# REPORT ON THE MINERAL EXPLORATION IN THE EAST JAVA AREA THE REPUBLIC OF INDONESIA CONSOLIDATED REPORT

## **MARCH 2004**

JAPAN INTERNATIONAL COOPERATION AGENCY JAPAN OIL, GAS AND METALS NATIONAL CORPORATION

MPN JR 04-072 **PREFACE** 

In response to the request by the Government of the Republic of Indonesia, the Japanese Government

decided to conduct a mineral exploration project in the East Java Area and entrusted the survey to the Japan

International Cooperation Agency (JICA). The JICA entrusted the project to Metal Mining Agency of

Japan (MMAJ, current Japan Oil, Gas and Metal National Corporation) because contents of the survey

belong to a very specialized field of mineral exploration.

The survey was conducted for three fiscal years. JICA and MMAJ sent survey teams to the Republic of

Indonesia five times in the three year. The teams exchanged views with the officials concerned with the

Government of the Republic of Indonesia and conducted cooperative field surveys in the East Java Area.

This report is the consolidated report of the surveyed carried out during the three fiscal year and is the final

report. We hope that this report will serve the development of the Republic of Indonesia and contribute to

the promotion of friendly relations between our two countries.

We wish to express our deep appreciation to the officials concerned of the Government of the Republic of

Indonesia for close cooperation extended to the Japanese team.

March 2004

Tadashi Izawa Vice President,

Japan International Cooperation Agency

Hidejiro Osawa Presicent,

Japan Oil, Gas and Metal National Corporation

### **SUMMARY**

During the three years of the East Java Mineral Resources Exploration, regional geochemical survey, semi-detailed geochemical survey, geological survey, geophysical survey and drilling were carried out within the Project Area with a total extent of 19,000km<sup>2</sup>. Of the area, five districts were selected for detailed survey; namely Tempursari, Purwoharjo, Seweden, and Prambon and Ponorogo South districts. The geology of all these districts consists mainly of Tertiary and Quaternary volcanic and pyroclastic rocks, and limestone also occur in two districts. Gold, silver, copper, lead, and zinc mineralization was observed mainly in Oligocene to Miocene volcanic and pyroclastic units

#### (1) Tempursari District

Pyrite dissemination and alteration minerals such as sericite are widely developed in Tertiary volcanic • pyroclastic rocks and intruding dioritic rocks. Gold, silver, copper mineralization was observed in parts of these alteration zones. Soil geochemical prospecting results show that parts of the high copper and gold anomalies overlap these alteration zones. Geophysical survey revealed that the chargeability in the area trends to be higher in the western part and lower in the eastern part. Some chargeability anomalies were detected in all four survey lines. The anomalous zones show vertical structure and would reflect pyrite dissemination in intruding rocks and silicified vein zones because of its high chargeability, high resistivity and vertical structure. It is interpreted from analysis of the distribution of diorite intrusive bodies and faults and the high chargeability that Ngrawan River Basin in the northern part has the highest mineral potential.

#### (2) Purwoharjo District

Results of the geological survey do not indicate the existence of mineralization in the Purwoharjo District, and the high copper content in the stream sediments discovered during the second-year survey is inferred to be the results of high copper in the source areas. Thus it was concluded that further survey is not warranted.

#### (3) Seweden District

In this district, wide spread white-colored argillization and pyrite dissemination is observed. Silicification and argillization are particularly strong in the dacite intrusive bodies and their vicinity in the Putih River Basin where cooper and gold mineralization was observed. Also on the western side, although on small scale, quarts veinlets associated with copper, lead, and zinc mineralization are found and either epithermal gold-silver or mesothermal deposit of the porphyry copper type can

be anticipated. Soil geochemical exploration of these zones shows concentration of high Au, Cu, Pb. Zn. As anomalies in the Putih Basin and the vicinity which was confirmed to largely coincide with the silicified and argillized zones. From the above, it is concluded that Putih River Basin has the highest mineral potential in this District. Some chargeability anomalies exceeding 30 mV/V are detected in the central-eastern deep parts by geophysical survey. They form two north-south trending anomalous zones at the elevation of -100 m. Drilling Results show that argillic alteration continues from 37.30m depth, the lower boundary of oxidation zone, to the bottom of the hole. No significant base and precious metal mineralization was encountered by one hole that was drilled at the western high chargeability zone, while strong pyrite dissemination occurs quite consistently. The pyrite occurs as dissemination in altered andesitic rock or in-veinlets along hair cracks such as joints. A molybdenite-pyrite-quartz-clay occurs at deeper part, while copper mineral occurs only as exsolution mineral from pyrite under microscopy. However, these mineral phenomena are considered to be manifestations of porphyry copper deposits. It is recommended that the lateral extension of the wide alteration zones which were intercepted by one scout drilling should be followed.

#### (4) Prambon District

Many gold-silver-bearing quartz veins and silicified veins occur in the northern part of this district, and they all strike in the N-S to NNW-SSE direction, and those extending more than 1km can be divided into at least 4 zones. The highest gold assay result of rock samples is 3g/t Au, but gold mineralization is observed throughout the zones. Soil geochemical exploration shows that the high gold content of soil occurs intermittently and its distribution generally agrees with the surface occurrence of quartz and silicified veins. Considering the results of the survey of the southern part of the district carried out during the second year, the potential of vein deposits occurrence in the northern quartz-silicified vein zone is high in this District. Two holes of the four intercepted wide silicified and agillized zones. The assay results show the highest gold values 10.40g/t over 0.60m width intercepted by MJIE-P1. Three samples contained 1-5 g/t Au, and most samples contained However, 14 samples among 16 polished samples contains sphalerite, chalcopyrite and galena, indicating these minerals may be related with gold mineralization. Acanthite is identified in two samples form MJIE-P2 adjacent to pyrite grains. The gangue and alteration minerals in and adjacent to veins are quartz, calcite, sericite, chlorite and mixed-layer minerals. The study of fluid inclusions in quartz or calcite veins show the homogenization temperatures of about 200 °C and salinities are low. Therefore, it is concluded that epithermal mineralization occurs widely, mainly in the northern part. The quartz veins in the northern extension of the vein that intercepted by two holes should be given higher priority. Also the zones on both eastern and western sides of the above two zones are also important targets and drilling should be carried out. Also the zones on both eastern and western sides of the above two zones are also important targets and drilling should be carried out.

#### (5) Ponorogo South District

A prominent copper mineralization zone was identified in the Nepo sub-district. The two outcrops in the Salak River and the upstream of the main Nepo River appear to be in one mineralized zone. The mineralization occurs as quartz vein or silicified vein with chalcopyrite and minor amount of galena. The width of the vein is 1.1 to 1.5 m and the veining zone is expected to continue about 2 km between the two outcrops. Existence of quartz veins are anticipated in the silicified zones in the footwall side and/or northward extension of the Salak River. The deeper zones near the barren quartz veins along the Nepo River should also be investigated.

Further, other geochemical anomay districts are left for the next step survey: 5 districts of Selogiri district, Sentul East district, Purwodadi district, K. Jinggring district, Seweden East identified by phase 2 geochemical survey and 5 districts of Lorok, Nawangan, Pacitan, and Purwoharjo were extracted after integrated analysis for the next-step survey.

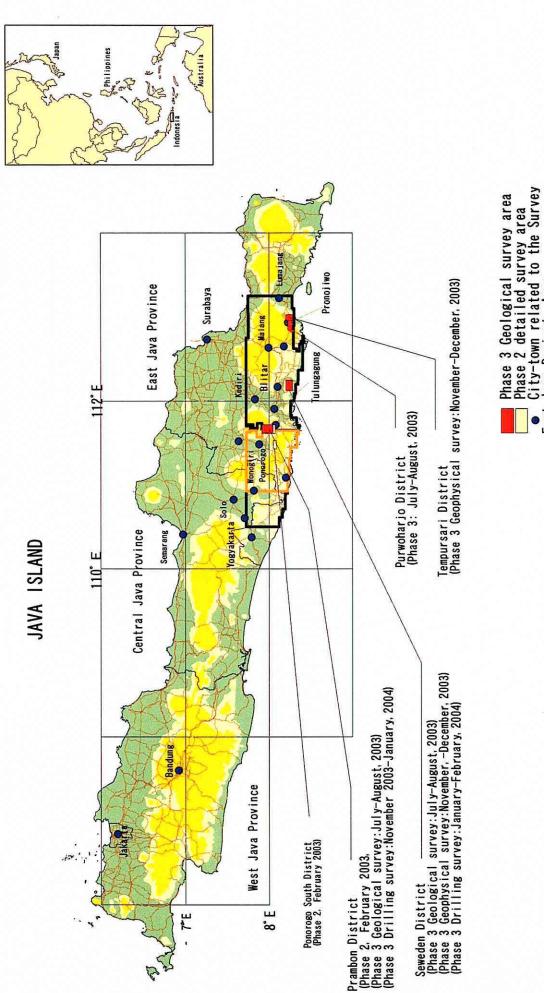
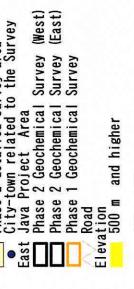




Fig.1-1 Location Map of the Project Area



500 km

300

# **CONTENTS**

# **CONTENTS**

| PREFACE                                                  |
|----------------------------------------------------------|
| SUMMARYi                                                 |
| CONTENTSi                                                |
| LIST of APPENDIXviii                                     |
| LIST of PLATESviii                                       |
| Chapter 1 Outline of the Survey                          |
| 1 - 1 Implementation of the Survey1                      |
| 1 - 2 Objective of the Survey1                           |
| 1 - 3 Exsiting Data                                      |
| 1-3-1 Outline and Concessions                            |
| 1-3-2 Survey by DMRI5                                    |
| 1-3-3 Surveu by Aneka Tambang5                           |
| 1-4 Outline of the Survey Area6                          |
| 1-4-1 Location of the Survey Area6                       |
| 1-4-2 Access                                             |
| 1-4-3 Topography7                                        |
| 1-4-4 Climate8                                           |
| 1-4-5 Administrative Districts9                          |
| 1-4-6 General Geology of East Java9                      |
| 1-4-7 Geology of the Survey Area9                        |
| 1-4-8 Mines in the Adjacent Areas                        |
| 1-4-9 Outline of the Mineral Showings in the Survey Area |
| Chapter 2 Method of the Survey45                         |
| 2-1 Amount of Work                                       |
| 2-2 Duration of Survey and Survey Participant            |
| Chapter 3 Results of the Survey                          |
| 3-1 Satelite Image Analysis51                            |
| 3-1-1 Survey Method51                                    |
| 3-1-2 SAR Data Analysis51                                |
| 3-1-3 Results of image interpretation by DEM54           |
| 3-1-4 Discussions55                                      |
| 3-2 Geological Survey57                                  |
| 3-2-1 Survey Method                                      |
| 3-2-2 General Geology57                                  |

| 3-2-2-2 Inrusive rocks                       | 61  |
|----------------------------------------------|-----|
| 3-2-2-3 Geologic Strucutre                   | 61  |
| 3-2-3 Alteration and Mineralization          | 62  |
| 3-2-3-1 Central Part                         | 63  |
| 3-2-3-2 Western Part                         | 65  |
| 3-2-3-3 Eastern Part                         | 66  |
| 2-2-4 Mineralization                         | 66  |
| 3-3 Stream Sediment Geochemical Survey       | 68  |
| 3-3-1 Method of Survey                       | 68  |
| 3-3-2 Results of Geochemical Survey          |     |
| 3-3-2-1 Results of Chemical Analysis         |     |
| 3-3-2-2 Eavaluation of the Chemical Analysis | 69  |
| 3-3-2-3 Correlations among elements          | 70  |
| 3-3-2-4 Extraction Anomalous Areas           | 71  |
| 3-3-2-5 Results of Panning                   |     |
| 3-3-2-6 Discussions                          |     |
| 3-4 Semi-detailed Geochemical Survey         | 95  |
| 3-4-1 Method of Survey                       |     |
| 3-4-2 Results of Geochemical Survey          |     |
| 3-5 Detailed Survey Districts                |     |
| 3-5-1 Ponorogo South District                |     |
| 3-5-1-1 Outline of Survey                    |     |
| 3-5-1-2 Results of Geological Survey         |     |
| 3-5-1-3 Soil Geochemical Survey              | 183 |
| 3-5-1-4 Mineral Potential                    |     |
| 3-5-2 Prambon District                       |     |
| 3-5-2-1 Outline of Survey                    |     |
| 3-5-2-2 Results of Geological Survey         |     |
| 3-5-2-3 Soil Geochemical Survey              |     |
| 3-5-2-4 Drilling Survey                      |     |
| 3-5-2-5 Mineral Potential                    |     |
| 3-5-3 Seweden District                       | 283 |
| 3-5-3-1 Outline of Survey                    |     |
| 3-5-3-2 Results of Geological Survey         |     |
| 3-5-3-3 Results of Soil Geochemical Survey   | 285 |
| 3-5-3-4 Geophysical Survey                   | 287 |

| 3-5-3-5 Drilling Survey                                       | 290 |
|---------------------------------------------------------------|-----|
| 3-5-3-6 Mineral Potential                                     | 294 |
| 3-5-4 Purwoharjo District                                     | 345 |
| 3-5-4-1 Outline of Geological Survey                          | 345 |
| 3-5-4-2 Results of Geological Survey                          | 345 |
| 3-5-4-3 Results of Geochemical Survey                         | 347 |
| 3-5-4-4 Mineral Potential                                     | 348 |
| 3-5-5 Tempursari District                                     | 355 |
| 3-5-5-1 Outline of Survey                                     | 355 |
| 3-5-5-2 Results of Geological Survey                          | 355 |
| 3-5-5-3 Results of Soil Geochemical Survey                    | 358 |
| 3-5-5-4 Geophysical Survey                                    | 359 |
| 3-5-5-6 Mineral Potential.                                    | 361 |
| Chapter 4 Evaluation                                          | 399 |
| Chapter 5 Mining Right                                        | 403 |
| 5-1 Mining Concessions at the Biginning of Survey, 2001       | 403 |
| 5-2 Mining Concessions as of February 2004                    | 404 |
| Chapter 6 Recommendations                                     | 407 |
| 6 - 1 Outlines                                                | 407 |
| 6 - 2 Recommendations on the Tempursari District              | 407 |
| 6 - 3 Recommendations for future work in the Seweden District | 407 |
| 6 - 4 Recommendations for future work in the Prambon District | 408 |
| DEEEDENICES                                                   | 400 |

| Fig. 1-1    | Location Map of the Project Area                               |
|-------------|----------------------------------------------------------------|
| Fig. 1-2    | Location Map of the the Ponorogo South District                |
| Fig. 1-3    | Location Map of the Prambon District                           |
| Fig. 1-4    | Location Map of the Seweden District                           |
| Fig. 1-5    | Location Map of the Tempursari and Purwoharjo districts        |
| Fig. 1-6    | Flow Sheet of Survey                                           |
| Fig. 1-7    | Exploration Flowsheet                                          |
| Fig. 1-8    | Geologic Correlation of the Survey Area                        |
| Fig. 1-9 (  | Geologic Map of the Survey Area                                |
| Fig. 1-9 (2 | 2) Geologic Profiles                                           |
| Fig. 1-10   | Mineralization Map of the Survey Area                          |
| Fig. 1-11   | Integragted Map of the Survey Area                             |
| Fig. 1-12   | Integragted Map of the Ponorogo South District                 |
| Fig. 1-13   | Integragted Map of the Prambon District                        |
| Fig. 1-14   | Integragted Map of the Seweden District                        |
| Fig. 1-15   | Integragted Map of the Purwoharjo District                     |
| Fig. 1-16   | Integragted Map of the Tempursari District                     |
|             |                                                                |
| Fig. 2-1    | Location Map of Mineral Occurrence Based on Existing Data      |
| Fig. 2-2    | Compilation Map of Existing Data                               |
| Fig. 2-3    | SAR Mosaic Image of the Project Area                           |
| Fig. 2-4    | SAR Image Analysis of the Project Area                         |
| Fig. 2-5    | Digital Elevation Model of the Survey Area                     |
| Fig. 2-6    | Shade Image by Multi-directional Light Sources                 |
| Fig. 2-7    | Extracted Lineaments of the Survey Area                        |
| Fig. 2-8    | Location Map of Rock Samples                                   |
| Fig. 2-9    | Location Map in Age Determination Samples                      |
| Fig. 2-10   | Mineralized Zones of the Survey Area                           |
| Fig. 2-11   | Alteration Map of the Survey Area                              |
| Fig. 2-12   | Homogenization Temperatures and Salinities of Fluid Inclusions |
| Fig. 2-13   | Sketch of the Mineralized Area (1) Tegalombo Area (1)          |
| Fig. 2-14   | Sketch of the Mineralized Area (2) Tegalombo Area (2)          |
| Fig. 2-15   | Sketch of the Mineralized Area, Kasihan Area                   |
| Fig. 2-16   | Sketch of the Mineralized Area , Lorog River Area (1)          |
| Fig. 2-17   | Sketch of the Mineralized Area, Lorog River Area (2)           |

| Fig. 2-19 | Sketch of the Mineralized Area, Selogiri Area                                       |
|-----------|-------------------------------------------------------------------------------------|
| Fig. 2-20 | Survey Results of Sentul East Area                                                  |
| Fig. 2-21 | Survey Results of Purwodadi Area                                                    |
|           |                                                                                     |
| Fig. 3-1  | Sampling Error of Stream Sediments (1)-(3)                                          |
| Fig. 3-2  | Comparison of Sampling methods of Stream Sediments                                  |
| Fig. 3-3  | Geochemical Anomaly Distribution of the Element Au                                  |
| Fig. 3-4  | Geochemical Anomaly Distribution of the Element Ag                                  |
| Fig. 3-5  | Geochemical Anomaly Distribution of the Element Cu                                  |
| Fig. 3-6  | Geochemical Anomaly Distribution of the Element Mo                                  |
| Fig. 3-7  | Geochemical Anomaly Distribution of the Element Pb                                  |
| Fig. 3-8  | Geochemical Anomaly Distribution of the Element Zn                                  |
| Fig. 3-9  | Geochemical Anomaly Distribution of the Element As                                  |
| Fig. 3-10 | Geochemical Anomaly Distribution of the Element Hg                                  |
|           |                                                                                     |
| Fig. 4-1  | Correlation between Elements of Geochemical Samples                                 |
| Fig. 4-2  | Probability Graphs of Stream Sediment Samples (Au, Ag, As and Hg)                   |
| Fig. 4-3  | Probability Graphs of Stream Sediment Samples (Cu, Pb, Zn and Mo)                   |
| Fig. 4-4  | Mineralized zones of the Semi-detailed Survey Area                                  |
|           |                                                                                     |
| Fig. 5-1  | Geologic Map of the Ponorogo South District (Cepoko Sub-district)                   |
| Fig. 5-2  | Geologic Map of the Ponorogo South District (Nepo River Sub-district)               |
| Fig. 5-3  | Geologic Profiles of the Ponorogo South District                                    |
| Fig. 5-4  | Mineralized Zones of the Geological Survey Area: Ponorogo South District            |
| Fig. 5-5  | Location Map of Rock Samples: Ponorogo South District                               |
| Fig. 5-6  | Diagrams of Volcanic Rocks in the Geological Survey Area                            |
| Fig. 5-7  | Sketch of Outcrop of the Quartz Vein along the Salak River, Ponorogo South District |
| Fig. 5-8  | Location Map of Soil Samples: Ponorogo South District                               |
| Fig. 5-9  | Correlations between Elements of Geochemical Samples: Ponorogo South District       |
| Fig. 5-10 | Geochemical Anomaly Map of the Ponorogo South District                              |
|           |                                                                                     |
| Fig. 5-11 | Geologic Map and Profiles of the Prambon District                                   |
| Fig. 5-12 | Diagrams of Rock Forming Elements in Volcanic Rocks, Seweden District               |
| Fig. 5-13 | Mineralized and Alteration Zones of the Prambon District                            |
| Fig. 5-14 | Location Map of Rock Samples: Prambon District                                      |

Fig. 2-18 Sketch of the Mineralized Area, Punng Area

| Fig. 5-15 (1) Sketch of the Quartz Vein at the Upstream of the Sumurup River, Prambo         |
|----------------------------------------------------------------------------------------------|
| District                                                                                     |
| Fig. 5-15 (2) Sketch of Quartz Vein at the Downstream of the Sumurup River, Prambon District |
| Fig. 5-16 Sketch of Quartz Veins at he Beloran River, Prambon District                       |
| Fig. 5-17 Homogenization Temperatures and Salinities of Fluid Inclusions of the Prambo       |
| District                                                                                     |
| Fig. 5-18 Location Map of Soil Samples: the Prambon District                                 |
| Fig. 5-19 Correlation between Elements of Soil Samples in the Prambon District               |
| Fig. 5-20 Geochemical Anomaly of Soil Samples in the Prambon District (Au)                   |
| Fig. 5-21 Geochemical Anomaly of Soil Samples in the Prambon District (Ag)                   |
| Fig. 5-22 Geochemical Anomaly of Soil Samples in the Prambon District (Cu)                   |
| Fig. 5-23 Geochemical Anomaly of Soil Samples in the Prambon District (Mo)                   |
| Fig. 5-24 Geochemical Anomaly of Soil Samples in the Prambon District (Pb)                   |
| Fig. 5-25 Geochemical Anomaly of Soil Samples in the Prambon District (Zn)                   |
| Fig. 5-26 Geochemical Anomaly of Soil Samples in the Prambon District (As)                   |
| Fig. 5-27 Geochemical Anomaly of Soil Samples in the Prambon District (Hg)                   |
| Fig. 5-28 Geologic Profile of Drill Hole MJIE-P1 in the Prambon District                     |
| Fig. 5-29 Geologic Profile of Drill Hole MJIE-P2 in the Prambon District                     |
| Fig. 5-30 Geologic Profile of Drill Hole MJIE-P3 in the Prambon District                     |
| Fig. 5-31 Geologic Profile of Drill Hole MJIE-P4 in the Prambon District                     |
| Fig. 5-32 Geologic Map and Profiles in the Seweden District                                  |
| Fig. 5-33 Location Map of Rock Samples in the Seweden District                               |
| Fig. 5-34 Diagrams of Rock Forming Elements in Volcanic Rocks, Seweden District              |
| Fig. 5-35 Homogenization Temperatures and Salinities of Fluid Inclusions in the Sewede       |
| District                                                                                     |
| Fig. 5-36 Correlations between Temperatures and Salinities of Fluid Inclusions in the Sewede |
| District                                                                                     |
| Fig. 5-37 Mineralized and Alteration Zones of the Seweden District                           |
| Fig. 5-38 Sketch of the Mineralized Zones in the Seweden District (1): Kali Putih            |
| Fig. 5-39 Sketch of the Mineralized Zones in the Seweden District (2): K. Centung            |
| Fig. 5-40 Location Map of Soil Samples of the Seweden District                               |
| Fig. 5-41 Geochemical Anomaly of Soil Samples in the Seweden District (Au)                   |
| Fig. 5-42 Geochemical Anomaly of Soil Samples in the Seweden District (Ag)                   |
| Fig. 5-43 Geochemical Anomaly of Soil Samples in the Seweden District (Cu)                   |
| Fig. 5-44 Geochemical Anomaly of Soil Samples in the Seweden District (Mo)                   |
| Fig. 5.45 Geochamical Anomaly of Soil Samples in the Sewaden District (Ph)                   |

| Fig. 5-46 | Geochemical Anomaly of Soil Samples in the Seweden District (Zn)                    |
|-----------|-------------------------------------------------------------------------------------|
| Fig. 5-47 | Geochemical Anomaly of Soil Samples in the Seweden District (As)                    |
| Fig. 5-48 | Geochemical Anomaly of Soil Samples in the Seweden District Sediments (Hg)          |
| Fig. 5-49 | Resisitivity Sections in the Seweden District                                       |
| Fig. 5-50 | Ressisitivity Plan at -100m Level in the Seweden District                           |
| Fig. 5-51 | Ressisitivity Plan at 100m Level in the Seweden District                            |
| Fig. 5-52 | Chargeability Sections in the Seweden District                                      |
| Fig. 5-53 | Chargeability Plan at -100m Level in the Seweden District                           |
| Fig. 5-54 | Chargeability Plan at 100m Level in the Seweden District                            |
| Fig. 5-55 | Geologic Profile of Drill Hole MJIE-S1 in the Seweden District                      |
| Fig. 5-56 | Geologic Map and Profiles of the Purwoharjo District                                |
| Fig. 5-57 | Location Map of Rock Samples in the Purwoharjo District                             |
| Fig. 5-58 | Diagrams of Rock Forming Elements in Volcanic Rocks, Purwoharjo District            |
| Fig. 5-59 | Geologic and Map and Profiles of the Tempursari District                            |
| Fig. 5-60 | Location Map of Rock Samples in the Tempursari District                             |
| Fig. 5-61 | Diagrams of Rock Forming Elements in Volcanic Rocks, Tempursari District            |
| Fig. 5-62 | Homogenization Temperatures and Salinities of Fluid Inclusions, Tempursari District |
| Fig. 5-63 | Correlations between Temperatures and Salinities of Fluid Inclusions, Tempursari    |
| District  |                                                                                     |
| Fig. 5-64 | Mineralized and Alteration Zones of the Tempursari District                         |
| Fig. 5-65 | Sketch of the Mineralized Zones along the K. Ngrawan in the Tempursari District     |
| Fig. 5-56 | Geochemical Anomaly of Soil Samples in the Tempursari District (Au)                 |
| Fig. 5-67 | Geochemical Anomaly of Soil Samples in the Tempursari District (Ag)                 |
| Fig. 5-68 | Geochemical Anomaly of Soil Samples in the Tempursari District (Cu)                 |
| Fig. 5-69 | Geochemical Anomaly of Soil Samples in the Tempursari District (Pb)                 |
| Fig. 5-70 | Geochemical Anomaly of Soil Samples in the Tempursari District (Zn)                 |
| Fig. 5-71 | Geochemical Anomaly of Soil Samples in the Tempursari District (As)                 |
| Fig. 5-72 | Resisitivity Sections in the Tempursari District                                    |
| Fig. 5-73 | Ressisitivity Plan at -100m Level in the Tempursari District                        |
| Fig. 5-74 | Ressisitivity Plan at -100m Level in the Tempursari District                        |
| Fig. 5-75 | Chargeability Sections in the Tempursari District                                   |
| Fig. 5-76 | Chargeability Plan at -100m Level in the Tempursari District                        |
| Fig. 5-77 | Chargeability Plan at -100m Level in the Tempursari District                        |
| Fig. 5-78 | New WPP and Other Mining Concessions in the Survey Area                             |

#### **TABLES**

- Table 1-1 Mineral Occurences Baded on DMRI Data
- Table 1-2 (a) Coordinates of the Survey Area
- Table 1-3 (b) Coordinates of the Geological Survey Area
- Table 2-1 Amount of Work
- Table 2-2 Duration of Survey and Participants
- Table 2-3 Photogeologic Units Classified by SAR Images
- Table 3-1 Geochemical Anomaly Area
- Table 4-1 Statistic Data of Geochemical Analysis
- Table 4-2 Compilation Table of Geochemical Anomaly Areas
- Table 5-1 Results of Chemical Analysis, Ponorogo South District
- Table 5-2 Results of Chemical Analysis, Prambon District
- Table 5-3 Results of Chemical Analysis of Drill Cores MJIE-P1, Prambon District
- Table 5-4 Results of Chemical Analysis of Drill Cores MJIE-P2, Prambon District
- Table 5-5 Results of Chemical Analysis of Drill Cores MJIE-P3, Prambon District
- Table 5-6 Results of Chemical Analysis of Drill Cores MJIE-P4, Prambon District
- Table 5-7 Results of Chemical Analysis, Seweden District
- Table 5-9 Results of Microscopic Observation of Polished Sections, Seweden District
- Table 5-10 Results of Chemical Analysis, Purwoharjo District
- Table 5-11 Results of Chemical Analysis, Tempursari District

# LIST of APPENDIX

- Table A-1 Results of Chemical Analysis of Drill Core Samples Samples in the Prambon District
- Table A-2 Results of Chemical Analysis of Drill Core Samples Samples in the Seweden District