VOLUME II

PAPER V

APPLICATION OF HYDRO-HYDRAULIC MODEL

FINAL REPORT

MARCH 2004

WUP-JICA TEAM

TABLE OF CONTENTS

1.	INT	RODUCTION	V-1
2.	DRY	Y SEASON FLOW INVESTIGATIONS	V-2
	2.1	Introduction	V-2
	2.2	Available Data	V-2
	2.3	Model Simulations - Dry Season 2003	V-3
	2.4	Model Results - Dry Season 2003	V-3
	2.5	Model Simulations - Dry Seasons in 1997-2001	V-6
	2.6	Model Results - Dry Seasons in 1997-2001	V-7
	2.7	Conclusion	V-7
3.	HY	DRAULIC IMPACT OF ROAD EMBANKMENTS	V-9
	3.1	Introduction	V-9
	3.2	Model Setups	V-9
	3.3	Model Results	V-10
	3.4	Conclusions	V-11
4.	EFF FLC	ECT OF INCREASED BRIDGE OPENINGS ON OODPLAIN INUNDATION	V-12
	4.1	Introduction	V-12
	4.2	Model Tests	V-12
	4.3	Conclusions	V-13
5.	WA	TER BALANCE OF THE TONLE SAP LAKE	V-13
	5.1	Introduction	V-13
	5.2	Water Balance Assessment	V-13
	5.3	Conclusions	V-16
6.	CO	NCLUSIONS	V-17
REF	EREN	CES	V-18

LIST OF TABLES

Table 1	Wind Data from Pochentong Airport, 2003	V-19
Table 2	Simulated Daily Average Discharges, Dry Season 2003	V-20
Table 3	Simulated Daily Average Discharges, Dry Season 1997	V-21
Table 4	Simulated Daily Average Discharges, Dry Season 1998	V-22
Table 5	Simulated Daily Average Discharges, Dry Season 1999	V-23
Table 6	Simulated Daily Average Discharges, Dry Season 2000	V-24
Table 7	Simulated Daily Average Discharges, Dry Season 2001	V-25

LIST OF FIGURES

Fig. 2.1	Hourly Water Level at Tan Chau, February to April 2003	V-26
Fig. 2.2	Hourly Water Level at Chau Doc, February to April 2003	V-26
Fig. 2.3	Daily Water Level at Kompong Cham, January to May 2003	V-27
Fig. 2.4	Weekly Discharge Measurements at Kompong Cham, February to April 2003	V-27
Fig. 2.5	Hourly Water Levels at Chrui Changvar, January to April 2003	V-28
Fig. 2.6	Hourly Water Levels at Chaktomouk, January to April 2003	V-28
Fig. 2.7	Weekly Discharge Measurements at Chrui Changvar, February to April 2003	V-29
Fig. 2.8	Weekly Discharge Measurements at Koh Norea, February to April 2003	V-29
Fig. 2.9	Weekly Discharge Measurements at Phnom Penh Port, February to April 2003	V-30
Fig. 2.10	Weekly Discharge Measurements at Monivong Bridge, February to April 2003	V-30
Fig. 2.11	Difference in Water Level between Chrui Changvar and Chaktomouk January to April 2003	, V-31
Fig. 2.12a	Simulated and Observed Discharge at Chrui Changvar, February to April 2003	V-31
Fig. 2.12b	Simulated and Observed Discharge at Chrui Changvar, First Half of February 2003	V-32
Fig. 2.12c	Simulated and Observed Discharge at Chrui Changvar, Second Half of February 2003	V-32
Fig. 2.12d	Simulated and Observed Discharge at Chrui Changvar, First Half of March 2003	V-33
Fig. 2.12e	Simulated and Observed Discharge at Chrui Changvar, Second Half of March 2003	V-33
Fig. 2.12f	Simulated and Observed Discharge at Chrui Changvar, First Half of April 2003	V-34

Fig. 2.12g	Simulated and Observed Discharge at Chrui Changvar, Second Half of April 2003	V-34
Fig. 2.13a	Simulated and Observed Discharge at Koh Norea, February to April 2003	V-35
Fig. 2.13b	Simulated and Observed Discharge at Koh Norea, First Half of February 2003	V-35
Fig. 2.13c	Simulated and Observed Discharge at Koh Norea, Second Half of February 2003	V-36
Fig. 2.13d	Simulated and Observed Discharge at Koh Norea, First Half of March 2003	V-36
Fig. 2.13e	Simulated and Observed Discharge at Koh Norea, Second Half of March 2003	V-37
Fig. 2.13f	Simulated and Observed Discharge at Koh Norea, First Half of April 2003	V-37
Fig. 2.13g	Simulated and Observed Discharge at Koh Norea, Second Half of April 2003	V-38
Fig. 2.14a(1/2)	Simulated and Observed Discharge at Phnom Penh Port, February to April 2003 - including wind	V-39
Fig. 2.14a(2/2)	Simulated and Observed Discharge at Phnom Penh Port, February to April 2003 - no wind	V-39
Fig. 2.14b	Simulated and Observed Discharge at Phnom Penh Port, First Half of February 2003	V-40
Fig. 2.14c	Simulated and Observed Discharge at Phnom Penh Port, Second Half of February 2003	V-40
Fig. 2.14d	Simulated and Observed Discharge at Phnom Penh Port, First Half of March 2003	V-41
Fig. 2.14e	Simulated and Observed Discharge at Phnom Penh Port, Second Half of March 2003	V-41
Fig. 2.14f	Simulated and Observed Discharge at Phnom Penh Port, First Half of April 2003	V-42
Fig. 2.14g	Simulated and Observed Discharge at Phnom Penh Port, Second Half of April 2003	V-42
Fig. 2.15a	Simulated and Observed Discharge at Monivong Bridge, February to April 2003	V-43
Fig. 2.15b	Simulated and Observed Discharge at Monivong Bridge, First Half of February 2003	V-43
Fig. 2.15c	Simulated and Observed Discharge at Monivong Bridge, Second Half of February 2003	V-44
Fig. 2.15d	Simulated and Observed Discharge at Monivong Bridge, First Half of March 2003	V-44
Fig. 2.15e	Simulated and Observed Discharge at Monivong Bridge, Second Half of March 2003	V-45
Fig. 2.15f	Simulated and Observed Discharge at Monivong Bridge, First Half of April 2003	V-45
Fig. 2.15g	Simulated and Observed Discharge at Monivong Bridge, Second Half of April 2003	V-46
Fig. 2.16a	Simulated and Observed Water Level at Chrui Changvar, February to April 2003	V-46

Fig. 2.16b	Simulated and Observed Water Level at Chrui Changvar, First Half of February 2003	V-47
Fig. 2.16c	Simulated and Observed Water Level at Chrui Changvar, Second Half of February 2003	V-47
Fig. 2.16d	Simulated and Observed Water Level at Chrui Changvar, First Half of March 2003	V-48
Fig. 2.16e	Simulated and Observed Water Level at Chrui Changvar, Second Half of March 2003	V-48
Fig. 2.16f	Simulated and Observed Water Level at Chrui Changvar, First Half of April 2003	V-49
Fig. 2.16g	Simulated and Observed Water Level at Chrui Changvar, Second Half of April 2003	V-49
Fig. 2.17a	Simulated and Observed Water Level at Chaktomouk, February to April 2003	V-50
Fig. 2.17b	Simulated and Observed Water Level at Chaktomouk, First Half of February 2003	V-50
Fig. 2.17c	Simulated and Observed Water Level at Chaktomouk, Second Half of February 2003	V-51
Fig. 2.17d	Simulated and Observed Water Level at Chaktomouk, First Half of March 2003	V-51
Fig. 2.17e	Simulated and Observed Water Level at Chaktomouk, Second Half of March 2003	V-52
Fig. 2.17f	Simulated and Observed Water Level at Chaktomouk, First Half of April 2003	V-52
Fig. 2.17g	Simulated and Observed Water Level at Chaktomouk, Second Half of April 2003	V-53
Fig. 2.18	Simulated Daily Average Discharge at the Four River Branches in Chaktomouk	V-53
Fig. 2.19	Simulated Daily Average Discharge and Observed Daily Average Discharge at Chrui Changvar	V-54
Fig. 2.20	Simulated Daily Average Discharge and Observed Daily Average Discharge at Koh Norea	V-54
Fig. 2.21	Simulated Daily Average Discharge and Observed Daily Average Discharge at Phnom Penh Port	V-55
Fig. 2.22	Simulated Daily Average Discharge and Observed Daily Average Discharge at Monivong Bridge	V-55
Fig. 2.23	Observed Daily Average Discharge at Chrui Changvar versus Daily Average Discharge at Koh Norea	V-56
Fig. 2.24	Observed Daily Average Discharge at Chrui Changvar versus Daily Average Discharge at Phnom Penh Port	V-56
Fig. 2.25	Observed Daily Average Discharge at Chrui Changvar versus Daily Average Discharge at Monivong Bridge	V-57
Fig. 2.26	Observed Daily Average Discharge upstream of Chaktomouk	
	versus Daily Average Discharge at Koh Norea	V-57
Fig. 2.27	Observed Daily Average Discharge upstream of Chaktomouk	
	versus Daily Average Discharge at Monivong Bridge	V-58

Fig. 2.28	Simulated hourly Discharge versus Simulated hourly Water Level at Phnom Penh port, Dry Season 2003	V-58
Fig. 2.29	Observed Discharge versus Observed Water Level at Phnom Penh Port, Dry Season 2003	V-59
Fig. 2.30a	Observed Daily Average Discharge at Phnom Penh Port versus Observed 7 o'clock Water Level at Chaktomouk, Dry Season 2003	V-59
Fig. 2.30b	Simulated and rated Daily Average Discharge at Phnom Penh Port, Dry Season 2003	V-60
Fig. 2.30c	Simulated versus rated Daily Average Discharge at Phnom Penh Port, Dry Season 2003	V-60
Fig. 2.31	Observed and Simulated Average Daily Discharge at Tan Chau, Dry Season 1997	V-61
Fig. 2.32	Observed and Simulated Average Daily Discharge at Tan Chau, Dry Season 1998	V-61
Fig. 2.33	Observed and Simulated Average Daily Discharge at Tan Chau, Dry Season 1999	V-62
Fig. 2.34	Observed and Simulated Average Daily Discharge at Tan Chau, Dry Season 2000	V-62
Fig. 2.35	Observed and Simulated Average Daily Discharge at Tan Chau, Dry Season 2001	V-63
Fig. 2.36	Observed and Simulated hourly Daily Discharge at Tan Chau, part of Dry Season 1997, 1998 and 1999	V-63
Fig. 2.37	Observed and Simulated hourly Daily Discharge at Tan Chau, Part of Dry Season 2000 and 2001	V-65
Fig. 3.1	Location of major roads in Phnom Penh, Kompong Cham and Neak Luong Areas	V-66
Fig. 3.2	Model Layout for the Situations (after 1960, 1920-1960, before 1920)	V-67
Fig. 3.3	Simulated Discharge for Embankment Conditions (Chrui Changvar and Prek Kdam)	V-68
Fig. 3.4	Simulated Discharge for Embankment Conditions (Koh Norea and Bassac)	V-69
Fig. 3.5	Water Balance from June 1 st to November 1 st , 2000	V-70
Fig. 3.6	Water Balance from June 1 st to November 1 st , 2001	V-70
Fig. 3.7	Water Balance from June 1 st to November 1 st , 2002	V-70
Fig. 4.1	Simulated Longitudinal Profile of Water Level for the Peak Flood in 2002	V-71
Fig. 4.2	Effect of Larger Bridge Openings on Water Levels and Discharges	V-71
Fig. 4.3	Flood Inundation Maps for Existing and Test Case	V-72
Fig. 5.1	Volume Balance for Hydrological Year 1962 (monthly basis)	V-73
Fig. 5.2	Volume Balance for the Great lake 1998-2003 (monthly basis)	V-73
Fig. 5.3	Volume Balance for the Hydrological Year 1998 (monthly basis)	V-74
Fig. 5.4	Volume balance for the Hydrological Year 1999 (monthly basis)	V-74
Fig. 5.5	Volume balance for the Hydrological Year 2000 (monthly basis)	V-75

Fig. 5.6	Volume balance for the Hydrological Year 2001 (monthly basis)	V-75
Fig. 5.7	Volume balance for the Hydrological Year 2002 (monthly basis)	V-76
Fig. 5.8	Lake Volume and Monthly Change in Lake Volume Based on Observed Water Level and the Drived Level-Vlume Rlation	V-77
Fig. 5.9	Monthly Change in Lake Volume Based on 1) Inflow/Outflow Assessment and 2) by Observed Water Level and Level-Volume Relation	V-77

1. INTRODUCTION

This Paper V, Application of Hydro-Haydraulic Model, describes the various applications made with the hydro-hydraulic model. The applications comprise:

- Dry season flow investigations
- Hydraulic Impact of Road Embankments
- Effect of increased bridge openings on flood plain inundation
- Water balance for Tonle Sap Lake

The purpose of the <u>dry season flow investigation</u> has been to support the WUP-JICA study in the establishment of a dry season flow management system .The dry season flow investigations makes use of the discharge and water level data which have been collected at the Chaktomouk junction during the 2003 dry season period. The dry season data are used for model calibration as well as for application to support the work on dry season flow management system.

The study of the <u>hydraulic impact of road embankments</u> relates to the conditions during the wet season. The purpose of this activity has been to investigate the effect from the major embankment constructions since 1920 up to present. The activity contributes to the discussion on changes in flow exchange between the Mekong and the Great Lake.

The study on the <u>effect of increased bridge openings on floodplain inundation</u> was made in order to demonstrate the hydraulic impact of construction of road embankments and associated bridges. The example presented herein shows clearly the importance of hydraulic studies in connection with infrastructure developments in Cambodia.

The <u>water balance for Tonle Sap Lake</u> was made in order to obtain a quantification of the various elements in the water balance. The water balance was based on the results of the mathematical model and made on a monthly basis for the years 1998-2002. The water balance is useful for understanding the seasonal dynamics of the lake and floodplain system, and it has given support to the WUP-JICA study on maintenance of flows.

2. DRY SEASON FLOW INVESTIGATIONS

2.1 Introduction

The established MIKE 11 model has been used to model the dry season conditions during 2003. During the 2003 dry season, discharges have been measured in the four branches of the Chaktomouk junction every week. During the weekly measurements, each of the branches was measured three times a day. Because the junction is highly affected by tide during the dry season, the discharge measurements within a day show significant variation. The three measurements per day are not sufficient to resolve the complete tidal variation in the discharge.

Since daily average discharges were needed to establish downstream flow relations it was intended to obtain these (daily average discharge) from the river model, which has been calibrated against the measurements obtained during the 2003 dry season.

This chapter describes the model simulations carried out for the 2003 dry season, as well as the dry seasons of 1997, 1998, 1999, 2000 and 2001. The simulations for the past years are useful for model verification and for establishment of data sets upon which a downstream flow prediction can be tested.

2.2 Available Data

The data available for model calibration for the dry season 2003 are:

- Hourly water levels at Tan Chau and Chau Doc
- Daily water level at Kompong Cham
- Weekly discharge measurements at Kompong Cham
- Hourly water levels at Chrui Changvar and at Chaktomouk
- Three discharge measurements per week (made in one day) at each of the four branches around Chaktomouk
- Water level data from Chrui Changvar, Koh Norea, Phnom Penh Port and Chaktomouk stations at the same time as discharge was measured
- Rainfall data at Kompong Cham, Phnom Penh, Neak Luong, Koh Khel and Prek Kdam
- Wind data from Pochentong Airport

The period for which the above-mentioned data are available is January 1 to May 31, 2003, except for the water levels at Tan Chau and Chau Doc, which only cover February to April 2003. In the month of January, daily water levels were therefore used from these two stations. The data listed above are presented in Fig. 2.1 to 2.10 and Table 1.

The data are in general thought to be quite accurate. The limited number of rainfall stations does not give any significant error or bias in the model simulations because there is only little rain occurring in the period simulated.

The water level data are somewhat questionable. The difference between the observed water levels at Chrui Changvar and Chaktomouk is shown in Fig. 2.11. It appears that the average difference is almost 25 cm, which is not believed to reflect the reality. At the time of writing the report it has not

been possible to check whether the benchmarks used from the two stations were correct. However, the relative levels from the two stations seem to be all right.

The wind data stem from only one station, namely Pochentong. The data are daily average velocity and direction (see Table 1). It is obvious that one station cannot represent the wind field of the entire model area, and also that daily average values of wind velocity and direction will not catch the extreme and important events. However, since the wind field is an important force during the dry season, data from one station will still be valuable to use, and will give a more correct result (on hourly basis) than if it is omitted.

For the dry season simulations of 1997-2001, hourly water levels at Tan Chau and Chau Doc were applied as downstream boundary conditions. Daily water level at Kratie has been used as upstream boundary condition for those years. The rainfall data used are described in ref. /2/. The means of model verification for the years 1997-2001 are the hourly discharges, which are observed at Tan Chau and Chau Doc.

2.3 Model Simulations - Dry Season 2003

The MIKE 11 model used for the dry season simulations has been setup during the study, and is thoroughly described and reported in ref. /1/ and /2/.

Simulation period

The model has been run from January 1 to May 31, 2003. The driving forces in the model are the water level boundaries at Kratie, Tan Chau and Chau Doc, the local rainfall and the wind force. The latter two are included as distributed input, whereas the water levels are inputs in single points. The water level boundary condition at Kratie is seen in Fig. 2.12 whereas the conditions at Tan Chau and Chau Doc are seen in Figs. 2.1 and 2.2.

Roughness coefficients

It was necessary to further refine the roughness coefficients as compared with the wet season simulations. The reason for this is found in the increasing model dependency on accurate bottom description at low water levels. The roughness coefficients used in the dry season simulations are applicable in the low level part of the cross section profiles, which means that there is no violation of the wet season calibration.

Wind

It appears that the wind force plays an important role for the resulting discharge (on hourly basis) in the rivers during the dry season. Relatively small changes in water level slopes within the lake due to wind friction generate an additional discharge in Tonle Sap River which can be significant compared to the low flow discharge. The reason for this is that the surface area of the lake is relatively large during the dry season. The wind also plays a role during the wet season, but the runoff is so large that the additional discharge generated by the wind is minor.

2.4 Model Results - Dry Season 2003

Main Results

The model simulations revealed that it is possible to simulate the dry season discharges with a reasonable accuracy. The best prediction was obtained for Koh Norea; for the other stations, some discrepancy occurred in parts of the simulated period. The model predicts the phase and amplitude of the tidal levels relatively well. However, there seems to be some consistent error related to the absolute water levels at Chaktomouk, either associated with the model or with the observed data.

Results from model tests with changed cross section configuration appeared to be rather insensitive to the change. At present the uncertainty is, therefore, thought as related to the data. A thorough investigation of this issue remains. The accurate prediction of the hourly water levels is on the other hand not very important. The main output, which will be used from the modelling, is the predicted daily discharge.

The predicted average daily discharge during the 2003 dry season is shown in Figs. 2.18 to 2.22 and presented in Table 2. One conclusion is that the daily average discharge based on observations and model results respectively, can be quite different.

An interesting result of the analysis is that the <u>observed</u> daily average discharge in Tonle Sap correlates with the daily water level observed at Chaktomouk. This relation is shown in Fig. 2.30a. It should be recognised, however, that the number of observations is limited and that the water level range is limited to 0.76 m to 2.34 m MSL. Such a relation was not anticipated, and could be the coincidental result of the actual data set and timing of measurements.

A step further was made to produce a relation between the flow at Phnom Penh Port and the water level at both Phnom Penh Port and Prek Kdam. A relation of this type is consistent with the principles of rating curve derivation at backwater-affected stations. The flow relation is shown together with the produced discharges in Fig. 2.30b and 2.30c. It was concluded that a relation (rating curve) between the flow at Phnom Penh Port and the water levels at Prek Kdam and Phnom Penh Port could be established.

Detailed Results - Discharges

Figs. 2.12 to 2.15 show the simulated and observed discharges at Chrui Changvar, Koh Norea, Phnom Penh Port and at Monivong Bridge for the entire simulation period.

The simulated and observed discharge at Koh Norea match quite well. There are various examples in Figs. 2.12b to 2.12g, which show that the model picks up the rising and falling part of a tidal cycle. One reason why the model predicts fairly well at this location is that the section has a downstream control.

The agreement between simulated and observed discharges is acceptable for Chrui Changvar (see Figs. 2.13a to 2.13g), although it is less good compared to Koh Norea. This is partly because the station has no downstream control, but is dependent on the conditions in the three other branches at Chaktomouk. However, the model picks up the daily discharge variation.

The simulated discharge in Tonle Sap River at Phnom Penh Port is also acceptable (see Fig. 2.14a(1/2), (2/2) to 2.14g). Results in Figs. 2.14a(1/2), 2.14b to 2.14g include wind action, although these are given as daily averaged wind direction and velocity. For comparison with Fig. 2.14a(1/2), the results at Phnom Penh Port from a simulation with no wind included are shown in Fig. 2.14a(2/2). It is seen that the variation in hourly discharges is not obtained if the wind is omitted. Reverting to Fig. 2.14a(1/2) -including wind- it is on the other hand seen that the model does not pick up some of the discharges. The reason for this is likely to be due to more extreme wind conditions which are not included in the available wind data, since these are daily averages. Even a few hours with large changes in wind velocity will change the discharge significantly. It is also likely that there is a spatial variation of the wind field, which is not obtained by only one available station. For the mentioned reasons there has been no further attempt to achieve better results, since the input to the model would rely on many assumptions.

The simulated and observed discharges at Monivong Bridge are seen in Figs. 2.15a to 2.15g. Discharge in the Bassac river is low in the dry season, and even return flow occurs. The return flow is believed to be associated with wind from the south. In the month of April there are frequent return flows in the Bassac River (see Fig. 2.10). Exactly the model picks none of these up, although the

model simulates a few situations with return flow in March/April. The reason for this is probably a combination of lack of extreme wind data, and also inaccuracy of the topographical data. Especially at the entrance to the Bassac River it is important to have accurate topographical data. The present cross sections in the model at this location stem from the hydrographic surveys in 1998 and the configuration of the riverbed at the entrance has most likely changed since then.

Detailed Results - Water Levels

The simulated and observed water levels at Chrui Changvar and at Chaktomouk are seen in Figs. 2.16 and 2.17. From the detailed plots in Figs. 2.16b to 2.16g, it is seen that the general level at Chrui Changvar is represented by the model, so is the tidal phase. However the amplitudes are larger in the measurements than in the simulations. In actual fact the measurements reflect water surface disturbances due to wind action on top of the tidal amplitude. These small-scale water level disturbances are not represented in the model.

The simulated and observed water levels at Chaktomouk (Figs. 2.17a to 2.17g) show almost a constant water level difference. This difference is approximately 20 cm. Various test simulations have been carried out with changed channel roughness and also cross section geometry. Since the model is rather insensitive to these changes, it is concluded that the observed water levels may have a datum error associated. However, the simulated phase and amplitude of the tide is well in accordance with observations. The tidal variation at Chaktomouk is driven by the water level variation at Chau Doc and Tan Chau. Since the tidal phase as well as the various single and double peaks at Chaktomouk is well represented by the model, an additional conclusion arises: the water level observations at Chau Doc/Tan Chau and Chaktomouk are consistent. The issue, which remains to be checked, is the zero gauge datum at Chaktomouk.

Detailed Results - Daily Average Discharge

One of the purposes of the dry season modelling is to support the discharge-monitoring programme, which has collected three measurements per day in each of the four river branches. Ideally the measurements would provide sufficient data for model calibration, and in return the model would provide hourly results, upon which daily averages or other data extractions could be made.

Initially a comparison of the daily average discharge from the model (based on 24 hourly values) and the average discharge using the collected data (based on 3 measurements per day) was made. Fig. 2.18 shows the daily average discharge from the model simulations at the four river branches. These daily average discharges are also presented in Table 2. In Figs. 2.19 to 2.22 the daily average discharge for each station is plotted together with the daily average discharge derived from the monitoring campaign. As expected, the two averaged discharges vary on some days and at other times they are close to each other. It is somewhat surprising that the daily average discharge (model and measurements) at Phnom Penh Port is relatively close to each other.

Detailed Results - Discharge Relations

At the Chaktomouk junction, the flow splits into: (1) the lower Mekong branch; (2) the Bassac; and (3) the Tonle Sap River. At rising flood the flow in these branches becomes dependent on the flow in the Mekong upstream of Chaktomouk. In the receding flood, the flow in Tonle Sap is towards the Chaktomouk junction. Therefore the flows in Mekong downstream of the junction and in the Bassac become a function of the total flows upstream of the Chaktomouk junction.

If there is any relation between the flows at the four stations around the Chaktomouk junction (Chrui Changvar, Koh Norea, Phnom Penh Port and Monivong Bridge), the relation will be most clear during the rising flood. During the falling period, it could not be expected that there is any relation between the flows in the Tonle Sap River and the other branches at Chaktomouk. This is observed in Figs 2.23 to 2.25 in which the daily average discharge at Chrui Changvar is plotted against the daily

average discharges at Koh Norea, Phnom Penh Port and Monivong Bridge and from it is seen that especially the measurements show quite some scatter.

If the flows upstream of the junction (Chrui Changvar plus Phnom Penh Port) are added, then the relations to downstream flows become more clear. This is seen from Figs. 2.26 and 2.27. Assuming a linear trend in the model predictions (Fig. 2.26), the result is that 93% of the upstream flows is found in the Mekong downstream of the Chaktomouk junction. Correspondingly 7% is found in the Bassac River. This distribution can be assumed to be valid in the recession period from February to April.

It is likely that the discharge at Chrui Changvar can be assessed by either a rating curve or by some relations between the flow at Kompong Cham and the flow at Chrui Changvar. The remaining flow component for downstream flow prediction is the flow in Tonle Sap at Phnom Penh Port. During the recession period a relation between the discharge in the Mekong and the discharge in the Tonle Sap could not be set. Hence one is left with the only option being a rating curve for Phnom Penh Port.

Detailed Results - Discharge Rating Curve

A discharge-rating curve could not be set for Phnom Penh Port for hourly data in the dry season. This is clear from Fig. 2.28 showing simulated hourly discharge versus hourly water level at Phnom Penh Port. The reason is that the station is tidally affected. This is also confirmed by plotting the observed discharges versus the observed water level (instantaneous) from the dry season 2003 against each other (see Fig. 2.29).

A daily average discharge can be established by averaging the hourly discharge values in a 24-hour time frame. The problem is to assess the corresponding water level for this discharge. The corresponding water level is NOT the daily averaged water level. The corresponding water level is also NOT the water level taken at a specific time, say e.g. 7 o'lock.

However, one may take a practical approach and obtain as much as possible from the data collected. The average discharge of the measurements during the dry season is plotted against the 7 o'clock water level at Chaktomouk in Fig. 2.30a. The water level at Chaktomouk is directly accessible and can be obtained for a good number of years back in time. It appears from Fig. 2.30a that a linear relation between the average discharge and the 7 o'clock water level at Chaktomouk can be established. Obviously this relation can only be assumed within the water level range observed in the dry season 2003, which is 0.76 m to 2.34 m MSL. The surprising thing is that the discharge can be related to the water level at only one station (there is backwater in Tonle Sap River) and also at a fixed time (7 o'clock). The relative good fit in the relation may also be due to the limited number of data sets.

Instead of the above-mentioned relation it would be more correct to relate the discharge at Phnom Penh Port to the water level at both Phnom Penh Port and Prek Kdam. Such a relation was consistent with the principles of rating curve derivation at backwater-affected stations. The relation was made on basis of model results. The outcome is seen in Fig. 2.30b and 2.30c. It was concluded that a relation (rating curve) between the flow at Phnom Penh Port and the water levels at Prek Kdam and Phnom Penh Port could be established.

2.5 Model Simulations - Dry Seasons in 1997-2001

The calibrated model for the dry season in 2003 has been used to simulate the dry season conditions for the years 1997 to 2001. The reason that these years have been selected is that hourly water level at Tan Chau and Chau Doc is available as boundary condition in this period. Using the calibrated model parameters from the 2003 dry season simulations, the 1997 to 2001 dry season simulations give a reasonable prediction of the conditions in the river system in those years.

It was found during the 2003 dry season simulations that the wind plays an important role for the instantaneous discharge. However, for prediction of the daily averaged discharge, the wind plays a less important role. On this basis it is concluded that the 1997-2001 dry season simulations for which there are no wind data (for the entire period) still give a reasonable result.

2.6 Model Results - Dry Seasons in 1997-2001

There are no detailed discharge measurements within the model area in the dry seasons of the years 1997-2001. The only discharge records available are the hourly measurements at Tan Chau and Chau Doc, which happen to be the two downstream boundaries of the model. The discharge measurements at these stations serve as a verification of the dry season model because water levels are specified as boundary condition at these stations.

Two different types of discharges are compared in the following, the observed and simulated daily average discharge, and the observed and simulated hourly discharge.

Hourly discharge

The comparison of simulated and observed hourly discharges at Tan Chau is made for verification of the model. It can generally be concluded that if the hourly discharges compare well, it is possible to extract any time scale from the model results, and they will be reasonably valid. Hence the daily average discharge will be correct if the model represents the hourly data. It will also be possible to extract model results at specific times, e.g., 7 o'clock values.

Figs. 2.36 and 2.37 show an example of simulated and observed hourly discharge at Tan Chau. The conclusion from the figures is that the model is able to predict the tidal dynamics at Tan Chau.

Daily average discharge

The observed daily average discharge at Tan Chau is simply obtained by averaging the 24 hourly values of each day. The same averaging is applied on the model results, which are stored for each hour. Figs. 2.31 to 2.35 show the observed and simulated daily average discharge at Tan Chau for each of the dry season periods of the years 1997-2001.

Figs. 2.31 to 2.35 present the main conclusion that the model is able to predict the measured discharge at Tan Chau during the dry season. This verifies that the model has the correct roughness distribution in Bassac/Mekong branches downstream of Chaktomouk, and also that the discharge contribution from the Great Lake and upstream Mekong are well estimated.

The prediction matches the observations best in the very dry part of the periods, late March and April. However, once the critical period (critical for low flows) occurs, the match between observations and simulation results is acceptable.

The daily average discharges at Chrui Changvar, Koh Norea, Phnom Penh Port and Monivong Bridge during the dry seasons of the five years are presented in Tables 3 to 7.

2.7 Conclusion

The mathematical model has proven capable to simulate the dry season flow conditions with reasonable accuracy. Since the Chaktomouk junction is highly affected by tide in the dry season, it is not possible to derive daily average discharge in this period based on data, unless these are obtained on hourly basis. However, because the model was calibrated against measurements, the model could be used for this purpose and it was decided to use it for the generation of daily average flows in the river branches around the Chaktomouk junction. Prior to the dry season measuring campaign, the

model was used to give indications of the significance of the tidal effect, and thereby provide guidance on location and timing of the measurements.

Detailed findings were obtained with regard to the discharge and water level variations at Chrui Changvar, Koh Norea, Phnom Penh Port and Monivong Bridge. The model predicted best the discharge variation at Koh Norea. One of the findings of the study was that the wind plays an important role for the prediction of hourly discharges, which in turn produces daily average discharge.

The model results were used to derive a possible relation between the discharges in the Mekong and Bassac downstream of the junction as a function of upstream flows. Within the range of dry season flows simulated, a linear relation could produce this flow relation. Data substantiated the derived flow relation.

Further, the observed average daily discharge (based on only 3 values per day) in Tonle Sap River at Phnom Penh Port showed to be fairly well-correlated with the observed daily (7 o'clock) water level at Chaktomouk. Such a relation was not anticipated, and could be the coincidental result of the actual data set and timing of measurements. Hence a relation was produced (based on model results) which accounted for the water level at both Phnom Penh Port and Prek Kdam. Such a relation was consistent with the principles of rating curve derivation at backwater-affected stations. It was concluded that a relation (rating curve) between the flow at Phnom Penh Port and the water levels at Prek Kdam and Phnom Penh Port could be established.

3. HYDRAULIC IMPACT OF ROAD EMBANKMENTS

3.1 Introduction

The established model has been used to determine the changes in the discharge hydrograph in the river system as a result of the construction of the major road embankments between the Mekong and Tonle Sap rivers during the last century.

The following major periods representing the different stages in the embankment construction can be identified:

- Prior to 1920s: there were no significant road embankment
- Between late 1920s and 1940s: embankment on Road 61 and Road 6
- Between 1940s and 1960s: embankment on Road 61, Road 6, and Road 7
- After 1960s: embankment on Road 61, Road 6, Road 6A and Road 7

The different roads with embankment locations are shown in Fig. 3.1.

The simulations carried out used the existing model setup and topography as a basis. Therefore, the simulations do not represent the true physical conditions in the periods mentioned above, but rather the present day situation if the embankments are removed. In order to represent the situations of the above periods correctly, it is necessary to obtain river and floodplain topography, discharge and water level hydrographs as well as rainfall from the different periods in time. Not all of these data are available; hence the adopted approach was the closest representation of the historical periods specified. Given this, it has not been attempted to use hydraulic data from these periods. Instead the hydrograph from years 2000, 2001 and 2002 have been used in the simulations. The existing river model setup has been modified to represent the embankment condition in the four periods mentioned.

3.2 Model Setups

After 1960s

After 1960 all embankments of Roads 61, 6, 6A and 7 existed, with the embankment of Road 6A being the latest one built. Obviously there has been changes to the embankment height as well as the number and size of the bridges along Road 6 and Road 6A in recent years and all of these are reflected in the existing model setup. Since the purpose of the modelling was to determine the overall effect of embankment or no embankment, there has been no attempt to change the bridge and embankment layout for the period between 1960 and the present day. Hence the model setup used for the period after 1960 was identical to the present day model. A close-up of the model branch layout between the Mekong and Tonle Sap rivers is seen in Fig. 3.2, top.

1940s to 1960s

Before 1960 the road embankment of Road 6A did not exist. The schematisation of bridges along this road was therefore removed from the existing model, and two additional link channels were introduced between the Mekong and the floodplains on the southern end of Chrui Changvar. The latter was made to provide for over-bank flows at multiple locations. The road embankments of Road 61, 6 and 7 did however exist and are part of the model schematisation. The model layout for this situation is shown in Fig. 3.2, middle.

1920s to 1940s

During the late 1920s, Roads 61 and 6 were constructed. Hence the schematisations of these road embankments from the existing model setup were kept unchanged. However, at this time the embankment of Roads 6A and 7 did not exist. The only implication the latter has in the model relates to Moat Khmun Bridge and the road embankment from Kompong Cham to the bridge. Thus the bridge and embankment schematisation at this location was taken out of the existing setup to provide a setup that represents the situation between 1920s and 1940s. The model branch layout is identical to the one for 1940s to 1960s, since it is only the cross section at the moat of Khmun bridge that has been changed.

Prior to 1920

There were no major embankments constructed prior to 1920. All embankment and bridge schematisations between the Mekong and the Tonle Sap rivers have therefore been taken out of the existing model setup. Besides this it was necessary to introduce two additional floodplain channels, which join the northern and southern portions of the floodplain that was later intersected by Road 61. The model layout for this situation is shown in Fig. 3.2, bottom.

3.3 Model Results

Effect on discharges

The simulated discharge at Chrui Changvar is seen in Fig. 3.3, top. It is seen that the discharge for the "prior to 1920" situation is significantly lower during peak flood than the other model setups. The discharge is reduced because a large portion of the flow has spilled into the flood plains towards the Great Lake between Kompong Cham and Chrui Changvar. The three other setups show almost identical discharges at Chrui Changvar.

Similarly the simulated discharge at Prek Kdam (see Fig. 3.4) is significantly different from the other set-ups, which are almost identical. It can be concluded from the plots on Fig. 3.3 and 3.4 that the setups describing the 1920-1940, 1940-1960 and the 1960-present periods give almost identical model results.

On this background it is only the present model setup (described from 1960 up to present day) and the setup prior to the 1920s that are compared and analysed in the following.

As mentioned the discharge at Chrui Changvar is significantly reduced if there are no embankments at all between the Mekong and Tonle Sap rivers (see Fig. 3.3, top). The discharge is instead diverted to the floodplains between the Mekong and Tonle Sap rivers, and flows towards the Great Lake. With no embankments, a larger part of the Mekong discharge flows to the Great Lake via the floodplains and, consequently, the peak discharge at Prek Kdam is reduced compared to the present situation with embankments (see Fig. 3.3, bottom). Since the route to the Great Lake is shorter via the floodplains than via the river system, the lake fills up faster if no embankment is present. This has the consequence that the flow in Tonle Sap River reverses towards Phnom Penh two weeks earlier than with the present system of road embankments. This phenomena could be seen from Fig. 3.3, bottom.

It can also be seen from Fig. 3.3 that: (1) the peak outflow from the lake is only slightly reduced, (2) the total outflow volumes from the lake are larger (whereas the inflow volumes are significantly reduced), and (3) that the low flows by the end of the dry season have increased. The reason for the latter is that the lake receives more water in total if no embankment is present. With the resulting higher water levels in the Great Lake, the dry season flows are enhanced.

The simulated discharge at Koh Norea is shown in Fig. 3.4, top. The increased peak discharge at Koh Norea is mainly caused by a shift in flow proportions between the Mekong and the Bassac rivers. Hence the increase in discharge (during peak) is balanced by a decrease in the discharge in Bassac (see Fig. 3.4, bottom). Another important feature is that the low flow discharges at Koh Norea increase by about 1000 m^3/s if there is no embankment present.

Water Balance

A total water balance has been made for the river and floodplain system for each of the three years simulated. The period for which the balance was calculated was June 1 to November 1.

The result of the water balance is seen in Figs. 3.5, 3.6 and 3.7, which show the balance for each of the years simulated. Each figure shows the balance for two situations: (1) with the existing embankment situation (right), and (2) without any embankment (left).

There is not a major difference between the water balances derived from the simulations using the different hydrographs of 2000, 2001 and 2002. The reason is that all three years are similar in magnitude.

However, there are significant differences between the water balances of the present embanked situation and the situation with no embankment (see each individual set of Figs. 3.5, 3.6 and 3.7). The main difference relates to the total loss between Kompong Cham to Chrui Changvar as well as to the distribution of floodplain flows to either side along this reach. Thus the total loss is about 12-14% (of Kompong Cham flow volumes) for the embanked situation, and 20-23% for the situation with no embankment. Of this loss, roughly 50% flows to each side in the embanked situation, whereas 60% flows into the right bank floodplains in the non-embanked situation.

In terms of actual flow volumes, the flow volume towards the Great Lake via the floodplains is about three times larger in the non-embanked situation than in the embanked situation. This phenomenon has direct effect on the flow volumes in the Tonle Sap River, which has become correspondingly smaller.

Downstream of the Chaktomouk junction there is a difference in the distribution of flow volumes between the Bassac and Mekong rivers. In the embanked situation the volumes are larger in the Bassac River than in the non-embanked situation.

3.4 Conclusions

The conclusions that can be made on the basis of the foregoing analysis are:

- The major change in the floodplain and river flow pattern occurred when the road embankments of Road 6 and Road 61 were constructed.
- The various embankment constructions between the Mekong and Tonle Sap rivers since the embankments of Road 6 and Road 61 were made have had little impact on the flow distribution in and between rivers and floodplains. Thus the embankment of Road 6A has not modified the flow exchange between the Mekong and Tonle Sap rivers significantly.
- With no embankment between the Mekong and Tonle Sap rivers, the overland flow on the floodplains towards the Great Lake will increase. As a consequence, less flow occurs at Chrui Changvar and the inflow to the lake through the Tonle Sap river decreases.
- In contrast to this, the outflow volume from the Great Lake as well as low flow levels in the Tonle Sap River increases if no embankment is present. This is so because the lake receives more water (in total) if embankments are not present.

• The flow reversal (from inflow to outflow) in the Tonle Sap River occurs about 2 weeks earlier if embankments are not present. The reason for this is the shorter overland flow route, which causes the lake to fill faster and thus reach its maximum water level earlier.

4. EFFECT OF INCREASED BRIDGE OPENINGS ON FLOODPLAIN INUNDATION

4.1 Introduction

The simulations with the model have shown that the existing road embankments and bridge openings in the floodplains are major controls for the flows. There are significant hydraulic gradients across road embankments at various locations in the floodplains, e.g., across Road 6 and Road 1. It appears that floodplain flows are impeded at various locations due to insufficient bridge openings. This creates high flow velocities in the vicinity of the bridges, and damaging effects of local scour has already been observed (e.g., Bridge F3 on Road 6). High water levels on the upstream side of the embankments have also been observed.

As an application example, the model has been used to simulate the effect of increased bridge openings along Road 1 east of Neak Luong. The increase in bridge span was arbitrarily selected. The location of the embankment and Road 1 is shown in Fig. 4.1.

4.2 Model Tests

The model has been run with the year 2002 hydraulic conditions, both for the existing set-up (condition) and for the situation with increased bridge spans.

Fig. 4.1 shows a longitudinal profile of water level (at peak flood, year 2002) from upstream to downstream of the existing bridge located on Stung Sloat. It is seen that a significant gradient in the water level exists. There is almost a one meter difference from up- to downstream of the bridge. Part of this is a difference if naturally due to the head loss which the bridges along Road 1 create.

In the test simulation, the bridge openings have been increased by a factor of 3, and the 2002 simulation was repeated. Fig. 4.2 shows the effect of the increased opening on the water levels up and downstream of the bridge as well as the effect on the discharge. The water levels on the upstream side decreases with approximately 0.5 m, and on the downstream side (only vicinity of bridge) the levels increase by 0.2 m. The effect on the discharge is an increase of 500 m³/s from the original 3,000 m³/s.

The effect on the water level is felt over a long distance. This is seen from Fig. 4.3, which contain flood maps for the existing and the test situation, as well as a water level difference map. The latter shows that the upstream effect reaches more than 30 km upstream.

In the particular test simulation, there are only small differences in the upstream flood extent between the existing and the test case. However, the effect on the water levels is pronounced, whereas the effect on the discharge appears smaller. The actual numbers from the test simulation should only be used to illustrate that infrastructure such as road embankments and bridges have not only local effect in the flood plain area.

4.3 Conclusions

The application example presented in this paragraph leads to the following conclusions:

- The presence of road embankments in the Cambodian floodplains significantly impedes the flows across the plains.
- The large water level gradients which results from the presence of the road embankments creates large flow velocities and potential scour at existing bridge sites.
- Increased bridge spans on the road embankments can lead to a significant reduction of the hydraulic gradient and thereby eroding power.
- The reduction in water level on the upstream side of road embankments (due to increased bridge spans) is felt over long distances, in the example, over 30 km.
- Since there is potential hydraulic impact in larger areas of the floodplains, it is recommended that infrastructure projects be associated with hydraulic studies.

5. WATER BALANCE OF THE TONLE SAP LAKE

5.1 Introduction

The present chapter describes the outcome of a water balance study of the Tonle Sap Lake. The bases for the water balance assessment are the model results from 1998-2002.

5.2 Water Balance Assessment

The water balance of the Tonle Sap Lake has been assessed with the model for the years 1998-2002. The years represent the range from dry years to extreme wet years. The water balance assessment was made on a monthly basis using the model results from the 1998-2002 simulations. The 1998-2002 simulations have water level and discharge results stored at daily increments; hence the discharge results have been converted to volumes and lumped to give monthly results.

The following elements were included in the assessment of the water balance of the lake:

- Runoff from the Tonle Sap Lake Basin (sub-catchments around the Lake)
- Direct rainfall on the lake
- Evaporation from the lake
- Inflow from Tonle Sap River
- Overland flow from Mekong

The model obtained all of these elements. The monthly contribution from each of the elements were calculated and added together to give a total monthly volume change in the lake. This total monthly volume change of the lake has been compared with the observed monthly volume change. The observed monthly volume change was determined by use of the observed water level at Kompong Luong and a relation between lake level and lake volume.

(1) Volume change based on inflows/outflows

The five contributions to the volume change of the lake were derived in the following manner:

(a) Runoff from the Tonle Sap Lake Basin

The rainfall-runoff model is applied to provide the inflows from the tributaries around the lake. The runoff results mentioned in Subsection 3.1.6 and shown in Fig. 3.86 to 3.97 (of the accompanying Paper 4: Development of Hydro-Hydraulic Model for the Cambodian Floodplains) are used for this contribution. However, for the water balance assessment the total catchment runoff was reduced for the direct rainfall on the part of the sub-catchments that gradually become inundated during the wet season.

The explanation is the following. In the model, direct rainfall is only occurring on the dry season lake area. The direct rainfall on the wet season lake area is indirectly accounted for in the catchment runoff computation because the *total* sub-catchment areas are used. The net result of this approach is the same as if a reduced sub-catchment size due to inundation is accounted for in the runoff modelling and a correspondingly larger lake area is exposed to direct rainfall. However, for the present determination of the water balance, it is necessary to include the changing surface area of the lake.

(b) Direct Rainfall on the Lake

The direct rainfall on the dry season lake is shown in Fig. 3.102 (of the accompanying Paper 4: Development of Hydro-Hydraulic Model for the Cambodian Floodplains). Rainfall is the average of 4 to 7 stations scattered around the lake, the number being dependent on each years availability. This rainfall is scaled to account for the changed surface area of the lake. The surface area is obtained from the level-area relation, which has been derived for the lake, and the observed monthly averaged water level at Kompong Luong. The level-area curve for the lake is shown in Fig. 3.115 (of the accompanying Paper 4: Development of Hydro-Hydraulic Model for the Cambodian Floodplains). For water levels above 2 m, the lake area can be determined by the following relation:

Lake Area = 1197.7 * WaterLevel + 1215.7

The lake area is in km^2 and the water level is that of Kompong Luong and given in meters.

The direct rainfall on the lake is converted into volume.

(c) Evaporation of the Lake

The monthly evaporation rates shown in Table 3.3 (of the accompanying Paper 4: Development of Hydro-Hydraulic Model for the Cambodian Floodplains) are applied to the changing lake area and converted into volume. The determination of the lake area is described above.

(d) Inflow from Tonle Sap River

The inflow from the Tonle Sap River was extracted from the calibrated river model. Through the branched system, the model separates between river channels and flood plain channels. It is thus straightforward to extract the discharges from the Tonle Sap River. The discharges are converted into volumes.

(e) Overland flow from the Mekong

The same explanation as for Tonle Sap River inflow applies.

(2) Volume change based on observations

The observed volume change in the lake was determined by use of the recorded water level at Kompong Luong in the Great Lake and the established relation between the water level and the lake volume.

The relation between water level and volume is shown in Fig. 3.105 (of the accompanying Paper 4: Development of Hydro-Hydraulic Model for the Cambodian Floodplains). The observed water level at Kompong Luong is seen as part of Fig. 3.122, top, (of the accompanying Paper 4: Development of Hydro-Hydraulic Model for the Cambodian Floodplains). By taking the average water level in one month and determining the corresponding volume, it is possible to calculate the actual lake volume as well as the monthly volume change.

(3) Results of water balance assessment

The results of the volume change based on inflows/outflows are seen in Fig. 5.1 to 5.7. Fig. 5.1 shows the results from 1962-63 (reprinted from ref. /3/), and is included for historical reference. Fig. 5.2 shows the results for all of the years 1998-2002, whereas Fig. 5.3 to 5.7 shows the results from each of the years.

The figures show the monthly volume change for five contributions: (1) Evaporation of the lake, (2) Runoff from the Tonle Sap Lake Basin, (3) Inflow from Tonle Sap river, (4) Overland flow from Mekong, and (5) Direct rainfall on the lake. Positive values mean an increase of the lake volume and a negative value is correspondingly interpreted as a decrease in lake volume. By this notation the runoff from the lake basin is always positive or zero, the evaporation is always negative, and the flow from/to the Tonle Sap River is positive during the rising monsoon and negative in the falling part when the flow reverses.

The figures show some important features. First of all the contributions to volume change have the following ranking (most significant first, sign disregarded): (1) flow from Tonle Sap, (2) runoff from Tonle Sap Basin, (3) overland flow from Mekong, (4) direct rainfall on the lake, and (5) evaporation of the lake. This is concluded when all years are considered and accumulated values taken. The ranking is however changing with years (compare, e.g., 1998 with 2001) and also on a monthly basis.

It is noteworthy that the largest monthly contribution of runoff from the Tonle Sap basin itself always occurs in October (with the exemption of 1999). October is also the month where the flow is reversed in Tonle Sap River and water flows out of the lake. Therefore the volume contribution becomes negative. This holds for all years simulated. This was also the case in 1962-63. Except for 1999 the maximum volume flowing out of the lake occurs in November.

The overland flow contribution from the Mekong is dependent on the magnitude of the flood, i.e., the conditions upstream of Cambodia. Thus in a dry year like 1998, there is almost zero overland flow, and in wet years such as 2000 and 2001, this contribution is significant.

One important observation is that the local runoff from the Tonle Sap Basin does not change proportionally to the magnitude of the flood (i.e., 1998 was a dry year, 2000 was a wet year). So, the results reflect also the regional variation of rainfall pattern.

The results of volume change based on observations are seen in Fig. 5.8 and 5.9. The absolute volumes have been determined by a combination of the observed water levels at Kompong Luong and a relation between level and volume for the lake.

Fig. 5.8 show the absolute lake volumes in each month from 1998-2001 as well as the monthly volume change. The latter is determined as the difference between the absolute monthly volumes.

The observed monthly volume change is compared with the volume change based on inflows/outflows. This comparison is shown in Fig. 5.9. The figure shows that there is a relatively good match, considering all the uncertainties and assumptions in the modelling of inflows/outflows. The month of October always shows a discrepancy: the inflow/outflow assessment predicts a negative volume change, whereas the observations suggest a positive change. The reason for the inflow/outflow assessment to be negative is that the outflow through Tonle Sap is larger than the direct rainfall and basin runoff in October (see Fig. 5.2). It should be mentioned that this balance is sensitive to both assessments of inflows and outflows, with the net difference being maximum 8 x 10^9 m³ or approximately 10% of the lake volume in October.

5.3 Conclusions

The water balance analysis of the Great Lake has been made for the years 1998 to 2002. The water balance has been made on a monthly basis using model results. The seasonal dynamics of all the elements in the balance (Tonle Sap river flow, overland flow, basin runoff, direct rainfall, evaporation) is consistent from year to year, and proportionally and also in absolute terms comparable to the findings from 1962/63, ref. /3/, which was based on observations.

Detailed conclusions of the analysis include:

- The contributions to the lake have the following ranking (largest contributor first): (1) Flow from Tonle Sap, (2) Runoff from Tonle Sap Basin, (3) Overland flow from Mekong, (4) Direct rainfall on the lake, and (5) Evaporation from the lake.
- The month of October has the largest contribution of local basin runoff. During this month the net flow in Tonle Sap River is towards Phnom Penh.
- The local basin runoff does not show as much year-to-year variation as the Tonle Sap river flow or the overland flow.
- The year of 1998 had almost no overland flow.
- The monthly volume changes in the lake based on inflows/outflows are comparable to the monthly volume change which can be determined by combining the observed lake water levels with the level-volume relation of the lake

6. CONCLUSIONS

The mathematical model established as part of the WUP-JICA study has been applied for a number of applications. These include: (1) Dry season modelling, (2) Hydraulic impact of road embankments, (3) Effect of increased bridge openings, and (4) Water balance assessment for the Great Lake. The detailed conclusions from each of these applications are found at the end of each paragraph in this paper.

The following are general conclusions and information:

- The model system is fully capable of simulating both wet and dry season conditions in the Mekong river system and associated floodplains of Cambodia.
- The model has been used in a parallel study (Tonle Sap Lake & Vicinities Project, ref./4/) for detailed assessment of the functional role of the floodplain compartments, exchange of flows between rivers and floodplains, and detailed water balance assessment for the flood plains. The combined data sets provided by the WUP-ICA and TSLV studies have been essential for the model verification.
- The model is at a stage where it can be used for detailed hydrologic studies, whether these are concerning wet or dry seasons. The applications, which have been made so far, are mainly concerned with the wet season (impact of road embankments and bridges). The dry season application has given support to the WUP-JICA work on establishment of a dry season flow management system.
- MRC staff used the model system during the 2003 monsoon to provide daily and forecasted flood maps on a daily basis. The flood maps were published to the MRC Flood Information Webpage.
- The model system is flexible, and can be expanded/improved in future as necessary. It also has the capability to easily link with two-dimensional models for very detailed floodplain studies.
- Staffs from MRCS and the Department of Hydrology and River Works under the Ministry of Water Resources, Cambodia, have received training on the use of MIKE 11 and the actual model set-up for the Mekong River and floodplain system.

REFERENCES

- /1/ WUP-JICA, Progress Report: Hydrometeorological Monitoring for Water Quantity Rules in the Mekong Basin, February 2002
- /2/ WUP-JICA, Interim Report: Hydrometeorological Monitoring for Water Quantity Rules in the Mekong Basin, March 2003
- /3/ J.P Carbonnel and J. Guiscafre, Ministiere des Affaires Etrangeres Gouvernement Royal du Cambodge Grand Lac du Cambodge: Sedimentologie et Hydrologie, 1962-63
- /4/ CTI Engineering International Co., Ltd. and DHI-Water & Environment, Main Report: Consolidation of Hydro-Meteorological Data and Multi-functional Hydrologic Roles of Tonle Sap Lake and its Vicinities (Basinwide), August 2003

	(Daily Average of wind direction and velocity taken at 10 m altitude)									
Date	Ja	an	Fe	eb	M	ar	Ap	or	Ма	У
	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity
1	NE	4	N	4	SE	4	NE	4	NE	4
2	NE	3	SE	3	SE	5	S	5	S	4
3	NE	7	NE	4	SE	5	SE	3	S	3
4	NE	5	SE	7	SE	5	NE	4	S	6
5	NE	6	E	7	SE	6	SE	3	S	4
6	NE	3	NE	4	SE	5	SE	4	SW	3
7	N	4	NE	3	SE	5	SE	4	S	4
8	NE	4	W	3	S	4	SE	4	SE	4
9	N	4	S	3	NW	3	SE	4	SE	9
10	NE	5	SE	5	SE	5	SE	4	S	4
11	N	4	S	4	SE	5	SE	4	NE	4
12	N	4	NE	3	S	5	S	5	SE	3
13	NE	4	S	4	S	5	S	4	S	5
14	N	4	SE	5	S	5	SE	4	W	4
15	NE	5	S	4	SE	4	SE	4	W	5
16	NE	4	S	5	SE	5	S	4	SW	6
17	NE	4	SE	4	SE	4	SE	4	SW	5
18	NE	3	SE	5	S	4	S	4	W	16
19	NE	4	SE	4	SE	5	SW	6	S	4
20	N	3	SE	4	SE	5	SE	5	SW	2
21	S	3	S	5	E	4	S	6	SW	5
22	SE	4	SE	5	S	5	SE	4	NW	4
23	SE	4	SE	4	SE	4	SE	5	SW	4
24	SE	5	SE	4	SE	6	SE	5	SW	4
25	SE	4	SE	5	SE	4	SE	3	W	8
26	NE	4	SE	4	E	3	SE	5	SW	10
27	SE	3	SE	5	SE	4	SE	5	SW	8
28	NE	3	S	4	SE	4	NE	7	SW	10
29	NE	4			SE	4	NW	3	SW	8
30	SE	2			SE	4	SE	5	SW	8
31	N	4			SE	4			SW	6

Table 1Wind Data from Pochentong Airport, 2003

Date	Chrui Chanovar	Koh Norea	Phnom Penh Port	Monivona Bridae	Date	Chrii Chandvar	Koh Norea	Phnom Penh Port	Monivona Bridae
-Feb-03	4175	7267	3493	407	17-Mar-03	3043	4040	1113	117
Feb-03	4098	6779	3036	358	18-Mar-03	2924	3972	1163	117
Feb-03	3990	6670	3053	374	19-Mar-03	2948	3822	965	63
Feb-03	4029	6331	2603	304	20-Mar-03	2939	3630	783	96
Feb-03	3965	6349	2711	330	21-Mar-03	2863	3652	106	114
⁻ eb-03	3689	6421	3079	347	22-Mar-03	2767	3550	898	85
Feb-03	3613	6381	3084	318	23-Mar-03	2901	3654	855	103
Feb-03	3608	6375	3070	305	24-Mar-03	3021	3500	543	99
Feb-03	3644	6312	2944	279	25-Mar-03	3016	3599	692	109
Feb-03	3706	5982	2509	237	26-Mar-03	2967	3785	951	132
Feb-03	3548	5916	2620	252	27-Mar-03	2983	3881	1016	117
Feb-03	3438	5949	2791	279	28-Mar-03	3079	3903	926	103
Feb-03	3377	5700	2562	239	29-Mar-03	3102	3898	891	26
Feb-03	3523	5562	2255	219	30-Mar-03	3015	3757	839	86
Feb-03	3369	5509	2365	225	31-Mar-03	3017	3724	812	107
Feb-03	3365	5460	2312	218	01-Apr-03	3026	3786	881	122
Feb-03	3444	5432	2209	223	02-Apr-03	2977	3642	141	79
Feb-03	3400	5214	2015	203	03-Apr-03	3107	3785	062	114
Feb-03	3287	5144	2070	214	04-Apr-03	3099	3896	924	129
Feb-03	3261	5161	2103	205	05-Apr-03	3024	3836	920	109
Feb-03	3254	5061	1985	179	06-Apr-03	3081	3757	769	94
⁼ eb-03	3442	5087	1826	183	07-Apr-03	3085	3632	636	90
^r eb-03	3403	5153	1942	194	08-Apr-03	3061	3584	611	89
⁼ eb-03	3421	5222	1992	193	09-Apr-03	3031	3528	585	88
^r eb-03	3546	5139	1778	184	10-Apr-03	2978	3457	569	88
⁻ eb-03	3571	5158	1784	195	11-Apr-03	3012	3508	571	76
Feb-03	3608	5086	1660	183	12-Apr-03	3038	3530	546	56
⁻ eb-03	3549	5113	1754	190	13-Apr-03	3095	3651	626	72
/ar-03	3560	5147	1778	193	14-Apr-03	3048	3545	580	83
/ar-03	3607	4956	1511	165	15-Apr-03	2978	3381	486	82
Mar-03	3568	4794	1378	154	16-Apr-03	2912	3338	508	81
/ar-03	3483	4670	1327	143	17-Apr-03	2947	3375	909	79
Mar-03	3528	4447	1024	109	18-Apr-03	2854	3278	483	62
Mar-03	3373	4393	1143	124	19-Apr-03	2768	3287	567	48
Mar-03	3250	4443	1319	127	20-Apr-03	2981	3291	343	37
Mar-03	3092	4476	1533	148	21-Apr-03	2888	3055	187	24
Mar-03	2996	4533	1706	166	22-Apr-03	2875	3085	273	64
Mar-03	3194	4464	1407	139	23-Apr-03	2802	2946	184	41
Mar-03	3230	4216	1105	121	24-Apr-03	2947	3106	203	46
Mar-03	3058	4091	1150	115	25-Apr-03	2975	3270	353	60
Mar-03	3043	4181	1258	119	26-Apr-03	2906	3188	327	45
Mar-03	3114	4279	1282	118	27-Apr-03	2962	3005	181	54
Mar-03	3179	4328	1274	128	28-Apr-03	2879	2840	26	67
Mar-03	3197	4231	1136	107	29-Apr-03	2748	2953	289	84

Table 2Simulated Daily Average Discharges, Dry Season 2003

 Table 3
 Simulated Daily Average Discharges, Dry Season 1997

	Chrui	Koh	Phnom Penh	Monivong		Chrui	Koh	Phnom Penh	Monivong		Chrui	Koh	Phnom Penh	Monivong
Date	Changvar	Norea	Port	Bridge	Date	Changvar	Norea	Port	Bridge	Date	Changvar	Norea	Port	Bridge
04-Jan-97	5473	9666	5272	757	24-Feb-97	2175	4445	2459	191	16-Apr-97	2389	2904	573	62
05-Jan-97	4812	9421	5286	682	25-Feb-97	2127	4353	2409	185	17-Apr-97	2376	2843	526	61
06-Jan-97	4577	9137	5216	659	26-Feb-97	2078	4261	2360	179	18-Apr-97	2382	2796	474	62
07-Jan-97	4427	8921	5129	637	27-Feb-97	2041	4179	2309	173	19-Apr-97	2431	2807	440	66
08-Jan-97	4290	8711	5037	619	28-Feb-97	2033	4137	2268	167	20-Apr-97	2439	2753	387	73
09-Jan-97	4165	8515	4949	601	01-Mar-97	2049	4128	2236	160	21-Apr-97	2454	2721	349	80
10-Jan-97	4034	8312	4860	585	02-Mar-97	2061	4118	2207	153	22-Apr-97	2474	2740	346	81
11-Jan-97	3926	8130	4772	571	03-Mar-97	2020	4040	2169	150	23-Apr-97	2443	2703	340	81
12-Jan-97	3832	7963	4686	557	04-Mar-97	2000	3971	2118	148	24-Apr-97	2412	2656	323	81
13-Jan-97	3760	7838	4615	539	05-Mar-97	1979	3904	2066	143	25-Apr-97	2379	2631	334	83
14-Jan-97	3678	7740	4547	486	06-Mar-97	1943	3828	2022	139	26-Apr-97	2325	2527	285	84
15-Jan-97	3636	7682	4481	438	07-Mar-97	1874	3696	1957	136	27-Apr-97	2433	2681	326	80
16-Jan-97	3618	7625	4425	419	08-Mar-97	1784	3517	1868	135	28-Apr-97	2483	2681	282	86
17lan-97	3584	7554	4382	413	09-Mar-97	1759	3417	1789	132	29-Anr-97	2508	2674	254	8
18-Jan-97	3534	7468	4343	411	10-Mar-97	1775	3380	1732	129	30-Apr-97	2537	2762	304	8 5
19- Jan-97	3466	02.57	4311	410	11-Mar-07	1811	3302	1702	123	01-May-07	2557	2833	345	73
20 Ion 07	236.4	7007	02.04	110	10 Mor 07	1020	2200	1606	140	CO MAN 07	0500	0.000 0.76.6	000	60
20-101-01	1000	1221	1000		10-101A-71			1000	ה – ד	10-101-70	2000	0400	770	ŝ
21-Jan-97	3295	cl 1/	42.26	409	13-Mar-97	1844	3401	1008	115	0.3-IMay-97	2491	2/86	355	<u>6</u> 2
22-Jan-97	3245	7025	4181	404	14-Mar-97	1859	3407	1651	106	04-May-97	2408	2655	305	61
23-Jan-97	3166	6897	4130	401	15-Mar-97	1845	3374	1626	101	05-May-97	2287	2499	271	62
24-Jan-97	3122	6812	4083	394	16-Mar-97	1857	3366	1600	94	06-May-97	2217	2400	240	60
25-Jan-97	3070	6727	4041	386	17-Mar-97	1877	3367	1573	87	07-May-97	2123	2273	208	61
26-Jan-97	2990	6233	3989	382	18-Mar-97	1839	3288	1531	85	08-May-97	2092	2243	210	61
27-Jan-97	2926	6467	3921	381	19-Mar-97	1765	3168	1488	86	09-May-97	2123	2291	224	60
28-Jan-97	2912	6397	3860	375	20-Mar-97	1799	3213	1481	68	10-Mav-97	2122	2276	209	59
29-Jan-97	2890	6336	3809	364	21-Mar-97	1751	3160	1463	56	11-Mav-97	2091	2235	202	60
30-Jan-97	2850	6267	3766	350	22-Mar-97	1697	3043	1397	51	12-Mav-97	2119	2342	277	57
31-Jan-97	2846	6250	3735	334	23-Mar-97	1665	2904	1291	52	13-Mav-97	2166	2423	305	5
01-Feb-97	2823	6217	3711	319	24-Mar-97	1657	2808	1204	54	14-Mav-97	2457	2406	662	52
02-Fah-07	0740	611B	36.77	310	25-Mar-07	1600	267B	1176	04	15_Mav_07	2010	2508	340	77
03-Fob-07	0700	0110	36.33	000	26-Mar-07	1534	2514	1047	54	1.6-May-0.7	2212 0185	2537	110	τ ^Ω
01 L0 07	2012	1000	1000		10-INIGI-02	+ C11 +	1070	1001	1	4.7 h Acre 0.7	2450	1000	1007	3
05 E00 07	20/4	0800	0004 05.00	000 000 000	Z O JOW OC	70011	2400	1004	74	L C VIOL 01		2002	400	20
	0007	5770	0,020	900	20 Mar 07	1500	2407	090	- 4		0000	0140	0 4E	24
07 Eob 07	2002	C S S S	0000	000	20 Mar 07	1001	1047	000	č t		0000	22.10	000	5 9
08-Feb-97	2567	5571	32.07	203	31-Mar-07	1561	2433	034	64	21-May-07	2344	2605	322	8
09-Feh-97	2575	5494	32.12	293	01-Anr-97	1585	2413	891	64	22-Mav-97	2449	2680	239	50 69
10-Feb-97	2608	5452	3135	291	02-Anr-97	1631	2447	870	57	23-Mav-97	2518	2695	256	79
11-Feb-97	2651	5433	3069	288	03-Apr-97	1720	2563	887	48	24-Mav-97	2647	2831	268	84
12-Feb-97	2660	5386	3009	284	04-ADr-97	1708	2546	883	48	25-Mav-97	2745	2914	258	88
13-Feb-97	2690	5368	2955	2.78	05-Apr-97	1590	2344	801	49	26-May-97	2849	3035	279	93
14-Feb-97	2735	5378	2914	272	06-Apr-97	1538	2218	728	51	27-May-97	2978	3178	303	101
15-Feb-97	2748	5359	2875	265	07-Apr-97	1515	2157	694	53	28-May-97	3242	3503	382	118
16-Feb-97	2745	5329	2840	258	08-Apr-97	1508	2094	644	58	29-May-97	3625	3908	423	136
17-Feb-97	2662	52.16	2802	251	09-Apr-97	1627	2190	622	61	30-Mav-97	3884	4176	440	147
18-Feb-97	2563	5084	2761	242	10-Apr-97	1739	2279	602	65	31-May-97	3939	4263	478	153
19-Feb-97	2500	4990	2720	231	11-Apr-97	1863	2396	262	67					
20-Feb-97	2440	4895	2675	222	12-Apr-97	2035	2550	582	70					
21-Feb-97	2356	4750	2610	218	13-Apr-97	2151	2646	566	73					
22-Feb-97	2335	4695	2567	208	14-Apr-97	2273	2768	565	71					
23-Feb-97	2243	4557	2513	200	15-Apr-97	2371	2899	591	67					

 Table 4
 Simulated Daily Average Discharges, Dry Season 1998

1999
Season
Dry
Discharges,
Average
Daily
Simulated
Table 5

	Chrui	Koh	Phnom Penh	Monivong		Chrui	Koh	Phnom Penh	Monivong		Chrui	Koh	^D hnom Penh	Monivong
Date	Changvar	Norea	Port	Bridge	Date	Changvar	Norea	Port	Bridge	Date	Changvar	Norea	Port	Bridge
04-Jan-99	4284	6848	2865	317	24-Feb-99	1425	2072	679	31	16-Apr-99	1071	1097	61	23
05-Jan-99	3171	5957	3023	244	25-Feb-99	1412	2022	643	31	17-Apr-99	1088	1104	43	25
06-Jan-99	2805	5597	3022	233	26-Feb-99	1364	1929	598	30	18-Apr-99	1104	1105	49	34
07-Jan-99	2686	5460	2994	222	27-Feb-99	1406	1975	594	23	19-Apr-99	1187	1210	58	34
08-Jan-99	2650	5412	2969	211	28-Feb-99	1342	1862	552	26	20-Apr-99	1337	1373	78	36
09-Jan-99	2521	5254	2934	203	01-Mar-99	1237	1687	487	30	21-Apr-99	1538	1608	110	37
10-Jan-99	2463	5181	2904	190	02-Mar-99	1321	1796	505	24	22-Apr-99	1659	1792	168	30
11-Jan-99	2420	5131	2884	176	03-Mar-99	1243	1670	463	28	23-Apr-99	1745	1976	211	-23
12-Jan-99	2326	5009	2850	169	04-Mar-99	1262	1686	460	27	24-ADr-99	1834	2158	248	-76
13-Jan-99	2179	4795	2785	169	05-Mar-99	1242	1642	438	30	25-Anr-99	1883	2194	227	4 6 7 7 7
14-Jan-99	2114	4654	2707	168	06-Mar-99	1326	1749	455	24	26-Anr-99	1963	2239	191	-88
15- Jan-99	2080	4555	2637	163	07-Mar-99	1301	1830	464		27-Anr-99	2016	2346	165	-140
16-1an-00	2044	4448	2001	160	OR-Mar-00	1991	1 704	50F	0 4	28-Anr-00	0000	0343	143	100
17 Ion 00	0100	1260	0007	164	OO Mor OO	0361	1745	115	2 ¥	20 Apr 00	1005	6060	01-1-0 1-1-0	- 100
17-081-00	2106	4000	2442	101		7001	4 764	007	2 ç	20 Apr 00		2020	120	117-
10-031-04	2147	4307	2410	000	10-1MI31-93	1001	1702	400	2	00-MD-20	20400	24-32 0F.0F	041	102-
19-180-99	2 14/	4004	2300	+0	11-IMBI-99	0951	1/80	400	ກ :	01-May-99	5200	0707	041	C01-
20-Jan-99	2112	4276	2310	146	12-Mar-99	1324	1657	346	11	02-May-99	2283	2586	190	-120
21-Jan-99	2051	4178	2267	140	13-Mar-99	1182	1434	271	14	03-May-99	2321	2645	248	-83
22-Jan-99	1988	4082	2226	133	14-Mar-99	1151	1407	276	14	04-May-99	2398	2803	316	-92
23-Jan-99	1968	4039	2196	126	15-Mar-99	1195	1478	302	10	05-May-99	2598	2983	299	-89
24-Jan-99	1918	3963	2164	120	16-Mar-99	1098	1317	245	16	06-May-99	2967	3310	281	-64
25-Jan-99	1864	3877	2127	115	17-Mar-99	956	1108	181	22	07-May-99	3313	3602	261	-30
26-Jan-99	1836	3821	2092	108	18-Mar-99	1011	1178	194	18	08-Mav-99	3526	3846	311	<u>م</u>
27-Jan-99	1793	3739	2047	103	19-Mar-99	1080	1274	214	15	09-Mav-99	3375	3800	412	°Ç
28-Jan-99	1763	3668	2002	80	20-Mar-99	1062	1230	195	01	10-Mav-99	3139	3603	447	-13
20-1an-00	1700	3540	1945	90	21-Mar-99	1048	1197	181		11-Mav-99	2003	3330	417	2 9
30- Ian-00	1618	3305	1870	00	22-Mar-00	1124	1 207	200	10	12-Mav-00	2023	30.61	361	9
24 Ion 00	1010	0000	10/01		OD ADD CO	141	1021	300	24	12 May 00	0110	0000	00	0 F
01-Jan-99	1024	00000	1274	00			1001	2007	0	10-M34-99	8007 8007	2020	704	11
01-1-60-00	080	0.000		ø	66-IBM-47	1001	5/1	101	7	14-INBY-99	+co7	R007	2	-36-
02-Feb-99	1717	3364	1729	83	25-Mar-99	1081	1176	119	17	15-May-99	3481	3477	-22	-33
03-Feb-99	1656	3236	1666	84	26-Mar-99	1252	1409	167	0	16-May-99	5045	4661	-351	14
04-Feb-99	1559	3027	1563	90	27-Mar-99	1288	1472	188	2	17-May-99	6627	5759	-763	89
05-Feb-99	1715	3097	1475	89	28-Mar-99	1308	1506	206	2	18-May-99	7446	6459	-859	121
06-Feb-99	1936	3297	1447	86	29-Mar-99	1243	1369	144		19-May-99	7363	6603	-673	88
07-Feb-99	1960	3302	1424	83	30-Mar-99	1196	1276	106	16	20-May-99	2669	6564	-417	-42
08-Feb-99	1907	3213	1382	17	31-Mar-99	1110	1129	48	21	21-May-99	6800	6563	-332	-94
09-Feb-99	1904	3168	1332	71	01-Apr-99	1096	1101	38	25	22-May-99	6964	6677	-379	-93
10-Feb-99	1880	3086	1269	65	02-Apr-99	1094	1098	33	24	23-May-99	7084	6848	-310	-76
11-Feb-99	1803	2938	1195	61	03-Apr-99	1159	1213	76	18	24-May-99	7355	6998	-385	-30
12-Feb-99	1576	2578	1070	65	04-Apr-99	1151	1227	100	19	25-Mav-99	7782	7158	-579	42
13-Feb-99	1580	2533	1008	53	05-Apr-99	1175	1276	125	18	26-Mav-99	8274	7369	-777-	125
14-Feb-99	1603	2535	981	49	06-Apr-99	1203	1295	120	21	27-Mav-99	8774	7631	-941	199
15-Feb-99	1560	2448	936	47	07-Apr-99	1192	1246	82	22	28-Mav-99	9163	7833	-1069	258
16-Feb-99	1524	2377	902	46	08-Apr-99	1222	1282	85	20	29-Mav-99	9372	7945	-1131	294
17-Feb-99	1448	2235	838	45	09-Apr-99	1379	1490	126	12	30-Mav-99	9465	8012	-1139	313
18-Feb-99	1445	2193	667	45	10-Apr-99	1395	1523	139	0	31-Mav-99	9687	8134	-1202	348
19-Feb-99	1495	2234	787	43	11-Apr-99	1308	1455	164	15					
00-Fah-00	1 133	9127	740	, et	12_Anr_00	1207	1 458	177	14					
24 Eob 00	1206	2121	547 141	1	12 Apr 00	1221	1570	11-0	2 C					
21-FEU-33	1080	2007	704	- 1 - −	14 Ame 00	10/01	1225	212	D Ç					
00 401 50	1500	0104	705	500	15 Apr 00	1407	1102	111	10					
20-L0D-00	UD01	2184	071	RN.	RR-IDW-CI.	110/1	1180	114	0					

	_		_	_	_	_		_							_	_	_	_	_	_	_	_		_	_	_	_	_		_			_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_
Phnom Penh	Port	430	376	288	235	284	364	364	414	439	427	423	410	352	338	307	328	326	275	253	310	325	252	215	278	369	414	414	331	270	109	55	-	-241	-455	-656	-779	-833	-981	-1445	-2501	-3647	-4256	-4262	-4058	-3797	-3543	-3324				
Koh	Norea	2244	2209	2173	2327	2577	2811	2937	3049	3095	3096	3130	3100	2991	3010	3014	3126	3206	3203	3277	3338	3321	3344	3603	3792	3859	3858	3867	3881	4032	4204	4523	4839	5174	5636	6087	6366	6596	6903	7769	9995	12804	14466	14719	14382	13847	13282	12775				
Chrui	Changvar	1856	1877	1946	2172	2378	2539	2665	2718	2732	2744	2778	2758	2710	2744	2787	2887	2974	3034	3139	3133	3079	3187	3506	3636	3604	3550	3560	3663	3891	4262	4665	5061	5660	6380	7074	7496	7797	8286	9743	13350	17666	20078	20291	19672	18784	17890	17108				
	Date	15-Apr-00	16-Apr-00	17-Apr-00	18-Apr-00	19-Apr-00	20-Apr-00	21-Apr-00	22-Apr-00	23-Apr-00	24-Apr-00	25-Apr-00	26-Apr-00	27-Apr-00	28-Apr-00	29-Apr-00	30-Apr-00	01-May-00	02-May-00	03-May-00	04-May-00	05-Mav-00	06-Mav-00	07-Mav-00	08-Mav-00	09-Mav-00	10-Mav-00	11-Mav-00	12-Mav-00	13-Mav-00	14-Mav-00	15-Mav-00	16-May-00	17-May-00	18-May-00	19-May-00	20-May-00	21-May-00	22-May-00	23-May-00	24-May-00	25-May-00	26-May-00	27-May-00	28-May-00	29-May-00	30-May-00	31-May-00				
D					Т	Т		Т	–		-			Т								г	Γ	г			г	T		Г	T	T																Г	–		T	г
Monivon	Bridge	158	152	148	138	134	140	145	143	139	130	121	115	111	105	101	98	94	06	98	98	82	83	84	89	91	94	88	83	78	26	71	67	20	63	52	50	42	39	41	43	46	49	45	44	47	50	48	40	38	37	42
Phnom Penh	Port	2002	1968	1918	1885	1865	1778	1700	1647	1607	1576	1540	1492	1443	1401	1350	1292	1243	1204	1157	1093	1045	995	936	845	819	773	766	764	760	722	698	692	643	626	645	593	632	632	557	505	483	436	430	397	370	388	409	448	444	458	405
Koh	Norea	4245	4090	3919	3890	3859	3622	3639	3750	3751	3706	3616	3480	3373	3323	3231	3129	3129	3140	3099	3047	3025	3009	2952	2820	2889	2829	2854	2851	2806	2630	2570	2596	2529	2564	2649	2525	2659	2657	2401	2230	2118	2003	2017	1940	1866	1904	1993	2172	2211	2344	0200
Chrui	Changvar	2398	2272	2148	2141	2127	1985	2085	2245	2281	2258	2195	2101	2039	2024	1980	1933	1978	2022	2025	2038	2060	2096	2100	2063	2160	2149	2173	2168	2121	1981	1940	1968	1956	2000	2054	1979	2064	2059	1882	1766	1677	1614	1629	1584	1541	1565	1630	1761	1803	1920	1914
٦	Date	24-Feb-00	25-Feb-00	26-Feb-00	27-Feb-00	28-Feb-00	29-Feb-00	01-Mar-00	02-Mar-00	03-Mar-00	04-Mar-00	05-Mar-00	06-Mar-00	07-Mar-00	08-Mar-00	09-Mar-00	10-Mar-00	11-Mar-00	12-Mar-00	13-Mar-00	14-Mar-00	15-Mar-00	16-Mar-00	17-Mar-00	18-Mar-00	19-Mar-00	20-Mar-00	21-Mar-00	22-Mar-00	23-Mar-00	24-Mar-00	25-Mar-00	26-Mar-00	27-Mar-00	28-Mar-00	29-Mar-00	30-Mar-00	31-Mar-00	01-Apr-00	02-Apr-00	03-Apr-00	04-Apr-00	05-Apr-00	06-Apr-00	07-Apr-00	08-Apr-00	09-Apr-00	10-Apr-00	11-Apr-00	12-Apr-00	13-Apr-00	14-Anr-00
Monivong	Bridge	613	541	516	494	484	475	466	455	440	422	405	393	379	372	368	362	356	345	334	323	320	321	315	310	298	287	282	276	271	263	253	243	236	227	224	220	214	202	195	188	182	176	181	185	182	182	181	181	177	171	165
Phnom Penh	Port	4279	4433	4433	4400	4333	4256	4182	4115	4056	4018	3980	3936	3895	3850	3789	3724	3656	3601	3561	3524	3475	3412	3361	3318	3292	3268	3225	3182	3130	3080	3038	2998	2942	2896	2839	2780	2726	2699	2671	2632	2591	2549	2480	2389	2326	2259	2198	2137	2089	2051	2022
Koh	Norea	6966	8474	8097	7887	7691	7563	7477	7381	7292	7203	7065	6928	6826	6676	6487	6302	6140	6078	6027	5957	5879	5822	5836	5789	5816	5763	5615	5544	5434	5375	5310	5196	5046	4984	4872	4781	4737	4795	4735	4651	4586	4545	4399	4290	4316	4300	4321	4304	4301	4296	4280
Chrui	Changvar	5687	4574	4174	3978	3840	3781	3759	3720	3674	3604	3488	3382	3308	3197	3066	2941	2839	2821	2798	2754	2723	2731	2789	2779	2819	2781	2671	2636	2575	2556	2523	2440	2339	2315	2255	2221	2223	2296	2257	2205	2174	2171	2101	2086	2173	2222	2304	2346	2387	2414	0430
٦	Date	04-Jan-00	05-Jan-00	06-Jan-00	07-Jan-00	08-Jan-00	09-Jan-00	10-Jan-00	11-Jan-00	12-Jan-00	13-Jan-00	14-Jan-00	15-Jan-00	16-Jan-00	17-Jan-00	18-Jan-00	19-Jan-00	20-Jan-00	21-Jan-00	22-Jan-00	23-Jan-00	24-Jan-00	25-Jan-00	26lan-00	77lan-00	28-Jan-00	29-Jan-00	30Jan-00	31lan-00	01-Feb-00	12-Feh-00	03-Feb-00	04-Feb-00	05-Feb-00	06-Feb-00	07-Feb-00	08-Feb-00	09-Feb-00	10-Feb-00	11-Feb-00	12-Feb-00	13-Feb-00	14-Feb-00	15-Feb-00	16-Feb-00	17-Feb-00	18-Feb-00	19-Feb-00	20-Feb-00	21-Feb-00	22-Feb-00	23-Feb-00

 Table 6
 Simulated Daily Average Discharges, Dry Season 2000

Table 7Simulated Daily Average Discharges, Dry Season 2001

Date 04-Jan-01 05-Jan-01 07-Jan-01 07-Jan-01 06-Jan-01 10-Jan-01 112-Jan-01 13-Jan-01 13-Jan-01 13-Jan-01	Changvar 5553 5553 5553 5553 5553 4309 4309 3973 3973 3973 3973 3973 3973 3973 3	Norea 5353 4618 4309 4181 4031 4031 3979	Port 4690 4753	Bridge 626 556	Date 24-Feb-01	Changvar 2383 2383	Norea 2383	Port 2170	Bridge 159	Date 16-Apr-01	Changvar 2305 2289	Norea 2305 2289	Port 553 520	Bridge 66
04-Jan-01 05-Jan-01 07-Jan-01 07-Jan-01 08-Jan-01 08-Jan-01 11-Jan-01 11-Jan-01 112-Jan-01 13-Jan-01 13-Jan-01	5353 5353 43618 43618 43618 431 4088 3379 3379 3379 3378 3378 3378 3378 33	5353 4618 4309 4181 4098 4031 3979	4690	626 556	24-Feb-01	2383	2383	2170	159	16-Apr-01	2305	2305 2289 2289	553	99
05-Jan-01 06-Jan-01 07-Jan-01 08-Jan-01 09-Jan-01 11-Jan-01 11-Jan-01 13-Jan-01 14-Jan-01	4618 4309 4309 4309 4309 3935 3935 3935 3935 3935 3500 3511 3500 3510 3500 3500 3500 35	4618 4309 4181 4098 4031 3979 3979	4753	556		2850	ŝ				2289	2289	000	
06-Jan-01 07-Jan-01 08-Jan-01 09-Jan-01 10-Jan-01 12-Jan-01 13-Jan-01 13-Jan-01	4309 4181 4181 4098 4098 3979 3979 3979 3979 3979 3783 3783 37	4309 4181 4038 4031 3979			25-Feb-01	7007	7027	2126	155	17-Apr-01	277	00000	NCC	62
07-Jan-01 08-Jan-01 09-Jan-01 10-Jan-01 11-Jan-01 12-Jan-01 13-Jan-01	4181 4098 4098 3979 3979 3979 3979 3979 3979 3979 39	4181 4098 4031 3979	4697	523	26-Feb-01	2298	2298	2066	154	18-Apr-01	2326	0707	547	56
08-Jan-01 09-Jan-01 10-Jan-01 11-Jan-01 12-Jan-01 13-Jan-01	4098 4031 3979 3975 3979 3979 3979 3979 3979 3979	4098 4031 3979	4624	484	27-Feb-01	2280	2280	2004	151	19-Apr-01	2324	2324	542	51
09-Jan-01 10-Jan-01 11-Jan-01 12-Jan-01 13-Jan-01 14-Jan-01	4031 3979 3979 3935 3935 3710 3566 3511 3500 3464 24464	4031 3979	4547	465	28-Feb-01	2292	2292	1956	14.7	20-Apr-01	2289	2289	502	49
10-Jan-01 11-Jan-01 12-Jan-01 13-Jan-01 14-Jan-01	3979 3935 3783 3617 3566 3566 3566 3566 3566	3979	4460	459	01-Mar-01	2274	2274	1903	145	21-Apr-01	2227	2227	456	49
11-Jan-01 12-Jan-01 13-Jan-01 14-Jan-01	3935 3617 3617 3511 3500 3511 3464 3464	l	4372	457	02-Mar-01	2244	2244	1834	146	22-Apr-01	2149	2149	410	51
12-Jan-01 13-Jan-01 14-Jan-01	3783 3617 3566 3511 3500 3464	3935	4286	453	03-Mar-01	2306	2306	1790	142	23-Apr-01	2113	2113	403	50
13-Jan-01 14-Jan-01	3617 3566 3511 3500 3464	3783	4230	433	04-Mar-01	2376	2376	1776	133	24-Apr-01	2073	2073	378	49
14-Jan-01	3566 3511 3500 3464	3617	4180	416	05-Mar-01	2337	2337	1753	130	25-Apr-01	1996	1996	354	54
	3511 3500 3464 2440	3566	4098	347	06-Mar-01	2163	2163	1674	134	26-Apr-01	1978	1978	313	55
15-Jan-01	3500 3464 244°	3511	4020	291	07-Mar-01	2224	2224	1630	125	27-Apr-01	1941	1941	261	60
16-Jan-01	3464	3500	3968	272	08-Mar-01	2232	2232	1589	121	28-Apr-01	2017	2017	295	58
17-Jan-01	0440	3464	3929	274	09-Mar-01	2120	2120	1501	121	29-ADF-01	2099	2099	311	51
18-Jan-01	0440	3448	3910	279	10-Mar-01	2084	2084	14 16	118	30-Apr-01	2184	2184	352	48
19-Jan-01	3364	3364	3893	289	11-Mar-01	2109	2109	1375	115	01-Mav-01	2231	2231	354	45
20-Jan-01	3222	3222	3854	302	12-Mar-01	2101	2101	1360	113	02-May-01	2228	2228	331	46
21-Jan-01	3144	3144	3807	309	13-Mar-01	2039	2039	1315	111	03-Mav-01	2249	2249	358	46
22-Jan-01	3104	3104	3755	314	14-Mar-01	2038	2038	1295	102	04-Mav-01	2220	2220	318	47
23-Jan-01	308.2	3082	3706	316	15-Mar-01	2081	2081	1294	80	05-Mav-01	2125	2125	257	53
24lan-01	3064	3064	3660	316	16-Mar-01	2164	2164	1272	95	06-Mav-01	2147	2147	204	28
25-Jan-01	3046	3046	3612	315	17-Mar-01	2252	2252	1254	92	07-Mav-01	2251	2251	234	55
26-Jan-01	3045	3045	3565	312	18-Mar-01	2311	2311	1236	68	08-Mav-01	2230	2230	236	56
27-,lan-01	3034	3034	3515	309	19-Mar-01	2216	2216	1206	95	09-Mav-01	2242	2242	261	53
28-Jan-01	3014	3014	3467	305	20-Mar-01	2204	2204	1187	85	10-Mav-01	2258	2258	278	47
29-Jan-01	2961	2961	3414	299	21-Mar-01	2291	2291	1210	72	11-Mav-01	2266	2266	290	45
30-Jan-01	2884	2884	3356	290	22-Mar-01	2335	2335	1177	71	12-Mav-01	2194	2194	273	51
31-Jan-01	2871	2871	3313	278	23-Mar-01	2378	2378	1089	72	13-Mav-01	2248	2248	283	49
01-Feb-01	2863	2863	3272	270	24-Mar-01	2431	2431	1020	76	14-Mav-01	2348	2348	335	46
02-Fah-01	2864	2864	3237	363 263	25-Mar-01	2469	2469	1001	79	15-Mav-01	2324	2324	318	53
03-Feb-01	2829	2829	3191	260	26-Mar-01	2467	2467	1011	62	16-Mav-01	2354	2354	369	63
04-Feb-01	2798	2798	3144	257	27-Mar-01	24 15	24 15	972	83	17-Mav-01	2656	2656	409	80
05-Feb-01	2755	2755	3092	255	28-Mar-01	2440	2440	935	85	18-May-01	3194	3194	314	108
06-Feb-01	2709	2709	3028	255	29-Mar-01	2476	2476	894	92	19-May-01	3739	3739	208	133
07-Feb-01	2702	2702	2973	250	30-Mar-01	2539	2539	860	95	20-May-01	4034	4034	246	151
08-Feb-01	2638	2638	2899	251	31-Mar-01	2615	2615	822	103	21-May-01	4229	4229	256	162
09-Feb-01	2625	2625	2828	248	01-Apr-01	2745	2745	763	111	22-May-01	4453	4453	244	173
10-Feb-01	2619	2619	2764	243	02-Apr-01	2917	2917	723	119	23-May-01	4540	4540	264	177
11-Feb-01	2633	2633	2705	239	03-Apr-01	3021	3021	705	125	24-May-01	4384	4384	340	163
12-Feb-01	2634	2634	2650	236	04-Apr-01	3085	3085	730	123	25-May-01	4121	4121	409	144
13-Feb-01	2632	2632	2597	232	05-Apr-01	3065	3065	748	115	26-May-01	3927	3927	400	136
14-Feb-01	2662	2662	2562	224	06-Apr-01	2965	2965	723	110	27-May-01	3889	3889	372	142
15-Feb-01	2628	2628	2530	218	07-Apr-01	2873	2873	700	106	28-May-01	4039	4039	406	159
16-Feb-01	2566	2506	2491	211	08-Apr-01	2805	2805	674	66	29-May-01	442	4442	388	183
17-Feb-01	2599	2599	2482	195	09-Apr-01	2705	2705	646	97	30-Mav-01	5035	5035	277	215
18-Feb-01	2502	2502	2456	188	10-Apr-01	2618	2618	627	93	31-May-01	5757	5757	34	254
19-Feb-01	2420	2420	2410	185	11-Apr-01	2586	2586	642	86					
20-Feb-01	2418	24 18	2364	179	12-Apr-01	2563	2563	641	81					
21-Feb-01	2410	2410	2314	174	13-Apr-01	2498	2498	608	79					
22-Feb-01	2382	2382	2259	171	14-Apr-01	2396	2396	564	76					
23-Feb-01	2378	2378	2209	165	15-Apr-01	2348	2348	577	72					

Fig. 2.1 Hourly Water Level at Tan Chau, February to April 2003

Fig. 2.2 Hourly Water Level at Chau Doc, February to April 2003

Fig. 2.3 Daily Water Level at Kompong Cham, January to May 2003

Fig. 2.4 Weekly Discharge Measurement at Kompong Cham, February to April 2003

Fig. 2.5 Hourly Water Levels at Chrui Changvar, January to April 2003

Fig. 2.6 Hourly Water Levels at Chaktomouk, January to April 2003

Fig. 2.7 Weekly Discharge Measurements at Chrui Changvar, February to April 2003

Fig. 2.8 Weekly Discharge Measurements at Koh Norea, February to April 2003

Fig. 2.9 Weekly Discharge Measurements at Phnom Penh Port, February to April 2003

Fig. 2.10 Weekly Discharge Measurements at Monivong Bridge, February to April 2003

Fig. 2.11 Difference in Water Level between Chrui Changvar and Chaktomouk, January to April 2003

Fig. 2.12a Simulated and Observed Discharge at Chrui Changvar, February to April 2003

Fig. 2.12b Simulated and Observed Discharge at Chrui Changvar, First Half of February 2003

Fig. 2.12c Simulated and Observed Discharge at Chrui Changvar, Second Half of February 2003

Fig. 2.12d Simulated and Observed Discharge at Chrui Changvar, First Half of March 2003

Fig. 2.12e Simulated and Observed Discharge at Chrui Changvar, Second Half of March 2003

Fig. 2.12f Simulated and Observed Discharge at Chrui Changvar, First Half of April 2003

Fig. 2.12g Simulated and Observed Discharge at Chrui Changvar, Second Half of April 2003

Fig. 2.13a Simulated and Observed Discharge at Koh Norea, February to April 2003

Fig. 2.13b Simulated and Observed Discharge at Koh Norea, First Half of February 2003

Fig. 2.13c Simulated and Observed Discharge at Koh Norea, Second Half of February 2003

Fig. 2.13d Simulated and Observed Discharge at Koh Norea, First Half of March 2003

Fig. 2.13e Simulated and Observed Discharge at Koh Norea, Second Half of March 2003

Fig. 2.13f Simulated and Observed Discharge at Koh Norea, First Half of April 2003

Fig. 2.13g Simulated and Observed Discharge at Koh Norea, Second Half of April 2003

Fig. 2.14a(1/2)Simulated and Observed Discharge at Phnom Penh Port,
February to May 2003 -- including wind

Fig. 2.14a(2/2)Simulated and Observed Discharge at Phnom Penh Port,
February to May 2003 -- no wind

Fig. 2.14b Simulated and Observed Discharge at Phnom Penh Port, First Half of February 2003

Fig. 2.14c Simulated and Observed Discharge at Phnom Penh Port, Second Half of February 2003.

Fig. 2.14d Simulated and Observed Discharge at Phnom Penh Port, First Half of March 2003

Fig. 2.14e Simulated and Observed Discharge at Phnom Penh Port, Second Half of March 2003

Fig. 2.14f Simulated and Observed Discharge at Phnom Penh Port, First Half of April 2003

Fig. 2.14h Simulated and Observed Discharge at Phnom Penh Port, Second Half of April 2003

Fig. 2.15a Simulated and Observed Discharge at Monivong Bridge, February to April 2003

Fig. 2.15b Simulated and Observed Discharge at Monivong Bridge, First Half of February 2003

Fig. 2.15c Simulated and Observed Discharge at Monivong Bridge, Second Half of February 2003

Fig. 2.15d Simulated and Observed Discharge at Monivong Bridge, First Half of March 2003

Fig. 2.15e Simulated and Observed Discharge at Monivong Bridge, Second Half of March 2003

Fig. 2.15f Simulated and Observed Discharge at Monivong Bridge, First Half of April 2003

Fig. 2.15g Simulated and Observed Discharge at Monivong Bridge, Second Half of April 2003

Fig. 2.16a Simulated and Observed Water Level at Chrui Changvar, February to April 2003

Fig. 2.16b Simulated and Observed Water Level at Chrui Changvar, First Half of February 2003

Fig. 2.16c Simulated and Observed Water Level at Chrui Changvar, Second Half of February 2003

Fig. 2.16d Simulated and Observed Water Level at Chrui Changvar, First Half of March 2003

Fig. 2.16e Simulated and Observed Water Level at Chrui Changvar, Second Half of March 2003

Fig. 2.16f Simulated and Observed Water Level at Chrui Changvar, First Half of April 2003

Fig. 2.16g Simulated and Observed Water Level at Chrui Changvar, Second Half of April 2003

Fig. 2.17a Simulated and Observed Water Level at Chaktomouk, February to April 2003

Fig. 2.17b Simulated and Observed Water Level at Chaktomouk, First Half of February 2003

Fig. 2.17c Simulated and Observed Water Level at Chaktomouk, Second Half of February 2003

Fig. 2.17d Simulated and Observed Water Level at Chaktomouk, First Half of March 2003

Fig. 2.17e Simulated and Observed Water Level at Chaktomouk, Second Half of March 2003

Fig. 2.17f Simulated and Observed Water Level at Chaktomouk, First Half of April 2003

Fig. 2.17g Simulated and Observed Water Level at Chaktomouk, Second Half of April 2003

Fig. 2.18 Simulated Daily Average Discharge at the Four River Branches in Chaktomouk (Average of 24 Hourly values)

Fig. 2.19 Simulated Daily Average Discharge (Average of 24 Hourly values) and Observed Daily Average Discharge (3 values per week) at Chrui Changvar

Fig. 2.20Simulated Daily Average Discharge (Average of 24 Hourly values)and Observed Daily Average Discharge (3 values per week) at Koh Norea

Fig. 2.21Simulated Daily Average Discharge (Average of 24 Hourly values)
and Observed Daily Average Discharge (3 values per week)
at Phnom Penh Port

Fig. 2.22Simulated Daily Average Discharge (Average of 24 Hourly values) and
Observed Daily Average Discharge (3 values per week) at Monivong Bridge

Fig. 2.23 Observed Daily Average Discharge at Chrui Changvar versus Daily Average Discharge at Koh Norea

Fig. 2.24Observed Daily Average Discharge at Chrui Changvar
versus Daily Average Discharge at Phnom Penh Port

Fig. 2.25Observed Daily Average Discharge at Chrui Changvar
versus Daily Average Discharge at Monivong Bridge

Fig. 2.26 Observed Daily Average Discharge upstream of Chaktomouk (Chrui Changvar plus Phnom Penh Port) versus Daily Average Discharge at Koh Norea

Fig. 2.27 Observed Daily Average Discharge upstream of Chaktomouk (Chrui Changvar plus Phnom Penh Port) versus Daily Average Discharge at Monivong Bridge

Fig. 2.28Simulated Hourly Discharge versus Simulated Hourly Water Level
at Phnom Penh Port, Dry Season 2003

Fig. 2.29 Observed Discharge versus Observed Water Level at Phnom Penh Port, Dry Season 2003

Fig. 2.30a Observed Daily Average Discharge at Phnom Penh Port versus 7 o'clock Water Level at Chaktomouk, Dry Season 2003

Fig. 2.30b Simulated and Rated Daily Average Discharge at Phnom Penh Port, Dry Season 2003

Fig. 2.30c Simulated versus Rated Daily Average Discharge at Phnom Penh Port, Dry Season 2003

Fig. 2.31 Observed and Simulated Average Daily Discharge at Tan Chau, Dry Season 1997

Fig. 2.32 Observed and Simulated Average Daily Discharge at Tan Chau, Dry Season 1998

Fig. 2.33 Observed and Simulated Average Daily Discharge at Tan Chau, Dry Season 1999

Fig. 2.34 Observed and Simulated Average Daily Discharge at Tan Chau, Dry Season 2000

Fig. 2.35 Observed and Simulated Average Daily Discharge at Tan Chau, Dry Season 2001

Fig. 2.36 Observed and Simulated Hourly Daily Discharge at Tan Chau, part of Dry Season 1997, 1998 and 1999

Fig. 2.37 Observed and Simulated Hourly Daily Discharge at Tan Chau, part of Dry Season 2000 and 2001

Fig. 3.1 Location of Major Roads in Phnom Penh, Kompong Cham and Neak Luong areas

Fig. 3.2Model Layout for Situations (after 1960, 1920-1960, before 1920)Top:after 1960Middle:between late 1920s and 1940s as well as between 1940s and 1960s

Bottom: Prior to 1920

(arrows indicate new branches)

Fig. 3.3 Simulated Discharge for Embankment Conditions (Chrui Changvar and Prek Kdam)

Fig. 3.4 Simulated Discharge for Embankment Conditions (Koh Norea and Bassac)

Prior to 1920 : no embankments
Year 2000 hydrographPresent (2003) embankments
Year 2000 hydrograph

Fig. 3.5 Water Balance from June 1st to November 1st, 2000 [No Embankments (left), Present Embankments (right)]

Prior to 1920 : no embankments Year 2001 hydrograph Present (2003) embankments Year 2001 hydrograph

Fig. 3.6 Water Balance from June 1st to November 1st, 2001 [No Embankments (left), Present Embankments (right)]

Fig. 3.7 Water Balance from June 1st to November 1st, 2002 [No Embankments (left), Present Embankments (right)]

Fig. 4.2 Effect of Larger Bridge Openings on Water Levels and Discharges

Fig. 4.3 Flood Inundation Maps for Existing and Test Case [Difference map to the right showing the Water Level difference between test case and existing condition]

Fig. 5.1 Volume Balance for Hydrological Year 1962 (monthly basis) [Reprinted from ref /3/]

Fig. 5.2 Volume Balance for the Great Lake 1998-2002 (monthly basis)

Fig. 5.3 Volume Balance for Hydrological Year 1998 (monthly basis)

Fig. 5.4 Volume Balance for Hydrological Year 1999 (monthly basis)

Fig. 5.5 Volume Balance for Hydrological Year 2000 (monthly basis)

Fig. 5.6 Volume Balance for Hydrological Year 2001 (monthly basis)

Fig. 5.7 Volume Balance for Hydrological Year 2002 (monthly basis)

Fig. 5.8 Lake Volume and Monthly Change in Lake Volume Based on Observed Water Level and the Derived Level-Volume Relation

Fig. 5.9 Monthly Change in Lake Volume Based on (1) Inflow/Outflow Assessment and (2) by Observed Water Level and Level-Volume relation