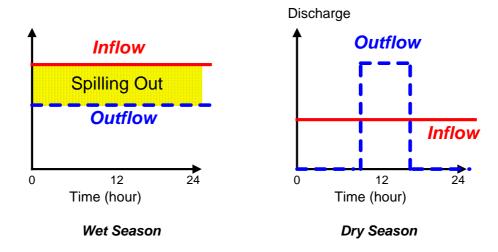


Fig. 2.10 Typical Run-of-River Type Operation in Wet and Dry Seasons

(4) Expected Low Flow Increase due to Reservoir Type Power Plants

It is likely that many reservoir type hydropower plants change the downstream flow regimes. Storage reservoirs retain wet season flows and use them to generate energy during the dry season.

The Nam Ngum hydropower plant having a large active storage of 4.7 billion m³ is highly expected to increase the low flow regime on the Mekong mainstream as well as the Nam Ngum River (detailed discussion and analysis are made in Chapter 5).

On the other hand, the maximum plant discharge (Qmax) of the Houay Ho hydropower plant on the Se Kong River is roughly estimated as follows:

 $Qmax = 150,000 / (9.8 \times 0.84 \times 765) = approx. 24 \text{ m}^3/\text{sec}$

where, 150,000: Installed capacity of generating equipment (kW)

9.8 : Acceleration of gravity (m/s²)

0.84: Combined efficiency of power plant

765: Rated head (m)

The maximum plant discharge is expected at only around 24 m³/s, although the installed capacity of 150,000 MW is the same as the Nam Ngum hydropower station. This is due to that the Houay Ho hydropower project harnesses the high water head for 765 m. The Houay Ho hydropower station would not significantly influence the low flow regime on the Se Kong River. Table 2.11 shows the monthly operation records of Houay Ho power station.

2.4 Surface Water Extraction for Domestic Water Supply

Actual domestic water usage by riparian countries is summarized below from the available information and reports. As discussed below, actual water usage is negligibly small compared to the flow in the Mekong River.

Lao PDR

The available surface water extraction amount at major pumping stations for domestic water supply as of 1999 in Lao PDR is summarized below.

Table 2.12 Major River Intakes for Domestic Water Supply in Lao PDR (1999)

Name	River	Water Extraction Amount
Luang Prabang	Nam Khan	$8,000 \text{ m}^3/\text{day}$
Kaolieo (Vientiane)	Mekong	20,000 m ³ /day
Chinaimo (Vientiane)	Mekong	77,800 m ³ /day
Thangone (Vientiane)	Nam Ngum	$480 \text{ m}^3/\text{day}$
Savannakhet	Mekong	$7,200 \text{ m}^3/\text{day}$
Salavan	Xe Done	$1,530 \text{ m}^3/\text{day}$
Pakse	Mekong	$17,280 \text{ m}^3/\text{day}$
Total		$132,290 \text{ m}^3/\text{day} (= 1.53 \text{ m}^3/\text{sec})$

Source: JICA Expert Report in Lao PDR, 2000

Based on the water extraction capacities above, the annual water supply in Lao PDR is roughly estimated at 48.3 million m³/year in 1999, of which 74% was in Vientiane. In Luang Prabang, Sabanakhet and Pakse, the water productions are of the order of 3-6 million m³ annually.

Thailand

No figures are available on the recent domestic water usage in the north-eastern part of Thailand. According to the ESCAP's report on Assessment of Water Resources and Water Demand by User Sectors in Thailand in 1991, the average annual volume of urban and rural water supply (1980-1989) in North-eastern Thailand was estimated at 92.3 million m³, of 77.3 million m³ which are for urban water supply and 15.0 million m³ for rural water supply.

Cambodia

In Phnom Penh, there are three intakes on the Mekong and Tonle Sap Rivers for urban water supply as listed below.

Table 2.13 Major River Intakes for Domestic Water Supply in Cambodia (2002)

Name	River	Water Extraction Amount
Chrui Changvar	Mekong	$65,000 \text{ m}^3/\text{day}$
Phnom Penh Port	Tonle Sap	$100,000 \text{ m}^3/\text{day}$
Chang Kamong	Bassac	$20,000 \text{ m}^3/\text{day}$
Total		$185,000 \text{ m}^3/\text{day} (= 2.14 \text{ m}^3/\text{sec})$

Source: Phnom Penh Water Works

Urban water usage is estimated to be around 68 million m³ annually based on the water extraction amount in the table above. The water extraction capacity of 2.14 m³/sec represents about 0.09% of the mean monthly dry season flow of the Mekong at Phnom Penh (reportedly 2,500 m³/sec in April when the flow becomes lowest in the dry season).

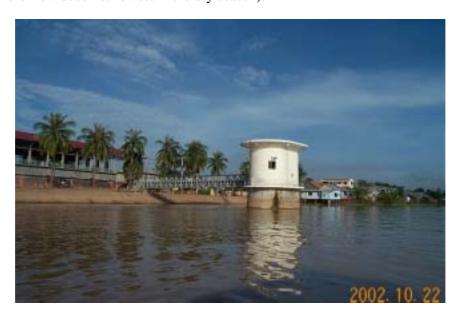


Photo: Chrui Changvar Intake on the Mekong in Cambodia

Vietnam

According to the Mekong Delta Master Plan in 1993, abstractions for urban and domestic water supply in the delta in 1990 were 52 million m³, of which approximately 30% were supplied from groundwater. All of the 33 million m³ of rural domestic water supply and the 12 million m³ of industrial water supply were supplied from groundwater. The total domestic water supply is less than 1% of the estimated agricultural water supply. Groundwater abstractions for urban and rural domestic water supply were projected to double by 2000. Total projected domestic demand for the delta in 2000 was estimated as 400 million m³, and total industrial demand for 2000 was estimated at 230 million m³. These figures are over six times of the 1990 supply figures.

Table 2.14 Water Abstractions for Domestic Water Supply in 1990

(Unit: m3/day)

Purpose	Surface water	Groundwater
Urban	101,000 (1.2)	41,000 (0.5)
Rural	0	90,000 (1.0)
Industrial	0	34,000 (0.4)
Total	101,000 (1.2)	165,000 (1.9)

Note: Figures in a parenthesis are in m³/s. Source: Mekong Delta Master Plan, 1993

Table 2.15 Projected Domestic Water Demand in 2000 and 2015 for Entire Mekong Delta

(Unit: m3/day)

Year	Domestic	Other	Total
2000	1,087,000 (12.6)	630,400 (7.3)	1,717,400 (19.9)
2015	2,238,700 (25.9)	1,202,000 (13.9)	3,441,200 (39.8)

Note: Base year for projection is 1990. Figures in a parenthesis are m³/s.

Source: Mekong Delta Master Plan, 1993

2.5 Operation Records of Existing Flow-Regulating Facilities

At the writing of this document no historical operational records of the existing water-regulating facilities are available at MRCS with an exception of the Nam Ngum reservoir in Lao PDR. Records of these facilities are very important and useful for evaluating the historical water usage in the whole Lower Mekong Basin. Furthermore they might be essentially required for calibration of the basin modelling when it appears that historical water usage has a significant effect on the hydrologic flow regime of the Lower Mekong mainstream.

The historic operational records to date (physical performance of the water resources development projects) might be available at respective responsible agencies in member countries. Limited operational records are available in several past planning studies.

2.6 Seasonal Regulation Rate of Mekong Flow by Major Reservoirs

At present the total capacity of existing large-scale reservoirs in the entire Mekong River basin amounts to approx. 12,147 million m³.

As mentioned earlier two existing large reservoirs in China would have no seasonal regulating capacity on the Mekong River water, because they are basically operated for run-of-river type power generation. Thus it is suggested that the total capacity of seasonal regulation reservoirs is around 11,649 million m³.

The seasonal regulation rate of all of the existing major reservoirs is roughly estimated to be around 2.5% as follows:

Average annual flow volume of the entire Mekong River = 475,000 million m³

Seasonal regulation rate = $11,649 / 475,000 \times 100 = 2.5\%$

Note: Average annual flow volume data was from the Mekong River Basin Diagnostic Study, MRC, 1997.

3. AVAILABLE INFORMATION ON IRRIGATION AREA IN LOWER MEKONG BASIN

3.1 Overview of Land Use in the Lower Mekong Basin

The approximately 75 million inhabitants (as of 1999) of the Mekong Basin, which has a total area of 795,000 km², depend on the natural resources to sustain livelihood. The Lower Mekong Basin (LMB) covers Cambodia, Lao PDR, Thailand and Vietnam with an area of 606,000 km², accounting for 76% of the entire Mekong Basin as tabulated below.

Table 3.1 Drainage Area of Mekong River Basin

Country	Area (km²)	Area (%)	Area in LMB (km²)	Area in LMB (%)
China	165,000	21		-
Myanmar	24,000	3	-	-
Lao PDR	202,000	25	202,000	33
Thailand	184,000	23	184,000	30
Cambodia	155,000	20	155,000	26
Vietnam	65,000	8	65,000	11
Total	795,000	100	606,000	100

Source: MRC

The table below gives an overview of estimated areas of land use by each riparian country within the Lower Mekong Basin as illustrated in Fig. 3.1 below.

Table 3.2 Land Use in the Lower Mekong Basin in 1997

(Unit:%)

Land Cover	Lao PDR	Cambodia	Thailand	Vietnam Delta	Vietnam Highland	Viet Nam Total
					S	
Forest	40	54	16	0	43	21
Woodland/ grassland	42	15	3	0	25	13
Agriculture	14	23	79	84	29	57
Wetland/water	1	5	1	10	0	5
Other	2	0	0	4	0	2

Source: MRC Land Cover Dataset, 2001

The data is based on interpretations of remotely sensed Landsat TM imagery from 1997 and is a simplified version of a land cover map held by the MRC. Extensive areas of agriculture (mainly rice cultivation) are dominant on the Korat Plateau, the floodplains in Cambodia, the Mekong delta in Vietnam and around the Tonle Sap Lake. More than a third of the Lower Mekong Basin remained under forest cover in 1997. Much of this area is low-density deciduous forest in the north and east of the Cambodia plain. The main areas of tropical forest are in the more mountainous areas of Cambodia and southern and eastern Lao PDR. Northern Lao PDR is characterized by mixed forest with large areas of woodland, often associated with shifting cultivation.

In Vietnam there are significant differences of land use between the Mekong delta and Central Highland regions. The delta consists of almost entirely agricultural land with the majority of this being developed to paddy cultivation. Thus there is no significant forest area in the delta. On the other hand, the Central Highlands is 68% covered by forest, woodlands and grasslands. The Korat

Plateau, and the rest of the North-eastern region of Thailand, following rapid deforestation in the 1980s, are now almost 80% agricultural land. The soil is generally low in fertility and highly saline.

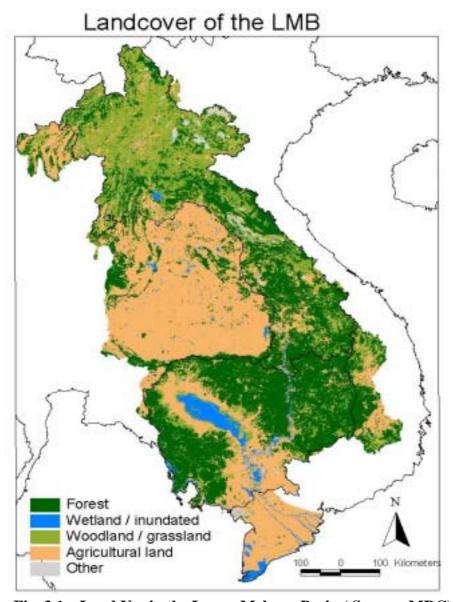


Fig. 3.1 Land Use in the Lower Mekong Basin (Source: MRC)

3.2 Historic Overview of Irrigation Areas

Agriculture is a predominant economic sector in the Lower Mekong Basin. About 75% of the region's population is dependent on agriculture and fisheries. Agriculture, with its vital issue of food security, has always been considered as one of the key sectors in development strategies of the riparian countries. It is also an important source of foreign-currency for Thailand and Vietnam, while agricultural activities are the mainstays of the Cambodian and Lao PDR economics and major providers of employment. The tables below show the contributions of the sector to GDP and national exports in the Lower Mekong basin area.

Table 3.3 Contributions of Agriculture and Forestry to GDP of Each Riparian Country

(Unit: %)

	Camb	odia	Lao I	PDR	Thail	and	Viet	nam
Sector	1995	199	199	199	199	199	199	1999
		9	0	9	3	7	0	
Crops	26.1	21.3	36.7	28.7	16.6	14.8	-	20.4
Livestock/Fisheries	13.4	15.2	20.7	18.5	4.3	3.5	-	2.3
Forestry	6.6	3.9	3.2	4.9	0	0	-	0.9
Total Share of GDP	46.1	40.4	60.6	52.1	20.9	18	38.7	23.6

Report Source: MRC, Basin Development Plan, Regional Sector Overview, Agriculture and Irrigation, November 2002

Source: Lao PDR Ministry of Agriculture and Forestry (2000), Thailand National Statistics Office (2000), Viet Nam General Statistical Office (1999), IMF (2002), IMF (2002), * includes entire country rather than only Mekong Basin Area.

Table 3.4 Contributions of Agriculture and Forestry to LMB Country Exports

(Unit: %)

								(01110: 70)
Sector	Cambodia		Lao PDR		Thailand*		Vietnam	
Sector	1995	1999	1995	1999	1993	2000	1995	1998
Share of Total Exports								
Agriculture	15	5	13	6	30	22	32	24
Forestry	69	16	39	29	0	0	3	2

Report Source: MRC, Basin Development Plan, Regional Sector Overview, Agriculture and Irrigation, November 2002

Source: Thailand National Statistics Office (1997, 2001), Viet Nam General Statistical Office (1999), IMF (2002), IMF (2002), * includes entire country rather than only Mekong Basin Area.

Historical review of irrigated areas was carried out for the riparian countries. The areas were collected from existing reports and others. The results of data collection are as summarised below.

3.2.1 Indicative Basin Plan in 1970

In 1970, the Committee for the Coordination of Investigations of the Lower Mekong Basin established the Indicative Basin Plan, which was proposed as a framework for the development of water and related resources of the Lower Mekong River Basin. The information included in the Indicative Basin Plan in 1970 pertaining to irrigation areas in the Lower Mekong Basin is as follows:

The total area commanded by irrigation projects amounted at to 213,000 ha within the Lower Mekong Basin of Lao PDR, Thailand and Cambodia in 1970. In Vietnam, some 60,000 ha of the Mekong delta was controlled artificially by either irrigation, drainage or salinity control. The total land under irrigation (272,750 ha) was less than 3% of the total cultivated area at that time (see Tables 3.5 and 3.6 in the next page).

Before 1970, the regularization of wet season water supply for rice cultivation was sufficient to meet the needs and there was little or no necessity to provide for multiple-cropping and dry season irrigation. As a consequence, the irrigated areas in Table 3.6 are of wet season paddy. Yield levels per hectare had varied little since the beginning of the century. Average yields of non-irrigated paddy in the better regions of the flood lands reached about 2,000 kg per crop ha. On the plateau, average yields did not go above 1,500 kg per ha, and in the hilly regions the average was lower, about 900-1,000 kg/ha.

Table 3.5 Cultivated Areas in Lower Mekong Basin (1965)

Zone	Gross Area (million ha)	Cultivated Area (million ha)	Remarks
Hills	16.0	0.6	
Plateau	41.6	6.3	Korat plateau, Vientiane plain, various tributary plains and Northern plains of Cambodia
Flood Plains	6.9	3.0	Below Kompong Cham extending to the sea
Total	64.5	9.9	

Source: Interim Committee for Coordination of Investigations of the Lower Mekong Basin (1970), Report on Indicative Basin Plan

Table 3.6 Irrigated Areas in Lower Mekong Basin (1970)

Country	Irrigated Area (ha)	Remarks
Lao PDR	22,550	Command area of irrigation projects
Thailand	127,500	-ditto-
Cambodia	62,700	-ditto-
Vietnam	60,000	Artificially controlled water area
Total	272,750	

Source: Interim Committee for Coordination of Investigations of the Lower Mekong Basin (1970), Report on Indicative Basin Plan

In addition, in Thailand and Cambodia, there were several irrigation projects under construction or likely to be completed before 1980, which would increase the irrigation area by at least 550,000 ha. In Vietnam, another water control development was contemplated to increase the area by an additional 250,000 ha. These developments would bring the total developed land close to 1.0 million ha.

As for Cambodia, Bovel project (command area: 45,000 ha), Western Baray project (13,000 ha), Prek Thnot multipurpose project (70,000 ha) and 35 smaller projects (29,675 ha) were included in the above projects. Although these command areas amount to 158,000 ha in total, these irrigation projects were not completed because of the political changes.

3.2.2 Revised Indicative Plan in 1987

Since the Indicative Basin Master Plan in 1970, there had been many changes in the political, economic, social and technical reality of the basin. The Plan in 1970 was revised reflecting changes above in 1987. The revised plan was called the Revised Indicative Plan. The information on irrigation at the time of the Revised Indicative Plan is as follows:

Some 13.5 million ha in total were cultivated. Across all four riparian countries, about 8.5 million ha were planted annually to paddy. The prevailing farming systems were predominantly based on rain-fed paddy cultivation. Farming practices were traditional and, use of modern inputs being limited, yields were low. The total irrigation area was less than 16% of the total cultivated area at that time is given in Table 3.7 below.

Lao PDR

An estimated 800,000 ha were cultivated annually, 700,000 ha of which are for rice. Supplementary irrigation of about 50,000 ha was available to the entire country, mostly from small weirs with little water control. About 20,000 ha received a relatively reliable water supply, and had

improved primary and secondary irrigation infrastructure. Dry season irrigation, mostly pumped, was estimated at 8,000-13,000 ha, of which only 1,000 ha was cultivated intensively with full water control and adequate levels of inputs.

Thailand

Northeast Thailand had an arable land of some 8.5 million ha, but by far the lowest proportion of irrigated area. The irrigated area amounted to 0.5 million ha, which represented some 12% of the total farmland. Thailand had already developed a number of projects, which figured in the short-range plan under the Indicative Basin Plan in 1970.

Cambodia

Cambodia's irrigation infrastructure was in need of major repair, so that single rain-fed crop per year was possible at the time.

Vietnam

The cultivated area in the delta was 2.4 million ha, 2.0 million ha to paddy. Most of the delta could be irrigated to supplement wet season rainfall, with 25-30% of the cultivated area as double cropped, and a large part of the delta remained fallow.

Table 3.7 Irrigated Areas in Lower Mekong Basin (198	7)	
--	----	--

Country	Paddy Cultivated Area in LMB (million ha)	Irrigated Area (thousand ha)	Basin Yield (t/ha)
Lao PDR	0.7	60	1.9
Thailand	4.2	500	1.7
Cambodia	1.6	Negligible	1.1
Vietnam	2.0	1,600	3.7
Total	8.5	2,150	2.1

Note: Irrigated area in Lao PDR is for the entire country. Irrigated areas in Thailand and Vietnam are for the north-eastern Thailand and Mekong delta area, respectively.

Source: Interim Committee for Coordination of Investigations of the Lower Mekong Basin (1988), Perspectives for Mekong Development

In Northeast Thailand, there was the area suffering from the lack of water, both in the dry season and during dry spells in the wet season, and from annual flooding which caused considerable loss of paddy production. In the other countries there was scope for expansion of the area under the plough. The national projects in the Revised Indicative Plan in 1987 consisted of 21 irrigation, 2 irrigation and power, and 3 power projects as given below.

Table 3.8 National Irrigation Projects in Lower Mekong Basin (1987)

Country	Total Command Area	Incremental Paddy Production
	(ha)	(ton/year)
Laos	19,800	53,000
Thailand ¹	100,000	247,000
Vietnam	300,000	1,450,000
Total	419,800	1,750,000

Source: Committee for Coordination of Investigations of the Lower Mekong Basin (1988), Perspectives for Mekong Development

3.2.3 Other Existing Reports

In order to supplement the data aforementioned, other available reports were reviewed. The results are summarized below.

Lao PDR

Although Lao PDR still has significant amounts of unused land resources, most of the available arable land is located in the south, while demand is highest in the north. Arable land amounts to between 2 and 2.3 million ha (8-9% of the country's total area), but only about half of this is currently under cultivation. On the other hand, over 400,000 ha are cultivated on slopes of more than 20%.

The use of irrigation in Lao PDR has expanded rapidly over the 1990s, with the government reporting an eight-fold increase in irrigated area over the decade. However, the irrigation area is largely confined to the relatively affluent lands of the Mekong corridor, and remains a rarity in the upland areas.

Tubic	3.5 Installe Illigate	cu micu (1990 2000)	III Euo I DIX
Year	Wet-Season (ha)	Dry-Season (ha)	Total (ha)
1990/91	136,000	16,000	152,000
1991/92	138,000	18,000	156,000
1992/93	140,000	20,000	160,000
1993/94	145,000	22,000	167,000
1994/95	150,100	26,000	176,100
1995/96	156,000	28,000	184,000
1996/97	164,000	45,000	209,000
1997/98	216,892	75,000	291,892
1998/99	258,200	124,231	382,431
1999/00	295,535	197,131	492,666
2000/01	300,054	214,361	514,415

Table 3.9 Historic Irrigated Area (1990-2000) in Lao PDR

Source: Department of Irrigation, Ministry of Agriculture and Forestry (2001), Statistics of Irrigation in 2001

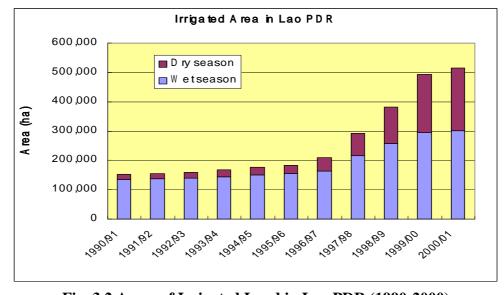


Fig. 3.2 Areas of Irrigated Land in Lao PDR (1990-2000)

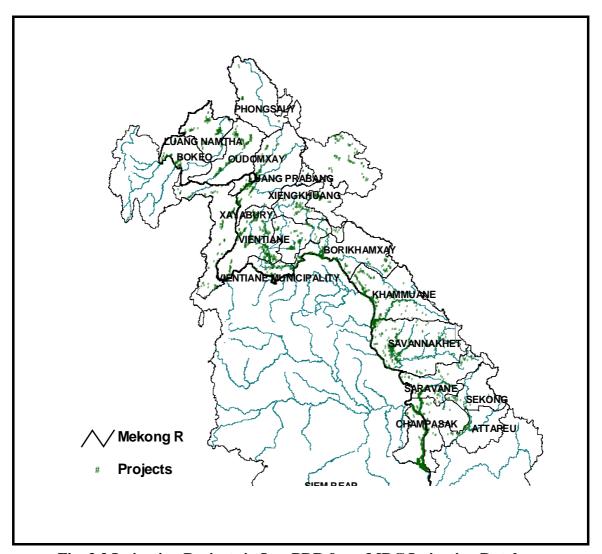


Fig. 3.3 Irrigation Projects in Lao PDR from MRC Irrigation Database

As seen in Fig. 3.2 above, the irrigated areas have expanded rapidly in 1996-2000, with a remarkable increase of dry season irrigation. The dry season crop is usually rice, but there is increasing diversification to other crops like maize, vegetable, tobacco and fruits. Figure 3.3 shows the irrigation areas from the MRC Irrigation Database. As seen in Table 3.12 below, the largest areas of both dry and wet season irrigation are in the Savannakhet province in the southern region and Vientiane Municipality.

Table 3.10 Existing Irrigation Schemes in Lao PDR

Types of	Number	Irrigated	Area (ha)	Area per So	cheme (ha)
Scheme	of	Wet	Dry	Wet	Dry
Scheme	Scheme	Season	Season	Season	Season
Weir	716	53,188	26,218	74	37
Reservoir	172	22,698	13,281	132	77
Pump	3,435	159,589	136,260	46	40
Sluice Gate	65	6,948	2,020	107	31
Traditional Weir	14,787	54,497	35,609	4	2
Gabion Weir	104	3,135	972	30	9
Total	19,279	300,054	214,360	16	11

Source: Department of Irrigation, Ministry of Agriculture and Forestry (2001), Statistic of Irrigation in 2001

Table 3.11 Existing Irrigated Area in Lao PDR (1995)

No.	Province	Irrigated Area (ha) Wet-Season	Irrigated Area (ha) Dry-Season	Total (ha)	Remarks
1	Vientiane Muni.	23,819	12,417	36,236	Central Region
2	Phonsaly	5,340	1,025	6,365	North Region
3	Louang Namtha	5,353	581	5,934	"
4	Oudomxay	8,576	932	9,508	"
5	Bokeo	3,576	578	4,154	"
6	Louang Prabang	4,332	1,606	5,938	"
7	Houa Phanh	8,177	1,005	9,182	Out of LMB
8	Xayaboury	13,340	1,373	14,713	North Region
9	Xieng Kouang	11,531	-	11,531	Central Region
10	Vientiane	17,647	2,311	19,958	44
11	Borikhamxay	4,290	210	4,500	"
12	Khammouane	7,180	4,390	11,570	"
13	Savannakhet	15,790	4,853	20,643	44
14	Saravane	2,110	710	2,820	South Region
15	Sekong	577	82	659	44
16	Champasack	11,113	1,550	12,663	"
17	Attaphou	2,119	75	2,194	"
18	Saysomboun	3,273	19	3,292	Central Region
	Total	148,143	33,717	181,860	

Source: Sustainable Irrigated Agriculture Project (SIRAP), Special Report, National Conference on Irrigation Management Transfer, Vientiane, Lao PDR, 1996

Table 3.12 Existing Irrigated Area in Lao PDR (2000/2001)

No.	Province	Irrigated Area (ha) Wet-Season	Irrigated Area (ha) Dry-Season	Total (ha)	Remarks
1	Vientiane Muni.	42,352	36,722	79,074	Central Region
2	Phonsaly	4,065	1,326	5,391	North Region
3	Louang Namtha	7,343	3,509	10,852	"
4	Oudomxay	7,598	3,932	11,530	"
5	Bokeo	7,389	3,037	10,426	"
6	Louang Prabang	7,627	5,141	12,768	"
7	Houa Phanh	10,142	3,761	13,903	Out of LMB
8	Xayaboury	13,684	8,544	22,228	North Region
9	Xieng Kouang	12,221	2,623	14,844	Central Region
10	Vientiane	36,452	28,878	65,330	"
11	Borikhamxay	20,784	15,623	36,407	"
12	Khammouane	23,387	15,427	38,814	"
13	Savannakhet	42,194	35,615	77,809	"
14	Saravane	18,100	11,333	29,433	South Region
15	Sekong	2,655	1,485	4,140	"
16	Champasack	37,800	34,778	72,578	"
17	Attaphou	3,725	2,295	6,020	"
18	Saysomboun	2,536	332	2,868	Central Region
	Total	300,054	214,361	514,415	

Source: Department of Irrigation, Ministry of Agriculture and Forestry (2001), Statistic of Irrigation in 2001

Table 3.13 Existing Irrigation Area of Mekong Basin in Lao PDR (2000)

		Whole			Centra	Mekong R	iver of Loa	PDR		
ltem	Unit	Country (1)	Vientiane Mun.	Vientiane	Bori Khan Xay	Hamm- uan	Avann- akhe	Saravan	Total (2)	Rate (%) (2)/(1)
1. Gravity System										
(1) Reservoirs										
Number	No	149	7	8	9	5	37	10	76	51
Wet Season Area	ha	20,204	6,130	2,075	2,378	470	3,942	155	15,150	75
Dry Season Area	ha	11,750	4,983	1,045	1,255	223	2,254	55	9,815	84
(2) Weirs										
Number	No	643	3	56	10	11	40	27	147	23
Wet Season Area	ha	48,164	600	9,483	1,380	1,485	1,840	5,595	20,383	42
Dry Season Area	ha	23,226	171	4,514	560	424	696	4,637	11,002	47
(3) Other										
Number	No	15,072	2,502	261	238	10	23	6	3,040	20
Wet Season Area	ha	73,840	5,567	6,249	5,779	675	2,468	43	20,781	28
Dry Season Area	ha	36,887	5,437	1,811	3,732	595	1,758	10	13,343	36
(4) Total										
Number	No	15,864	2,512	325	257	26	100	43	3,263	21
Wet Season Area	ha	142,208	12,297	17,807	9,537	2,630	8,250	5,793	56,314	40
Dry Season Area	ha	71,863	10,591	7,370	5,547	1,242	4,708	4,702	34,160	48
2. Pumping System										
Number	No	3,306	89	78	158	176	158	237	896	27
Wet Season Area	ha	153,327	26,555	14,365	10,338	21,007	38,650	9,192	120,107	78
Dry Season Area	ha	125,269	20,520	10,634	10,363	17,250	28,657	7,703	95,127	76
3. Grand Total(1+2)										
Number	No	19,170	2,601	403	415	202	258	280	4,159	22
Wet Season Area (1)	ha	295,535	38,852	32,172	19,875	23,637	46,900	14,985	176,421	60
Dry Season Area (2)	ha	197,132	31,111	18,004	15,910	18,492	33,365	12,405	129,287	66
4. Irrigation Ratio										
Farm Area (3)	ha	1,045,000	83,300	73,100	45,200	54,900	150,000	84,500	491,000	47
Wet Season Area (1)/(3)	%	28	47	44	44	43	31	18	37	-
Dry Season Area (2)/(3)	%	19	37	25	35	34	22	15	26	-

Source: Department of Irrigation, Ministry of Agriculture and Forestry

Thailand

Irrigation ratios are much lower in the north-eastern Thailand, where farming methods remain comparatively traditional, than elsewhere in the country. There are huge variations in the scale and type of irrigation schemes in this north-eastern Thailand area. The largest individual scheme is the around 50,000 ha Lam Pao project in the country, while the smallest are simple manual lift operations irrigating less than a hectare. The most basic systems provide only supplementary water during the wet season, while more intensive schemes have the capacity to grow 2-3 crops per year. Major types of irrigation systems include: river, lake, or stream diversion by gravity for wet season supplementary irrigation without storage; pumping of water from rivers in the wet or dry season without storage; reservoir systems storing water from streams, rivers and runoff, and employing gravity or pump-based abstraction; and flood recession reservoir systems using floodwaters for land preparation and wet or dry season irrigation.

Various large-scale irrigation projects have been completed on the Chi and Mun Rivers, but very strong local opposition to dam projects has made it difficult for the government to undertake further large and medium scale developments. Furthermore, water scarcity is a major concern. Water shortages prevent full utilization of existing irrigation works in the dry season and there are even reports of water shortages in the wet season.

Table 3.14 Existing Irrigation Area of Mekong Basin in Thailand

	Larg	je Scale	Mediu	Medium Scale		III Scale	Pun	nping		Total	
River Basin & Province	No of Project	Irrigation Area (ha)	Total Irrigation Area (ha)	Farm Area (10 ³ ha)	Irrigation Rate (%)						
1. Khong Basin											
(1) North Khong Ba	asin										
Loei	-	-	13	20,740	168	15,490	30	10,050	46,280	370	12
North bua lumphu	-	-	1	320	72	15,070	23	5,660	21,050	236	9
Nong Khai	-	-	8	2,320	147	11,020	108	43,790	57,130	420	14
Udon Thani	1	13,920	14	5,090	214	14,480	23	6,420	39,910	606	7
Sakon Nakhon	1	29,730	22	22,160	167	28,230	34	10,980	91,100	474	19
Sub Total	2	43,650	58	50,630	768	84,290	218	76,900	255,470	2,106	12
(2) East Khong Bas	sin										
Nakhon Phanom	-	-	14	7,330	142	10,590	-	-	17,920	251	7
Mukdahan	-	-	8	5,410	92	8,000	30	11,340	24,750	131	19
Yasotjon	-	-	2	2,940	165	11,650	40	16,390	30,980	290	11
Amnat Charoen	-	-	4	3,710	67	5,050	-	-	8,760	180	5
Ubon Ratchathani	1	25,490	8	7,580	171	9,150	90	37,180	78,950	780	10
Sub Total	1	25,940	36	26,970	637	44,440	160	64,910	162,260	1,632	10
Total	3	69,590	94	77,600	1,405	128,730	378	141,810	417,730	3,738	11
2. Chi and Mun Bas	sin										
(1) Chi Basin											
Chaiyaphum	2	17,200	14	29,810	298	29,100	62	20,270	96,380	535	18
Khon kaen	1	42,240	15	5,990	400	24,690	-	-	72,920	673	11
Kalasin	1	50,410	18	11,170	187	11,700	47	17,140	90,420	394	23
Maha Sarakhan	-	-	19	20,260	281	18,600	73	27,990	66,850	423	16
Roiet	-	-	11	42,710	274	18,700	92	39,640	101,050	539	19
Sub Total	4	109,850	77	109,940	1,440	102,790	274	105,040	427,620	2,564	17
(2) Mun Basin											
Nakhon Ratchasima	6	81,070	35	19,990	492	54,420	41	15,440	170,920	1,252	14
Buri Ram	1	10,940	14	10,570	302	30,030	50	17,310	68,850	620	11
Surin	-	0	20	18,160	280	31,670	36	10,900	60,730	549	11
Sisaket	-	0	12	11,380	270	31,100	38	14,910	57,390	534	11
Sub Total	7	92,010	81	60,100	1,344	147,220	165	58,560	357,890	2,955	12
Total	11	201,860	158	170,040	2,784	250,010	439	163,600	785,510	5,519	14
Grand Total	14	271,450	252	247,640	4,189	378,740	817	305,410	1,203,240	9,257	13
Whole Country	85	1,864,000	523	1,021,000	8,489	1,417,000	777	640,000	4,942,000	21,200	23

Source: RID

Table 3.15 Summary of Existing Irrigation Schemes in North-eastern Thailand (1/2)

	Total	Active]	Irrigation D	emand (mi	llion m ³)	
Scheme	Irrigation	Storage	Wet	Dr	y (1)	Dry	y (2)
	Area (ha)	(Mm^3)	(Mm ³)	(Mm ³)	CI (%)	(Mm ³)	CI (%)
Chi Basin							
Large Scale	102,259	3,100	818	1,080	60	720	40
Medium Scale	49,491	346	396	79	20	40	10
Pumping	72,480	-	413	545	60	364	40
Sub-Total	224,230	3,446	1,627	1,704		1,124	
Mun Basin							
Large Scale	56,097	1,570	449	592	60	395	40
Medium Scale	48,912	342	391	78	20	39	10
Pumping	28,800	-	164	217	60	145	40
Sub-Total	133,809	1,912	1,004	887		579	
Mekong Tributary							
Large Scale	83,168	769	665	878	60	586	40
Medium Scale	44,328	310	354	71	20	35	10
Pumping	61,440	-	350	463	60	308	40
Sub-Total	188,936	1,079	1,369	1,412		929	
Small Scale	200,000	1,000	1,140	114	10	57	5
Total	746,975	7,437	5,140	4,117		2,689	

Note: (1) High cropping intensity, (2) Moderate cropping intensity

Report: Mekong Irrigation Programme, Volume5: Study of a Water Resources, Development Plan for Northeast Thailand, May 1991

Table 3.15 Summary of Existing Irrigation Schemes in North-eastern Thailand (2/2)

	Total		Irrig	ated Area (h	na)	
Scheme	Irrigation	Wet	Dry	y (1)	Dry	y (2)
	Area (ha)	Area	CI (%)	Area	CI (%)	Area
Chi Basin						
Large Scale	102,259	102,259	60	61,355	40	40,904
Medium Scale	49,491	49,491	20	9,898	10	4,949
Pumping	72,480	72,480	60	43,488	40	28,992
Sub-Total	224,230	224,230		114,741		74,845
Mun Basin						
Large Scale	56,097	56,097	60	33,658	40	22,439
Medium Scale	48,912	48,912	20	9,782	10	4,891
Pumping	28,800	28,800	60	17,280	40	11,520
Sub-Total	133,809	133,809		60,720		38,850
Mekong Tributary						
Large Scale	83,168	83,168	60	49,901	40	33,267
Medium Scale	44,328	44,328	20	8,866	10	4,433
Pumping	61,440	61,440	60	36,864	40	24,576
Sub-Total	188,936	188,936		95,631		62,276
Small Scale	200,000	200,000	10	20,000	5	10,000
Total	746,975	746,975		291,092		185,971

Note: (1) High cropping intensity, (2) Moderate cropping intensity

Report: Mekong Irrigation Programme, Volume5: Study of a Water Resources, Development Plan for Northeast Thailand, May 1991

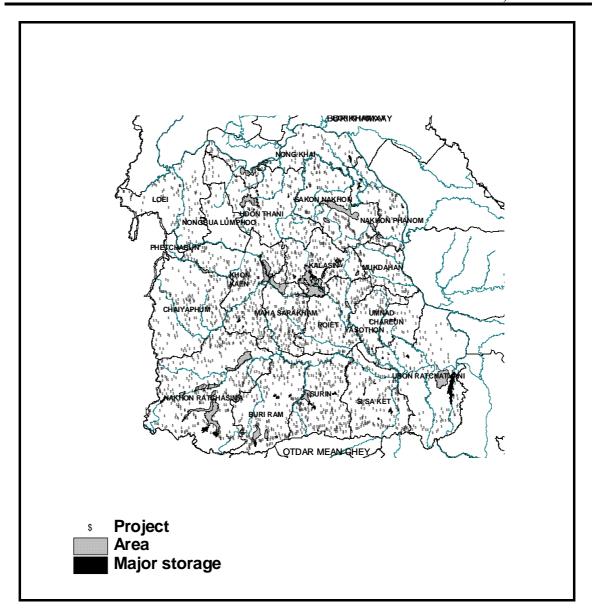


Fig. 3.4 Irrigation Projects in North-eastern Thailand from MRC Irrigation Database

Cambodia

Irrigation in Cambodia by the annual floods is dominant with large parts of the irrigation area using the receding floodwaters as the source of irrigation water. Irrigated recession rice is gradually replacing the lower yielding traditional floating rice. Pumping is also a major feature of Cambodian irrigation, traditionally this was done manually but petrol propelled pumps are gradually becoming more common.

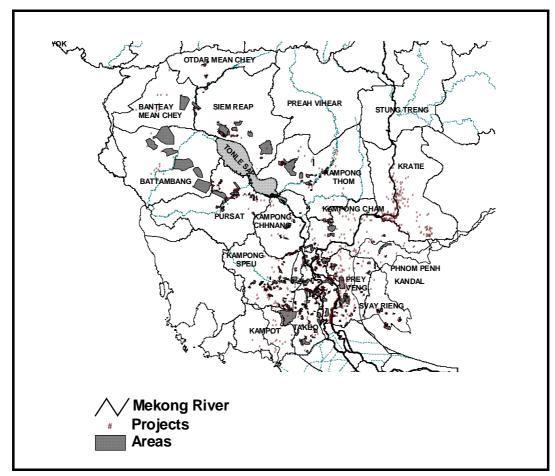


Fig. 3.5 Irrigation Projects in Cambodia from MRC Irrigation Database

Table 3.16 Area of Rice Production by Year in Cambodia

	Cultivated	d Areas (tho	usand ha)	Harvested		Production
Year	Total	Dry- Season	Wet- Season	Area (thousand ha)	Yield (ton/ha)	(thousand ton)
1979-80	774	88	686	700	0.77	538
1980-81	1,441	95	1,346	1,440	1.19	1,717
1981-82	1,493	150	1,343	1,317	1.13	1,490
1982-83	1,674	128	1,546	1,615	1.20	1,949
1983-84	1,740	116	1,624	1,612	1.26	2,039
1984-85	1,418	119	1,299	978	1.29	1,260
1985-86	1,462	117	1,345	1,450	1.25	1,812
1986-87	1,535	122	1,413	1,520	1.37	2,093
1987-88	1,378	129	1,249	1,370	1.32	1,815
1988-89	1,879	144	1,735	1,825	1.36	2,500
1989-90	1,932	145	1,787	1,861	1.43	2,672
1990-91	1,890	150	1,740	1,855	1.34	2,500
1991-92	1,910	149	1,761	1,719	1.39	2,400
1992-93	1,844	143	1,701	1,685	1.31	2,221

Source: Bulletin of Statistics and Agricultural Studies No 1, Department of Planning and Statistics, Ministry of Agriculture, 1993

Table 3.17 Inventory of Existing Irrigation Systems in Cambodia (1992/93)

Province	Number of Systems	Total Area of Syste	ems Reported (ha) 1
Trovince	Reported ²	Wet-Season	Dry-Season
Banteay Meanchey	12	9,120	93
Battambang	16	23,990	507
Pursat	47	4,317	0
Kompong Chhnang	18	5,615	709
Kompong Speu	96	18,558	743
Kampot	23	4,980	1,370
Takeo	49	12,445	41,640
Kandal ²	114	11,582	21,200
Prey Veng	104	8,080	17,322
Svay Rieng	18	243	315
Kompong Cham	78	24,270	3,325
Kratie	165	2,547	3,317
Kompong Thom	64	32,720	1,370
Siem Reap	37	14,260	11,745
Total	841	172,727	103,656

Note: ¹Excludes systems less than 10 ha in area. ²Includes 2 systems in Phnom Penh

Municipality.

Source: Irrigation Rehabilitation Study in Cambodia, Inventory & Analysis of Existing

Systems, April 1994

Table 3.18 Cropping Patterns and Yields in Cambodia

Province	Numl	per of Oper	ems	Average Yield (ton/ha)		
Trovince	Wet Season	Double	Recession	Total	Wet Season	Dry Season
Banteay Meanchey	1	7	0	8	0.8	0.9
Battambang	4	2	0	6	2.3	3.0
Pursat	15	0	0	15	1.3	-
Kompong Chhnang	12	1	5	18	1.3	2.2
Kompong Speu	73	21	0	94	1.3	2.0
Kampot	9	10	0	19	1.7	2.2
Takeo	7	15	27	49	1.2	2.0
Kandal	11	8	94	113	1.9	3.3
Prey Veng	25	27	47	99	1.2	2.0
Svay Rieng	1	4	0	5	1.2	1.7
Kompong Cham	31	10	21	62	1.5	1.3
Kratie	53	0	88	141	2.1	2.2
Kompong Thom	43	17	0	60	1.2	1.8
Siem Reap	19	4	14	37	1.6	2.2
Total	304	126	296	726	1.4	2.2

Source: Irrigation Rehabilitation Study in Cambodia, Inventory & Analysis of Existing Systems, April 1994

Table 3.19 Existing Irrigated Areas in Cambodia (1990)

	Harves	sted Area (thous	sand ha)	Irrigated
Province	Wet-Season	Dry-Season	Total	Area (thousand ha)
Banteay Meanchey	79.0	0.06	79.1	31.0
Siem Reap	131.7	4.1	135.8	13.5
Preah Vihear	11.7	-	11.7	0.3
Stung Treng	9.5	-	9.5	0.8
Ratanakiri	10.9	-	10.9	0.2
Mondulkiri	4.9	-	4.9	0.2
Kratie	23.7	5.3	29.0	7.0
Kompong Thom	110.7	0.6	111.3	37.0
Battambang	89.8	0.8	90.6	46.0
Pursat	51.4	0.007	51.4	22.0
Kompong Chhnang	52.6	4.8	57.4	16.0
Kompong Cham	151.1	18.4	169.5	18.0
Svay Rieng	146.6	0.7	147.3	13.0
Prey Veng	212.1	22.4	234.5	14.0
Kandal	35.4	32.5	67.9	15.0
Takeo	155.5	38.0	193.5	30.0
Kompong Speu	35.4	1.0	36.4	22.0
Koh Kong	3.9	-	3.9	0.6
Kampot	67.4	0.9	68.3	18.2
Kompong Som	8.9	-	8.9	-
Phnom Penh	10.0	0.6	10.6	1.1
Total	1,402.2	130.2	1,532.4	305.9

Source: Cambodia Agricultural Development Options Review (Phase I), Sector Review Vol. 2, 1994

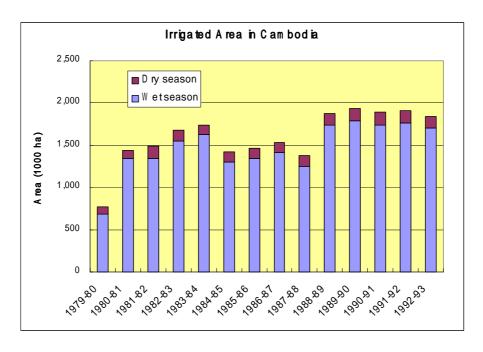


Fig. 3.6 Areas of Irrigated Land in Cambodia (1979-1993)

Vietnam

Irrigation is extremely important in the Mekong delta region, and forms the basis of the very high productivity of this area. More than half of the total area of the delta is flooded during the wet season, which means that irrigation schemes have a critical role to play in allowing farmers to plan and examine the intensive rice cropping into the flood free period. The rapid rise in irrigation development has been as a result of intensive investment in irrigation and related flood and salinity control works with the Doi Moi economic reforms. Government planning and management of irrigation has been decentralized, with the provincial authorities now autonomous and self-financing many of the irrigation activities. Irrigation in the Highland area is less developed than in the delta, the main crops irrigated are upland rice and coffee.

Table 3.20 Existing Irrigated Rice Areas in Mekong Delta in Vietnam

Year	Summer Crop ¹ (thousand ha)	Autumn Crop ¹ (thousand ha)	Spring Crop ¹ (thousand ha)	Annual Total (million ha)
1980	300	260	330	0.9
1981	380	400	320	1.1
1982	320	440	310	1.1
1983	500	400	330	1.2
1984	610	470	370	1.4
1985	550	530	430	1.5
1986	610	560	460	1.6
1987	580	560	500	1.6
1988	580	620	530	1.7
1989	590	750	640	2.0
1990	510	820	740	2.1
1991	770	880	810	2.5
1992	550	920	860	2.3
1993	660	940	860	2.5
1994	1,010	1,070	1,000	3.1

Note: These areas were obtained by graph readings because only graphs are indicated in the report.

Source: Agricultural Water Control Institutions in Vietnam, Functions, Financing and Sustainability

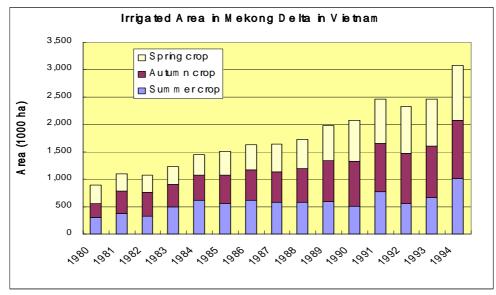


Fig. 3.7 Areas of Irrigated Land in Mekong Delta in Vietnam (1980-1994)

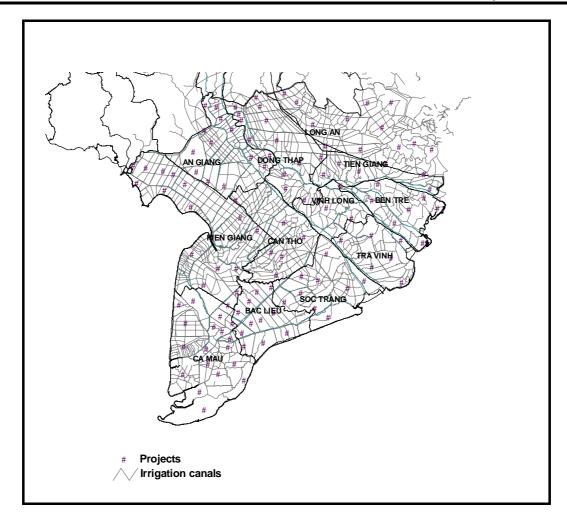


Fig. 3.8 Irrigation Projects in Mekong Delta in Vietnam from MRC Irrigation Database

Table 3.21 Cropping Patterns of Mekong Delta in Vietnam

Area	Cropping Areas (ha)				
Alta	Triple Rice	Double Rice	Upland	Perennials	Total
In projects	49,823	614,406	72,518	220,000	956,747
In non-project	0	91,000	0	22,000	113,000
Total	49,823	705,406	72,518	242,000	1,069,747

Source: Mekong Delta Master Plan, Working Paper No. 3, Irrigation, Drainage and Flood Control, September 1991

Figure 3.9 shows the current cropping pattern in the Mekong delta.

3.3 Land Resources Inventory for Agricultural Development Project by MRC

MRC Secretariat completed a Land Resources Inventory for Agricultural Development Project (LRIAD), funded by the Ministry of Agriculture, Forestry and Fisheries of Japan, in June 2002. The main objective of LRIAD is to provide decision-makers and planners of the riparian governments with up-to-date data on land resources for sustainable agricultural development in the Lower Mekong Basin in coordination with MRC. Main outcomes of LRIAD are the irrigation,

inundation and soil databases in the Lower Mekong Basin. The developed databases are of spatial GIS database with a good grounding.

The irrigation database consists of the following data sets for information:

- **Irrigation projects**: Each irrigation project has been digitized as a point, which represents (1) the location.
- (2) Irrigation headworks: Where the location of the project headwork has been clearly defined, these have been digitized as a point.
- (3) **Irrigation area:** Command area of irrigation scheme has been digitized as a polygon.
- (4) Irrigation canals: For the larger schemes, irrigation canals have been defined and digitized.
- (5) **Reservoirs:** Reservoirs for irrigation purpose have been digitized as a polygon.
- (6) **Irrigation data:** Attribute tables giving information on the irrigation projects are included in dbf (data base files) format possibly to link with the spatial information files. These tables provide key information on the project, including general description, project status, irrigated cropping data, investment information, government administration, hydrology and others.

The number of irrigation projects totally collected is 12,469 as summarized below.

Table 3.22 Summary of Irrigation Projects under LRIAD in Lower Mekong Basin

Country	Number of Scheme	Area of Wet Season Irrigation (ha)	Area of Dry Season Irrigation (ha)	Area of 3 rd Season Irrigation (ha)	Irrigated Area (ha)
Lao PDR	2,532	224,232	151,940	0	224,232
Thailand	8,764	-	-	-	941,425
RID (medium/large)	441	330,056	72,140	0	330,056
RID (other)	291	-	-	-	-
RID (small)	5,497	-	-	-	-
DEDP	1,072	-	-	-	517,205
MOI	1,463	-	-	-	94,164
Cambodia	1,012	248,842	181,506	0	392,117
Vietnam	161	1,719,102	1,424,839	351,506	1,719,102
Mekong Delta	85	1,683,094	1,417,549	351,506	1,683,094
Highlands	76	36,008	7,290	_	36,008
Total	12,469	-	-	-	3,276,876

Note: Irrigation in Thailand is managed by three separate agencies. RID: Royal Irrigation Department, Ministry of Agriculture and Cooperatives. DEDP: Department of Energy Development and Promotion, Ministry of Science, Technology and Environment. MOI: Ministry of Interior

Source: MRC (2002), Land Resources Inventory for Agriculture Development Project, Technical

Report, Part II

In the table above, in Thailand, there is no comprehensive wet or dry season cropping data; therefore, the irrigable area has been taken as the common measure of the irrigated area. Where wet and dry season irrigated areas are the measures of area irrigated, the irrigable area has been taken as the largest of the wet or dry season area. Further, irrigation area data on other 291 schemes is considered unreliable and has not been included. As for 5,491 small schemes in Thailand, there is no data on the actual irrigation area.

The table below presents the summary of status of the irrigation database under LRIAD.

Table 3.23 Summary of Status of Irrigation Database under LRIAD

Category	Lower Mekong Basin	Cambodia	Lao PDR	Thailand	Vietnam
Irrigation Project	12,469	803	2,532	8,764	161
Irrigation Area	4,449	361	701	2,218	196
Irrigation Headworks	12,460	324	2,532	8,764	258
Irrigation Canals	3,420	208	115	1,968	1,129
Irrigation Reservoirs	992	No data	414	578	No data

Source: MRC (2002), Land Resources Inventory for Agriculture Development Project, Technical Report, Part II

Assuming that irrigation projects with a service area of less than 100 ha are as minor water use, the total number of projects and irrigation areas are summarized as follows:

Table 3.24 Summary of Projects and Irrigation Areas under LRIAD

Item	Lao PDR	Thailand	Cambodia	Vietnam	Total
Intake from Mainstream					
Nos. of Project	101	143 1)	62	85 ³⁾	
Whole Area (ha)	28,785	37,459 ¹⁾	32,190	1,683,094	1,781,528
Dry Season Area (ha)	23,085	No data	27,847	1,417,549	
Intake from Tributaries					
Nos. of Project	602	1,283 ²⁾	324	None	
Whole Area (ha)	136,543	886,939 ²⁾	237,452	None	1,260,934
Dry Season Area (ha)	89,995	No data	110,619	None	
Total Intake					
Nos. of Project	703	1,426	386	85 ³⁾	
Whole Area (ha)	165,328	924,398	269,642	1,683,094	3,042,462
Dry Season Area (ha)	113,080	No data	138,466	1,417,549	

Note: 1): Data from the Study of Potential Development of Water Resources in Mae Khong River Basin, May 1994, Asian Institute of Technology.

- 2): JICA Study Team estimate (Total Intake Intake from Mainstream).
- 3): Number of irrigation blocks that are further divided into many small projects.

Source: JICA, Hydro-Meteorological Monitoring for Water Quantity Rules in Mekong River Basin, Interim Report (Vol. 2), Water Use Management and Monitoring, February 2003

Figures 3.10 and 3.11 below are examples of the irrigation database maps. In Fig. 3.10, totally 12,469 irrigation projects are plotted as a point.

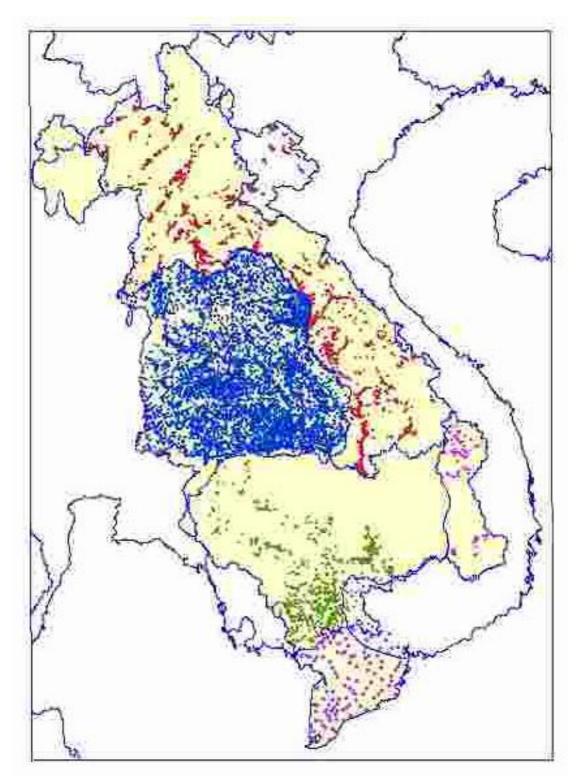


Fig. 3.10 Distribution of Irrigation Projects in Lower Mekong Basin (Note: Each project is shown as a point)
(Source: LRIAD Project Technical Report Part I, MRC, 2002)

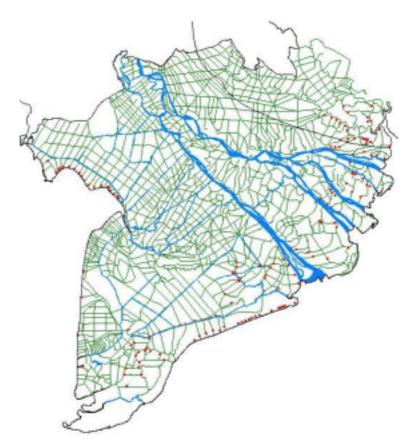


Fig. 3.11 Irrigation Canals and Salinity Control Structures in Mekong Delta (Note: Salinity control structure is shown as a point)

In the figure above, 334 primary and 795 secondary irrigation canals in the Mekong delta are digitized.

3.4 Surface Water Extraction by Pumping-up Irrigation

In the Lower Mekong Basin, surface water extraction for pumping-up irrigation is active mainly in Lao PDR and Thailand.

Lao PDR:

The irrigation projects larger than 100 ha during dry season are selected from the MRC irrigation database. Number of the projects, and their project size and irrigation area by irrigation type are summarized below.

Table 3.25 Major Irrigation Projects at LMB in Lao PDR

Item	G		Pump	Туре		Total
Item	G	EP	DP	P	Total	Total
Nos. of Project	63	324	80	27	431	494
Project Size (ha)	100-2,300	100-2,300	100-450	100-1,500	-	-
Irrigation Area (ha)	22,239	65,276	10,693	5,256	81,225	103,464

Note: G: gravity, EP: electric fixed pump, D: diesel fixed pump, P: fixed pump (type: unknown)

Source: MRC (2002), Land Resources Inventory for Agriculture Development Project

As seen above, pumping irrigation is significant portion of current irrigation systems in Lao PDR. Pumping irrigation area accounts for around 80% of the total irrigation area in the Lower Mekong Basin. Out of them, electric fixed pump is around 80%. In Lao PDR, there is a firm policy directed at the development and expansion of small to medium scale irrigation in the tributary systems and as the electricity transmission line network expands there will be no doubt be an associated and significant growth in electric pumped river abstractions. This reflects the affordability and availability of electricity in the country.

Thailand:

Pumping-up irrigation is very active in the north-eastern part of Thailand, where many pump stations have been erected along the Nam Mun-Chi River as well as the Mekong mainstream. However limited information is available in past planning studies on the pumping-up irrigation in the north-eastern Thailand. The majority of pumped irrigation schemes on the Mekong mainstream as of 1982 is summarized as follows:

Table 3.26 Major Pumped Irrigation Schemes on Mekong River in North-eastern Thailand (1982)

Province	No. of Schemes	Total Pump Capacity (m³/s)
Nong Khai	55	15.5 (4)
Nakhong Phanom	29	1.8 (23)
Mukdahan	15	0.3 (14)
Ubon	1	N.A.
Total	100	17.6

Note: N.A. means not available

Source: Lower Mekong Basin Water Balance Study, Phase 2 Report, May 1984

In the above table, the numbers in bracket give the number of schemes for which no data were available to compute the total pump capacity. Thus the total pump capacity on the Mekong mainstream in 1982 was incomplete showing the smaller figure than the actual one. Table 3.27 shows summary of pump irrigation by province in the North-eastern Thailand.

Pump irrigation projects in Thailand have been constructed by the Royal Irrigation Department (RID), Department of Energy Development and Promotion (DEDP) and Ministry of Interior (MOI). The pump irrigation areas are normally within a 1 km distance from rivers. Historic increase of the number of irrigation pump stations implemented by DEDP in the period of 1974-1989 is shown in Fig.3.12 (ESCAP, Assessment of Water Resources and Water Demand by User Sectors in Thailand, 1991). Further the location map of pump station is given in Fig. 3.13.

According to the Study of Potential Development of Water Resources in the Mekong River Basin by AIT in 1994, DEDP pumping irrigation stations amount to 283 projects in the Nam Mun-Chi River Basin and 247 projects in the other Mekong tributaries as well as the Mekong mainstream, respectively.

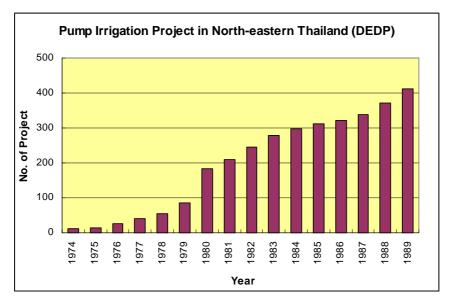


Fig. 3.12 Number of Irrigation Pump Stations in North-Eastern Thailand

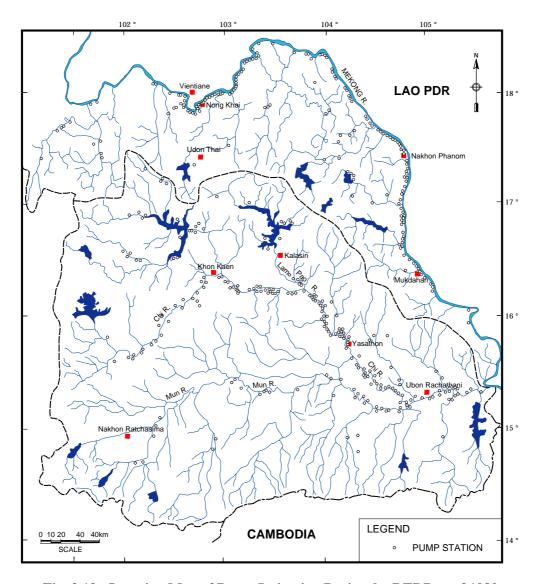


Fig. 3.13 Location Map of Pump Irrigation Project by DEDP as of 1989

As shown above, pumping irrigation is active mainly along the Mekong River, in the middle and downstream reaches of the Chi River and in the downstream reaches of the Mun River.

Table 3.28 below shows the irrigation projects consisting of RID large/medium size projects, all DEDP projects and all MOI projects from the MRC irrigation database. These projects are all larger than 100 ha in the service area. RID small projects are excluded since their data are not available. The RID projects are irrigated by gravity, DEDP by mostly electric fixed pump, and MOI by gravity, fixed pump, mobile pump, traditional lift and their mixtures. Total project numbers and irrigation areas of the respective agencies are shown below. The irrigation projects of MOI are mostly small and their irrigation type is complicated.

Table 3.28 Major Pumped Irrigation Schemes in North-eastern Thailand

Item	RID	DEDP	MOI	Total
Nos. of Project	157	950	319	1,426
Project Size (ha)	112 - 50,416	101 – 90,411	100 - 1,200	
Total Irrigation Area (ha)	327,783	513,178	83,437	924,398
Irrigation Type	G	Mostly Elec. P.	G, P, M, T, Mixed	

Note: G: gravity, P: fixed pump, M: mobile pump, T: traditional lift

Source: Lower Mekong Basin Water Balance Study, Phase 2 Report, May 1984

4. CURRENT WATER USE IN THE LOWER MEKONG BASIN

4.1 General

The Basin Modeling and Knowledge Base Development Project (WUP-A) is being undertaken by the consultants under the Component-A of Water Utilization Program (WUP) of MRC. Important and expected outcomes of this project are a Decision Support System (DSF), which contains a knowledge base, a Basin Modeling Package and Impact Assessment Tools. The Model shall not only accurately and reliably simulate the hydrology and hydraulics of the basin, but also water use, the important linkages and effects that changes or variations in water use flow and water level have on the environment including important water related functions. The current and future water use data including the irrigation water usage will be collected and stored in the database (Knowledge Base) for support the formulation of modeling as well as future use within the proposed DSF. According to the Working Paper No.14 of WUP-A, irrigation demands are simulated for all sub-catchment in the Lower Mekong Basin because of significant limitations of available data on irrigation water use and abstractions. Irrigation is already practiced in the Mekong Basin. Irrigated crop is almost exclusively rice. Herein review of historical irrigation water use was carried out from available reports and information.

4.2 Estimated Irrigation Diversion Requirements from Past Studies

Irrigation modules indicate specific irrigation factors in accordance with the agronomical characteristics of the proposed crops and study areas. These factors comprise potential evapo-transpiration, crop coefficient, effective rainfall, irrigation losses and other relevant water consumptions. Obtainable irrigation modules for LMB were collected from existing study reports. The number of the collected reports is ten (10): two (2) for Lao PDR, five (5) for Thailand, two (2) for Cambodia and one (1) for Vietnam. Irrigation Water Use.

One of the most interesting factors is irrigation requirement at diversion point. Based on the collected modules, the ranges of the diversion requirements are summarized as follows:

Table 4.1 Collected Ranges of Diversion Requirements

(Unit: mm/season)

Crop		Rice		Field Crop	
	Season	Wet	Dry	Wet	Dry
Lao PDR		246-1,149	1,423-2,495	-	-
Thailand	: Chi Basin	570-1,398	2,005-2,400	152-707	570-1,347
	: Mun Basin	570-1,196	1,448-2,400	144-242	570-993
	: Mekong Tributaries	570-1,350	1,224-2,400	130-340	544-818
Cambodia		440-1,315	1,505-2,100	-	-

(Crop	Triple Rice	Double Rice	Field Crop	Perennial
Vietnam	: Delta	887-1,247	410-1,089	401-599	381-535
	: Highlands	-	-	-	-

The outline of collected modules and diversion requirements by country are as follows:

Table 4.2 Collected Irrigation Modules in Thailand

Module	Study Name	Study Area
T1	Feasibility Study of Nam Suai Basin, December 1981	Provinces of Nong Khai and Udon Thani
T2	Upper Chi Development Feasibility Study, September 1991	Chaiyaphum Province
Т3	Development of the Lower Mun Basin, June 1982	Provinces of Buriram, Surin, Maha Sarakham, Roi Et and Ubon Ratchathani
Т4	Investigation and Preparation of a Water Resource Development Programme for North East Thailand, November 1987	Northeast Thailand
Т5	Mekong Irrigation Programme, Volume 5, Study of a Water Resources Development Plan for Northeast Thailand, May 1991	Northeast Thailand

Table 4.3 Collected Irrigation Modules in Lao PDR

Module	Study Name	Study Area
L1	Mekong Irrigation Programme, Development of Pump Irrigation on the Mekong Phase II, Lao PDR, June 1990	Hat Sai Fong District, Vientiane Municipality
L2	Feasibility Study Report, Hydraulic Construction: Reservoir Huoi Saa, October 2001	Vilabuly District, Savannakhet Province

Table 4.4 Collected Irrigation Modules in Cambodia

Module	Study Name	Study Area
C1	Prek Thnot Pioneer Agricultural Project,	Provinces of Kompong Speu and
CI	Project Preparation, January 1975	Kirirom
C2	Prek Thnot Multipurpose Project, Reappraisal	Provinces of Kompong Speu,
C2	Report, December 1991	Kandal and Takeo

Table 4.5 Collected Irrigation Modules in Vietnam

Module	Study Name	Study Area
V1	Mekong Delta Master Plan, Working Paper No. 3, Irrigation, Drainage and Flood Control, September 1991	Mekong Delta

Collected diversion requirements are shown in Tables 4.6 to 4.9.

4.3 Estimated Return Flows from Past Studies

There is no report showing quantitative measurements of return flow from irrigated paddy fields, but there are some studies including conceptual approach of return flow, as follows:

Table 4.10 Collected Information on Return Flows

No.	5	Study Name and Area		Description
1		Feasibility Study of	>	The return flows are considered to be 30% of the
		Nam Suai Basin,		irrigation application amounts.
		December 1981	>	Taking into consideration the time distribution, the
		Provinces of Nong		monthly return flow is assumed to be a
		Khai and Udon Thani,		combination of 9% of the irrigation water of the
		Thailand		preceding month and 21% of the irrigation water
				of the month under consideration.
2		Upper Chi	>	The return flows in the river channels are assumed
		Development		to come from excess rainfall and the conveyance
		Feasibility Study,		and field losses. They amount to 47% of the
		September 1991		diverted flow in the wet season and 23% in the dry
		Chaiyaphum Province,		season.
3	_	Thailand Development of the		It was assumed that one-third of these losses will
3		Development of the Lower Mun Basin,	>	evaporate in and along drains and depressions. The
		June 1982		balance, DR (1-e) \times 0.667 ^(*) , is assumed to flow
		Provinces of Buriram,		back into the reservoir, or the Nam Mun
	ш	Surin, Maha		downstream of the reservoir, as return flow. (*)
		Sarakham, Roi Et and		DR=Diversion Requirement, e=Irrigation
		Ubon Ratchathani,		Efficiency.
		Thailand	>	It is assumed that most of the return flow (70%)
				will reach the reservoir or river in the month of
				irrigation. The remaining 30% is assumed to
				emerge via the groundwater as follows: 20% after
				one month; 10% after two months.
4		Effects of Proposed	\triangleleft	For portions of new projects that are irrigating
		Irrigation on Water		both wet and dry season crops on presently
		Quality and Return		uncultivated land, the return flows are expected to
		Flows, United Nations,		be at least 30% of the water diverted.
		February 1973	>	For areas presently cultivated in a single-rain-fed
		Khorat Plateau		crop each year, the return flows would be more
		Thailand and Lao PDR		than 50% (*) if the same diversion rate was used
				when changing over to double cropping. Since
				most planned projects have at least one-half of the
				service area already cultivated in a single rain-fed
				crop, the typical return flows expected would be at
				about 50% of the project diversions. (*) 52% is
				assumed.

4.4 Current Water Use in Thailand

(1) Classification of Surface Water Resources Project

The surface water resources development project in Thailand is classified and defined in the following categories:

- i) Large scale/Multipurpose project
- ii) Medium scale project
- iii) Small scale project

- iv) Pump irrigation project
- v) Trans-basin project

The following project features are from the main report of Study of Potential Development of Water Resources in The Mae Khong River Basin, prepared by Asian Institute of Technology, Office of the National Economic and social Development Board (NESDB), 1994.

Large scale/Multipurpose project:

Agencies with primary responsibility for the implementation of large scale water resources projects are the Royal Irrigation Department (RID), Electricity Generating Authority of Thailand (EGAT) and Department of Energy Development and Promotion (DEDP).

Among them, EGAT is responsible for large scale power generation schemes including multipurpose projects that generate hydropower as well as provide for irrigation, fisheries and flood control. RID constructs, operates and maintains all large scale irrigation projects, but where the projects include hydropower, EGAT shares responsibility. Whilst RID has responsibility for gravity schemes, those utilizing pumped abstractions from rivers are generally executed by DEDP. In addition, DEDP has responsibility for certain power generation projects which have an installed capacity of less than 6 MW. Large scale projects usually are defined as follows:

a. construction cost: more than 200 million Baht
 b. storage volume: more than 100 million m³

c. water surface area: more than 15 km2

d. irrigation area: more than 80,000 Rai (= 12,800 ha)

e. construction period: more than 5 years

Medium scale project:

A medium scale project is classified as that of costing more than 4 million Baht and less than 200 million Baht. Its construction period is longer than one year but shorter than 5 years. The storage capacity is from 10 to 100 million m³. Most of the medium scale projects are used for supplementary wet season irrigation and extended dry season cropping. Some of the project are used for domestic supply and flood protection. Most of the medium scale projects are constructed, operated and managed by RID. In practice, most of the projects are initiated based more on social considerations, while the economic returns are considered a second priority. A survey of existing development indicates that various government agencies participate in this type of water resources development. They are namely RID, DEDP, EGAT, etc.

Small scale project:

Significant distinction between small and medium scale projects are that in the former one, no compensation is paid for land occupied by the scheme. The project budget provides only for the water storage/diversion facility. No provision is made for distribution works. The operation and maintenance are the responsibility of the beneficiaries. The construction cost of small scale project is less than 4 million Baht and the construction period is less than one year. Small scale projects can be further divided into four categories depending on their use as follows:

Table 4.11 Category of Small Scale Projects in Thailand

Category	Description
	An excavated pond or a small earth dam to create storage for
Type 1	domestic use, livestock and fish culture. These structure are filled by
	runoff and may form part of a watershed management project.
	An earth dam or concrete weir on a small river providing storage for
	domestic use, livestock, fish culture and <u>irrigation</u> . The reservoir
Typ2 2	does not command any land. So, dry season irrigation is normally
Typ2 2	by bucket or pump for rice nursery bed or for dry season upland
	crops. In the wet season, supplementary irrigation may be provided
	by flooding caused by the river banks overtopping.
Tuna 2	Similar to the Type 2, except the reservoir has command area and
Type 3	gravity irrigation can be carried out.
Type 4	A weir or regulator on a river with negligible storage. It provides
Type 4	water for wet season supplementary irrigation.

Source: Office of the National Economic and social Development Board (1994), Study of Potential Development of Water Resources in The Mae Khong River Basin, prepared by Asian Institute of Technology

Pump irrigation project:

Agencies with primary concern in pumping schemes are DEDP and RID. The DEDEP schemes are permanent with electricity driven pumps and generally serving a formal irrigation lay out. The RID schemes are diesel driven mobile pumps providing supplementary and compensation water supplies to informal irrigation schemes. In addition, there are some privately owned pump stations along the main river systems. The irrigation area by pump is approximately 80-480 ha.

Trans-basin project:

Currently there are no trans-basin (inter-basin) or intra-basin diversion projects within the Mekong River Basin of Thailand. However, a number of trans-basin schemes have been so far considered. Table below provides the main feature of the identified schemes. Location map of projects is shown in Fig. 4.1.

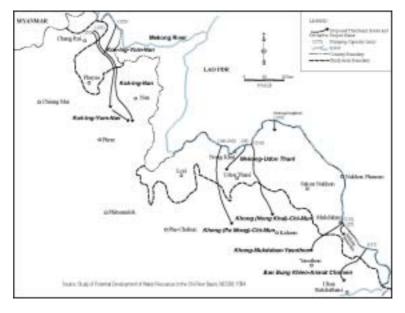


Fig. 4.1 Proposed Trans-basin Projects in Thailand

Table 4.12 Features of Trans-basin Projects in Thailand

No.	Project	Agency	Status	Pumping Capacity (m3/s)	Irrigation Area (ha)	Diversion Length (km)	Lift (m)
1	Kok-Ing-Nan	RID	F/S (199?)	175	270,000	107	-
2	Kok-Ing-Yom-Nam	EGAT/ RID	Pre-F/S (1982)	-	130,000	105	
3	Mekong (at Pamong)-Chi-Mun	DEDP	Pre-F/S (1978)	100	70,000		
4	Mekong (at Nong Khai)-Chi-Mun		Desk Study	400	320,000	125	25
5	Mekong-Songkharam		Pre-F/S (1983)	100	70,000	6	50
6	Mekong-Udon Thani		Pre-F/S (1989)	83	68,000		
7	Mekong (at Mukdahan)-Yasothon		Pre-F/S (1978)	110	88,000	28	49
8	Mekong (Ban Bung Khieo)-Amnat Charoen	NESDB	Pre-F/S (1978)	270	143,000	23	91
9	Khong-Chi-Mun	DEDP	F/S (1993)	310	800,000		
Tota	al				1,959,000		

Source: Office of the National Economic and social Development Board (1994), Study of Potential Development of Water Resources in The Mae Khong River Basin, prepared by Asian Institute of Technology

(2) Current Water Use

For the large-scale irrigation projects, the average annual volume of water use for irrigation and the annual irrigated areas (wet season + dry season) are available from RID as given below.

Table 4.13 Average Seasonal Water Use of Large Irrigation Projects in North-eastern Thailand

	Dry S	Season	Wet S	Years in		
Irrigation Project	Water Amount (mil m3)	Area (ha)	Water Amount (mil m3)	Area (ha)	which data are available	
Nong Wai	206.84	8,740.03	335.81	31,300.39	1980-1989	
Huai Luang	15.10	131.76	42.80	13,051.39	1980-1989	
Lam Pao	144.28	1,270.50	267.42	33,420.36	1980-1989	
Nam Oon	98.22	27.81	173.83	28,981.79	1980-1989	
Lam Prapleong	29.29	3,586.18	74.77	11,602.67	1980-1989	
Siringdhorn	53.33	2,549.70	142.50	21,858.29	1980-1989	
Lam Takhong	86.11	4.62	143.64	20,643.96	1980-1989	
Total	633.17	16,312.4	1,180.77	160,859.38		

Note: Dry season is from January to June. Wet season is from July to December.

Source: Data from Water Operation Center, RID (1990) from Assessment of Water Resources and Water Demand by User sectors in Thailand, ESCAP, United Nations, 1991

According to the agricultural statistics of Thailand (Ministry of Agriculture and Cooperatives, 1989), the annual volume of water use and the annual irrigated areas of overall irrigation projects in the country is around 1.3 times those of the RID large-scale projects. The factor of 1.3 is calculated from the available data of the annual irrigated areas of the whole country and of RID. This ratio is assumed to be applicable also to the annual volume of water use for irrigation. An average ratio between dry season and wet season irrigated areas from 1984 to 1989 is 0.236 (Assessment of Water Resources and Water Demand by User sectors in Thailand, ESCAP, United Nations, 1991).

Table 4.14 in the next page shows details of estimated irrigation demand in three major river basins in the North-eastern Thailand. As shown, the storage associated with small scale irrigation schemes provides around 1,000 million m³. The total active storage of reservoir schemes is around 7,440 million m³, of which 5,440 million m³ (73%) is provided by large scale reservoir and 2,000 million m³ (27%) is by both medium and small scale reservoirs. The estimated irrigation demands are 5,140 million m³ in the wet season and 2,689 million m³ (moderate cropping intensity) in the dry season, totally around 7,830 million m³

Table 4.15 in the next page shows the water extraction volume of pumping irrigation schemes in the North-eastern Thailand in the period of 1983-1989.

				Irrigation Demand (Mm ³)					
Scheme		Active ³⁾ Storage	Wet Season	Dry Season 1)		Dry Season 2)			
	(ha) (Mm ³)		(Mm ³)	(Mm ³)	CI (%)	(Mm ³)	CI (%)		
Chi Basin									
Large scale	102,259	3,100	818	1,080	60	720	40		
Medium scale	49,491	346	396	79	20	40	10		
Pumping	72,480	-	413	545	60	364	40		
Chi Total	224,230	3,446	1,627	1,704		1,124			
Mun Basin									
Large scale	56,097	1,570	449	592	60	395	40		
Medium scale	48,912	342	391	78	20	39	10		
Pumping	28,800	_	164	217	60	145	40		
Mun Total	133,809	1,912	1,004	887		579			
Mekong tributaries									
Large scale	83,168	769	665	878	60	586	40		
Medium scale	44,328	310	354	71	20	35	10		
Pumping	61,440	-	350	463	60	308	40		
Mekong Total	188,936	1,079	1,369	1,412		929			
Northeast Sub Total	546,975	6,437	4,000	4,003					
Northeast small scale	200,000	1,000	1,140	114	10	57	5		
North-east Total	746,975	7,437	5,140	4,117		2,689	•		

Table 4.14 Estimated Irrigation Demand in North-eastern Thailand

Note: 1) High cropping intensity; 60 percent values are well above presently realized; 20 and 10 percent are high values limited by reservoir water available.

- 2) Moderate cropping intensity
- 3) CI; cropping intensity

4) Medium scale reservoir storage estimated at 7,000 m³/ha and small scale storage at 5000 m³/ha Source: International Development Research Center of Canada, State-of-the-Art Study of the Mekong River and the River Basin Area in Thailand, Working Paper, 1995

Table 4.15 Water Extraction Volume of Pump Irrigation in North-eastern Thailand (1983-1989)

(Unit: million m3)

Season	1983	1984	1985	1986	1987	1988	1989
Dry (Jan-Jun)	98.53	109.30	101.58	71.56	85.79	129.60	142.36
Wet (Jul-Dec)	22.18	23.18	28.63	47.00	83.12	71.51	67.27

Note: Irrigation pump stations only by DEDP

Source: ESCAP (1991), Assessment of Water Resources and Water Demand by User Sectors in Thailand

Table 4.16 in the next page shows details of estimated irrigation demand of future proposed schemes (16 schemes in the Chi basin and 20 schemes in the Mun basin) around in 1995 for reference. If all schemes were implemented, the total irrigation area in the North-eastern Thailand could increase by 835,878 ha. At this moment, the progress of implementation is rather hard for confirmation although all of the Mekong transfer schemes are still of preliminary study level and large-scale irrigation projects associated dam construction might be at the same level in 1995 almost without progress.

Table 4.16 Estimated Irrigation Demand of Proposed Projects in North-eastern Thailand

	Total	Irrig	Irrigation Demand			
Description	I otal Irrigation	Wet	Dry Se			
Description	Area (ha)	Season (Mm³)	(Mm ³)	CI (%)		
Chi Basin						
Large scale	62,170	497	656	60		
Medium scale	26,337	210	42	20		
Chi total	88,507	707	698			
Mun Basin						
Large scale	81,988	657	865	60		
Medium scale	56,869	455	91	20		
Barrage	44,230	353	467	60		
Mun total	183,087	1,465	1,423			
Mekong tributaries						
Large scale	82,198	658	868	60		
Medium scale	24,926	199	40	20		
Barrage	7,160	57	76	60		
Mekong total	114,284	914	984			
Northeast small scale ¹⁾	50,000	285	29	10		
Northeast pumping schemes ¹⁾	50,000	285	377	60		
North-east Sub Total	485,878	3,656	3,482			
Mekong transfers						
Pa Mong-Chi-Mun	140,000	1,551	543			
Kong-Chi-Mun	320,000	3,546	1,240			
Mekong-Udon Thani	67,960	753	263			
Mekong Transfer total ²⁾	350,000	3,880	1,355			
North-east Total	835,878	7,538	4,837			

Note:1) Provisional figure

Source: International Development Research Center of Canada, State-of-the-Art Study of the Mekong River and the River Basin Area in Thailand, Working Paper, 1995

4.5 Current Water Use in Lao PDR

The main use of irrigation in Lao PDR is the supplementary irrigation of wet season rice. There are a number of small scale pumping irrigation projects that use water from the Mekong River to irrigate dry season crops. There is little definitive data and reports on current water use.

Table 4.17 Current Water Demand, Lao PDR

Sector		1995
Agriculture		
☐ Supplementary Irrigated Area (ha)	155,000
□ Dry Season Irrigated Area (ha)		31,000
Irrigation Water Use (Mm ³)		2,000

Source: LAOS - Environmental Values and Resource Sectors in Lao PDR, 1995

Herein preliminary rough estimate of the current water use is made by use of available data and information. From Table 3.13, the current irrigation areas within the Mekong watershed are estimated to be 129,000 ha in the dry season and 176,000 ha in the wet season. From Table 4.7

²⁾ Diversion schemes partially overlap is a provisional estimate avoiding overlap

³⁾ CI; cropping intensity

diversion requirements are assumed to be 1,900 mm/ha in the dry season and 700 mm/ha in the wet season, respectively. Applying to these, current water use are estimated 2,530 million m³ in the wet season and 1,232 million m³ in the dry season.

4.6 Current Water Use in Cambodia

Rice production in Cambodia has increased slowly in efficiency since the early 1990s due to ongoing pos-war rehabilitation and infrastructure reconstruction. Total wet season cultivated area has increased during the period from 1.7 million ha in 1993 to 2.1 million ha in 2000 as given below.

Table 4.18 Rice Production in Cambodia, 1993-2000

	1993	2000
Wet Season Rice		
Area harvested ('000 ha)	-	1,846
Production ('000 ton)	-	3,333
Yield (ton/ha)	-	1.81
Dry Season Rice		
Area harvested ('000 ha)	-	233
Production ('000 ton)	-	708
Yield (ton/ha)	-	3.04
Total Rice		
Area harvested ('000 ha)	1,685	2,079
Production ('000 ton)	2,221	4,041
Yield (ton/ha)	1.31	1.94

Source: Cambodia National Institute of Statistics (1994, 2000)

In Cambodia, paddy is cultivated under the management measures; i) rainfed lowland cultivation, ii) rainfed upland cultivation, iii) deep water cultivation (floating rice), and iv) dry season cultivation. Table below shows the area and production of the said cultivation systems in 1992-1993.

Table 4.19 Rice Production in Cambodia, 1992-1993

Cultivat	No Irr	No Irrigation		Irrigation		Flood Recession		ıl
ion System	(1,000 ha)	(1,000 tons)	(1,000 ha)	(1,000 tons)	(1,000 ha)	(1,000 tons)	(1,000 ha)	(1,000 tons)
Rainfed Lowlan d	1,422	1,485	173	311	-	-	1,595	1,796
Dry Season	-	-	25	60	79	190	104	250
Rainfed Upland	24	29	-	-	-	-	24	29
Deep Water	121	146	-	-	-	-	121	146
Total	1,567	1,660	198	371	79	190	1,844	2,221

Note: Area indicates the cultivated area.

Source: Cambodia Statistics, Interim Mekong Committee, 1992

As is apparent from the table above, dry season rice cultivation accounts for only about 6% of the whole cultivated area. Dry season cultivation is either from fully irrigated scheme or grown as a "flood recession crop". Under the flood recession crop, low embankments are used to store floodwaters during flood recession, which are then used to subsequently irrigate the crop. The productivity of the dry season rice is more than 1 ton/ha greater than wet season rice because of greater sunshine and better water control. The dominant production system is rainfed lowland rice, which is concentrated near the Mekong, Bassac, and Tonle Sap Rivers. Deepwater and floating rice is also found around the shores of Tonle Sap River and the Great Lake, as well as the inundated areas of the Mekong and the Bassac near Vietnam. There is also small-scale dry land

rice production in hilly areas of the country. Definitive data are lacking about the current water use in Cambodia. Assuming that the dry season irrigation demand amounts to 1,700 mm/ha for 104,000 ha (see Tables 4.8 and 4.19), the irrigation demand is estimated at 1,768 million m³. Table below shows the identified potential new and upgraded cropping areas in 1994.

Table 4.20 Potential Cropping Areas and Water Resource Constraints, Cambodia

	Catchment		Pot	tential Crop A	rea (ha)		Water
No	Name	No	Wet Season	Double Cropping	Flood Recession	Total	Resources Category
1	SE catchment	8	6,292	9,089	310	15,691	2
2	Stung Slakou	9	650	19,748	1,050	21,448	2
3	Prek Toul Lokok	9.1	250	2,875	600	3,707	2
4	Prek Tnol	10	3,597	26,995	550	31,142	2
5	Stung Tonle Bati	10.1	0	1,135	0	1,135	2
6	Lake side 1a	11.1	9,175	0	0	9,175	3
7	Lake side 1b	11.2	510	410	2,000	2,920	1
8	Stung Krang Punley	11.3	960	2,503	0	3,463	2
9	Stung Baribo	12	5,190	0	0	5,190	2
10	Stung Pursat	13	4,590	40,320	0	44,910	2
11	Stung Daunti	14	10,800	0	0	10,800	2
12	Stung daunti	14.1	1,317	1,345	0	2,662	2
13	Lake side 2b	15.2	4,070	4,800	0	8,870	2
14	Stung Sanker	16	2,270	25,600	0	27,870	2
15	Stung Mongkol Borey	17	2,160	55,000	0	57,160	2
16	Stung Pheas	17.1	0	11,500	0	11,500	2
17	Stung Sisophon	18	1,000	4,000	0	5,000	3
18	Stung Svay Chek	18.1	0	1,750	0	1,750	3
19	Stung Praneth Preah	18.2	0	12,000	0	12,000	3
20	Stung Sreng	19	6,050	1,100	150	7,300	3
21	Stung Siem Reap	20	2,700	13,500	100	16,300	2
22	Stung Rolous	21	5,750	0	0	5,750	2
23	Stung Chikreng	22	4,000	0	0	4,000	3
24	Stung Ataung	23	2,550	14,500	0	17,100	2
25	Stung Sen	24	6,010	4,100	0	10,110	3
26	Stung Sraka Moan	24.1	2,750	0	0	2,750	3
27	Stung Chinit	25	3,963	16,050	0	20,013	2
28	Stung Taing Krasing	25.1	0	600	0	600	2
29	Great Lake	26	1,800	960	5,695	8,455	1
30	Mekong Riverine	27	11,785	49,672	86,785	148,242	1
31	Prek Kampi	33	527	0	0	527	3
32	Prek Te	34	212	0	112	324	3
33	Prek chhlong	35	2,912	1,400	480	4,792	3
34	South catchments	36	479	18,450	2,130	21,095	3
35	Catchments unknown		4,330	0	0	4,330	-
	Total		108,640	339,402	99,962	543,715	-

Notes: Category 1: Predominantly recession cropping. Recession cropped systems can be treated independently for the purpose of irrigation rehabilitation.

Category 2: Catchments with overall water shortage where catchments planning is recommended.

Category 3: Catchments without identified water contain.

Source: Irrigation Rehabilitation Study in Cambodia, Final Report, 1994

4.7 Current Water Use in Vietnam

The present irrigation water demand in the delta has been estimated on a yearly basis by SIWRP (Sub-Institute for Water Resources Planning) in Ho Chi Minh City by use of the developed hydraulic simulation model in which the current irrigation system network is built. The estimated

water demand is on a 10-day basis. Water demands estimated in several years are available from several reports. The table below is the estimated dry season irrigation water demands in 1990, 1998 and 2000.

Table 4.21 Estimated Dry Season Irrigation Water Demand of the Mekong Delta in 1990, 1998 and 2000

1990	Irrigation Water Demand						
1770	Jan	Feb	Mar	Apr	May	Jun	Total
million m ³	2,420	1,560	1,120	1,490	1,660	1,140	9,300
m^3/s	904	645	418	575	620	440	-

Source: Sub-Institute of Water Resources Planning and Management (SIWRPM)

1998		Total					
1770	Jan	Feb	Mar	Apr	May	Jun	Total
million m ³	2,686	2,088	2,017	2,179	2,179	1,363	12,512
m^3/s	1,003	863	753	841	814	526	-

Source: Sub-Institute for Water Resources Planning (SIWRP)

2000	Irrigation Water Demand						
2000	Jan	Feb	Mar	Apr	May	Jun	Total
million m ³	2,582	2,692	2,072	1,400	1,473	1,290	11,509
m^3/s	964	1,113	774	540	550	498	-

Source: Sub-Institute for Water Resources Planning (SIWRP)

The estimated total dry season irrigation demands from January to June are 9,300 million m³ in 1990, 12, 512 million m³ in 1998 and 11,509 million m³ in 2000. Another estimates are available. The dry season demand in 1990 is divided into two demands in the freshwater area and the saline water area affected by saline water intrusion. They are 9,000 million m³ in the fresh water area and 300 million m³ in the saline water area. Considering that the Mekong flow becomes lowest in April, period of critical water usage is April. Table below shows the estimated irrigation water usage for 1985 and 1990 over the period January to June by the Mekong Delta Master Plan in 1991. The delta was divided into eight separate climatic zones. Effective rainfall was estimated on the basis of a 75% likelihood of exceedance. An irrigation efficiency of 80% was adopted.

Table 4.22 Estimated Dry Season Irrigation Water Demand of the Mekong Delta in 1985 and 1990

Year	Irrigation Water Demand (m ³ /sec)							
1 cai	Jan	Feb	Mar	Apr	May	Jun		
1985	425	310	120	140	275	190		
1990	802	724	264	319	214	194		

Source: Government of Vietnam, WB and UNDP (1991), Mekong Delta Master Plan, Working Paper No.3, Irrigation, Drainage and Flood Control

5. IDENTIFICATION OF LOW FLOW INCREASE DUE TO NAM NGUM HYDROPOWER DEVELOPMENT PROJECT IN NAM NGUM RIVER

5.1 Nam Ngum Hydropower Development Project

The Nam Ngum Hydropower Development Project in Lao PDR was implemented in 3 phases (stage-wise development of installed capacity) as summarized below.

Table 5.1 Stage-wise Development of Nam Ngum Hydropower Station

	Phase I	Phase II	Phase III
Period	1972-1978	1979-1984	1985- Present
Number and capacity of units	15 MW x 2 (30 MW)	40 MW x 2 (80 MW)	40 MW x 1 (40 MW)
Total installed capacity	30 MW	110 MW	150 MW
Average annual energy output	240 GWh	755 GWh	820 GWh

Source: Annual Report 1982, Mekong Secretariat, 1982

Photo: Nam Ngum Dam

To increase the energy output of the Nam Ngum power station, the Nam Song Water Diversion Project was completed in 1995 for diverting the maximum discharge of 210 m³/s into the Nam Ngum reservoir. Further in 2000, the Nam Leuk Hydropower Project with an installed capacity of 60 MW was completed on the Nam Leuk river. The water used for power generation at the Nam Leuk station is also diverted into the Nam Ngum reservoir enhancing the power generation of Nam Ngum hydropower station. The Nam Ngum power generation system is schematically shown below.

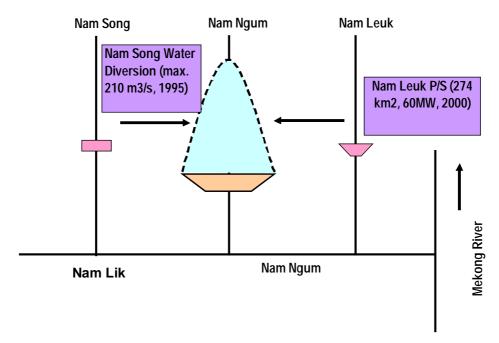


Fig. 5.1 Nam Ngum River Diversion System

5.2 Operation Records of Nam Ngum Hydropower System

Tables 5.2 to 5.5 presents the operation records of the Nam Ngum reservoir from 1972 to 2001 on the monthly basis that were obtained from the Nam Ngum power station office through LNMC. The operation schedule of Nam Ngum hydropower system in 2001 is given in Table 5.6. The monthly operation records at the Nam Leuk power station are shown in Table 5.7.

Mean monthly plant discharges (released discharge through hydropower generation) at the Nam Ngum station are compared according to its development stage as shown below.

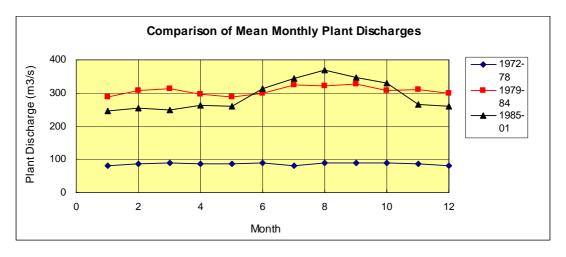


Fig. 5.2 Comparison of Mean Monthly Plant Discharges

As seen above, the mean monthly plant discharge after the completion of Phase I (30 MW of installed capacity) in 1971 is around 80-90 m³/sec. After the Phase II (110 MW) in 1978 and Phase III (150 MW) in 1984 plant discharges have significantly increased to be around 250-370 m³/sec. The mean monthly plant discharges in 1985-2001 in the dry season are smaller than in 1978-84. This is due to the fact that as severe hydrological droughts have occurred in several years in 1987-93, and thus energy productions have been much reduced in the dry season.

Figure 5.3 illustrates the historic change of annual spillout volume of the Nam Ngum dam from the beginning of operation in 1972. From the viewpoints of hydropower operation, the Nam Ngum reservoir inflows have been well regulated and effectively utilized for power generation since the completion of Phase III in 1985.

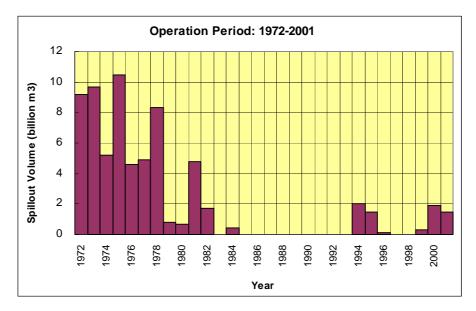


Fig. 5.3 Annual Spillout Volume from Nam Ngum Dam

5.3 Operation Pattern of Nam Ngum Hydropower Station

The Nam Ngum hydropower station is being operated to meet electric power demands at the peak and off-peak. The present typical operation pattern (operation hours) is assumed as schematically shown below.

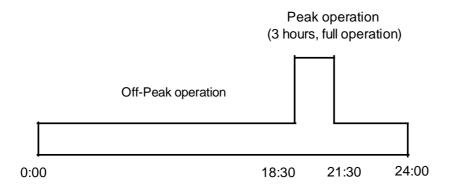


Fig. 5.4 Typical Operation Pattern at Nam Ngum Power Station

The maximum plant discharge (Qmax) at the peak operation (full operation of 150 MW) is estimated as follows:

$$Qmax = 150,000 / (9.8 \times 0.84 \times 32) = approx. 570 \text{ m}^3/\text{sec}$$

The plant discharge (Qbase) at the off-peak operation with 40 MW is estimated:

Obase =
$$40,000 / (9.8 \times 0.84 \times 32) = \text{approx. } 150 \text{ m}^3/\text{sec}$$

The average plant discharge on daily basis (Qfirm) is thus estimated as follows:

Qfirm = $(570 \times 3 + 150 \times 21) / 24 = \text{approx. } 200 \text{ m}^3/\text{sec}$

where, 9.8: Acceleration of gravity (m/s²)

0.84 : Combined efficiency of power plant

32: Rated head (m)

The expected average daily release discharges due to power generation are estimated varying power generation units for the off-peak demands as follows:

Table 5.8 Expected Daily Plant Discharge of Nam Ngum Hydropower Station

Case	Peak Operation (3 hours)	Off-peak Operation (21 hours)	Approx. Total Plant Discharge (m³/s)
1	150 MW	30 MW	170
2	150 MW	40 MW	200
3	150 MW	70 MW	300
4	150 MW	80 MW	340

Source: WUP-JICA Study Team

The recent hourly operation record of the Nam Ngum hydropower station on 12-15 November 2001 was obtained from EDL (Electricite du Laos) as given below.

Table 5.9 Daily Operation of Nam Ngum Station (November 12-15, 2001)

Time	Duration (hour)	Operating Unit and Capacity (MW)
00:00 - 06:00	6.0	15.5 MW x 1 + 45 MW x 1 = 105.5 MW
06:00 - 17:00	11.0	15.0 MW x 1 + 38 MW x 3 = 129.0 MW
17:00 – 21:30	4.5	15.5 MW x 2 + 45 MW x 3 = 166.0 MW (peak operation)
21:30 - 24:00	2.5	15.0 MW x 2 + 40 MW x 2 = 110.0 MW

Source: Nam Ngum Hydropower Station

The daily power operation in this period is graphically shown below.

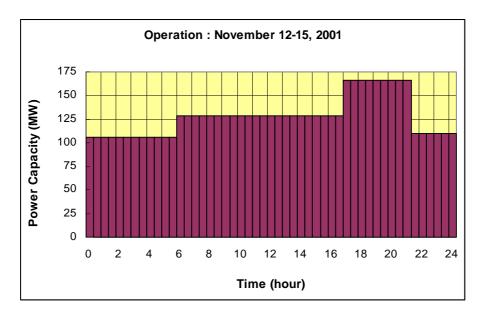


Fig. 5.5 Daily Operation Record of Nam Ngum Hydropower Station in November 12-15, 2001

The time period of peak operation (full load) has recently been extended by 4.5 hours from 17:00 to 21:30 and the off-peak operation has been made exceeding 100 MW. Table 3.5 shows the operation schedule of Nam Ngum hydropower station in 2001 as well as the expected water diversion from the Nam Song River and the Nam Luek reservoir, which was prepared in October 2000.

Below is the annual power output of the Nam Ngum hydropower station from 1972 to 2000.

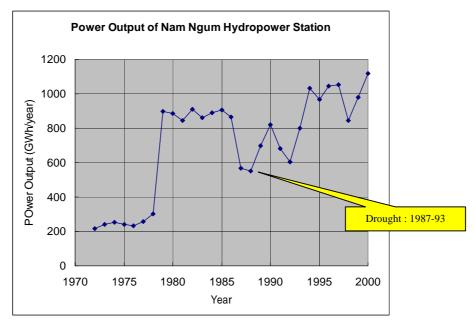


Fig. 5.6 Annual Power Output of Nam Ngum Power Station

Severe drought occurred several times in 1987–1993. Energy production was seriously decreased to around 60% of designed energy output. It is reported that in these drought years no spill-out had been made all year round. It is observed that the Nam Song Water Diversion Project has been increasing annual power output by around 100 GWh/year from 1994 onwards.

The seasonal regulation rate of the Nam Ngum reservoir is estimated to be 47.2% as follows:

Annual inflow volume $(1972-2000) = 9,964 \text{ million m}^3$

Effective storage capacity = $4,700 \text{ million m}^3$

Seasonal regulation rate = $4,700 / 9,964 \times 100 = 47.2\%$

5.4 Low Flow Increase in the Nam Ngum River

The dry season low flows of the Nam Ngum River downstream of the Nam Ngum reservoir would be increased due to the plant discharge released from the Nam Ngum reservoir. The low flow regime of the Nam Ngum River has been thus changed after the completion of the Nam Ngum hydropower development project.

The low flow increase in the dry season was verified in terms of the available monthly mean records at the existing four hydrological stations. The low flow increase was examined in two approaches:

- (1) Comparison of monthly mean discharge hydrographs in the dry season (January-May) at the selected hydrological stations; and
- (2) Comparison of time-series of monthly mean discharges in the dry season (the 3 months of February, March and April) at the hydrological stations.

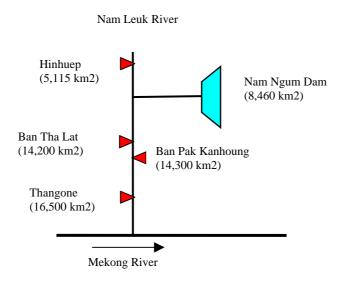


Fig. 5.7 Location Map of Selected Hydrological Stations in Nam Ngum River

Tables 5.10 to 5.13 presents the monthly mean discharges at the selected four stations.

Photo: Ban Pak Kanhoung Station in Nam Ngum River

Figure 5.8 shows the results of comparison of monthly mean discharge hydrographs, while Fig. 5.9 shows the results of comparison of time-series of monthly mean discharges. Table 5.14 presents the comparison of monthly mean discharges of four stations.

This preliminary analysis leads to the following summary observations and implications:

- (1) The Nam Ngum Hydropower Development Project (seasonal flow regulation by a large-scale reservoir) has made very significant influences on the low flow regime of the lower mainstream from Nam Ngum Dam. Due to the released flows through power generation, the dry-season flows from January to May have significantly increased. The Nam Ngum reservoir provided with seasonal regulating capacity would enable dry-season flows to be significantly supplemented and droughts to be alleviated in the Nam Nugm River. The historic plant discharges in the dry season are around 250–370 m³/s. Such additional flow increases in the dry season have been adequately measured and detected at the downstream hydrological stations in the Nam Ngum River as shown Figs. 5.10 and 5.11.
- (2) As indicated above, the dry-season flows at the downstream stations have increased according to the stage-wise development of Nam Ngum hydropower station. In conclusion the low flow regime of the Nam Ngum River is dominated by the turbine release of Nam Ngum hydropower station.
- (3) In 1977 unusual spill outs were made from the Nam Ngum reservoir. The monthly spill-out discharges were recorded at 414 m³/s in March and 313 m³/s in April (see Table 5.5). As a result, significant low flow increases were satisfactorily observed at the Thangone gauging station, although the flows observed at the Ban Tha Lat station show relatively smaller increases.

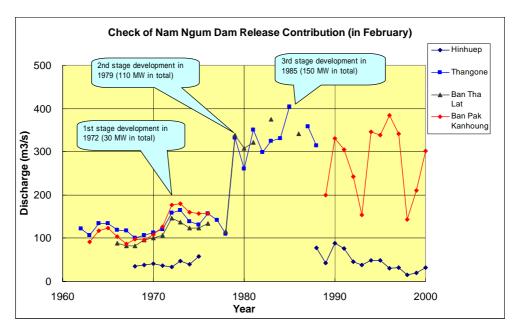


Fig. 5.10 Low Flow Increases in February in Nam Ngum River

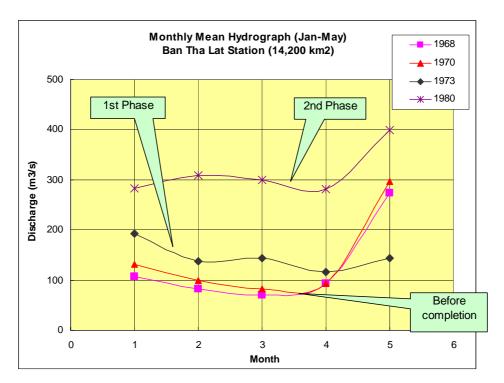


Fig. 5.11 Low Flow Increases in Dry Season in Nam Ngum River

(3) Table 5.15 shows the comparison results of low flow increases at hydrological stations. Both stations of Ban Tha Lat and Thangone have been non-operational since 1989. The Ban Pak Kanhoung station would be the monitoring station for the released discharge of the Nam Ngum reservoir. Table 5.16 below gives the summary of low flow increases due to the Nam Ngum plant discharges at the Ban Pak Kanhoung station.

Table 5.16 Hydrological Data Analysis at Ban Pak Kanhoung Station

Period	Mean Monthly Discharge (m³/s)			Flow Increase due to Plant Release (m³/s)			
	Feb.	Mar.	Apr.	Feb.	Mar.	Apr.	
1963-71	106	88	88	68	55	54	
1972-78	166	154	145	122	111	100	
1979-84	-	-	-	-	-	-	
1985-93	246	243	276	187	190	235	
1994-00	295	301	362	262	273	331	

Note: Flow increase due to plant release = Mean monthly discharge at Ban Pak Kanhoung Station – Mean monthly discharge at the Hinhuep Station

Period; 1963-71: Before completion of Nam Ngum Project

1972-78 : After completion of Phase I of Nam Ngum Project (30 MW) 1979-84 : After completion of Phase II of Nam Ngum Project (110 MW)

1988-93 : After completion of Phase III of Nam Ngum Project (150 MW) covering the

drought period of 1987-93

1994-00 : After completion of Phase III of Nam Ngum Project (150 MW)

(4) The changes in low flow regime in the Nam Ngum River are indicated by the increase of dry season flows attributable to the Nam Ngum plant discharge as seen above. The average net (actual) increase of dry season flow is estimated by means of the following equation:

Net flow increase due to Nam Ngum Dam Flow at the Ban Pak Kanhoung station after the completion of Nam Ngum Dam (Affected flow) Flow at the Ban Pak
Kanhoung station before
the completion of Nam
Ngum Dam (Natural
flow)

(5) The natural flow is usually defined as the river flow that is not affected by any water uses and water resources developments in a watershed. In this sense it might be said that the natural flow at the Ban Pak Kanhoung Station is the observed flow before the completion of the Nam Ngum Hydropower Development Project. Thus the average net flow increase in the dry season in 1989-2000 is obtained:

Table 5.17 Mean Dry Season Flow Increase in the Nam Ngum River

Period	Mean Monthly Discharge (m ³ /s)				
Teriou	Feb.	Mar.	Apr.		
Affected Flow (1989-2000)	275	277	326		
Natural Flow (1963-1971)	106	88	88		
Flow Increase (1989-2000)	169	189	238		

Source: WUP-JICA Study Team

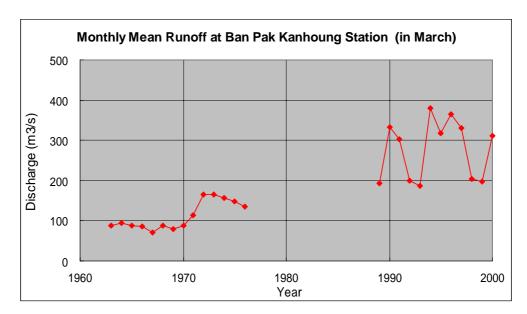


Fig. 5.12 Time-Series of Monthly Mean Discharges in March at Ban Pak Kanhoung in Nam Ngum River

(6) Another approach was made for estimating the changes in low flow regime of the Nam Ngum River from the reservoir operation data at the Nam Ngum dam. The average net increase of the dry season flow as a result of the Nam Ngum Hydropower Development is obtained as follows:

Net flow increase due to Nam Ngum Reservoir Outflow (Affected flow)

Nam Ngum Reservoir Inflow (Natural flow)

Table 5.18 Mean Dry Season Flow Increase in the Nam Ngum River

Period	Mean Monthly Discharge (m ³ /s)				
1 eriou	Feb.	Mar.	Apr.		
Reservoir Outflow (1979-2001)	269	265	272		
Reservoir Inflow (1979-2001)	81	76	88		
Flow Increase (1979-2001)	188	189	184		

Source: WUP-JICA Study Team

The relationship of flows above is graphically shown in the figure below.

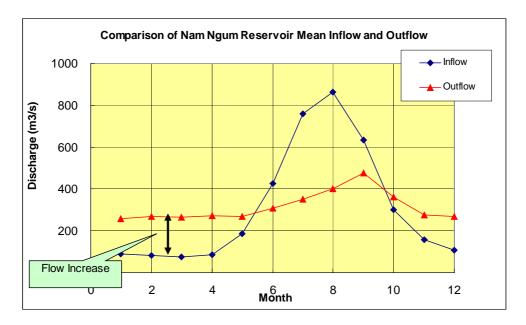


Fig. 5.13 Flow Regime Change in Nam Ngum River in terms of Difference between Mean Inflow and Outflow at Nam Ngum Dam

Changes in the flow regime of the Nam Ngum River are also verified in terms of flow duration curves of inflow and outflow, as shown below.

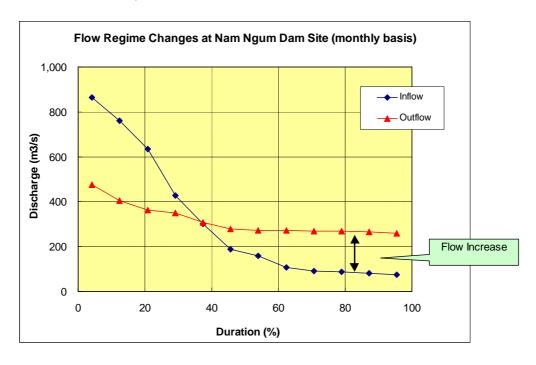


Fig. 5.14 Flow Regime Change in Nam Ngum River in terms of Duration Curves of Inflow and Outflow at Nam Ngum Dam

6. IDENTIFICATION OF LOW FLOW CHANGE OF NAM MUN-CHI RIVER DUE TO INTENSIVE WATER RESOURCES DEVELOPMENT

6.1 Nam Mun-Chi River Basin in North-eastern Thailand

In North-eastern Thailand, the Mekong River drains an area of 170,000 km², which amounts to about 22% of the Mekong River basin and one-third of the total area of the country. The easterly flowing Nam Mun River and its major tributary, Nam Chi River (together known as the Nam Mun-Chi River) drain the southern two-thirds of the Mekong River basin (120,000 km²), while the remaining one-third of the Mekong River catchment (50,000 km²) is drained by a series of northerly and easterly flowing tributaries. The Nam Mun-Chi River basin consists of a shallow saucer-shaped plateau (part of the Korat Plateau of North-eastern Thailand), which has an average height of 100-200 m above sea level.

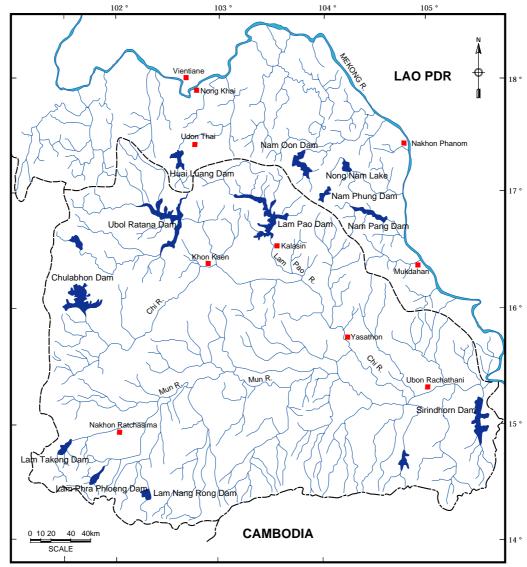


Fig. 6.1 Location Map of Existing Large-Scale Reservoirs in North-Eastern Thailand

In this North-eastern Thailand, farmland covers about 43% of the total area, of which paddy fields account for about two-thirds (27%). Forests cover only 21% of the total area. Most surface water

development projects in this area are based on the three rivers: the Nam Mun, Nam Chi and the Makong Rivers.

6.2 Large Scale Water Resources Development Projects in North-Eastern Thailand

The water resources of the Mekong River basin in Thailand are intensively used for irrigation, hydropower generation and fisheries. The agriculture sector is the highest water user. Irrigation is essential for cultivated crops. Supplementary irrigation is still necessary for the wet season and in the dry season irrigation is virtually depending on the stored water. There are numerous irrigation reservoirs in north-eastern Thailand varying from small scale (pond) to large scale ones. There are ten large-scale seasonal-regulation reservoirs in north-eastern Thailand (see Table 2.1 for the salient features). All reservoirs supply irrigation water, some of which are provided with hydropower generating facilities as a multipurpose project. The total effective storage of existing reservoirs amounts to around 5,462 million m³.

Table 6.1 Summary of Existing Reservoirs and Irrigation Service Area in Thailand

Basin Area	Total Effective Storage (million m ³)	Irrigation Area (ha)
Nam Mun river basin	1,626	56,097
Nam Chi river basin	3,100	100,716
Mekong tributaries	736	83,168
Total	5,462	239,981

Source: WUP-JICA Study Team

The seasonal regulation rate of all of the existing reservoirs to the mean annual flow volume of north-eastern Thailand is estimated to be around 6.9% as follows:

Average annual flow volume (million m^3) = 475,000 x 0.18 x (170,000 / 184,000) = 78.995

Seasonal regulation rate = $5,462 / 78,995 \times 100 = 6.9\%$

Note: Average annual flow volume of 475,000 million m³ of the whole Mekong River Basin and other parameters in the above are from the Mekong River Basin Diagnostic Study, MRC, 1997. The parameter "0.18" is the average annual flow rate of the Thailand territory (184,000 km²) to the entire Mekong River Basin. The catchmment area of north-eastern Thailand is 170,000 km².

Along this line, the seasonal regulation rates in sub-basin areas are roughly estimated as follows:

Table 6.2 Seasonal Regulation Rates in North-eastern Thailand

River Basin Area	Drainage Area (km²)	Mean Annual Flow (million m³)	Effective Storage (million m ³)	Regulation Rate (%)
Mun River	71,000	32,992	1,626	4.9
Chi River	49,000	22,769	3,100	13.6
Mekong tributaries	50,000	23,234	736	3.2
Total	170,000	78,995	5,462	6.9

Source: WUP-JICA Study Team

Data on the current and historical water uses in the basin as well as the operational record of the existing reservoirs are not available at MRC. The simplified water supply system diagram in north-eastern Thailand together with the existing key hydraulic stations is shown below.

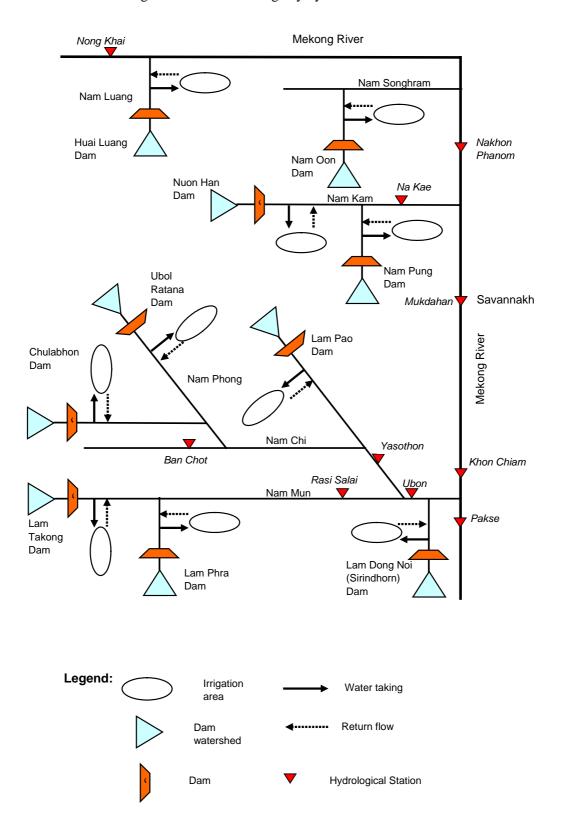


Fig. 6.2 Diagram of Large Reservoirs in North-Eastern Thailand

6.3 Changes in Low Flow Regime of the Nam Mun-Chi River

The dry season low flows of the Nam Mun-Chi River have been more or less influenced due to various water resources development projects in this basin. The low flow change in the dry season was investigated based on the measured discharge records at the selected four hydrological stations by the following two approaches:

- (1) Comparison of monthly mean runoff hydrographs in the dry season (January-June) at the hydrologic stations
- (2) Comparison of time-series of monthly mean discharges in the dry season (3 months of February, March and April) at the hydrologic stations

The location of selected four hydrological stations is illustrated below.

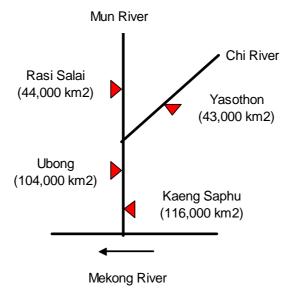
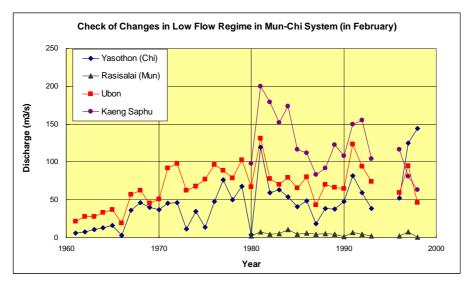
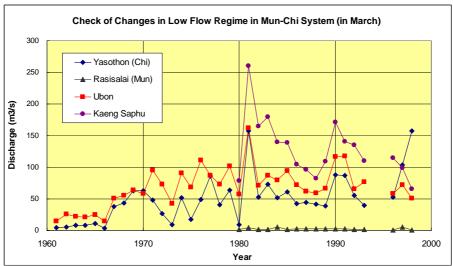


Fig. 6.3 Location Map of Selected Hydrological Stations in Nam Mun-Chi River




Photo: Ubon Hydrological Station

Tables 6.3 to 6.6 present the monthly mean discharges at the selected four stations.

The following observations and implications can be made with regard to the changes in low flow regimes in the Nam Mun-Chi River:

- (1) Table 6.7 shows the summary of monthly mean discharges in the dry season at the stations. The time-series of monthly mean discharges in from February to April at four stations are plotted for comparison as shown in Fig. 6.4.
- (2) Almost the same trends are observed at all stations with an exception of the Rasi Salai station on the Nam Mun River where the extremely small and constant flows are seen. From the mid 1960s to the mid 1970s, these three stations show clear upward trends in monthly mean flows, and from the mid 1980s onwards almost level trends are seen. This significant flow increasing trends are almost coincide with the progress of various water resources developments in the basin (see Fig. 2.5 showing the accumulation of developed reservoir storage in North-eastern Thailand).
- (3) In conclusion this upward flow trends are indicative that intensive water resources development made significant impacts on the low flow regimes in the Nam Mun-Chi River (flood water is stored in reservoirs and the low flow is thus increased due to water release from reservoirs for water sector uses in the dry season). Almost stable level trends from the mid 1980s onwards seem to be as a result of water use for basin-wide irrigation.
- (4) The figures below are the comparison results of monthly mean runoff hydrographs in the dry season (January-June) at both the Yasothon and Ubon hydrologic stations. Significant changes in the dry season flows are clearly observed compared to the discharge hydrographs both in 1962. The results of comparison for other stations are presented in Fig. 6.5 and low flow increases at Yasothon and Ubon are as follows:

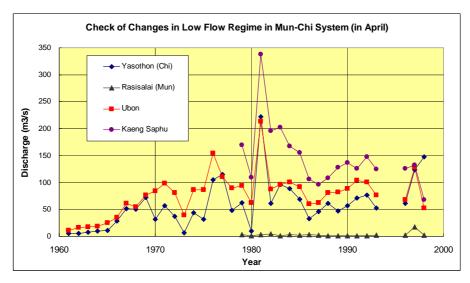


Fig. 6.4 Comparison of Time-Series of Monthly Mean Discharges in Nam Mun-Chi River

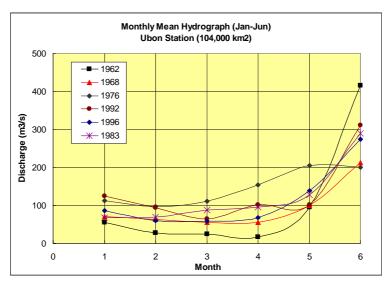


Fig. 6.6 Low Flow Increases in Dry Season in Nam Mun-Chi River

- (5) Clarification of different trends on the time-series of monthly discharges in the dry season above shall be made duly provided with basin-wide historic water usage, particularly irrigation water uses (contribution of irrigation return flows), as well as the performance data of the existing large reservoirs. Intensive water uses in the basin might have significant impacts on the low flow regime of the Nam Mun-Chi River. At present the necessary information at MRC is extremely limited.
- (6) The Yasothon station with a drainage area of 43,000 km2 is located on the Nam Chi River, and the Rasi Salai station is located on the Nam Mun River with a drainage area of 44,000 km2. Both hydrological stations are situated near the junction of both rivers with almost same watershed areas. However there are very large differences in these monthly mean figures as given below. The dry season flow in the Nam Mun River is extremely small compared to that in the Nam Chi River.

Table 6.8 Comparison of Mean Monthly Discharges of Nam Mun and Nam Chi Rivers

		n Station (80-98, Chi	` '	Rasi Salai Station (44,000 km², 1980-98, Mun River)									
	Feb.	Mar.	Apr.	Feb.	Apr.								
Mean Monthly Discharge (m ³ /s)	60.8	68.1	77.8	4.9	2.7	2.8							
Specific Discharge (m³/s/100 km²)	0.141	0.158	0.181	0.011	0.006	0.006							

Source: WUP-JICA Study Team

(7) According to the study report "Development of the Lower Mun Basin" in June 1982, the runoff coefficients of both the Nam Mun and Nam Chi Rivers are very low, 0.12 and 0.15, which is due to the low average rainfall over the basins (1,000-1,200 mm per annum) and the generally flat topography. Despite this low runoff, both rivers swell to a major tributary of the Mekong River on account of its large catchment area. The relation between annual rainfall and runoff for the Nam Mun-Chi River basin at Ubon (the data period of 1962-1978) is shown below.

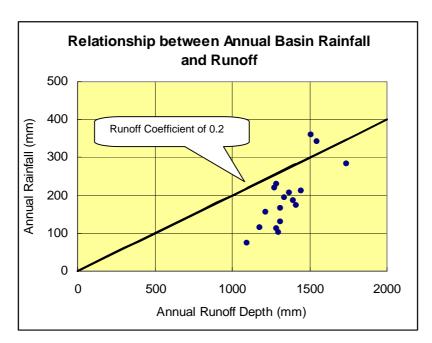


Fig. 6.7 Relation between Annual Basin Rainfall and Runoff at Ubon

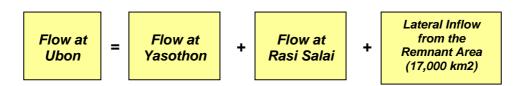
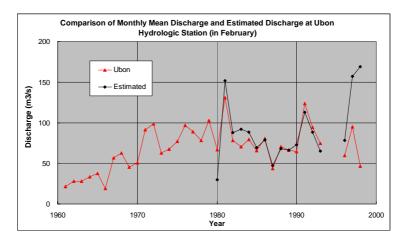
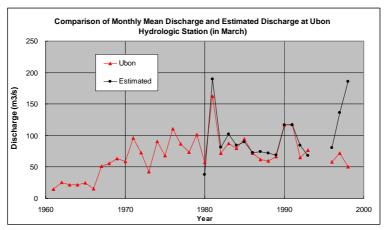

(8) The following table shows the comparison of total capacity of the existing large reservoirs within the drainage areas at both two hydrologic stations.

Table 6.9 Comparison of Large Reservoir Storage in Nam Mun and Nam Chi Rivers


Hydrologic Station	Reservoir	Storage (million m ³)
	Nam Pong	1,695
Yasothon (Nam Chi River)	Nam Phrom	145
r asothon (Nam Chi Kiver)	Lam Pao	1,260
	Total	3,100
	Lam Phra Ploeng	145
Rasi Salai (Nam Mun River)	Lam Takong	290
	Total	435


Source: JICA Study Team

- (9) The most likely explanation for such large differences seems to be that the existence of large reservoirs in the Nam Chi River basin causes significantly higher flows in the dry season compared to the dry season flows in the Nam Mun River.
- (10) The relationship between the Nam Mun and Nam Chi River flows was also verified in terms of the estimated Ubon discharge. The monthly mean discharge at the Ubon station was estimated and compared with the observed monthly mean discharges as given below.

(11) The lateral inflow is estimated applying the estimated mean monthly specific discharges at the Yasothon station. The results are shown below.

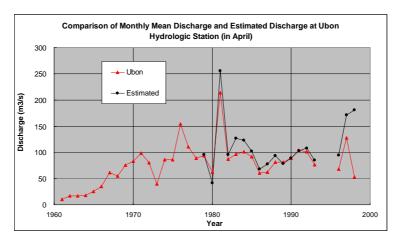


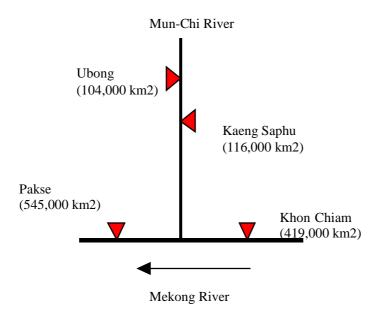
Fig. 6.8 Comparison of Actual and Estimated Monthly Mean Discharges at Selected Stations in Nam Mun-Chi River

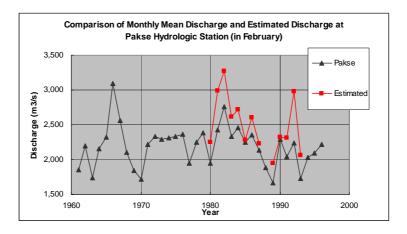
(12) As seen above, the estimated discharges are almost well fitted to the monthly mean discharges at the Ubon station in 1980s and up to the mid-1990s. After the mid-1990s, the

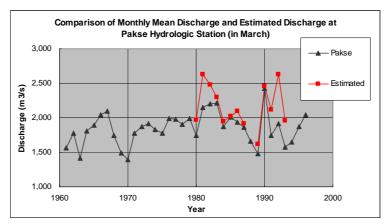
estimated discharges are far over the Ubon discharges because the Yasothon discharges with a catchment area of 43,000 km² are higher than those at the Ubon station having the catchment area of 104,000 km².

6.4 Low Flow Check at the Confluence with Mekong Mainstream

The relationship between the flows of the Nam Mun-Chi River and Mekong River is evaluated by means of the monthly mean discharges at related hydrologic stations. The Nam Mun-Chi River joins to the Mekong River near Khong Chiam. The Khong Chiam hydrologic station is located on the Mekong mainstream about 1 km upstream from the confluence of the Nam Mun-Chi River. The Pakse hydrologic station is also located on the Mekong mainstream about 40 km downstream from the confluence as illustrated in the figure below.




Fig. 6.9 Location Map of Selected Hydrological Stations at the Confluence of Mekong River


The time-series of low flows (monthly mean discharge in the dry season) at the Pakse hydrologic station are estimated by the sum of low flows at both the Khon Chiam and Kaeng Saphu (on the Nam Mun-Chi River) stations considering that the localized flow contributions from the remnant catchment with an area of 10,000 km² is negligibly small compared to the entire drainage area at the Pakse of 545,000 km².

Monthly mean discharges at the selected Khon Chiam and Pakse stations are shown in Tables 7.11 and 7.12. Main points of implications drawn from comparison results are as follows:

(1) Comparison results are shown below. Although both time-series of dry season monthly mean flows are showing almost similar pattern, the estimated monthly mean discharge are higher than the published monthly mean discharges at the Pakse hydrologic station.

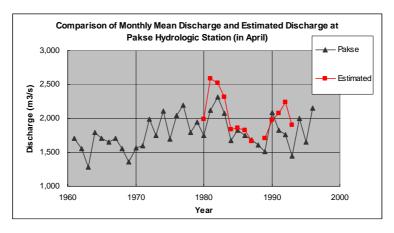


Fig. 6.10 Comparison of Actual and Estimated Monthly Mean Discharges at Pakse on Mekong River

(2) The above results are directly attributed to the fact that mean monthly discharges in the dry season at the Khon Chiam are higher than those at the Pakse station. The comparison results are summarized below. Such "upstream and downstream flow balance inconsistency" is to be discussed in detail in the succeeding chapter.

Table 6.10 Comparison of Mean Monthly Discharges (1980-1993)

Month	Khon Chiam (m³/s)	Kaeng Saphu (m³/s)	Estimated (m³/s)	Pakse (m³/s)	Difference (m³/s)	Error (%)
Feb	2,370	132	2,505	2,181	302	13.8
Mar	2,023	137	2,164	1,913	231	12.1
Apr	1,883	153	2,039	1,817	206	11.3

Source: WUP-JICA Study Team

6.5 Effect of Existing Reservoirs on River Runoff

The changes in the Nam Mun-Chi flows due to water resources development projects were analyzed in the study of Development of the Lower Mun Basin undertaken by the Interim Mekong Committee in 1982. The study was based on the comparison of the observed discharge data and estimated natural flows at two key stations in the Nam Mun and Chi River basins. The results are quoted below.

Table 6.11 Influence of Large Reservoirs on the Flow in the Nam Mun-Chi River

(Unit: $10^6 \, \text{m}^3$)

Flow	Jan	Feb	Mar	Apr	Mav	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total
110 **	oun	100			n River a					Oct	1101	Dec	Total
Natural flow	45.2	12.5	18.9	6.6	19.0	115	395	569	1,515	2,454	684	195	6,029
Observed flow	46.7	15.2	21.4	7.2	18.1	120	400	579	1,425	2,424	689	193	5,939
Change in flow	+1.5	+2.7	+2.5	+0.6	-0.9	+5	+5	+10	-90	-30	+5	-2	-90
Change in flow (%)	3	22	13	9	-5	4	1	2	-6	-1	1	-1	-1
			I	Nam Chi	i River a	t Yaso	thon (19	<mark>66-197</mark> :	2)				
Natural flow	8.0	4.2	8.5	17.9	88.9	567	927	1,134	2,135	1,692	400	57	7,039
Observed flow	104	88.1	101	124	209	451	733	964	1,640	1,587	504	175	6,680
Change in flow	+96	+83.9	+92.9	+106	+120	-116	-194	-170	-945	-105	+104	+118	-359
Change in flow (%)	1,200	2,000	1,093	592	135	-20	-21	-15	-23	-6	26	207	-5

Source: Interim Committee for Coordination of Investigations of the Lower Mekong Basin (1982), Development of the Lower Mun Basin, Feasibility Study: Volume II, Annex A-E

The discharge data used were both until 1972. As mentioned in Section 4.3, the developed reservoir storage volume until 1972 was 3,100 million m³ in the upstream watershed of Yasothon in the Nam Chi River, while in the Nam Mun River it was only 435 million m³ from Rasi Salai. The study concluded that the storage reservoirs in the Nam Mun River have no significant influence on the river flow; however, the flow in the Nam Chi greatly increased by about 100 million m³ per month (equivalent to around 40 m³/s) in the dry season and decreased by 15-20% on average in the wet season. The mean dry season natural flow of 4.2 million m³ (1.7 m³/s) in February of the Nam Chi River increased significantly to be around 88.1 million m³ (36.4 m³/s).

6.6 Low Flow Increases due to Existing Large Reservoirs

Tables 6.12 to 6.20 give the monthly-basis operation records of the existing nine large-scale reservoirs in North-eastern Thailand. The changes of low flow regime of the Nam Chi-Mun River due to seasonal regulation of these reservoirs are graphically shown respectively as follows:

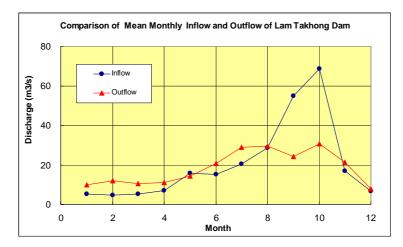


Fig. 6.11 Average Flow Regime Change in Terms of Difference between Mean Monthly Inflow and Outflow of Lam Thakhong Dam

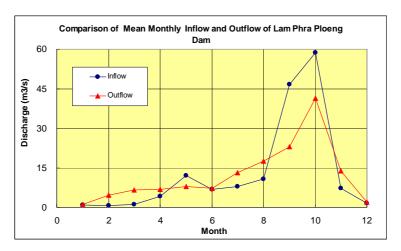


Fig. 6.12 Average Flow Regime Change in Terms of Difference between Mean Monthly Inflow and Outflow of Lam Phra Ploeng Dam

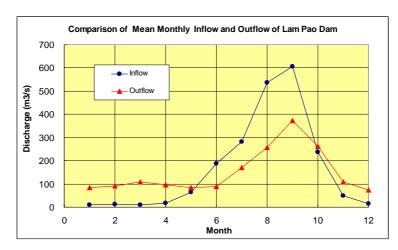


Fig. 6.13 Average Flow Regime Change in Terms of Difference between Mean Monthly Inflow and Outflow of Lam Pao Dam

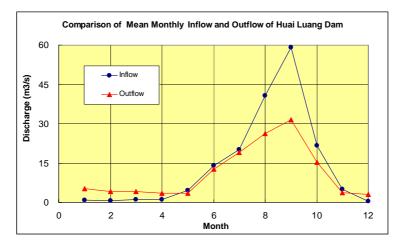


Fig. 6.14 Average Flow Regime Change in Terms of Difference between Mean Monthly Inflow and Outflow of Huai Luang Dam

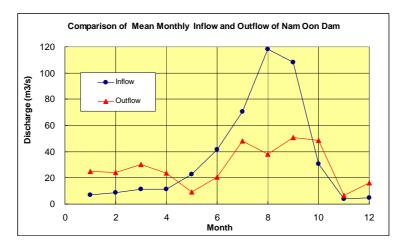


Fig. 6.15 Average Flow Regime Change in Terms of Difference between Mean Monthly Inflow and Outflow of Nam Oon Dam

Fig. 6.16 Average Flow Regime Change in Terms of Difference between Mean Monthly Inflow and Outflow of Sirindhorn Dam

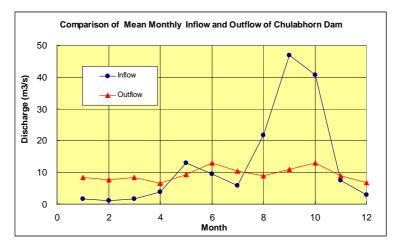


Fig. 6.17 Average Flow Regime Change in Terms of Difference between Mean Monthly Inflow and Outflow of Chulabhorn Dam

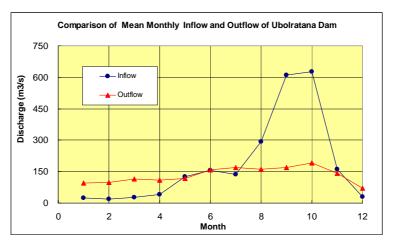


Fig. 6.18 Average Flow Regime Change in Terms of Difference between Mean Monthly Inflow and Outflow of Ubolratana Dam

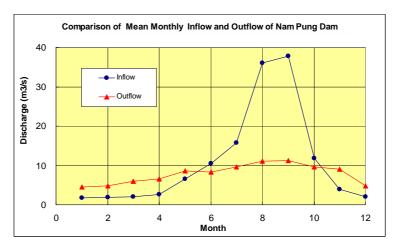


Fig. 6.19 Average Flow Regime Change in Terms of Difference between Mean Monthly Inflow and Outflow of Nam Pung Dam

The table below gives a summary of the average low flow increases due to seasonal regulation of nine large-scale reservoirs.

Table 6.21 Summary of Average Low Flow Increases in the Nam Mun-Chi River due to Seasonal Regulation of Large Reservoirs

(Unit: m³/sec)

Dam	Jan	Feb	Mar	Apr	May
Lam Takhong	4.8	7.3	5.5	4.2	-1.7
Lam Phra Ploeng	0.2	4.0	5.5	2.7	-4.3
Lam Pao	74.0	81.4	99.0	80.1	20.6
Huai Luang	4.5	3.5	3.1	2.4	-1.0
Nam Oon	17.9	15.3	18.6	12.3	-13.8
Sirindhorn	47.4	44.4	58.7	43.1	-4.6
Chulabhorn	6.7	6.5	6.8	2.8	-3.7
Ubolratana	72.6	79.3	89.1	69.9	-9.8
Nam Pung	2.7	2.9	4.0	3.9	2.1
Total	230.8	244.6	290.3	221.4	-16.2

Source: WUP-JICA Study Team

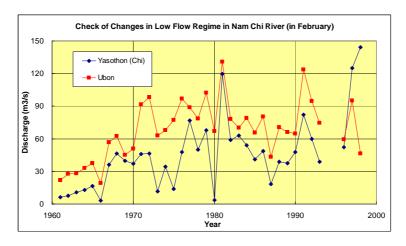
As is apparent from the table above, significant changes in the dry season flows are observed due to seasonal regulation of large-scale reservoirs. The mean low flow increases are in the range of 220-290 m³/sec from January to April. The total volume of low flow increase is estimated to be around 2,561 million m³ in this period.

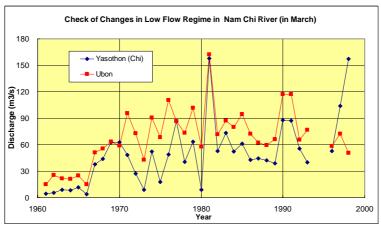
Preliminary estimate of average low flow increase in the dry season from January to April is made at the outfall point of Nam Mun-Chi River into the Mekong mainstream in terms of rough water balance calculation as follows:

- Low flow increase due to the release flow of large reservoirs: 2,561 million m³
- Return flow rate of irrigation water use: 30% (see Table 4.10)
- Total consumption of irrigation use: 2,561 million $m^3 \times 70\% = 1,793$ million m^3
- Total volume of return flows: 2,561 million m³ x 30% = 768 million m³
- Average low flow increase at the confluence with the Mekong River = $(768 \text{ million m}^3 \text{ x } 1,000,000) / 86,400 / (31+28+31+30) = 74.1 \text{ m}^3/\text{sec}$

The average low flow increase of the Nam Mun-Chi River in the dry season is roughly estimated at around $74 \text{ m}^3/\text{sec}$ at the confluence point to the Mekong mainstream.

In addition to the above, the average low flow increase in the Nam Chi River from January to April was roughly estimated by use of the reservoir operation records of the existing three Lam Pao (completed in 1971), Chulabhorn (in 1971) and Ubolratana (in 1966) dams. It is assumed that the released flows from dam are fully used for dry season irrigation and 30% of its water use returns to the river as an irrigation return flow. The estimated low flow increase is as follows:


Table 6.22 Estimated Average Low Flow Increases in the Nam Chi River due to Seasonal Regulation of Large Reservoirs


(Unit: m3/sec)

				(Cinter interse.
	Jan	Feb	Mar	Apr
Monthly Discharge (m ³ /s)	46.0	50.2	58.5	45.8
Monthly Volume (million m ³)	123.2	121.3	156.6	118.8

Source: WUP-JICA Study Team

Fig. 6.20 give the time-series of monthly mean discharges in February, March and April at Yasothon and Ubon stations in the Nam Chi River (see the location map in Fig. 6.3). Significant increases of low flows due to seasonal regulation of large reservoirs were observed in two decades from 1960s.

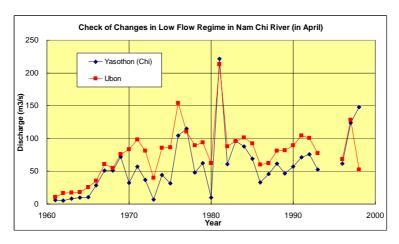


Fig. 6.20 Comparison of Time-Series of Monthly Mean Discharges at Yasothon and Ubon in the Nam Chi River

7. ASSESSMENT OF LOW FLOW INCREASE DUE TO LATERAL INFLOWS ALONG THE MEKONG MAINSTREAM

7.1 Hydrological Network Stations

At the beginning of the year 2001, the number of hydrological stations in the entire Lower Mekong River Basin reached 432 in total. In March 2001 the Strategic Master Scheme for Hydro-Meteorological Network in the Mekong River Basin was established by MRC. One of purposes of this study was to classify the existing hydrological stations in view of the network improvement goal that "The network of hydro-meteorological stations shall provide timely, sufficient and reliable data and information to water management and water-related programmes and projects in both the regional and national levels". The network classification is as follows:

Table 7.1 Classification of Network Hydrological Station

Classification	Thailand	Lao PDR	Cambodia	Vietnam	Total
Key	7	5	8	5	25
Primary	4	4	3	8 (1)	19
Basic	12	23 (1)	23 (6)	13 (2)	71
Sub-Total	23	32	34	26	115
Local	157	107	35	28	327
Total	180	138	63	51	432

Note: Figures in parenthesis are planned for new installation, and included in the total number. "Local" classification does not include planned new station installations; hence "Total" does not include the planned new station installations.

Source: Strategic Master Scheme for Hydro-Meteorological Network in the Mekong River Basin, MRC, March 2001

Network classifications are shown below.

Table 7.2 Classification and Objectives of Network Station

Classification	Objectives
Key	 To facilitate real-time coordination and forecasting activities. To Monitor long-term trend in quantity and quality of river hydrological conditions. To provide data/information for major project planning on the mainstream and major tributaries.
Primary	 To Monitor long term trend in quantity and quality of river hydrological conditions. To provide data/information for major project planning on the main stream and major tributaries.
Basic	- To provide data/information for medium-scale project, research and management works to meet short/medium term needs including for high accuracy purposes.
Local	- To provide data/information for small-scale projects and monitoring operation for medium/small-scale projects to meet local needs.

Source: Strategic Master Scheme for Hydro-Meteorological Network in the Mekong River Basin, MRC, March 2001

7.2 Selected Hydrological Network Stations for Assessment

As discussed in Chapter 6, the low flow regime of the Nam Ngum River has changed due to the implementation of the Nam Ngum Hydropower Development Project. It appears that the Nam Ngum low flows have significantly increased as a result of historic power generation. The low flows of the Mekong mainstream are thus expected to increase due to the increased lateral inflows from the Nam Ngum River.

Changes of low flow regime on the Mekong mainstream were examined in terms of lateral inflows from the tributaries. The lateral inflows were estimated based on the flow balance between hydrologic stations on the Mekong mainstream. Out of 25 key network stations in the entire Lower Mekong Basin, 13 stations including two primary stations on the Mekong mainstream were selected for the preliminary assessment. This assessment is based on the proposal that the key stations are of great importance in view of the future monitoring framework and evaluation of the hydrologic flow regime on the Mekong mainstream within the context of the 1995 Mekong Agreement.

The selected hydrologic stations are listed in Table 7.3 below. Hydrologic stations downstream from Chroui Changvar, at the confluence of the Tonle Sap River in Phnom Penh, are not applied because of limited availability of discharge data due to hydraulic complexity. The location map of the selected stations is shown in Fig. 7.1.

Table 7.3 Selected Hydrological Stations on the Mekong Mainstream

No.	Station Name	Classification	Drainage Area (km²)
1	Chiang Saen	Key	189,000
2	Luang Prabang	Key	268,000
3	Chiang Khan	Key	292,000
4	Vientiane	Primary	299,000
5	Nong Khai	Key	302,000
6	Nakhon Phanom	Key	373,000
7	Mukdahan	Key	391,000
8	Khon Chiam	Key	419,000
9	Pakse	Key	545,000
10	Stung Treng	Key	635,000
11	Kratie	Key	646,000
12	Kompong Cham	Key	660,000
13	Chroui Changvar	Primary	663,000

Source: WUP-JICA Study Team

Tables 7.4 to 7.16 present the monthly mean discharges of the selected stations, and the data availability is shown in Table 7.17. These data are retrieved from the HYMOS database system at MRC.

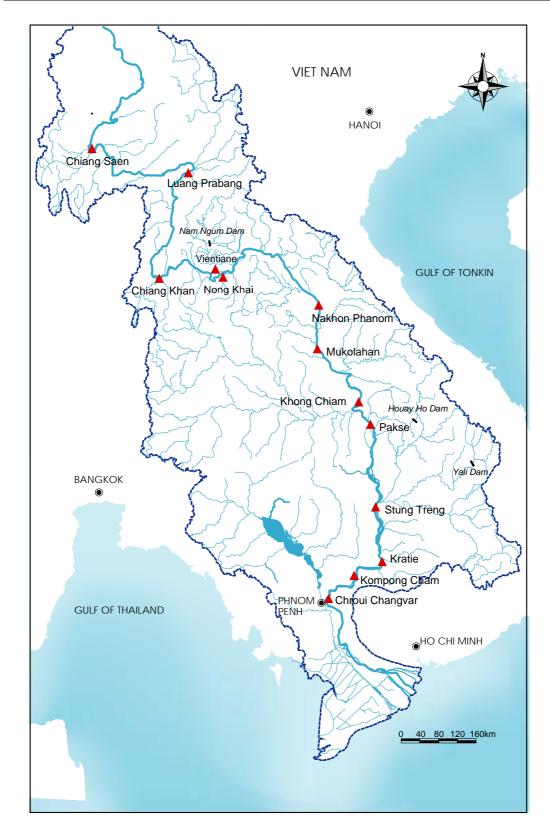


Fig. 7.1 Location Map of Selected Hydrological Stations for Flow Balance Calculation on Mekong Mainstream

Table 7.17 Data Availability of Selected Hydrological Stations

No.	Station	Country			Availability of Monthly Data																																						
			61	62	63	64	65	66 6	7 6	8 6	9 7	70 7	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	00	01
1	Chiang Saen	Thailand							Ī																																		
2	Luang Prabang	Lao PDR							Ī		T		1																														П
3	Chiang Khan	Thailand					Ī		Ī																																		
4	Vientiane	Lao PDR					Ī		Ī																																		
5	Nong Khai	Thailand					T		Ī		T		1																														
6	Nakhon Phanom	Thailand							Ī																																		
7	Mukdahan	Thailand					Ī		Ī				ı																														
8	Khong Chiam	Thailand					T		Ī		T		1																														
9	Pakse	Lao PDR																																						Γ			
10	Stung Treng	Cambodia					T		Ī				1																														
11	Kratie	Cambodia						T	Ī	T			ı																											Г			
12	Kompong Cham	Cambodia																																									
13	Chroui Changvar	Cambodia					T		Ī		Ī		1																														

Source: WUP-JICA Study Team

7.3 Basic Conditions for Assessment

The low flow increases due to lateral inflows between the selected stations on the Mekong mainstream were assessed from the following technical considerations:

- (1) The low flow increases due to lateral inflows is verified by means of the flow balance of monthly mean discharges at the upstream and downstream hydrologic stations. Flow balance calculation is illustrated in Fig. 7.2 below.
- (2) Current major water extractions from the Mekong mainstream are for domestic water supply (see Section 2.4) and pumping irrigation (see Section 3.4). However water extractions were not taken into account in the flow balance calculation because no historic water extraction data is available and water extractions are evaluated too small to make a significant impact to the calculation.
- (3) Flow balance calculation is made for the dry season discharges from January to May in the period of 1961-2000. The monthly mean discharges during January to May are used for assessment considering that the river flows in these months reflect the "base flow" almost without any contribution of local flood inflows from the contributing catchment between stations. In this period subsurface and groundwater outflows are predominant in the localized flow contributions.
- (4) The flow balance calculation is applied to twelve river reaches. The contributing catchment areas of lateral inflows into the river reaches are listed in Table 7.18 below.

Table 7.18 Contributing Catchment Area of Objective River Reaches

No.	Station Name	Catchment Area (km²)
1	Chiang Saen – Luang Prabang	79,000
2	Luang Prabang – Chiang Khan	24,000
3	Chiang Khan – Vientiane	7,000
4	Vientiane – Nong Khai	3,000
5	Nong Khai – Nakhon Phanom	71,000
6	Nakhon Phanom - Mukdahan	18,000
7	Mukdahan – Khong Chiam	28,000
8	Khong Chiam – Pakse	126,000
9	Pakse – Stung Treng	90,000
10	Stung Treng – Kratie	11,000
11	Kratie – Kompong Cham	14,000
12	Kompong Cham – Chruoi Changvar	3,000

Source: WUP-JICA Study Team

Lateral Inflow between Hydrologic Stations

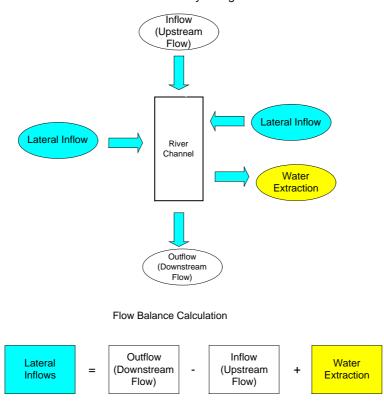


Fig. 7.2 Illustration of Flow Balance Calculation

7.4 Results of Assessment

The following major observations and implications can be drawn with regard to the low flow increases due to lateral inflows along the Mekong mainstream:

Table 7.19 gives the comparison of monthly mean discharges from January to May at all stations. Specific mean monthly discharges in both March and April at respective stations were firstly estimated as listed below.

Table 7.20 Specific Discharges in Dry Season at Hydrologic Stations

	In	March	Ir	n April
Key Station	Mean (m³/s)	Specific Discharge (m³/s/100km²)	Mean (m³/s)	Specific Discharge (m³/s/100km²)
Chiang Saen	835	0.44	915	0.48
Luang Prabang	1,065	0.40	1,112	0.42
Chiang Khan	1,043	0.36	1,053	0.36
Vientiane	1,167	0.39	1,194	0.40
Nong Khai	1,176	0.39	1,215	0.41
Nakhon Phanom	1,548	0.42	1,526	0.41
Mukdahan	1,600	0.41	1,569	0.40
Khon Chiam	1,903	0.46		0.44
Pakse	1,852	0.34	1,819	0.33
Stung Treng	2,209	0.35	2,114	0.33
Kratie	2,320	0.36	2,275	0.35
Kompong Cham	2,047	0.31	1,849	
Chroui Changvar	1,964	0.30		0.29

Source: WUP-JICA Study Team


"Upstream and downstream flow inconsistencies (mean monthly discharge at the upstream station is larger than that at the downstream station where no significant water extractions are made)" are both observed at the Chiang Khan, Khon Chiam, Kompong Cham and Chrui Changvar stations. Specific discharges both in March and April at Chiang Khan show somewhat smaller compared to those at Luang Prabang, Vientiane, Nong Khai, Nakhon Phanom and Mukdahan stations where lateral inflows from watersheds in Lao PDR might be similarly predominant. Both Kompong Cham and Chrui Changvar stations in Cambodia show smaller discharges than at Kratie in the upstream.

On the other hand, the Khon Chiam station shows larger specific discharges. Considering that the major incremental watershed at Khon Chiam is in Lao PDR, this suggests that the monthly mean discharges in the dry season may have been overestimated. Although the specific discharge at Pakse seems smaller compared to specific discharges at other stations, it might be in a reasonable range because the Nam Mun-Chi River with a drainage area of 120,000 km² in Thailand joins to the Mekong mainstream in the upstream of Pakse. The flow contribution of the Nam Mun-Chi River on the low flow regime of the Mekong mainstream is much smaller compared with major tributaries entering from Lao PDR (see discussions in Chapter 6).

Figure 7.3 presents the comparison of time-series of monthly mean discharges both in March and April at the stations. Figures 7.4 to 7.8 show the analysis results of estimated monthly mean lateral inflows in the period of January to May.

7.4.1 Chiang Saen-Luang Prabang

In the river reaches of Chiang Sean–Luang Prabang with a remnant area of 79,000 km2, the average lateral inflows in March for the period 1961-1998 is estimated at $236~\text{m}^3/\text{s}$, equivalent to the specific discharge of $0.30~\text{m}^3/\text{s}/100\text{km}^2$. The results of flow balance between the two stations in March are shown below.

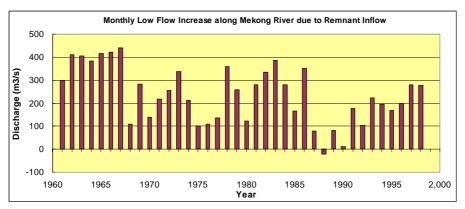
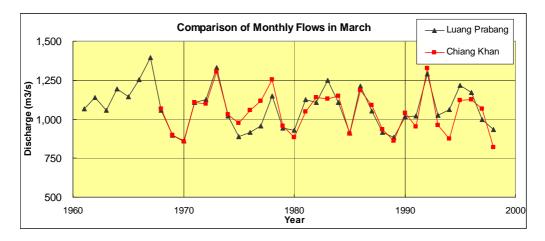



Fig. 7.9 Low Flow Balance in Chien Saen-Luan Stretch Prabang in March

The time-series of monthly mean flows show almost similar flow tendency at both stations. These flows at the two stations show a high correlation with each other. The estimated lateral inflows became smaller in 1987-1990. This is due to the fact that severe droughts had continuously occurred in this period. In drought years, the lateral dry season inflows tend to extremely decline because of seriously reduced groundwater recharge in watershed. Except drought years, no "upstream and downstream flow balance inconsistencies" have occurred from January to May.

7.4.2 Luang Prabang-Chiang Khan

The figures below are the analysis results for the Luang Prabang-Chiang Khan stretch. The contributing area of lateral inflow is 24,000 km². It would be difficult to estimate the monthly mean lateral inflows and specific discharges because of the occurrence of "upstream and downstream flow balance inconsistencies" between the two stations in many years.

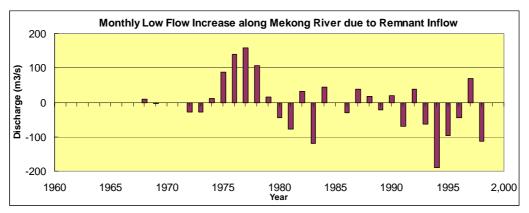
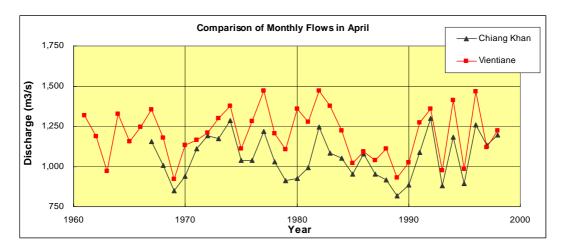
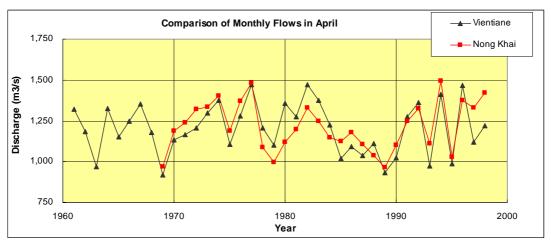


Fig. 7.10 Low Flow Balance in Luang Prabang-Chiang Khan Stretch in March


The time-series above show almost the same flow pattern at both stations although in 1990s the monthly mean discharges at the upstream station (Luang Prabang) are larger than at the downstream station (Chiang Khan). The maximum difference is observed at around 200 m³/s in 1994.


The flow balance shows that positive and negative lateral inflows appear almost alternately in 1980s. At present there are no large-scale water extraction facilities on the Mekong mainstream. If any, there are minor pumping-up facilities for irrigation and domestic purposes. The occurrence of such "flow balance inconsistencies" might be due to the size of the contributing area of lateral inflows as small as 24,000 km² and the practicalities of rating curves applied at both stations. The lateral flow in March is roughly estimated at around 70 m³/s applying the estimated specific discharge of 0.30 m³/s/100km² in the Chang Saen-Luang Prabang stretch.

At the moment allowable error ranges of rating curves are unknown. Hence, the likelihood of such flow balance inconsistencies needs to be clarified based on applied rating curves. The practicalities of rating curves are therefore subject to investigation in detail.

7.4.3 Chiang Khan-Vientiane and Vientiane-Nong Khai

Vientiane and Nong Khai stations are located near each other. The remnant area between the two stations is only 3,000 km². The expected lateral inflows in the dry season might be very small beyond the allowable error range of rating curves at both stations. In this view, low flow balance was applied to three stretches; the Chiang Khan-Vientiane, the Vientiane-Nong Khai and the Chiang Khan-Nong Khai. Low flow balances in April are compared as follows:

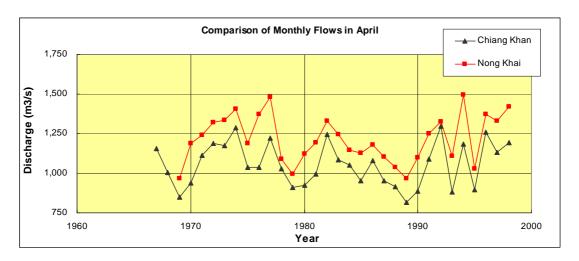
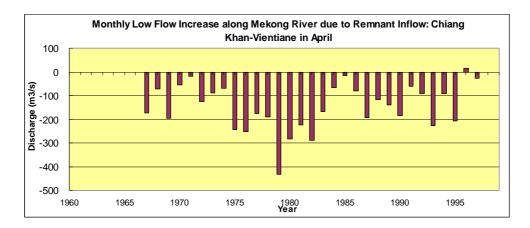
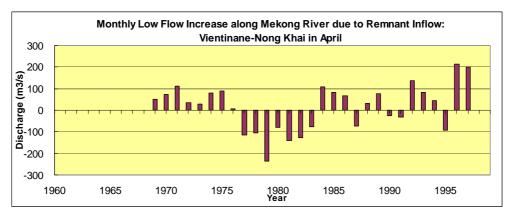




Fig. 7.11 Comparison of Low Flows in April at Chiang Khan, Vientiane and Nong Khai

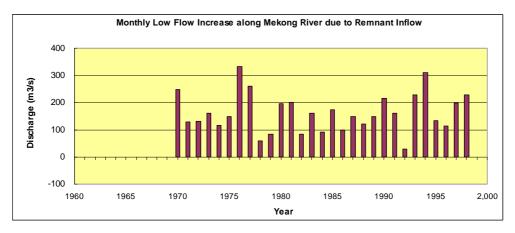


Fig. 7.12 Comparison of Low Flow Balances in April at Chiang Khan, Vientiane and Nong Khai

Together with the above, below is the compared time-series of the monthly mean flows in March at Chiang Khan and Nong Khai hydrologic stations. The flow contributing area between the two stations is only 10,000 km².

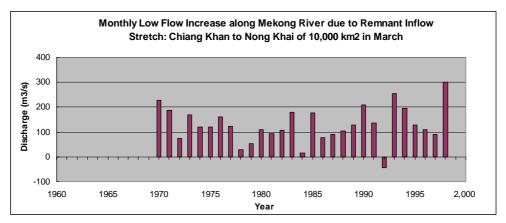
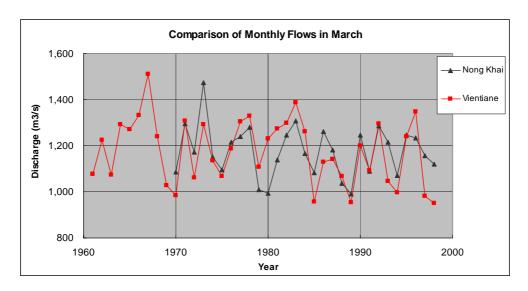



Fig. 7.13 Low Flow Balance in Chiang Khan-Nong Khai Stretch in March

The time-series of monthly mean flows at both stations show almost a similar tendency. There are no "inflow balance inconsistencies" with exception of 1992. Monthly mean flows at both stations indicate high correlation. From hydrological viewpoints, there seems to be a reasonable relationship between the two stations. However, the estimated mean lateral inflow in the period 1970-1998 is around $130 \, \text{m}^3/\text{s}$, or $1.3 \, \text{m}^3/\text{s}/100 \, \text{km}^2$, which seems to be unreasonably large compared to the $0.30 \, \text{m}^3/\text{s}/100 \, \text{km}^2$ estimated for the Chiang Sean–Luang Prabang reaches.

The specific discharge in March is estimated 0.36 m³/s/100km² at the Chiang Khan station. This specific discharge seems to be somewhat small compared to 0.44 m³/s/100km² at Chiang Saen and 0.40 m³/s/100km² at Luang Prabang. No significant tributaries with areas of extensive natural wetlands enter the Mekong mainstream. In conclusion the monthly flow at Chiang Khan seems somewhat small and needs hydrological adjustment. The high lateral inflow of 1.3 m³/s/100km² in March is attributable to the lower monthly mean flows at the Chiang Khan station. Further discussion is made in the next paragraph.

The Vientiane hydrologic station is categorised as a primary network station. The Nong Khai station that is classified as the key network station to be incorporated in the future telemetry network is located in the downstream from Vientiane. The lateral flow contributing area between the two stations is only 3,000 km². Considering the size of contributing area, dry season monthly mean discharges are expected to be almost the same at both stations. The time-series of monthly mean discharges in both March and April are compared as follows:

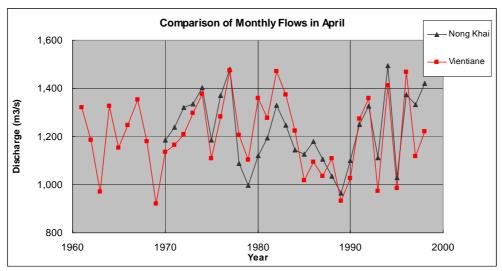


Fig. 7.14 Comparison of Low Flows in March and April at Vientiane and Nong Khai

Flow Balance at Vientiane and Nong Khai Stations in March 300 200 Discharge (m3/s) 100 0 -100 -200

Flow balances at the two stations are also presented below.

1965

1960

1970

1975

-300

1980

Year

1985

1990

1995

2,000

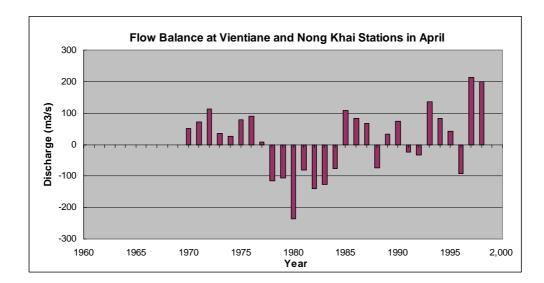
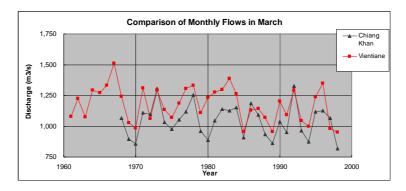
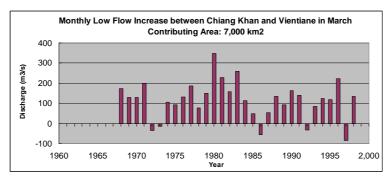
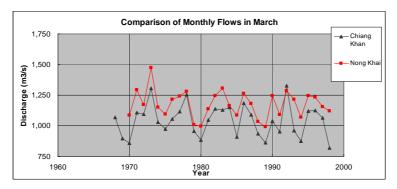


Fig. 7.15 Comparison of Low Flow Balances in Vientiane-Nong Khai Stretch in March and April


As seen above, the years when flow balance inconsistencies occur are almost the same in both months. Particularly in the period 1978-1984, the Vientiane discharges are extremely larger than those at Nong Khai. By applying 0.30 m³/s/100km² in the Chiang Sean-Luang Prabang stretch, the expected lateral inflow is only around 9 m³/s. It might be said that wide-ranging flow balances from -200 to 200 m³/s are mainly attributable to errors of rating curve at both stations. The dry season flows at two stations are compared as follows:


Table 7.21 Specific Discharges at Vientiane and Nong Khai Stations


	i -	March		April
Key Station	Mean (m³/s)	Specific Discharge (m³/s/100km²)	Mean (m³/s)	Specific Discharge (m³/s/100km²)
Vientiane	1,176	0.39	1,203	0.40
Nong Khai	1,176	0.39	1,224	0.41

Source: WUP-JICA Study Team

Flow balance calculation results in the two river reaches of Chiang Khan-Vientiane and Chiang Khan-Nong Khai are compared as follows:

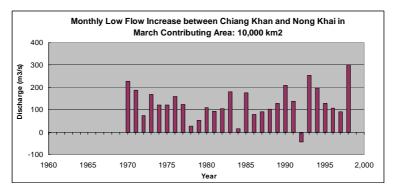
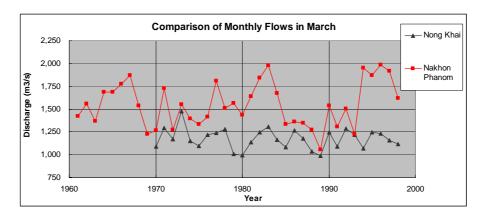



Fig. 7.16 Low Flow Balances in Chiang Khan-Vientiane Stretch in March and April

The lateral inflow to the Chiang Khan-Vientiane with a contributing area of 7,000 km² is estimated to be around 110 m³/s, or 1.6 m³/s/100km². This specific discharge is unreasonably large. This high lateral inflow is due to the somewhat lower monthly mean flows at the Chiang Khan station.

7.4.4 Nong Khai-Nakhon Phanom

The results of flow balance in March between the Nong Khai and Nakhon Phanom stations are shown below. The contributing area is $71,000 \text{ km}^2$. The estimated average lateral inflow in March is around $366 \text{ m}^3/\text{s}$, or $0.52 \text{ m}^3/\text{s}/100 \text{km}^2$.

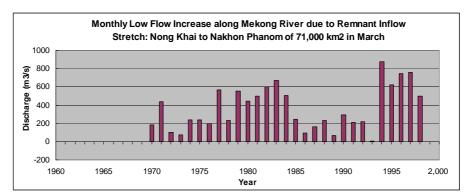
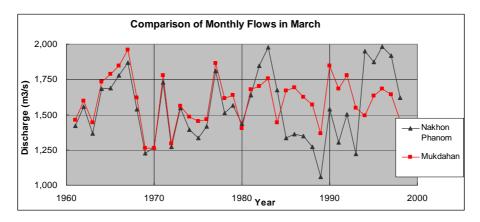


Fig. 7.17 Low Flow Balances in Nong Khai-Nakhong Phanom Stretch in March


In these river reaches, two large tributaries in Lao PDR join the Mekong mainstream. They are the Nam Ngum (17,170 km²) and Nam Ca Dinh (14,900 km²) rivers. As discussed in Chapter 5, the low flow regime of the Nam Ngum River was significantly influenced as a result of completion of the Nam Ngum Hydropower Development Project. The low flow increase is verified to be around 190 m³/s in the Nam Ngum River.

The low flow in the Mekong River is therefore expected to increase due to the low flow increase of the Nam Ngum River. The flow balance result shows the sudden increase of lateral inflow in 1979 when the Phase II of Nam Ngum was completed and the installed capacity was increased from 30 MW to 110 MW. It is noted that the sudden increase of lateral inflow in 1977 was caused by an unusual release of the Nam Ngum reservoir (reportedly 414 m³/s in March on monthly mean basis as presented in Table 5.5). However in the period 1985-1993, lateral inflows become unreasonably smaller although droughts occurred in 1987-1993.

Furthermore, significant flow increases start again in 1994. As to be discussed in the next subsection, high lateral inflows are resultant from unreasonably high monthly mean discharge at the Nakhon Phanom station from 1994 onwards.

7.4.5 Nakhon Phanom-Mukdahan

Below is the flow balance between Nakhom Phanom and Mukdahan stations in March. The contributing area is 18,000 km². This river stretch is also small. The significant tributary entering this river reaches is only the Se Bang Fai River from Lao PDR with a watershed of 10,200 km².

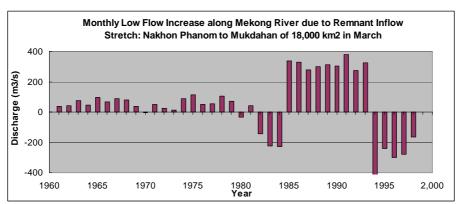
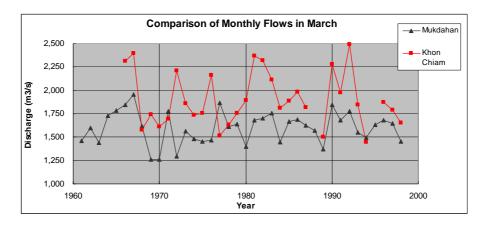


Fig. 7.18 Low Flow Balances in Nakhon Phanom-Mukdahan Stretch in March

Four patterns of lateral inflow are regularly observed as summarized below.

Table 7.22 Comparison of Lateral Inflows in March


Period	Lateral Inflow Condition	Average (m³/s)	Specific Lateral Inflow (m³/s/100km²)
1961 – 1981	Positive flows	62	0.34
1982 – 1984	Negative flows	-199	-1.11
1986 – 1993	High positive flows	315	1.75
1994 – 1998	High negative flows	-287	-1.59

Source: WUP-JICA Study Team

Flow balance inconsistencies in terms of negative lateral inflow occur in both periods of 1982-1984 and 1994-1998. These phenomena are hydrologically unreasonable. Hence there is no large-cale water extraction facility on this mainstream reaches as well as tributaries. This is due to unreasonable high monthly mean flows of the Nakhon Phanom station in these periods.

7.4.6 Mukdahan-Kong Chiam

Below is the water balance in March at the Mukdahan and Khong Chiam hydrologic stations. The contributing area between the two stations is 28,000 km². The major tributary entering this river reach is the Se Bang Hieng River with a watershed area of 19,300 km².

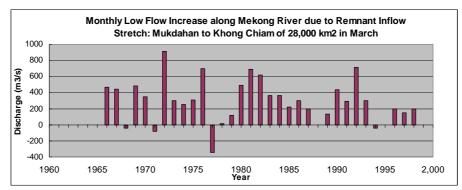
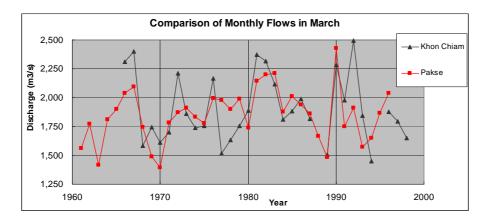


Fig. 7.19 Low Flow Balances in Mukdahan-Khong Chiam Stretch in March

The average lateral inflow into the river reach in March is estimated to be around 356 m³/s, and its specific discharge is 1.27 m³/s/100km² (negative inflows are excluded). This specific discharge seems to be somewhat larger compared to specific discharges in other stretches, as estimated below.

Table 7.23 Comparison of Specific Discharge of Lateral Inflows in March

River Reaches	Area of Lateral Inflow (km²)	Specific Inflow (m ³ /s/100km ²)	Period
Chiang Sean-Luang Prabang	79,000	0.30	1961-1998
Nong Khai-Nakhon Phanom	71,000	0.36	1970-1978
Nakong Phanom-Mukdahan	18,000	0.34	1961-1981


Source: WUP-JICA Study Team

In conclusion the monthly mean flows at the Khon Chiam station seem to be unreasonably too high in several years as discussed in the subsection.

7.4.7 Khon Chiam-Pakse

The comparison of time-series of the monthly mean flows at the Khon Chiam and Pakse hydrologic stations in March are shown below. The lateral flow from the contributing area

between the two stations is 126,000 km². In this river reaches, the Nam Mun-Chi River, the largest single tributary with a catchment area of 120,000 km² enters from the territory of Thailand. The Nam Mun-Chi River basin occupies 95% of the whole contributing area of this river reaches.

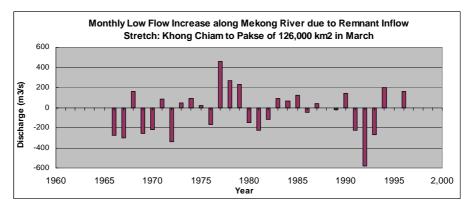


Fig. 7.20 Low Flow Balances in Khong Chiam-Pakse Stretch in March

The Khong Chiam hydrologic station is located on the Mekong mainstream about 1 km upstream from the confluence with the Nam Mun-Chi River. The water resources in this basin have been developed almost completely for irrigation. In view of future monitoring on the flow regime change of Mun-Chi River as well as the various inner water uses in the basin, both hydrologic stations are of primary importance.

However, because of sharper fluctuation of monthly mean discharges at the Khong Chiam station, flow-balance inconsistencies have frequently occurred. As a result, the mean monthly discharge at the Pakse station is smaller than at the Khon Chiam station, as listed below.

Table 7.24 Specific Discharges at Khon Chiam and Pakse Stations

	In N	March	I	n April
Key Station	Mean (m³/s)	Specific Discharge (m³/s/100km²)	Mean (m³/s)	Specific Discharge (m³/s/100km²)
Khon Chiam	1,905	0.46	1,846	0.44
Pakse	1,850	0.34	1,785	0.33

Source: WUP-JICA Study Team

Such significant hydrological issues shall need to be addressed and reasonably treated as part of the basin modeling development process under the WUP. Presumably the practicalities of rating curve at the Khong Chiam station will be necessary for detailed investigation.

7.4.8 Pakse-Stung Treng

Results of low flow balances in the Pakse-Stung Treng stretch for March and April is shown below. The contributing catchment between Pakse and Stung Treng is 90,000 km². The Se San River with a catchment area of 78,600 km² enters in this stretch.

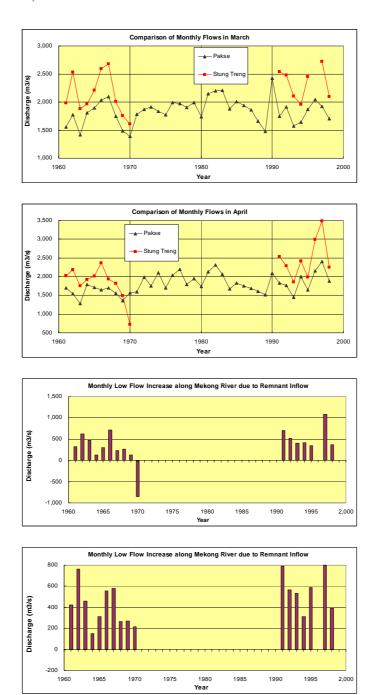


Fig. 7.21 Low Flow Balances in Pakse-Stung Treng Stretch in March and April

The mean lateral inflows are estimated to be around 468 m³/s in March and 440 m³/s in April (negative inflow in 1970 is excluded). Specific discharges are $0.52~\rm m³/s/100km²$ and $0.49~\rm m³/s/100km²$, respectively.

7.4.9 Stung Treng-Kratie

Results of low flow balances in the Stung Treng-Kratie stretch for March and April is shown below. The contributing remnant catchment between the two stations is $11,000 \text{ km}^2$.

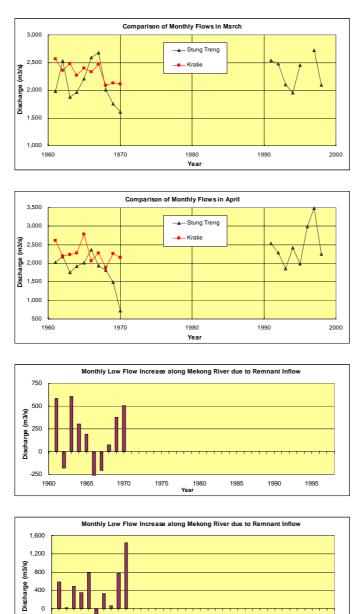
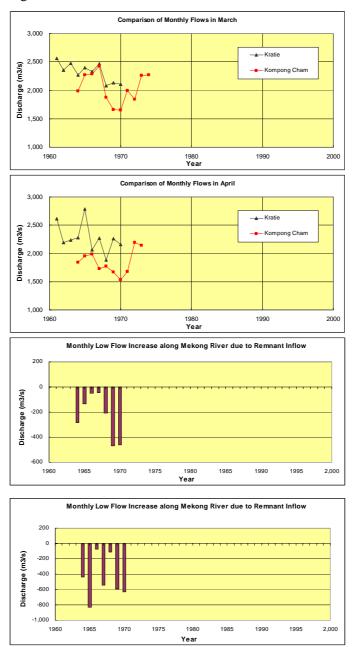
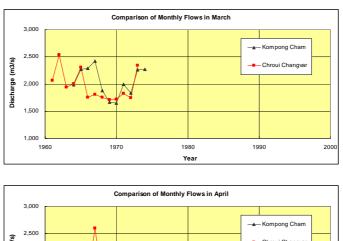


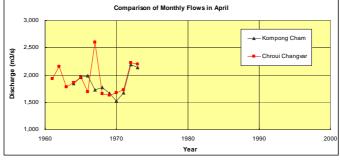
Fig. 7.22 Low Flow Balances in Stung Treng-Kratie Stretch in March and April

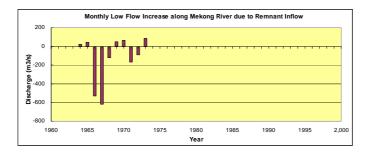
The mean lateral inflows are eatimated to be around 376 m³/s in March and 537 m³/s in April. Specific discharges are 3.42 m³/s/100km² and 4.88 m³/s/100km², respectively. These specific discharges seem to be unreasonably high compared to those in the upstream triburary basins.

7.4.10 Kratie-Kompong Cham

Results of low flow balances in the Kratie-Kompong Cham stretch for March and April is shown below. The contributing remnant catchment between two stations is 14,000 km².


Fig. 7.23 Low Flow Balances in Kratie-Compong Cham Stretch in March and April


As seen above, flow inconsistencies are observed in all the observation periods.

7.4.11 Kompong Cham-Chroui Changvar

Results of low flow balances in the Kompong Cham-Chroui Changvar stretch for March and April is shown below. The contributing remnant catchment between the two stations is only 3,000 km².

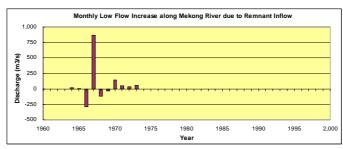


Fig. 7.24 Low Flow Balances in Compong Cham-Chrui Changvar Stretch in March and April

Similarly observed in the Kratie-Compong Cham stretch is that flow inconsistencies have occurred in several years.

REFERENCES

- (1) Interim Committee for Coordination of Investigations of the Lower Mekong Basin (1982); Development of the Lower Mun Basin, Feasibility Study: Volume II, Annex A-E
- (2) Interim Committee for Coordination of Investigations of the Lower Mekong Basin (1984); Lower Mekong Basin: Water Balance Study, Phase 2 Report, Institute of Hydrology, Wallingford, UK
- (3) Interim Committee for Coordination of Investigations of the Lower Mekong Basin (1988); Perspectives for Mekong Development, Revised Indicative Plan (1987) for the Development of Land, Water and Related Resources of the Lower Mekong Basin
- (4) Interim Committee for Coordination of Investigations of the Lower Mekong Basin (1988); Water Balance Study Phase 3 Report and Appendices, Investigation of Dry Seasons Flows, Institute of Hydrology, Wallingford, UK
- (5) ESCAP, United Nations (1991); Assessment of Water Resources and Water Demand by User Sectors in Thailand
- (6) Government of Vietnam, World Bank, Mekong Secretariat and UNDP (1993); Master Plan for the Mekong Delta in Vietnam, A Perspective for Sustainable Development of Land and Water Resources
- (7) MRC Secretariat (1997); Mekong River Basin Diagnostic Study, Final Report
- (8) Government of Vietnam, World Bank, Mekong Secretariat and UNDP (October 1993); Mekong Master Plan, Thematic Study on Management of Water Resources, Volume 1: Optimal Use of Water Resources
- (9) Government of Vietnam, World Bank, Mekong Secretariat and UNDP (October 1993); Mekong Master Plan, Thematic Study on Management of Water Resources, Volume 2: Flood Control
- (10) Government of Vietnam, World Bank, Mekong Secretariat and UNDP (October 1991); Mekong Master Plan, Working Paper No. 1, Surface Water Resources and Hydrulic Modelling, Volume 2: Appendices
- (11) Yunnan Provincial Science and Technology Commission and Yunnan Institute of Geography, People's Republic of China (1993); Investigation and Study of the Current Status of the Lancang River-Mekong River, Draft Workshop Review, Mekong Development Reserch Network, Part of a Six-country Study of the Mekong River Basin, supported by the International Research Development Center of Canada
- (12) MRC Secretariat (2001); MRC Hydropower Development Strategy
- (13) MRC Secretariat; Lower Mekong Hydrologic Yearbooks
- (14) MRC Secretariat (2001); Strategic Master Scheme for Hydro-Meteorological Network in the Mekong River Basin
- (15) MRC Secretariat (2001); Water Utilization Project Component A: Development of Basin Modelling Package and Knowledge Base, Working Paper No. 1 Hydrological Review

- (16) MRC Secretariat (2001); Water Utilization Project Component A: Development of Basin Modelling Package and Knowledge Base, Working Paper No. 2 Review of Historic Water resources Development and Water Use
- (17) MRC Secretariat (2003); Water Utilization Project Component A: Development of Basin Modelling Package and Knowledge Base, Working Paper No. 14 Model Development and Calibration
- (18) MRC Secretariat (2002); Land Resources Inventory for Agriculture Development Project, Technical Report Parts 1 to 3
- (19) The Office of National Economic and Social Development Board (NESDB) (1994); Study of Potential Development of Water Resources in the Mae Khong River Basin, Final Main Report, Water Resources Engineering Program, Asian Institute of Technology, Bangkok, Thailand
- (20) The Office of National Economic and Social Development Board (NESDB) (1994), Study of Potential Development of Water Resources in the Chi River Basin, Final Main Report, Institute of Water Resources and Environment, Department of Engineering, Konkaen University, Bangkok, Thailand
- (21) Asian Development Bank (1998); Se Kong-Se San and Nam Theun River Basins Hydropower Study, Initial Environmental Examination Report
- (22) The Office of National Economic and Social Development Board (NESDB) (1994); Study of Potential Development of Water Resources in the Mun River Basin, Final Main Report, Institute of Water Resources and Environment, Department of Engineering, Konkaen University, Bangkok, Thailand
- (23) International Research Centre of Canada (1995); State-of-the-art Study of the Mekong River and the River Basin Area in Thailand, Working Paper, Part of a Six-Conuntry Study of the Mekong River Basin
- (24) Mekong Secretariat; Irrigation Rehabilitation Study in Cambodia (1994), Final Report, Main Report
- (25) Mekong Secretariat; Irrigation Rehabilitation Study in Cambodia (1994), Final Report, Inventory & Analysis of Existing Systems
- (26) Department of Planning and Statistics, Ministry of Agriculture (1993); Bulletin of Statistics and Agricultural Studies No 1
- (27) Government of Vietnam, World Bank, Mekong Secretariat and UNDP (1992); Mekong Delta Master Plan, Thematic Study on Management of Water Resources, Volume 1: Optimal Use of Water Resources
- (28) Government of Vietnam, World Bank, Mekong Secretariat and UNDP (1992); Mekong Delta Master Plan, Thematic Study on Management of Water Resources, Volume 3: Tidal Irrigation and Drainage
- (29) Government of Vietnam, World Bank, Mekong Secretariat and UNDP (1991);, Mekong Delta Master Plan, Working Paper No. 3, Irrigation, Drainage and Flood Control
- (30) Electricite du Laos, Nam Ngum HPP; Nam Ngum Hydro Power Plant Hydrological Operation Statistic 1982-1991

- (31) Electricite du Laos, Nam Ngum HPP;, Nam Ngum Hydro Power Plant Hydrological Operation Statistic 1992-2001
- (32) WUP-JICA (February, 2002); The Study on Hydro-Meteorological Monitoring for Water Quantity Rules in Mekong River Basin, Progress Report
- (33) WUP-JICA (August, 2002); The Study on Hydro-Meteorological Monitoring for Water Quantity Rules in Mekong River Basin, Working Paper II
- (34) WUP-JICA (February, 2003); The Study on Hydro-Meteorological Monitoring for Water Quantity Rules in ; Mekong River Basin, Interim Report (Vol. 2)
- (35) Mekong Secretariat (1991); Mekong Irrigation Program, Volume 1, Development of Pump Irrigation on the Mekong Phase II, Lao PDR
- (36) Mekong Secretariat (1991); Mekong Irrigation Program, Volume 3, Water Management Supporting Programme Stage II, Thailand
- (37) Mekong Secretariat (1991); Mekong Irrigation Program, Volume 5, Study of a Water Resources Development Plan for Northeast Thailand
- (38) United Nations, Economic Commission for Asia and the Far East, and Interim Committee for Coordination of Investigations of the Lower Mekong Basin (1973); Effects of Proposed Irrigation on Water Quality and Return Flows, Khorat Plateau Thailand and Laos
- (39) David Blake (2001); China's Mekong Dam Plants
- (40) Mekong Secretariat, Swiss Development Cooperation Grant (December 1981); Feasibility Study of Nam Suai Basin, Main Report
- (41) Royal Irrigation Department, Thailand (September 1991); Upper Chi Development Feasibility Study
- (42) Development of the Lower Mun Basin, June 1982
- (43) Biwater (November 1987); Investigation and Preparation of a Water Resource Development Programme for North East Thailand, Final Report, Water Resources
- (44) Mekong Secretariat; Mekong Irrigation Programme (May 1991), Volume 5, Study of a Water Resources Development Plan for Northeast Thailand
- (46) Interim Committee for Coordination of Investigations of the Lower Mekong Basin (1987); The Feasibility Study of Huai Pa Thao Multipurpose Project for Land and Water Resources Development in Thailand
- (46) Interim Committee for Coordination of Investigations of the Lower Mekong Basin (1970); Report on Indicative Basin Plan, A Proposed Framework for the Development of Water and Related Resources of The Lower Mekong Basin
- (47) Mekong Secretariat; Mekong Irrigation Programme (June 1990), Mekong Irrigation Programme, Development of Pump Irrigation on the Mekong Phase II, Lao PDR
- (48) Feasibility Study Report; Hydraulic Construction: Reservoir Huoi Saa, October 2001
- (49) Prek Thnot Pioneer Agricultural Project, Khmer Republic (January,1975);; Project Preparation, Volume I, Main Report

- (50) Australian Catholic Relief (ACR); Prek Thnot Multipurpose Project, Reappraisal Report, December 1991
- (51) MRC (2002); Basin Development Plan, Regional Sector Overview, Agriculture and Irrigation
- (52) MRC (2002); Basin Development Plan, Working Paper, The State of Agriculture and Forestry in the Lower Mekong Basin, Part A: Agriculture and Part B: Forestry
- (53) MRC (2002); Land Resources Inventory for Agriculture Development Project, Technical Report Part I and Part II

Table 2.11 Monthly Operation Record at Houay Ho Hydropower Station

A. Power Output

(Unit: MWh)

Year	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
1999	-	-	-	-	-	-	1	-	40.3	56.7	51.0	48.0	196.0
2000	50.5	53.2	59.6	60.9	68.4	47.9	31.1	40.5	54.3	60.9	58.2	41.4	626.9
2001	49.0	54.3	48.7	50.5	65.9	58.4	39.7	1	1	-	-	-	366.5
Mean	49.8	53.8	54.2	55.7	67.2	53.2	35.4	40.5	47.3	58.8	54.6	44.7	396.5

Source: Electricite du Laos (EDL)

Note: Power generation commenced in September 1999.

B. Tubine Discharge (Diverted water volume into Se Kong Mainstream)

(Unit: million m3)

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Mean
1999	-	-	1	-	-	-	-	-	21.64	30.43	27.40	25.79	26.32
2000	27.18	28.66	32.14	32.91	36.98	25.96	16.63	21.88	29.23	32.79	31.32	22.33	28.17
2001	26.20	29.38	26.39	27.35	35.76	31.76	21.57	-	-	-	-	-	28.34
Mean	26.69	29.02	29.27	30.13	36.37	28.86	19.10	21.88	25.44	31.61	29.36	24.06	27.65

Source: Electricite du Laos (EDL)

Note: Power generation commenced in September 1999.

C. Tubine Discharge (Diverted discharage into Se Kong Mainstream)

(Unit: m3/s)

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Mean
1999	-	-	-	-	-	-	-	-	8.35	11.36	10.57	9.63	9.98
2000	10.15	11.44	12.00	12.70	13.81	10.02	6.21	8.17	11.28	12.24	12.08	8.34	10.70
2001	9.78	12.14	9.85	10.55	13.35	12.25	8.05	-	-	-	-	-	10.86
Mean	9.96	11.79	10.93	11.62	13.58	11.13	7.13	8.17	9.81	11.80	11.33	8.98	10.52

Source: Electricite du Laos (EDL)

Note: Power generation commenced in September 1999.

D. Reservoir Waterlevel in the Morning at the End of Month

(Unit: masl)

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Mean
1997	-	-	-	-	855.30	859.70	863.00	867.59	859.52	870.64	870.74	870.68	864.65
1998	870.61	870.53	870.41	870.39	870.53	870.76	871.09	871.94	873.92	874.49	874.64	874.59	871.99
1999	874.52	874.41	874.36	874.60	875.31	877.07	878.91	881.33	881.97	881.64	881.08	880.20	877.95
2000	879.33	878.32	877.18	876.06	874.88	875.05	877.78	879.12	880.27	879.80	878.84	878.00	877.89
2001	877.07	875.90	875.03	873.89	872.96	872.43	-	-	-	-	-	-	874.55
Mean	875.38	874.79	874.25	873.74	869.80	871.00	872.70	875.00	873.92	876.64	876.33	875.87	874.12

Source: Electricite du Laos (EDL)

Note: Power generation commenced in September 1999.

Table 3.27 Summary of Pumped Irrigation Schemes in North-Eastern Thailand

		_												
Province	Source	Jo. oN	Project Area	ít	Irrigated Area	ed		Dry	Dry Season Areas (ha)	reas ((ha)		Total Pump	dur
		Schemes	(ha)		(ha)		1980		1981		1982		Capacity (m3/s)	ıry i)
Nong Khai	Mekong	55	25,824		9,024	(15)	1,370	(41)	1,767	(33)	1,930	(21)	16	(4)
	Nam Mong	3	1,440		800		236		140		179		6'0	
Nakhon Phanom	Mekong	29	13,360	(1)	4,511	(10)	507	(15)	099	(16)	725	(12)	2	(23)
	Nam Oon	2	096		432		9	(1)	21	(1)	16	(1)	.3	(1)
	Nam Kam	1	480		320		72		61		58		n.a.	
Mukdahan	Mekong	15	6,688	(1)	2,948	(2)	216	(9)	262	(4)	254	(3)	0.3	(14)
	Huai Bung	1	480		192		n.a.		n.a.		n.a.		0.3	
Ubon	Nam Chi	12	5,760		1,536	(4)	n.a.		n.a.		107	(8)	2	(4)
	Nam Mun	8	3,712		1,392	(1)	7	(7)	16	(7)	36	(9)	2	(1)
	Lam Se Bai	4	1,920		672	(1)	26	(1)	39	(2)	53	(1)	1	
	Lam Dom Yai	I	480		192		n.a.		n.a.		25		0.3	
	Mekong	1	480		192	(1)	n.a.		n.a.		n.a.		n.a.	
Sisaket	Nam Mun	15	7,200		2,928	(1)	149	(11)	116	(11)	287	(5)	n.a.	
Khon Kaen	Nam Chi	5	2,400		1,008		107	(2)	173	(1)	161	(1)	1	(1)
	Nam Pong	3	1,440		384		n.a.		n.a.		145	(1)	9.0	(1)
Surin	Nam Mun	1	480		192		n.a.		n.a.		n.a.		n.a.	
Buriram	Nam Mun	4	1,920		752		n.a.		n.a.		n.a.		n.a.	
Loei	Nam Heung	3	1,136		544		n.a.		n.a.		21	(1)	n.a.	
	Nam Loei	3	1,408		240		12	(2)	9	(2)	11	(2)	n.a.	
	Mekong	1	480		192		n.a.		n.a.		7		n.a.	
Korat	Nam Mun	1	480		192		n.a.		n.a.		n.a.		п.а.	
	Nam Chi	2	096		n.a.		n.a.		n.a.		n.a.		n.a.	
	Lam Ta Kong	1	480		n.a.		п.а.		n.a.		n.a.		п.а.	
Roi Et	Nam Mun	2	096		384		n.a.		n.a.		n.a.		n.a.	
	Nam Chi	33	15,840		6,016		270	(28)	425	(25)	1,008	(16)	9.0	(31)
Yasothon	Nam Chi	20	9,312		2,881	(5)	390	(15)	280	(15)	477	(12)	4.6	(5)
Maha Sarakham	Nam Chi	21	9,376	(1)	4,080	(3)	66	(18)	321	(15)	1132	(3)	1.8	(15)

Notes: (1) n.a. means not available

Source: Lower Mekong Basin Water Balance Study, Phase 2 Report, May 1984

⁽²⁾ Numbers in brackets give the number of schemes for which no data were available to compute the group totals.

⁽³⁾ The irrigated areas and calculated only from the data available in each case.

Table 4.6 Collected Diversion Requirements in Thailand (1/7)

Module	T1 (N	Aekong Tribut	aries)	`	ge (T1)
Season	11 (1)	Wet	u1109)		/et
Crop	Rice (HYV)	Rice (Floating)	Peanuts	Rice	Field Crop
Jan					
Feb					
Mar					
Apr					
May	20	20		20	
Jun	101	101	60	101	60
Jul	65	63	15	64	15
Aug	61	56	31	59	31
Sep	76	76	43	76	43
Oct	228	238	149	233	149
Nov	155	253	43	204	43
Dec		148		74	
Total	706	954	340	831	340
Irrigation Efficiency	0.80	0.80	0.80	0.80	0.80

Table 4.6 Collected Diversion Requirements in Thailand (2/7)

Module		T1 (Mekon	g Tributaries	3)	`	ge (T1)
Season			Ory	,)ry
Crop	Rice (HYV)	Mung Bean	Tobacco	Vegetables	Rice	Field Crop
Jan	157	182	141		157	108
Feb	242	140	143	203	242	162
Mar	295	201	198	174	295	191
Apr	234	91	159	124	234	125
May	113		30	43	113	24
Jun	52				52	
Jul	32				32	
Aug						
Sep						
Oct						
Nov						
Dec	99	74	148		99	74
Total	1,224	688	818	544	1,224	684
Irrigation Efficiency	0.80	0.80	0.80	0.80	0.80	0.80

Table 4.6 Collected Diversion Requirements in Thailand (3/7)

Module		T2 (Cl	ni Basin)		Avera	ge (T2)	
Season		V	Vet		Wet		
Crop	Rice (HYV)	Rice (Local)	Maize	Vegetables	Rice	Field Crop	
Jan							
Feb							
Mar							
Apr							
May				151		76	
Jun	64	262	84	153	163	119	
Jul	277	209	184	171	243	178	
Aug	221	202	184	140	212	162	
Sep	42	24	9	33	33	21	
Oct	19	120		58	70	29	
Nov							
Dec							
Total	623	818	462	707	721	585	
Irrigation Efficiency	0.45	0.45	0.45	0.45	0.45	0.45	

Note: Irrigation Efficiency=0.45 (gravity), 0.50 (pumped)

Table 4.6 Collected Diversion Requirements in Thailand (4/7)

(Unit: mm/month)

Module		T2 (Chi Basin))	Avera	ge (T2)	
Season		Dry		Dry		
Crop	Rice 1 (HYV)	Soya Bean	Vegetables	Rice	Field Crop	
Jan	658	351	349	658	350	
Feb	433	322	429	433	376	
Mar	618	109	229	618	169	
Apr	296			296		
May						
Jun						
Jul						
Aug						
Sep						
Oct						
Nov						
Dec		149	340		245	
Total	2,005	931	1,347	2,005	1,140	
Irrigation Efficiency	0.45	0.45	0.45	0.45	0.45	

Note: Irrigation Efficiency=0.45 (gravity), 0.50 (pumped)

Table 4.6 Collected Diversion Requirements in Thailand (5/7)

Module		T3 (Mun Basin)	
Season	Wet	Dry	Dry
Crop	Rice	Rice	Field Crop
Jan		357	77
Feb		436	226
Mar		401	290
Apr		242	285
May		12	108
Jun	213		7
Jul	157		
Aug	15		
Sep	26		
Oct	161		
Nov	135		
Dec			
Total	707	1,448	993
Irrigation Efficiency	0.47-0.69	0.47-0.72	0.47

Table 4.6 Collected Diversion Requirements in Thailand (6/7)

	Module		T4 (Northeast)	· · · · · · · · · · · · · · · · · · ·
	Season	V	Vet	Dry
	Crop	Rice	Field Crop	Field Crop
Chi B.	Kalasin	1,154	214	684
	Khon Kaen	1,280	274	662
	Chaiyaphum	1,398	352	712
	Mahasarakham	1,134	186	672
	Yasothon	1,092	152	702
	Roi Et	1,150	184	696
Mun B.	Nakhon Ratchasima	1,178	242	618
	Buri Ram	1,048	168	662
	Si Sa Ket	1,196	220	694
	Surin	1,110	172	692
	Ubon Ratchathani	1,018	144	704
Mekong	Nakhon Phanom	858	130	646
_	Nongkhai	970	174	616
	Muk Dahan	1,096	176	692
	Loei	1,350	324	632
	Sakon Nakhon	1,096	194	664
	Udon Thani	1,246	270	618
Irrig	gation Efficiency	0.50	0.50	0.50

Table 4.6 Collected Diversion Requirements in Thailand (7/7)

(Unit: mm)

Module		T5 (Northeast)									
Season	Field	Irrigation	Req.	(IE)		Diver	sion Req.				
Season	Wet	Dry		(E)	Wet	Wet Dry					
Cwon	Rice	Rice	Field	(%)	(%) Rice	Rice	Field	(*)			
Crop	Rice	Rice	Crop			Kice	Crop	Average			
Large Scale	400	1,200	400	50	800	2,400	800	1,760			
Medium Scale	400		400	50	800		800	800			
Small Scale	400		400	70	570		570	570			
Pumping	400	1,200	400	70	570	2,400	570	1,255			

Note (*)

	Rice:	Field Crop
Large Scale	60	40 (%)
Medium Scale	0	100
Small Scale	0	100
Pumping	60	40

Table 4.7 Collected Diversion Requirements in Lao PDR

Module	I	L1	I	L2	Average	(L1 & L2)
Season	Wet	Dry	Wet	Dry	Wet	Dry
Crop	Rice(Loc)	Rice(HYV)	Rice	Rice	Rice	Rice
Jan		214		467		341
Feb		348		437		393
Mar		348		503		426
Apr		30		286		158
May	68		1		35	
Jun	89		541		315	
Jul	0		155		78	
Aug	0		107		54	
Sep	0		147		74	
Oct	89		198		144	
Nov				8		4
Dec		483		794		639
Total	246	1,423	1,149	2,495	700	1,961
Irrigation efficiency	0.68	0.68	0.40	0.50	0.54	0.59

Table 4.8 Collected Diversion Requirements in Cambodia (1/2)

Module	C1							
Soils	Acid 1	Acid Paddy Alkali Paddy						
Season	Wet	Dry	W	⁷ et	Dry			
Crop	Rice	Rice	Rice	Rice	Rice			
Стор	(IR)	(IR)	(Local)	(IR)	(IR)			
Jan		393			339			
Feb		446			452			
Mar		348			491			
Apr					114			
May	59							
Jun	232		168					
Jul	220		111	275				
Aug	184		132	216				
Sep	14		29	93				
Oct	0		0	20				
Nov								
Dec		318			200			
Total	709	1,505	440	604	1,596			
Irrigation Efficiency	0.56	0.56	0.56	0.56	0.56			

Table 4.8 Collected Diversion Requirements in Cambodia (2/2)

Module		C2		Ave	rage (C1 &	: C2)
Season	Wet	Dry	3 rd	Wet	Dry	3 rd
Crop	Rice	Rice (HYV)	Rice (HYV)	Rice	Rice	Rice (*)
Jan		246	398		326	330
Feb		409	245		436	203
Mar		574	106		471	88
Apr	49	501		12	205	
May	119	125		45	42	
Jun	262	136		166	45	
Jul	275	12		220	4	
Aug	287		33	205		27
Sep	50		147	47		122
Oct	75		246	24		204
Nov	113		405	28		336
Dec	85	97	478	21	205	397
Total	1,315	2,100	2,056	768	1,734	1,707
Irrigation Efficiency	0.55	0.55	0.55	0.56	0.56	0.56

^(*) The ratio 0.83= (Average Dry Rice 1,734 mm)/(C2 Dry Rice 2,100 mm) is applied to (C2 3^{rd} Rice)

Table 4.9 Collected Diversion Requirements in Vietnam (1/4)

Mod.				V	1				
Season				Triple	Rice				Zone
Zone	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6	Zone 7	Zone 8	Ave.
Jan	231	226	196	218	252	257	251	230	233
Feb	199	241	253	158	238	248	191	178	213
Mar	149	146	149	207	144	159	161	254	171
Apr	139	134	92	202	170	134	157	145	147
May	102	136	0	101	97	0	0	4	55
Jun	122	89	0	24	45	0	9	0	36
Jul	0	1	40	0	0	12	0	0	7
Aug	46	17	23	13	20	0	0	0	15
Sep	83	1	158	0	21	0	0	0	33
Oct	4	0	78	0	0	0	0	0	10
Nov	39	36	8	28	0	72	20	2	26
Dec	133	113	69	157	156	107	98	140	121
Total	1,247	1,139	1,067	1,108	1,142	989	887	953	1,067
Irrigation Efficiency	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8

Table 4.9 Collected Diversion Requirements in Vietnam (2/4)

3.7.1				T 7	1			(CIIIt. IIIII	,
Mod.				V					Zone
Season				Doubl	e Rice				Ave.
Zone	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6	Zone 7	Zone 8	Ave.
Jan	279	249	229	247	217	254	273	175	240
Feb	252	283	244	156	181	75	128	0	165
Mar	30	73	66	0	129	0	0	0	37
Apr	128	92	31	6	0	0	0	0	32
May	122	87	0	55	38	15	3	0	40
Jun	128	106	0	35	19	3	1	0	37
Jul	4	89	0	28	92	5	27	0	31
Aug	0	0	0	0	27	19	1	0	6
Sep									
Oct									
Nov	0	0	0	25	10	78	29	39	23
Dec	110	111	97	197	108	217	190	196	153
Total	1,053	1,089	667	749	821	665	653	410	764
Irrigation Efficiency	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8

Table 4.9 Collected Diversion Requirements in Vietnam (3/4)

Mod.				V	' 1				Zone
Season				Field	Crop				Ave.
Zone	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6	Zone 7	Zone 8	Ave.
Jan	0	0	0	0	7	12	16	0	4
Feb	72	88	74	68	83	116	140	84	91
Mar	202	206	172	192	197	207	226	206	201
Apr	156	190	156	206	213	218	217	191	193
May	43	39	0	15	7	0	0	8	14
Jun	0	0	0	0	0	0	0	0	0
Jul									
Aug									
Sep									
Oct									
Nov									
Dec									
Total	473	522	401	481	508	554	599	489	503
Irrigation Efficiency	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8

Table 4.9 Collected Diversion Requirements in Vietnam (4/4)

Mod.				V	' 1				Zone
Season				Perenni	al Crop				Ave.
Zone	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6	Zone 7	Zone 8	Ave.
Jan	98	89	83	82	85	88	91	90	88
Feb	102	99	99	99	104	106	111	102	103
Mar	113	110	95	108	120	114	121	111	112
Apr	53	84	61	99	103	112	102	84	87
May	3	9	0	0	0	0	0	0	2
Jun	0	0	0	0	0	0	0	0	0
Jul	5	0	0	0	0	0	0	0	1
Aug	1	0	0	0	0	0	0	0	0
Sep	1	0	0	0	0	0	0	0	0
Oct	0	0	0	0	0	0	0	0	0
Nov	23	27	0	9	17	38	5	3	15
Dec	59	66	43	68	61	78	61	36	59
Total	457	485	381	465	490	535	491	426	467
Irrigation Efficiency	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8

Table 5.2 Monthly Mean Reservoir Inflow of Nam Ngum Dam

Unit: m³/sec)

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Mean
1972	95.9	82.2	45.9	52.1	77.3	265.2	758.0	1,575.0	729.5	391.9	223.3	115.7	367.7
1972	104.3	73.0	64.2	26.8	139.5	252.4	798.7	1,049.8	1,458.1	426.2	178.1	111.2	390.2
	72.0	52.0	_	64.9	108.4		417.3	<u> </u>	-			104.4	
1974 1975		54.0	31.4		145.4	294.5		685.8	725.9	368.7	154.5 200.7	111.9	256.6 411.4
	97.9		47.8	28.8		317.6	968.1	1,340.2	1,163.9	460.8			
1976	57.5	52.6	31.7	51.2	122.1	285.0	603.3	775.5	572.7	447.2	266.1	85.4	279.2
1977	79.6	51.5	174.7	189.2	124.8	143.4	657.3	611.4	509.2	173.5	96.2	65.3	239.7
1978	52.4	43.9	61.6	58.3	135.9	652.4	980.2	1,319.4	876.7	245.7	120.3	74.3	385.1
1979	107.1	81.0	70.8	93.1	249.3	393.4	387.3	912.3	628.9	227.0	130.4	76.5	279.8
1980	83.3	84.3	99.7	127.9	166.8	368.6	969.7	709.7	884.9	282.0	164.7	88.8	335.9
1981	103.2	70.7	116.1	101.6	190.5	573.5	1,382.4	1,130.1	875.9	612.2	192.0	117.2	455.4
1982	105.7	104.2	117.7	129.8	167.8	410.8	560.3	1,215.2	806.0	409.9	196.7	145.2	364.1
1983	131.6	157.6	122.1	120.6	163.8	223.3	668.7	826.5	613.1	362.7	166.3	138.9	307.9
1984	128.4	125.4	94.6	77.7	169.4	233.2	950.7	913.6	568.8	334.4	203.7	114.5	326.2
1985	117.8	99.9	68.0	65.8	150.8	373.1	552.9	799.5	631.5	219.1	145.5	106.2	277.5
1986	78.4	65.5	56.1	78.0	330.8	606.7	794.4	578.5	448.7	202.0	122.4	87.5	287.4
1987	61.0	64.0	50.2	96.5	89.9	228.1	314.0	785.9	441.0	266.8	195.2	118.2	225.9
1988	82.8	73.2	49.5	94.1	156.2	162.7	340.3	712.6	374.7	215.3	103.0	86.7	204.2
1989	58.2	40.7	41.8	52.8	146.3	481.3	532.2	692.9	490.9	298.5	158.3	98.1	257.7
1990	84.4	51.1	75.5	70.3	166.2	517.5	883.6	627.2	532.9	274.0	152.8	107.9	295.3
1991	77.2	55.3	61.4	59.1	101.1	298.7	620.3	709.4	463.0	213.1	128.8	85.7	239.4
1992	87.3	145.8	64.5	69.3	92.8	195.5	616.2	523.3	347.7	158.6	74.7	67.5	203.6
1993	48.8	41.5	34.5	39.5	143.8	448.7	1,045.9	735.8	492.9	244.4	118.2	92.5	290.5
1994	85.3	82.4	93.2	80.4	213.0	594.9	985.6	1,194.8	727.8	368.6	164.3	129.8	393.3
1995	85.3	71.1	56.1	77.1	141.2	362.5	708.1	1,399.1	857.6	243.9	140.6	126.7	355.8
1996	91.7	88.7	73.4	100.9	160.1	389.6	811.0	1,188.4	740.7	335.5	262.7	149.2	366.0
1997	91.3	82.9	69.7	100.6	158.6	256.1	989.9	800.1	921.1	366.0	189.6	136.5	346.9
1998	111.2	97.5	82.1	113.1	119.2	342.5	808.0	652.6	471.5	160.0	103.6	63.9	261.8
1999	49.5	40.4	42.8	98.0	376.7	795.2	658.7	872.1	668.5	361.8	177.5	120.7	356.9
2000	88.2	78.0	75.2	105.1	355.0	857.4	900.1	840.2	864.4	361.4	171.4	120.6	403.2
2001	95.3	63.9	143.9	63.2	302.5	679.7	1,013.6	1,025.7	755.5	418.5	196.3	-	285.2
Mean	87.1	75.8	73.9	82.9	172.2	400.1	755.9	906.8	688.1	315.0	163.3	105.1	315.0
Max	131.6	157.6	174.7	189.2	376.7	857.4	1,382.4	1,575.0	1,458.1	612.2	266.1	149.2	455.4
Min	48.8	40.4	31.4	26.8	77.3	143.4	314.0	523.3	347.7	158.6	74.7	63.9	203.6

Source: Nam Ngum Hydropower Station Office

Table 5.3 Monthly Mean Turbine Release of Nam Ngum Dam

(Unit: m³/sec

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Mean
1972	83.4	87.2	89.2	85.6	66.4	93.2	47.0	80.4	85.2	89.9	65.3	68.6	78.5
1973	70.5	89.9	93.2	94.5	95.6	92.2	92.3	89.9	89.6	72.4	78.6	85.7	87.0
1974	93.8	94.9	97.4	98.9	97.5	96.6	92.3	92.5	90.7	91.9	90.3	74.8	92.6
1975	62.9	80.6	89.1	97.3	90.0	80.7	89.6	90.8	91.3	92.5	92.9	94.5	87.7
1976	95.4	93.1	85.9	51.2	85.1	78.9	84.6	82.9	80.0	80.4	80.5	68.5	80.5
1977	79.3	84.1	86.5	93.6	94.7	95.0	94.2	86.6	85.8	83.3	83.0	75.5	86.8
1978	78.1	72.3	81.9	85.0	84.2	80.5	71.8	97.3	106.8	121.4	120.3	102.9	91.9
1979	241.2	295.2	309.0	327.6	296.9	281.8	279.8	258.9	316.5	296.2	295.0	267.8	288.8
1980	246.1	287.7	308.5	295.7	329.3	314.1	331.0	335.9	335.4	325.5	316.9	307.2	311.1
1981	326.9	335.5	321.3	235.8	267.7	325.9	339.4	340.8	321.0	231.2	254.6	250.5	295.9
1982	260.1	259.8	322.8	339.8	283.6	297.2	337.6	345.7	351.7	353.2	339.7	326.3	318.1
1983	320.0	331.4	348.4	349.2	237.0	257.0	349.3	346.1	330.1	322.8	318.9	320.5	319.2
1984	329.2	338.0	262.9	238.8	321.5	320.8	314.0	308.8	308.9	317.2	332.5	329.2	310.2
1985	379.5	354.9	345.6	278.6	241.9	323.9	295.5	305.5	339.4	314.1	284.7	271.6	311.3
1986	279.0	287.6	230.6	230.9	282.2	327.3	445.2	423.5	426.7	323.6	288.8	218.2	313.6
1987	216.1	215.4	214.4	218.3	220.7	252.4	174.6	179.0	58.7	245.6	258.4	327.6	215.1
1988	246.9	274.7	222.8	222.3	217.3	256.4	203.3	239.3	192.5	206.1	175.2	138.6	216.3
1989	149.4	148.4	142.1	166.0	170.2	232.3	276.8	293.2	409.2	353.2	307.5	263.8	242.7
1990	321.5	297.4	272.0	218.6	202.2	294.7	306.8	311.1	281.6	304.4	243.9	272.0	277.2
1991	214.0	228.6	240.7	322.9	213.6	270.4	328.5	331.0	195.7	174.1	213.0	155.6	240.7
1992	193.3	235.4	193.3	250.2	250.8	271.5	309.2	281.4	183.1	185.5	141.1	134.2	219.1
1993	153.3	154.7	170.6	197.8	185.2	266.7	364.8	447.5	432.7	330.7	196.1	249.4	262.5
1994	245.8	256.0	271.9	287.7	280.4	305.3	415.3	421.0	428.2	427.0	292.5	292.7	327.0
1995	243.4	265.1	251.7	290.7	289.5	318.5	326.3	447.7	471.0	370.3	296.4	309.0	323.3
1996	263.1	301.9	287.4	293.1	315.2	371.3	384.9	463.8	457.6	430.9	326.7	380.2	356.3
1997	268.2	272.7	261.8	320.5	309.4	359.7	422.8	443.9	444.9	448.7	342.9	312.8	350.7
1998	300.9	302.1	296.1	325.4	332.4	353.0	398.7	425.2	304.4	211.1	187.8	190.4	302.3
1999	184.5	206.0	191.1	199.5	246.4	345.0	409.2	408.7	425.9	435.2	306.9	322.4	306.7
2000	271.8	262.4	290.0	291.3	324.7	386.3	384.2	422.8	425.7	432.2	320.8	312.7	343.7
2001	277.7	287.4	331.3	349.9	324.0	374.4	409.8	421.1	423.8	429.2	342.1	-	361.0
Mean	216.5	226.7	223.7	228.6	225.2	257.4	279.3	294.1	283.2	270.0	233.1	224.9	247.3
Max	379.5	354.9	348.4	349.9	332.4	386.3	445.2	463.8	448.7	448.7	342.9	380.2	361.0
Min	62.9	72.3	81.9	51.2	66.4	78.9	47.0	80.4	72.4	72.4	65.3	68.5	78.5

Source: Nam Ngum Hydropower Station Office

Table 5.4 Monthly Nam Ngum Water Level at 24:00 of the End of Month

Jnit: masl

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Unit: masl) Dec
1972	202.80	202.50	202.30	201.90	202.10	203.40	206.40	208.80	204.90	204.90	204.10	203.50
1973	203.20	202.80	202.50	201.90	202.30	203.40	206.30	208.20	205.00	205.00	203.90	203.30
1974	202.80	202.40	201.80	201.50	201.60	203.20	204.90	206.50	204.60	204.60	203.60	203.20
1975	203.10	202.70	202.30	201.70	202.13	204.30	206.90	208.30	205.00	205.00	203.90	203.25
1976	202.90	202.50	202.00	202.00	202.00	203.60	205.80	210.60	211.30	211.30	209.70	208.90
1977	208.90	208.48	205.80	204.06	203.53	203.44	206.19	207.27	208.90	208.90	209.01	208.92
1978	208.70	208.50	208.30	208.10	208.50	212.20	211.80	212.10	212.00	212.00	212.10	211.90
1979	210.80	209.40	207.50	205.60	205.20	206.10	207.00	212.10	211.60	211.60	210.40	208.90
1980	207.60	205.90	204.10	202.50	201.00	201.50	207.10	210.10	211.90	211.90	210.80	209.10
1981	207.30	205.30	203.50	202.28	201.60	203.80	212.65	212.82	212.20	212.20	211.70	210.70
1982	209.50	208.40	206.70	205.00	204.00	204.95	206.10	211.98	212.03	212.03	210.97	209.56
1983	208.02	206.65	204.68	202.67	202.00	201.73	204.60	208.77	211.25	211.25	210.14	208.70
1984	207.06	205.39	203.94	202.51	201.09	200.92	206.16	211.14	212.08	212.08	211.04	209.38
1985	207.29	205.40	203.11	201.42	200.53	201.06	203.17	207.43	209.01	209.01	207.95	206.57
1986	204.93	203.27	201.80	200.43	200.99	203.48	206.52	207.78	206.86	206.86	205.69	204.57
1987	203.31	202.19	200.80	199.43	197.94	197.67	199.25	204.75	207.98	207.98	207.20	205.46
1988	204.10	202.55	201.12	199.76	199.02	198.04	199.58	203.50	205.39	205.39	204.83	204.24
1989	203.50	202.71	201.87	200.98	200.71	202.77	204.87	208.16	208.35	208.35	207.16	205.79
1990	203.84	202.08	200.25	198.59	198.20	200.75	205.51	208.10	209.85	209.85	209.14	207.78
1991	206.66	205.38	203.90	201.79	200.84	201.09	203.50	206.61	209.07	209.07	208.40	207.83
1992	207.22	206.10	205.04	203.60	202.29	201.68	204.22	206.21	207.29	207.29	206.77	206.21
1993	205.36	204.52	203.40	202.14	201.19	203.23	208.85	211.21	210.99	210.99	210.37	209.08
1994	207.76	206.47	205.00	203.35	202.78	205.10	209.79	213.28	211.80	211.80	210.37	209.44
1995	208.14	206.69	205.09	203.39	202.17	202.52	205.66	213.36	211.06	211.06	209.82	208.32
1996	206.91	205.27	203.51	201.98	200.60	200.81	204.36	210.32	211.49	211.49	210.98	209.08
1997	207.71	206.30	204.72	202.97	201.73	200.88	205.57	208.50	211.61	211.61	210.39	208.94
1998	207.38	205.36	204.10	202.41	200.53	200.41	203.94	205.81	206.72	206.72	206.05	205.01
1999	203.90	202.67	201.45	200.51	201.71	205.28	207.33	211.01	211.73	211.73	210.70	209.04
2000	207.53	206.11	204.34	202.87	203.11	206.86	209.82	211.72	211.67	211.67	210.48	208.90
2001	207.40	205.74	204.20	201.92	201.74	204.17	209.13	211.61	212.04	212.04	210.88	-
Mean	206.19	204.99	203.64	202.31	201.77	202.94	206.10	209.27	209.52	209.52	208.62	207.43
Max	210.80	209.40	208.30	208.10	208.50	212.20	212.65	213.36	212.20	212.20	212.10	211.90
Min	202.80	202.08	200.25	198.59	197.94	197.67	199.25	203.50	204.60	204.60	203.60	203.20

Source: Nam Ngum Hydropower Station Office

Table 5.5 Monthly Mean Spillout Discharges of Nam Ngum Dam

Unit: m3/sec)

											(Ur	it: m3/sec)
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1972	67.0	30.0	0.0	0.0	0.0	15.0	374.0	1,202.0	1,011.0	421.0	254.0	113.0
1973	66.0	31.0	3.0	0.0	0.0	37.0	370.0	733.0	1,480.0	628.0	230.0	90.0
1974	32.0	5.0	0.0	0.0	0.0	17.0	134.0	402.0	91.0	395.0	180.0	0.0
1975	40.0	21.0	2.0	0.0	0.0	72.0	559.0	1,081.0	1,271.0	572.0	239.0	73.0
1976	32.0	5.0	0.0	0.0	0.0	55.0	265.0	0.0	0.0	421.0	414.0	88.0
1977	0.0	24.0	414.0	313.0	95.0	59.0	228.0	394.0	312.0	0.0	0.0	0.0
1978	0.0	0.0	5.0	0.0	0.0	70.0	952.0	1,208.0	770.0	124.0	0.0	0.0
1979	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.0	312.0	0.0	0.0	0.0
1980	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	257.0	0.0	0.0	0.0
1981	0.0	0.0	0.0	0.0	0.0	0.0	38.0	77.0	655.0	339.0	0.0	0.0
1982	0.0	0.0	0.0	0.0	0.0	0.0	79.6	123.6	246.0	258.3	0.0	0.0
1983	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1984	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	103.8	53.6	0.0	0.0
1985	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1986	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1987	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1988	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1989	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1990	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1991	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1992	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1993	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1994	0.0	0.0	0.0	0.0	0.0	0.0	0.0	349.5	349.3	70.5	0.0	0.0
1995	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	542.1	0.0	0.0	0.0
1996	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	34.3	3.1	0.0	0.0
1997	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.1	0.0	0.0
1998	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1999	0.0	0.0	0.0	0.0	0.0	0.0	0.0	17.9	59.8	31.0	0.0	0.0
2000	0.0	0.0	0.0	0.0	0.0	0.0	156.4	185.4	322.4	48.4	0.0	0.0
2001	0.0	0.0	0.0	0.0	0.0	0.0	0.0	304.7	211.5	53.0	0.0	0.0
Mean	7.90	3.87	14.13	10.43	3.17	10.83	105.20	202.84	267.61	114.03	43.90	12.13
Max	67.00	31.00	414.00	313.00	95.00	72.00	952.00	1,208.00	1,480.00	628.00	414.00	113.00
Min	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Source: Nam Ngum Hydropower Station Office

Table 5.6 Operation Schedule of Nam Ngum Hydropower System in 2001

Starting RWL on January 1st: 209.00 m

	Power Output	Nam	Nam Ngum Reservoir	voir	Water Div	Water Diversion from Nam Song	Water from Nam Leuk Reservoir	Nam Leuk rvoir	Turbine Di	Turbine Discharge of Nam Ngum
		Inflow Vol.	Ave. Inflow	end WL	Inflow Vol.	Ave. Inflow	Inflow Vol.	Inflow Vol. Ave. Inflow	Volume	Average
	(GWh)	(10^6 m^3)	(m³/sec)	(El. m)	$(10^6 \mathrm{m}^3)$	(m³/sec)	$(10^6 {\rm m}^3)$	(m³/sec)	$(10^6 {\rm m}^3)$	(m³/sec)
Jan	72.0	222.5	83.1	207.32	45.6	17.0	18.3	6.8	770.4	287.6
Feb	65.0	171.6	70.9	205.65	33.0	13.6	17.4	7.2	715.0	295.6
Mar	73.0	164.6	61.5	203.60	30.0	11.2	19.3	7.2	832.2	310.7
Apr	65.0	234.1	90.3	201.96	29.5	11.4	18.1	7.0	767.0	295.9
May	63.0	482.7	180.2	201.08	110.0	41.1	23.1	9.8	768.6	287.0
Jun	65.5	1,400.1	540.2	202.93	230.0	88.7	47.9	18.5	799.1	308.3
Jul	98.0	2,297.5	857.8	206.46	232.0	9.98	6.97	28.7	1,146.6	428.1
Aug	110.5	2,385.2	890.5	210.12	430.0	160.5	90.5	33.8	1,193.4	445.6
Sep	107.0	1,690.9	652.4	211.93	435.0	167.8	86.3	33.3	1,102.1	425.2
Oct	111.0	1,059.8	395.7	211.74	322.0	120.2	49.8	18.6	1,121.1	418.6
Nov	83.0	532.2	205.3	210.78	170.0	9:29	15.3	5.9	846.6	326.6
Dec	85.0	318.9	119.0	209.04	80.0	29.9	17.4	6.5	884.0	330.0
Total/										
Average	998.0	10,960.0	345.6	-	2,147.1	67.8	480.3	15.2	10,946.1	346.6

Source: Nam Ngum Power Station (Oct. 2000)

Table 5.7 Monthly Operation Record at Nam Leuk Hydropower Station

A. Power Output

(Unit: MWh)

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
1999	-	-	-	-	-	-	-	-	-	-	-	-	-
2000	-	98	3,067	5,817	7,671	4,915	5,787	6,863	5,630	3,170	1,707	1,698	46,423
2001	3,095	1,294	1,498	1,625	4,253	7,638	8,855	5,571	5,840	3,005	-	-	42,674
Mean	3,095	696	2,283	3,721	5,962	6,277	7,321	6,217	5,735	3,088	1,707	1,698	44,549

Source: Electricite du Laos (EDL)

Note: Power generation commenced in February 2000.

B. Tubine Discharge (Diverted water volume into the Nam Ngum reservoir)

(Unit: million m3)

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Mean
1999	-	-	-	-	-	-	-	-	-	-	-	-	-
2000	-	0.96	31.77	62.53	85.53	53.82	79.06	93.54	91.04	31.95	15.26	15.53	51.00
2001	29.37	12.48	16.20	17.97	50.10	86.08	91.65	93.81	81.29	27.53	12.34	-	47.17
Mean	29.37	6.72	23.99	40.25	67.82	69.95	85.36	93.68	86.17	29.74	13.80	15.53	46.86

Source: Electricite du Laos (EDL)

Note: Power generation commenced in February 2000.

C. Tubine Discharge (Diverted discharage into the Nam Ngum reservoir)

(Unit: m3/s)

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Mean
1999	-	-	-	-	-	-	-	-	-	-	-	-	-
2000	-	0.38	11.86	24.12	31.93	20.76	29.52	34.92	35.12	11.93	5.89	5.80	19.30
2001	10.97	5.16	6.05	6.93	18.71	33.21	34.22	35.02	31.36	10.28	4.76	-	17.88
Mean	10.97	2.77	8.95	15.53	25.32	26.99	31.87	34.97	33.24	11.10	5.32	5.80	17.74

Source: Electricite du Laos (EDL)

Note: Power generation commenced in February 2000.

Table 5.10 Monthly Mean Discharge at Hinhuep in Nam Ngum River

Sep May Jun Oct Nov Dec 1,125 1,488 1,148 2,490 1,128 1,016 1,058 1,061 1,206 **711** Mean 1.488 2.490 Max 1.061 1.128

Source: MRC HYMOS Database

Table 5.11 Monthly Mean Discharge at Ban Pak Kanhoung in Nam Ngum River

Aug Feb Mar May Jun Jul Sep Oct Nov Mean Apr 1,708 2,299 1,845 1,279 1,412 1,832 1.310 1.712 1.455 1.157 1,830 2,558 1,867 1,354 1,159 2,023 1,609 1.436 2,236 2,270 1,090 2,040 2,680 3,016 1,088 2,066 1,395 1,301 1,465 2,906 1,119 1,561 1,118 1,363 1,389 1,119 1,026 1,389 1,300 1,201 1,239 1,128 1,014 1,186 1,030 1,051 1,583 1,682 1,176 2,248 2,174 1,207 1,235 1,106 1,328 1,289 1,647 1,167 1,527 1,525 1,436 2,236 2,680 3,016 1,119

Table 5.12 Monthly Mean Discharge at Ban Tha Lat in Nam Ngum River

Mar May Jun Jul Aug Sep Oct Nov Dec Mean 1,802 2,548 1,815 1,323 1,135 1,940 1.428 2,168 2.216 1,070 1,950 2,448 2,772 1,868 1,247 1,425 1,199 1,369 2,630 1,196 1,424 1,625 2,225 2,329 1,114 1,804 2,304 1,688 1,317 1,341 1.900 2.312 2,053 1.304 1,364 1,221 1,062 1,060 1,432 1,238 1,060 1,039 Mean 1,123 1,557 1,540 2,548 1,304 1,428 2,168 2,772

Table 5.13 Monthly Mean Discharge at Thangone in Nam Ngum River

Aug Feb Mar May Jun Jul Sep Oct Nov Mean Apr Dec 1,158 1,935 1,296 2,711 2,164 1,626 1,376 1,461 1,950 1.341 1.831 1.606 1.266 2,108 2,721 2,804 1,278 1,275 2,030 1,052 1,005 1,857 1,472 2,297 2.930 1,237 1,136 2,395 3,093 3,190 1,003 1,583 2,493 2,078 1,278 1,627 2,963 1,237 1,337 1,771 1,502 2,788 2,243 1,289 1,165 1.401 1,908 2,774 2,009 1,059 1,597 1,274 2,202 2.471 2,414 1.411 1,597 1,557 1,411 1,673 1,497 1,491 1,342 1,168 1,081

1,003

Source: MRC HYMOS Database

1,472

1,321

2,395

1,856

3,093

1,861

3,190

1,411

25288485 8 Dangers 83 Table 5.14 Comparison of Monthly Mean Discharges in Dry Season at Hydrologic Stations in Nam Ngum River San Pak Klathouns 22324232333 8 5558 6 10 10 10 88888 8 美麗 284 28 医邻氏氏征外部 经现代的 化二甲基 불통용통점 80 556 Month: April Year **636666**68 36 252255555 8 얆 3. 55288223 Ę 488884188 8 8848 Thompone Ban Pak ŝ 22.22 San Tha RERESS 8 8 288477777 8 氮 Hubber 2022 8 **\$39** 44~888888864 44~84 Month: March 100 1960 2566666666 **CEREPO** 88 8 38 5 22010810 60 866555368 82284 82 Ban Pak Kertroena 동점독점용용점점 Ē 2865 80727288827278 8 1 13 12 13 222253 8222 ģ H88 8 ğ Ξ Month: February Hirhan 医医量隔 8 き合語 化安全性非常存在的的特别的 1,691 22665658 1960 2981 888 Nam Ngam Dam (8,440 km2) Day Pale Earth sung (14,300 long) Nam Ngam River System 2nd stage development. 40 MW x 2 (110 MW) 3rd stage devel spment 40 MW x 1 (140 MW) 121 Stage development 15 Mer x 2 (30 Mer) Navi UA River Bar Tha Lat (14,200 km2) Hinhamp (5,115 km2) Thaspes (16,500 km2)

Period: 1961-71: before completion of Nam Ngum Project 1972-78: after completion of Phase I of Nam Ngum Project (30 MW) 1979-84: after completion of Phase II of Nam Ngum Project (110 MW) 1985-00: after completion of Phase III of Nam Ngum Project (150 MW)

Note: The figues in bracket are estimated from linear interpolation.

Table 5.15 Summary of Low Flow Increase in Dry Season in Nam Ngum River

Month: February	ruary			(Unit: m3/s)	Month: February	iary		(Unit: m3/s)
Period	Hinhuep	Ban Tha Lat	Ban Pak Kanhoung	Thangone	Period	Increase (Ban Tha Lat -	Increase (Ban Pak Kanhoung - Hinhuep)	Increase (Tangone - Hinhuep)
1961-71	38	93	106	117	1961-71	55	68	79
1979-84 1985-00	44 (45) 46	336 341	- 275	143 316 359	1972-70 1979-84 1985-00	oo 291 295	- 229	33 271 313
Month: Warch	сh			(1) cm - (4)	Month: February	iary		/ Init m3/
Period	Hinhuep	Ban Tha	Ban Pak Kanhoung	Thangone	Period	Increase (Ban Thallat	Increase (Ban Pak	Increase (Tangone -
1961-71	33	77	88 3	96	1961-71	44	55	63
1972-78	42	132 337	154	307	1972-78	89 295		136 265
1985-00	(42) 41	269 269	277	321	1985-00	239 229	236	280
Month: April	Įį.			(Unit: m3/s)	Month: February	ıary		(Unit m3/s)
Period	Hinhueb	Ban Tha Lat	Ban Pak Kanhoung	Thangone	Period	Increase (Ban Tha Lat -	Increase (Ban Pak Kanhoung - Hinhuen)	Increase (Tangone - Hinhuen)
1961-71	34	81	88	94	1961-71	47	54	09
1972-78	45	128	145	161	1972-78	83	100	116
1979-84	(45)	335	ı	288	1979-84	290	•	243
1985_00	45	700	000		00 1007	010		CLC

Table 6.3 Monthly Mean Discharge at Ubon in Nam Mun-Chi River

2,165 3,282 1,529 1,570 2,053 3,725 2,008 72 1,121 1,579 1,004 3,110 2,213 1,018 1,284 3,477 2,811 1,639 49 64 1,110 173 1,910 1,057 1,039 1,482 2,162 1,322 1,686 1,323 1,469 1,319 1,997 1,038 1,513 2,462 1,184 1,780 1,056 1,146 1,738 2,672 2,286 2,783 1,895 1,232 2,168 2,633 5,578 1,862 1,194 1,743 1,597 1.184 2.121 3,700 2,726 2,205 1,095 3,173 1,133 1,602 1,902 2,290 2,131 2.328 1.567 1,516 1,584 2,018 1,008 2,141 1,747 1,302 1,024 1,216 1,376 1,411 2,293 1,557 1,208 485 2,415 3,062 1,551 1,994 1,027 1,356 2,714 2,321 1,009 1,474 1,070 1,715 1,954 1,302 Max 1,743 2,205 3,477 5,578 2,726 1,009 1,194

Source: MRC HYMOS Database

Table 6.4 Monthly Mean Discharge at Yasothon in Nam Mun-Chi River

												,	Unit: m ³ /sec)
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Mean
1961	20	7	9	12	133	266	464	489	1,300	1,450	874	123	429
1962	23	9	7	12	174	241	779	627	1,200	1,920	1,100	133	519
1963	28	13	11	12	39	148	389	845	735	943	962	498	385
1964	44	17	10	13	164	277	141	166	1,490	1,370	1,250	559	458
1965	40	19	15	19	117	460	559	333	828	569	131	17	259
1966	7	4	6	33	637	734	367	742	1,370	964	228	109	433
1967	52	37	42	55	70	85	116	133	811	862	162	67	208
1968	47	49	51	59	93	171	80	195	804	440	102	75	180
1969	43	65	77	88	90	255	702	627	886	937	776	111	388
1970	54	43	84	64	105	152	116	187	549	583	215	69	185
1971	61	52	57	63	133	112	395	432	337	483	234	82	203
1972	57	56	31	52	78	68	116	82	94	188	151	30	84
1973	17	14	11	15	12	63	54	53	235	298	46	23	70
1974	26	59	63	61	113	144	84	103	109	150	99	35	87
1975	21	27	24	49	61	92	170	118	421	592	538	107	185
1976	53	50	57	124	139	150	158	233	384	528	716	469	255
1977	114	80	109	131	201	201	64	143	582	427	86	62	183
1978	61	60	49	59	84	90	452	680	961	1,380	559	150	382
1979	93	78	75	77	112	440	334	480	461	460	43	50	225
1980	18	8	15	18	60	636	639	440	936	1,340	1,230	205	462
1981	119	132	178	257	258	409	1,130	1,040	620	410	234	66	404
1982	58	67	60	74	122	180	85	117	952	1,300	877	200	341
1983	50	106	85	108	135	608	873	1,040	984	750	486	217	454
1984	84	71	63	136	190	190	260	674	671	674	455	255	310
1985	49	66	83	86	122	271	258	788	446	452	381	132	261
1986	41	55	51	43	244	437	321	606	724	272	142	28	247
1987	30	46	52	63	70	139	142	518	758	664	471	119	256
1988	37	52	56	90	223	567	424	352	276	569	479	176	275
1989	57	50	61	70	117	227	292	687	746	606	395	97	284
1990	39	78	111	66	89	254	364	733	982	871	736	370	391
1991	115	104	112	81	113	138	207	1,000	1,280	1,060	874	140	435
1992	98	76	116	110	113	226	475	842	928	566	199	51	317
1993	56	47	48	70	66	105	140	141	501	446	70	20	143
1994	-	-	-	-	-	-	-	-	-	-	-	-	-
1995	-	-	-	-	-	-	-	-	-	-	-	-	-
1996	56	58	62	74	171	300	273	232	1,200	1,180	748	655	417
1997	398	172	153	141	141	153	462	584	719	296	169	65	288
1998	102	167	168	149	151	153	318	416	519	252	126	132	221
1999	-	-		-	-	-	-	-	-	-	-	-	-
2000	-	-	-	-	-	-	-	-	-	-	-	-	-
Mean	63	58	63	73	137	254	339	469	744	729	454	158	295
Max	398	172	178	257	637	734	1,130	1,040	1,490	1,920	1,250	655	519
Min	7	4	6	12	12	63	54	53	94	150	43	17	70

Table 6.5 Monthly Mean Discharge at Rasi Salai in Nam Mun-Chi River

Mar May Jul Oct Dec Mean Year Apr Jun Aug Sep Nov 287 1,322 1,464 1,792 1,160 1.182 77 157 10 1,105 1,155 Mean Max 1,792 1,464 Min

Table 6.6 Monthly Mean Discharge at Kaeng Saphu in Nam Mun-Chi River

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Unit: m³/sec
1961	-	-	-		-	-	-				-	-	
1962				-		-		-	-		-	-	
1963			-	-		-	-	-		-	-		
1964	-		_	-	-	-	_	-	-		-	-	-
1965	-	-	-	-	-	-	-	-	-	-	-	-	-
1966						_	_						
1967		-	-	-	-	-	-	-	-	-	-	-	
1968			-	-	-	-	-				-		
1969		-		-		-		-		-	-		-
1970			-			-	-				-		
1971	-		-	-	-	-	-	-	-		-	-	-
1972	-	-	-		-	-	-	-		-	-		
1973	-		-	-	-	-	-	-	-		-	-	-
1974	-	-	-	-	-	-	-	-	-	-	-	-	-
1975	-	-	-	-	-	-	-	-	-	-	-	-	-
1976	-	-	-	-	-	-	-	-	-	-	-	-	-
1977	-	-	-	-	-	-	-	-	-	-	-	-	-
1978	-	-	-	-	-	-	-	-	-	-	-	-	-
1979	-	-	-	153	187	637	1,010	688	744	522	130	98	463
1980	74	85	64	88	107	218	1,260	956	1,590	3,770	1,420	259	824
1981	179	169	236	258	281	339	889	1,800	723	645	365	176	505
1982	154	154	154	160	181	246	189	255	884	2,200	655	214	454
1983	135	124	165	170	212	229	889	895	1,610	2,040	1,340	369	682
1984	187	135	126	126	243	434	496	456	1,760	1,420	671	168	519
1985	113	108	121	134	196	366	660	702	1,840	1,240	640	176	525
1986	96	98	95	91	121	287	378	828	1,660	578	324	117	389
1987	89	70	73	78	100	98	395	215	1,470	1,130	487	165	364
1988	90	82	73	77	73	419	633	498	437	755	582	169	324
1989	108	104	94	93	86	244	351	836	1,300	673	282	119	357
1990	97	96	139	124	114	263	810	1,490	2,160	2,190	1,300	284	756
1991	169	127	129	121	139	173	274	508	1,920	2,950	431	176	593
1992	162	141	112	133	121	187	313	987	2,310	583	225	143	451
1993	92	98	98	96	87	182	381	480	613	334	129	69	222
1994	-	-	-	-	-	-	-	-	-	-	-	-	-
1995	-	-	-	-	-	-	-	-	-	-	-	-	-
1996	99	102	96	106	122	134	280	208	294	2,080	2,000	352	489
1997	80	78	78	85	102	96	288	940	732	672	276	212	303
1998	59	60	63	65	66	180	116	119	334	210	92	70	119
1999	-	-	-	-	-	-	-	-	-	-	-	-	-
2000	-	-	-	-	-	-	-	-	-	-	-	-	-
Mean	117	108	113	120	141	263	534	715	1,243	1,333	630	185	463
Max	187	169	236	258	281	637	1,260	1,800	2,310	3,770	2,000	369	824
Min	59	60	63	65	66	96	116	119	294	210	92	69	119

Table 6.7 Comparison of Monthly Mean Discharges in Dry Season at Hydrologic Stations in Nam Mun-Chi River

Vear Year Year <th< th=""><th>onth: F</th><th>Month: February</th><th></th><th></th><th>(Hnit m3/s)</th><th>Month:</th><th>Wonth: March</th><th></th><th></th><th>(Hoit-m3/s)</th><th>Month: April</th><th>April</th><th></th><th></th><th>/Hnit-m3/e)</th></th<>	onth: F	Month: February			(Hnit m3/s)	Month:	Wonth: March			(Hoit-m3/s)	Month: April	April			/Hnit-m3/e)
Color				Ubon	Kaeng	Year	Yasothon	Rasisalai	Ubon	Kaeng	Year	Yasothon	Rasisalai	Ubon	Kaeng
1			a		Sappin	1080	(d)	(M/III)		Sabbil	1080	(idi	(MIII)		Sabbil
8 20 1992 6 25 1992 6 17 17 37 1992 6 22 1992 8 17 13 35 1964 1 22 1995 1 1 14 35 19 1966 1 22 1995 1 1 46 6 5 1966 1 2 1995 1<	٠.	9		23		1961	4		15		1961	9		Ę	
11 28 1943 9 22 1964 10 17 196 11 25 1964 10 17 196 11 25 1964 10 11 26 1966 11 26 1966 11 26 1966 11 26 1966 11 26 1966 11 26 1966 11 26 1966 11 26 1966 11 26 1966 11 26 1966 11 26 1966 11 26 1966 11 26 1966 11 26 1966 11 26 1966 11 26 1966 11 26 1966 11 26 1966 11 26 196		. 00		88		1962	ဖ		52		1962	· rc		17	
13 15 15 15 15 15 15 15	. ~	7		8		1963	σ		8		1963	α		1,	
17 37 1966 14 25 1966 14 26 1967 1967 1968 14 15 1968 14 15 1968 14 15 1968 14 15 1967 15 1967 15 1968 14 15 1968 14 15 1968 14 15 1968 14 15 1968 14 15 1968 14 15 1968 14 15 1968 14 15 1968 14 15 1968 14 15 1968 14 15 1968 14 15 1968 14 15 1968 14 15 1968 14 1978 14 1978 14 1978 14 1978 14 1978 14 1978 14 1978 14 1978 14 1978 14 1978 14 1978 14 1978 14 1978 14 1978 14 <td>+</td> <td>- 6</td> <td></td> <td>18</td> <td></td> <td>1964</td> <td>ာတ</td> <td></td> <td>12</td> <td></td> <td>1964</td> <td>, C</td> <td></td> <td><u>~</u></td> <td></td>	+	- 6		18		1964	ာတ		12		1964	, C		<u>~</u>	
3 19 4 15 1966 4 15 1966 29 35 46 65 65 1968 44 56 1968 51 65 40 65 65 1968 54 56 1970 52 56 40 65 65 1970 63 64 1970 52 84 47 66 63 1977 27 7 7 84 47 68 1977 27 7 7 84 1977 197 87 84 1977 197 87 197	10	17		37		1965	7		22		1965	7		56	
36 57 19667 38 51 1967 38 51 1967 51 60	(0	e		9		1966	4		15		1966	59		32	
46 63 44 56 44 56 1968 51 56 46 57 5	_	36		27		1967	38		5		1967	5		9	
40 45 1969 63 64 1969 72 76 47 51 1970 63 64 1970 72 76 46 62 1970 63 1970 73 1977 77 1977 74 40 47 68 1972 27 27 27 1977 44 <td>. m</td> <td>46</td> <td></td> <td>83</td> <td></td> <td>1968</td> <td>44</td> <td></td> <td>293</td> <td></td> <td>1968</td> <td>5.</td> <td></td> <td>22</td> <td></td>	. m	46		83		1968	44		293		1968	5.		22	
37 51 1970 63 56 1970 32 84 46 88 1972 27 73 47 57 84 47 88 1972 27 73 43 1972 37 84 44 88 1973 18	O	40		45		1969	63		64		1969	72		76	
46 92 1971 49 96 1971 57 98 47 98 1972 27 73 1972 37 98 12 68 1973 27 73 49 1973 7 40 14 77 1974 18 68 1973 17 41 88 1973 17 40 10	0	37		51		1970	63		29		1970	32		8	
47 98 1972 27 73 1972 37 81 34 68 1974 5 44 1972 37 81 44 68 1974 64 1974 44 44 86 44 77 1976 18 64 107 1977 110 50 78 1978 18 197 110 110 110 50 102 180 1976 14 107 110	_	46		8		1971	49		96		1971	22		86	
12 63 1973 9 43 1973 7 40 14 68 1974 68 1974 44 48 1976 1976 1977 14 48 1977 14 48 1977 14 48 1977 14 48 1977 14 48 1977 14 1977 14 48 1978 14 1977 14 18 14 18 18 14 18	0	47		86		1972	27		73		1972	37		8	
34 68 1974 52 91 1974 44 86 44 77 1976 49 14 44 86 48 97 1976 49 14 1976 14 86 7 78 1978 49 17 17 17 17 110 88 102 78 1978 49 167 17 115 110 88 102 78 102 103 103 103 104 105	က	12		ß		1973	O		43		1973	7		4	
14 77 1975 18 68 1975 18 68 1975 19 11 1975 19 11 1975 19 11 1977 11 1977 11 19 11 19 10 15 4 11 19 10	4	34		88		1974	52		9		1974	44		88	
48 97 1976 49 111 1976 49 111 1976 105 164 50 78 1978 64 101 1978 64 101 1978 61 105 116 116 116 116 116 116 116 116 116 116 117 116 116 117 118	2	14		11		1975	18		88		1975	31		98	
77 89 1977 87 87 1977 110 68 102 188 1978 44 173 1978 48 89 68 102 188 1978 64 101 1979 62 28 99 68 102 188 198 16 162 260 1980 10 1.3 62 28 99 50 4.7 189 16 58 79 1980 10 1.3 62 28 99 10 1.3 62 18 99 10 1.3 62 18 99 10 1.3 62 18 99 10 1.3 62 18 99 10 1.3 10 19 10 1.3 10 10 1.3 10 1.4 19 19 10 1.3 10 10 1.3 10 10 1.3 1.4 19 10 1.4	9	48		26		1976	49		111		1976	105		154	
50 78 78 1978 40 73 1978 48 89 68 102 98 1990 64 101 99 16 280 79 62 28 94 120 8.0 131 200 1981 158 5.0 162 260 1981 22 28 94 1978 48 89 94 16 260 1981 22 28 1982 61 23 31 213 87 1982 61 3.9 87 1982 61 3.9 87 1982 61 3.9 87 1982 61 3.9 1982 61 22 3.1 213 20 87 1982 61 21 3.9 8.8 191 1982 61 22 80 1982 62 2.8 91 1982 81 1982 81 1982 81 1982 198 198 198 <td< td=""><td>_</td><td>77</td><td></td><td>8</td><td></td><td>1977</td><td>87</td><td></td><td>87</td><td></td><td>1977</td><td>115</td><td></td><td>110</td><td></td></td<>	_	77		8		1977	87		87		1977	115		110	
68 102 1979 64 101 107 62 28 94 4 2.5 6.7 98 1,980 9 1,6 58 79 1980 22 28 94 120 131 200 1981 158 5.0 72 165 1982 60 10 13 62 28 94 1980 10 13 62 28 94 10 10 13 62 28 60 10 13 62 28 60 10 13 62 13 87 14 13 10 10 10 13 10	ഹ	20		78		1978	40		73		1978	48		8	
4 2.5 67 98 1980 9 1.6 58 79 1980 10 1.3 62 120 8.0 131 200 1981 158 5.0 162 280 1981 222 3.1 213 95 3.9 77 1982 260 1982 3.0 10 1.3 62 3.1 213 94 1982 3.0 10 1.3 21 38 101 1982 3.0 10 1.3 62 3.1 60 1982 3.0 10 1.3 21 38 101 1982 3.0 10 1.3 101 1982 3.0 10 1.3 10 1.3 10 1.3 10 1.3 10 1.3 10 1.3 10 1.3 10 1.3 10 1.3 10 1.3 10 1.3 10 1.3 10 1.3 10 1.3 10 1.3	ത	89		102		1979	64		101		1979	62	2.8	94	170
120 8.0 131 200 1981 158 5.0 162 260 1981 222 3.1 213 59 4.7 78 179 1982 53 2.0 72 165 1982 61 3.9 87 54 10.8 79 174 1984 52 5.2 80 140 1984 88 38 101 41 4.5 66 116 1986 43 2.6 72 105 1984 88 38 101 49 6.2 80 140 1986 43 2.6 105 1986 3.7 105 1986 3.7 106 1986 3.7 106 1986 3.7 10<	0		2.5	29	86	1980	0	1.6	28	79	1980	9	1.3	62	109
59 4.7 78 179 1982 53 2.0 72 165 1982 61 3.9 87 63 5.2 70 152 1983 73 2.3 87 180 1982 61 3.9 87 41 4.5 6 116 1986 61 2.1 94 1984 88 38 101 49 6.2 80 112 1986 61 2.1 94 1986 33 37 60 49 6.2 80 112 1986 43 2.6 72 105 1986 33 37 60 18 6.2 80 12 76 105 1986 47 1.2 82 17 62 17 62 17 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11<	_		3.0	131	200	1981	158	5.0	162	260	1981	222	3.1	213	338
63 5.2 70 152 70 152 70 152 70 152 70 152 70 152 70 152 70 162 96 0.6 96	ςı.		4.7	78	179	1982	53	2.0	75	165	1982	61	3.9	87	196
54 10.8 79 174 1984 5.2 80 140 1984 88 3.8 101 41 4.5 66 116 1985 61 2.1 94 139 1985 69 20 92 41 4.5 66 116 1986 61 2.1 94 139 1985 69 20 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 93 92 92 198 92 92 198 92 17 92 96 92 13 93 93 14 141 198 47 12 82 13 141 199 47 12 82 143 141 199 144 141 199 144 141 199 144 141 199 144 141 199 144 141 141	_		5.2	2	152	1983	73	2.3	87	180	1983	96	9.0	8	203
41 4.5 66 116 1986 61 2.1 94 139 1986 69 2.0 92 49 6.2 80 112 1986 43 2.6 72 105 1986 33 3.7 60 18 6.2 80 112 1986 43 2.6 72 105 1986 33 3.7 60 38 4.9 66 123 1988 42 66 110 1987 47 1.5 60 48 1.6 65 108 1990 88 2.7 117 171 1980 47 1.2 89 82 6.7 124 149 1991 87 3.2 117 141 119 104 104 104 109 104 104 104 108 104 104 104 108 104 104 104 104 104 104 104	_		8.0	79	174	1984	52	5.2	8	140	1984	88	3.8	101	168
49 6.2 80 112 1986 43 2.6 72 105 1986 33 3.7 60 18 4.9 44 83 1987 44 3.1 62 96 1987 45 1.7 62 39 5.5 70 91 1988 42 2.8 60 100 1988 62 138 45 1.7 62 138 45 1.7 62 138 46 1.3 81 1.3 81 1.3 81 1.3 81 1.3 81 1.3 81 1.3 81 1.4 1.2 89 1.3 1.4 1.2 60 1.3 1.4 1.2 62 1.3 1.4 1.4 1.2 89 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 <td< td=""><td></td><td></td><td>4.5</td><td>99</td><td>116</td><td>1985</td><td>61</td><td>2.1</td><td>94</td><td>139</td><td>1985</td><td>69</td><td>2.0</td><td>8</td><td>155</td></td<>			4.5	99	116	1985	61	2.1	94	139	1985	69	2.0	8	155
18 4.9 44 83 1987 44 3.1 62 96 1987 45 1.7 62 39 5.5 70 91 1988 42 2.8 60 82 1988 62 1.3 81 48 4.9 66 123 1989 39 2.7 10 1988 62 1.3 81 82 48 1.6 66 108 10 1990 57 0.8 10 <td< td=""><td>~</td><td></td><td>5.2</td><td>8</td><td>112</td><td>1986</td><td>43</td><td>2.6</td><td>72</td><td>105</td><td>1986</td><td>33</td><td>3.7</td><td>8</td><td>106</td></td<>	~		5.2	8	112	1986	43	2.6	72	105	1986	33	3.7	8	106
39 5.5 70 91 1988 42 2.8 60 82 13 81 38 4.9 66 123 1989 39 2.7 66 110 1989 47 12 82 48 1.6 1.6 1.7 117 117 1991 77 10 1991 77 10 1090 57 0.8 89 80 5.0 94 155 1991 87 1.4 1991 77 10 1993 52 2.7 77 100 100 1.6 1.6 77 110 1993 52 2.2 77 100 1.0 1.6 77 110 1993 52 2.2 77 100 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 100 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0			4.9	44	83	1987	44	3.1	62	96	1987	45	1.7	82	96
38 4.9 66 123 1989 39 2.7 66 110 1989 47 1.2 82 48 1.6 65 108 1990 88 2.7 117 171 1990 57 0.8 89 82 6.7 124 149 1990 88 2.7 117 141 1990 57 0.8 89 80 5.0 94 155 1992 55 2.1 65 136 174 170 1994 77 104 1994 1995 53 1.1 58 115 1996 62 2.0 68 175 128 125 8.0 95 81 1997 104 5.1 77 1996 62 2.0 68 176 128 170 128 128 144 1.3 53 128 170 128 138 53 144 1.3 66	~		5.5	2	91	1988	42	2.8	8	82	1988	62	1.3	8	108
48 1.6 65 108 1990 88 2.7 117 171 1990 57 0.8 89 82 6.7 124 149 1991 87 3.2 117 141 1991 77 104 80 5.0 94 155 1992 55 2.1 65 136 1992 76 0.8 101 1994 1994 1.6 77 110 1994 1994 77 17 125 8.0 116 1996 53 1.1 58 115 1996 62 2.0 68 125 8.0 95 81 1997 104 5.1 72 99 1997 128 170 128 144 1.2 46 63 1999 157 1.3 51 66 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1	σ.		4.9	99	123	1989	36	2.7	99	110	1989	47	1.2	82	128
82 6.7 124 149 1991 87 3.2 117 141 1991 71 1.2 104 109	0		1.6	92	108	1990	88	2.7	117	171	1990	22	8.0	8	136
60 5.0 94 155 1992 55 2.1 65 136 1992 76 0.8 101 39 2.2 74 104 1993 40 1.6 77 110 1993 52 2.2 77 1994 1994 1996 53 1.1 58 115 1996 62 2.0 68 125 8.0 95 81 1997 104 5.1 72 99 1996 124 17.0 128 144 1.2 46 63 1999 157 1.3 51 66 1998 148 1.8 53 2000 2000	_		5.7	124	149	1991	87	3.2	117	141	1991	71	1.2	104	126
39 2.2 74 104 1993 40 1.6 77 110 1993 52 2.2 77 1994 1994 1994 1994 1994 1994 1994 1	ΩI.		5.0	94	155	1992	55	2.1	88	136	1992	9/	0.8	10	148
1994 1995 1996 125 2.0 60 116 1997 1.1 58 115 1996 62 2.0 68 125 8.0 95 81 1997 104 5.1 72 99 1997 124 17.0 128 144 1.2 46 63 1998 157 1.3 51 66 1998 148 1.8 53 2000	<u></u>		2.2	74	104	1993	40	1.6	1	110	1993	52	2.2	11	125
52 2.0 60 116 1996 53 1.1 58 115 1996 62 2.0 68 125 8.0 95 81 1997 104 5.1 72 99 1997 124 17.0 128 144 1.2 46 63 1998 157 1.3 51 66 1998 148 1.8 53 2000 2000	4 rc					1994 1995					1994 1995				
125 8.0 95 81 1997 104 5.1 72 99 1997 124 17.0 128 144 1.2 46 63 1998 157 1.3 51 66 1998 148 1.8 53 1999 1999 1999 1999 1999 1999 1999 1			2.0	8	116	1996	53	1.1	28	115	1996	62	2.0	88	126
144 1.2 46 63 1998 157 1.3 51 66 1998 148 1.8 53 1999 1999 1999 2000	_		9.0	92	81	1997	104	5.1	72	66	1997	124	17.0	128	133
1999	m .		1.2	46	63	1998	157	1.3	51	99	1998	148	1.8	23	29
	න උ					1999 2000					1999				

Table 6.12 Monthly Operation Record of Lam Takhong Dam (1/2)

(Unit: m3/sec)

											1	(U	nit: m³/sec)
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Mean
1963	3.0	2.0	3.0	3.0	3.0	4.0	17.0	30.0	57.0	87.0	25.0	10.0	20.3
1964	7.0	4.0	3.0	3.0	53.0	19.0	25.0	23.0	50.0	112.0	23.0	9.0	27.6
1965	6.0	6.0	6.0	4.0	9.0	22.0	31.0	64.0	81.0	69.0	20.0	10.0	27.3
1966	6.0	5.0	4.0	5.0	26.0	14.0	22.0	49.0	34.0	19.0	10.0	6.0	16.7
1967	4.0	4.0	4.0	5.0	15.0	15.0	16.0	22.0	22.0	49.0	7.0	4.0	13.9
1968	3.0	2.0	3.0	4.0	24.0	8.0	11.0	12.0	16.0	18.0	5.0	2.0	9.0
1969	4.0	2.0	4.0	2.0	1.0	19.0	38.0	33.0	110.0	38.0	15.0	8.0	22.8
1970	7.0	6.0	8.0	8.0	7.0	14.0	22.0	17.0	36.0	40.0	9.0	9.0	15.3
1971	5.0	5.0	4.0	6.0	14.0	11.0	23.0	15.0	28.0	18.0	6.0	6.0	11.8
1972	2.0	7.0	6.0	5.0	0.0	6.0	17.0	24.0	192.0	168.0	33.0	15.0	39.6
1973	13.0	13.0	9.0	12.0	16.0	11.0	12.0	19.0	70.0	47.0	6.0	6.0	19.5
1974	5.0	10.0	16.0	15.0	18.0	18.0	19.0	22.0	32.0	75.0	46.0	13.0	24.1
1975	11.0	10.0	11.0	8.0	19.0	38.0	39.0	39.0	92.0	107.0	18.0	10.0	33.5
1976	10.0	12.0	8.0	13.0	20.0	24.0	30.0	59.0	82.0	99.0	43.0	15.0	34.6
1977	6.0	6.0	10.0	10.0	16.0	11.0	28.0	22.0	35.0	20.0	7.0	7.0	14.8
1978	4.0	5.0	6.0	14.0	10.0	19.0	35.0	36.0	39.0	57.0	8.0	4.0	19.8
1979	5.0	3.0	2.0	7.0	10.0	9.0	24.0	29.0	61.0	53.0	7.0	6.0	18.0
1980	4.0	4.0	3.0	5.9	5.5	24.8	19.6	18.1	41.9	84.8	17.4	5.7	19.6
1981	4.4	3.8	2.0	11.0	16.1	22.6	27.5	31.8	43.6	33.8	27.2	4.6	19.0
1982	0.0	3.0	5.3	4.4	6.4	8.8	21.7	28.7	70.2	38.9	11.4	4.8	17.0
1983	4.2	2.3	0.6	1.6	4.5	7.5	12.9	46.5	58.9	231.4	40.0	16.0	35.5
1984	10.4	14.2	7.2	11.7	8.2	8.4	24.5	32.1	41.5	83.6	15.8	7.5	22.1
1985	8.5	4.2	1.5	9.2	26.7	30.8	32.3	31.2	45.8	51.0	16.7	6.6	22.0
1986	5.9	2.0	4.4	11.1	24.3	10.2	15.0	14.6	29.9	77.9	11.0	5.6	17.7
1987	1.8	3.7	1.8	7.9	12.8	10.7	8.9	12.2	73.9	44.8	17.0	5.1	16.7
1988	5.8	7.1	2.9	5.5	22.6	16.6	14.3	29.7	87.4	105.8	15.6	9.7	26.9
1989	7.5	4.9	7.4	1.6	20.1	7.7	8.9	9.8	19.9	25.2	3.6	2.1	9.9
1990	3.9	1.7	4.8	3.0	11.1	9.3	10.5	12.0	18.2	167.5	27.7	8.1	23.2
1991	5.9	6.2	4.0	3.0	8.1	17.8	19.6	46.5	37.7	60.8	5.9	2.7	18.2
1992	4.3	0.0	0.0	0.0	0.0	0.5	3.9	16.8	8.0	27.3	5.7	0.9	5.6
1993	0.2	0.0	2.7	2.3	2.3	3.2	2.2	17.7	57.0	30.8	6.6	2.1	10.6
1994	1.9	1.4	4.4	3.1	13.6	38.2	42.7	46.1	36.9	28.0	3.2	1.9	18.5
1995	2.8	1.5	4.6	3.6	7.9	5.1	11.8	37.3	102.4	54.2	11.2	6.5	20.7
1996	2.4	1.7	7.1	8.3	40.9	25.8	17.3	26.4	117.8	139.5	62.1	9.5	38.2
1997	9.3	4.7	9.2	10.5	13.8	7.4	4.5	14.3	4.1	30.7	4.4	2.2	9.6
1998	1.3	0.3	2.7	5.8	11.9	4.4	9.9	13.4	39.3	43.1	8.3	4.1	12.0
1999	2.5	0.1	1.0	10.8	45.0	27.4	20.9	23.6	62.5	93.3	38.0	5.1	27.5
2000	7.0	8.7	5.5	21.1	36.1	25.9	30.5	60.7	88.3	122.2	17.2	7.1	35.9
2001	7.8	2.4	11.2	3.7	21.0	13.7	23.6	36.1	20.2	24.3	7.8	2.5	14.5
Mean	5.2	4.6	5.1	6.9	15.9	15.1	20.3	28.7	54.9	68.6	17.0	6.7	20.8
Max	13.0	14.2	16.0	21.1	53.0	38.2	42.7	64.0	192.0	231.4	62.1	16.0	39.6
Min	0.0	0.0	0.0	0.0	0.0	0.5	2.2	9.8	4.1	18.0	3.2	0.9	5.6

Table 6.12 Monthly Operation Record of Lam Takhong Dam (2/2)

Reservoir Outflow

(Unit: m3/sec) Apr May Sep Oct Nov Dec Mean 20.3 2.0 3.0 3.0 30.0 87.0 25.0 1964 7.0 4.0 3.0 3.0 53.0 19.0 25.0 23.0 50.0 112.0 23.0 9.0 27.6 6.0 6.0 31.0 20.0 1965 6.0 4.0 9.0 22.0 64.0 81.0 69.0 10.0 5.0 5.0 14.0 22.0 34.0 10.0 1966 6.0 4.0 26.0 49.0 19.0 6.0 16.7 1967 4.0 4.0 4.0 5.0 15.0 15.0 16.0 22.0 22.0 49.0 7.0 4.0 13.9 11.0 4.0 11.0 4.0 1968 3.0 2.0 3.0 24.0 8.0 3.0 6.0 4.0 6.9 5.0 7.0 18.0 14.0 3.0 3.0 5.0 9.0 13.0 7.0 9.8 1970 4.0 11.0 11.0 12.0 18.0 32.0 17.0 10.0 8.0 9.0 3.0 11.8 1971 6.0 9.0 8.0 8.0 7.0 24.0 25.0 25.0 15.0 25.0 18.0 4.0 14.5 1972 8.0 5.0 5.0 5.0 14.0 17.0 21.0 19.0 6.0 95.0 29.0 7.0 19.3 19.0 23.0 23.0 7.0 1973 14.0 21.0 32.0 35.0 30.0 24.0 11.0 13.0 21.0 11.0 11.0 7.0 19.0 36.0 24.0 19.0 12.0 5.0 1974 8.0 32.0 29.0 17.8 41.0 1975 10.0 12.0 10.0 13.0 16.0 38.0 52.0 89.0 29.0 8.0 29.2 32.0 1976 13.0 12.0 14.0 10.0 27.0 46.0 46.0 42.0 44.0 41.0 30.0 11.0 28.0 47.0 15.0 14.0 16.0 16.0 21.0 51.0 47.0 31.0 27.0 26.0 6.0 26.4 1978 12.0 17.0 28.0 48.0 7.0 15.0 27.0 43.0 18.0 15.0 25.0 5.0 21.7 1979 7.0 6.0 7.0 6.0 4.0 6.0 34.0 35.0 16.0 25.0 25.0 6.0 14.8 1980 5.0 12.0 8.0 7.7 6.8 86 31.7 26.8 16.2 19 18.5 5.7 124 26.4 1981 8.5 10.7 10.7 8.3 5.3 23.0 34.7 35.1 42.8 20.6 6.9 19.4 17.1 8.0 36.8 1982 5.3 10.0 23.6 32.1 11.6 19.4 20.6 6.6 16.5 6.8 14.0 37.7 1983 13.2 12.6 10.7 10.4 16.2 21.1 27.1 15.7 49.7 10.7 19.9 25.1 1984 13.5 20.9 11.6 9.7 18.7 29.8 64.4 44.3 18.8 38.9 18.7 26.2 22.0 1985 24.4 10.4 10.7 11.5 8.7 21.6 43.5 43.6 21.2 21.6 10.7 20.8 1986 11.1 24.0 16.1 15.6 16.9 32.0 40.3 24.1 25.9 17.4 25.9 13.8 1987 12.1 22.5 15.6 10.8 14.9 25.6 37.3 20.7 10.8 11.0 17.5 9.3 17.3 1988 12.3 13.3 12.2 13.0 7.9 28.4 34.6 32.1 13.0 7.3 18.1 11.3 17.0 17.0 16.2 18.0 1989 12.6 13.8 12.5 28.3 29.4 36.5 23.5 23.2 8.6 20.0 25.4 16.4 1990 11.6 11.4 10.8 13.1 10.8 20.9 14.0 2.6 14.6 8.1 13.3 1991 19.4 12.1 33.9 23.7 13.9 15.6 12.8 14.5 32.0 9.8 20.5 9.8 18.2 1992 10.2 20.7 14.4 16.1 20.3 7.8 12.3 15.7 11.8 13.1 32.7 23.5 5.5 1993 5.4 5.4 5.2 5.4 5.4 4.3 6.9 18.7 10.0 6.9 5.1 5.2 6.1 1994 10.5 11.6 9.7 7.0 24.4 37.4 17.6 35.4 23.2 1995 10.5 9.6 8.9 8.3 7.3 8.8 11.8 9.5 4.8 4.8 15.0 4.9 8.7 1996 12.9 11.8 123 11.9 7 4 13.0 199 21.3 41.1 127.9 62.1 10.7 29.4 1997 1.5 23.0 21.4 24.0 26.8 32.8 30.6 26.8 18.3 12.1 23.3 9.9 20.9 1998 18.9 12.4 9.9 12.6 9.9 19.5 26.8 22.0 9.7 3.7 16.5 5.4 13.9 1999 9.0 7.0 11.4 5.5 3.9 12.8 16.1 23.9 13.7 9.8 5.7 5.4 10.4 17.1 13.7 15.2 23.0 51.8 21.9 71.7 29.1 11.6 39.6 28.9 2000 36.4 16.2 21.3 19.5 7.3 2001 18.0 13.8 18.1 14.0 18.1 28.9 24.4 25.1 5.4 17.8 Mean 10.0 12.0 10.6 11.1 14.2 20.6 29.0 29.4 24.3 30.8 21.3 8.0 18.4 62.1 18.7 Max 24.4 24.0 28.0 48.0 53.0 47.0 51.8 64.4 81.0 127.9 29.4 4.3 1.5 2.0 4.0 3.0 Min 3.0 3.0 3.0 5.4 5.7 3.0 6.9

Table 6.13 Monthly Operation Record of Lam Phra Ploeng Dam (1/2)

(Unit: m³/sec)

V	1	F-1	Man				11	A	0	0-4	NI		nit: m³/sec)
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Mean
1955						24.0	10.0	8.0	20.0	21.0	14.0	2.0	14.1
1956	1.0	1.0	1.0	1.0	3.0	2.0	9.0	11.0	24.0	47.0	4.0	1.0	8.8
1957	0.3	0.1	1.0	2.0	0.1	1.0	2.0	8.0	31.0	122.0	5.0	1.0	14.5
1958	0.2	0.1	0.0	0.0	1.4	8.0	5.0	6.0	36.0	23.0	2.0	0.5	6.9
1959	0.1	0.0	0.0	0.1	0.5	0.6	2.0	2.0	87.0	86.0	2.0	1.0	15.1
1960	0.2	0.0	0.1	0.1	0.1	0.1	0.8	0.3	11.0	124.0	2.0	1.0	11.6
1961	0.2	0.0	0.0	1.0	8.2	2.0	3.0	4.0	6.0	12.0	1.0	0.1	3.1
1962	0.0	0.0	0.0	1.0	3.0	1.0	6.0	6.0	45.0	56.0	2.0	0.4	10.0
1963	0.0	0.0	0.0	1.0	0.0	0.0	4.0	13.0	35.0	51.0	15.0	1.0	10.0
1964	0.0	0.0	0.0										
1965													
1966													
1967													
1968													
1969								4.0	96.0	29.0	8.0	2.0	27.8
1970	0.1	0.3	0.0	5.0	0.0	0.0	0.0	2.0	11.0	9.0	3.0	3.0	2.8
1971	0.0	1.0	2.0	4.0	13.0	12.0	14.0	1.0	42.0	14.0	1.0	1.0	8.8
1972	0.0	1.0	0.0	2.0	0.0	0.0	0.0	0.0	112.0	89.0	20.0	4.0	19.0
1973	0.0	0.0	0.0	1.0	1.0	1.0	1.0	0.0	42.0	37.0	0.0	0.0	6.9
1974	0.0	0.0	1.0	0.0	2.0	1.0	0.0	1.0	12.0	75.0	45.0	3.0	11.7
1975	1.0	0.0	0.0	0.0	1.0	5.0	22.0	0.0	48.0	76.0	6.0	0.0	13.3
1976	0.5	0.0	2.0	1.0	0.0	0.0	4.0	37.0	66.0	79.0	22.0	5.0	18.0
1977	5.0	5.0	0.0	4.0	14.0	3.0	4.0	7.0	38.0	12.0	0.0	2.0	7.8
1978	0.9	0.0	0.0	2.4	20.0	8.7	78.6	18.4	51.3	45.2	0.0	0.0	18.8
1979	2.1	0.0	0.0	4.6	7.6	6.8	7.0	0.0	48.2	16.1	0.0	0.0	7.7
1980	0.5	0.0	0.2	6.4	9.3	20.1	0.0	2.8	57.3	93.8	7.2	1.8	16.6
1981	0.0	0.0	0.0	10.6	3.8	0.7	0.1	0.0	12.0	23.3	5.7	2.8	4.9
1982	0.4	1.0	7.8	3.5	12.0	1.2	0.0	0.0	65.8	43.9	3.4	5.0	12.0
1983	2.0	0.0	0.0	0.0	8.4	7.8	1.6	93.2	95.3	188.8	19.7	2.1	34.9
1984	1.8	2.2	0.0	4.0	6.4	3.5	2.7	1.7	4.6	103.2	2.0	2.1	11.2
1985	3.1	0.0	0.0	10.4	56.5	12.6	22.9	5.5	49.5	33.8	6.6	4.9	17.2
1986	1.8	0.0	0.0	10.1	42.8	7.8	0.2	1.3	41.2	114.0	4.3	2.0	18.8
1987	1.4	0.0	0.0	1.9	11.9	2.0	0.0	0.0	102.9	26.3	10.3	1.5	13.2
1988	1.4	0.8	0.0	0.0	10.9	5.9	8.9	0.0	56.1	90.1	2.9	0.5	14.8
1989	0.6	0.0	0.0	0.0	6.4	13.5	10.2	11.5	30.7	22.6	0.9	0.7	8.1
1990	0.0	0.0	4.1	7.8	13.2	8.7	0.0	0.0	29.4	179.0	14.3	0.0	21.4
1991	1.2	0.0	0.0	0.0	19.7	18.1	8.1	19.3	67.9	68.5	0.7	1.3	17.1
1992	1.2	0.0	0.0	0.0	5.2	4.9	13.7	39.2	10.0	59.2	10.0	0.2	12.0
1993	0.9	0.0	1.3	11.4	4.3	6.0	0.0	0.0	73.6	46.5	0.0	0.0	12.0
1994	0.0	0.0	1.8	2.5	36.5	21.5	30.2	14.0	22.2	12.6	0.0	0.0	11.8
1995	0.0	0.0	0.0	2.3	8.0	6.2	10.9	22.5	85.7	30.3	4.0	1.1	14.3
1996	0.7	2.8	3.2	6.1	25.3	13.1	10.1	14.7	97.0	84.7	6.9	2.1	22.2
1997	1.1	1.7	2.8	7.1	7.8	2.9	2.4	12.9	38.3	18.1	1.5	0.9	8.1
1998	0.5	0.7	1.4	1.9	12.9	1.6	3.1	20.8	25.2	23.2	3.0	1.4	8.0
1999	1.0	0.9	2.2	11.1	65.6	15.5	6.8	17.9	58.7	81.4	32.3	2.1	24.6
2000	1.6	3.4	1.9	32.3	33.0	23.2	18.7	40.5	60.0	79.5	8.0	1.6	25.3
2001	1.2	4.5	11.2	3.6	7.2	3.0	2.0	8.2	17.2	20.0	6.7	0.8	7.1
Mean	0.8	0.6	1.1	4.1	12.1	6.7	7.9	10.8	46.7	58.7	7.2	1.5	13.6
Max	5.0	5.0	11.2	32.3	65.6	24.0	78.6	93.2	112.0	188.8	45.0	5.0	34.9
Min	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.6	9.0	0.0	0.0	2.8

Table 6.13 Monthly Operation Record of Lam Phra Ploeng Dam (2/2)

Reservoir Outflow

												(U	nit: m³/sec)
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Mean
1955						24.0	10.0	8.0	20.0	21.0	14.0	2.0	14.1
1956	1.0	1.0	1.0	1.0	3.0	2.0	9.0	11.0	24.0	47.0	4.0	1.0	8.8
1957	0.3	0.1	1.0	2.0	0.1	1.0	2.0	8.0	31.0	122.0	5.0	1.0	14.5
1958	0.2	0.1	0.0	0.0	1.4	8.0	5.0	6.0	36.0	23.0	2.0	0.5	6.9
1959	0.1	0.0	0.0	0.1	0.5	0.6	2.0	2.0	87.0	86.0	2.0	1.0	15.1
1960	0.2	0.0	0.1	0.1	0.1	0.1	0.8	0.3	11.0	124.0	2.0	1.0	11.6
1961	0.2	0.0	0.0	1.0	8.2	2.0	3.0	4.0	6.0	12.0	1.0	0.1	3.1
1962	0.0	0.0	0.0	1.0	3.0	1.0	6.0	6.0	45.0	56.0	2.0	0.4	10.0
1963	0.0	0.0	0.0	1.0	0.0	0.0	4.0	13.0	35.0	51.0	15.0	1.0	10.0
1964	0.3	0.0	0.0	0.1	23.0	1.0	14.0	2.0	32.0	73.0	5.0	2.0	
1965	2.0	0.2	0.0										
1966													
1967													
1968													
1969								2.0	4.0	15.0	11.0	0.1	6.4
1970	0.0	1.0	0.2	3.0	3.0	5.0	18.0	12.0	11.0	7.0	4.0	1.0	5.4
1971	0.1	0.0	2.0	3.0	3.0	6.0	8.0	18.0	10.0	14.0	14.0	1.0	6.6
1972	1.0	1.0	1.0	1.0	9.0	8.0	14.0	17.0	3.0	67.0	19.0	5.0	12.2
1973	1.0	5.0	6.0	6.0	9.0	7.0	15.0	20.0	15.0	8.0	12.0	2.0	8.8
1974	1.0	4.0	7.0	6.0	10.0	11.0	18.0	17.0	12.0	3.0	3.0	1.0	7.8
1975	2.0	5.0	7.0	6.0	6.0	6.0	12.0	24.0	16.0	39.0	12.0	1.0	11.3
1976	1.0	6.0	7.0	8.0	9.0	17.0	12.0	22.0	20.0	61.0	28.0	4.0	16.3
1977	4.0	10.0	10.0	12.0	12.0	16.0	19.0	28.0	21.0	19.0	21.0	3.0	14.6
1978	0.3	3.0	2.0	2.0	1.0	1.1	12.8	32.6	29.8	44.8	25.8	1.0	13.0
1979	1.6	7.0	10.8	10.5	9.2	2.9	13.4	30.9	13.2	14.8	18.2	1.8	11.2
1980	0.8	0.9	1.9	1.9	1.1	4.4	21.6	19.6	3.2	7.6	8.4	0.6	6.0
1981	2.3	9.9	11.8	12.1	12.1	9.9	9.8	22.9	24.1	13.2	12.3	0.3	11.7
1982	0.7	0.4	3.1	2.8	0.9	1.2	19.3	19.0	6.5	9.8	16.4	0.8	6.7
1983	0.5	6.4	10.4	12.8	9.4	2.9	14.1	15.9	70.4	196.7	22.0	1.7	30.3
1984	0.7	10.6	14.2	13.5	11.0	6.6	13.2	23.3	21.0	18.4	22.0	3.6	13.2
1985	0.9	7.9	15.8	10.2	14.4	18.3	21.0	29.2	21.3	23.6	17.3	1.7	15.1
1986	0.5	6.6	9.8	8.8	14.4	20.0	21.4	16.3	19.4	58.8	18.8	7.0	16.8
1987	0.4	3.5	16.7	13.0	12.5	12.2	12.5	19.8	16.4	14.1	11.6	1.0	11.1
1988	0.5	7.8	15.4	14.4	8.2	10.2	13.4	18.4	14.1	38.0	17.8	3.0	13.4
1989	0.8	12.4	18.2	18.6	13.5	6.3	6.2	18.1	17.7	11.9	15.6	3.4	11.9
1990	1.0	3.9	1.9	5.3	0.7	4.7	17.2	20.1	7.6	86.9	15.6	3.0	14.0
1991	2.3	15.6	18.8	16.0	18.1	1.0	14.9	20.4	28.0	45.0	18.8	0.6	16.6
1992	3.6	15.8	22.2	21.9	19.3	2.7	0.3	14.1	22.9	19.8	18.8	7.7	14.1
1993	0.2	3.1	2.9	2.3	3.0	6.2	19.7	21.9	18.6	19.1	19.9	4.3	10.1
1994	1.7	3.4	1.6	3.4	2.8	9.8	32.0	20.4	19.7	18.0	22.7	6.6	11.8
1995	0.4	3.9	3.3	2.6	7.3	6.4	17.5	17.4	18.2	12.9	13.0	0.2	8.6
1996	2.0	5.5	9.7	5.3	6.6	20.0	22.6	23.2	37.9	93.2	7.6	1.0	19.6
1997	0.0	5.5	13.1	10.6	11.2	8.0	12.9	36.2	19.7	12.4	17.3	0.9	12.3
1998	2.6	2.9	1.9	1.5	1.6	0.7	9.5	17.6	21.4	12.4	14.2	0.5	7.2
1999	2.9	0.5	3.4	0.9	1.0	12.4	22.2	27.2	25.5	68.5	38.1	1.2	17.0
2000	0.7	8.6	13.6	15.6	23.0	21.5	24.5	31.5	52.8	82.0	21.4	1.0	24.7
2001	0.1	15.6	10.4	19.9	16.8	3.0	7.0	20.0	21.1	12.7	5.6	1.5	11.1
Mean	1.0	4.6	6.6	6.8	7.8	7.3	13.1	17.6	23.0	41.5	13.8	1.9	12.2
Max	4.0	15.8	22.2	21.9	23.0	24.0	32.0	36.2	87.0	196.7	38.1	7.7	30.3
Min	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.3	3.0	3.0	1.0	0.1	3.1
		tion Dent											

Table 6.14 Monthly Operation Record of Lam Pao Dam

												(U	nit: m3/sec)
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Mean
1970				15.0	21.0	654.0	310.0	782.0	1,120.0	380.0	31.0	2.0	368.3
1971	0.0	0.0	0.0	2.0	35.0	73.0	736.0	607.0	475.0	390.0	44.0	7.0	197.4
1972	0.0	6.0	0.0	19.0	5.0	102.0	208.0	279.0	79.0	94.0	20.0	1.0	67.8
1973	0.0	1.0	0.0	0.0	34.0	108.0	317.0	470.0	291.0	247.0	13.0	14.0	124.6
1974	0.0	11.0	0.0	2.0	30.0	69.0	62.0	897.0	705.0	256.0	80.0	5.0	176.4
1975	13.0	0.0	13.0	6.0	18.0	321.0	539.0	556.0	636.0	684.0	72.0	33.0	240.9
1976	6.0	7.0	0.0	2.0	38.0	48.0	109.0	211.0	326.0	150.0	55.0	20.0	81.0
1977	1.0	0.0	0.0	6.0	50.0	12.0	100.0	133.0	670.0	84.0	0.0	13.0	89.1
1978	0.0	17.0	2.0	8.0	32.0	123.0	392.0	1,233.0	1,192.0	509.0	149.0	53.0	309.2
1979	33.0	16.0	25.0	21.0	105.0	274.0	332.0	515.0	383.0	27.0	0.0	0.0	144.3
1980	21.0	47.0	45.0	43.0	91.0	429.0	345.0	302.0	1,207.0	248.0	54.0	18.0	237.5
1981	40.0	24.0	40.0	69.0	88.0	453.0	958.0	731.0	311.0	237.0	66.0	5.0	251.8
1982	0.0	56.0	18.0	47.0	50.0	82.0	71.0	120.0	670.0	475.0	122.0	28.0	144.9
1983	28.0	57.0	67.0	23.0	19.0	168.0	92.0	494.0	456.0	209.0	0.0	30.0	136.9
1984	30.0	0.0	0.0	19.0	44.0	38.0	218.0	582.0	553.0	376.0	77.0	20.0	163.1
1985	20.0	9.0	0.0	25.0	54.0	94.0	135.0	326.0	209.0	121.0	32.0	6.0	85.9
1986	6.0	0.0	0.0	21.0	153.0	415.0	259.0	423.0	541.0	58.0	22.0	7.0	158.8
1987	0.0	3.0	3.0	6.0	25.0	91.0	73.0	734.0	606.0	231.0	68.0	5.0	153.8
1988	0.0	0.0	0.0	0.0	205.0	372.0	184.0	203.0	145.0	160.0	16.0	16.0	108.4
1989	0.0	0.0	0.0	29.0	8.0	56.0	99.0	454.0	567.0	389.0	52.0	0.2	137.9
1990	0.0	0.0	0.0	0.0	6.0	307.0	412.0	1,005.0	906.0	352.0	102.0	26.0	259.7
1991	10.0	0.0	0.0	0.0	34.0	27.0	62.0	509.0	614.0	157.0	26.0	9.0	120.7
1992	0.0	0.0	28.0	0.0	11.0	231.0	262.0	752.0	429.0	117.0	0.0	7.0	153.1
1993	0.0	5.0	0.0	0.0	71.0	51.0	173.0	66.0	259.0	13.0	0.0	0.0	53.2
1994	0.0	11.0	13.0	0.0	35.0	97.0	109.0	294.0	844.0	204.0	23.0	4.0	136.2
1995	19.0	0.0	0.0	0.0	22.0	83.0	382.2	703.7	570.0	110.7	16.4	21.4	160.7
1996	13.8	5.1	17.9	11.5	49.3	143.2	145.0	154.6	897.9	309.6	213.4	44.1	167.1
1997	23.3	24.0	21.2	26.5	57.5	69.0	406.2	748.8	481.9	222.6	32.4	5.6	176.6
1998	10.6	24.0	11.6	22.4	25.4	54.0	109.6	115.1	452.9	52.6	18.9	6.9	75.3
1999	7.7	0.0	10.3	63.1	330.7	330.6	248.2	224.4	755.4	308.4	103.1	6.0	199.0
2000	15.2	20.4	15.4	54.4	216.3	280.0	859.1	484.9	683.8	210.0	49.5	29.7	243.2
2001	12.6	4.5	6.0	13.3	77.5	374.0	285.6	2,050.1	1,358.8	217.6	19.5	52.0	372.6
Mean	10.0	11.2	10.9	17.3	63.8	188.4	281.0	536.2	606.1	237.5	49.3	15.5	171.7
Max	40.0	57.0	67.0	69.0	330.7	654.0	958.0	2,050.1	1,358.8	684.0	213.4	53.0	372.6
Min	0.0	0.0	0.0	0.0	5.0	12.0	62.0	66.0	79.0	13.0	0.0	0.0	53.2

Source: Royal Irrigation Dept. (RID)

Reservoir Outflow

(Unit: m3/sec) Feb Mar Мау Jul Aug Sep Oct Nov Dec Mean Apr 1970 0.0 0.0 105.0 147.0 48.0 82.0 214.0 433.0 1,049.0 670.0 217.0 194.0 1971 70.0 55.0 87.0 88.0 115.0 42 0 70.0 336.0 512 0 454 0 227 0 115.0 180.9 1972 58.0 65.0 73.0 78.0 105.0 56.0 91.0 139.0 113.0 120.0 113.0 8.0 84.9 1973 15.0 27.0 168.0 159.0 9.0 9.0 15.0 4.0 192.0 162.0 119.0 22.0 75.1 1974 50.0 85.0 69.0 44.0 114.0 84.0 88.0 88.0 587.0 385.0 238.0 46.0 156.5 80.0 1975 134.0 166.0 118.0 529.0 55.0 90.0 93.0 289.0 698.0 267.0 126.0 220.4 1976 67.0 75.0 131.0 116.0 147.0 142.0 91.0 86.0 30.0 1977 41.0 35.0 39.0 108.0 116.0 60.0 59.0 52.0 159.0 86.0 18.0 1978 47.0 58.0 63.0 62.0 95.0 161.0 125.0 477.0 1,005.0 821.0 286.0 181.0 281.8 1979 156.0 152.0 174.0 101.0 96.0 161.0 199.0 210.0 217.0 139.0 52.0 5.0 138.5 1980 128.0 156.0 97.0 120.0 109.0 103.0 180.0 250.0 668.0 513.0 159.0 99.0 215.2 1981 174.0 176.0 171.0 172.0 130.0 163.0 290.0 694.0 413.0 236.0 144.0 61.0 235.3 1982 172.0 170.0 88.0 85.0 24.0 219.0 241.0 97.0 133.5 109.0 144.0 156.0 97.0 1983 48.0 123.0 202.0 180.0 136.0 138.0 103.0 85.0 212.0 204.0 162.0 184.0 148.1 1984 114.0 32.0 37.0 67.0 152.0 30.0 110.0 290.0 299.0 164.0 68.0 119.3 69.0 1985 29.0 93.0 118.0 152.0 169.0 128.0 152.0 80.0 62.0 80.0 8.0 0.0 89.3 1986 49.0 100.0 93.0 19.0 261.0 330.0 194.0 14.0 14.0 1987 60.0 61.0 116.0 112.0 78.0 76.0 107.0 146.0 351.0 306.0 97.0 55.0 130 4 1988 68.0 73.0 108.0 108.0 130.0 210.0 279.0 290.0 158.0 104.0 7.0 24.0 129.9 1989 67.0 41.0 43.0 46.0 11.0 16.0 76.0 62.0 192.0 347.0 142.0 55.0 91.5 1990 81.0 93.0 148.0 104.0 0.0 10.0 221.0 424.0 968.0 350.0 104.0 80.0 215.3 159.0 117.0 1991 182.0 148.0 127.0 54.0 55.0 91.0 180.0 74.0 13.0 74.0 106.2 1992 96.0 95.0 48.0 59.0 271.0 272.0 280.0 165.0 65.0 141.0 133.0 38.0 138.6 1993 127.0 113.0 119.0 19.0 36.0 164.0 124.0 102.0 117.0 48.0 7.0 87.0 68.0 1994 116.0 49.0 6.0 9.0 8.0 8.0 126.0 226.0 61.0 1995 97.0 116.0 143.0 97.0 53.0 44.0 106.0 389.6 471.9 166.4 51.9 50.4 1996 133.4 140.5 131.8 80.3 14.3 52.0 296.3 147.0 107.1 174.5 152.3 168.4 133.2 1997 148.6 175.2 136.5 129.9 122.1 105.5 202.6 317.5 342.3 205.6 60.0 65.9 167.6 1998 135.3 118.6 126.2 73.0 31.3 89 2 180.8 116.5 107.4 194 34 6 113 87.0 95.3 170.1 42.6 1999 12.9 12.1 29.6 21.6 191.4 308.3 258.4 234.6 47.0 118.7 2000 108.0 164.8 207.6 120.1 430.8 434.3 143.7 160.0 66.0 590.7 99.2 113.0 219.8 162.0 149.1 164.5 97.6 45.5 37.9 244.5 1,060.1 1,684.0 330.6 64.5 221.8 355.2 2001 Mean 170.3 372.3 261.4 84.0 92.6 109.8 97.4 84.3 89.4 258.2 110.0 73.5 150.3 169.0 430.8 176.0 207.6 180.0 210.0 1.060.1 1.684.0 821.0 286.0 221.8 355.2 182.0 Min 7.0 10.0 30.0 59.0 24.0 7.0 59.0 0.0 0.0 8.0 0.0 0.0

Table 6.15 Monthly Operation Record of Huai Luang Dam

(Unit: m³/sec) Oct Dec Year Feb Mar May Jun Jul Sep Nov Mean Jan Apr Aug 1978 117.4 44.8 3.4 60.9 137.9 1.1 51.2 1979 2.6 0.3 1.9 3.9 5.2 15.9 26.5 0.0 4.3 0.0 0.0 1980 0.5 1.7 0.9 1.9 7.9 50.2 54.7 131.5 11.7 3.5 0.0 24.0 7.5 1981 0.7 1.2 0.5 1.3 10.2 32.6 47.1 7.2 15.5 9.0 0.0 11.1 1982 0.3 0.4 0.9 0.8 2.5 0.9 6.9 11.7 62.5 40.5 5.9 0.2 11.1 0.8 0.0 1.3 40.2 63.3 1.7 11.0 1983 0.2 0.0 10.8 4.4 9.6 0.0 1.7 5.1 32.6 1.2 1984 2.6 1.2 0.0 1.6 26.4 33.7 30.0 3.7 11.7 1985 2.9 0.0 5.2 5.6 5.1 16.9 18.5 40.0 9.1 3.2 0.0 10.3 16.9 0.0 9.0 17.8 6.7 1986 0.0 1.2 0.0 8.2 7.5 35.2 7.6 1.1 7.9 1987 0.7 0.0 28.9 5.1 0.0 0.0 0.0 1988 1.3 0.6 0.0 0.0 10.8 19.3 31.5 17.2 26.2 18.5 0.0 0.0 10.5 1989 0.5 1.0 1.5 0.0 0.4 6.8 7.2 11.1 50.8 26.1 0.0 0.0 8.8 1990 1.9 0.5 0.0 0.0 10.0 25.5 23.6 61.6 91.2 74.5 0.0 0.1 24.1 1991 0.0 0.0 0.3 1.5 3.3 0.2 3.0 16.0 54.4 17.8 1.3 0.0 8.2 1992 0.0 0.0 3.1 9.0 14.6 41.9 46.8 4.7 0.0 0.0 0.2 0.0 10.0 0.0 1.5 1.8 12.5 0.0 0.0 1993 0.0 0.0 0.0 2.8 0.0 2.7 1.8 1994 0.5 0.7 1.2 0.0 1.7 2.8 8.0 10.3 90.1 15.9 0.0 0.0 10.9 0.0 1.0 1.0 0.0 1.3 4.7 28.9 70.3 69.3 13.9 1.9 0.9 1996 2.4 1.9 17.4 241.2 48.0 68.4 1997 1.1 0.4 0.9 2.2 3.4 12.8 13.0 31.2 46.1 36.1 2.4 0.7 12.5 1998 0.5 0.4 0.2 0.7 1.7 5.0 3.5 11.3 5.0 1.5 0.5 0.3 2.6 10.2 1999 0.3 0.2 0.4 0.9 87 5.2 24 10.3 67.8 8.0 0.0 9.5 27.2 0.0 12.3 19.3 120.8 18.2 0.1 19.7 2000 0.0 0.0 4.2 34.3 0.0 0.0 0.0 0.0 0.0 19.1 247.7 92.2 0.0 2001 0.0 36.7 23.7 0.0 35.0 Mean 0.8 0.6 1.1 1.1 4.5 14.0 20.1 40.7 59.1 21.6 5.1 0.4 15.4 12.3 Max 2.9 2.7 68.4 5.2 5.6 51.2 120.8 247.7 241.2 74.5 3.7 60.9 0.0 0.0 0.0 0.0 1.8 Min 0.0 0.0 0.0 2.4 1.8 0.0 0.0 0.0

Source: Royal Irrigation Dept. (RID)

Reservoir Outflow

(Unit: m3/sec)

												, , ,	nit. III /Sec
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Mean
1978								108.8	98.1	65.0	3.0	2.3	55.4
1979	6.1	3.2	5.8	4.8	11.7	26.2	20.1	26.5	13.6	21.9	4.3	0.0	12.0
1980	0.4	2.0	2.1	1.9	1.9	0.9	10.5	42.4	105.8	9.4	0.9	0.5	14.9
1981	1.2	1.7	1.6	2.1	8.8	22.7	19.7	33.4	13.7	8.0	0.0	1.4	9.5
1982	3.3	3.6	3.9	3.8	7.3	13.7	12.1	10.1	0.0	7.9	4.8	2.0	6.0
1983	3.3	1.2	3.0	2.6	9.9	20.0	14.7	10.4	51.1	12.8	0.5	2.6	11.0
1984	5.3	3.6	5.5	3.4	2.3	15.6	20.4	12.3	8.9	5.5	0.4	7.7	7.6
1985	8.6	2.8	6.1	11.2	12.2	12.9	15.2	7.9	11.4	12.3	0.0	4.2	8.7
1986	4.1	5.0	4.6	2.4	3.3	6.7	12.3	11.5	6.9	15.1	0.0	0.4	6.0
1987	0.8	0.8	0.6	2.3	1.8	11.5	14.6	3.8	0.8	1.9	1.1	2.6	3.6
1988	9.4	5.5	5.4	3.7	0.4	6.0	16.9	14.3	9.8	9.3	1.0	5.0	7.2
1989	11.1	6.6	6.0	3.8	2.0	17.7	10.8	11.3	5.1	3.0	1.6	7.0	7.2
1990	11.9	6.3	2.6	3.5	1.2	5.7	7.4	51.6	69.6	65.0	0.8	6.0	19.3
1991	10.5	9.2	9.3	6.3	2.0	18.9	11.0	3.3	2.8	6.4	0.8	3.5	7.0
1992	4.2	4.9	5.1	4.6	2.9	6.3	9.9	1.3	20.4	13.9	0.9	2.5	6.4
1993	7.8	8.0	6.4	5.6	2.7	2.4	12.2	10.3	0.0	7.5	0.9	1.7	5.5
1994	1.5	1.4	2.5	1.3	1.7	0.0	2.7	3.3	6.9	4.4	1.7	2.3	2.5
1995	5.1	5.6	7.2	5.3	3.6	6.3	15.3	38.5	67.1	21.4	0.8	3.8	15.0
1996	8.1	3.6	2.9	0.7	1.0	2.7	16.9	15.2	151.7	43.3	65.7	4.0	26.3
1997	3.6	3.7	3.9	1.9	2.9	36.8	17.1	11.2	16.9	8.6	0.5	4.1	9.3
1998	5.1	2.8	2.9	1.6	0.5	12.6	13.4	10.0	3.8	5.9	0.3	0.0	4.9
1999	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.3	0.1
2000	5.1	5.7	6.1	3.2	0.0	25.3	132.1	12.9	12.2	8.3	0.3	5.1	18.0
2001	5.4	6.5	2.4	5.5	0.2	21.7	30.4	182.1	80.9	9.5	0.0	1.5	28.8
Mean	5.3	4.1	4.2	3.5	3.5	12.7	18.9	26.4	31.6	15.3	3.8	3.0	12.2
Max	11.9	9.2	9.3	11.2	12.2	36.8	132.1	182.1	151.7	65.0	65.7	7.7	55.4
Min	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1

Table 6.16 Monthly Operation Record of Nam Oon Dam

(Unit: m3/sec) Mar Apr May Sep Oct Nov Dec Mean 2.0 37.2 10.0 11.0 11.0 0.0 0.0 1975 0.0 4.0 7.0 4.0 13.0 57.0 107.0 127.0 103.0 31.0 0.0 1.0 37.8 1976 9.0 17.0 50.0 4.0 11.0 31.0 29.0 30.0 57.0 37.0 2.0 0.0 15.0 29.0 13.8 1977 3.0 1.0 2.0 8.0 0.0 18.0 89.0 0.0 0.0 0.0 1978 0.0 2.0 8.0 15.0 12.0 25.0 76.0 206.0 97.0 0.0 0.0 0.0 36.8 7.0 2.0 10.0 17.0 90.0 140.0 58.0 133.0 66.0 9.0 0.0 11.0 1980 8.0 5.0 7.0 8.0 52.0 39.0 173.0 2.0 0.0 1981 9.0 11.0 0.0 5.0 16.0 130.0 186.0 78.0 33.0 38.0 1.0 3.0 42.5 1982 6.0 10.0 26.0 9.0 15.0 19.0 23.0 37.0 143.0 65.0 9.0 0.0 30.2 1983 4.0 4.0 6.0 2.0 8.0 15.0 22.0 57.0 76.0 17.0 1.0 0.0 17.7 1984 4.0 4.0 3.0 7.0 13.0 9.0 62.0 189.0 116.0 64.0 8.0 0.0 39.9 1985 2.0 10.0 3.0 7.0 16.0 40.0 56.0 32.0 87.0 26.0 4.0 0.0 23.6 1986 4.0 4.0 6.0 11.0 22.0 63.0 43.0 101.0 107.0 16.0 2.0 3.0 31.8 1987 6.0 10.0 10.0 16.0 8.0 29.0 24.0 252.0 113.0 46.0 2.0 5.0 43.4 29.0 45.0 46.0 9.0 1988 12.0 18.0 15.0 13.0 53.0 87.0 73.0 2.0 33.5 1989 15.0 10.0 13.0 15.0 7.0 21.0 52.0 81.0 90.0 63.0 10.0 7.0 1990 12.0 12.0 18.0 9.0 10.0 58.0 141.0 292.0 193.0 51.0 18.0 10.0 68.7 1991 17.0 18.0 24.0 190 16.0 17.0 43.0 123 0 124 0 33.0 0.0 10.0 37.0 1992 16.0 14.0 13.0 7.0 8.0 46.0 35.0 143.0 100.0 12.0 0.0 11.0 33.8 74.0 1993 7.0 9.0 10.0 55.0 76.0 14.0 28.9 8.0 34.0 60.0 0.0 0.0 1994 6.0 10.0 9.0 5.0 10.0 48.0 278.0 106.0 165.0 33.0 2.0 8.0 56.7 1995 3.0 11.0 10.0 8.0 11.0 38.0 80.0 119.0 101.0 37.0 6.0 14.0 36.5 1996 7.0 9.0 17.0 17.0 29.0 26.0 48.0 71.0 195.0 35.0 13.0 16.0 4.0 12.0 118.0 1997 28.0 211.0 72.0 35.0 4.0 21.0 1998 9.0 13.0 12.0 11.0 53.0 26.0 91.0 10.0 4.0 5.0 24.0 23.3 1999 7.0 4.0 10.0 17.0 29.0 52.0 48.0 68.0 126.0 24.0 7.0 6.0 33.2 2000 11.0 9.0 11.0 20.0 94.0 67.0 169.0 99.0 159.0 45.0 6.0 6.0 58.0 17.0 40.0 236.0 210.0 47.0 53.0

21.0

41.7

140.0

0.0

70.6

278.0

11.0

118.1

292.0

26.0

108.2

210.0

32.0

22.9

94.0

2.0

6.0

4.1

18.0

0.0

30.7

65.0

0.0

11.0

5.0

16.0

0.0

36.9

68.7

13.8

Source: Royal Irrigation Dept. (RID)

3.0

8.9

18.0

1.0

18.0

11.5

28.0

0.0

18.0

11.5

21.0

2.0

9.0

6.9

17.0

0.0

Reservoir Outflow

2001

Mean

Max

Min

(Unit: m3/sec) Year Mar Apr Мау Jun Jul Aug Sep Oct Nov Dec 8.0 33.0 31.0 1975 21.0 29.0 47.0 63.0 55.0 33.0 62.0 35.0 18.0 0.4 2.0 1976 6.0 12.0 49.0 53.0 60.0 56.0 55.0 30.0 3.0 2.0 1.0 1.0 27.3 5.0 1977 2.0 10.0 14.0 1.0 1.0 1.0 3.0 11.0 4.0 7.0 1978 4.0 4.0 5.0 0.0 25.0 9.0 6.0 16.0 23.0 12.0 1.0 6.0 9.3 15.0 45.0 63.0 51.0 33.0 47.0 67.0 63.0 65.0 66.0 7.0 20.0 12.0 1980 22.0 19.0 32.0 25.0 30.0 32.0 24.0 10.0 1981 19.0 19.0 29.0 19.0 10.0 7.0 44.0 72.0 66.0 41.0 1.0 12.0 28.3 1982 31.0 35.0 49.0 40.0 27.0 37.0 37.0 29.0 26.0 16.0 0.0 14.0 28.4 1983 21.0 20.0 32.0 23.0 8.0 31.0 48.0 20.0 17.0 45.0 11.0 6.0 23.5 1984 16.0 16.0 19.0 13.0 0.0 11.0 18.0 8.0 39.0 35.0 7.0 3.0 15.4 1985 11.0 7.0 35.0 10.0 10.0 49.0 56.0 10.0 53.0 45.0 51.0 5.0 28.5 1986 29.0 22.0 24.0 19.0 0.0 14.0 50.0 38.0 32.0 66.0 15.0 0.4 25.8 1987 28.0 24.0 19.0 20.0 0.0 16.0 43.0 24.0 36.0 62.0 9.1 19.0 25.0 37.0 58.0 1988 0.0 60.0 50.0 21.0 1989 41.0 37.0 26.0 28.0 0.2 12.0 38.0 21.0 31.0 52.0 10.3 24.0 1990 39.0 28.0 24.0 28.0 0.0 0.4 7.0 56.0 266.0 85.0 15.5 31.0 48.3 1991 46.0 45.0 61.0 53.0 24.0 40.0 50.0 46.0 52.0 56.0 10.0 27.0 42.5 1992 24.0 35.0 35.0 29.0 3.0 21.0 46.0 32.0 43.0 58.0 18.0 19.0 30.3 29.0 28.0 1993 33.0 19.0 0.0 21.0 28.0 51.0 54.0 60.0 16.0 17.0 29.7 1994 25.0 13.0 18.0 8.0 0.0 5.0 278.0 34.0 32.0 63.0 15.0 19.0 42.5 1995 24.0 27.9 28.0 24.0 11.0 0.0 18.0 49.0 29.5 42.7 67.9 15.0 25.5 23.4 23.6 9.2 0.0 32.7 48.6 32.8 23.6 68.8 18.7 30.3 1997 24.4 23.6 39.8 33.3 48.4 74.3 24.0 33.7 24.9 8.2 61.8 15.4 1998 32.2 23.0 31.6 17.4 0.0 38.4 58.4 66.0 40.7 57.1 4.7 19.1 32.4 1999 25.7 24.3 22.1 9.0 0.0 0.0 24.2 20.6 29.8 44.3 1.2 17.0 18.2 2000 23.7 22.4 26.2 10.9 0.0 2.1 54.7 79.5 109.0 80.8 7.3 29.2 37.2 46.8 38.9 35.9 34.7 21.8 160.5 86.6 30.9 2001 14.6 0.0 24.8 0.7 41.4 Mean 48.0 50.9 24.9 24.2 30.1 23.9 9.1 20.7 38.0 48.5 6.7 16.2 28.1 Max 45.0 63.0 278.0 46.0 53.0 60.0 63.0 79.5 266.0 86.6 18.0 31.0 48.3 Min 1.0 1.0 2.0 1.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 1.0 1.9

Table 6.17 Monthly Operation Record of Sirindhorn Dam

(Unit: m³/sec)

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Mean
1982	3.4	14.2	9.0	34.1	27.0	113.1	209.3	351.0	948.2	116.9	23.8	11.3	155.1
1983	11.4	17.5	13.4	8.6	40.5	225.1	101.6	334.7	178.0	392.3	35.6	15.1	114.5
1984	8.2	3.0	18.3	27.9	55.1	120.6	155.1	754.8	643.6	348.8	45.6	18.6	183.3
1985	16.3	18.7	13.1	47.0	100.7	169.7	177.3	409.6	324.1	72.6	24.0	15.2	115.7
1986	15.3	6.9	11.2	15.3	121.6	189.7	376.2	658.6	336.4	160.1	35.3	13.6	161.7
1987	5.4	15.8	15.1	22.1	20.6	204.5	392.1	330.5	446.1	129.9	74.8	11.1	139.0
1988	10.3	2.1	8.0	16.8	87.4	388.3	73.5	184.7	166.1	315.0	25.4	7.8	107.1
1989	1.8	5.6	8.6	28.3	66.4	86.6	232.9	394.0	351.6	107.1	11.8	7.4	108.5
1990	0.4	4.9	20.3	10.9	105.2	371.2	216.5	376.1	526.5	341.9	77.1	3.8	171.2
1991	2.6	14.4	13.1	14.5	26.5	92.0	411.7	721.2	610.2	363.2	8.8	15.6	191.1
1992	11.9	8.0	7.5	10.8	30.2	109.4	234.8	649.3	421.3	175.3	29.9	20.4	142.4
1993	16.0	15.6	20.9	24.6	51.5	60.0	96.6	202.9	369.2	55.0	16.8	11.2	78.4
1994	14.3	8.9	12.1	7.6	77.6	190.7	211.3	284.8	646.3	142.3	20.0	11.0	135.6
1995	10.9	3.7	6.3	10.7	49.6	60.7	342.5	206.2	318.4	195.5	36.8	8.0	104.1
1996	7.3	22.1	15.5	33.8	80.9	141.2	211.0	307.3	701.4	260.0	198.1	13.8	166.0
1997	7.3	9.8	5.5	12.7	42.2	88.3	424.5	465.4	441.9	170.4	26.5	1.5	141.3
1998	3.5	13.6	4.5	11.8	57.1	27.5	78.1	266.5	223.4	97.3	25.9	1.7	67.6
1999	4.0	0.3	29.9	35.9	91.8	188.8	471.1	240.1	326.4	152.6	46.8	12.0	133.3
2000	3.2	8.5	9.3	41.0	219.8	434.2	648.9	521.7	419.8	174.8	11.1	1.3	207.8
2001	6.2	0.0	21.6	2.8	37.4	157.1	236.5	557.1	478.4	237.5	42.3	0.0	148.1
2002	0.8	0.0	5.6	7.7	33.4	73.8	371.8						
Mean	7.6	9.2	12.8	20.2	67.7	166.3	270.1	410.8	443.9	200.4	40.8	10.0	138.6
Max	16.3	22.1	29.9	47.0	219.8	434.2	648.9	754.8	948.2	392.3	198.1	20.4	207.8
Min	0.4	0.0	4.5	2.8	20.6	27.5	73.5	184.7	166.1	55.0	8.8	0.0	67.6

Source: Royal Irrigation Dept. (RID)

Reservoir Outflow

(Unit: m³/sec)

V		E-I-		A		1	11	A	0	0-4	NI	· ·	M
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Mean
1982	113.5	66.5	42.9	36.4	37.6	45.8	47.3	81.5	172.3	176.9	78.5	76.7	81.3
1983	61.9	54.6	38.8	64.6	80.4	69.2	124.2	121.0	118.0	66.3	88.5	48.5	78.0
1984	36.6	18.5	46.2	57.8	51.5	68.3	116.1	189.0	319.7	330.6	87.8	90.2	117.7
1985	75.0	52.0	45.9	59.8	85.8	126.0	131.0	131.6	204.7	61.8	99.0	82.2	96.2
1986	60.5	32.0	45.0	42.7	47.3	68.6	198.3	333.2	301.0	92.4	57.8	36.1	109.6
1987	47.1	47.8	57.1	68.2	63.3	61.5	212.5	136.5	328.2	118.5	62.4	81.2	107.0
1988	78.3	75.2	80.3	20.7	10.8	135.9	67.1	68.1	64.3	121.4	77.5	54.0	71.1
1989	25.8	19.6	27.6	26.9	33.2	34.7	32.7	126.5	89.0	47.0	30.6	27.5	43.4
1990	25.6	26.1	35.2	32.7	48.3	165.8	328.4	155.9	279.3	252.5	61.5	90.8	125.2
1991	134.9	66.6	48.2	42.1	40.0	104.6	187.4	232.5	324.8	305.3	84.6	51.7	135.2
1992	64.5	70.7	101.2	90.0	143.2	58.2	54.9	171.6	242.7	170.0	89.0	55.6	109.3
1993	53.8	57.1	87.9	51.0	73.3	95.9	58.8	24.9	26.9	11.4	10.4	9.6	46.7
1994	9.3	21.0	37.9	54.9	52.5	39.3	150.7	192.0	151.3	81.7	38.5	76.0	75.4
1995	31.9	42.4	95.5	60.7	57.4	64.0	28.5	106.4	100.0	69.2	43.4	42.9	61.9
1996	51.6	29.4	67.7	46.9	53.2	104.0	139.4	157.4	221.6	206.8	189.6	65.9	111.1
1997	59.4	70.2	101.8	77.5	110.1	105.2	84.2	297.5	93.9	82.2	21.4	38.3	95.2
1998	49.4	52.5	79.4	73.0	59.3	53.9	99.3	29.3	5.4	48.4	4.8	18.0	47.7
1999	7.1	10.1	37.5	92.1	70.5	93.4	190.8	309.7	139.0	14.7	23.4	8.3	83.0
2000	15.0	71.9	121.1	110.3	110.2	274.1	324.4	299.4	225.1	153.5	149.2	42.8	158.1
2001	41.3	120.7	164.3	154.2	53.0	17.5	24.9	57.9	267.6	148.9	182.1	59.3	107.6
2002	114.6	120.9	139.8	67.5	45.7	37.0	53.2						
Mean	55.1	53.6	71.5	63.3	63.2	86.8	126.4	161.1	183.7	128.0	74.0	52.8	93.0
Max	134.9	120.9	164.3	154.2	143.2	274.1	328.4	333.2	328.2	330.6	189.6	90.8	158.1
Min	7.1	10.1	27.6	20.7	10.8	17.5	24.9	24.9	5.4	11.4	4.8	8.3	43.4

Table 6.18 Monthly Operation Record of Chulabhorn Dam

(Unit: m3/sec) Mar Apr May Aug Sep Oct Nov Dec Mean 3.8 11.6 1.0 4.6 9.1 60.4 38.0 1983 2.3 1.4 8.0 0.7 6.1 6.8 5.4 30.4 44.3 40.2 10.9 3.4 12.7 2.6 1.8 2.1 1.3 2.5 2.8 3.9 5.8 7.0 40.1 2.8 1984 18.5 4.5 49.9 6.3 11.8 1985 5.7 9.2 63.4 53.4 10.7 14.1 1986 2.3 4.5 20.1 6.1 4.3 16.0 26.7 4.6 2.3 8.6 1.3 1.1 14.1 1.3 5.2 1987 1.6 2.8 9.6 8.9 2.4 24.8 57.7 46.6 10.8 2.8 1988 0.9 2.0 1.7 6.1 26.1 23.2 4.2 13.3 31.1 124.9 9.0 3.3 20.5 1989 2.0 1.2 1.7 11.0 5.4 6.9 28.2 56.0 5.8 2.2 10.9 1990 1.1 1.5 3.3 2.0 22.1 25.4 7.6 5.1 18.3 72.0 9.4 2.7 14.2 8.1 2.5 1991 1.1 1.0 1.3 1.2 13.3 7.7 0.9 98.3 51.7 35.9 5.5 18.8 2.0 1.2 47.1 1992 5.8 0.9 3.0 2.4 5.8 26.1 20.5 3.5 10.1 0.9 1993 1.3 0.7 0.7 2.2 4.1 1.0 1.3 27.6 4.6 2.7 0.5 4.0 12.5 54.3 19.3 12.8 1994 0.4 0.6 2.1 2.2 28.4 9.8 16.8 3.6 3.2 2.1 0.8 1995 3.0 9.8 0.7 4.4 22.9 55.2 29.9 1.9 11.4 1.3 1.9 2.8 14.7 5.0 70.2 27.0 3.4 1996 2.1 4.9 6.5 13.3 29.0 1997 0.8 4.1 3.9 2.6 0.6 17.1 38.9 3.0 3.5 1998 0.7 0.7 0.2 1.7 4.9 2.0 7.6 31.4 36.1 8.4 1.1 8.2 1999 0.2 0.0 0.0 5.7 13.9 12.9 5.0 13.0 45.6 57.4 5.4 3.3 13.5 15.1 3.7 2000 2.0 0.0 0.4 24.0 55.6 40.8 37.6 135.4 48.2 9.5 31.0 0.3 7.8 2001 0.9 2.9 13.1 27.8 24.9 2.9 1.0 6.7 36.5 6.6 10.9 2002 Mean 1.4 0.0 0.0 **1.7** 1.4 12.2 5.0 4.2 1.7 1.1 3.7 13.0 5.9 21.7 46.9 40.6 7.5 2.9 13.1 9.6 Max 5.8 5.2 55.6 16.8 98.3 135.4 124.9 8.1 2.8 24.0 40.8 27.0 31.0 Min 0.2 0.0 0.0 0.7 2.6 0.6 0.9 2.7 17.1 4.6 0.5 0.9 4.0

Source: Royal Irrigation Dept. (RID)

Reservoir Outflow

(Unit: m3/sec) Mar Apr May Aug Sep Oct Dec 1982 4.9 1983 7.9 10.1 9.6 9.9 15.4 19.6 20.8 11.5 13.3 9.2 10.8 31.1 3.8 1984 3.7 8.9 11.5 9.9 10.0 7.3 10.2 15.2 5.1 4.8 5.3 5.2 8.1 1985 5.9 14.8 5.8 20.5 8.6 6.3 21.7 11.3 10.5 5.2 8.3 2.9 24.8 1986 3.9 3.3 7.0 4.4 10.9 12.6 11.6 8.6 25.9 7.7 3.4 2.5 8.5 1987 4.4 5.2 4.9 4.3 9.9 8.6 10.0 5.4 20.8 5.2 5.5 1988 5.1 10.5 11.4 9.6 20.7 30.4 13.5 4.6 12.8 26.6 9.5 7.2 13.5 1989 7.6 3.7 4.4 9.3 16.7 6.8 4.0 19.1 6.2 20.2 1990 13.5 5.0 3.6 6.5 18.0 32.6 28.3 12.0 3.7 19.2 11.3 10.3 13.7 1991 17 1 5.8 8.6 10.2 6.6 16.7 12.8 192 32.0 29.2 10.9 96 14.9 1992 12.9 14.4 15.0 7.2 12.4 15.5 10.3 9.0 9.9 7.2 2.6 5.3 5.6 10.4 7.4 3.0 3.4 1993 6.1 9.5 5.2 6.3 5.7 4.1 3.0 1.9 4.8 2.1 0.0 2.9 7.9 1994 1.8 17.8 8.4 4.2 3.0 0.0 0.4 2.3 3.3 7.2 8.7 5.0 7.0 5.1 7.6 1995 9.1 11.7 6.3 14.8 5.5 6.4 5.0 12.5 9.8 14.1 13.0 5.8 6.9 10.3 1997 12.3 11.3 12.4 7.5 11.3 10.5 11.6 4.9 3.5 3.2 8.2 2.3 1998 9.0 3.1 9.1 1.5 2.6 2.8 5.1 1.8 5.7 4.0 1999 7.1 6.7 10.6 4.2 1.6 3.9 5.2 6.7 9.0 11.0 28.1 7.0 8.4 2000 6.7 9.8 11.1 11.3 26.8 29.4 27.2 20.6 24.2 30.0 22.5 18.2 19.8 7.8 2001 12.5 11.0 6.5 11.7 12.2 9.0 6.6 4.1 2.9 2.5 6.1 7.7 2002 11.1 10.6 11.5 8.3 6.3 Mean 7.6 9.3 10.3 11.0 13.0 9.0 9.4 6.5 9.0 6.8 8.4 8.5 13.0 15.0 11.7 Max 17.1 14.4 26.8 32.6 28.3 20.6 32.0 30.0 28.1 21.7 19.8 Min 2.1 1.8 3.0 0.0 0.0 0.4 2.1 2.0 1.7 1.8 1.5 1.9 3.2

Table 6.19 Monthly Operation Record of Ubolratana Dam

(Unit: m³/sec)

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Mean
1982	10.5	13.6	17.6	25.2	37.4	62.2	27.4	18.9	594.5	937.5	147.6	27.3	160.0
1983	32.5	20.3	16.2	18.3	34.8	217.4	286.5	838.0	858.3	573.6	179.8	43.7	259.9
1984	28.5	16.9	22.3	41.9	28.6	132.8	100.0	159.3	277.7	838.8	47.4	32.8	143.9
1985	18.0	23.5	12.2	25.9	70.6	73.5	81.3	70.6	216.1	358.1	147.0	55.3	96.0
1986	18.0	8.7	10.9	48.2	195.2	187.2	77.3	124.7	314.5	58.0	77.4	26.3	95.5
1987	13.3	20.1	39.4	37.7	34.9	111.3	32.5	273.8	781.7	728.1	112.5	37.3	185.2
1988	29.9	29.8	19.8	33.9	97.6	195.8	250.2	190.2	325.6	1,524.6	254.8	47.9	250.0
1989	30.0	15.4	17.2	20.9	56.4	113.7	182.9	130.8	462.2	831.5	97.6	26.4	165.4
1990	19.2	34.0	33.6	21.8	153.6	295.6	152.6	147.0	515.6	1,740.9	258.8	35.9	284.0
1991	21.8	17.8	24.3	29.4	45.7	71.8	47.8	557.4	1,254.6	834.5	52.0	46.8	250.3
1992	59.7	27.7	20.3	19.7	42.1	105.9	126.6	398.9	355.6	326.4	48.7	30.2	130.2
1993	17.8	26.6	18.2	29.7	43.0	40.2	46.8	25.5	222.4	68.8	12.3	15.3	47.2
1994	16.5	17.0	19.7	15.3	63.8	54.3	83.9	37.0	722.8	254.3	27.2	37.5	112.4
1995	15.4	11.9	7.6	24.3	50.5	60.6	194.6	674.2	982.2	369.0	51.7	20.6	205.2
1996	19.5	25.6	61.6	57.5	95.8	91.0	89.3	80.9	1,013.9	760.5	546.1	42.2	240.3
1997	31.6	26.2	55.0	63.2	50.4	53.1	57.1	65.2	137.6	277.2	44.5	18.5	73.3
1998	14.0	16.1	14.2	27.9	25.6	33.9	115.3	332.8	312.9	165.4	40.0	17.2	92.9
1999	15.0	9.9	16.8	53.5	268.8	354.7	197.8	164.5	720.5	597.0	478.1	26.1	241.9
2000	29.0	21.0	11.1	198.9	1,012.4	667.4	581.4	351.4	992.3	296.6	139.7	20.5	360.2
2001	24.7	8.8	56.3	22.6	144.5	206.3	107.1	1,234.6	1,124.3	1,009.5	443.3	20.3	366.8
2002	27.7	24.4	56.3	29.1	98.1	149.7	55.4						
Mean	23.5	19.8	26.2	40.2	126.2	156.1	137.8	293.8	609.3	627.5	160.3	31.4	188.0
Max	59.7	34.0	61.6	198.9	1,012.4	667.4	581.4	1,234.6	1,254.6	1,740.9	546.1	55.3	366.8
Min	10.5	8.7	7.6	15.3	25.6	33.9	27.4	18.9	137.6	58.0	12.3	15.3	47.2

Source: Royal Irrigation Dept. (RID)

Reservoir Outflow

(Unit: m³/sec)

												, , ,	III. III /Sec)
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Mean
1982	29.5	26.8	26.0	25.1	31.8	31.4	53.8	55.0	9.0	16.7	9.7	27.9	28.6
1983	68.6	142.2	128.7	155.5	182.7	273.7	247.3	401.0	483.9	514.5	175.0	91.0	238.7
1984	86.7	168.1	151.0	227.5	210.0	122.0	77.9	77.8	105.9	94.4	411.6	37.9	147.6
1985	42.8	62.2	78.7	69.3	49.5	75.0	101.9	66.4	35.8	70.0	99.3	27.6	64.9
1986	54.5	68.3	59.4	56.1	77.6	157.3	113.0	118.9	40.7	116.7	18.0	14.8	74.6
1987	44.8	41.8	31.9	43.5	12.2	43.8	41.5	2.5	53.1	249.2	32.0	11.8	50.7
1988	106.8	96.9	122.3	111.5	86.3	311.1	233.1	213.6	135.7	196.0	239.4	155.9	167.4
1989	147.7	124.9	136.2	138.4	122.2	211.2	287.9	158.2	105.3	161.0	84.2	77.9	146.3
1990	134.3	126.7	152.0	148.3	79.1	235.3	280.9	161.9	112.7	336.8	337.1	123.8	185.7
1991	191.5	142.8	164.1	159.0	140.7	145.5	155.2	210.8	401.3	388.3	236.0	173.6	209.1
1992	190.7	167.6	199.8	164.3	192.9	224.9	160.4	160.8	187.0	129.8	62.0	27.7	155.7
1993	90.0	86.6	113.0	90.4	33.8	33.8	85.1	3.8	0.5	94.6	4.9	0.1	53.0
1994	8.3	0.0	0.0	0.0	0.0	0.9	52.2	0.0	10.1	77.0	30.4	7.3	15.5
1995	52.3	30.7	32.7	25.1	21.7	22.8	72.9	337.5	457.3	247.4	45.9	20.2	113.9
1996	87.3	82.7	91.9	70.7	165.4	237.3	213.0	149.4	79.9	285.8	352.5	137.3	162.8
1997	114.6	103.6	170.7	182.6	204.7	183.5	118.2	114.8	76.1	65.2	23.1	10.0	113.9
1998	66.8	39.1	81.5	62.0	13.6	6.5	115.0	80.6	35.5	101.5	10.1	15.6	52.3
1999	57.8	76.5	97.8	49.7	14.6	133.9	367.3	140.3	203.9	98.7	225.7	57.7	127.0
2000	114.1	157.7	213.8	204.8	472.9	462.4	501.9	495.9	394.5	157.7	39.9	91.9	275.6
2001	131.9	158.6	177.1	188.7	117.6	185.7	158.0	307.5	448.6	445.9	393.1	300.7	251.1
2002	197.2	176.4	194.1	140.2	214.8	239.5	150.9						
Mean	96.1	99.1	115.4	110.1	116.4	158.9	170.8	162.8	168.8	192.4	141.5	70.5	131.7
Max	197.2	176.4	213.8	227.5	472.9	462.4	501.9	495.9	483.9	514.5	411.6	300.7	275.6
Min	8.3	0.0	0.0	0.0	0.0	0.9	41.5	0.0	0.5	16.7	4.9	0.1	15.5

Table 6.20 Monthly Operation Record of Nam Pung Dam

Reservoir Inflow

(Unit: m3/sec) Mar Apr May Aug Sep Oct Nov Dec Mean 3.3 7.0 1.8 3.1 6.7 24.3 6.2 1.7 1983 2.1 1.6 1.4 1.9 2.1 8.1 6.9 27.3 23.6 8.3 2.1 2.1 7.3 1984 1.9 2.1 9.3 5.6 2.6 1.1 1.2 2.0 5.9 13.4 47.1 36.2 12.9 5.8 11.6 2.8 1985 1.1 1.9 8.9 12.2 21.2 8.8 8.7 2.6 6.5 1986 1.5 1.6 1.4 2.6 6.5 8.1 6.9 25.0 30.0 7.7 1.7 8.1 4.2 1.5 11.9 1987 2.0 2.2 2.2 67.6 55.0 1.9 13.8 1988 4.2 19.1 9.4 2.2 3.2 2.6 12.7 7.6 28.6 2.6 1.7 8.4 14.2 1989 1.2 1.0 1.8 5.3 5.7 23.0 4.1 2.0 8.7 2.8 22.6 1990 1.8 2.3 2.8 2.0 6.0 13.6 16.7 75.9 78.3 11.2 6.1 2.6 18.3 2.3 7.3 5.0 1991 1.9 1.6 0.3 10.5 12.3 66.3 81.1 13.7 3.9 3.2 17.0 21.7 3.9 1992 3.1 2.4 0.4 15.3 51.5 27.6 6.6 3.2 11.8 14.6 1993 1.7 1.6 0.9 7.5 4.0 21.4 2.7 18.8 4.1 2.2 1.3 6.7 2.4 1.3 4.5 16.5 1994 1.4 2.8 2.2 19.9 45.7 63.1 20.3 5.0 2.5 15.5 2.1 1.7 1995 1.9 5.8 11.5 26.7 37.4 40.9 11.0 12.1 3.0 2.0 1.5 3.3 9.5 4.3 11.3 40.5 2.1 1996 6.3 8.9 5.6 1997 1.7 1.6 2.8 1.8 29.7 56.1 11.9 2.0 12.0 1998 1.7 3.0 1.7 1.3 1.3 7.4 10.5 9.3 24.8 5.6 2.1 1.7 5.9 1999 1.8 1.2 2.3 4.7 9.7 19.3 26.0 18.6 42.9 12.6 5.4 2.0 12.2 1.3 31.7 15.0 2000 1.3 2.0 5.7 14.7 12.0 26.7 41.6 11.1 3.0 1.3 12.7 3.7 2001 1.9 0.4 0.9 10.0 55.2 12.3 1.9 4.7 57.4 4.7 14.0 2002 Mean 1.3 1.2 1.3 1.9 9.6 25.9 34.1 1.8 10.4 15.8 1.9 2.0 2.6 36.0 37.8 11.9 4.0 2.1 10.9 6.6 Max 4.2 19.1 34.1 75.9 81.1 24.3 3.9 3.1 3.2 9.5 25.9 6.2 18.3 Min 1.2 0.4 0.9 0.3 1.3 2.2 1.5 6.7 7.4 4.1 2.1 1.3 5.9

Source: Royal Irrigation Dept. (RID)

Reservoir Outflow

(Unit: m³/sec) Mar Apr May Jul Aug Sep Oct Dec 1982 9.6 1983 10.1 7.2 5.5 5.6 5.4 3.0 3.3 4.5 6.3 3.0 2.9 8.2 5.5 1984 5.7 7.1 6.0 17.3 4.9 7.5 5.7 4.3 5.0 7.7 9.0 13.1 4.7 1985 4.9 4.4 5.1 5.2 5.1 5.0 4.2 10.0 4.8 3.0 5.1 3.4 5.8 1986 5.1 4.4 4.5 4.7 4.6 4.9 5.0 5.0 4.7 4.6 47.2 4.7 8.3 1987 5.7 5.0 5.0 4.8 5.0 5.2 8.1 17.8 19.5 3.4 4.8 7.4 1988 4.7 4.6 5.0 12.1 17.6 18.0 13.8 5.9 6.8 5.1 4.2 1989 3.0 2.2 5.6 5.0 5.0 4.8 4.2 7.8 4.9 4.4 2.4 2.3 1990 3.4 2.1 1.9 2.3 7.8 8.0 11.0 17.6 19.7 19.0 5.4 5.9 8.7 1991 6.3 3.3 7 1 94 98 9.0 15.0 18 4 20.2 18.9 112 6.3 112 1992 4.1 3.3 6.4 7.7 7.4 9.9 12.1 20.0 20.1 18.9 12.2 9.8 4.9 10.8 2.4 7.9 1993 5.2 6.5 6.6 6.6 6.4 5.3 7.2 6.2 6.1 6.2 5.3 4.4 4.0 1994 5.8 19.3 15.8 13.1 8.5 6.5 5.3 5.1 5.1 12.9 5.7 5.3 6.5 17.9 11.8 1995 5.9 5.7 6.8 17.5 11.5 5.6 8.1 9.0 3.3 5.8 16.7 11.0 7.0 8.6 1997 4.6 4.0 3.9 3.6 4.7 3.9 4.5 17.1 14.7 9.1 10.2 3.4 7.0 1998 1.4 1.7 4.1 8.7 13.4 13.4 12.2 7.8 4.1 1.4 0.9 5.9 1999 0.8 0.7 1.0 1.1 10.7 9.6 17.8 18.0 13.6 0.7 1.2 0.0 6.3 2000 1.1 10.6 17.6 16.8 18.7 14.0 6.9 5.6 9.3 6.4 2.9 5.0 9.6 17.0 17.1 16.7 2001 7.8 8.1 10.1 14.9 7.4 8.8 13.8 14.2 3.0 11.6 2002 17.7 6.5 8.0 9.4 8.2 8.9 9.7 Mean 8.7 9.7 11.2 9.6 9.1 4.9 7.8 4.5 4.8 6.0 8.3 11.2 6.5 Max 17.6 18.7 17.6 13.1 11.6 9.2 10.6 16.8 20.0 20.1 20.2 19.5 47.2 0.7 Min 0.8 0.7 1.0 1.1 3.0 2.9 4.5 5.0 4.1 1.2 0.0 4.4

Table 7.4 Monthly Mean Discharge at Chiang Saen

		1								1		(U	nit: m³/sec)
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Mean
1961	935	800	765	954	1,249	2,663	4,178	8,051	5,936	4,184	2,409	1,596	2,810
1962	1,106	920	729	796	1,220	3,375	4,120	8,786	5,636	3,439	1,959	1,196	2,773
1963	905	729	654	642	773	2,042	5,345	7,675	4,593	3,995	3,306	1,521	2,682
1964	1,072	876	808	923	1,387	2,139	6,318	7,359	6,642	4,487	2,421	1,554	2,999
1965	1,130	937	730	726	909	2,904	5,223	6,630	5,778	5,134	4,436	2,080	3,051
1966	1,426	1,050	831	838	1,151	3,145	6,150	10,991	11,573	6,041	2,999	1,802	4,000
1967	1,323	1,023	954	923	1,092	1,834	4,034	5,892	4,904	4,027	2,653	1,615	2,523
1968	1,312	1,085	951	936	1,585	2,437	4,373	6,549	6,089	5,375	3,305	1,613	2,968
1969	1,108	822	616	700	747	2,072	4,250	9,013	4,852	3,078	2,035	1,305	2,550
1970	982	776	719	936	1,782	2,908	6,943	9,236	5,154	3,331	2,543	2,585	3,158
1971	1,388	1,072	893	950	1,350	3,167	7,585	10,995	6,781	3,872	2,442	1,657	3,513
1972	1,301	1,052	869	956	1,106	1,598	2,904	4,822	3,538	2,679	2,306	2,162	2,108
1973	1,175	981	995	1,004	1,319	2,584	4,476	6,666	6,293	3,062	3,041	1,734	2,777
1974	1,133	914	807	976	1,231	2,299	4,169	7,022	6,575	3,437	2,428	1,497	2,707
1975	1,267	945	787	896	1,214	2,314	3,766	4,201	4,235	2,754	2,073	1,280	2,144
1976	994	898	805	932	1,345	2,645	3,782	6,389	4,517	3,475	2,249	1,482	2,459
1977	1,057	890	824	988	1,197	2,012	3,824	5,040	4,402	3,439	2,369	1,471	2,293
1978	1,225	928	788	846	1,730	2,960	5,153	6,911	5,165	3,663	1,865	1,249	2,707
1979	945	772	684	829	1,089	1,554	2,778	5,109	6,307	4,503	1,995	1,453	2,335
1980	1,053	889	806	1,002	1,247	2,465	4,883	7,159	5,696	4,831	2,279	1,467	2,815
1981	1,106	907	842	872	2,109	3,686	5,425	5,927	4,974	3,083	2,889	1,758	2,798
1982	1,233	993	771	948	994	2,490	4,014	6,258	3,973	3,810	1,972	1,309	2,397
1983	963	795	863	946	1,213	2,053	3,338	5,400	5,829	3,317	3,705	1,940	2,530
1984	1,507	1,110	826	915	1,080	2,272	5,955	4,542	4,529	3,279	1,996	1,346	2,447
1985	1,054	864	743	919	1,333	3,516	5,229	6,075	7,704	4,016	3,278	1,881	3,051
1986	1,313	1,016	865	951	1,437	1,925	4,411	4,578	4,015	4,254	2,377	1,615	2,396
1987	1,341	1,136	972	1,012	1,089	1,870	2,933	5,273	5,856	3,910	2,600	1,601	2,466
1988	1,177	955	937	1,010	1,702	2,227	3,255	5,404	4,768	3,236	1,900	1,412	2,332
1989	1,051	871	803	811	1,195	2,076	3,618	4,765	4,127	5,066	2,500	1,620	2,375
1990	1,225	1,064	1,007	1,001	1,968	4,099	6,428	4,940	4,304	4,156	2,265	1,489	2,829
1991	1,134	928	846	1,051	1,399	3,008	5,358	8,071	5,784	4,440	3,162	1,842	3,085
1992	1,477	1,246	1,185	1,209	1,177	1,406	3,120	2,860	2,911	3,191	1,987	1,371	1,928
1993	1,025	910	801	824	1,112	1,718	4,011	6,158	5,969	3,837	2,456	1,665	2,541
1994	1,062	916	866	1,063	1,334	3,451	4,113	5,073	4,147	3,261	1,717	1,612	2,385
1995	1,144	921	1,049	622	1,688	2,595	5,637	7,455	6,260	4,468	2,962	1,955	3,063
1996	1,272	1,038	971	1,207	1,508	2,283	5,884	7,607	4,991	3,966	2,597	1,684	2,917
1997	1,067	790	718	738	996	1,676	5,037	4,315	4,788	4,250	1,813	1,195	2,282
1998	938	731	655	912	1,497	1,633	5,994	7,077	5,777	2,711	1,711	1,085	2,560
1999	907	717	702	645	1,035	-	-	-	-	-	-	-	-
2000	-	-	-	-	-	-	-	-	-	-	-	-	-
Mean	1,150	930	832	908	1,297	2,450	4,685	6,481	5,404	3,870	2,500	1,597	2,678
Max	1,507	1,246	1,185	1,209	2,109	4,099	7,585	10,995	11,573	6,041	4,436	2,585	4,000
Min	905	717	616	622	747	1,406	2,778	2,860	2,911	2,679	1,711	1,085	1,928

Table 7.5 Monthly Mean Discharge at Luang Prabang

1961 1,527 1,261 1,065 1,242 1,441 3,517 4,876 9,661 10,517 6,705 3,697 2,495 4,4 1962 1,830 1,453 1,139 1,119 1,547 4,246 5,439 10,145 7,527 4,663 2,825 1,865 3,166 1,381 1,162 1,058 1,005 1,090 2,315 6,659 1,1066 7,527 5,4663 3,823 2,539 3,3 1,964 1,786 1,367 1,193 1,236 1,888 2,560 8,794 10,218 9,792 6,361 3,823 2,530 4,4 1,965 1,822 1,471 1,145 1,093 1,225 3,485 6,791 8,664 7,976 6,234 6,637 3,348 4,1966 2,165 1,658 1,254 1,171 1,496 3,996 7,763 14,681 16,360 7,888 4,376 2,806 5,196 2,107 1,649 1,395 1,278 1,481 2,442 4,433 7,582 7,143 5,554 3,516 2,357 3,4 1,968 1,762 1,294 1,059 1,015 1,657 2,706 5,104 8,175 8,148 6,236 4,003 2,143 3,196 1,497 1,108 899 865 921 2,643 5,470 12,854 7,016 3,996 2,952 1,878 3,197 1,970 1,314 968 859 1,014 2,731 4,038 9,341 12,990 8,807 4,905 3,377 3,364 4,47 1,124 1,309 1,445 2,190 3,366 9,907 6,733 5,420 4,062 3,888 2,520 5,1973 1,875 1,384 1,333 1,173 1,742 3,881 7,576 12,126 13,187 6,245 4,772 2,997 4,481 1,541 1,131 1,120 1,271 1,009 3,123 5,663 9,907 6,733 5,420 4,062 3,689 3,1977 1,564 1,127 959 1,233 1,583 2,226 5,506 3,527 1,039 5,545 3,365 2,077 3,361 1,776 1,186 887 984 1,247 3,193 5,566 7,564 8,424 4,915 3,368 2,077 3,361 1,776 1,166 1,166 1,167 1,167 1,226 1,167 1,167 1,167 1,226 1,167 1,167 1,226 1,167 1,167 1,226 1,167 1,167 1,226 1,167 1,167 1,226 1,167 1,167 1,226 1,167 1,167 1,226 1,167 1,167 1,226 1,167 1,167 1,226 1,167 1				1						1		1		nit: m ³ /sec)
1962	Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Mean
1963	1961	1,527	1,261	1,065	1,242	1,441	3,517	4,876	9,661	10,517	6,705	3,697	2,495	4,000
1964 1,786	1962	1,830	1,453	1,139	1,119	1,547	4,245	5,439	10,145	7,527	4,663	2,825	1,865	3,650
1965	1963	1,381	1,162	1,058	1,005	1,090	2,315	6,659	11,066	7,527	5,469	6,099	2,639	3,956
1966 2,165 1,658 1,254 1,171 1,496 3,996 7,763 14,681 16,360 7,888 4,378 2,806 5,6 1967 2,107 1,649 1,396 1,278 1,481 2,442 4,433 7,582 7,143 5,554 3,516 2,357 3,4 1968 1,762 1,294 1,059 1,015 1,657 2,706 5,104 8,175 8,148 6,263 4,003 2,143 3,6 1969 1,497 1,108 899 865 921 2,643 5,470 12,854 7,016 3,996 2,952 1,878 3,5 1970 1,314 968 859 1,014 2,131 4,038 9,341 12,990 8,807 4,905 3,377 3,364 4,4 1971 2,015 1,514 1,109 1,057 1,465 3,595 10,223 1,906 1,306 1,307 5,663 3,888 2,520 1,973 1,972 1,935 1,474 1,124 1,309 1,445 2,190 3,956 9,907 6,793 5,420 4,062 3,698 3,6 1,973 1,875 1,334 1,333 1,173 1,742 3,681 7,576 12,126 13,187 6,245 4,772 2,997 4,5 1,945 1,184 1,318 1,020 1,271 1,609 3,123 5,063 9,527 0,399 5,351 3,450 2,078 3,1975 1,795 1,186 887 984 1,247 3,193 5,356 7,354 8,442 4,915 3,368 2,077 3,4 1,759 1,795 1,186 887 984 1,247 3,193 5,356 7,354 8,442 4,915 3,368 2,077 3,4 1,759 1,159 1,127 599 1,233 1,583 2,322 5,003 9,791 6,844 3,448 2,225 4,5 1,599 1,	1964	1,786	1,367	1,193	1,236	1,688	2,560	8,794	10,218	9,792	6,361	3,623	2,530	4,262
1967 2,107 1,649 1,395 1,278 1,481 2,442 4,433 7,582 7,143 5,554 3,516 2,357 3,45 1,968 1,762 1,294 1,069 1,015 1,657 2,706 5,104 8,175 8,148 6,263 4,003 2,143 3,16 1,970 1,497 1,108 899 865 921 2,643 5,470 1,2854 7,016 3,996 2,952 1,878 3,5 1,970 1,314 968 859 1,014 2,131 4,038 9,341 12,990 8,807 4,905 3,377 3,364 4,6 1,971 2,015 1,514 1,109 1,057 1,465 3,595 10,223 16,906 11,304 5,663 3,888 2,520 5,1 1,972 1,935 1,474 1,124 1,309 1,445 2,190 3,956 9,907 6,793 5,420 4,062 3,688 3,6 1,973 1,875 1,334 1,333 1,173 1,742 3,681 7,576 12,126 13,187 6,245 4,772 2,997 4,6 1,974 1,841 1,318 1,020 1,271 1,609 3,123 5,063 9,527 10,399 5,351 3,450 2,078 3,1976 1,795 1,186 837 984 1,247 3,193 5,356 7,354 8,442 4,915 3,368 2,777 3,4976 1,389 1,199 915 1,006 1,482 3,224 5,209 11,436 7,254 5,740 3,669 2,240 3,1977 1,549 1,127 959 1,233 1,583 2,322 6,127 8,614 8,234 6,310 4,284 2,475 3,1979 1,606 1,215 943 989 1,473 2,590 4,024 8,217 10,093 6,828 3,232 2,235 3,6 1,990 1,146 1,922 2,841 5,601 8,431 10,545 9,425 5,853 5,008 3,205 4,448 4,985 3,450 2,256 4,479 3,448 2,225 4,448 4,915 3,448 2,225 4,448 4,915 3,448 2,225 4,448 4,915 3,448 2,225 4,448 4,915 3,448 2,225 4,448 4,915 3,448 2,225 4,488 4,	1965	1,822	1,471	1,145	1,093	1,225	3,485	6,791	8,664	7,976	6,234	6,637	3,348	4,158
1968	1966	2,165	1,658	1,254	1,171	1,496	3,996	7,763	14,681	16,360	7,888	4,378	2,806	5,468
1969	1967	2,107	1,649	1,395	1,278	1,481	2,442	4,433	7,582	7,143	5,554	3,516	2,357	3,411
1970	1968	1,762	1,294	1,059	1,015	1,657	2,706	5,104	8,175	8,148	6,263	4,003	2,143	3,611
1971 2,015	1969	1,497	1,108	899	865	921	2,643	5,470	12,854	7,016	3,996	2,952	1,878	3,508
1972	1970	1,314	968	859	1,014	2,131	4,038	9,341	12,990	8,807	4,905	3,377	3,364	4,426
1973 1,875 1,334 1,333 1,173 1,742 3,681 7,576 12,126 13,187 6,245 4,772 2,997 4,6	1971	2,015	1,514	1,109	1,057	1,465	3,595	10,223	16,906	11,304	5,663	3,888	2,520	5,105
1974 1,841 1,318 1,020 1,271 1,609 3,123 5,063 9,527 10,399 5,351 3,450 2,078 3,6 1975 1,795 1,186 887 984 1,247 3,193 5,356 7,354 8,442 4,915 3,368 2,077 3,4 1976 1,389 1,199 915 1,006 1,482 3,224 5,209 11,436 7,254 5,740 3,669 2,240 3,7 1977 1,549 1,127 959 1,233 1,583 2,322 6,127 8,614 8,234 6,310 4,284 2,475 3,3 1978 2,153 1,395 1,147 1,067 2,296 4,107 8,628 12,036 9,791 6,844 3,448 2,225 4,5 1979 1,606 1,215 943 989 1,473 2,590 4,024 8,217 10,093 6,828 3,232 2,235 3,6 1980 1,500 1,116 929 1,063 1,383 3,165 7,343 11,210 11,074 7,390 3,741 2,485 4,5 1981 1,786 1,367 1,124 1,122 2,841 5,601 8,431 10,545 9,422 5,853 5,008 3,205 4,6 1982 2,138 1,562 1,106 1,404 1,325 3,574 5,746 11,798 7,662 7,160 3,813 2,486 4,1 1983 1,730 1,309 1,248 1,208 1,481 2,562 4,183 8,126 9,834 5,822 5,687 3,121 3,8 1984 2,378 1,592 1,106 1,101 1,343 2,872 8,388 8,548 8,435 5,818 3,533 2,005 3,9 1985 1,450 1,175 910 1,024 1,566 3,791 6,076 9,840 11,621 5,391 5,005 2,945 4,4 1987 1,621 1,279 1,051 937 974 1,864 3,405 6,359 7,597 5,662 3,497 2,117 3,6 1988 1,498 1,051 917 1,146 2,101 2,680 4,312 9,109 7,346 4,693 2,748 1,945 3,4 1999 1,391 1,093 1,017 892 1,895 5,167 8,714 8,344 6,506 5,519 3,280 1,951 3,3 1991 1,487 1,150 1,022 1,309 1,631 3,796 7,701 11,824 8,968 6,472 4,357 2,552 4,3 1999 1,391 1,499 1,195 1,101 1,333 1,784 2,948 4,887 7,034 6,055 6,702 3,490 2,042 3,490 2,042 3,490 1,391 1,499 1,499 1,498 1,598 1,598 1,598 1,599 1,5005 3,382 2,096 3,500 3,360 3,390 3,391 3,941 2,722 1,983 2,	1972	1,935	1,474	1,124	1,309	1,445	2,190	3,956	9,907	6,793	5,420	4,062	3,698	3,609
1975	1973	1,875	1,334	1,333	1,173	1,742	3,681	7,576	12,126	13,187	6,245	4,772	2,997	4,837
1976	1974	1,841	1,318	1,020	1,271	1,609	3,123	5,063	9,527	10,399	5,351	3,450	2,078	3,838
1977	1975	1,795	1,186	887	984	1,247	3,193	5,356	7,354	8,442	4,915	3,368	2,077	3,400
1978	1976	1,389	1,199	915	1,006	1,482	3,224	5,209	11,436	7,254	5,740	3,669	2,240	3,730
1979	1977	1,549	1,127	959	1,233	1,583	2,322	6,127	8,614	8,234	6,310	4,284	2,475	3,735
1980 1,500 1,116 929 1,063 1,383 3,165 7,343 11,210 11,074 7,390 3,741 2,485 4,5 1981 1,786 1,367 1,124 1,122 2,841 5,601 8,431 10,545 9,422 5,853 5,008 3,205 4,6 1982 2,138 1,562 1,106 1,404 1,325 3,574 5,746 11,798 7,662 7,160 3,813 2,486 4,1 1983 1,730 1,309 1,248 1,208 1,481 2,562 4,183 8,126 9,834 5,822 5,687 3,121 3,8 1984 2,378 1,592 1,106 1,101 1,343 2,872 8,368 8,548 8,435 5,818 3,533 2,005 3,5 1986 2,235 1,716 1,214 1,028 1,958 2,665 5,654 7,384 6,181 5,669 3,250 2,082 3,4	1978	2,153	1,395	1,147	1,067	2,296	4,107	8,628	12,036	9,791	6,844	3,448	2,225	4,595
1981 1,786 1,367 1,124 1,122 2,841 5,601 8,431 10,545 9,422 5,853 5,008 3,205 4,6 1982 2,138 1,562 1,106 1,404 1,325 3,574 5,746 11,798 7,662 7,160 3,813 2,486 4,1 1983 1,730 1,309 1,248 1,208 1,481 2,562 4,183 8,126 9,834 5,822 5,687 3,121 3,6 1984 2,378 1,592 1,106 1,101 1,343 2,872 8,368 8,548 8,435 5,818 3,533 2,005 3,5 1985 1,450 1,175 910 1,024 1,566 3,791 6,076 9,840 11,621 5,391 5,005 2,945 4,2 1986 1,462 1,214 1,028 1,958 2,666 5,654 7,384 6,181 5,662 3,497 2,117 3,6 1987	1979	1,606	1,215	943	989	1,473	2,590	4,024	8,217	10,093	6,828	3,232	2,235	3,620
1982 2,138 1,562 1,106 1,404 1,325 3,574 5,746 11,798 7,662 7,160 3,813 2,486 4,1 1983 1,730 1,309 1,248 1,208 1,481 2,562 4,183 8,126 9,834 5,822 5,687 3,121 3,6 1984 2,378 1,592 1,106 1,101 1,343 2,872 8,368 8,548 8,435 5,818 3,533 2,005 3,5 1985 1,450 1,175 910 1,024 1,566 3,791 6,076 9,840 11,621 5,391 5,005 2,945 4,2 1986 2,235 1,716 1,214 1,028 1,958 2,665 5,654 7,384 6,181 5,669 3,250 2,082 3,4 1987 1,621 1,279 1,051 937 974 1,864 3,405 6,359 7,597 5,662 3,497 2,117 3,6 <td< td=""><td>1980</td><td>1,500</td><td>1,116</td><td>929</td><td>1,063</td><td>1,383</td><td>3,165</td><td>7,343</td><td>11,210</td><td>11,074</td><td>7,390</td><td>3,741</td><td>2,485</td><td>4,367</td></td<>	1980	1,500	1,116	929	1,063	1,383	3,165	7,343	11,210	11,074	7,390	3,741	2,485	4,367
1983 1,730 1,309 1,248 1,208 1,481 2,562 4,183 8,126 9,834 5,822 5,687 3,121 3,6 1984 2,378 1,592 1,106 1,101 1,343 2,872 8,368 8,548 8,435 5,818 3,533 2,005 3,5 1985 1,450 1,175 910 1,024 1,566 3,791 6,076 9,840 11,621 5,391 5,005 2,945 4,2 1986 2,235 1,716 1,214 1,028 1,958 2,665 5,654 7,384 6,181 5,669 3,250 2,082 3,4 1987 1,621 1,279 1,051 937 974 1,864 3,405 6,359 7,597 5,662 3,497 2,117 3,0 1988 1,498 1,051 917 1,146 2,101 2,680 4,312 9,109 7,346 4,693 2,748 1,945 3,2 19	1981	1,786	1,367	1,124	1,122	2,841	5,601	8,431	10,545	9,422	5,853	5,008	3,205	4,692
1984 2,378 1,592 1,106 1,101 1,343 2,872 8,368 8,548 8,435 5,818 3,533 2,005 3,5 1985 1,450 1,175 910 1,024 1,566 3,791 6,076 9,840 11,621 5,391 5,005 2,945 4,2 1986 2,235 1,716 1,214 1,028 1,958 2,665 5,654 7,384 6,181 5,669 3,250 2,082 3,4 1987 1,621 1,279 1,051 937 974 1,864 3,405 6,359 7,597 5,662 3,497 2,117 3,0 1988 1,498 1,051 917 1,146 2,101 2,680 4,312 9,109 7,346 4,693 2,748 1,945 3,2 1989 1,289 979 884 874 1,351 2,948 4,887 7,034 6,055 6,702 3,490 2,042 3,2 1990 <td>1982</td> <td>2,138</td> <td>1,562</td> <td>1,106</td> <td>1,404</td> <td>1,325</td> <td>3,574</td> <td>5,746</td> <td>11,798</td> <td>7,662</td> <td>7,160</td> <td>3,813</td> <td>2,486</td> <td>4,148</td>	1982	2,138	1,562	1,106	1,404	1,325	3,574	5,746	11,798	7,662	7,160	3,813	2,486	4,148
1985 1,450 1,175 910 1,024 1,566 3,791 6,076 9,840 11,621 5,391 5,005 2,945 4,2 1986 2,235 1,716 1,214 1,028 1,958 2,665 5,654 7,384 6,181 5,669 3,250 2,082 3,4 1987 1,621 1,279 1,051 937 974 1,864 3,405 6,359 7,597 5,662 3,497 2,117 3,6 1988 1,498 1,051 917 1,146 2,101 2,680 4,312 9,109 7,346 4,693 2,748 1,945 3,2 1989 1,289 979 884 874 1,351 2,948 4,887 7,034 6,055 6,702 3,490 2,042 3,2 1990 1,391 1,093 1,017 892 1,899 5,167 8,741 8,344 6,506 5,519 3,280 1,951 3,8 1991	1983	1,730	1,309	1,248	1,208	1,481	2,562	4,183	8,126	9,834	5,822	5,687	3,121	3,859
1986 2,235 1,716 1,214 1,028 1,958 2,665 5,654 7,384 6,181 5,669 3,250 2,082 3,4 1987 1,621 1,279 1,051 937 974 1,864 3,405 6,359 7,597 5,662 3,497 2,117 3,6 1988 1,498 1,051 917 1,146 2,101 2,680 4,312 9,109 7,346 4,693 2,748 1,945 3,2 1989 1,289 979 884 874 1,351 2,948 4,887 7,034 6,055 6,702 3,490 2,042 3,2 1990 1,391 1,093 1,017 892 1,899 5,167 8,714 8,344 6,506 5,519 3,280 1,951 3,8 1991 1,381 1,160 1,022 1,309 1,631 3,796 7,701 11,824 8,968 6,472 4,357 2,552 4,3 1992 <td>1984</td> <td>2,378</td> <td>1,592</td> <td>1,106</td> <td>1,101</td> <td>1,343</td> <td>2,872</td> <td>8,368</td> <td>8,548</td> <td>8,435</td> <td>5,818</td> <td>3,533</td> <td>2,005</td> <td>3,925</td>	1984	2,378	1,592	1,106	1,101	1,343	2,872	8,368	8,548	8,435	5,818	3,533	2,005	3,925
1987 1,621 1,279 1,051 937 974 1,864 3,405 6,359 7,597 5,662 3,497 2,117 3,0 1988 1,498 1,051 917 1,146 2,101 2,680 4,312 9,109 7,346 4,693 2,748 1,945 3,2 1989 1,289 979 884 874 1,351 2,948 4,887 7,034 6,055 6,702 3,490 2,042 3,2 1990 1,391 1,093 1,017 892 1,899 5,167 8,714 8,344 6,506 5,519 3,280 1,951 3,6 1991 1,487 1,150 1,022 1,309 1,631 3,796 7,701 11,824 8,968 6,472 4,357 2,552 4,3 1992 1,855 1,408 1,288 1,368 1,300 1,597 3,687 3,934 3,911 3,941 2,722 1,983 2,4 1993 <td>1985</td> <td>1,450</td> <td>1,175</td> <td>910</td> <td>1,024</td> <td>1,566</td> <td>3,791</td> <td>6,076</td> <td>9,840</td> <td>11,621</td> <td>5,391</td> <td>5,005</td> <td>2,945</td> <td>4,233</td>	1985	1,450	1,175	910	1,024	1,566	3,791	6,076	9,840	11,621	5,391	5,005	2,945	4,233
1988 1,498 1,051 917 1,146 2,101 2,680 4,312 9,109 7,346 4,693 2,748 1,945 3,2 1989 1,289 979 884 874 1,351 2,948 4,887 7,034 6,055 6,702 3,490 2,042 3,2 1990 1,391 1,093 1,017 892 1,899 5,167 8,714 8,344 6,506 5,519 3,280 1,951 3,8 1991 1,487 1,150 1,022 1,309 1,631 3,796 7,701 11,824 8,968 6,472 4,357 2,552 4,3 1992 1,855 1,408 1,288 1,368 1,300 1,597 3,687 3,934 3,911 3,941 2,722 1,983 2,4 1993 1,449 1,149 1,025 1,011 1,362 1,854 5,157 7,331 7,832 5,005 3,382 2,036 3,2 1994	1986	2,235	1,716	1,214	1,028	1,958	2,665	5,654	7,384	6,181	5,669	3,250	2,082	3,420
1989 1,289 979 884 874 1,351 2,948 4,887 7,034 6,055 6,702 3,490 2,042 3,280 1990 1,391 1,093 1,017 892 1,899 5,167 8,714 8,344 6,506 5,519 3,280 1,951 3,6 1991 1,487 1,150 1,022 1,309 1,631 3,796 7,701 11,824 8,968 6,472 4,357 2,552 4,3 1992 1,855 1,408 1,288 1,368 1,300 1,597 3,687 3,934 3,911 3,941 2,722 1,983 2,4 1,993 1,449 1,149 1,025 1,011 1,362 1,854 5,157 7,331 7,832 5,005 3,382 2,036 3,2 1994 1,422 1,158 1,063 1,290 1,523 4,282 7,053 9,757 7,987 5,284 2,580 2,357 3,8 1995	1987	1,621	1,279	1,051	937	974	1,864	3,405	6,359	7,597	5,662	3,497	2,117	3,030
1990 1,391 1,093 1,017 892 1,899 5,167 8,714 8,344 6,506 5,519 3,280 1,951 3,6 1991 1,487 1,150 1,022 1,309 1,631 3,796 7,701 11,824 8,968 6,472 4,357 2,552 4,3 1992 1,855 1,408 1,288 1,368 1,300 1,597 3,687 3,934 3,911 3,941 2,722 1,983 2,6 1993 1,449 1,149 1,025 1,011 1,362 1,854 5,157 7,331 7,832 5,005 3,382 2,036 3,2 1994 1,422 1,158 1,063 1,290 1,523 4,282 7,053 9,757 7,987 5,284 2,580 2,357 3,8 1995 1,628 1,277 1,217 952 1,601 2,814 6,683 13,089 10,199 6,013 3,514 2,340 4,2	1988	1,498	1,051	917	1,146	2,101	2,680	4,312	9,109	7,346	4,693	2,748	1,945	3,295
1991 1,487 1,150 1,022 1,309 1,631 3,796 7,701 11,824 8,968 6,472 4,357 2,552 4,351 1992 1,855 1,408 1,288 1,368 1,300 1,597 3,687 3,934 3,911 3,941 2,722 1,983 2,4 1993 1,449 1,149 1,025 1,011 1,362 1,854 5,157 7,331 7,832 5,005 3,382 2,036 3,2 1994 1,422 1,158 1,063 1,290 1,523 4,282 7,053 9,757 7,987 5,284 2,580 2,357 3,6 1995 1,628 1,277 1,217 952 1,601 2,814 6,683 13,089 10,199 6,013 3,514 2,340 4,2 1996 1,690 1,397 1,170 1,333 1,784 2,594 7,493 13,198 8,114 5,516 3,629 2,334 4,1	1989	1,289	979	884	874	1,351	2,948	4,887	7,034	6,055	6,702	3,490	2,042	3,211
1992 1,855 1,408 1,288 1,368 1,300 1,597 3,687 3,934 3,911 3,941 2,722 1,983 2,6 1993 1,449 1,149 1,025 1,011 1,362 1,854 5,157 7,331 7,832 5,005 3,382 2,036 3,2 1994 1,422 1,158 1,063 1,290 1,523 4,282 7,053 9,767 7,987 5,284 2,580 2,357 3,6 1995 1,628 1,277 1,217 952 1,601 2,814 6,683 13,089 10,199 6,013 3,514 2,340 4,2 1996 1,690 1,397 1,170 1,333 1,784 2,594 7,493 13,198 8,114 5,516 3,629 2,334 4,1 1997 1,537 1,128 998 1,058 1,275 1,828 7,141 8,012 9,748 7,118 2,992 1,986 3,7	1990	1,391	1,093	1,017	892	1,899	5,167	8,714	8,344	6,506	5,519	3,280	1,951	3,814
1993 1,449 1,149 1,025 1,011 1,362 1,854 5,157 7,331 7,832 5,005 3,382 2,036 3,2 1994 1,422 1,158 1,063 1,290 1,523 4,282 7,053 9,757 7,987 5,284 2,580 2,357 3,8 1995 1,628 1,277 1,217 952 1,601 2,814 6,683 13,089 10,199 6,013 3,514 2,340 4,2 1996 1,690 1,397 1,170 1,333 1,784 2,594 7,493 13,198 8,114 5,516 3,629 2,334 4,1 1997 1,537 1,128 998 1,058 1,275 1,828 7,141 8,012 9,748 7,118 2,992 1,986 3,7 1998 1,475 1,134 932 1,228 1,768 2,194 8,071 9,724 9,900 3,760 2,609 1,742 3,6 <t< td=""><td>1991</td><td>1,487</td><td>1,150</td><td>1,022</td><td>1,309</td><td>1,631</td><td>3,796</td><td>7,701</td><td>11,824</td><td>8,968</td><td>6,472</td><td>4,357</td><td>2,552</td><td>4,356</td></t<>	1991	1,487	1,150	1,022	1,309	1,631	3,796	7,701	11,824	8,968	6,472	4,357	2,552	4,356
1994 1,422 1,158 1,063 1,290 1,523 4,282 7,053 9,757 7,987 5,284 2,580 2,357 3,6 1995 1,628 1,277 1,217 952 1,601 2,814 6,683 13,089 10,199 6,013 3,514 2,340 4,2 1996 1,690 1,397 1,170 1,333 1,784 2,594 7,493 13,198 8,114 5,516 3,629 2,334 4,1 1997 1,537 1,128 998 1,058 1,275 1,828 7,141 8,012 9,748 7,118 2,992 1,986 3,7 1998 1,475 1,134 932 1,228 1,768 2,194 8,071 9,724 9,090 3,760 2,609 1,742 3,6 1999 1,135 776 673 625 1,155 2,801 5,442 8,933 13,390 5,397 5,092 2,308 3,5 200	1992	1,855	1,408	1,288	1,368	1,300	1,597	3,687	3,934	3,911	3,941	2,722	1,983	2,416
1995 1,628 1,277 1,217 952 1,601 2,814 6,683 13,089 10,199 6,013 3,514 2,340 4,2 1996 1,690 1,397 1,170 1,333 1,784 2,594 7,493 13,198 8,114 5,516 3,629 2,334 4,1 1997 1,537 1,128 998 1,058 1,275 1,828 7,141 8,012 9,748 7,118 2,992 1,986 3,7 1998 1,475 1,134 932 1,228 1,768 2,194 8,071 9,724 9,090 3,760 2,609 1,742 3,6 1999 1,135 776 673 625 1,155 2,801 5,442 8,933 13,390 5,397 5,092 2,308 3,5 2000 1,747 1,380 1,223 1,364 2,878 4,844 10,552 9,478 11,733 5,587 3,594 2,372 4,7	1993	1,449	1,149	1,025	1,011	1,362	1,854	5,157	7,331	7,832	5,005	3,382	2,036	3,216
1996 1,690 1,397 1,170 1,333 1,784 2,594 7,493 13,198 8,114 5,516 3,629 2,334 4,1 1997 1,537 1,128 998 1,058 1,275 1,828 7,141 8,012 9,748 7,118 2,992 1,986 3,7 1998 1,475 1,134 932 1,228 1,768 2,194 8,071 9,724 9,090 3,760 2,609 1,742 3,6 1999 1,135 776 673 625 1,155 2,801 5,442 8,933 13,390 5,397 5,092 2,308 3,5 2000 1,747 1,380 1,223 1,364 2,878 4,844 10,552 9,478 11,733 5,587 3,594 2,372 4,7	1994	1,422	1,158	1,063	1,290	1,523	4,282	7,053	9,757	7,987	5,284	2,580	2,357	3,813
1997 1,537 1,128 998 1,058 1,275 1,828 7,141 8,012 9,748 7,118 2,992 1,986 3,7 1998 1,475 1,134 932 1,228 1,768 2,194 8,071 9,724 9,090 3,760 2,609 1,742 3,6 1999 1,135 776 673 625 1,155 2,801 5,442 8,933 13,390 5,397 5,092 2,308 3,5 2000 1,747 1,380 1,223 1,364 2,878 4,844 10,552 9,478 11,733 5,587 3,594 2,372 4,7	1995	1,628	1,277	1,217	952	1,601	2,814	6,683	13,089	10,199	6,013	3,514	2,340	4,277
1998 1,475 1,134 932 1,228 1,768 2,194 8,071 9,724 9,090 3,760 2,609 1,742 3,6 1999 1,135 776 673 625 1,155 2,801 5,442 8,933 13,390 5,397 5,092 2,308 3,5 2000 1,747 1,380 1,223 1,364 2,878 4,844 10,552 9,478 11,733 5,587 3,594 2,372 4,7	1996	1,690	1,397	1,170	1,333	1,784	2,594	7,493	13,198	8,114	5,516	3,629	2,334	4,188
1999 1,135 776 673 625 1,155 2,801 5,442 8,933 13,390 5,397 5,092 2,308 3,5 2000 1,747 1,380 1,223 1,364 2,878 4,844 10,552 9,478 11,733 5,587 3,594 2,372 4,7	1997	1,537	1,128	998	1,058	1,275	1,828	7,141	8,012	9,748	7,118	2,992	1,986	3,735
2000 1,747 1,380 1,223 1,364 2,878 4,844 10,552 9,478 11,733 5,587 3,594 2,372 4,7	1998	1,475	1,134	932	1,228	1,768	2,194	8,071	9,724	9,090	3,760	2,609	1,742	3,644
	1999	1,135	776	673	625	1,155	2,801	5,442	8,933	13,390	5,397	5,092	2,308	3,977
1 1 1 1 1 1 1 1 1 1	2000	1,747	1,380	1,223	1,364	2,878	4,844	10,552	9,478	11,733	5,587	3,594	2,372	4,729
Mean 1,695 1,284 1,065 1,112 1,588 3,137 6,423 9,893 8,975 5,778 3,820 2,409 3,9	Mean	1,695	1,284	1,065	1,112	1,588	3,137	6,423	9,893	8,975	5,778	3,820	2,409	3,932
Max 2,378 1,716 1,395 1,404 2,878 5,601 10,552 16,906 16,360 7,888 6,637 3,698 5,4	Max	2,378	1,716	1,395	1,404	2,878	5,601	10,552	16,906	16,360	7,888	6,637	3,698	5,468
														2,416

Table 7.6 Monthly Mean Discharge at Chiang Khan

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	nit: m³/sec) Mean
1961	-	-	-	-	-	-	-	-	-	-	-	-	-
1962	-	-	-	-	-	-	-	-	-	-	-	-	-
1963	-	-	-	-	-	-	-	-	-	-	-	-	-
1964	-	-	-	-	-	-	-	-	-	-	-	-	-
1965	-	-	-	-	-	-	-	-	-	-	-	-	-
1966	-	-	-	-	-	-	-	-	-	-	-	-	-
1967	-	-	-	1,155	1,375	2,509	4,665	8,333	8,130	6,285	3,800	2,540	-
1968	1,800	1,299	1,068	1,005	1,871	2,767	5,556	8,876	8,964	6,621	4,694	2,258	3,898
1969	1,484	1,109	897	848	834	2,717	5,907	13,524	7,687	4,211	3,080	1,799	3,675
1970	1,275	1,005	857	938	2,093	4,249	10,112	14,361	10,281	5,357	3,414	3,342	4,774
1971	1,933	1,405	1,108	1,111	1,354	3,793	11,671	18,123	13,159	6,447	4,179	2,396	5,556
1972	1,810	1,389	1,097	1,190	1,363	2,179	3,661	10,607	7,435	5,877	3,989	3,680	3,690
1973	1,910	1,361	1,305	1,174	1,791	3,816	7,988	12,866	14,667	6,618	4,824	3,044	5,114
1974	1,859	1,335	1,031	1,287	1,767	3,471	5,304	10,273	11,511	5,956	3,541	2,112	4,121
1975	1,802	1,238	975	1,038	1,325	3,727	5,867	8,171	9,886	5,692	3,616	2,261	3,800
1976	1,539	1,400	1,055	1,038	1,533	3,429	5,485	12,151	8,101	6,716	3,994	2,373	4,068
1977	1,778	1,304	1,117	1,220	1,422	2,051	5,990	8,971	9,024	6,214	4,288	2,413	3,816
1978	2,131	1,457	1,253	1,030	2,152	3,930	9,488	12,941	10,661	7,376	3,340	2,116	4,823
1979	1,540	1,211	958	913	1,347	3,067	4,226	8,395	10,638	6,950	3,147	2,160	3,713
1980	1,482	1,084	885	925	1,310	3,548	7,761	11,743	12,824	7,669	3,695	2,362	4,607
1981	1,704	1,290	1,046	994	2,652	5,663	9,646	11,453	10,095	6,095	5,098	3,170	4,909
1982	2,140	1,586	1,139	1,245	1,224	3,396	5,842	10,735	7,687	7,841	3,555	2,391	4,065
1983	1,715	1,306	1,128	1,085	1,297	2,583	4,369	9,149	10,745	6,268	5,691	3,050	4,032
1984	2,327	1,602	1,151	1,054	1,339	2,632	8,626	8,743	9,028	6,156	3,557	2,238	4,038
1985	1,652	1,191	907	951	1,374	4,107	6,749	10,515	13,045	6,340	5,069	3,236	4,595
1986	2,097	1,550	1,184	1,080	2,313	3,164	6,131	8,645	7,345	6,435	3,661	2,326	3,828
1987	1,885	1,430	1,090	955	1,017	1,993	3,237	7,541	8,654	6,676	3,873	2,281	3,386
1988	1,529	1,153	933	916	2,156	3,005	5,174	10,095	8,267	5,711	3,020	2,111	3,673
1989	1,416	1,002	861	817	1,236	3,039	5,524	8,126	7,092	7,912	4,068	2,315	3,617
1990	1,597	1,136	1,037	885	1,871	6,008	9,493	9,150	7,341	6,599	3,861	2,308	4,274
1991	1,664	1,206	952	1,089	1,538	3,751	8,246	11,869	9,533	7,011	4,623	2,628	4,509
1992	2,048	1,518	1,328	1,298	1,232	1,691	4,384	5,142	7,494	4,950	3,278	2,281	3,054
1993	1,562	1,069	962	881	1,314	1,808	6,312	8,687	9,595	5,946	3,805	2,135	3,673
1994	1,484	1,117	874	1,183	1,583	5,175	8,588	12,003	10,543	6,619	3,061	2,721	4,579
1995	1,791	1,307	1,120	895	1,578	3,208	7,537	14,060	11,844	7,406	4,155	2,712	4,801
1996	1,657	1,187	1,126	1,259	2,085	2,884	7,792	14,834	9,754	6,404	4,024	2,452	4,621
1997	1,673	1,250	1,066	1,134	1,310	1,868	7,623	8,839	10,191	8,135	3,339	2,152	4,048
1998	1,606	1,175	818	1,194	1,836	2,309	7,820	9,281	9,214	3,935	2,719	1,739	3,637
1999	1,326	1,078	969	1,661	-	-	-	-	-	-	-	-	-
2000	-	-	-	-	-	-	-	-	-	-	-	-	-
Mean	1,726	1,273	1,041	1,074	1,578	3,236	6,774	10,569	9,701	6,388	3,877	2,472	4,161
Max	2,327	1,602	1,328	1,661	2,652	6,008	11,671	18,123	14,667	8,135	5,691	3,680	5,556
Min	1,275	1,002	818	817	834	1,691	3,237	5,142	7,092	3,935	2,719	1,739	3,054

Table 7.7 Monthly Mean Discharge at Vientiane

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	nit: m³/sec) Mean
1961	1,557	1,318	1,077	1,320	1,661	4,230	5,582	10,787	13,663	9,176	4,284	2,832	4,791
1962	1,919	1,486	1,225	1,185	1,720	4,475	6,314	11,380	9,353	6,040	3,290	2,011	4,200
1963	1,454	1,204	1,074	969	1,122	2,435	7,532	13,271	9,819	6,257	7,262	3,037	4,620
1964	1,921	1,471	1,292	1,325	2,089	3,022	9,512	11,295	12,191	8,288	4,340	2,902	4,971
1965	1,992	1,584	1,271	1,153	1,309	3,912	7,639	9,745	9,624	6,559	7,576	3,610	4,665
1966	2,345	1,750	1,331	1,246	1,660	4,254	8,562	15,803	18,832	8,704	5,241	3,349	6,090
1967	2,379	1,799	1,512	1,352	1,646	2,710	4,688	8,842	8,991	7,028	3,923	2,649	3,960
1968	1,885	1,446	1,241	1,179	2,184	2,849	5,886	9,372	10,043	7,065	5,121	2,531	4,233
1969	1,762	1,338	1,027	919	931	2,979	6,419	14,328	8,549	4,933	3,503	2,022	4,059
1970	1,474	1,190	985	1,134	2,349	4,635	10,607	15,548	12,010	6,366	3,880	3,715	5,324
1971	2,215	1,667	1,308	1,166	1,425	3,996	11,292	18,326	14,548	7,003	4,507	2,512	5,830
1972	1,780	1,351	1,062	1,208	1,357	2,236	3,764	10,785	8,147	6,315	4,192	3,702	3,825
1973	1,809	1,281	1,292	1,298	1,889	3,971	8,002	13,084	16,143	7,394	5,039	3,182	5,365
1974	1,890	1,370	1,136	1,377	1,846	3,513	5,415	11,002	12,591	6,221	3,624	2,163	4,346
1975	1,855	1,333	1,069	1,108	1,492	4,124	6,025	8,830	10,811	6,116	3,761	2,282	4,067
1976	1,609	1,508	1,186	1,281	1,769	3,633	5,798	12,739	8,922	7,629	4,573	2,593	4,437
1977	1,860	1,424	1,304	1,473	1,683	2,189	6,124	9,465	9,800	6,608	4,697	2,495	4,094
1978	2,187	1,449	1,331	1,205	2,361	4,022	9,930	14,507	11,603	7,980	3,621	2,205	5,200
1979	1,589	1,314	1,107	1,104	1,525	3,291	4,508	8,330	11,205	7,089	3,290	2,153	3,875
1980	1,527	1,333	1,232	1,358	1,780	3,849	8,061	12,729	15,286	8,202	4,113	2,496	5,164
1981	1,781	1,473	1,274	1,276	2,778	5,883	10,212	12,034	10,676	6,607	5,327	3,372	5,224
1982	2,126	1,597	1,297	1,470	1,430	3,548	6,038	12,377	9,319	8,696	3,950	2,515	4,530
1983	1,768	1,466	1,387	1,374	1,591	2,762	4,580	9,367	11,841	6,764	5,974	3,224	4,342
1984	2,317	1,612	1,263	1,223	1,459	2,673	9,006	9,306	9,858	6,744	3,950	2,281	4,308
1985	1,414	1,150	957	1,019	1,331	3,849	6,648	10,510	13,332	6,521	5,088	3,201	4,585
1986	1,978	1,398	1,129	1,094	2,287	3,233	5,765	8,913	7,623	6,278	3,655	2,163	3,793
1987	1,724	1,352	1,143	1,036	1,114	2,103	3,066	7,559	9,067	6,928	3,816	2,240	3,429
1988	1,505	1,218	1,069	1,110	2,286	3,025	5,138	10,176	8,715	5,828	2,955	1,916	3,745
1989	1,288	1,041	955	932	1,324	2,885	5,469	8,374	7,447	8,363	4,051	2,132	3,688
1990	1,553	1,231	1,201	1,025	1,920	6,015	9,232	9,363	7,658	6,739	3,882	2,242	4,338
1991	1,637	1,274	1,092	1,274	1,661	3,322	7,956	11,341	9,800	7,062	4,635	2,534	4,466
1992	1,907	1,429	1,295	1,360	1,292	1,876	4,173	5,407	5,086	4,850	3,321	2,126	2,843
1993	1,550	1,117	1,046	974	1,474	1,865	6,294	8,417	10,194	5,887	3,840	2,068	3,727
1994	1,474	1,216	997	1,411	1,709	5,114	8,384	11,749	11,155	6,932	3,147	2,725	4,668
1995	1,822	1,354	1,239	986	1,729	3,363	7,400	13,985	12,716	7,660	4,323	2,771	4,946
1996	1,883	1,513	1,348	1,467	2,301	3,118	6,843	13,139	9,911	6,919	4,381	2,652	4,623
1997	1,486	1,144	982	1,119	1,245	1,697	6,469	8,147	9,562	7,279	3,013	1,853	3,666
1998	1,366	1,111	952	1,221	1,678	2,057	7,199	9,022	9,315	3,470	2,327	1,556	3,440
1999	1,100	856	755	766	1,462	3,066	5,155	7,839	13,117	5,863	4,964	2,106	3,921
2000	1,497	1,296	1,233	1,277	2,819	4,437	9,414	8,996	11,414	5,069	2,976	1,921	4,362
Mean	1,755	1,362	1,167	1,194	1,717	3,405	6,903	10,905	10,748	6,786	4,235	2,551	4,394
Max	2,379	1,799	1,512	1,473	2,819	6,015	11,292	18,326	18,832	9,176	7,576	3,715	6,090
Min	1,100	856	755	766	931	1,697	3,066	5,407	5,086	3,470	2,327	1,556	2,843
	1,,,,,,,,	1 000				1,007	0,000	, 0,701	0,000	, ,,,,,,	_,,	1,000	_,_,

Table 7.8 Monthly Mean Discharge at Nong Khai

									_				nit: m³/sec)
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Mean
1961	-	-	-	-	-	-	-	-	-	-	-	-	-
1962	-	-	-	-	-	-	-	-	-	-	-	-	-
1963	-	-	-	-	-	-	-	-	-	-	-	-	-
1964	-	-	-	-	-	-	-	-	-	-	-	-	-
1965	-	-	-	-	-	-	-	-	-	-	-	-	-
1966	-	-	-	-	-	-	-	-	-	-	-	-	-
1967	-	-	-	-	-	-	-	-	-	-	-	-	-
1968	-	-	-	-	-	-	-	-	-	-	-	-	-
1969	-	-	-	958	969	2,975	6,821	14,922	9,186	5,107	3,484	1,925	-
1970	1,550	1,288	1,086	1,186	2,491	5,039	11,410	15,952	12,792	6,248	3,607	3,498	5,512
1971	2,153	1,639	1,295	1,239	1,553	4,104	11,918	18,761	15,244	7,051	4,549	2,701	6,017
1972	1,878	1,436	1,172	1,320	1,488	2,374	3,764	10,421	7,593	6,092	4,245	3,811	3,799
1973	2,032	1,519	1,475	1,334	1,897	4,018	8,376	13,145	16,557	7,409	5,184	3,273	5,518
1974	1,913	1,386	1,152	1,404	1,906	3,531	5,464	11,168	12,798	6,283	3,637	2,265	4,409
1975	1,886	1,356	1,096	1,187	1,563	4,220	6,233	9,110	11,131	6,169	3,816	2,361	4,177
1976	1,694	1,629	1,215	1,372	1,873	3,783	5,799	12,537	8,950	7,656	4,416	2,582	4,459
1977	1,846	1,411	1,241	1,480	1,737	2,315	6,085	9,209	9,782	6,357	4,458	2,504	4,035
1978	2,171	1,459	1,281	1,089	2,405	4,045	10,199	15,448	12,097	7,899	3,417	2,183	5,308
1979	1,631	1,301	1,011	997	1,545	3,385	4,590	8,482	11,325	6,896	3,087	2,116	3,864
1980	1,483	1,142	994	1,121	1,627	3,987	8,381	13,186	16,014	7,956	3,759	2,367	5,168
1981	1,735	1,385	1,139	1,195	2,810	5,961	10,711	12,657	10,998	6,355	5,022	3,283	5,271
1982	2,205	1,681	1,245	1,328	1,285	3,535	6,062	11,970	9,048	8,654	3,781	2,436	4,436
1983	1,626	1,315	1,308	1,246	1,450	2,734	4,499	9,466	11,839	6,655	5,936	3,170	4,270
1984	2,365	1,632	1,166	1,145	1,430	2,581	9,230	9,675	10,201	6,875	3,999	2,397	4,391
1985	1,758	1,355	1,084	1,126	1,523	4,131	6,956	10,742	13,953	6,915	5,386	3,437	4,864
1986	2,139	1,582	1,263	1,178	2,550	3,603	6,181	9,189	8,209	6,663	3,893	2,325	4,064
1987	1,882	1,445	1,181	1,105	1,280	2,304	3,336	7,851	9,129	6,805	3,867	2,306	3,541
1988	1,577	1,209	1,037	1,037	2,233	2,983	5,054	9,689	8,479	5,655	2,931	1,967	3,654
1989	1,344	1,067	990	966	1,486	3,007	5,346	8,432	7,531	8,168	3,927	2,089	3,696
1990	1,493	1,241	1,246	1,100	1,889	5,705	8,790	9,391	7,652	6,582	3,609	2,173	4,239
1991	1,633	1,309	1,089	1,249	1,630	3,379	8,227	11,826	10,008	7,007	4,561	2,515	4,536
1992	1,896	1,383	1,285	1,327	1,256	1,758	4,094	5,366	5,028	4,791	3,213	2,009	2,784
1993	1,633	1,274	1,217	1,110	1,581	1,951	6,835	9,178	11,689	6,000	3,725	1,991	4,015
1994	1,522	1,295	1,070	1,493	1,767	5,317	8,773	12,289	11,379	6,740	2,936	2,571	4,763
1995	1,773	1,349	1,247	1,029	1,730	3,382	7,559	14,486	13,475	7,277	3,961	2,683	4,996
1996	1,711	1,380	1,234	1,374	2,297	2,985	7,514	16,274	11,367	6,785	3,860	2,387	4,931
1997	1,741	1,374	1,157	1,331	1,507	2,120	7,707	9,477	11,070	8,072	3,591	2,438	4,299
1998	1,665	1,306	1,119	1,422	1,978	2,485	8,561	10,431	10,359	4,099	2,759	1,892	4,006
1999	1,428	1,167	971	991	1,878	-	-	-	-	-	-	-	-
2000	-	-	-	-	-	-	-	-	-	-	-	-	-
Mean	1,779	1,377	1,169	1,208	1,762	3,457	7,149	11,358	10,829	6,707	3,954	2,522	4,449
Max	2,365	1,681	1,475	1,493	2,810	5,961	11,918	18,761	16,557	8,654	5,936	3,811	6,017
Min	1,344	1,067	971	958	969	1,758	3,336	5,366	5,028	4,099	2,759	1,892	2,784

Table 7.9 Monthly Mean Discharge at Nakhon Phanom

(Unit: m³/sec) Feb Mar May Jun Jul Nov Year Jan Apr Aug Sep Oct Dec Mean 1961 2.147 1.722 1.422 1.576 2.136 8.497 10.884 16.994 25.663 17.063 6.072 3.577 8.146 1,559 1962 2,607 1,951 1,431 2,265 7,868 11,748 17,723 14,970 9,360 4,365 2,697 6,545 1963 2,013 1,576 1,368 1.238 1.353 6.067 15.998 25.281 20.070 9.103 8.841 3.948 8.071 1964 2.568 2,037 1.685 1.666 2.715 7.221 14.829 17.326 20.647 14.832 6,280 4.015 7.985 1965 2,696 2,186 1,690 1,560 1,883 11,756 15,323 17,987 16,403 3,634 7,707 8,273 9,091 3,019 2,274 1,778 1,581 2,400 7,640 15,758 23,313 27,083 6,225 3,879 8,897 1967 2,820 2,223 1,870 2,131 7,935 13,680 16,423 10,628 3,418 2,830 5,819 1968 1,812 1,540 11,141 16,148 16,473 10,050 2,840 6,530 2,271 1,179 2,782 5,887 6,238 1969 1,912 1,585 1,225 1,155 1,274 9,027 15,942 23,890 13,676 6,971 4,776 2,996 7,036 1,774 2,946 10,474 1970 2,299 1,268 1,313 8,533 20,055 25,916 23,673 4,907 4,545 8,975 1971 2.960 2.205 1.731 1.461 1.714 6.246 20.161 26.652 22.157 10.652 5.146 2.820 8.659 1972 2,106 1,546 1,271 1,409 1,663 4,137 9,967 22,345 14,200 8,867 5,321 4,655 6,457 1973 2,437 1,684 1,550 1,406 2,356 6,002 12,918 17,945 25,847 11.354 5,785 3,876 7,763 1974 2,356 1,781 1,392 1,569 2,094 5,470 9,654 17,655 18,943 8.796 5,268 3,104 6,507 1975 2,432 1,737 1,337 1.326 2,018 7,635 11,875 18,974 20,600 10,255 5,100 3,146 7,203 1976 2,181 1,919 1,415 1,418 2,293 5,440 9,575 20,171 13,020 10,802 6,028 3,348 6,467 1977 2,348 1,718 1,810 2,034 2,086 2,906 9,020 12,630 14,307 7,468 5,227 3,016 5,381 1978 2,528 1,723 1,512 1,373 2,900 8,492 15,752 25,729 20,147 11,847 4,594 2,971 8,297 1979 1,931 1,564 1,514 2,916 6,188 10,185 15,775 16,413 4,115 2,852 6,185 2,283 8,479 1980 2,110 1,758 1,436 1,455 2,167 12,486 18,935 23,440 10,970 3,314 5,723 5,038 7,403 2,009 1,636 11,113 19,994 21,635 18,403 11,536 4,248 8,691 1981 2,500 1,559 3,369 6,292 13,731 1982 2,944 2,289 1,845 2,080 2,175 5,023 9,419 19,064 16,260 3,472 6,969 5,327 1983 2,633 2,141 1,979 1,876 2,097 3,841 7,543 15,181 17,593 10,824 6,647 4,061 6,368 1984 3,037 2,267 1,672 1,551 2,482 5,702 14,660 16,868 14,967 8,490 4,815 2,879 6,616 1985 2,167 1,763 1,333 1,235 2,000 6,905 10,861 17,784 18,657 8,421 5,624 3,888 6,720 1986 2,475 1,880 1,360 1,229 3,804 8,168 11,237 14,135 13,483 7,385 4,480 2,722 6,030 2,066 1,347 3,308 5,656 13,846 8,844 4,468 5,019 1987 1,633 1,333 13,650 2,875 1,917 1,474 1,271 1,196 4,365 7,332 16,336 12,634 3,847 2,477 5,273 1989 1,632 1,254 1,057 1,049 1,865 5,871 8,480 13,726 12,059 11,298 5,199 2,801 5,524 1990 2,014 1,557 1,540 1,229 2,243 10,450 15,223 16,306 13,803 9,526 4,956 2,933 6,815 2,025 1,531 1,303 1,464 1,798 12,178 15,367 3,187 6,353 1991 4,675 18,903 8,563 5,237 1992 2,257 1,754 1,505 1,532 1,599 3,386 8,118 10,531 9,360 5,938 3,973 2,439 4,366 1993 1,774 1,287 1,224 1,108 2,022 4,618 14,444 15,974 15,141 7,113 4,485 2,562 5,979 1994 2,530 2,222 1.950 2.352 2,719 11.614 19.758 26.794 21.825 11.513 4.687 3.831 9.316 1995 2,717 2,105 1,871 1,828 2.371 6.244 14,360 26,532 26.503 11,800 5,524 4,003 8,822 1996 2,745 2,254 1,983 2,232 3,440 5,419 11,529 23,716 22,400 13,420 6,788 3,988 8.326 2,186 1,919 2,438 3,949 17,171 22,861 21,997 8,131 1997 2,675 2,295 12,129 4,829 3,126 1998 2,390 1,875 1,621 1,852 2,520 4,559 14,196 15,271 17,209 3,871 2,545 6,151 1999 2000 1,858 10,058 5,339 Mean 2,384 1,548 1,526 2,292 6,430 12,720 18,961 18,039 3,318 7,040 Max 3,037 2,289 1,983 2,352 3,804 11,756 20,161 26,794 27,083 17,063 9,091 4,655 9,316

Min 1,632 1,254
Source: MRC HYMOS Database

1,057

1,049

1,274

2,906

5,656

10,531

5,903

3,418

2,439

4,366

Table 7.10 Monthly Mean Discharge at Mukdahan

						1							nit: m ³ /sec)
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Mean
1961	2,183	1,758	1,462	1,588	2,136	9,583	12,043	18,855	28,507	19,074	6,441	3,792	8,952
1962	2,769	2,008	1,599	1,448	2,330	8,738	13,168	20,635	17,307	10,305	4,592	2,762	7,305
1963	2,042	1,654	1,443	1,286	1,380	7,441	18,066	28,703	22,363	9,975	9,166	4,180	8,975
1964	2,674	2,040	1,732	1,698	2,751	7,632	15,425	18,652	23,147	16,245	6,789	4,095	8,573
1965	2,719	2,187	1,787	1,588	1,898	13,012	16,100	18,971	17,453	8,757	9,533	4,446	8,204
1966	3,028	2,259	1,845	1,651	2,449	8,216	17,442	26,539	31,390	12,535	6,609	3,895	9,821
1967	2,849	2,282	1,959	1,578	2,132	5,884	9,334	15,823	19,307	12,596	4,614	3,274	6,803
1968	2,172	1,859	1,620	1,223	2,796	5,949	11,182	16,414	17,487	10,454	6,299	3,304	6,730
1969	2,058	1,672	1,261	1,259	1,462	9,762	17,829	25,600	14,760	7,245	4,715	2,594	7,518
1970	2,003	1,606	1,263	1,424	2,988	8,690	20,210	26,152	24,383	10,713	5,077	4,634	9,095
1971	3,035	2,221	1,780	1,458	1,657	6,950	21,703	27,274	22,340	12,298	5,582	2,880	9,098
1972	2,127	1,627	1,295	1,440	1,671	4,592	11,546	25,597	15,640	9,744	5,767	4,831	7,156
1973	2,464	1,698	1,562	1,514	2,338	6,087	13,215	18,223	27,340	11,855	5,606	3,680	7,965
1974	2,205	1,775	1,483	1,659	2,156	5,925	9,728	19,535	20,083	8,861	5,377	3,113	6,825
1975	2,489	1,812	1,451	1,419	2,027	7,781	12,047	20,065	21,710	10,341	5,265	3,169	7,465
1976	2,210	1,943	1,465	1,505	2,272	5,755	10,051	21,094	12,783	10,889	6,276	3,359	6,634
1977	2,310	1,829	1,865	2,029	2,064	2,815	8,899	12,323	14,637	7,569	5,306	2,991	5,386
1978	2,447	1,781	1,616	1,469	2,839	8,728	15,571	28,519	20,747	12,138	4,700	2,945	8,625
1979	2,253	1,949	1,637	1,546	2,997	6,581	10,700	16,264	16,523	8,627	4,008	2,642	6,310
1980	1,930	1,561	1,402	1,424	2,018	5,557	12,198	18,510	24,713	10,881	5,225	3,260	7,390
1981	2,396	1,948	1,678	1,573	3,240	11,569	20,500	22,081	18,167	11,471	6,489	4,255	8,781
1982	2,795	2,091	1,700	1,857	2,017	4,991	10,351	21,055	18,170	15,311	5,648	3,384	7,447
1983	2,402	1,919	1,754	1,704	1,994	3,944	8,100	16,810	19,757	12,326	7,085	3,809	6,800
1984	2,723	1,974	1,445	1,459	2,511	6,211	16,839	20,677	17,583	10,258	5,698	3,175	7,546
1985	2,401	1,979	1,668	1,542	2,184	8,265	12,639	20,448	20,737	10,204	6,614	4,512	7,766
1986	2,789	2,135	1,690	1,501	4,397	9,751	13,080	16,519	15,720	8,764	5,269	3,074	7,057
1987	2,327	1,928	1,624	1,449	1,616	3,810	7,438	16,696	16,163	10,274	5,175	3,283	5,982
1988	2,215	1,774	1,571	1,650	3,302	5,374	8,738	18,955	13,996	9,068	4,499	2,830	6,164
1989	1,958	1,579	1,369	1,353	2,220	7,162	10,062	16,432	14,103	13,100	6,168	3,195	6,558
1990	2,325	1,859	1,845	1,483	2,628	12,729	17,703	19,419	17,063	11,592	6,028	3,346	8,168
1991	2,368	1,930	1,684	1,845	2,177	5,327	14,419	22,929	17,867	10,654	6,555	3,541	7,608
1992	2,785	2,276	1,777	1,726	1,818	3,835	9,836	12,833	11,238	7,352	4,643	2,769	5,241
1993	2,052	1,651	1,548	1,453	2,298	4,971	15,926	17,903	16,683	7,750	4,678	2,705	6,635
1994	2,084	1,802	1,494	1,877	2,259	11,793	19,933	26,217	21,478	11,551	4,443	3,469	9,033
1995	2,479	1,861	1,632	1,457	2,248	6,430	14,057	25,317	25,547	11,481	5,532	3,658	8,475
1996	2,273	1,846	1,683	1,841	2,970	4,799	10,745	23,932	23,693	13,287	6,263	3,360	8,058
1997	2,398	1,918	1,644	1,986	2,202	3,874	17,423	23,845	21,830	11,669	4,653	2,888	8,027
1998	2,094	1,683	1,455	1,655	2,248	4,360	13,771	14,342	16,244	5,622	3,452	2,199	5,760
1999	1,751	1,502	1,343	1,514	4,098	-	-		-	-	-	-	-
2000	-	-	-	-	-	-	-	-	-	-	-	-	-
Mean	2,374	1,876	1,593	1,567	2,379	6,970	13,632	20,530	19,438	10,864	5,680	3,403	7,525
Max	3,035	2,282	1,959	2,029	4,397	13,012	21,703	28,703	31,390	19,074	9,533	4,831	9,821
Min	1,751	1,502	1,261	1,223	1,380	2,815	7,438	12,323	11,238	5,622	3,452	2,199	5,241

Aug

29,484

Sep

37,670

Table 7.11 Monthly Mean Discharge at Khon Chiam

Jul

18,077

Jun

8,688

May

3,548

4,011 11,100 5,704 3,932 7,789 3,034 7,550 6,320 6,048 3,202 8,559 5,917 4,608 10,338 7.055 4.682 10.310 6,799 5,572 9,002 7,006 4,704 9,122 6,352 3,666 8,909 7,480 4,260 9,917 8,966 3,939 8,710 6,044 3,420 6,693 7,194 3,390 11,875 3,569 8,437 5,125 8,905 10,226 5,005 5,594 11,910 8,126

Dec

Nov

Oct

14,729

(Unit: m³/sec)

Mean

1967 3,108 2,638 2,400 1,685 2,368 6,530 9,949 17,042 22,427 15,690 1968 2,445 1,887 1,581 2,980 10,858 18,558 11,471 1,372 6,270 23,823 1969 2,213 1,951 1,745 1,512 1,677 9,531 19,845 26,977 18,213 9,789 1,741 29,740 1970 2,331 1,913 1,610 3,257 9,012 20,413 30,535 12,976 1971 2.859 2.050 1.698 1.606 2.400 7.969 25.361 29.165 25.297 13.584 1972 3,662 2,846 2,209 2,306 2,863 6,395 13,347 31,281 18,990 11,751 1973 3,390 2,255 1,863 1.684 2,700 6,574 14,797 20,216 30,920 13,357 1974 2,685 2,168 1,738 2,015 2,752 8,109 11,078 28,055 26,920 11.376 1975 2,905 2,223 1,755 1.641 2,645 9,698 15,232 26,281 29,433 15,445 1976 3,067 2,631 2,164 2,422 3,602 6,657 12,894 26,658 16,783 14,735 1977 2,203 1,475 1,518 1,688 1,933 3,075 9,558 15,448 23,713 10,240 1978 2,805 1,842 1,631 1,504 2,888 8,217 19,242 40,539 31,160 22,094 1979 2,559 1,755 1,648 3,552 22,783 20,557 12,783 2,110 9,691 15,115 1980 2,713 2,157 1,892 1,876 2,775 7,316 15,577 23,094 34,053 17,355 2,371 3,619 2,785 2,246 4,044 26,948 31,568 14,965 1981 17,228 23,423 2,577 1982 3,811 3,094 2,318 2,329 5,660 11,040 22,771 25,033 20,171 7,414 4,275 9,208 1983 3,134 2,464 2,115 2,115 2,366 4,987 9,397 21,868 22,963 16,006 10,121 5,371 8,576 1984 3,568 2,542 1,811 1,669 3,240 7,401 18,535 29,806 24,717 13,294 7,342 3,944 9,822 1985 2,803 2,161 1,885 1,706 2,679 12.358 14.842 27,032 26,587 13,001 7,672 5,400 9,844 1986 3,309 2,489 1,986 1,721 4,884 10,606 17,168 24,974 23,620 11,347 6,316 3,712 9,344 1987 12,777 4,051 2,642 2,148 20,513 6,282 17,383 14,529 2,442 11,249 4,088 1989 1,823 1,504 1,581 2,774 8,061 20,919 7,264 2,283 15,358 1990 3,012 2,214 1,846 2,933 13,065 19,577 24,061 24,247 7,915 4,339 10,071 2,970 2,165 1,975 1,955 2,192 5,516 15,330 15,113 8,154 4,163 1991 28,697 26,223 9,538 1992 3,467 2,819 2,494 2,094 2,163 5,012 10,906 18,039 15,650 9,348 5,803 3,464 6,772 17,890 1993 2,403 1,954 1,845 1,775 2,626 4,934 15,078 18,012 8,042 4,705 2,713 6,831 1994 1,973 1.742 1.449 1.764 2,133 10.887 19.968 26.943 24.832 12.544 4.511 3.457 9.350 1995 2.537 2,010 1,835 1,620 2,282 5.890 13.383 26,040 27,319 13,426 6.470 3,893 8,892 1996 2,631 2,025 1,876 2,021 2,893 4,823 11,251 24,581 27,770 15.658 8,274 4,627 9.036 2,991 2,023 1,793 3,858 18,418 28,574 23,797 3,196 8,942 1997 2,135 13,120 5,023 2,274 1998 1,883 1,651 1,783 2,338 4,074 13,808 14,677 3,843 2,597 6,136 1999 1,935 1,727 1,616 1,789 4,317 2000 1,894 7,579 13,515 6,778 Mean 2,836 2,206 1,838 2,806 15,240 24,846 24,415 4,059 9,001 4,884 5,594 Max 3,811 3,094 2,494 2,422 17,228 26,948 40,539 37,670 22,094 10,121 11,910 1,935 1,475 1,449 1,372 1,677 3,075 9,397 14,677 15,650 3,843 2,597 6,136

Source: MRC HYMOS Database

Feb

2,576

Jan

3,130

Year

Mar

2,313

Apr

2,228

Table 7.12 Monthly Mean Discharge at Pakse

(Unit: m3/sec) May Feb Mar Jul Nov Year Jan Apr Jun Aug Sep Oct Dec Mean 12,138 1.961 1.850 1.559 1.704 2.607 13.344 17.448 25.845 38.530 27,423 8.908 4.071 2.371 1,549 10,867 1,962 2,908 2,203 1,772 2,836 18,239 26,819 25,027 17,442 7,376 3,156 10,016 1.963 2,220 1,743 1,418 1,282 1,476 9,065 18.499 31,977 25.310 14.108 11,007 5,149 10.271 1,964 2,841 2,154 1,813 1,795 3,287 8,776 17,090 20,861 29,140 22,477 9,748 4,922 10,409 1,965 1,899 1,710 2,137 15,514 19,790 21,387 11,309 10,152 9,640 2,950 2,325 21,839 4,671 4,350 3,098 2,038 1,652 4,142 9,872 19,275 30,807 40,031 15,616 7,727 4,669 11,940 1,967 3,383 2,567 2,096 1,704 2,505 6,789 10,388 18,365 24,190 17,266 5,835 4,046 8,261 1,968 1,746 1,557 3,284 6,081 11,634 19,955 26,040 12,185 3,559 8,148 2,565 2,103 7,068 2,370 21,200 1,969 1,841 1,488 1,362 1,646 10,062 28,658 19,680 10,433 6,339 3,198 9,023 2,190 1,393 1,568 22,661 14,195 6,522 1,970 1,723 3,035 9,821 32,635 32,153 4,972 11,072 1.600 1.971 3.138 2.217 1.781 2.082 8.827 27.645 30.965 26.870 14.345 7.186 4.009 10.889 9,675 1,972 2,956 2,330 1,870 1,988 2,197 6,875 14,230 34,271 21,223 14,113 8,192 5,860 1,973 3,245 2,288 1,911 1,751 2,879 7,099 15,861 22,055 32,207 15,864 7,570 4,832 9,797 1,974 2,950 2,318 1,831 2,105 2,936 8,978 11,249 29,071 28,173 12,621 7,193 4,059 9,457 1,975 2,977 2,333 1,777 1,696 2,627 10,464 16,439 27,526 31,023 17,568 9,221 4,051 10,642 1,976 2,731 2,370 1,994 2,042 3,280 7,221 12,867 27,690 18,057 16,542 10,085 4,658 9,128 1,946 1,977 2,645 1,978 2,196 2,420 3,210 10,427 17,016 23,733 11,683 6,800 3,673 7,311 1,978 3,135 2,250 1,901 1,795 3,122 10,594 20,203 41,940 32,333 22,971 7,971 3,914 12,677 1,979 2,911 2,385 1,990 1,945 4,066 11,449 17,332 25,330 23,493 5,365 3,456 9,454 13,726 1,980 2,479 1,950 1,741 1,745 2,648 7,693 16,042 23,342 34,647 18,026 9,459 10,350 4,431 1,981 2,426 2,145 2,125 3,883 17,551 27,171 8,677 5,489 12,007 3,030 32,523 23,507 15,558 1,982 3,561 2,765 2,201 2,319 2,645 6,111 12,286 26,027 21,110 8,125 9,567 23,284 4,370 1,983 3,020 2,336 2,208 2,071 2,395 5,391 9,611 19,874 23,633 17,219 11,023 5,517 8,692 1,984 3,494 2,462 1,877 1,674 3,305 8,158 19,548 32,023 26,960 14,719 8,183 4,082 10,540 1,985 2,908 2,245 2,008 1,828 2,666 11,753 15,861 27,445 26,873 13,999 7,964 5,298 10,071 1,986 3,023 2,358 1,937 1,747 4,752 11,619 16,037 23,426 21,140 11,206 6,729 3,763 8,978 1,987 1,859 1,685 4,414 10,806 13,416 7,707 2,521 1,918 21,029 22,263 6,394 4,046 1,988 2,641 1,889 1,665 1,607 3,444 7,513 9,557 22,813 16,327 12,045 5,722 3,142 7,364 1,989 2,061 1,667 1,482 1,513 2,642 8,690 12,358 23,158 19,307 15,971 7,562 3,684 8,341 2,425 19,984 4,211 10,305 1,990 2,680 2,294 2,091 2,898 13,719 24,058 24,637 16,419 8,239 2,802 1,991 2,039 1,748 1,827 2,159 27,700 16,565 8,809 10,057 5,821 16,916 30,206 4,091 1,992 2,887 2,236 1,910 1,762 2,014 5,262 12,076 20,006 17,513 10,544 5,961 3,119 7,107 1,575 1,993 2,324 1,731 1,449 2,451 5,822 17,959 21,619 21,793 9,996 5,783 3,147 7,971 10.717 1.994 2,264 2.029 1.647 2,005 2.440 12.853 23.240 29,495 28.234 14.985 5.425 3.984 1.995 2.819 2.089 1,868 1,650 2,586 7,004 16.014 28,826 29,962 15,751 7,708 4,266 10.045 1,996 2,813 2,218 2,041 2,154 3.583 5,730 12.887 27,095 30,453 19,705 10,927 5,459 10,422 1,997 2,898 2,282 1,919 2,402 2,677 20,953 32,941 26,737 14,856 5,541 9,993 3,397 3,312

4,350 1,982 Source: MRC HYMOS Database

2,812

2,557

1,982

2,880

1,975

1,734

2,399

2,183

3,098

1,667

1,707

1,502

2,349

1,852

2,425

1,393

1,881

1,778

2,427

1,819

2,427

1,282

2,636

4,907

7,202

2,960

7,202

1,476

4,811

12,556

15,348

8,903

17,551

3,210

15,019

15,425

28,706

16,773

28,706

9,557

16,150

23,823

27,451

26,105

41,940

16,150

20,111

26,175

36,393

26,225

40,031

16,327

7,400

15,073

15,178

15,291

27,423

7,400

4,510

10,416

7,561

7,775

11,023

4,510

2,921

4,646

4,099

4,200

5,860

2,921

6,807

10,001

12,666

9,741

12,677

6,807

1,998

1,999

2,000

Mean

Table 7.13 Monthly Mean Discharge at Stung Treng

													Unit: m ³ /sec
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Mean
1961	3,185	2,333	1,981	2,028	4,044	16,687	27,942	38,974	49,053	37,490	12,536	5,830	16,840
1962	3,958	2,968	2,533	2,176	3,818	15,097	25,198	38,530	35,759	24,579	10,587	4,969	14,181
1963	3,022	2,249	1,877	1,751	1,879	10,513	23,135	41,689	35,660	20,935	13,922	6,557	13,599
1964	3,679	2,556	1,965	1,926	4,353	9,809	19,781	27,419	37,877	30,687	15,314	7,257	13,552
1965	3,951	2,833	2,211	2,008	2,648	19,312	26,513	28,100	30,497	15,065	12,016	5,952	12,592
1966	4,282	3,127	2,593	2,365	5,104	10,506	25,545	39,058	47,817	19,239	9,848	5,659	14,595
1967	4,148	3,168	2,677	1,936	3,320	8,413	14,704	27,761	34,017	24,316	8,215	5,272	11,496
1968	3,472	2,839	2,012	1,823	3,538	6,609	13,571	29,052	36,727	16,145	8,048	3,507	10,612
1969	3,374	2,666	1,756	1,491	1,828	10,764	28,623	37,645	32,413	16,342	8,355	4,363	12,468
1970	3,240	2,569	1,606	719	-	-	-	-	-	-	-	-	-
1971	-	-	-	-	-	-	-	-	-	-	-	-	-
1972	-	-	-	-	-	-	-	-	-	-	-	-	-
1973	-	-	-	-	-	-	-	-	-	-	-	-	-
1974	-	-	-	-	-	-	-	-	-	-	-	-	-
1975	-	-	-	-	-	-	-	-	-	-	-	-	-
1976	-	-	-	-	-	-	-	-	-	-	-	-	-
1977	-	-	-	-	-	-	-	-	-	-	-	-	-
1978	-	-	-	-	-	-	-	-	-	-	-	-	-
1979	-	-	-	-	-	-	-	-	-	-	-	-	-
1980	-	-	-	-	-	-	-	-	-	-	-	-	-
1981	-	-	-	-	-	-	-	-	-	-	-	-	-
1982	-	-	-	-	-	-	-	-	-	-	-	-	-
1983	-	-	-	-	-	-	-	-	-	-	-	-	-
1984	-	-	-	-	-	-	-	-	-	-	-	-	-
1985	-	-	-	-	-	-	-	-	-	-	-	-	-
1986	-	-	-	-	-	-	-	-	-	-	-	-	-
1987	-	-	-	-	-	-	-	-	-	-	-	-	-
1988	-	-	-	-	-	-	-	-	-	-	-	-	-
1989	-	-	-	-	-	-	-	-	-	-	-	-	-
1990	-	-	-	-	-	17,177	-	8,797	7,120	-	-	-	-
1991	4,299	3,195	2,537	2,537	3,115	7,603	22,819	43,123	42,410	26,768	11,824	6,051	14,690
1992	4,307	2,927	2,475	2,285	2,820	8,337	16,701	33,211	27,865	16,307	9,789	5,034	11,005
1993	3,506	2,385	2,106	1,852	3,233	7,303	22,427	31,573	31,901	16,801	8,372	5,875	11,445
1994	3,258	2,510	1,957	2,423	3,239	16,142	34,106	41,921	44,327	21,782	8,281	5,984	15,494
1995	4,136	3,009	2,454	1,993	3,210	8,508	20,401	37,938	43,042	23,945	11,560	6,312	13,876
1996	-	-	-	2,990	5,885	8,536	18,904	38,954	46,375	30,628	18,826	8,970	-
1997	4,979	3,726	2,719	3,492	4,113	6,685	28,246	48,151	37,759	23,194	8,846	5,232	14,762
1998	3,747	2,804	2,096	2,250	3,512	6,036	17,651	20,401	26,925	12,783	9,266	6,337	9,484
1999	-	-	-	-	-	-	-	-	-	-	-	-	-
2000	-	-	-	-	-	-	-	-	-	-	-	-	-
Mean	3,797	2,815	2,209	2,114	3,509	10,780	22,722	34,017	35,975	22,177	10,918	5,833	13,168
Max	4,979	3,726	2,719	3,492	5,885	19,312	34,106	48,151	49,053	37,490	18,826	8,970	16,840
Min	3,022	2,249	1,606	719	1,828	6,036	13,571	8,797	7,120	12,783	8,048	3,507	9,484

Table 7.14 Monthly Mean Discharge at Kratie

(Unit: m³/sec) Feb Jul Mar May Jun Nov Dec Year Jan Apr Aug Sep Oct Mean 1961 4,578 3,106 2,564 2,612 4,537 15,946 26,619 44,819 47,580 32,400 12,677 6,887 17,027 4,015 2,996 2,197 11,904 34,474 46,703 56,090 21,532 8,457 16,574 1963 3,731 3,015 2,481 2,235 3,416 13,430 26,645 44,426 39,400 31,406 17,817 7,798 16,317 1964 42,168 4,237 2,268 4,087 11,666 29,181 39,823 22,019 13,395 5,861 15,004 3,068 2,278 3,805 2,674 2,401 2,789 3,355 14,852 24,577 35,513 44,553 26,187 12,455 5,284 14,870 1966 3,823 3,037 2,334 2,061 3,342 7,995 20,732 38,910 29,680 25,232 14,447 7,454 13,254 1967 4,260 3,058 2,469 2,270 4,686 16,622 28,119 30,229 43,937 20,135 10,548 6,219 14,379 1968 46,533 4,067 2,700 2,086 1,888 4,551 15,386 23,397 35,987 25,903 12,294 6,161 15,079 3,899 2,262 6,421 11,618 32,852 37,910 45,857 10,497 5,418 15,413 1970 3,671 2,708 2,110 2,161 4,378 12,430 23,971 36,390 50,220 13,474 6,920 15,503 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1985 1986 1987 1989 1990 1991 1993 1994 1995 1996 1997 1998 1999 Mean 4,008 2,936 2,320 2,275 4,175 13,185 27,057 39,305 44,367 25,551 12,606 6,319 15,342 Max 4,578 3,106 2,564 2,789 6,421 16,622 34,474 46,703 56,090 32,400 17,817 7,798 17,027 Min 3,671 2,674 2,086 1,888 2,980 7,995 20,732 30,229 29,680 20,135 8,457 5,183 13,254

Table 7.15 Monthly Mean Discharge at Kompong Cham

(Unit: m³/sec) May Aug Sep Nov Jan Feb Mar Apr Jun Jul Oct Dec Mean Year 1961 1962 1963 1964 3,590 2,547 1,985 1,842 4,192 10,317 19,723 27,606 38,773 33,026 14,713 6,948 13,772 4,041 2,907 2,268 1,956 2,473 16,624 27,768 30,565 33,453 16,474 12,137 5,793 13,038 1966 4,403 2,930 2,285 1,987 4,469 10,241 24,332 40,065 50,527 22,371 11,097 7,094 15,150 1967 4,380 3,255 2,424 1,727 2,469 8,150 15,619 29,045 38,157 29,584 9,020 5,539 12,447 14,765 11,545 1968 3,138 2,205 1,877 1,774 3,280 6,821 30,935 39,843 18,942 9,912 5,052 1969 2,733 1,662 1,666 1,634 10,714 29,261 40,655 36,480 10,560 5,310 13,499 1970 3,184 1,979 1,650 1,528 2,781 12,080 29,890 39,826 42,440 21,510 11,623 7,895 14,699 1971 4,810 2,644 1,996 1,679 1,892 12,468 33,997 37,365 36,367 21,100 11,140 6,525 14,332 1,837 12,062 14,221 1972 4,073 2,603 2,194 2,063 9,681 23,761 42,497 39,660 21,616 8,602 1973 2,706 2,260 2,140 7,943 29,003 41,447 27,355 7,260 13,413 1974 3,813 2,645 2,270 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1993 1994 1995 1996 1997 1998 1999 2000 Mean 3,890 2,580 2,047 1,849 2,862 10,504 23,908 34,756 39,715 23,133 11,515 6,602 13,612 Max 4,810 3,255 2,424 2,194 4,469 16,624 33,997 42,497 50,527 33,026 14,713 8,602 15,150 Min 2,733 1,955 1,650 1,528 1,634 6,821 14,765 27,606 33,453 16,474 9,020 5,052 11,545

Table 7.16 Monthly Mean Discharge at Chrui Changvar

(Unit: m³/sec)

	ı												nit: m³/sec)
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Mean
1961	3,488	2,497	2,065	1,933	3,462	14,691	27,900	33,719	44,187	36,394	14,300	7,213	15,987
1962	4,255	3,185	2,538	2,153	3,403	13,487	24,622	35,849	34,580	23,848	11,914	5,491	13,777
1963	3,375	2,416	1,939	1,783	1,789	8,628	20,610	37,932	34,133	21,897	13,634	7,103	12,937
1964	3,658	2,599	2,006	1,864	3,419	8,620	18,084	25,532	35,567	32,119	14,076	7,192	12,895
1965	4,132	2,934	2,311	1,958	2,369	14,872	27,271	30,190	31,143	16,635	11,820	5,668	12,609
1966	3,126	1,998	1,756	1,696	4,295	9,539	23,210	37,790	42,450	22,087	11,169	6,556	13,806
1967	3,724	2,223	1,805	2,596	3,523	7,514	13,744	27,235	35,760	24,823	9,065	5,315	11,444
1968	2,825	1,977	1,757	1,658	3,037	5,563	12,273	27,765	37,387	16,694	8,311	4,283	10,294
1969	2,296	1,841	1,712	1,630	1,691	8,367	25,390	38,016	37,303	21,445	9,553	5,042	12,857
1970	2,659	1,902	1,717	1,675	2,594	9,983	26,729	36,165	40,960	23,261	10,574	6,662	13,740
1971	3,939	2,204	1,830	1,732	2,041	10,255	30,352	35,290	37,863	23,658	10,901	6,134	13,850
1972	3,405	2,078	1,748	2,227	2,099	8,874	22,400	39,758	40,750	19,971	11,229	7,107	13,471
1973	3,974	2,748	2,345	2,201	3,629	7,313	18,563	28,271	40,533	31,348	11,749	6,925	13,300
1974		-	-	-	-		-	-	-		-	-	-
1975	-	-	-	-	-	-	-	-	-	-	-	-	-
1976	-	-	-	-	-	-	-	-	-	-	-	-	-
1977	-	-	-	-	-	-	-	-	-	-	-	-	-
1978	-	-	-	-	-	-	-	-	-	-	-	-	-
1979	-	-	-	-	-	-	-	-	-	-	-	-	-
1980	-	-	-	-	-	-	-	-	-	-	-	-	-
1981	-	-	-	-	-	-	-	-	-	-	-	-	-
1982	-	-	-	-	-	-	-	-	-	-	-	-	-
1983	-	-	-	-	-	-	-	-	-	-	-	-	-
1984	-	-	-	-	-	-	-	-	-	-	-	-	-
1985	-	-	-	-	-	-	-	-	-	-	-	-	-
1986	-	-	-	-	-	-	-	-	-	-	-	-	-
1987	-	-	-	-	-	-	-	-	-	-	-	-	-
1988	-	-	-	-	-	-	-	-	-	-	-	-	-
1989	-	-	-	-	-	-	-	-	-	-	-	-	-
1990	-	-	-	-	-	-	-	-	-	-	-	-	-
1991	-	-	-	-	-	-	-	-	-	-	-	-	-
1992	-	-	-	-	-	-	-	-	-	-	-	-	-
1993	-	-	-	-	-	-	-	-	-	-	-	-	-
1994	-	-	-	-	-	-	-	-	-	-	-	-	-
1995	-	-	-	-	-	-	-	-	-	-	-	-	-
1996	-	-	-	-	-	-	-	-	-	-	-	-	-
1997	-	-	-	-	-	-	-	-	-	-	-	-	-
1998	-	-	-	-	-	-	-	-	-	-	-	-	-
1999	-	-	-	-	-	-	-	-	-	-	-	-	-
2000	-	-	-	-	-	-	-		-	-	-	-	-
Mean	3,450	2,354	1,964	1,931	2,873	9,824	22,396	33,347	37,894	24,168	11,407	6,207	13,151
Max	4,255	3,185	2,538	2,596	4,295	14,872	30,352	39,758	44,187	36,394	14,300	7,213	15,987
Min	2,296	1,841	1,712	1,630	1,691	5,563	12,273	25,532	31,143	16,635	8,311	4,283	10,294
	,	,,,,,	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,	-,,,	,	1 .,	1 - ,	.,		,	.,

Table 7.19 Comparison of Monthly Mean Discharges on Mekong Mainstream (1/5)

Month: January

Year	Chiang Saen	Luang Prabang Chiang Khan	Chiang Khan	Viertiane	Nong Khai	Nong Khai Nakhon Phanom	Mukdahan	Phon Chiam	Pakse	Stung Treng	Kratie	Kompong Cham Chroui Changvar	Chroui Changvar
1961	908	1,527		1,567		2,147	2,183		2,371	3,185	4,578		3,488
1962	1,108	1,830		1,919		2,607	2,769		2,908	3,958	4,015		4.255
1963	906	1,381		464.		2,013	2,042		2220	3,022	3,731		3,375
1961	1,072	1,786		1,921		2,568	2,674		2,841	3,679	4,237	3,590	3,658
1965	1,130	1,822		1,992		2,696	2,719		2,860	3,861	3,805	4,041	4,132
1968	1,428	2,165		2,345		3,019	3,028	3,130	4,350	4,282	3,823	4,403	3,128
1967	1,323	2,107		2,379		2.820	2,849	3,108	3,383	4,148	4.260	4,380	3,724
1968	1,312	1,762	1,800	1,885		2,271	2,172	2,445	2,585	3,472	4,067	3,138	2,825
1969	1,108	1,497	1,484	1,762		1,912	2,068	2,213	2,370	3,374	3,899	2,733	2296
1970	382	1,314	1.275	1.474	1,550	2.299	2,003	2,331	2.190	3,240	3.671	3,184	2,669
1971	1,388	2,015	1,933	2,215	2,153	2,960	3,005	2,859	3,138			4,810	3,909
1972	1,301	1,935	1,810	1,780	1,878	2,106	2,127	3,962	2,966			4,073	3,405
1973	1,175	1,875	1,910	1,809	2,082	2,437	2,464	3,390	3.245			4,627	3,974
1974	1,133	1,841	1,859	1,890	1,913	2,356	2,206	2,686	2,960			3,813	
1975	1,267	1,786	1,802	1,866	1,886	2,432	2,409	2,906	2,977				
1978	86	1,389	1,539	1,609	1,694	2,181	2,210	3,067	2,731				
1977	1,057	1,549	1,778	1,860	1,846	2,348	2,310	2,203	2,645				
1978	1,226	2,153	2,131	2,187	2,171	2,528	2,447	2,806	3,135				
1979	945	1,606	1,540	1,589	1,631	2,283	2,283	2,559	2,911				
1980	1.053	1500	1.482	1,527	1.483	2.110	1,800	2.713	2.479				
1981	1,106	1,786	1,704	1,781	1,735	2,500	2,396	3,619	3,030				
1982	1,233	2,138	2,140	2,126	2,206	2,944	2,796	3,811	3,561				
1963	963	1,730	1,715	1,768	1,626	2,633	2,402	3,134	3,020				
1984	1,507	2,378	2,327	2,317	2,365	3,037	2,723	3,568	3,494				
1986	1,054	1,450	1,652	1,414	1,758	2,167	2,401	2,803	2,908				
1996	1,313	2,236	2,097	1,978	2,139	2,475	2,789	3,309	3,023				
1967	1,341	1,621	1,885	7.72	1,882	2,066	2,327	2,642	2,521				
1968	1,177	1,498	1,529	1,506	1,577	1,917	2,215		2,641				
1989	1,051	1,289	1,416	1,788	1,344	1,632	1,958	2,442	2,061				
1990	1,226	1,391	1,597	1,553	1,493	2,014	2,325	3,012	2,680				
1991	1,134	1,487	1,664	1,637	1,633	2,025	2,368	2,970	2,802	4,290			
1992	1,477	1,855	2,048	1,907	1,896	2,257	2,785	3,467	2,887	4,307			
1993	1,025	1,449	1,562	1,660	1,633	1,774	2,062	2,408	2,324	3,506			
1994	1,062	1,422	1,484	1,474	1,522	2,530	2,084	1,973	2,284	3,258			
1996	1,144	1,628	1,791	1,822	1,773	2,717	2,479	2,537	2,819	4,136			
1996	1,272	1,690	1,667	1,883	1,711	2,745	2,273	2,631	2,813				
1997	1,067	1,537	1,673	1,486	1,741	2,675	2,398	2,991	2,898	4,979			
1998	938	1,475	1,606	1,386	1,665	2,390	2,004	2,274	2,557	3,747			

Table 7.19 Comparison of Monthly Mean Discharges on Mekong Mainstream (2/5)

Month: February

Table 7.19 Comparison of Monthly Mean Discharges on Mekong Mainstream (3/5)

Month: March

Kompang Cham Chroui Changvar	2,065	2,538										1,837 1,748		2,270																								
Kratie	2,564	2,352	2,481	2,268	2,401	2,334	2,469	2,086	2,132	2,110																												
Stung Treng	1,981	2,533	1,877	1,985	2211	2,583	2,677	2012	1,756	1,606																					2,537	2,475	2,106	1,967	2,454		2,719	2,096
Pakse	1,569	1,772	1,418	1813	1,889	2,038	2,086	1,746	1,488	1,383	1.78	1,870	18	<u>18</u>	1,777	1,884	1,978	18	1,980	1,741	2,145	2,201	2,208	1,877	2,008	1,987	989	1,665	1,482	2,425	1,748	1,910	1,575	1,627	1,988	2,041	1,919	1,707
Rhon Chiam						2,313	2,400	1,581	1,745	1,610	1,698	2,209	1,863	1,738	1,755	2,164	1,518	1,631	1,755	1,892	2,371	2,318	2,115	1,811	1,885	1,986	1,817		1,504	2,283	1,975	2,484	1,845	1,449		1,876	1,793	1,651
Mukdahan	1,462	1,588	1,443	1,732	1,787	1,845	1,859	1,620	1,281	1,263	1,780	1,285	1,562	1,483	1,451	1,465	1,865	1,616	1,637	1,402	1,678	1,700	45.7	1,445	1,668	1,690	1,624	1,571	1,369	1,845	1,694	1,777	548	1,494	1,632	1,683		1,455
Nong Khai Nakhon Phanom	1,422	1,559	1,368	1,685	1,690	1,778	1,870	1,540	1,225	1,268	1,731	1,271	1,550	1,392	1,337	1,415	1,810	1,512	1,564	1,436	1,636	1,845	1,979	1,672	1,333	1,380	1,347	1,271	1,057	1,540	1,303	1,506	1,224	1,950	1,871	1,983	1,919	1,621
Nong Khai										1.086	1,295	1,172	1,475	1,152	1,086	1.215	¥	1.281	191	8	1,139	1,245	1,308	1,166	1.084	1,263	1,181	1,087	000	1,246	1,089	1,285	1,217	1,070	1,247	1,234	1,157	1,119
Ventiane	1,077	1,225	1,074	1,292	1,271	1,331	1,512	1.24	1,027	365	1,308	1,062	1,292	1,136	1,069	1,186	1,304	1,331	1,107	1,232	1,274	1,297	1,387	1,263	267	1,129	1,143	1,069	98	1,201	1,092	1,285	1,046	987	1,239	1,348	362	952
Chiang Khan								1,068	887	857	1,108	1,097	1,306	1.03.1	975	1,055	1,117	1,253	828	882	1,046	1,139	1,128	1,151	406	481.	1,080	933	961	1,037	952	1,328	3962	874	1,120	1,126	1,066	818
Luang Prabang Chiang Khan	1,065	1,139	1,058	1.183	1,145	1,254	1,385	1,059	889	820	1,109	1,134	1,333	1,020	887	915	858	1,147	253	828	1.124	1,106	1,248	1,106	910	1,214	1,051	917	864	1,017	1,022	1,288	1,025	1,063	1,217	1,170	866	932
Chiang Saen	765	87	1	908	730	153	1 00	88	616	719	8833	888	986	200	787	908	824	788	88	908	842	77	88	8728	743	998	972	937	908	1,007	846	1,185	8	998	1,049	56	718	955
Year	1961	1962	1983	1364	1985	1888	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1961	1982	1983	1884	1985	1986	1987	1988	1989	1990	1961	1982	1983	198	1995	1886	1987	1998

Table 7.19 Comparison of Monthly Mean Discharges on Mekong Mainstream (4/5)

Year	Chiang Saen	Luang Prabang Chiang Khan	Chiang Khan	Ventiane	Nong Khai	Nakhon Phanom	Mukdahan	Khon Chiam	Pakse	Sung Treng	Kratie	Kompong Cham Otroui Changvar	Chroui Changvar
1961	- 50	1.242		1.320		1.578	1.588		1.704	2 028	2.612		1.933
1962	786	1,119		1,185		1431	1.448		95	2 178	2197		2 153
1963	842	1.005		868		1,238	1,286		1.282	1.751	2.235		1,783
1964	823	1,236		1,325		1,666	1,688		1,785	1,926	2,278	1,842	1,954
1965	726	1,093		1,153		1,580	1,588		1,710	2,008	2,789	1,956	1,958
1998	888	1,171		1,246		1,581	1,651	2,228	1,662	2385	2,081	1,967	1,696
1967	823	1,278	1,155	1,352		1,455	1,578	1,685	1,704	1,936	2,270	1,727	2596
1968	938	1,015	1,005	1,179		1.179	1,223	1,372	1867	1,823	1,888	1,774	1.658
1969	200	982	848	918	868	1,155	1,259	1,512	1,382	1,491	2,282	1,666	1,630
1970	938	1,014	838	1,134	1,186	1,313	1,424	1,741	1,568	719	2,161	1,528	1.675
1971	960	1,057	1,11	1,166	1,239	1,461	1,458	1,606	1,600			1,679	1,732
1972	998	1,309	1,180	1,208	1,320	1,409	1,440	2,306	1,888			2184	2,227
1973	1,004	1,173	1,174	1,298	1,334	1,406	1,514	1,684	157.			2140	2201
1974	976	1.271	1,287	1,377	404	1,589	1,659	2,015	2,106				
1975	988	88	1,038	1,108	1,187	1,326	1,419	1,841	1,686				
1976	832	1,006	1,038	1,281	1.372	1,418	1,505	2,422	2,042				
1977	886	1,233	027	1,473	1,480	2,034	2,029	1,688	2,196				
1978	846	1,067	1,030	1,205	1,089	1,373	1,489	1,504	1,785				
1979	629	88	913	1,104	2807	1,514	1,546	1,648	38				
1980	1.002	1,063	925	1,358	1,121	1,455	1,424	1,876	1,745				
1861	872	1,122	984	1,276	1,195	1,559	1,573	2,246	2,126				
1982	848	1,404	1,245	1,470	1.328	2,080	1,857	2,329	2,319				
1983	946	1,208	1,085	1,374	1,246	1,876	1,704	2,115	2,071				
1884	915	1,101	18	1,223	1,145	1,551	1,459	1,669	1,674				
1985	919	1,024	951	1,019	1,126	1,235	1,542	1,706	1,828				
1986	25	1,028	1,080	1,094	1,178	1,229	1.501	1,721	1,747				
1987	1,012	5337	939	1,036	1,105	1,199	1,449	1,562	989				
1988	1,010	1,146	916	1,110	1,037	1,196	1,650		1,607				
1989	811	874	817	835	996	1,049	1,353	1,581	1,513				
1990	1,001	892	882	1,025	1,100	1,229	1,483	1,846	2,091				
1991	1,051	1,309	1,089	1,274	1,249	1,464	1,845	1,955	1,827	2,537			
1982	1,209	1,368	1,286	1,380	1,327	1,532	1,726	2,094	1,782	2,285			
1983	824	1,011	188	974	1,110	1,108	1,453	1,775	449	1,852			
1961	1,063	1,290	1,183	1,41	1,493	2,352	1,877	1,764	5,006	2,423			
1995	83	862	982	998	1,029	1,828	1,457		1,650	1,993			
1888	1,207	1,333	1,259	1,487	1,374	2,232	1.841	2,021	2,154	2,880			
1987	738	1,058	¥	1,119	1,331	2,286	1,986	2,139	2,402	3,482			
1998	912	1,228	1,194	1,221	1,422	1,852	1,655	1,783	1,881	2,250			

Table 7.19 Comparison of Monthly Mean Discharges on Mekong Mainstream (5/5)

Year	Chiang Saen	Luang Prabang Chiang Khan	Chiang Khan	Ventiane	Nong Khai	Nong Khai Nakhon Phanom	Mukdahan	Khon Chiam	Pakse	Stung Treng	Kratie	Kompong Cham Chroui Changvar	Chroui Changvar
1961	1,249	1,441		1,661		2,136	2,136		2,607	4,044	4,537		3.462
1982	1,220	1,547		1,720		2,266	2,330		2,836	3,818	2,990		3,403
1883	273	1.090		1,122		1,353	1,380		1,476	1.879	3,416		1,789
1864	1,387	1,688		2.089		2715	2,751		3,287	4,353	4,087	4.192	3.419
1985	908	1,225		1,309		1,883	1,898		2,137	2648	3,356	2473	2,369
1998	1,151	1,496		1,660		2400	2,449	3,548	4,142	5,104	3,342	4,469	4.285
1967	1,092	1,481	1,375	1,646		2.131	2,132	2,368	2,505	3,320	4,686	2.469	3.523
1968	1,585	1,657	1.871	2.184		2,782	2.796	2,980	3.284	3,538	4.551	3,280	3.037
1969	747	821	834	831	88	1,274	1,462	1,677	1,646	1.828	6,421	1.634	1.691
1970	1,782	2131	2,093	2,349	2491	2,946	2,988	3,257	3,035		4,378	2781	2.594
1971	1,350	1,465	38	1,425	1.563	1,714	1,657	2,400	2,082			1.892	2041
1972	1,108	1,445	1,383	1,357	1,488	1,663	1,671	2,863	2,197			2,063	2,089
1973	1,319	1,742	1,791	1,889	1.897	2,356	2,338	2,700	2,879			3,364	3.629
1974	1,231	1,609	1,767	1,846	1,906	2.094	2,156	2,752	2,936				
1975	1,214	1,247	1,325	1,482	1,563	2,018	2,027	2,845	2,627				
1976	1,345	1,482	1,533	1,769	1.873	2,283	2,272	3,602	3,280				
1977	1,197	1,583	1,422	1,683	1,737	2,085	2.064	1,933	2,420				
1978	1,730	2,296	2,152	2,381	2,405	2,800	2,839	2,888	3,122				
878	1,089	1,473	1,347	1,525	1,545	2,916	2,997	3,552	4,066				
1980	1,247	1,383	1,310	1,780	1,627	2,167	2,018	2,775	2,648				
1961	2,109	2.841	2,662	2,778	2,810	3,369	3,240	4,04	3,883				
1982	8	1,325	1,22,4	1,430	1,285	2,175	2,017	2,577	2,645				
1983	1,213	1,481	7.297	1,591	1,450	2,097	1,994	2,366	2,395				
1981	1,090	1,343	1,339	1,459	1,430	2,482	2,511	3,240	3,306				
£	1,333	1,566	1,374	1,331	1.523	2,000	2,184	2,679	2,666				
1986	1,437	1,958	2,313	2,287	2.550	3,804	4,397	4,884	4,752				
1987	1,089	974	1,017	1,14	1,280	1,333	1,616	1,845	1,918				
1988	1,702	2,101	2,156	2,286	2,233	2,717	3,302		3,444				
1889	1,195	1,351	1,236	1,324	1,486	1,965	2,220	2,774	2,642				
1990	1,968	1,899	1,871	1,920	1,889	2,243	2,628	2,933	2,898				
1981	1,399	1,631	1,538	1,861	1,630	1,798	2,177	2,192	2,159	3,115			
1982	1,177	1,300	1,232	1,282	1,256	1,589	1,818	2,163	2,014	2,820			
1993	1,112	1,362	1,314	1,474	1.58	2,022	2,298	2,626	2,451	3,233			
<u>\$</u>	1,334	1,523	1,583	1,709	1,767	2,719	2,259	2,133	2,440	3,239			
1995	1,688	1,601	1,578	1,729	1,730	2,371	2,248	2,282	2,586	3,210			
1806	1,508	1,784	2,085	2,301	2,297	3,440	2,870	2,883	3,583	5,885			
1987	986	1,275	1,310	1,245	1,507	2,438	2,202	2,372	2,677	4,113			
1998	1,497	1,768	1,836	1,678	1,978	2.520	2,248	2,338	2,636	3,512			

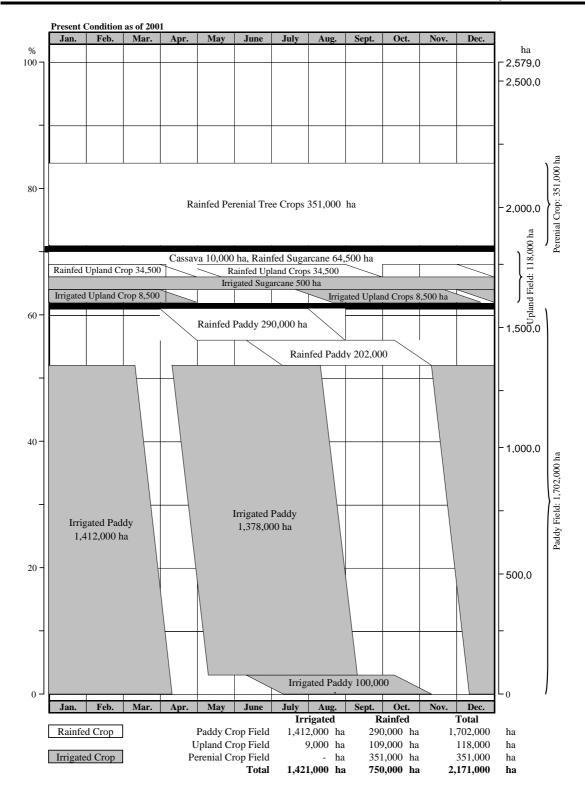
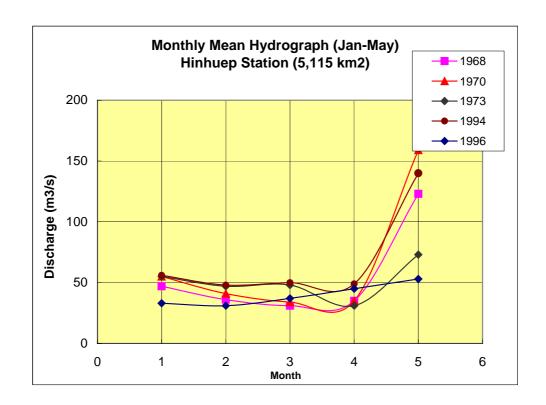



Fig. 3.9 Present Cropping Pattern in the Mekong Delta

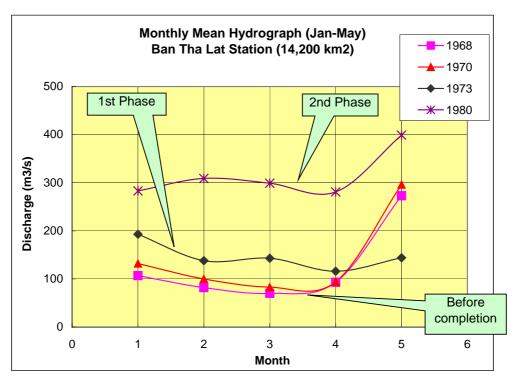
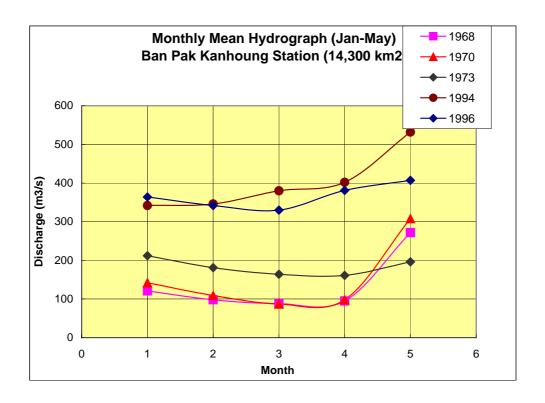



Fig. 5.8(1/2) Comparison of Dry-Season Flow Hydrographs in Nam Ngum River (1/2)

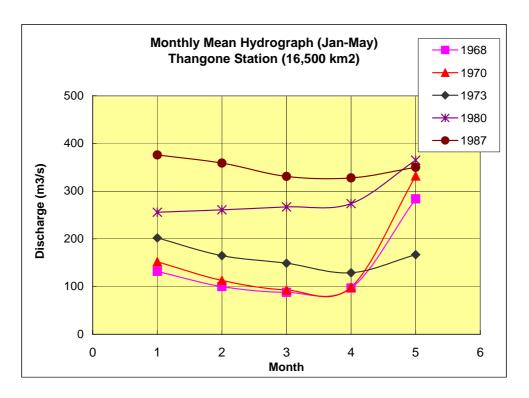
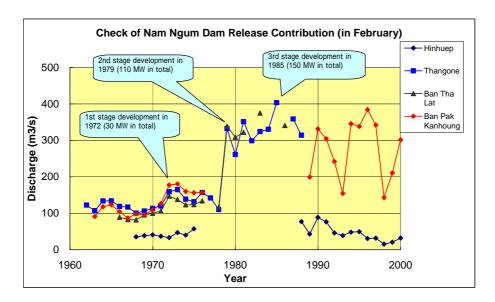
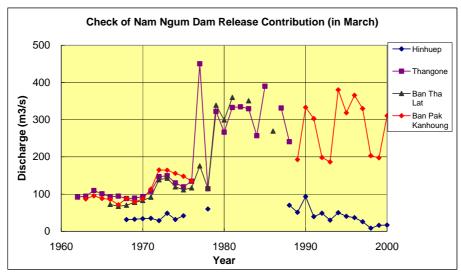




Fig. 5.8(2/2) Comparison of Dry-Season Flow Hydrographs in Nam Ngum River (2/2)

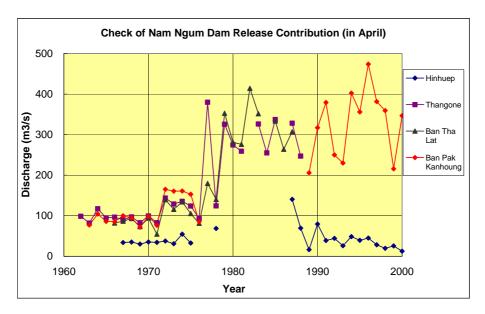
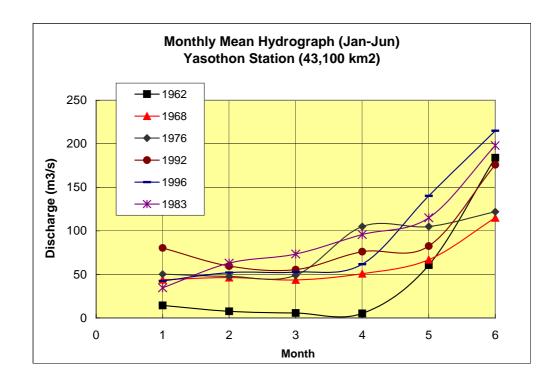



Fig. 5.9 Comparison of Time-Series of Monthly Mean Discharges in Nam Ngum River

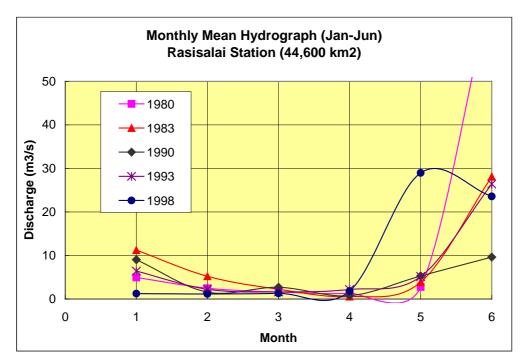
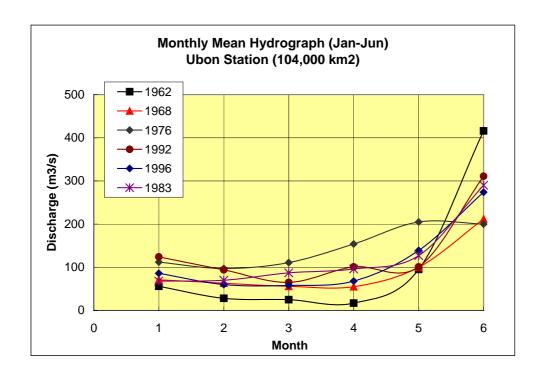



Fig. 6.5 Comparison of Dry-Season Flow Hydrographs in Nam Mun-Chi River (1/2)

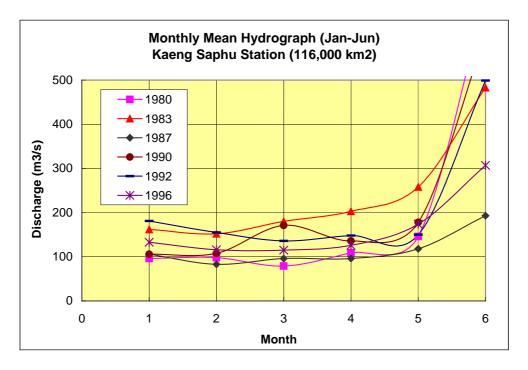


Fig. 6.5 Comparison of Dry-Season Flow Hydrographs in Nam Mun-Chi River (2/2)

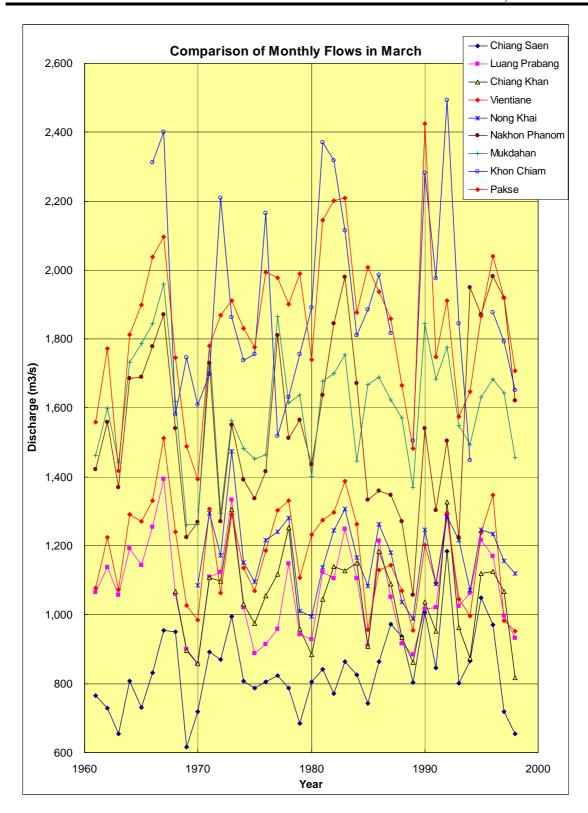


Fig. 7.3 Comparison of Monthly Mean Discharges on Mekong Mainstream (1/2)

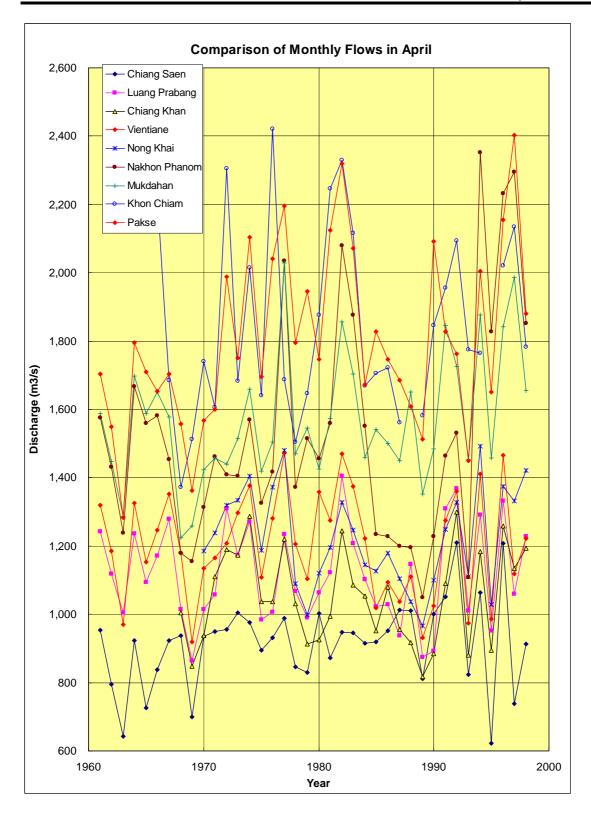
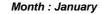
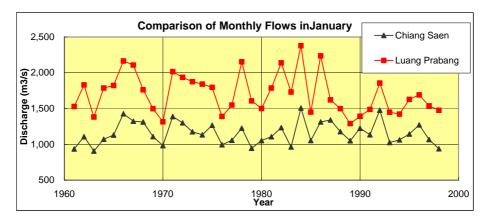
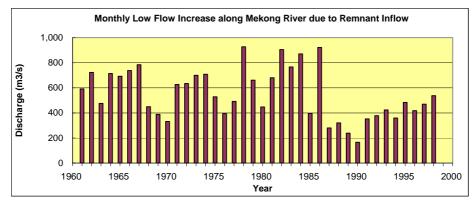
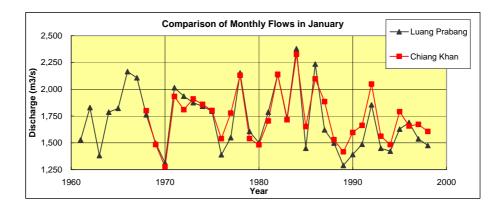





Fig. 7.3 Comparison of Monthly Mean Discharges on Mekong Mainstream (2/2)

Stretch: Chiang Sean - Luang Prabang (79,000 km2)



Stretch: Luang Prabang - Chiang Khan (24,000 km2)

Month: January

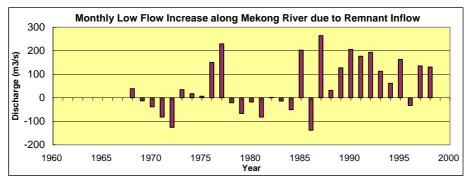
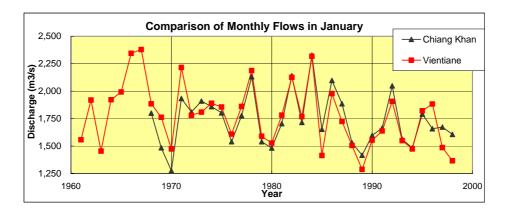
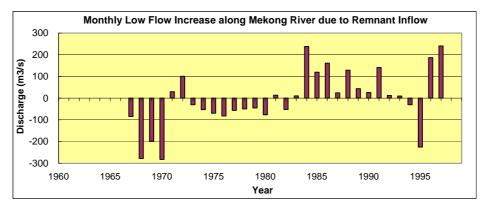
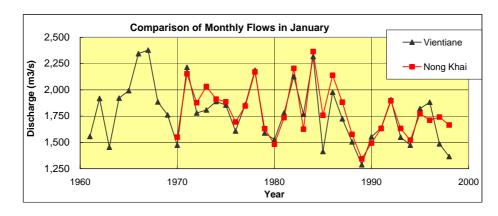




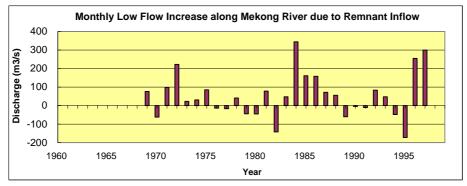
Fig. 7.4 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in January (1/6)

Stretch: Chiang Khan - Vientiane (7,000 km2)


Month : January

Stretch: Vientiane - Nong Khai (3,000 km2)

Month : January



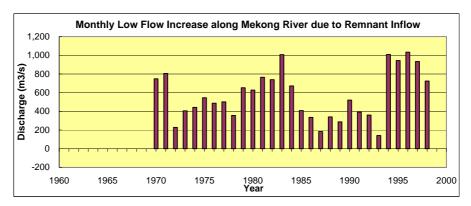
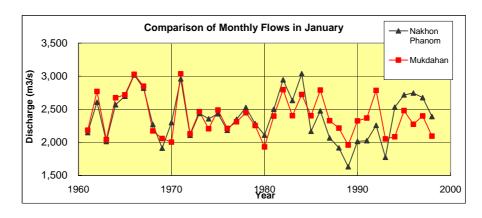


Fig. 7.4 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in January (2/6)

Stretch: Nong Khai - Nakhon Phanom (71,000 km2)


Month : January

Stretch: Nakhon Phanom - Mukdahan (18,000 km2)

Month : January

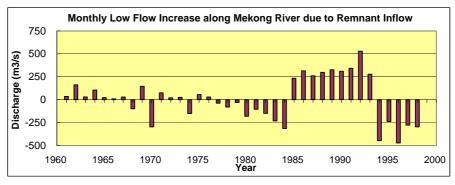
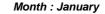
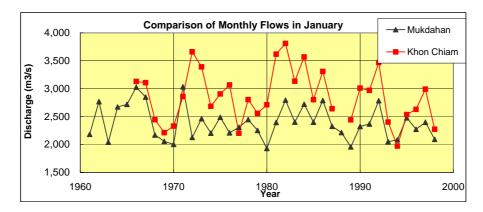
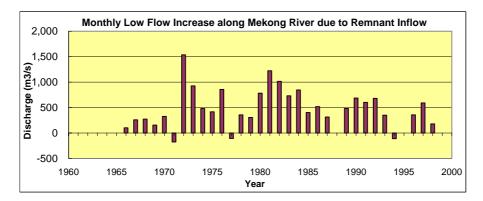
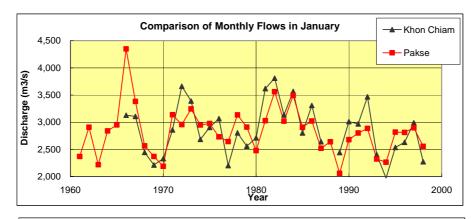





Fig. 7.4 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in January (3/6)



Stretch: Khong Chiam - Pakse (126,000 km2)

Month : January

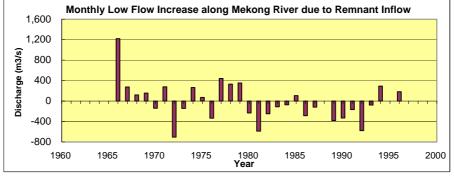
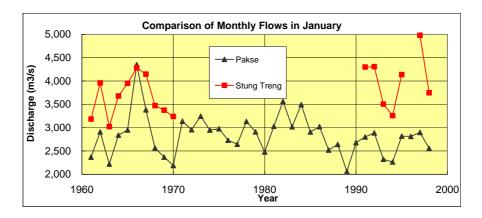
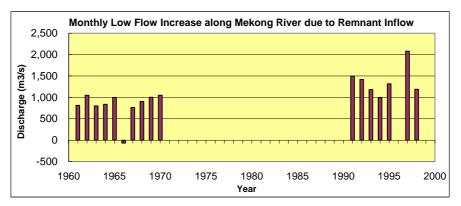
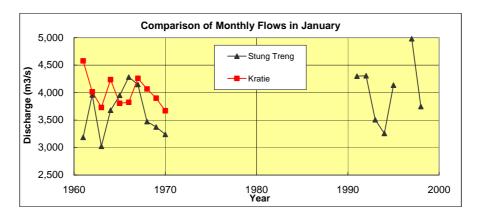




Fig. 7.4 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in January (4/6)

Stretch: Pakse - Stung Treng (90,000 km2)


Month : January

Stretch: Stung Treng - Kratie (11,000 km2)

Month : January

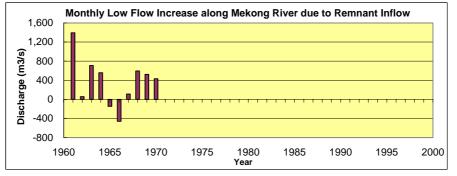
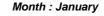
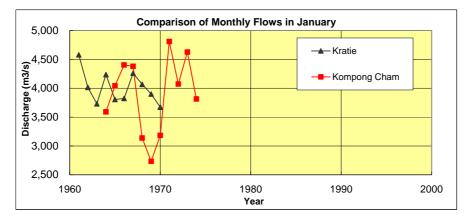
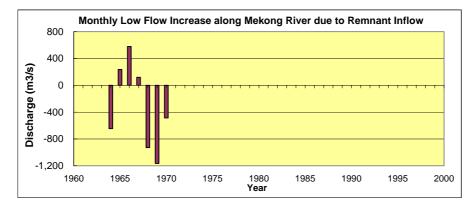
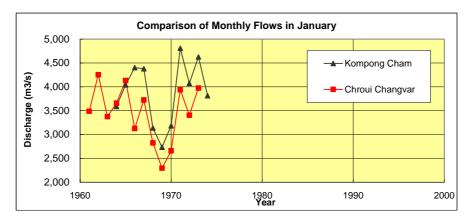





Fig. 7.4 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in January (5/6)

Stretch: Kratie - Kompong Cham (14,000 km2)



Stretch: Kompong Cham - Chrui Changvar (3,000 km2)

Month: January

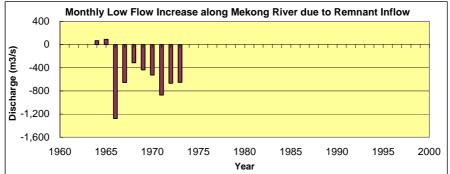
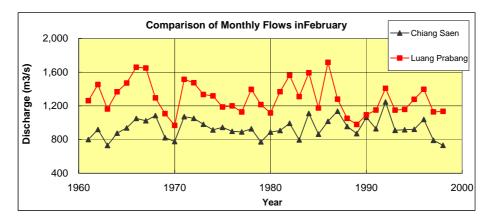
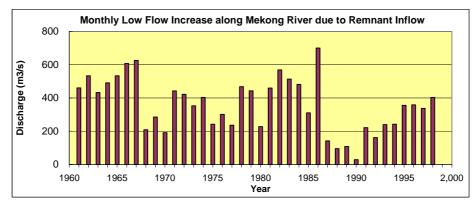
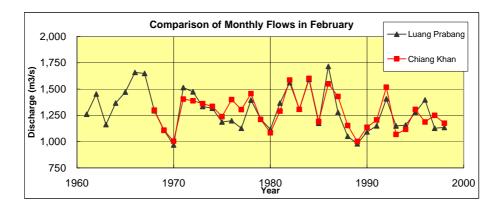




Fig. 7.4 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in January (6/6)

Stretch: Chiang Sean - Luang Prabang (79,000 km2)


Month : February

Stretch: Luang Prabang - Chiang Khan (24,000 km2)

Month: February

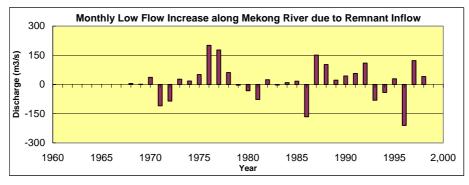
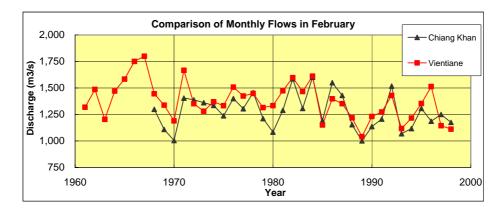
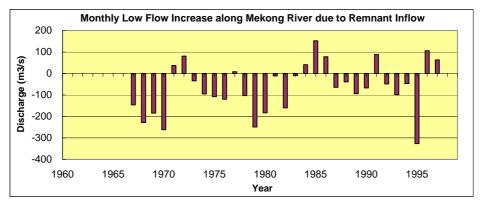
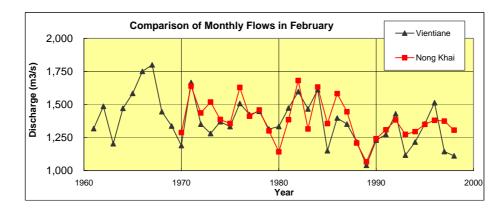




Fig. 7.5 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in February (1/6)


Stretch: Chiang Khan - Vientiane (7,000 km2)

Month : February

Stretch: Vientiane - Nong Khai (3,000 km2)

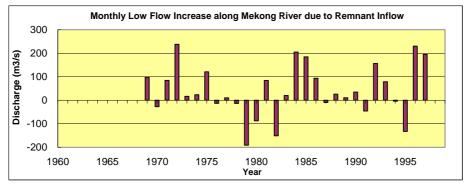
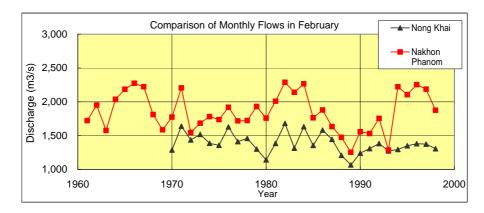
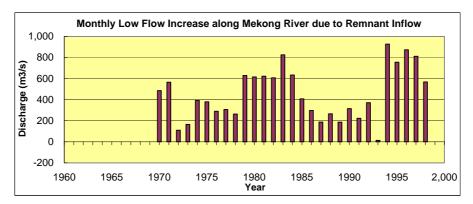
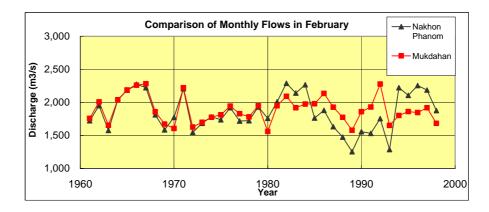
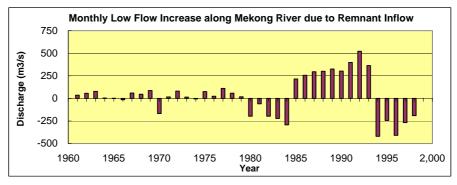
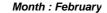
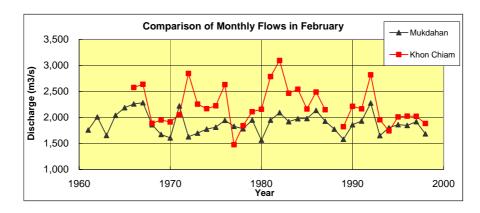
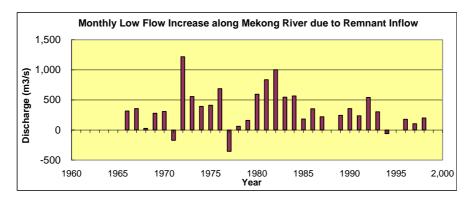




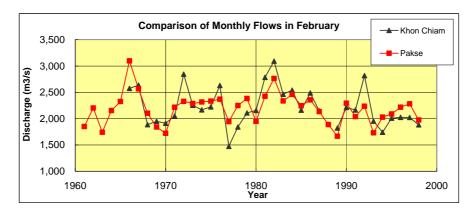
Fig. 7.5 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in February (2/6)


Stretch: Nong Khai - Nakhon Phanom (71,000 km2)

Month : February

Stretch: Nakhon Phanom - Mukdahan (18,000 km2)


Fig. 7.5 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in February (3/6)

Stretch: Khong Chiam - Pakse (126,000 km2)

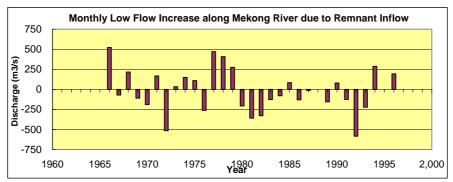
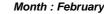
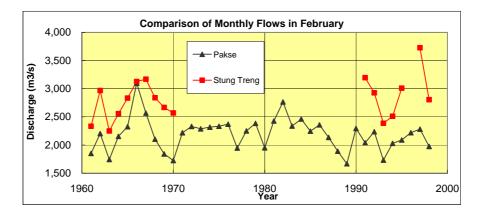
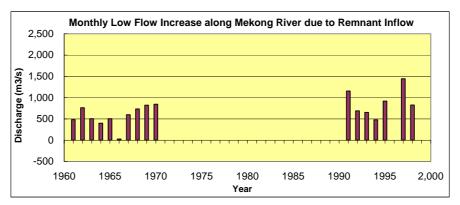
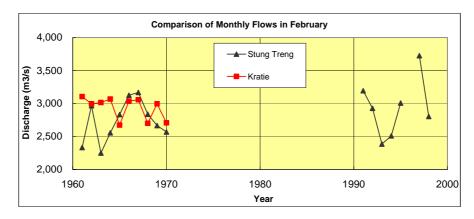
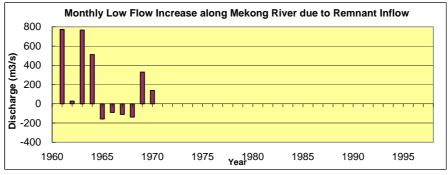
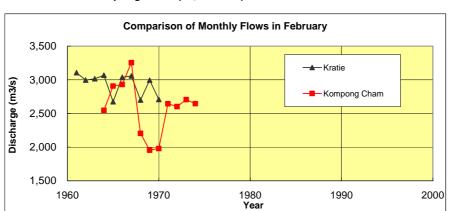
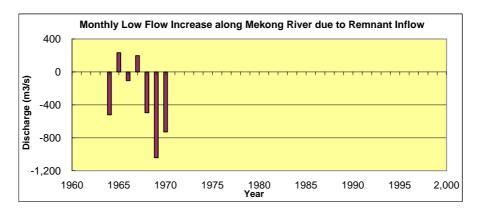
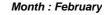





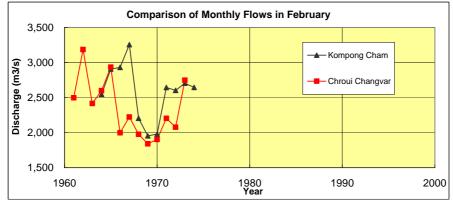
Fig. 7.5 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in February (4/6)


Stretch: Pakse - Stung Treng (90,000 km2)

Stretch: Stung Treng - Kratie (11,000 km2)


Fig. 7.5 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in February (5/6)


Stretch: Kratie - Kompong Cham (14,000 km2)

Stretch: Kompong Cham - Chrui Changvar (3,000 km2)

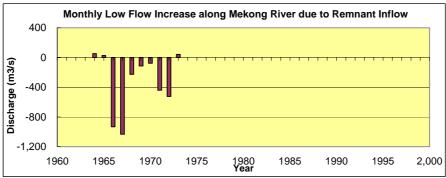
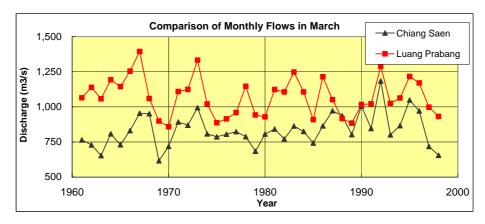
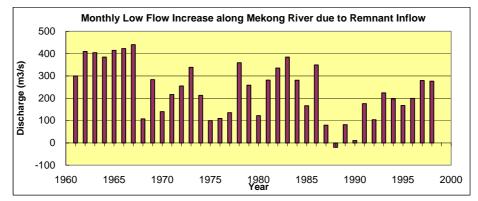
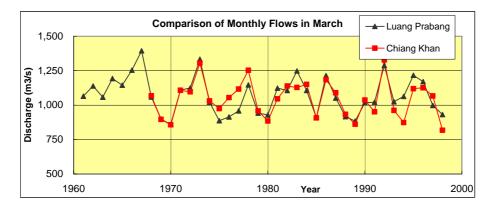




Fig. 7.5 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in February (6/6)

Stretch: Chiang Sean - Luang Prabang (79,000 km2)



Stretch: Luang Prabang - Chiang Khan (24,000 km2)

Month: March

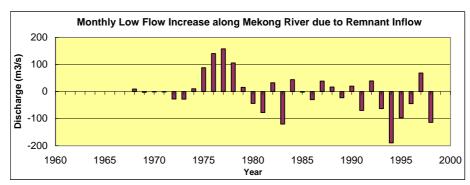
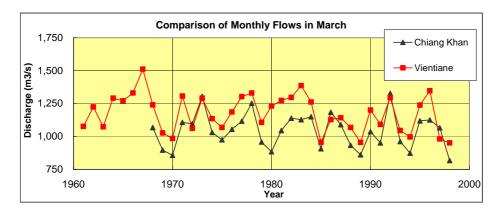
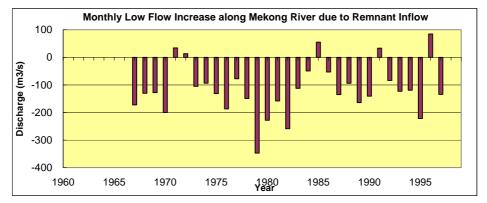
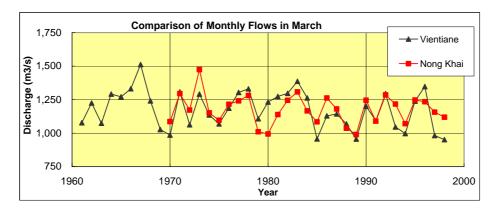




Fig. 7.6 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in March (1/6)

Stretch: Chiang Khan - Vientiane (7,000 km2)



Stretch: Vientiane - Nong Khai (3,000 km2)

Month: March

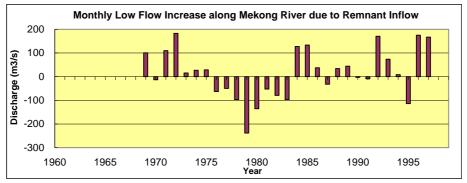
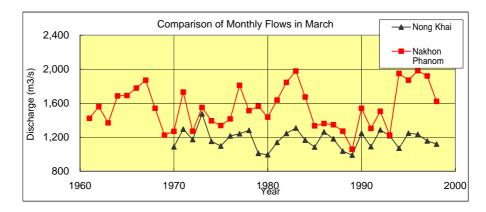
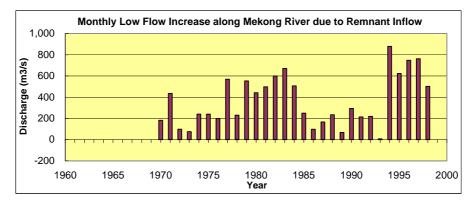
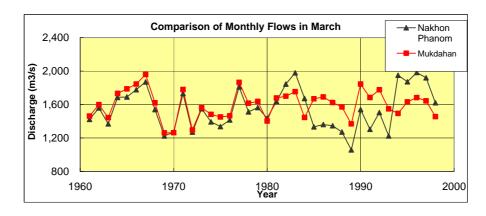




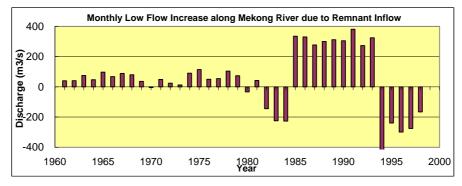
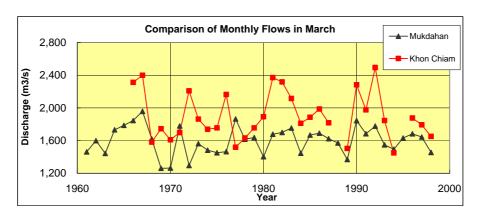
Fig. 7.6 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in March (2/6)

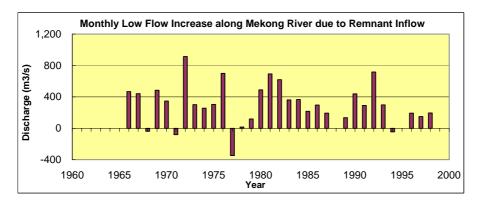
Stretch: Nong Khai - Nakhon Phanom (71,000 km2)



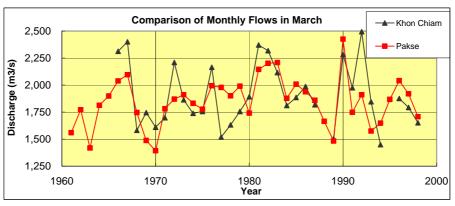
Stretch: Nakhon Phanom - Mukdahan (18,000 km2)

Month : March


Fig. 7.6 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in March (3/6)

Month: March


Month: March

Stretch : Mukdahan - Khong Chiam (28,000 km2)

Stretch: Khong Chiam - Pakse (126,000 km2)

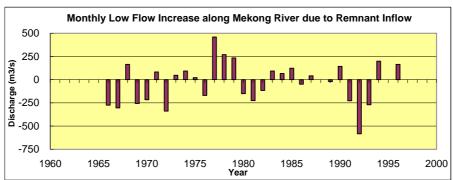
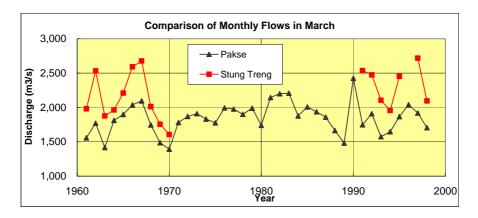
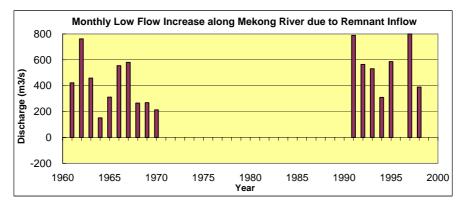
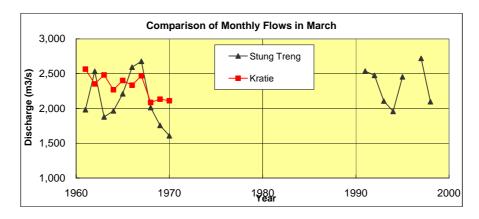




Fig. 7.6 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in March (4/6)

Stretch: Pakse - Stung Treng (90,000 km2)



Stretch: Stung Treng - Kratie (11,000 km2)

Month: March

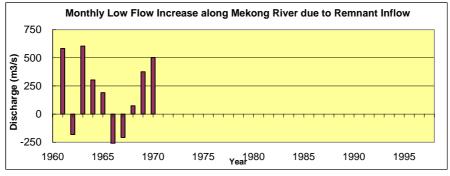
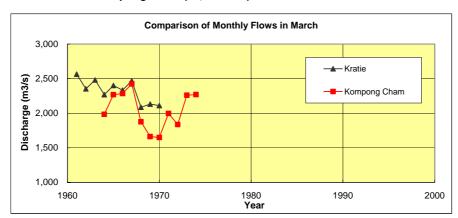
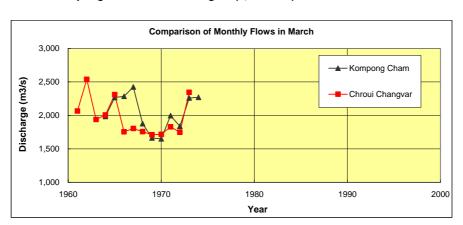



Fig. 7.6 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in March (5/6)

Month: March


Month: March

Stretch: Kratie - Kompong Cham (14,000 km2)

Stretch: Kompong Cham - Chrui Changvar (3,000 km2)

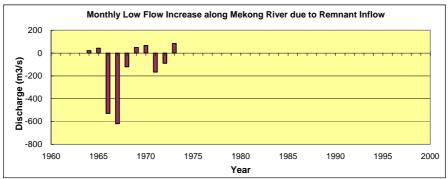
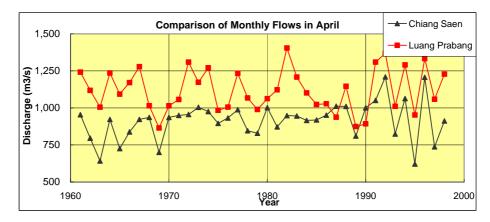
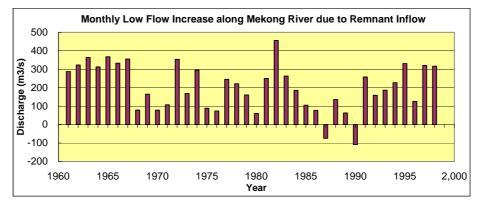
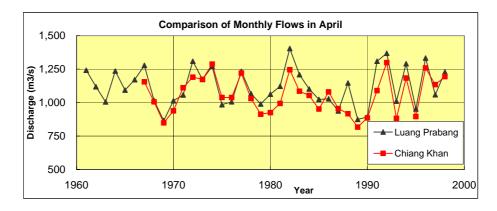




Fig. 7.6 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in March (6/6)

Stretch: Chiang Sean - Luang Prabang (79,000 km2)


Month : April

Stretch: Luang Prabang - Chiang Khan (24,000 km2)

Month: April

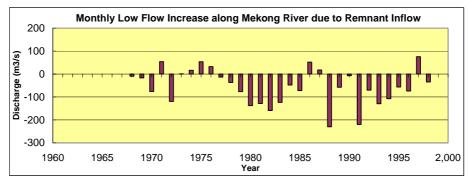
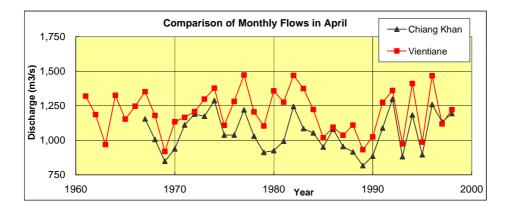
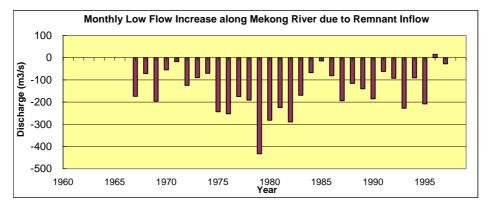
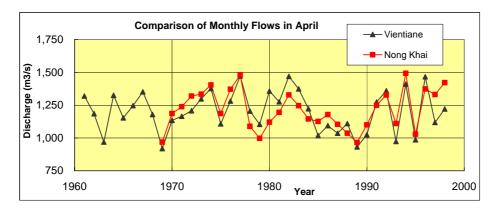




Fig. 7.7 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in April (1/6)

Stretch: Chiang Khan - Vientiane (7,000 km2)


Month : April

Stretch: Vientiane - Nong Khai (3,000 km2)

Month : April

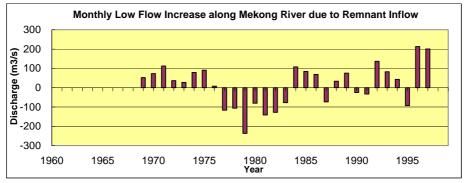
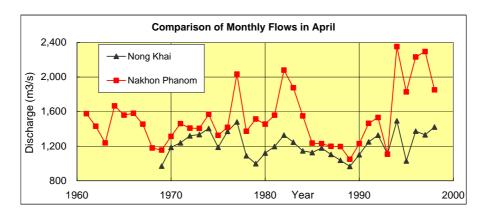
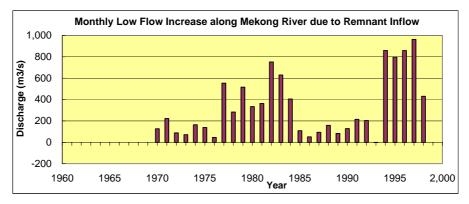
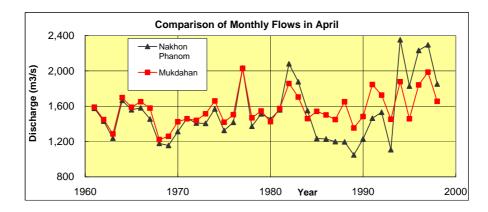




Fig. 7.7 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in April (2/6)

Stretch: Nong Khai - Nakhon Phanom (71,000 km2)


Month : April

Stretch: Nakhon Phanom - Mukdahan (18,000 km2)

Month : April

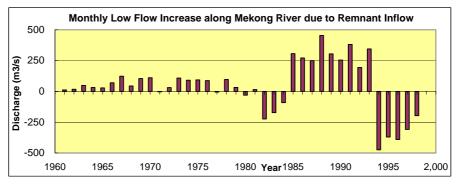
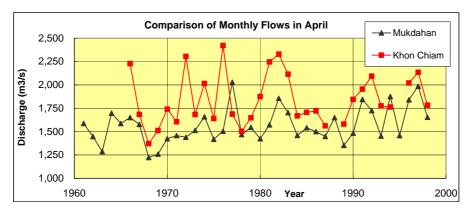
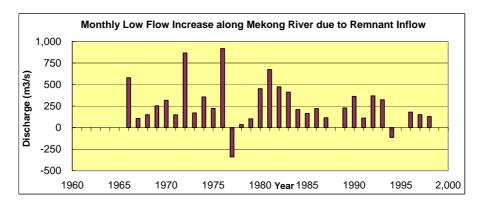




Fig. 7.7 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in April (3/6)

Stretch: Khong Chiam - Pakse (126,000 km2)

Month : April

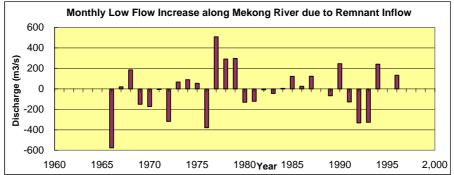
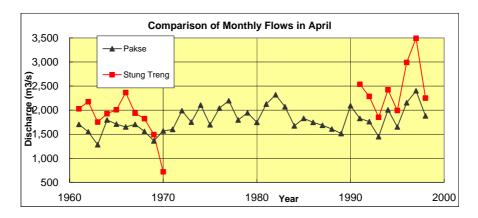
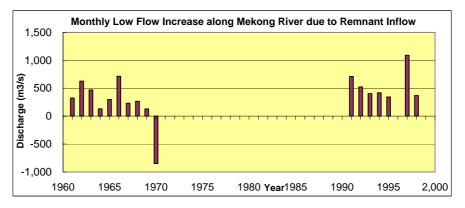
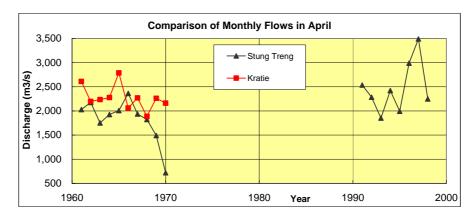




Fig. 7.7 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in April (4/6)

Stretch: Pakse - Stung Treng (90,000 km2)



Stretch: Stung Treng - Kratie (11,000 km2)

Month: April

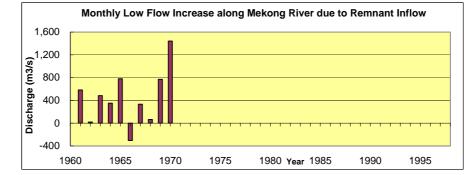
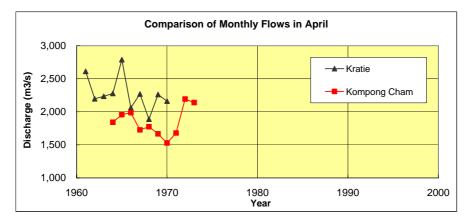
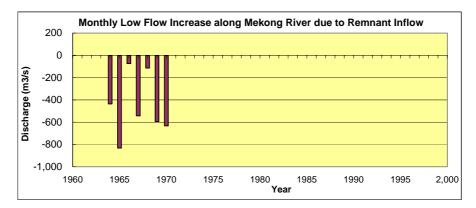
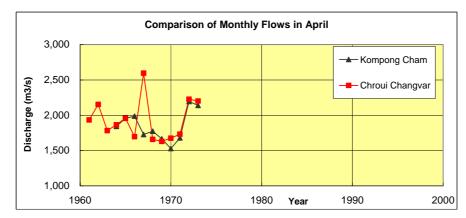




Fig. 7.7 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in April (5/6)

Stretch: Kratie - Kompong Cham (14,000 km2)



Stretch: Kompong Cham - Chrui Changvar (3,000 km2)

Month : April

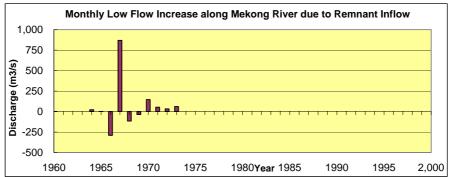
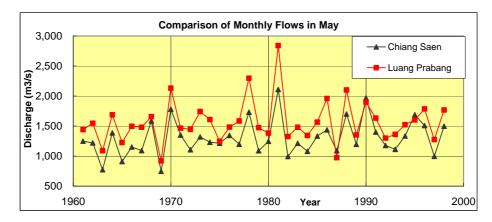
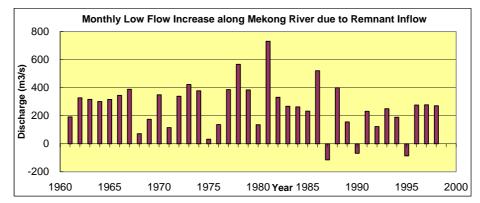
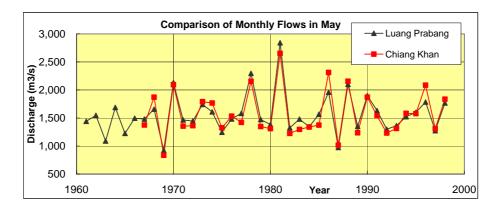




Fig. 7.7 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in April (6/6)

Stretch: Chiang Sean - Luang Prabang (79,000 km2)


Month: May

Stretch: Luang Prabang - Chiang Khan (24,000 km2)

Month: May

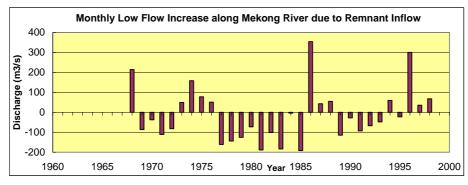
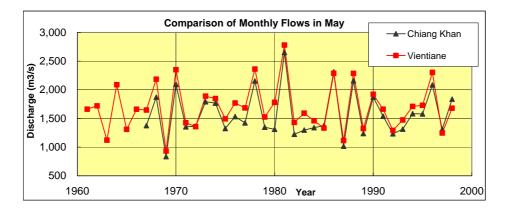
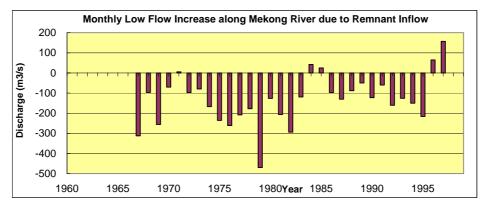
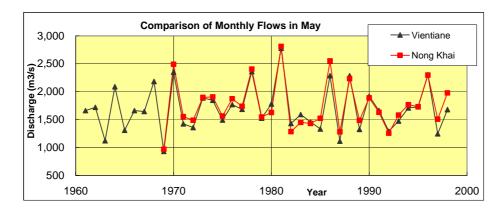




Fig. 7.8 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in May (1/6)

Stretch: Chiang Khan - Vientiane (7,000 km2)


Month: May

Stretch: Vientiane - Nong Khai (3,000 km2)

Month : May

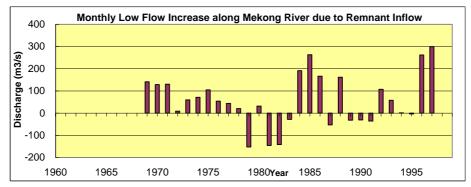
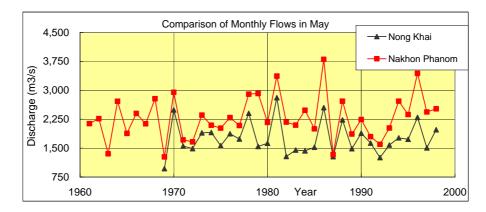
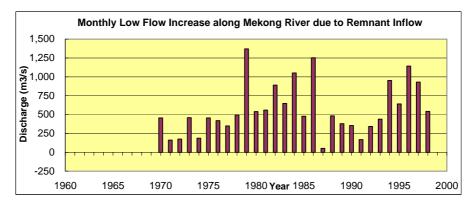
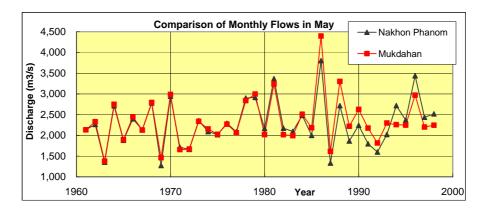




Fig. 7.8 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in May (2/6)

Stretch: Nong Khai - Nakhon Phanom (71,000 km2)


Month : May

Stretch: Nakhon Phanom - Mukdahan (18,000 km2)

Month: May

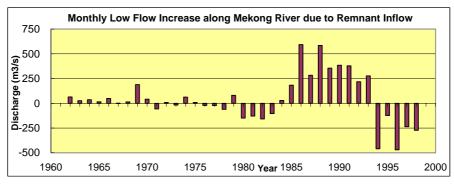
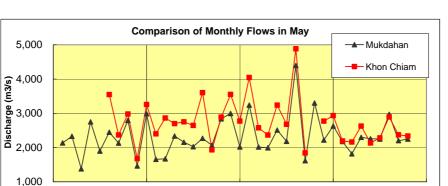
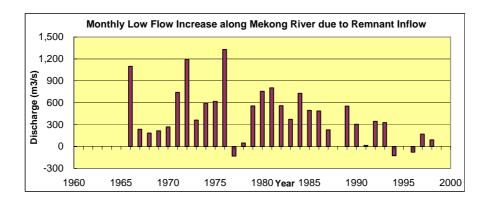



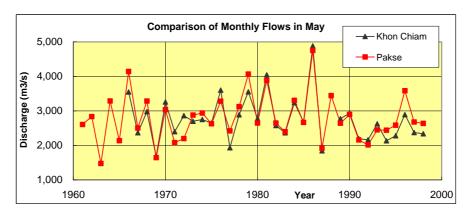
Fig. 7.8 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in May (3/6)


1970

1960

1980

Year


Stretch: Khong Chiam - Pakse (126,000 km2)

Month: May

2000

1990

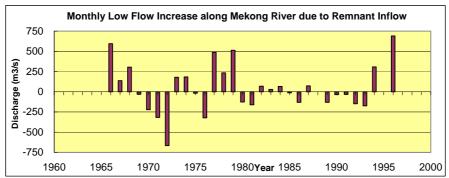
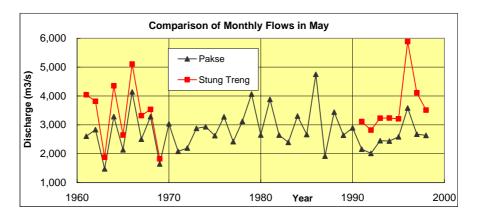
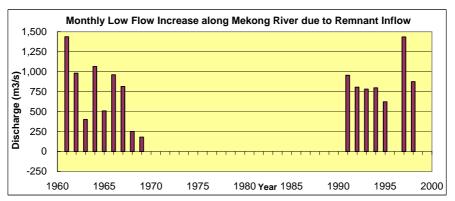
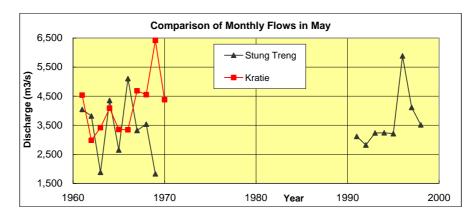




Fig. 7.8 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in May (4/6)

Stretch: Pakse - Stung Treng (90,000 km2)


Month : May

Stretch: Stung Treng - Kratie (11,000 km2)

Month: May

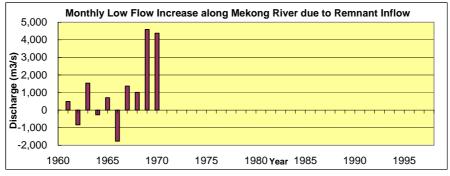
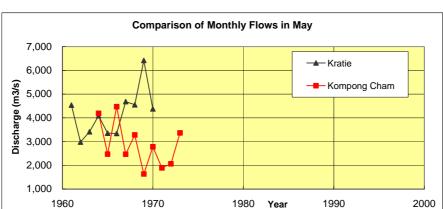
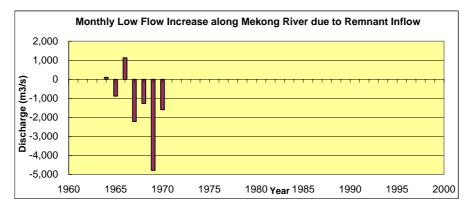




Fig. 7.8 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in May (5/6)

Stretch: Kratie - Kompong Cham (14,000 km2)

Stretch: Kompong Cham - Chrui Changvar (3,000 km2)

Month: May

Month: May

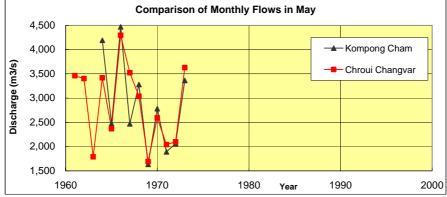


Fig. 7.8 Low Flow Increase of Mekong Mainstream due to Lateral Inflow in May (6/6)