Chapter 3 DRILLING SURVEY

3-1 Outline of Drilling Survey

3-1-1 Amount of Work

The drilling survey was conducted in the Prambon District and the Seweden District. In the Prambon District, the drilling target is delineated by the geological and geochemical surveys conducted during Phase 2 and earlier part of Phase 3. The targets in the Prambon District are of precious metal vein type and obvious from the surface exposures. Four holes totaling 1,003.80m in length were drilled against the two separate mineralized zones. Therefore, no geophysical survey was conducted in the district. On the other hand, IP and electric resistivity measurement was carried out in the Seweden District. As a result of the survey, two high chargeability zones are inferred at depth at around the center of three measurement lines. The surface mineral showings above the high chargeability zones are not clear, but geochemical anomalous zones occur along the creeks near the ridges. Consequently, one hole of scout drilling of 400.50 m in length was conducted to reveal the nature of high chargeability zones. The location, drill directions and lengths of drill holes are listed on Table 4-1. The locations of the holes are shown on the Fig.4-1.

Table 4-1 Summary of Collar Location, Direction and Length of Drill Holes

District	Hole	UTM C	oordinates	Elevation	Direction	Inclination	Length
	Number			(m)	(degree)	(degree)	(m)
Prambon	MJIE-P1	574596E	574596E 9121127N		70	-60	250.00
	MJIE-P2	574929E	9120250N	639	70	-60	253.80
	мле-Р3	574771E	9119924N	632	250	-60	250.00
	MJIE-P4	574922E			250	-60	250.00
Seweden	MJIE-S1	626604E	9087450N	238	90	-80	400.50

Geologic logging was conducted on each site at a scale of 1:200. Photographs of all the drill cores were taken. Nearshot photos were taken for parts of significant mineralization presumed. A total of 182 samples were analyzed for the 10 elements; Au, Ag, Cu, Mo, Pb, Zn, S, Hg, and Fe. Twenty-four pieces of thin sections of rock samples and 24 pieces of polished sections of mineralized samples were prepared and observed. A total of 90 samples were analyzed for the X-ray diffractometry. Homogenization temperatures and salinities of fluid inclusions from quartz

vein were measured for a total of 14 samples.

3-1-2 Drilling Method

(1) Drilling Method

HW casing shoes were used to drill topsoil parts. Then wireline method was applied to drill the bedrock parts. The rocks were drilled by HQ diamond bits to the first about 100m interval and the NQ diamond bids were used to drill further to the planned depths. HW and NW casing piles were inserted about 10-20 meters and 100 meters, respectively. A polymer liquid was mixed with circulating water to protect the walls of the holes and to cool the bits and to reduce the vibration of rods.

(2) Drilling Machines

Long-year L 38 and L44 were used for drilling MJIE-P1 and MJIE-P2, and MJIE-P3 and MJIE-P4 and MJIE-S1, respectively. The specification of the machines, pumps are shown on Table 4-2. The diamond bits used and other consumables are listed on Tables 4-3 and 4-4, respectively.

(3) Working Formation

Drilling work was conducted at three shifts: eight hours per shirt. The mobilization setting-up of rigs was conducted at one shift. One crew consists of one driller and three assistants. Transportation of equipment, pipes, fuel and oils and core boxes were conducted by about 30 other people. A base camp was set-up in the Campung Jerukgulung within 30 minutes walk to the drilling sites in Prambon District. The base camp of drilling crews in the Seweden District was set-up in the Sumberboto village at 10 minutes drive from the drilling site.

(4) Transportation

Drilling equipment and tools were transported from Bandung to a staging area near the drilling sites of the Prambon District by trucks. The drilling rigs and drilling pumps were moved by using the ropes for hoist of the rigs. Water pumps and other small equipment and pipes and consumables were carried by people. The equipment was transported from a staging place in the Prambon District to the drilling site at Seweden District by trucks. Transportation roads of about 2-meter width were constructed by manpower from the staging place to the drilling sites in the Prambon District. While no substantial road was constructed in the Seweden district as the drilling site in the Seweden was adjacent to the public road.

Fig. 4-1 Drill Hole Location Map of Prambon District

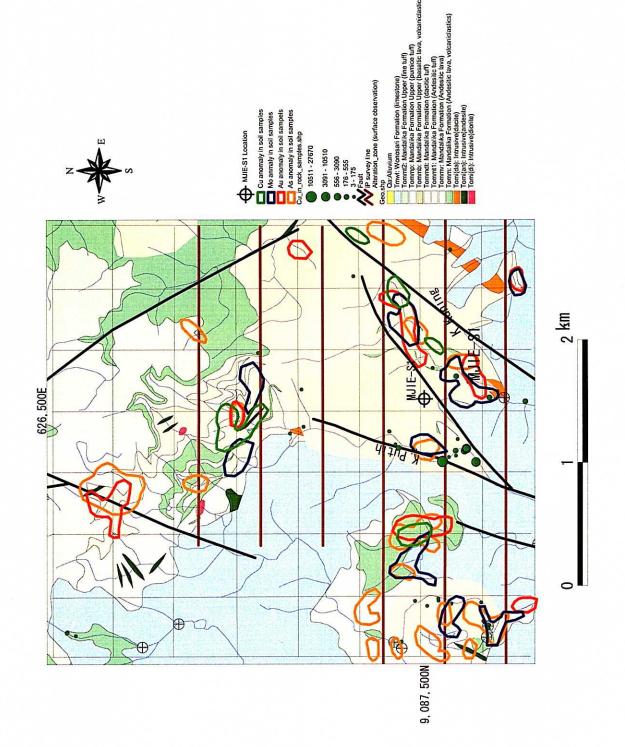


Fig.4-2 Location Map of Drill Hole MJIE-S1 in Seweden District

Table 4-2 Specification of Drilling Equipment (1)

Drilling Machine : Model L-44	1set (Serial No.425-25150)
Capacity	810m(NQ-WL)
Dimensions(L,W,H)	2,400-1,300-1,800mm
Hoisting Capacity	4,500kg
Spindle Speed	Valuable(∼1600rpm)
Engine : Model Deutz	F6L/912 (Serial No.5293656)
Drilling Pump : Bean Royal Model 535RQ	1set (Serial No)
Pistone Diameter	70mm
Stroke	70mm
Capacity	Dischrge capacity 132 liter/mim.
Dimensione(L,M,H)	1,905-788-940mm
Engine : Model F2L/912(812380574)	11.0kW/3,000rpm
Main Hoist : Type Planetary	1 set
Dimensions (Diameter,Length)	330m, 178mm
Maximum Load Capacity	7,511 daN
Wireline Hoist : Model -	1set
Specifications	L-44
Rope Capacity	500m
Motor	Hydraulic motor:max pressure 6,895kP
Hoisting Speed	~100m/min
Water Supply Pump: Model Sanchin SC-45	1set
Pistone Diameter	33.5mm
Stroke	28mm
Capacity	37 liter/min (discharge)
Weight	28kg (excluding engine)
Engine : YANMAR Model -	7.5Hp
Drilling Tools	
Duilling Bodo	HQ-WL 3.0m-70 pcs
Drilling Rods	NQ-WL 3.0m-165pcs
Coning Dinon	HW CP 3.0m-10pcs
Casing Pioes	NW CP 3.0m-70pcs
Core Tubes	HQ-WL 3.0m-2 pcs
Core Tubes	NQ-WL 3.0m-2 pcs

Table 4-2 Specification of Drilling Equipment (2)

Drilling Machine : Model L-38	1set
Capacity	575m(NQ-Wireline)
Dimensions(L,W,H)	2,150-1,170-2,200mm
Weight	2,200kg
Hoisting Capacity	20,000kg
Spindle Speed	100,190,320,530 rpm
Engine : ModelF3L912	380 ps/1,800 rpm
Drilling Pump : Model FMC W1122BCD	1set(Serial No.A24539)
Pistone Diameter	70mm
Stroke	70mm
Capacity	Dischrge capacity 132 liter/mim.
Dimensione(L,M,H)	1,905-788-940mm
Engine : Model F2L/912(812380574)	11.0kW/3,000rpm
Main Hoist : Type Planetary	1set
Dimensions(Diameter,Length)	241mm, 140mm
Drum Capacity	40m (23mm Cable)
Wireline Hoist : Model -	1set
Specifications	L-38
Rope Capacity	1,280m (4.76mm cable)
Motor	Hydraulic motor:max pressure 6,895kP
Hoisting Speed	127m/min
Water Supply Pump: Model Sanchin SC-45	1set
Pistone Diameter	33.5mm
Stroke	28mm
Capacity	37 liter/min (discharge)
Weight	28kg (excluding engine)
Engine : YANMAR Model -	7.5Hp
Drilling Tools	
	HQ-WL 3.0m-50 pcs
Drilling Rods	NQ-WL 3.0m-100pcs
Casing Bissa	HW CP 3.0m-10pcs
Casing Pioes	NW CP 3.0m-50pcs
Core Tubes	HQ-WL 3.0m-2 pcs
Core Tubes	NQ-WL 3.0m-2 pcs

Table 4-4 Drilling Meterage of Diamond Bits Used

Item	Size	Bit No.		Drilling	Meterage /	Each Bit		Total (m)
Item	Size	D it 140.	MJIE-P1	MJIE-P2	MJIE-P3	MJIE-P4	MJIE-S1	10141 (111)
			3.00	3.20	8.40	0.00	0.00	14.60
		MS-2 3819-4				98.80	111.00	209.80
	110	3063		24.80				24.80
	HQ	U83043G6	102.25	96.70				198.95
		U98692G6			92.60			92.60
		Sub total	105.25	124.70	101.00	98.80	111.00	540.75
Bit		L4173		3.10	10.55			13.65
Би		268-202-8	144.75	126.00				270.75
		581909-6			138.45			138.45
	NQ	F-9A 221P07				151.20	177.00	328.20
		708510-6					109.65	109.65
		4553539-2					2.85	2.85
		Sub-total	144.75	129.10	149.00	151.20	289.50	863.55
	Total		250.00	253.80	250.00	250.00	400.50	1404.30

Table 4-5 Consumables Used

T 1-1-1 - 74	C	Unit		I	Drill Hole No	Э.		Total
Expendable Items	Spec.	Unit	МЈІЕ-Р1	MJIE-P2	MJIE-P3	MJIE-P4	MJIE-S1	Amount
Diesel Fuel		1	950	1,675	1,795	1,715	2,710	8,845
Hydraulic Oil		1	40	15	18	45	20	138
Engine Oil		1	26	48	60	16		215
Gear Oil		1	11	26	30	16	70	153
Grease		kg	6	7	7	7	17	44
Polymer		1	3	3	3	12	49	70
GS20		1	0	0	0	0	. 0	0
Lubtub		kg	0	0	0	0	0	0
Solcut		l	0	0	0	0	0	0
Stop Plus		kg	0	0	0	0	0	0
Diamond bit	HQ	pcs	1	2	2	1	1	2
Diamond on	NQ	pcs	1	2	2	1	3	3
Diamond reamer	HQ	pcs	1	2	1	1	1	2
Diamond realier	NQ	pcs	1	2	2	1	3	3
Metal casing shoe	HQ	pcs	1	1	1	1	1	2
Wetai casing shoc	NQ	pcs	1	1	1	1	1	2
Core barrel assembly	HQ	pcs	1	1	1	1	2	2
Core barrer assembly	NQ	pcs	1	1	1	1	2	2
Core lifter	HQ	pcs	1	1	1	1	3	7
Cole liller	NQ	pcs	1	1	1	1	3	7
Inner tube stabilizer	HQ	pcs	1	1	1	1	2	2
Timer tube stabilizer	NQ	pcs	1	1	1	1	2	2
Core Box	HQ	pcs	21	26	·	20		111
COLE DOX	NQ	pcs	30	27	31	32	52	172

(5) Water

Water for drilling was pumped up from the river nearby.

(6) De-mobilization

The crews for Longyear L38 were demobilized from the Prambon District to Bandung on 11 January, 2004. The crews for Longyear L-44 were demobilized from the Seweden District on 15 February 2004. All the drilled cores were transported from both districts to the core shed of DMRI in Bandung.

3-1-3 Drilling Progress

The drilling progressed as shown on Fig 4-3 through Figs 4-7. The detailed progress and time summary of each drill hole data are shown on Table 4-6 through 4-16.

(1) MJIE-P1

The drilling of the hole MJIE-P1 started on December 23 and finished January 4, 2004. The drilling from the surface to 3.0 m used HW casing and a metal shoe. Wireline drilling method was adopted from 3.0 m to 105.25 m with HQ size diamond bid and from 105.25 m to the end of hole: 250 m by NQ size diamond. HW and NW casing pipes were inserted to 3.0 m and 105.25 m, respectively. Polymer was used during NQ size drilling. The average drilling rate was 8.6 m/shift. The core recovery in a total was 96.9%.

(2) MJIE-P2

The drilling of the hole MJIE-P2 started on December 1 and finished December 17. The drilling from the surface to 3.20 m used HW casing and a metal shoe. Wireline drilling method was adopted from 3.2 m to 124.70 m with HQ size diamond bid and from 124.70 m to the end of hole: 253.80 m by NQ size diamond. HW and NW casing pipes were inserted to 3.2 m and 124.7 m, respectively. Polymer was used during NQ size drilling. The average drilling rate was 5.1 m/shift. The core recovery in a total was 96.9%.

(3) MJIE-P3

The drilling of the hole MJIE-P3 started on December 3 and finished December 19. The drilling from the surface to 8.4 m used HW casing and a metal shoe. Wireline drilling method was adopted from 8.4 m to 101.00 m with HQ size diamond bid and from 101.00 m to the end of hole: 250.00 m by NQ size diamond. HW and NW casing pipes were inserted to 8.4 m and 101.0 m, respectively. Polymer was used during NQ size drilling. The average drilling rate was 5.2 m/shift. The core recovery as a whole was 99.4%.

(4) MJIE-P4

The drilling of the hole MJIE-P4 started on December 24 and finished January 4, 2004. The drilling from the surface to 4.0 m used HW casing and a metal shoe. Wireline drilling method was adopted from 4.0 m to 98.80 m with HQ size diamond bid and from 98.80 m to the end of hole: 250.0 m by NQ size diamond. HW and NW casing pipes were inserted to 23.5 m and 98.8 m, respectively. Polymer was used during NQ size drilling. The average drilling rate was 7.2 m/shift. The core recovery in a total was 96.1%.

(5) MJIE-S1

The drilling of the hole MJIE-S1 started on January 16 and finished February 6. The drilling from the surface to 4.0 m used HW casing and a metal shoe. Wireline drilling method was adopted from 4.0 m to 198.0 m with HQ size diamond bid and from 198.00 m to the end of hole: 400.00 m by NQ size diamond. HW and NW casing pipes were inserted to 17.9 m and 198.0 m, respectively. Polymer was used drilling at the deeper than 17.90 m depth. The average drilling rate was 9.0 m/shift. The core recovery in a total was 95.0%.

Table 4-6 Working Time Analysis of the Drilling Operation

	D-:11:	D-1111 1	Core length	Shift	N	Aan workin	g		***	Wo	orking Time		
Hole no.	Drilling bit size	Drilling length (m)	(m)	Drilling (shift)	Total (shift)	Engineer (man)	Worker (man)	Drilling (h)	Other work (h)	Recovering (h)	Establishment (h)	Dismantlement (h)	Total (h)
	HQ	105.25	97.50	13	14	16	54						
мле-Рі	NQ	144.75	145.25	14	15	15	45						l
	Total	250.00	242.75	27	29	31	99	181	20	24	39	48	312
	HQ	124.70	117.65	24	26	26	78						
MJIE-P2	NQ	129.10	128.35	21	24	24	72						l
	Total	253.80	246.00	45	50	50	150	256	139	0	21	24	440
	HQ	101.00	100.30	24	26	26	78						
MJIE-P3	NQ	149.00	148.30	21	24	· 24	72						
	Total	250.00	248.60	45	50	50	150	277	83	24	24	8	416
	HQ	98.80	88.95	16	17	17	51						
MJIE-P4	NQ	151.20	151.20	16	18	18	54		L				l
	Total	250.00	240.15	32	35	35	105						
Sub-total		1003.80	977.50	149	164	166	504	714	242	48	84	80	1168
	HQ	111.00	103.85	27	34	40	133						
MJIE-S1	NQ	289.50	282.45	33	48	53	198]	L	L	L		<u> </u>
	Total	400.50	386.30	60	82	93	331	319	146	137	37	16	655
Grand total		1404.30	1363.80	209	246	259	835						

Table 4-7 Summary of Drilling Operation of MJIE-P1

MJIE-P1			Survey P	eriod			Total N	Man−day
Operation	F	eriod	Day	Work Day	Off I	Day	Engineer	
Transportation/Preparation	Dec.19-Dec	.22.2003	4	4	0		12	148
Drilling	Dec.23, 200	3-Jan.4, 2004	13	13	0		31	119
Dismantling	Jan.5, 2004		1	1	0		3	39
Total			18	18	0		46	306
Drilling Length	(m)		(m)		re Recovery	of Each 10		
Length Planned	250.00	Overburden	7.80			Core		ive Core
Increase/Decrease in Length		Core Length		Depth of	Hole(m)	Recovery		overy
increase/Decrease in Length	0.50	Oore Length	242.75			(%)		6)
Length Drilled		Core Recovery	96.9		o 100.00	92.3		2.3
Length Dilled	250.50	250.50		100.00 to 200.00		100.0		6.2
Working Hours	(h)	(%)	(%)	200.00 t	250.00	100.0	90	6.9
Drilling	181	80.4%						
Other Work	20	8.9%						
Recovering	24	10.7%	7.7%			y of Drilling	Drilling	
Subtotal	225	100.0%			th/Drilling	m	day	m/day
Preparation	39		12.5%	Per		250.00	14	19.3
Dismantling	24		7.7%		Total Drilling		shift	m/shift
Transportation	24		7.7%	Sh		250.00	29	8.6
Grand Total	312		100.0%	D	rilling Length/	Each Diam	eter(m)	
Cas	Gasing Pipe Inserted			Bit Size	Drilling Le	ength(m)	Core L	ength(m)
Size Length(m)	INserted Length/Drilling		Recovery(%)	HQ	105.	25	97	.50
Size Length(m)	Ler	Length(%) Recovery(%) NQ		144.	75	14	4.75	
HW 3		1.2	100					
NW 105.25		42.0	100	L				

Table 4-8 Summary of Drilling Operation of MJIE-P2

MJIE-P2	Ĭ		Survey P	eriod			Total N	Man−day
Operation	F	Period	Day	Wark Day	Off	Day	Engineer	Worker
Transportation/Preparation	Nov.14-Nov	.30,2003	16	9		7		
Drilling	Dec.1-Dec.	17,2003	17	17		0	50	150
Dismantling	Dec.17,2003	3						
Total			23	26		7		
Drilling Length	(m)		(m)	Co	re Recovery	of Each 10	0m Hole	
Length Planned	250.00	Overburden	3.90			Core		ive Core
Increase/Decrease in Lengt		Core Length		Depth of	Hole(m)	Recovery		overy
Increase/Decrease in Lengu	3.80	Core Length	246.00			(%)	(9	6)
Length Drilled		Core Recovery		0.00 to		93.0		3.0
Length Drilled	253.80		96.90	100.00 to 200.00		99.2	96	3.1
Working Hours	(h)	(%)	(%)	200.00 t	253.80	100.0	96.9	
Drilling	261.67	64.73	63.63					
Other Work	78.25	19.36	19.03					
Recovering	64.33	15.91	15.64		Efficienc	cy of Drilling	Drilling	
Subtotal	404.25	100.00	98.30	Total Leng	th/Drilling	m	day	m/day
Preparation	4.50		1.09	Per		253.80	17	14.9
Dismantlement	2.50		0.61	Total length/	Total Drilling		shift	m/shift
Transportation				Sh	fts	253.80	50	5.1
Grand Total	411.25		100.00	D:	rilling Length,	/Each Diam	eter(m)	
Ca	sing Pipe Inse	erted		Bit Size	Drilling L	ength(m)	Core Le	ength(m)
6: 1 1/4	INserted Length/Drilling		Recovery(%)	HQ	124.	70	117	.60
Size Length(m)	Length(%)		recovery(%)	NQ	129.	10	128	3.35
HW 18.00	1	7.1	100					
NW 124.00		48.9	100					

Table 4-9 Summary of Drilling Operation of MJIE-P3

MJIE-P3			Survey P	eriod			Total N	/lan−day	
Operation	F	Period	Day	Work Day	Off	Day	Engineer	Worker	
Transportation/Preparation	Nov.14-Dec	.2,2003	19			6			
Drilling	Dec.3-Dec.	19,2003	17	17		0	50	150	
Dismantling	Dec.19,2003	3		1	(3 50	9	
Total			36	21	21			150	
Drilling Length	(m)		(m)	Co	re Recovery	of Each 100m Hole			
Length Planned	250.00	Overburden	4.70			Core		ive Core	
Increase/Decrease in Length		Core Length		Depth of	Hole(m)	Recovery		overy	
Increase/Decrease in Length	0	Oore Length	248.60			(%)	(9	6) 99.3	
Length Drilled		Core Recovery		0.00 to 100.			99.3		
Length Diffied	250.00	Core recovery		100.00 to 200.00		99.7		99.5	
Working Hours	(h)	(%)		200.00 to 250.00		99.2		99.4	
Drilling	271.75		69.55						
Other Work	67.5	17.73	17.27						
Recovering	41.5	10.90	10.62	Efficiency of Drillin					
Subtotal	380.75	100.00	97.44	Total Leng	th/Drilling	m	day	m/day	
Preparation	6.5		1.66	Per	~~~	250.00	17	14.71	
Dismantling	3.5		0.90	Total length/	Total Drilling	m	shift	m/shift	
Transportation					ifts	250.000	48	5.21	
Grand Total	390.75		100.00	D	rilling Length/	/Each Diam	eter(m)		
Cas	Casing Pipe Inserted			Bit Size	Drilling Le	ength(m)	Core Le	ength(m)	
S:	Size I I INserted Length/Drillin		Recovery(%)	HQ	101.	00	100	0.30	
Size Length(m)	Length(%)		recovery(%)	NQ	149.	00	14	8.3	
HW 8.40		3.4							
NW 101.00	J	40.4	100						

Table 4-10 Summary of Drilling Operation of MJIE-P4

MJIE-F	⊃4			Survey P	eriod			Total N	∕lan-day
Operation		F	Period	Day	Work Day	Off	Day	Engineer	Worker
Transportation/P	reparation	Dec.20-Dec	.23,2003	4	4		0	12	151
Drilling		Dec.24,2003	-Jan.4, 2004	12	12		0	35	105
Dismantling		Jan.5, 2004		1	1	1		3 50	30
Total		Dec.20,2003	3-Jan.5, 2004	17		17 0			286
Drilling Length		(m)		(m)	(m) Core Recov				
Length Planned		250.00	Overburden				Core	ŧ	ive Core
Increase/Decrea	aa in Lanath		Core Length		Depth of	Hole(m)	Recovery		very
Increase/ Decrea	se in Lengui	0.00	Oore Lengur	240.15			(%)	(9	6)
Length Drilled			Core Recovery		0.00 to		90.15		90.20
Longar Dilliou		250.00		96.06	100.00 to 200.00		100.00		95.10
Working Hours		(h)	(%)	(%)	200.00 to 250.00		100.00		96.07
Drilling		192		56.80					
Other Work		39	14.18	11.54				<u> </u>	
Recovering		44	16.00	13.02			y of Drilling		
Subtotal		275	100.00	81.36		th/Drilling	m	day	m/day
Preparation		31		9.17	Per		250.00	12	20.8
Dismantling		16		4.73	Total length/			shift	m/shift
Transportation		16		4.73	Shi		250.00	35	7.1
Grand Total		338		100.00	Di	rilling Length,	/Each Diam	eter(m)	
	Casing Pipe Inserted				Bit Size	Drilling L	ength(m)	Core Le	ength(m)
Size	L an eth/m)	INserted Length/Drilling		Recovery(%)	HQ	98.			.95
Size	Length(m)	Ler	Length(%) NG		NQ	151	.20	15	1.20
HW	23.5		9.4						
NW	98.8		39.4	100					

Table 4-11 Summary of Drilling Operation of MJIE-S1

MJIE-	-S1			Survey P	eriod			Total N	Man-day
Operation		F	Period	Day	Work Day	Off	Day	Engineer	Worker
Transportation/I	Preparation	Jan.13-Jan.	15,2004	3	3		0	9	42
Drilling		Jan.16-Feb.	11,2004	27	26		1	35	105
Dismantling		Feb.11-Feb.	14,2004	3	3		0	9	42
Total		Jan.13-Feb.14,2004		33	32			99	314
Drilling Length		(m)		(m)	Coi	re Recovery	of Each 10	0m Hole	
Length Planned		400.00	Overburden	3.80			Core	Cumulat	tive Core
					Depth of	Hole(m)	Recovery	Rece	overy
Increase/Decre	ase in Length	0.50	Core Length	386.30			(%)	(9	%)
L 41- D-28 3			C D		0.00 to	100.00	96.85		96.85
Length Drilled		400.50	Core Recovery	96.45	100.00 to 200.00		94.95	95.90	
Working Hours		(h)	(%)	(%)	200.00 to 300.00		98.05		96.63
Drilling		319	52.99	49.00	300.00 to 400.50		95.97		96.45
Other Work		146	24.25	22.43					
Recovering		137	22.76	21.04			y of Drilling	3	
Subtotal		602	100.00	92.47		th/Drilling	m	day	m/day
Preparation		25		3.84	Per		400.50	27	14.8
Dismantling		16		2.46		Total Drilling		shift	m/shift
Transportation	n	8			Shi		400.50 76		5.3
Grand Total		651		98.77		rilling Length/			
	Casing Pipe Inserted				Bit Size	Drilling Le			ength(m)
Size	te Length(m) INserted Length/Drilling		Length/Drilling	Recovery(%)	HQ 111			103.85	
Size	Length(m)	Length(%)			NG	289	9.5	28	2.45
HW	17.9		4.5%						
NW	171.0		42.7%	100					

Table 4-12 Record of Drilling Operation of MJIE-P1

	Dı	rilling Lengtl	h		Daily	Tortal		sh	ift	Man W	arking
Date	Shift 1	Shift 2	Shift 3	Dril	ling	Core	Length	Drilling	Total	Engineer	Warker
	(m)	(m)	(m)	(m)	(Cum.m)	(m)	(Cum.m)	(Shift)	(Shift)	(man)	(man)
Dec. 19	T	ransportation	1							3	34
Dec. 20	T	ransportation	1							3	34
Dec. 21	T	ransportation	1							3	39
Dec. 22	***************************************	Set up								3	39
Dec. 23		3.00		3.00	3.00			1	1	3	12
Dec. 24		8.80	7.60	16.40	19.40	12.80	12.80	2	2	2	12
Dec. 25	6.75	5.70	8.90	21.35	40.75	20.20	33.00	3	3	3	12
Dec. 26		9.55	10.10	19.65	60.40	19.65	52.65	2	2	2	12
Dec. 27		10.45	11.00	21.45	81.85	21.45	74.10	2	2	2	12
Dec. 28	1	7.65	8.15	15.80	97.65	15.80	89.90	2	2	2	12
Dec. 29		7.60		7.60	105.25	7.60	97.50	1	2	2	12
Dec. 30		4.45	9.00	13.45	118.70	13.45	110.95	2	2	2	12
Dec. 31		11.65	11.80	23.45	142.15	23.45	134.40	2	2	2	12
Jan. 1	12.00	7.85	10.70	30.55	172.70	30.55	164.95	3	3	3	13
Jan. 2	12.00	12.00	6.00	30.00	202.70	30.00	194.95	3	3	3	13
Jan. 3	9.00	9.00	18.00	36.00	238.70	36.00	230.95	3	3	3	13
Jan. 4	11.80			11.80	250.50	11.80	242.75	1	2	2	13
Jan. 5										3	39
Jan. 6							l				

Table 4-13 Record of Drilling Operation of MJIE-P2

	Drilling Length		Daily Tortal				shift		Man Warking		
Date	Shift 1	Shift 2	Shift 3	Dril	ling	Core	Length	Drilling	Total	Engineer	Warker
	(m)	(m)	(m)	(m)	(Cum.m)	(m)	(Cum.m)	(Shift)	(Shift)	(man)	(man)
Dec. 1		3.20	3.35	6.55	6.55	3.85	3.85	2	2	2	6
Dec. 2	2.25	1.20	8.50	11.95	18.50	7.95	11.80	3	3	3	9
Dec. 3	4.95	3.40	2.40	10.75	29.25	10.50	22.30	3	3	3	9
Dec. 4	4.35	4.80	4.80	13.95	43.20	13.95	36.25	3	3	3	9
Dec. 5	7.20	6.10	2.80	16.10	59.30	16.10	52.35	3	3	3	9
Dec. 6		5.05	7.20	12.25	71.55	12.25	64.60	3	3	3	9
Dec. 7	6.10	9.85	8.00	23.95	95.50	23.95	88.55	3	3	3	9
Dec. 8	6.50	7.15	7.80	21.45	116.95	21.35	109.90	3	3	3	9
Dec. 9	1.10	6.65		7.75	124.70	7.75	117.65	3	3	3	9
Dec. 10			1.50	1.50	126.20	1.50	119.15	3	3	3	9
Dec. 11	1.60	2.90	7.55	12.05	138.25	11.30	130.45	3	3		9
Dec. 12	9.05	3.50	9.00	21.55	159.80	21.55	152.00	3	3	_	9
Dec. 13	7.00	9.00	6.80	22.80	182.60	22.80	174.80	3	3		9
Dec. 14	5.45	8.75	8.40	22.60	205.20	22.60	197.40	3	3		9
Dec. 15	9.25	6.05	6.30	21.60	226.80	21.60	219.00	3	3		9
Dec. 16	8.35	6.05	6.00	20.40	247.20	20.40	239.40	3	3		9
Dec. 17	3.00	3.60		6.60	253.80	6.60	246.00	3	3	3	9
Dec. 18								0	1	3	9

Table 4-14 Record of Drilling Operation of MJIE-P3

Drilling Length			Daily Tortal				shift		Man Warking		
Date	Shift 1	Shift 2	Shift 3	Dril	ling	Core	Length	Drilling	Total	Engineer	Warker
	(m)	(m)	(m)	(m)	(Cum.m)	(m)	(Cum.m)	(Shift)	(Shift)	(man)	(man)
Dec.3		4.00	2.00	6.00	6.00	5.40	5.40	2	2	2	6
Dec.4	2.40	1.60	5.00	9.00	15.00	8.90	14.30	3	3	3	9
Dec.5	2.05	6.95	4.60	13.60	28.60	13.60	27.90	3	3	3	9
Dec.6	5.05	4.15	5.30	14.50	43.10	14.50	42.40	3	3	3	9
Dec.7	1.70	2.60	1.80	6.10	49.20	4.30	46.70	3	3	3	9
Dec.8	3.50	7.95	6.15	17.60	66.80	19.40	66.10	3	3	3	9
Dec.9	1.50	5.50	7.70	14.70	80.60	13.80	79.90	3	3	3	9
Dec.10	5.20	6.10	6.45	17.75	98.35	17.75	97.65	3	3	3	9
Dec.11	2.65			2.65	101.00	2.65	100.30	3	3	3	9
Dec.12	2.65		4.35	7.00	108.00	6.90	107.20	3	3	3	9
Dec.13	2.55	2.80	7.10	12.45	120.45	12.45	119.65	3	3	3	9
Dec.14	10.35	14.40	6.30	31.05	151.50	30.85	150.50	3	3	3	9
Dec.15	10.10	11.65	9.80	31.55	183.05	31.55	182.05	3	3	3	9
Dec.16	8.50	6.40	7.95	22.85	205.90	22.85	204.90	3	3	3	9
Dec.17	5.10	9.05	3.60	17.75	223.65	17.75	222.65	3	3	3	9
Dec.18	11.60	9.40	3.00	24.00	247.65	23.60	246.25	3	3	3	9
Dec.19	2.35			2.35	250.00	2.35	248.60	3	3	3	9
Dec.20											

Table 4-15 Record of Drilling Operation of MJIE-P4

Drilling Length			***************************************	Daily Tortal				shift		arking	
Date	Shift 1	Shift 2	Shift 3	Dril	ling	Core	Length	Drilling	Total	Engineer	Warker
	(m)	(m)	(m)	(m)	(Cum.m)	(m)	(Cum.m)	(Shift)	(Shift)	(man)	(man)
Dec. 20	T	rabsportation	1							3	16
Dec. 21	T	rabsportation	1							3	16
Dec. 22	T	rabsportation	1							3	16
Dec. 23	Set up									3	16
Dec. 24		9.00	7.80	16.80	16.80	7.45	7.45	2	2	2	8
Dec. 25	5.30	2.55		7.85	24.65	7.85	15.30	2	3	3	11
Dec. 26	1.95	5.30	4.80	12.05	36.70	12.05	27.35	3	3	3	11
Dec. 27	3.70	1.65	5.95	11.30	48.00	11.30	38.65	3	3	3	11
Dec. 28	10.70	12.10	5.00	27.80	72.80	27.80	66.45	3	3	3	11
Dec. 29	6.00	11.30	5.70	23.00	98.80	23.00	88.95	3	3	3	11
Dec. 30	Ť	1.85	0.80	2.65	101.45	2.65	91.60	2	3	3	11
Dec. 31	8.20	11.10	6.90	26.20	127.65	26.20	117.80	3	3	3	11
Jan. 1	15.00	12.00	16.20	43.20	170.85	43.20	161.00	3	3	3	11
Jan. 2	2.75		8.05	10.80	181.65	10.80	171.80	2	3	3	11

Table 4-16 Record of Drilling Operation of MJIE-S1

	Drilling Length			Daily Tortal				shi	ft	Man W	arking
Date	Shift 1	Shift 2	Shift 3	Dril	ling	Core	Length	Drilling	Total	Engineer	Warker
	(m)	(m)	(m)	(m)	(Cum.m)	(m)	(Cum.m)	(Shift)	(Shift)	(man)	(man)
Jan. 13	Tr	absportation	n							3	8
Jan. 14		Set up								3	9
Jan. 15		Set up								3	9
Jan. 16		8.00	9.90	17.90	17.90	13.90	13.90	2	2	3	9
Jan. 17	0.00	0.00	0.00	0.00	17.90	0.00	13.90	3	3	2	9
Jan. 18	0.00	0.00	0.00	0.00	17.90	0.00	13.90	3	3	3	9
Jan. 19	2.70	9.50	13.90	26,10	44.00	24.45	38.35	3	3	3	9
Jan. 20	12.00	15.00	6.00	33.00	77.00	32.50	70.85	3	3	3	9
Jan. 21	3.00	19.00	4.60	26.60	103.60	26.00	96.85	3	3	3	11
Jan. 22	1.10	1.10	0.00	2.20	105.80	2.00	98.85	3	3	3	11
Jan. 23	5.20	0.00	0.00	5.20	111.00	5.00	103.85	3	3	3	11
Jan. 24	4.25	7.70	7.90	19.85	130.85	18.80	122.65	3	3	3	11
Jan. 25	8.50	9.20	7.00	24.70	155,55	24.70	147.35	3	3	3	11
Jan. 26	11.05	18.25	10.50	39.80	195.35	39.80	187.15	3	3	3	11
Jan. 27	12.20	6.50	11.95	30.65	226.00	30.65	217.80	3	3	3	11
Jan. 28	10.90	7.95	12.00	30.85	256.85	30.35	248.15	3	3	3	11
Jan. 29	13.25	4.75	8.50	26.50	283.35	25.45	273.60	3	3	3	11
Jan. 30	4.65	0.00	0.00	4.65	288.00	4.25	277.85	3	3	3	11
Jan. 31	0.00	2.85		2.85	290.85	2.85	280.70	2	2	2	8
Feb. 1				0.00	290.85	0.00	280,70	0	0	0	0
Feb. 2		1.00	1.90	2,90	293.75	2.90	283.60	2	2	2	8
Feb. 3	0.00	0.00	0.00	0.00	293.75	0.00	283.60	3	3	3	11
Feb. 4	0.00	0.00	0.00	0.00	293.75	0.00	283.60	3	3	3	11
Feb. 5	1.00	6.50	6.60	14.10	307.85	14.10	297.70	3	3	3	11
Feb. 6	9.50	6.90	5.80	22.20	330.05	22.20	319.90	3	3	3	11
Feb. 7	3.65	5.50	4.35	13.50	343.55	13.50	333,40	3	3	3	11
Feb. 8	7.45	7.85	3.20	18.50	362.05	18,50	351.90	3	3	3	11
Feb. 9	8,35	10.10	5.35	23.80	385.85	23.80	375.70	3	3	3	11
Feb. 10	6.95	5.20	0.00	12.15	398.00	8.90	384.60	3	3	3	11
Feb. 11	0.00	0.00	2.50	2.50	400.50	1.70	386.30	3	3		11
Feb. 12	Dismantling							0	1	3	8 8
Feb. 13	Dismantling	Reclamatio	n					0	1	3	8
Feb. 14	Reclamation	n						0	1	3	8

3-2 Drilling Survey in the Prambon District

3-2-1 MJIE-P1

(1) Geology

- 0-7.85 m: Top soil.
- 7.85-17.55 m: Porphyritic andesite. Dark greenish-gray, compact massive. Maximum size of pyroxene phenocryst is 10 mm in diameter. Vugs filled with silica material are abundant.
- 17.55-22.00 m: Andesitic tuff breccia-lapilli tuff. Greenish-gray, lithic, massive, rather soft.
- 22.00-25.57 m: Porphyritic andesite. Plagioclase phenocryst is as large as 5 mm in size.
- 22.57-55.50 m: Tuff breccia. Grayish green, partly whitish caused by alteration. Maximum size of fragments is about 5 cm.
- 55.50-82.70 m: Fine grained andesite. Grayish green, partly weakly silicified and brecciated.
- 82.70-89.30 m: Mineralized zone.
- 89.30-138.80 m: Andesitic tuff breccia, partly lapilli tuff size. Grayish green-pale green, massive, rather compacted.
- 138.80-150.20 m: Dark green andesite. Massive, compact lava?
- 150.20-159.25 m: Lapilli tuff. Pale green, compact and massive.
- 159.20-164.50 m: Fine grained andesite. Pale green, compact, partly brecciated.
- 164.50-209.90 m: Tuff breccia-lapilli tuff. Green colored adesitic fragments are dominant, sporadic reddish or dark green-black colored fragments.
- 209.90-210.25 m: Fine tuff. (Or an intercalation in tuff breccia.)
- 210.25-211.50: Fine-grained andesite. Grayish (due to silicification), compact. inferred to be intrusive rock.
- 211.50-250.00 m: Andesitic tuff breccia, partly lapilli tuff size. Grayish-pale green colored, maximum sizes of fragments are more than 5 cm.. Massive andesite at intervals of 222.50-223.00 m and 237.00-27.40 m inferred to be essential blocks in the tuff breccia.

(2) Alteration

- 7.85-17.50 m: unaltered-very weakly altered (green colored).
- 17.50-21.80 m: Green colored alteration.
- · 21.80-22.45 m: Very weak silicification.
- · 25.55-27.05 m: Gray -whitish clay.
- · 27.05-29.55 m: Weakly bleached (weak argillic alteration).
- 27.05-39.75 m: Green colored alteration (propylitic?)

- 39.75-41.75 m: Argillic alteration. Moderately altered.
- 41.75-47.40 m: Strongly argillic altered and silicified zone. Within the zone, an interval of 41.75-44.00 m is most strongly silicified.
- 47.40-55.50 m: Moderately-weakly argillic altered.
- 55.50-61.60 m: Propylitic (green colored) alteration-very weak silicification.
- 61.60-66.20 m: Moderate-strong silicification. An interval of 66.85-66.05 m is most strongly altered.
- 66.20-82.70 m: Weakly-moderately silicified zone. Within the interval, 70.95-71.15 m and 73.75-74.45 m are strongly silicified and pyrite disseminated. Intrusive andesite at 78.35-79.25 m is not altered.
- 82.70-89.40 m: Moderately-weakly silicified and strongly argillic zone. Within the interval,
 87.90-89.40 m is most strongly silicified and pyrite disseminated ore.
- 89.40-98.15 m: Weak-very weakly argillic alteration.
- 98.15-104.75 m: Weakly silicified and weakly argillic altered. Within the interval, 102.95-103.85 m: is strongly pyrite disseminated.
- · 104.75-116.70 m: Propylitic altered-unaltered.
- · 116.70-118.60 m: Argillic altered and weakly silicified.
- 118.60-138.80 m: Green color altered (propylitic?)
- 138.80-151.10 m: Unaltered-very weakly propylitic altered.
- 151.10-164.50 m: Green colored altered (propylitic?)
- 164.50-166.20 m: Moderately-weakly silicified. Pyrite is strongly disseminated.
- 166.20-250.00 m: Weakly altered. Dark green-green (propylitic?)-partly contains unaltered black andesitic fragments.

(3) Mineralization

MJIE-P1 intercepted several silicified zones with pyrite dissemination. The hole also intercepted narrow quartz veins. Among those, following zones are chemical analyzed.

- 39.75-55.50 m: Strongly, moderately-weakly argillic altered and silicified zone. Within the zone, an interval of 41.65-47.40 m includes most strongly silicified zones, while Pyrite is most strongly at 50.55-53.05 m within the zone.
- 61.50-82.70 m: Weakly-moderately-strongly silicified zone. Interval of 66.85-66.05 m, 70.95-71.15 m and 73.75-74.45 m are strongly silicified and pyrite disseminated.
- 82.70-89.40 m: Moderately-weakly silicified and strongly argillic zone. Within the interval, 87.90-89.40 m is most strongly silicified and pyrite disseminated ore.

164.50-166.20 m: Moderately-weakly silicified. Pyrite is strongly disseminated.

Table 4-17 Major Intercepts of MJIE-P1

No.	Depth (m)	Drilled Length (m)	Mineralization	Au (ppb)	Ag (ppm)
1	41.65-47.40	5.75	Strongly silicified zone (highest: 43.90-44.55m (0.65m) 4,915ppb)	727	3.1
2	50.55-53.05	2.50	Moderately argillic altered zone with pyrite veinlets	186	3.1
3	68.60-68.90	0.30	Quartz-calcite veining in strongly pyrite disseminated part in silicified zone		4.0
4	70.85-71.35	0.50	Strongly-moderately silicified zone	156	3.3
5	73.63-74.82	1.19	Strongly silicified and pyrite disseminated zone	94	3.1
6	82.70-89.40	6.70	Strongly silicified with quartz veining zone (highest: 88.80 ~ 89.40m(0.60m) 10,420 ppb)	1,062	39.3
7	165.25 - 166.2	1.00	Moderately silicified, pyrite strongly disseminated zone	340	1.7

The chemical analysis result of each sample is listed in AppedixTable 4-26.

3-2-2 MJIE-P2

(1) Geology

• 0-3.90 m: Top soil.

• 3.90-18.50 m: Weathered andesite (saprolite)

• 18.50-36.50 m: Andesite

- 36.50-140.00 m: Andesitic tuff breccia. It includes lapilli tuff sized parts boundaries of which are gradual. Green-greenish gray, partly brownish, massive, compact. Dark green compact andesite blocks at 60.55-61.05 m., 119.35-120.15 m, and porphyritic andesite at 123.10-124.10 m.
- 140.00-176.00 m: Andesite (auto brecciated lava). Greenish gray-dark green-black colored, compact, rather hard, massive.
- 176.00-187.60 m: Strongly altered zone (Original rock texture is unclear).
- 187.60-201.35 m: Fine grained Andesite. Dark green-pale green colored, compact. 198.35-201.35 m interval is silicified.
- 201.35—213.80 m: Andesite (auto-brecciated lava). Partly bleached due to alteration and partly greenish.
- 213.80-222.30 m: Andesitic tuff breccia. It includes fine tuff of green and gray color layers.
- 222.30-229.20 m: Andesite. Black or green colored, hard rock. The rock between 222.30-226.00 m is inferred to be intrusive rock.
- 229.20-250.80 m: Andesitic lapilli tuff-tuff breccia. It included auto-brecciated lava like rock at 241.60-243.00 m,
- 250.80-253.00 m: Andesite. Pale green, compact.
- 253.00-253.80 m: Tuff (pale green-grayish, fine-coarse tuff).

(2) Alteration

- · 3.90-18.15 m: Weathered.
- 18.15-32.60 m: Weakly argillized and silicified.
- · 32.60-93.60 m: Greenish colored alteration (propylitic). Narrow clay zones occur at 55.20-55.26 m and 82.4-82.65 m.
- 93.60-97.80 m: Strongly argillic altered-silicified zone.
- 97.80-162.27 m: Propylitic altered zone. Includes narrow argillic or silicified zones.
- 162.70-188.70 m: Argillized-silicified zone. Pyrite is strongly disseminated.
- · 188.70-198.35 m: Propylitic altered zone.
- 198.35-208.43 m: Argillized-silicified zone. Pyrite is disseminated.
- · 208.43-244.20 m: Propylitic altered zone.
- 244.20-250.60 m: Argillized-silicified zone. Pyrite is disseminated.
- · 250.60-253.80 m: Very-very weakly argillized zone.

(3) Mineralization

MJIE-P2 intercepted argillic-silicified zones with pyrite dissemination. The hole also intercepted narrow quartz veins. Among those, following zones are chemical analyzed.

- 39.75-55.50 m: Strongly, moderately-weakly argillic altered and silicified zone. Within the zone, an interval of 41.65-47.40 m includes most strongly silicified zones, while Pyrite is most strongly at 50.55-53.05 m within the zone.
- · 82.65-82.73 m: White quartz vein of 8 cm width.
- 84.50-84.52 m: White quartz veinlet of 2 cm width. Chemical analysis was done for the interval of 84.50-84.65 m (0.20 cm) that includes silicified and pyrite disseminated zone.
- 94.85-97.80 m: Silicified- argillic altered zone. Silicified fragments in which pyrite is strongly disseminated occur in the argillic matrix. Brecciation is inferred to occur after the alteration. A white quartz vein occurs at an interval between 95.26-95.66 cm (0.40 m).
- 130.70-131.45 m: Strongly argillized and silicified zones. Strongly argillized and quartz veining interval between 131.13-131.45 m was chemically analyzed.
- 156.80-168.27 m: White quartz veinlets occur. The widest quartz veinlet at 159.60-159.66 m
 was analyzed
- 167.90-170.30 m: Strongly silicified and argillized zone with strong pyrite dissemination. Within this interval, the most strongly silicified zone at 168.70-169.55 m was 153 ppbAu, while Argillic zone at 169.55-170.30 m was 14ppb Au.
- 177.00-188.70 m: Strongly silicified -argillized zone with quartz veining. The highest gold value is returned from strongly silicified zone at 185.00-186.00 m. The widest quartz vein is 0.80 m, while the gold value is as low as 28 ppb.
- 198.35-205.25 m: Strongly silicified zone with an argillic altered interval. The highest gold vaule:1,035 ppbAu is returned from dark gray argillic silicified zone at 201.35-202.00 m
- · 207.65-208.70 m: Silicified zone with quartz veinlets. The widths of quartz veinlets are 5 cm and 2 cm. The gold assay result is as low as 56 ppb.
- · 245.70-250.00 m: Strongly silicified zone with pyrite dissemination and quartz veinlets.
- In addition to above zones, six samples of 10 cm width at the hangings or footwalls of the major mineralized intervals are between 19 and 80 ppb Au.

Table 4-18 Major Intercepts of MJIE-P2

		Drilled			
No.	Depth (m)	Length (m)	Mineralization	Au (ppb)	Ag (ppm)
1	82.45-82.65	0.20	Argllic zone with quartz veining	153	1.7
2	84.50-84.58	0.08	Quartz vein	97	0.8
3	94.85 -9 7.80	2.95	Argillic, quartz	164	16.6
4	131.13-131.45	0.32	Sili,argillic.quartz	181	2.2
5	159.60-159.66	0.06	Quartz veinlet	116	9.8
6	161.45-161.49	0.04	Quartz vein	265	10.8
7	164.87-165.25	0.38	Quartz vein	167	2.3
8	168.70-170.30	1.60	Argillic silicified zone with quartz veining	141	2.7
	1001/0 1/0/00		Argillic silicified zone		
	177.00-188.70	11.70		138	4.7
9	including 185.0	0-187.00 (2.	00m) 340ppb		
	198.35-205.25	6.90	Quartz, silicified zone	233	3.7
10	including 201.3	35-202.00 (0.	65m) 1,035ppb		1.7
11	207.65-208.55	0.90	Quartz, silicified zone	56	3.4
12	245.70-250.63	4.93	Quartz, silicified zone	189	

3-2-3 MJIE-P3

(1) Geology

- 0-4.70 m: Top soil.
- 4.70-23.20 m: Andesitic tuff breccia.
- 23.20-26.70 m: Andesite. Flow banded at 26.50-26.70 m.
- 26.70-58.35 m: Andesitic tuff breccia.
- 58.35-59.70 m: Andesite. Grayish green, compact.
- 59.70-71.60 m: Andesitic tuff breccia.
- 71.60-125.00 m: Andesitic auto-brecciated lava.
- 125.00-133.05 m: Andesitic tuff breccia

- 133.05-150.50 m: Andesite lava. Grayish green, fine grained, compact. Abundant amygdales filled with chlorite.
- 150.50-200.65 m: Andesitic tuff breccia. Intercalated three andesite lava(?) layers.
- 200.65-204.75 m: Andesite. Partly brecciated.
- · 204.75-206.35 m: Andesitic tuff breccia.
- 206.35-208.60 m Andesite. Dark green, compact and hard. (Lava?)
- 208.60-210.60 m: Fractured Andesite, or andesitic fine tuff.
- · 210.60-247.95: Andesite.
- 247.95-250.00: Andesitic tuff breccia.

(2) Alteration

- 4.70-15.00 m: Weathered.
- 15.00-31.30 m: Propylitic (green colored) alteration is dominant. Three narrow zones are weakly argillic altered.
- 31.30 m- 46.00 m: Argillic altered. Whitish clay occurs at 31.30-31.70 m, 33.60-33.61 m, 34.70-34.90 m, 41.40-42.60 m and 43.32-43.55 m depth.
- 46.00-90.60 m: Weak propylitic alteration.
- 90.60-133.50 m: Very weak propylitic alteration.
- 133.50-217.05 m: Unaltered or very weak propylitic alteration, except the weak argillic altered zones at 167.00-167.60 m, , 172.85-173.25 m, 174.03-175.55 and 182.50-182.90 m.
- 217.00-250.00 m: Propylitic alteration: Greenish

(3) Mineralization

The hole intercepted only two weak mineralized zones. The two zones at 31.45-42.60 m (strong argillization at 31.45-31.75 m and 41.40-42.60 m), and 172.85-175.55 m (weak argillization) may correspond to mineralization at the surface. However, no significant mineralization zones were not intercepted.

- 31.30 m- 46.00 m: Argillic alteraterd. Whitish clay occurs at 31.30-31.70 m, 33.60-33.61 m, 34.70-34.90 m, 41.40-42.60 m and 43.32-43.55 m depth.
- 167.00-167.60 m: brecciated zone.
- 172.85-173.25 m, 174.03-175.55 m: Brecciated-argillic zones.
- 182.50-182.90 m: Weak brecciated argillic zone.
- 241.20-241.40 m: Weak brecciated argillic zone with 2 cm wide quartz veinlet. Pyrite dissemination is rare.

Table 4-19 Major Intercepts of MJIE-P3

No.	Depth(m)	Drilled Length (m)	Mineralization	Au(ppb)	Ag(ppm)
	41.25-41.50	0.25	argillic zone	821	23.3
	41.50-42.47	0.97	argillic zone	83	4.2
	42.47-43.20	0.73	argillic-silicified zone	14	2.4
1			argillic zone		
	42.20-43.55	1.35	with quartz veinlets	139	2.5
	Average	3.30		147	4.6
	172.90-173.35	0.45	argillic zone	39	0.3
	173.35-174.20	0.85	weak argillic zone	11	0.5
	174.20-174.50	0.30	argillic zone	55	0.2
2	174.50-175.00	0.50	weak argillic zone	21	0.4
	175.00-175.50	0.50	argillic zone	19	0.2
	Average	2.60		24	0.35

3-2-4 MJIE-P4

(1) Geology

- 0-7.60 m: Top soil.
- 7.60-46.25 m: Andesite (7.60-18.35 m:weathered). Massive, pale green, partly brecciated.
- 46.25-76.30 m: Andesitic tuff breccia. Consists of green colored, rather densely packed lapilli and bigger size fragments
- 76.30-131.65 m: Auto-brecciated andesitic lava.
- 131.65-133.00 m: Lapilli tuff.
- 133.00-163.60 m: Auto-brecciated andesitic lava.
- 163.60-164.13 m: Lapilli tuff.
- 164.13-192.15 m: Auto-brecciated andesitic lava.
- 192.15-192.90 m: Lapilli tuff.
- 192.90-198.15 m: Andesite.
- 198.15-204.35 m: Andesitic tuff breccia.
- 204.35-213.65 m: Andesite. Partly brecciated.
- · 213.65-226.00 m: Andesitic tuff breccia.

- 226.00-229.65 m: Andesite. Fine grained, pale green colored.
- · 229.65-234.55 m: Andesitic tuff breccia with layered part.
- 234.55-235.35 m: Fine grained andesite.
- · 235.35-241.15 m: Tuff breccia. Partly coarse tuff.
- 241.15-245.20 m: Fine grained andesite.
- 245.20-250.00 m: Andesitic tuff breccia. Green colored compact massive rock.

(2) Alteration

- 7.60-18.35 m: weathered
- 18.35-156.30: Propylitic alteration.
- 78.60-136.07 m Argillic alteration silicification.
- 156.30-156.80 m: Argillic alteration.
- 156.80-239.35 m: Propylitic alteration.
- 239.35-241.15 m: Argillic alteration -silicification
- 241.15-250.00 m: Propylitic alteration.

(3) Mineralization

No significant mineralization was encountered in the hole, although the alteration zones listed below are anomalous in gold.

- 135.95-136.13 m: Quartz-pyrite veinlets
- 156.30-156.80 m: Quartz-calcite pyrite veinlet.

Table 4-20 Major Intercepts of MJIE-P4

No.	Depth(m)	Drilled Length(m)	Mineralization	Au(ppb)	Ag(ppm)
1	78.60-79.10	0.50	Silicification Argillic alteration	222	3.6
2	135.80-136.07	0.27	Banded clay-pyrite Silicified zone	52	2.0
3	156.33-156.95	0.62	Quartz stockwork Silicification	107	6.1
4	239.65-240.47	0.82	Silicification Calcite veinlets	63	0.5
5	240.47-241.10	0.63	Silicification Quartz veinlets	42	0.6

3-3 Drilling Survey in the Seweden District

3-3-1 MJIE-S1

(1) Geology

- 0-3.90 m: Top soil.
- 3.90-37.30 m: Silicified, oxidized rock. The rock shows an irregular banded texture of white
 zones of quartz and red to purplish zones of iron oxide. The rock is inferred to originally be
 andesitic tuff breccia and bleached by supergene alteration.
- 37.30-106.90 m: Fault zone. Clay and strongly argillic altered tuff breccia: gray colored rather
 hard blocks are inferred to be fault gouge within soft fault clay. Pyrite is moderately
 disseminated in both of clay and blocks. The original rock of the blocks is mainly of andesitic
 tuff breccia, while fine tuff -coarse tuff andesite is inferred to be constituents.
- 206.90-115.80 m: Strongly altered andesite. Dark gray, partly greenish colored, compact, rather hard compared to the clay zones. It may be an intrusive rock as fine grained part at 115.70-115.80 m is inferred to be a chilled margin.
- 115.80-119.85 m: Fine tuff to coarse tuff, rather soft. A thin andesitic intrusive rock intruded at 117.50-117.70 m.
- 119.85-121.20 m: Andesitic-basaltic intrusive rock. Splitic trachitic texture, pale green compact.
- 121.20-137.10 m: Sandy-coarse tuff. The intervals at 125.10-125.85 m, 127.85-17.95 m, 130.45-130.85 m and 133.15-133.25 m are composed of soft clay.
- 137.10-144.65 m: Andesite. Rather hard, compact. The interval at 138.35-139.20 is composed of soft clay.
- 144.65-213.25 m: Andesitic tuff breccia.
- 213.25-216.65 m: Andesitic lava. Weakly auto-brecciated
- 216.65-246.45 m: Andesitic tuff breccia-lapilli tuff. Pyrite is moderately-strongly disseminated.
- 246.85-248.85 m: Fine-sandy tuff. Grayish colored. More strongly altered than tuff breccia-lapilli tuff.
- 248.85-274.00 m: Andesitic tuff breccia. Grayish colored.
- 274.00-279.75 m: Tuff. Black colored streaks occur in the gray colored matrix.
- 279.75-285.15 m: Andesite. White colored due to alteration. Homogeneous and massive.
- · 285.15-289.10 m: Tuff breccia. Grayish colored. Composed of rather hard parts and altered

softer parts.

- 289.10-326.90 m: Grayish to pale pinkish colored, compact rather hard, strongly altered rock. Partly fractured and soft clayey rock. Pyrite is strongly disseminated.
- 329.60-374.40 m Tuff breccia. Composed of green colored propylitic parts and white sericitic
 parts. White parts appear to replace the propylitic part at later stage alteration. Magnetite
 occurs in the white parts in the form of dissemination or veinlets. The dark green pats at
 338.75-339.20 m and 351.02-351.60 m appear to be andesite intrusive rocks or Andesite
 blocks.
- 374.40-391.85 m: Grayish to pale pinkish compact strongly altered rock. Original rock appears
 to be Andesite or microdioritic rock.
- 391.85-400.50 m: Green-grayish tuff breccia. The green colored altered interval of 393.00-395.00 m may be dioritic intrusive rock, while the original rock of the clay zone at 395.00-38-98.50 m is uncertain.

(2) Alteration

- 3.90-37.30 m: Oxidation-silicification (supergene acid leaching)
- 37.30-116.65 m: Fault zone (argillic alteration)
- 116.65-167.55 m: Argillic alteration; alunite-kaoline-smectite-quartz. Pyrite is strongly disseminated
- 167.55-211.00 m: Propylitic alteration. Pyrite is moderately disseminated
- 211.00-222.85 m: Propylitic alteration. Argillic/sericite alteration may overprint the propylitic alteration.
- 222.85-289.15 m: Gray clayish clayey and brecciated zones occurs abundantly. May be sericite-quartz alteration. Soft clay zones are; 225.00-225.80 m, 228.25-228.50 m, 232.85-233.65 m and 234.10-234.20 m.
- 289.15-330.70 m: 330.70: Whitish argillic altered zone. May consist of sericite, quartz and pyrite.
- 330.70-398.50 m: Propylitic alteration is overprinted by later stage white clay alteration. The most of the interval at 394.95-398.50 m appears to consist of soft clay, although the core of the interval could not recovered.
- 398.50-400.50 m: White clay alteration. It appears to be composed of sericite, quartz and pyrite.

(3) Mineralization

No significant base and precious metal mineralization was encountered by the hole, while strong pyrite dissemination occurs quite consistently below the oxidation zone of 3.90-37.30 m.

The pyrite occurs as dissemination of altered andesitic rock or in-veinlets along hair cracks such as joints. A molybdenite-pyrite-quartz-clay veinlet of 2 mm width occurs at 368.40m (102ppm:S1-76). Copper mineral occurs only as exsolution mineral from pyrite under microscopy (Polished sample at188.75m, 290.30 m, 326.15 m and 389.15 m). Sphalerite, galena, cerusite and anglesite occur under microscopy.

3-5 Summary of Results of Drilling

3-5-1 Prambon District

(1) Geology

Geology of the four drill holes consists of andesitic volcanic and volcaniclastic rock of the Mandalika Formation. The intrusive rocks encountered by the holes also considered to be of same age. The andesitic rocks are generally massive and do not show beddings. Therefore, the strike and dip of the formation is difficult to estimate. However, together with surface observation, scared data of fine tuff intercalation indicate the formation dip gently, and strike northwest-south east trending and dip to north. Therefore, it is inferred that the upper part expose in the northern part, and the lower part to the south.

(2) Alteration

The andesite lava and volcaniclastics underwent widely greenish altered. The argillic-silicified alteration zones are wide in the northern two holes, MJIE-P1 and MJIE-P2, while intercepts of the argillic zones are narrow in the southern two holes.

(3) Mineralization

The assay results show the highest gold values 10.40g/t over 0.60m width intercepted by MJIE-P1. Three samples returned 1-5 g/t Au, and most samples retuned less than 1 g/tAu. However, 14 samples among 16 polished samples contains sphalerite, chalcopyrite and galena, indicating these minerals may relate with gold mineralization. Acanthite is identified in two samples form MJIE-P2 adjacent to pyrite grains. The gangue and alteration minerals in and adjacent to veins are quartz, calcite, sericite, chlorite and mixed layer mineral. The study of fluid inclusion of quartz or calcite vein show the homogenization temperatures are about t 200 °C and salinities are low. Therefore, epithermal mineralization occurs widely, mainly in the northern part distributed in

Prambon district.

3-5-2 Seweden District

(1) Geology

The geology of the drill hole in the Seweden district consists of volcanic and volcaniclastic rocks of the Mandalika Formation. Intrusive rocks of andesitic to dioritic character are also encountered in the hole. The tuff breccia is most dominant facies of volcaniclastic rocks, while lapilli tuff and fine tuff layers are intercalated in the tuff breccia. The rocks are generally massive and bedding is uncertain. However, based on the surface traversing results, the formation strike northwest-southeast trending and south dipping at the drilling area. The drill hole intercepted wide argillic or clay zones. The zones are assumed to correspond to the east northeast -west southwest trending fault zone shown in the geologic map, which has been inferred from the air photographs interpretation.

(2) Alteration

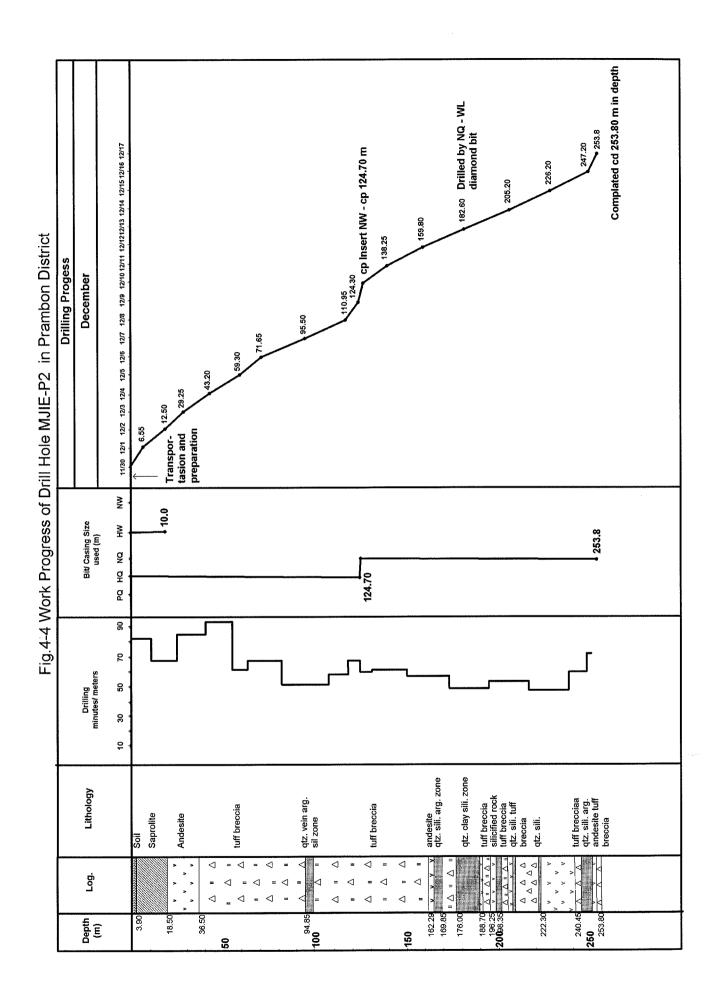
The andesitic volcaniclastics and volcanic rocks encountered in the drill hole underwent argillic or greenish colored alteration. Argillic alteration continues from the 37.30m, which is the lower boundary of oxidation zone to the bottom of the hole. The green colored zone is termed to be propylitic alteration zone in the filed description and occur at 167.55 –222.85 m and 330.65-394.95 m. The zone of the 330.65-394.95 m appears to be overprinted by sericite alteration. Finally, the both propylitic and sericite alterations are overlapped with younger argillic alteration related faulting.

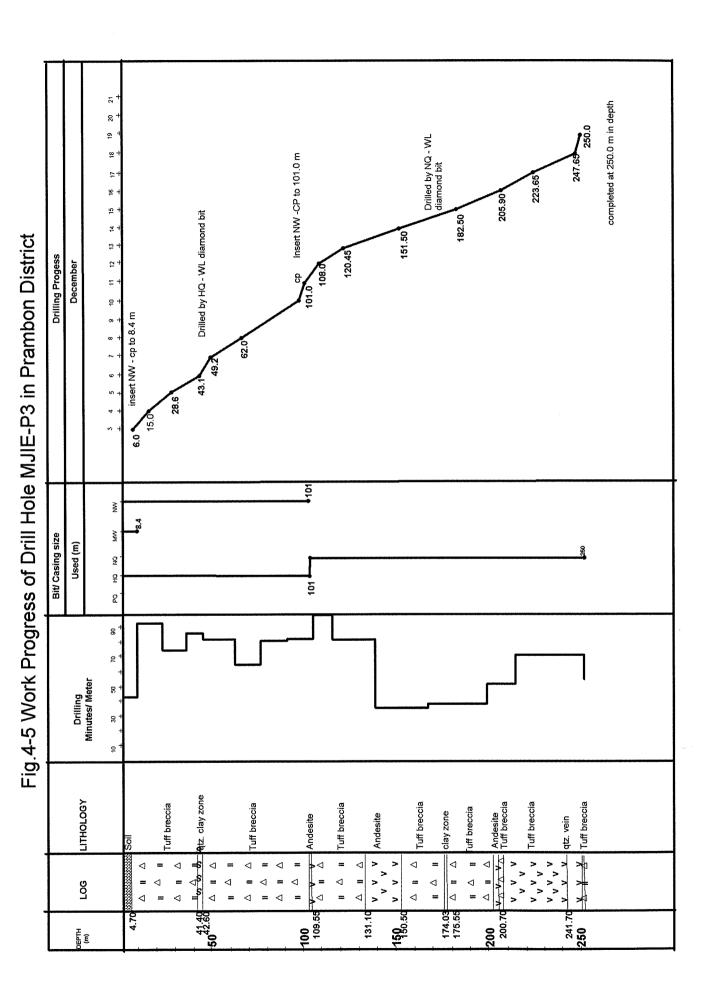
(3) Mineralization

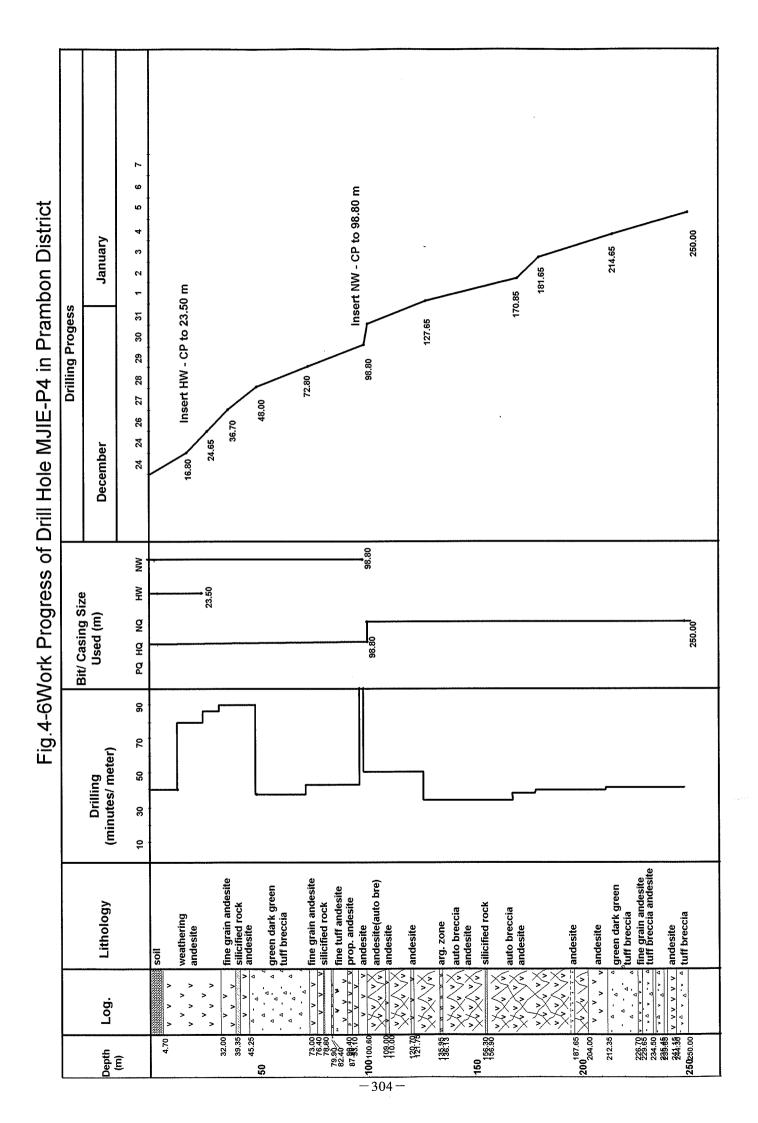
Pyrite occurs extensively as dissemination or as veinlets in the drill hole. In the deeper part, magnetite occurs in comparatively wide zones. Magnetite occurs as replacement of pyrite and veinlets. Some magnetite is also cut by pyrite veinlets. That indicate pyrite emplaced at least at two stages or magnetite is emplaced with the pyrite mineralization. The magnetite mostly occurs within sericite zone.

No significant base and precious mineralization has been encountered in the drill hole, while fine grains of chalcopyrite, sphalerite and galena are quite often identified under microscopy. A 2mm wide molybdenite-pyrite-quartz clay veinlet occurs at the 368.40 m depth. Seven samples from the bottom part of the drill core returned copper values higher than 100ppm. Also the gold values

appear to increase in the deeper part, although the value r is about 20 ppb.


Therefore, it is concluded that the encountered mineralization is weak, but indicates a possibility that epithermal to mesothermal type of mineralization may occurs near the drill holes.


(4) Relation between Geology - Mineralization and Chargeability


The geophysical survey delineated high chargeability zone in the deeper part of line 1 and line 2, where higher chargeability than 20 mV/V is estimated to be deeper than 300 m from the surface. However, the strong dissemination of pyrite continues from 37.30m below surface to the 217 m depth. The high content zone of pyrite is wide at depth—that corresponds to quartz-sericite-pyrite alteration. The alteration mineral assemblage is common in hydrothermal alteration and not limited to phyllic alteration of porphyry copper type.

The overall low resistivity of the drilled place well corresponds to be low due to high porosity, pyrite dissemination and fractures/faults.

January Inset NW - CP to 105.25 m **Drilling proges** 250.50 235.70 7 202.70 Fig.4-3 Work Progress of Drill Hole MJIE-P1 in Prambon District 17270 30 31 142.15 110.70 53 28 December 27 81.55 56 60.40 24 25 40.75 19.00 23 ۶. اع 105.25 Š Bit/ Casing Size Used (m) PO HO NO HW 250.50 105.25 80 2 Drilling minutes/ meter 20 30 9 dark green andesite grayish green lapl tuf andesite grayish green tuff bx. dark green andesite fine grain andesite Lithology arg. - sili. zone silicified rock silicified rock silicified rock silicified rock silicified rock tuff breccia tuff breccia tuff breccia tuff breccia tuff breccia andesite andesite Q . Q . Q Q , Q . Q . Q 4. 4. 4. 4.5. 4. 4. 4.6. 4. 4. 4.7. 4. 4. 4.7. 4. 4. 4.7. 4. 4. 4.7. 4. 4. 4. ~ ~ ~ ~ ~ ~ ~ ^ ~ . 7 . 7 . 7 0 . 0 . 0 Δ. Δ. η. Δ. Δ. Log 150 150.20 159.25 164.50 166.20 63.20 63.40 75.05 82.70 200.200.20 40.05 42.15 47.40 55.50 57.05 103.25 108.90 109.40 22.58 27.08 99.30 100 102 95 Depth (m) 7.85 250.50 220 8

Fault zone? (lost core) 10 11 12 13 14 11 Feb. 400.50m(EOH) February January 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 **Drilling Progress** NW Casing Insertion Engine repair Bit change Reaming-extension of NW casings to 200 m Fishing of inner tube Start setting-up 111m→reaming →171m Bit, Casing Size 17.9m 80 NO HO NW NW **Drilling Speed** (minutes/m) 20 40 60 66.5 35.0 30.5 ←fast slow→ Argillic tuff breccia Fault zone (tuff breccia) Fault zone (andesit) Argillic fine tuff Andesite/Fault Weathered tuff brecccia Fault zone (tuff breccia) Tuff breccia Tuff breccia Lithology Tuff breccia Tuff breccia Fine tuff Andesite Andesite Fault zone Fault zone Tuff breccia Tuff breccia Andesite Andesite ~~~~~~~~ ****** ۵,۵,۵, ,۵,۵,۵ ۵,۵,۵,۵ ۵"۵"۵"۵"۵ ۵"۵"۵"۵"۵" Geologic Log A. A. A. 37.30 57.50 329.7 374.4 Depth (m) 9 120 200 300 350 400 250 20

Fig. 4-7 Work Progress of Drill Hole MJIE-Slin Seweden District

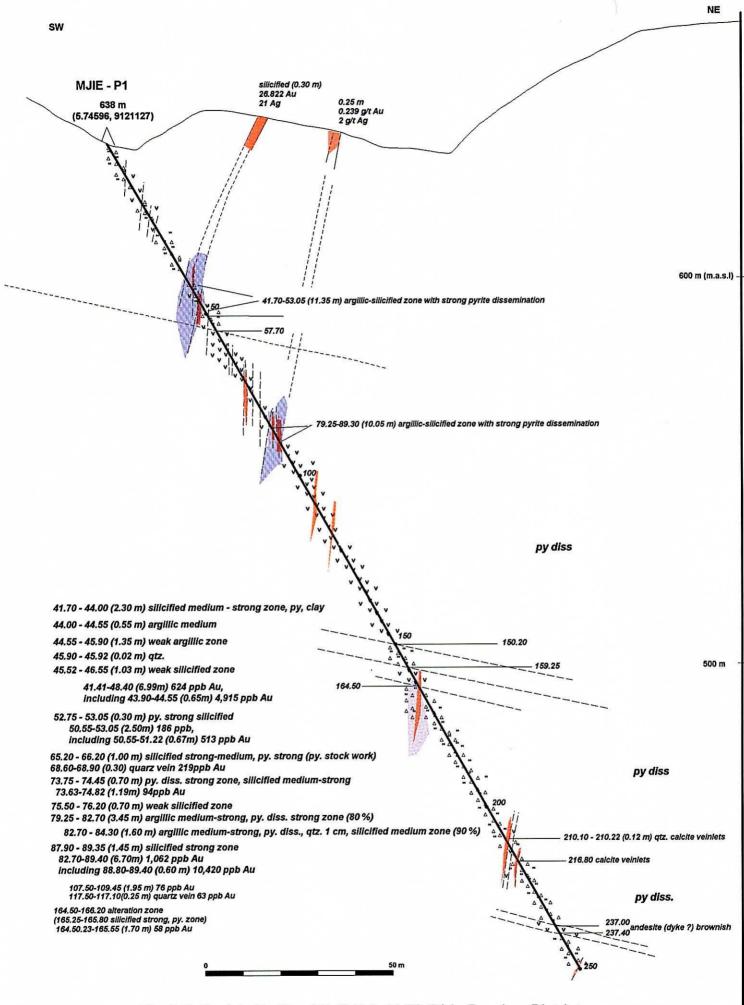


Fig. 4-8 Geolgic Profile of Drill Hole MJIE-P1 in Prambon District

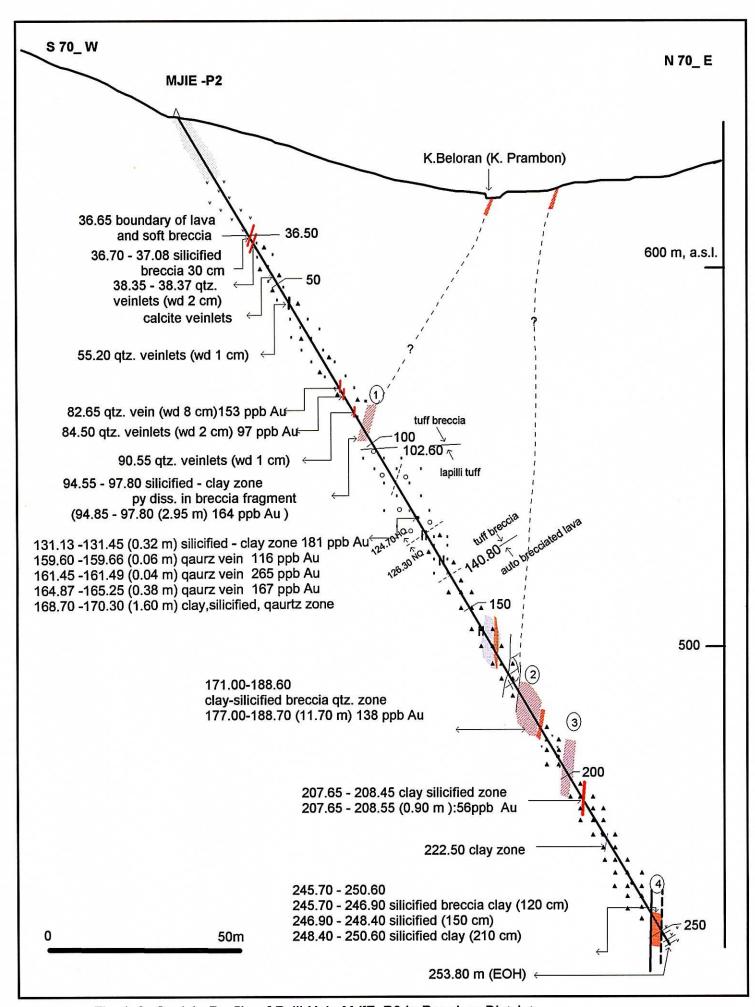


Fig. 4-9 Geolgic Profile of Drill Hole MJIE-P2 in Prambon District

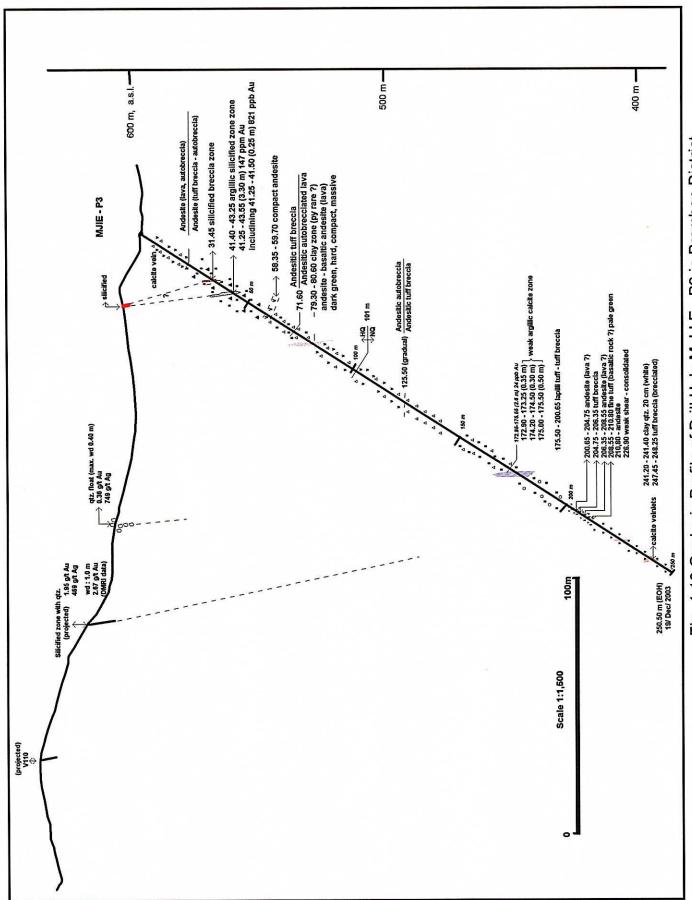


Fig. 4-10 Geologic Profile of Drill Hole M J I E - P3 in Prambon District

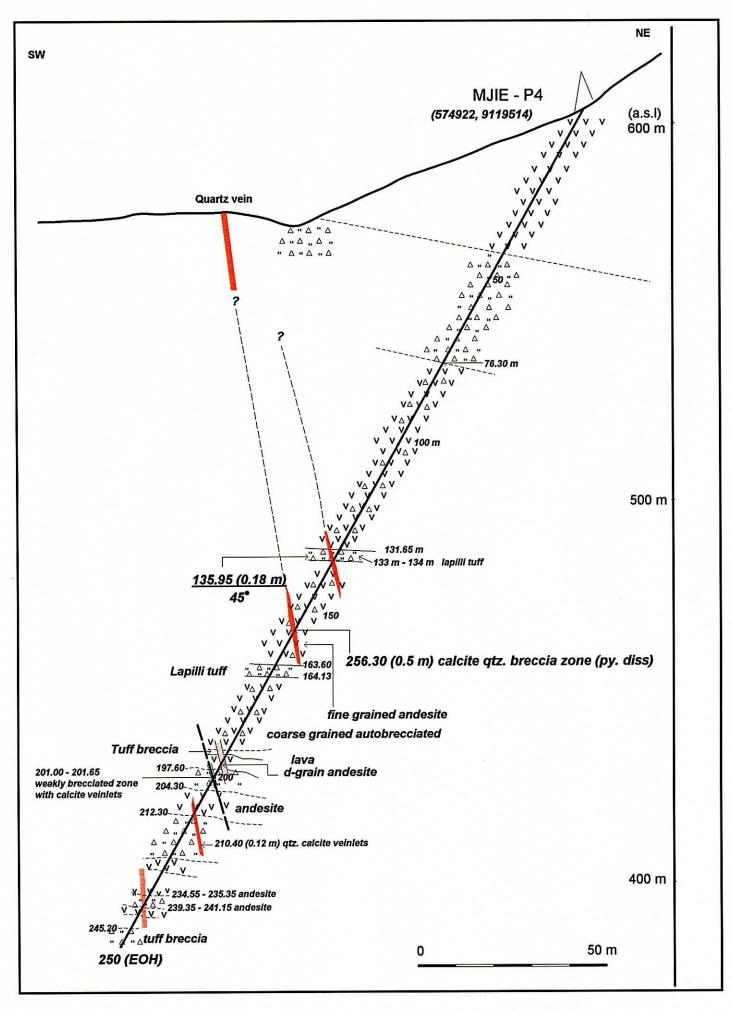
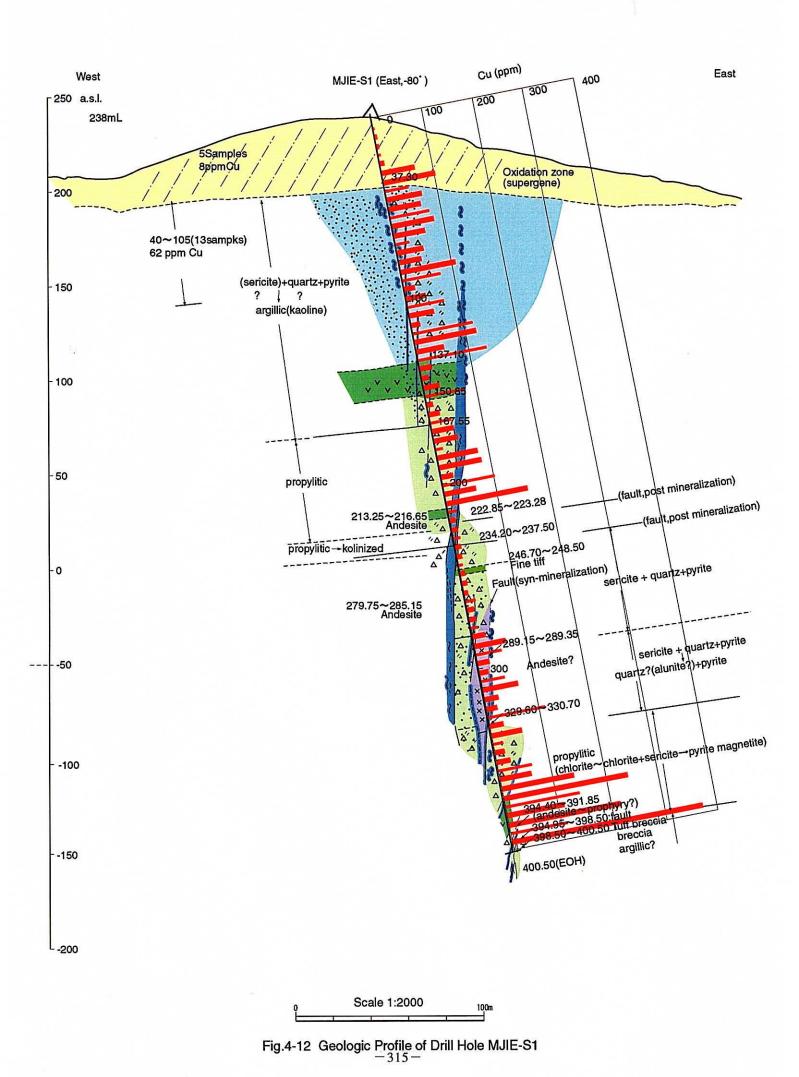



Fig. 4-11 Geologic Profiles of Drill Hole MJIE - P4 in Prambon District

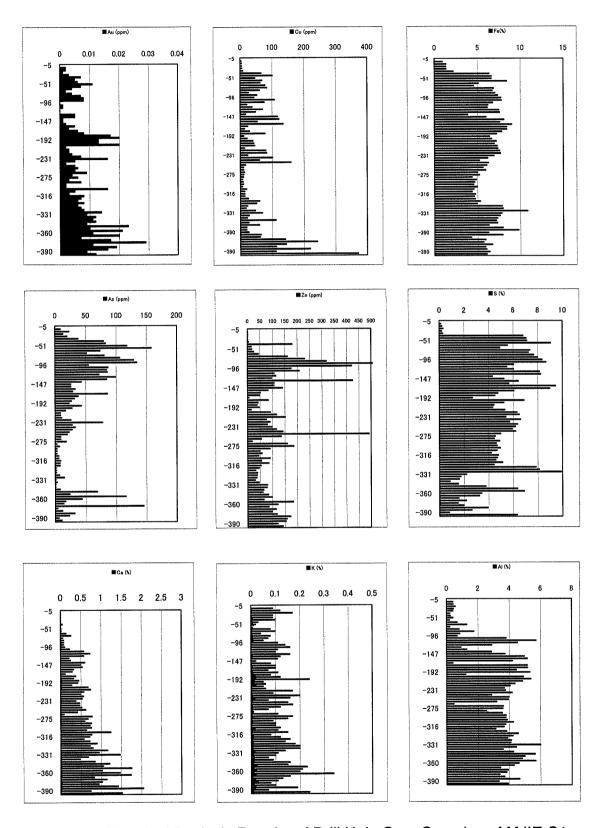


Fig.4-13 Chemical Analysis Results of Drill Hole Core Samples of MJIE-S1

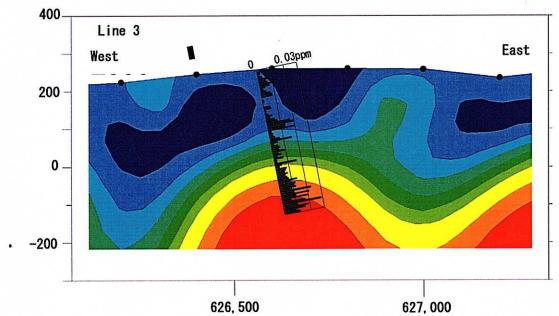


Fig. 4-14 Chargeability and Gold Values of Drill Core Samples from MJIE-S1

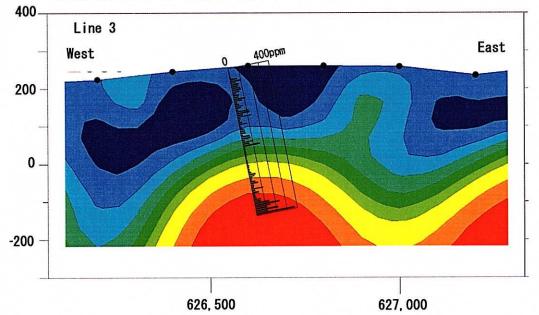


Fig. 4-15 Chargeability and Copper Values of Drill Core Samples from MJIE-S1

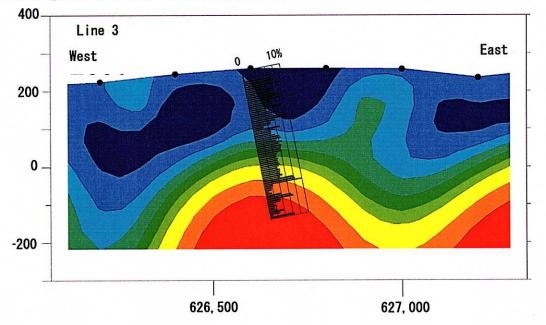


Fig. 4-16 Chargeability and Sulfur Values of Drill Core Samples from MJIE-S1

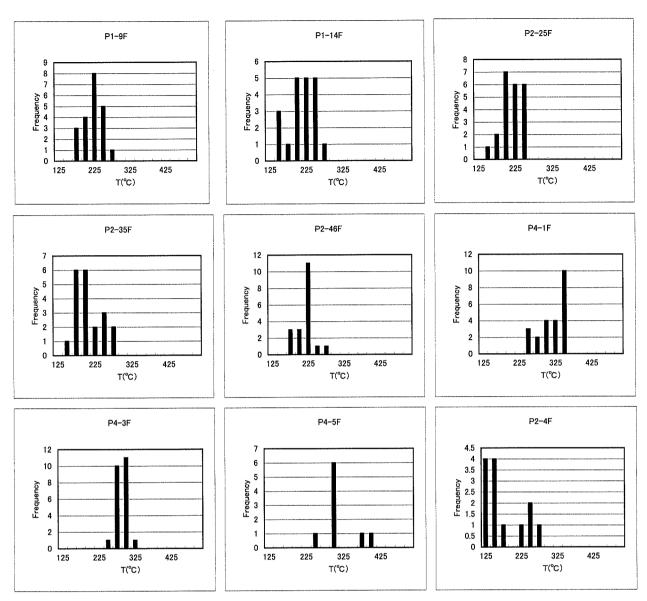


Fig. 4-17 Homogenization Temperature of Fluid Inclusion, Prambon District

Table 4-21 Geologic Log of Drill Hole MJIE-P1 (1)

Depth	Geologic Column	Lithology	Alteration	Mineralization	RQD
(m)	Column				
		soil			
5_					
		soil			
	Λ. · · · · · ·	7.85			
10_	V - v V	dsrk green - gray porphyritic andesite			20 76
	v v				45
	VVV	dark green - gray porphyritic andesite			35
	V V				17 20
15_	8 8 8 8 8 8 8 8 8 8	14.30 14.80			44
	V V V V	dark green - gray porphyritic			100
	_ "A "_A	17.55			70
	ა ო ო ო * " *	grayish green lapilli tuff	19.60-19.95 argillic	19.90 calcite 0.3 cm	68
20	# <u>#</u> #	^{20.70} grayish green lapilli tuff	20.00-20.75 argillic weak	20.00-20.75 py weak	60 80
	A, ", A	fragment 0.5 - 1.0 cm			40
	v	dark gray andesite 23.70 fracture zone		23,25-23.70 qtz. vein 0.5 cm	58 63
25 -	VV	24.00		23,25-23.70 qtz. vein 0.5 cm	50_
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	gray - whitish gray argillic rock	25.70-27.05 argillic + silicified zone	25.70 py. rich	40 20
	Δ "Δ "Δ	whitish gray tuff breccia	27.00-28.85 argillic weak	py	100
	<u> </u>	fragments 3.0 - 5.0 cm 28.85		27.85 py. vein 0.2 cm	100 80
30	_ " <u>^ "</u> _ "			28.85	100
	_"4"	grayish green tuff breccia			90
	۵ " " "				100
35_	ထိ လုံလုံလ	34.70	34.70 argillic	- 100 - 100	90
	∠ <u>"</u> "	grayish green tuff breccia			100
	, ";" o o o o o	36.85 argillic	36.85 argillic		100 100
		200 7E availle		39.45 calcite 0.5 cm 39.50	100
40-	ດີ ດາກ ດີ		39.80 argillic 5.0 cm 40.50-41.65 argillic weak	39.80 py. rich 40.00 calcite qtz. vein 1.0 cm	100 100
	8888	40.500½ 30_ 41.75½ 30_ 42.15 30_	40,50-41,55 argillic strong 41,65-42,15 argillic strong 42,15-43,65 silicified	40.50 qtz. vein 0.5 cm 41.65 - py. rich P1 - 1A P1 - 2A	20
		brecciated silicified rock fragments with py.	43.65-44.55 argillic	P1 - 3A P1 -4A P1 - 5A	100 50
45	თ თ თ თ თ თ თ თ "∆ "	argillic rock, gray	P1 - 30X	P1 - 5A P1 - 6A	100
74		grayish light green tuff breccia	46.00-46.70 argillic	45.90 qtz. vein 2.0 cm P1 - 7A, 7F 47.00-47.30 pv. rich P1 - 8A	100
	-w.w.w.w	45.90 argillic strong 46.90 silicified strong py. rich	46,70-47.30 silicified strong	P1 - 9A, 9F, 9P PY	80 100
	- 14 " - 13 "	48.00 gray - light green tuff breccia	argillic silicified weak	P1 - 10P 48.00 qtz. vein	100
50	2# <u>2</u>	J. J		48.20 py. clay 30_	100

Table 4-21 Geologic Log of Drill Hole MJIE-P1 (2)

epth (m)	Geologie Column		Lithology	Alteration	Mineralization	RQ
:	11 & 11 H	51,50-51,70 52,76-63,05	py vein py stock work gray-whitish gray tuff breccia	51.50 51.60 51.70 py. vein 51.70 52.0 qtz. vein 0.5 cm silicified 53.50 clay P1 - 13X	51.50 py. vein P1 - 11A py 51.60 py. vein 0.5 cm P1 - 12A py 52.0 qtz. vein 0.5 cm P1 - 13A, 13P 54.70 clay + py	90 100 70 80
55	V V V V V V	55,50	flow texture fine tuff dark green andesite?	55.40 clay	54,90 - 55.50 py. rich	100 80 100
	v v v v	67.65	grayish green fine grain andesite			75 54 68
60-	v v v v v v v	61.60	brecciated	61.60 clay 10 cm	61.60 clay+py	100
65	v		grayish green fine grain andesite silicified weak	silicified weak	63.40 - 63.80 calcite veinlets	10 10 10
	V V V	65.20 66,20 67,50	andesite, silicified weak : py grayish green andesite	silicified weak 66.20 P1 - 31X	65.90 qtz. + calcite vein py. 67.50 calcite py. vein 2.0 cm	10 10 10
70	V V V V V V V V V V V V V V V V V V V	68.60 68.90 69.40 69.85	P1 - 38T green andesite ?	70.40	68.70 calcite 2.0 cm P1 - 14F, 14A 68.80 py. vein + qtz. + calcite 1-2 cm 69.40-69.75 silicified + py. 70.25 calcite vein 0.5 cm	10 10
	V V V	70.85 71.35 71.60 72.10	gray silicified rock grayish green andesite?	silicified strong	70.60 qtz. calcite 71.00-71.30 calcite vein 71.60 py. vein 72.10 py. vein 73.45 py. vein 73.50 py. vein	10 10 10
75	V V V	74.00 75.05	silicified rock dark green compact andesite?	silicified strong	74.00-74.60 py. veinlets P1 - 16A	10 10
	· ·	78.35 10	whitish gray silicified rock	77.00 clay 10 cm silicified strong	76.40-76.85 py. veinlets 0.5-1 cm 77.10-77.30 py. vein 78.25 qtz. vein + py. 1.0 cm	10 10
80	V V	79.25 79.40 80.95	dark green compact andesite ? whitish gray silicified rock	silicified strong	79.40 py. vein 0.2 cm	10
1	, v ,	82.70 clay co		83.90 argillic <u>~</u> 50_	py. rich	10 10 10
85	gefood filled for at two teams	84.90 84.90 85.60 85.90	gray - whitish gray silicified rock whitish gray silicified py	silicified strong	85.00 qtz, veln 0.2 cm P1 - 18A P1 - 19A 85.60 qtz, veln 0.5 cm P1 - 20A P1 - 21A P1 - 21A	10 10
		87.00 88.00 88.40 88.80	whitish gray silicified strong py vein rich silicified strong zone silicified zone silicified strong	silicified strong 88.40 argillic 88.90 argillic 10 cm P1 - 24X	py. veln rich P1 - 22A, 22P P1 - 23A P1 - 24A	5 6 7
90		90.20	gray qtz. silicified strong ∞- grayish green tuff breccia	89,40 argillic 5 cm	[F1-44A]	10 10 10
95		94.00 cla	,			10 10
1		∴ 21	i	P1 - 32X		10 10
100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		tuff breccia	silicified weak	99.70 qtz. calcite 0.5 cm	10 10

Table 4-21 Geologic Log of Drill Hole MJIE-P1 (3)

epth (m)	Geologic Column	Lithology	Alteration	Mineralization	RQD
		grayish green silicified fine tuff?			100
		102.50 Whitish gray silicified rock	1 10350	py. diss. weak	100
-		402 PF	argillic - silicified strong 104.40 argillic 2.0 cm	103.00 silicified qtz. 1.5 cm	43
105 -	<u> </u>	104.55 silicified medium	104,85 qtz. vein 0.5 cm		100
	~ <u>~</u> ~	whitish gray tuff breccia	35_		100
-	4 " 4				100
	Δ " Δ " " Δ	silicified medium		P1 - 42A	100
-	Δ Δ	gray silicified rock	108,90 - 109.40 silicified strong 109.70 argillic 10 cm	108.90 - 109.40 py. rich	100 86
110 -	, <u>/</u> "	110.15		110.15 qtz. vein	100
	۵" ۵" ۵" ۵" ۵" ۵" ۵" ۵" ۵" ۵" ۵" ۵" ۵" ۵	whitish gray-green		20_	100
	"	yellow fragments tuff breccia			100
	4	small fragments			100
115 .	۵ <u>" ۲</u>				100
		115.70	115,70 argillic 2.0 cm		100
-	- 03 60 - " - " 4" - "	116.60	116.60 argillic 1.0 cm		100
		118.25	117.80 ~ 117.90 silicified py.	P1 - 45A	100
-	" ~ _ ^		118.25 - 118.60 argillic	118.25 - 118.60 py. 119.20 calcite vein	58
120 -	^# & # ^# & # ^# C #	grayish green-light green andesitic tuff breccia		119.00 py. fragments	100
-	A # A				100
•	- cacoco	122.50	122.50 argillic weak		100
-			122,00 Bigino weak		100
405	رث " ثا " ئ				100
125	n u	125.50 grayish tuff			100
]	<u></u>	126.90			100
-	" <u>" " " " " " " " " " " " " " " " " " </u>	grayish-light green Iapilli tuff			100
-	- " - " - " - " - " - " - " - " - " - "	iapiii turi			100
130 -	и , ,				100
_	" " " "	130.50	130.50 argillic weak		100
	" ^ " _ '	132.40	132.40 argillic P1 - 33X		100
-	2 " 2 2 " 2 4 " 2	grayish green-light green Iapilli tuff - tuff breccia			100
	2 4				100
135 -	" <u></u> " "				100
•	<u> </u>	136.00 <u>J</u> 30_	136.00 calcite vein 0.7 cm	136.00 calcite vein 0.7 cm	100
	2 " 4	137.90			100
	A PROPERTY OF THE PARTY OF THE	137.90 fracture fine grain 138.80			50
140 -	ν ν ν	-/ 30_			100
-	V V	dark green compact	n-anhylitia		100
	V V V	prophylitic andesite	prophylitic		100
	v v	P1 - 40T			100
-	7.7.7.1	143.60 breccia	143.60 qtz, calcite vein 144.50 calcite vein	143.60 qtz. calcite vein 144.50 calcite vein	100 100
145	V V		177,00 COLORO VOIII	Guiore veni	100
	V V	ded one of the			100
	, v	dark green andesite			100
	V V				100
150	v v v				100

Table 4-21 Geologic Log of Drill Hole MJIE-1 (4)

epth (m)	Geologic Column	Lithology	Alteration	Mineralization	RQI
	<u> </u>	150.20 20_	150.20 clay 1 - 2 cm		100
f	. "		151.65 clay	151.65 py. diss.	100
İ	и Д и Д и Д	^{151.65} light green lapilli tuff fragment < 2.0 cm	101.00	, 101100 pg/10100	
-	" A " A	,			100
j	и 4 и 4 д				100
155	<u>п</u>				
-	<u> </u>				100
1	2 n 2 2 n 2 n				100
1	<u> </u>	158.30	158.30 calcite 0.2 cm	158.30 calcite 0.2 cm	100
-	<u> </u>	159.15-159.25		159.15 calcite 0.2 cm 159.25 calcite 0.3 cm	100
160		40 <u>.</u>			100
-	. v ` v	light green compact andesite			100
+	v v	ngnt green compact andesite	prophylitic		
f	v v		<u> </u>		100
1	. V	whitish gray argillic tuff	164.50-164.60 argillic P1 - 34X	1	100
165		165.25-165.35	164.75 argillic P1 - 25X	py. rich P1 - 25A	
†	Δ ₁₁ Δ	whitish gray tuff breccia	165,25-165,35 argillic + silicified P1 - 27X	P1 - 26A P1 - 27A	100
+	. 11	- lapilli tuff			100
1	2 2	grayish green tuff breccia			100
1	н Ди				100
170	 	170.10-170.20 · · · · · · · · · · · · · · · · · · ·		170.10 calcite vein 0.3 cm	
1	11	45_		170.20 calcite vein 0.3 cm	100
1		was deb was an Auff bassain			100
1	2 2 2	grayish green tuff breccia			100
†	<u>а</u> е				100
175	<u> </u>				
İ	н Δ н Δ Δ	grayish green tuff breccia			100
1	υ Δ Δ υ Δ	177.25 9 40_		177.25 calcite 1 cm	100
1	<u>u / u.</u> 4 &	178.35	£	178,35-178.45 py. rich fragment	100
-	<u> </u>	179.40-179.60	179.60 clay 0.2 cm	179.40 py. rich	100
180	<u>А. А.</u>				1
1	n	grayish green tuff breccia			100
f	n 4 n	181.90	181.90 clay 0.2 cm		100
†					100
t	0 <u>4</u> 0				100
185	<u> </u>				100
+	۷ ۷				100
t	4 4 H	grayish - light green tuff breccia			
i	4 4				100
†	Z , Z				100
190	11 4				100
f	11	grayish - light green tuff breccia	P1 - 35X		100
1	# <u>6</u> -5	grayish - light green tun breccia	192.50 clay 0.3 cm		100
1	н 📤 н			400.05	100
+	<u> </u>	193.95		193.95 qtz. vein 0.5-1 cm	100
195	11 - 3 11				1
1		.,			100
1	0 2 0	grayish - blueish green tuff breccia			100
+	- 4 - 4				100
1	أحرب دادي.	198.90	1	İ	100

Table 4-21 Geologic Log of Drill Hole MJIE-P1(5)

									
Depth (m)	Geologic Column		Lithology	Alteration	ı		Mineralization		RQ
	0 0 0 0 0 0 0 0 0	201.00 201.65	grayish green tuff breccia	201.00-201.65 argillic		201.00-2	01.70 silicified + py.	P1 - 24A	100 100
205 -	11 Δ 0 Δ 11 Δ 0 Δ Δ 11 Δ Δ 11 Δ Δ 11 Δ	203.50 203.70 204.00				203.50 203.70 204.00	qtz. vein 1 cm calcite vein 1 cm calcite vein 0.5 cm		100
	4 , 4 " 4 " 4 " 4								100
	Δ η Δ - n Δ - n η	207.30 207.70 207.90	grayish green fine tuff ?			207.30 207.70 207.90	qtzcalcite vein 0.5 cm calcite vein 0.3 cm qtz. vein 2 cm		10 10
210	" " " "	209.90 210.25	dark green andesite			210.25	calcite vein 10 cm	P1 - 29A	10
	_ n	211.50 212.30 212.40				211.50 212.30 212.40	qtzcalcite vein 1.5 cm calcite vein 0.2 cm calcite vein 0.2 cm		10 ⁰
215	<u>Z</u> 4 n A	213.70				213,70	calcite vein		10 10
3	<u> </u>	216.20 216.60 216.90	grayish green tuff breccia	216.20 clay		216.60 216.90	calcite vein calcite vein		100 100 100
220 -	Δ n Δ n Δ Δ n Δ n Δ n Δ n Δ n Δ n Δ n Δ	_	grayish-light green tuff breccia		P1 - 36X			:	10 10 10
-			P1 - 41T		;				10 10 10
-225 -	2 n 2 n 2 n 2 n 2 n 2 n 2 n 2 n 2 n 2 n	225,20 225,50	grayish-light green	225.50 clay 1 cm		225.20 225.50	calcite vein 1 cm calcite vein 1 cm		100 100 100
230			tuff breccia (fragments 3-5 cm)				- AMPANA		10 10
-	4	230.05	grayish-light green tuff breccia - lapilli tuff			230,05	calcite vein 1 cm		10 10 10
235	# & # 2 & u & 2 & u & 3		(fraagments 2-3 cm)						10 10 10
-	Z 0 A	236.90 237.20 237.50	green fine tuff?			237.50	calcite vein 5 cm		10 10 10
240-	н <u>А</u> н -		grayish-blueish green tuff breccis						10 10 10
245 -	. " & " & " & " & " & "	245.00				245.00	calcite 1 cm		10 10 10
		245.80 246.80	grayish green tuff breccia			245.80 246.80	calcite 0.5 cm calcite 0.5 cm calcite 0.5 cm		10 10 10
250	ے کی د	249.8		249.80-249.90 argillic	P1 - 37X				10 10

Table 4-22 Geologic Log of Drill Hole MJIE - P2 (1)

DEPTH (m)	Geologic Column	LITHOLOGY	ALTERATION	MINERALIZATION	RQI
-		Thin section : T brown - brownish red soil	X-ray defrac. : X	Polished : P Analysis : A Inclusion : F	
5-	\$ 7	whitish gray soft andesite			-
<u>!</u> !					
10- 10-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
15					
20-		18.50 purplish green andesitic lava		limonitic vein lets	
	, v	'> 20_ 22.00 - 22.30 clay breccia zone		20.20 limonitic 0.1 cm	
	, v	flow banded andesitic lava	23.45 - 24.80 weak argillic	22.50 limonitic vein lets 0.2 cm	
	. v v	23.45 compact lava pale grayish green		22.55 limonitic vein lets 0.2 - 0.4 cm	
25-	V V V V V V V V V V V V V V V V V V V	25.20 greenish gray compact andesite	24.80 - 28.30 - veŋ-weak-silicified + ergillic pyrite diss. 28.30 - 29.05 argillic medium - strong	27.00 limonitic vein 27.00 - 10_ 27.80 - 155_ limonitic vein	
	v v		29.05 - 30.95 argillic weak	- 15_	
30-	(2/2)	^{30,95} 30.95 - 32.60 breccia zone (breccia dyke) ^{32,60}	20.00 Grant Hour		
35-	*	gray massive compact andesite	weak argillic - silicified	pyrite diss. weak	
	1 1	35.70 - 36.00 auto breccia 36.50 brown tuff breccia fragment: max. 10 cm, gray - greenish gray		37.95 - 38.15 qtz. silicified breccie 18 cm - 40_ 38.60 white qtz. vein 2.0 cm	10
Ì		38.60 matrix : brownish ash, lithic, rather hard, compact massive	39.40 calcite vein	38.60 white qtz. vein 2.0 cm	9
40		brown - greenish gray andesitic tuff breccia		Constant von	10 9 10
45	61 #			43.30 calcite 2.0 cm	10
-	#				10
50					

Table 4-22 Geologic Log of Drill Hole MJIE-P2 (2)

n)	Geologic Culumn	LITHOLOGY	ALTERATION	MINERALIZATION	RQI
	11	greenish gray compact andesitic tuff breccia			95 100 95
		53.2		52.60 calcite qtz. vein 1.0 cm 53.20 calcite qtz. vein 2.0 cm	100
55	<u> </u>	54.2		54.20 clcite qtz. vein 1.0 cm	100
-		55.2 clay	55.20 argillic weak 6.0 cm	55.20 qtz. vein lets weak 1.0 cm	100
Ţ	A H A	greenish gray - brown andesitic tuff breccia		700 yls yst 0.7	100
F		58.3		58.3 qtz. vein 0.5 cm 58.6 calcite vein 0.2 cm	100
60	# 4 H 4 H 4	30.0		SSLE SUIDIO FOIL U.E OIL	10
F		60.55		60.55 qtz. vein 0.5 cm	9
Ī	11	greenish gray - brown andesitic		61.05 oqtz. vein 0.3 cm	6
ļ	11 🛆 11	tuff breccia compact			9
	8 A B				9
65=	1 A II	lapilli tuff			10
F	1	65.15 65.55		65.15 qtz. vein 0.3 cm 65.55 gtz. vein 0.2 cm	100
-	0 2 0	65.75 greenish gray tuff breccia		□ 80_ 66.70 qtz. vein 0.2 cm	100
-	ک ۱۱ ک ۱۱ ک ۱۱	greenish gray tun breedia		270_	9
1	6 H A				9:
70-	<u> </u>	Aller Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual			100
		70.6		70.6 calcite qtz.vein 0.5 cm	100
Ę	<u> </u>	71,7 72.0 gray compact andesitic tuff		71.70 calcite qtz. vein 0.2 cm	100
f	<u>V </u>	72.40 andesit dyke 7.0 cm			100
-	¥ ¥ ¥ ¥			73.24 calcite vein 0.5 cm 73.54 qtz. vein 3.0 cm	100
75	4 11 4	74.19		74.17 calcite vein 0.5 cm	100
	4 1 4 1 4 1	greenish gray - brown andesitic - tuff breccia		76.76 at voice and 4.0 and	100
-	1 <u>2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2</u>	76.75 77.05		76.75 qtz. vein pyrite 1.0 cm 77.05 40 qtz. vein 0.2 cm	100
	۵ ۱۱ ۵	greenish gray compact -		70.05	100
-		greenish gray compact - 79.15 tuff breccia		78.65 qtz. vein 0.4 cm	100
80				79.15 calcite qtz. vein 0.8 cm 80.05 qtz. vein 2.0 cm	90
+	1	80.45		80.45 qtz. vein 0.5 cm	100
L	11	82.45 - 82.65 clay zone with qtz. vein	82.65 cm arg. strong 82.65 m	82.45 - 82.65 qtz. vein with pyrite	9:
+	H & H &	Naha aan aa'ah aan aa aa aka	82.65 m 82.65 m	83.50 qtz. vein P2- 2A	100
F	11 & II & II & A	83.50 light greenish gray andesitic tuff breccia			98
85	s o s		◆84.50 m	85.15 qtz. vein 1.5 cm	100
1	<u>д</u> II А и Д II	greenish brown - gray tuff brecccia	\$54.50 III	85.25 qtz. vein 0.3 cm P2 - 1A	100
F	<u> </u>	87.0-87.10		87.0 - 87.10 qtz. vein 1.0 cm	100
+	<u> </u>	87.8 88.2		87.80 qtz. vein 0.5 cm	100
-	1 A A	gray - light brown tuff breccia		88.30 qtz. vein 0.6 cm 89.30 qtz. vein 0.5 cm	100
90		90.65 lapilli		90.55 qtz. vein 1.5 cm, 1.0 cm	100
-	-1-1-1	92.15 92.45		92.15 qtz. vein 1.5 cm 92.45 qtz. vein 1.0 cm	9:
1	<u> </u>	93.6 breccia arg.	02 6 oraillio	P2- 56A	100
1	2 11 2	·	93.6 argillic 94.85 - 95.0 argillic strong	04.80 etz voin 1.0 cm	90
95	vi _vi _vi	94.85-95 claay zone 95.26 - 95.66 qtz. vein	95.0 - 99.15 sili. strong	95.26-95.66 white qtz. vein 40 cm	1
	\overline{N}	95.0 - 97.15 silicified zone 95.26 - 95.66 qtz. vein	sili.	95.85 qtz. vein 2.0 cm	3:
1	ທຸດ ທຸດ ທຸດ	97.15 97.80 clay zone py rich	(97.75) 97.15 - 97.80 arg. strong	96.30_60qtz. vein 3.0 cm 96.70-96.90 qtz. + sili.	62
T	H _ B _ A	whitish gray tuff breccia	97.8 - 99.0 sili. weak	97.05-97.15 qtz. vein 10 cm 96.90	
- !-	<u> </u>	98.55 William Gray tun Dieccia	P2- 8X, 9X	P2- 3A-8A P2- 57A P2- 3P, 6P	72

Table 4-22 Geologic Log of Drill Hole MJIE-P2 (3)

		1	Table 4 22 Geolog	to Log of Dilli Flore Wi	12 (0)	Γ
DEPTH (m)	Column		LITHOLOGY	ALTERATION	MINERALIZATION	RQD
	\$ 1 0 4-4) 4	1	greenish grey tuff breccia			100 100
	a " = "	102.40	lapilli			100
	2 9 4 3 ⁸ 45	103.20 clay 103.70 clay + qtz.		103.20 argillic 10 cm 103.70 argillic		80
105	* & L				103.70 qtz.	90
105	4-1	105.80 clay		105.80 argillic 10 cm		100
	م ٦ د ن پ ۱۵	106.70	areanish arou levilli tuff		106.70 pinkish calcite 0.5 cm	100
	000	107.50	greenish gray lapilli tuff		107.5 calcite vein 0.3 cm	100
	ن راي	109.15		Propilitic	109.15 qtz. vein 0.3 cm	100 100
110	00 ° °	110.0			110,00 qtz. vein 0,5 - 1.0 cm	100
		110.6 110.8			110.60 calcite vein 0.5 cm 110.80 calcite vein 0.5 cm	100 100
		111.0 111.15 112.2			111.00 calcite vein 0.5 cm 111.15 pinkish calcite 1.0 cm	
-		112.3	lapilli tuff		112.20 pinkish calcite 1.0 cm 112.30 calcite 0.5 cm	100
	500	114.0	greenish gray tuff breccia	Propilitic		100
115	3013	115.65	<u> </u>			100
	4"3 4		groonish grov lanilli tuff			100 100
į	۵ م	116.65 117.75	greenish gray lapilli tuff		116.65 calcite qtz. vein 1.0 cm	100
	د اد	118,50			117.75 calcite qtz. vein 0.5 cm	100
120	2 2			Propilitic	118.5 qtz. vein 0.5 cm 119.25 celcite vein 0.5 cm	40
120	-	120.25 - 120.35 c	lay	120.20 - 120.60 argillic strong	120.60 calcite qtz. vein 120.25 - 120.35 pyrite weak	70
					120.20 120.00 pyrite wear	70
	-	122.40 clay 10 c	cm -			90
	9 -				}	20 75
125	<u>.</u> 4					
			green - light green lapilli tuff -			90 35
			tuff breccia			15
	" " ()				128.15 qtz. vein 1.5 cm	20
	# [←] -> _ △					25
130	ر داک	130.5		130.70 - 131.45 argillic - silicified	130.50 qtz. vein 1.0 cm 131.13 - 131.43 arg. + sili + qtz. vein green ep. ?	76
	o o o	130,7 131,45		strong 131.70 argillic 5.0 cm	131.13 - 131.43 arg. + siii + qtz. vein green ep. ? 131.17 qtz. vein 5.0 cm 131.32 qtz. vein 3.0 cm	45
	ا ال ک	131.70	green - dark green lapilli -		707.02 q.2. 707.1 0.0 07.1	74
	ا الله الله الله الله الله الله الله ال		tuff breccia			100
135	# # # _ \dagger					100
	<u>, _^ А</u>				135.86 qtz. vein 0.5 cm	100
	إِ الْ		al de constant 900			100
			dark green lapilli - tuff breccia	propilitic		100
	J 1	138.5			138.50 gtz. vein 0.4 cm	100
140	1 1				-	100
	2 ₁₂ 1	141.50			141.75 qtz. vein 3.0 cm pyrite (fine)	75
	" J"	-141.75	greenish gray andesite		, , , , , , , , , , , , , , , , , , , ,	100 75
	- ". 👌			propilitic weak		100
	R - R	144.08	greenish gray andesitic tuff breccia		144.08 qtz. vein 0.2 cm	100
145	<u></u>	145.55			145.55 qtz. vein 1.5 cm (white)	100
	1 4 1	145.65 146.00			145.65 qtz. vein 1.0 cm 146.00 qtz. vein 0.5 cm	100
				propilitic weak		100
			dark green andesitic tuff breccia	proprieto trout		100
150						100
						+

Table 4-22 Geologic Log of Drill Hole MJIE-P2 (4)

OEPTH (m)	GEOLOGIO COLUMN		LITHOLOGY	ALTERATION	MINERALIZATION	RQD
	1 4 #	150.8		prophylitic	150.8 qtz. vein 0.5 cm	100
+	1 4 #	700.0	dark green tuff breccia	propriymic		100
+		152,12 152,38			152.12 qtz. vein 0.3 cm	100
	1 4 1	50_ 153.24	light green fine grain andesite	152.31	152.32 qtz. vein 0.2 m 153.52 qtz. vein 2.0 cm	95
	1			silicified 152.24	153.6 qtz. vein 1.0 cm	100
	4 H Z				154.85 gtz. vein 0.4 cm	80
155	1 , 1		P2-34 T		50_	
1	* <u>*</u> 11		L			100
-	1 <u>4 B</u>	156.8 157.4	•	P2-33X		100
1	1 4 1				156.8 qtz. vein 2.0 cm	90
	- B - C - H		light green tuff breccia		157.4 50 qtz. vein 0.5 cm	80
1		159.66		Prophylitic	159.66 qtz. vein 6.0 cm (white) P2-11A	100
160	1 2 4	160.09		, ropriyino	160.09 qtz. vein 0.5 cm	
1	∠ ∠	161,50			161.50 otz vein 4.0 cm (grav) P2-12A	100
4	4 4	162.27			10.100 412.70m 110 0111 (grey)	100
	v v v		light green - gray fine grain andesite	162.20	162.20 qtz. vein 162.55 qtz. vein 0.3 cm	100
	v v v	163.90		silicified	162.70 gtz. vein 2.0 cm	100
]	<u> </u>	164.55 164.85		164,85 argillic strong + silicified	163.90 qtz. vein 0.5 cm	95
165			light green - gray fine tuff ? andesite ?		165.10 - 165.20 qtz. vein 10.0 cm 165.3 qtz. vein	68
1			andesite ?	166.10 argillic	165.68 qtz. vein 1.0 cm 166.10 qtz. vein 2.0 cm	95
1	V V V	166.7 167.3			166.70 qtz. vein 5.0 cm	
	# V #	167.9	alliation and		167.30 qtz. vein stock 7.0 cm	100
ļ		168.7	silicified rock	167.9 - 168.7 Silicified strong 168.7 - 169.0 argillic strong	168.13-168.27 qtz. vein 14.0 cm P2-14A P2-	- 14X ₁ 00
	1: i	169.0	clay P2-50 T	Troon reads drawns and reads	169.40 qtz. vein 8.0 cm P2-58A P2-15A	100
170					P2- 16A	
1	2 4 2 4	171.45	breccia			100
1	4 # 4 F					100
}		172.0 173.0	clay zone	172.60 - argillic 10 cm	173.0 - 174.0 qtz. + argillic	100
]		174.0	oldy Lone	177.0 - 174.0 argillic strong		100
175	2 H A	174.45 174.80		174.45 - 174.8 argillic	174.90 qtz. vein 1.0 cm	100
	۱۱۵ م					100
Ī	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	176.0	silicified rock	176.3 - 177,0 Silicified argillic strong	176.0 qtz. vein 0.5 cm P2- 17A P2	- 17¥ 100
†	W W W W	177.0	argillic rock	177.0 - 178.35	178.35 - pyrite rich P2- 18A	
1	**************************************	178.35	-	178.35		100
+	<u> </u>	178.75	silicified rock	silicified strong 178.75 argillic - silicified	P2-19A	95
180	<i>////</i> //		silicified rock	170.70 arginic - Sincined		50
j	44/1		whitish gray	silicified strong	181.35 - 181.80 qtz. P2- 20A	40
	W 6 0 0	181.35 181.80		181.35	182.0 pyrite rich P2- 21A	20
1		182.10 182.55	qtz. + silicified + argillic zone	Silicified - qzt argillic	182.10 - 182.55 qtz. vein P2-22A	50
1		183.10 183.55	(white qtz. whitish gray silicified)	zone	183.10 - 183.55 qtz. vein P2 - 23A	
ł	u in in in	184.20 184.44	gray argillic zone		184.20 - 184.44 qtz. vein to P2-	- 25P35 - 25F40
185	* * * * *	184 75			184.80	
		186.15	silicified + qtz. + argillic	P2-32 X	186.35 qtz. + silicified + argillic	20
]		100.15	silicified + argillic	Silicified + qtz argillic		
1	, w		-	Sincineo + qtz arginic		
†	u u	105				
1	V V	188.90	dark green andesite	188.70	1	
190-	v v	190.0				
j	4 2 4 2 2 4 2 8		light green - gray lapilli tuff			
}	W 4 B 4	191.70	clay calcite			
1	<u>д ч с в</u> _и г и г					
+	2 # 2 #					
1	8 2 8 2 2 8 2 8					
195	R - 1 - 2	195.0	light green fine tuff			
	, v v	195.25	dark green prophylitic andonito			
Ì	, ,		dark green prophylitic andesite			
1	v v		(· - 42 ·)			
1	v v	198.35	,		198.15	
		192.20	qtz. vein silicified strong zone	192.20 - 192.45 argillic strong 192.45 - 192.75 silicified strong	198.35 qtz. vein + silicified pyrite Py	,
	ທູ່ທູ່ທ					

Table 4-22 Geologic Log of Drill Hole MJIE-P2 (5)

	·		Table 4-22 Geolo	gic Log of Drill Hole is	1012 1 2 (0)	1
DEPTH (m)	Geologic Column		LITHOLOGY	ALTERATION	MINERALIZATION	RQD
	- 6 / L	200,60 201,25	dark gray silicified rock dark gray argillic rock	200.60 qtz. silicified strong 	200.60 qtz. silicified strong P2- 37A 201.25 qtz. vein 10 cm P2- 38A	50 70
	/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	203,45	gray silicified breccia	silicified + argillic medium	P2- 39A P2-40A 203.45 white qtz. vein 5.0 cm	70 100
205_	32	203.71	white gray silicified breccia	Prophylitic	203,95 qtz. vein 2.0 cm	100
	, , , , ,	205,20 206,30	greenish gray andesite	silicified weak	205.20 qyz. vein 1.0 cm 206.30 qtz. vein 3.0 cm 250_	100 100
	Entraces vineas	207.65 208.05 208.43 208.70		D. J. W.	207.65 qtz. vein + silicified 208.05 P2-43A 208.49 - 208.49 qtz. vein 208.70 qtz. vein 1.0 cm	100 100
210	"("	209.65	green andesitic tuff breccia	Prophylitic	209.65 qtz. vein 1.0 cm 210.75	100
	· · · · · · · · · · · · · · · · · · ·	211.25 212.50	breccia zone 5.0 cm	213.80 - 215.50 argillic weak	211.45 - 211.57 qtz. vein py. py 212.50	100
0.15	·	213,80	compact andesite greenish gray	Prophylitic P2- 53X		95 100 60
215_			whitish green tuff breccia			60 100
	() () () () () () () ()	217.30	black andesitic green flow bound fine tuff			100 100
220 -	- v			Prophylitic		100
		222.15 222.55	qtz. silicified zone breccia	222.15 - 222.65 silicified strong	222.15 - 222.55 qtz. + silicified zone	100 100 100
	V V V	222.30		Prophylitic	224.10 qtz. vein 0.5 cm	100
225 -	, , , ,		dark green - green compact andesite			100
		217.50	tuff breccia		228.0 qtz, vein 0.2 cm	100 100
230 -	, , , , , , , , , , , , , , , , , , ,			Prophylitic	229.17 qtz. vein 1.0 cm	100
	,		greenish gray compact andesite		232.71 - 232.93 qtz. calcite 2.0 cm	100
			dark green andesite	Prophylitic		100
235 -	V V V		P2- 51T	P2 - 52X		100
	, , , , , , , , , , , , , , , , , , ,		dark green andesite			100
<u>;</u>			auto brecciated andesite			100
240	,	240,45	greenish - dark green	P2- 54x		100
	1 1	243.0	andesitic tuff breccia			100 100 100
245_	<u> </u>	244.20 244.45	silicified tuff breccia 45.40 silicified tuff breccia	244.20 - 244.45 argillic strong 244.45 - 245.20 silicified weak 245.20 - 245.40 argillic P2- 44X	245.70 P2-628 D0 444	75 60
	S S S S S S S S S S S S S S S S S S S	245.70 246.90	clay zone with silicified rock	245.40 - 245.70 silicified weak 245.70 - 246.90 argillic silicified 246.90 -	rg.	0 70
050		247.50 248.40 249.30	dark gray silicified zone with pyrite	silicified strong 250.00 sili 249.40 - 249.60 argillic	247.50 qtz. 248.40 qtz. 248.60 qtz. 249.80 qtz.	80
250		249.40				1

Table 4-22 Geologic Log of Drill Hole MJIE-P2 (6)

DEPTH (m)	Geologic Column	LITHOLOGY	ALTERATION	MINERALIZATION	RQD
255		250.50 silicified rock 250.80 tuff breccia light green andesite 252.40 light green - gray andesitic tuff	250.50 silicified strong 250.50 - 250.60 argillic P2 -55X	250.50 silicified qtz. pyrite P2- 19 AP P2- 63 A P P2- 63 A P P2- 63 A	
—— <u>2</u> 60—					

Table 4-23 Geologic Log of Drill Hole MJIE - P3 (1)

DEPTH (m)	Geologic Column	LITHOLOGY	ALTERATION	MINERALIZATION	RQD
		s oil			
5-	Δ	7.00 greenish gray andesitic tuff breccia			74 38
10-		breccia _{12.80} auto breccia 3.0 - 3.5 cm	10.40 - 12.20 argillic weak		80 82 83 87
15- 15-		greenish gray andesitic tuff breccia	argillic weak	1410 calcite vein 0.5 cm 15.60 calcite vein 0.1 cm 16.40 calcite vein 0.1 cm	88 88 89 89
20-		grrenish gray andesitic tuff breccia	argillic weak	18.80 calcite vein 0.3 cm	91 88 92 90
25_	1/	^{23.20 - 24.20} gray massive compact auto breccia _{24.20 - 24.50} andesitic brownish tuff breccia	P3- 8X	22.20 calcite 0.3 cm	88 80 100
-		massive andesite 26.50 - 26.70 flow banded andesite 26.70 28.00	28.00 thin clay	!	100 100 100 100
30-	70 -	greenish gray - brown andesitic tuff breccia 31.30 clay greenish gray - brown andesitic	31.30 - 31.70 argillic strong P3- 9X	29.90 calcite 0.2 cm 30.50 calcite 0.3 cm	100 100 60
35-	0.0	tuff breccia 33.60 clay 34.70 - 34.90 clay zone 35.40 - 35.60 clay zone	33.00 clay breccia 33.60 argillic 1.0 cm 34.70 - 34.90 argillic strong	33.32 calcite qtz. 0.5 cm 33.55 calcite qtz. stock 34.10 calcite 0.3 cm 34.30 qtz. calcite 0.5 cm 34.70 34.90 qtz. vein > 1.0 cm 35.40 calcite 0.5 cm	77 77 72 40
		whitish gray andesitic tuff breccia		36.05 calcite 0.5 cm 36.20 calcite 0.2 cm 36.30 calcite qtz. 0.3 cm 36.70 calcite 0.5 cm 37.10 calcite 0.5 cm 37.50 calcite qtz. 0.5 cm 37.80 calcite qtz. 0.3 cm 38.80 calcite qtz. 0.3 cm	83 87 85 57
40-		41.40 clay breccia zona 42.60	41.40 - 42.60 argillic strong P3 -3X	93.10 calcite qtz. 2.0 cm P3- 10A P3- 1A P3- 2A P3- 3A 43.25 qtz. vein lets 4.0 cm	100 100 58
45-		43.32 - 43.55 cley zone Whitish gray andesitic tuff breccia dark grey - green compact tuff compact andesitic tuff breccia	43.32 - 43.55 ergillic strong P3- 6X P3- 7X	P3- 4A P3- 4F P3- 4P P3- 11A 49.60 qtz. vein	58 100 100
		dark green massive andesitic tuff breccia		90_ 49.10 qtz. vein 0.2 cm	95 83 100 95

Table 4-23 Geologic Log of Drill Hole MJIE-P3 (2)

EPTH (m)	Geologic Column		LITHOLOGY	ALTERATION	MINERALIZATION	RQE
	Δ , "					100
	" \(\(\) -"		dark green tuff breccia massive			90
						100
	" <u>\(\(\)</u>	54.50		prophylitic weak	54.50 calcite vein 0.3 cm	100
55 -	" D		greenish gray andesitic tuff breccia		56.00 calcite qtz. 0.5 cm	100
	10°		greenien gray andesido tan brecola		52.50 calcite vein 0.5 cm	100
	• 0 √	58,35			58.7 calcite 0.7 cm	100
	v v	59.70	greenish gray compact andesite	prophylitic weak	59,70 calcite 0.5 cm	100
60 -	v v	61.00	**************************************			90
	°Д, О		greenish gray andesitic tuff breccia			100
	00.	63,65	greenish gray andesitic tun breccia		63.25 - 63.65 calcite vein 0.5 cm	90
	, v A			prophylitic weak		90
65 -	,					100
	V V	66.50	compact andesite			70
	v v v	67.80	·			80 95
_	0,0		dark green andesitic tuff breccia	prophylitic weak	69.60 calcite 0.2 cm	95
70	, , ,					100
	, v Q					100
	· \		dark green - gray andesitic tuff breccia	prophylitic		100
	~~ <u>~</u>		•			100
75	700					100
	N V V		dark green andesitic tuff breccia?			100
j	'A"\			prophylitic		100
80-		79.55	clay zone	79.55 - 80.60 argillic strong	py weak	44
00-	Δ' '	80.60			80.80 calcite 0.2 - 0.5 cm	60
] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		green - dark green andesitic tuff breccia?		90.7 ata vaia 40 am	100
ļ	00	82.70	tuli bieccia i		82.7 qtz. vein 10 cm 82.80 pyrite weak	100
85 -	, ,			Prophylitic		100
	'D.					100
	V D V	86.70	green - dark green andesitic			100
	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		lava breccia ?		86.70 qtz. vein 0.5 cm 86.80 qtz. vein 0.5 cm	100
20	$\mathcal{A}_{\mathcal{A}}$			Prophylitic		100
90 +	→ V/11	91.85		91.85 clay	91.85 clay with qtz.	100
	764		dark green andesitic breccia		11.00 Oldy Hilli ytz.	100
	` ``\		-			100
OF	$^{\prime}$ \bigcirc $$ $ $			Prophylitic	·.	100
95	<u>~</u> , v					100
	`Δ , 'Δ'		dark green andesitic tuff breccia			100
}	Δ,		and ground and outle of coole		}	80
ł	" \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					80

Table 4-23 Geologic Log of Drill Hole MJIE-P3 (3)

EPTH (m)	Geologic Column	LITHOLOGY	ALTERATION	MINERALIZATION	RQD
		HQ 	P3- 12X		100
	•	₩ NQ			100
	' <u>\</u>	dark green lapilli tuff			80
	۵۵			104 1E aplaita vair 0.2 am	100
105-	"Δ		prophylitic	104.15 calcite vein 0.3 cm	80
	_ * A				70
	, 4:	dark green lapilli tuff breccia			100
	۵ , ۵	dan green apin an breesa			100
	"				100
110-	v v	109.55	prophylitic		
	V V	greenish gray andesite	•		70
	Δ "	112.50			100
	. △				100
	Δ "	greenish gray - brown tuff breccia	prophylitic		100
115-	' A		ргорпушо		100
	. 4				100
	Δ "	tuff breccia			100
	" A				100
	, 🛆		prophylitic		100
120-	_				100
	" A	121.50			100
	, 4				100
	Δ "	greenish gray - green andesitic tuff breccia			100
405	" A	fragments brown - light green color 0.3 - 5.0 cm	prophylitic		100
125			Maria Maria		100
					100
	" △				100
	, 4				100
130_	Δ *		prophylitic		100
	۱۱ ک				100
	н 🛆				100
	Δ ¹	133.10			100
	v v	green - light green massive andesite			100
135-	v v	P3- 19T	prophylitic		100
	V V				100
	v v				100
	v v				100
	v	compact andesite (chlorite spot)	prophylitic		100
140-	V V		ргорпунио		
	\				100
	, , ,				100
	, v	greenish gray compact andesite			100
	V V		prophylitic		100
145-	V V		ρισμιγίασ		100
	v v			146.70 silicified	100
	, v ,	greenish gray compact andesite			100
	V V	,		147.20 calcite	100 60
	v v		prophylitic		100
150	v v		L L J		

Table 4-23 Geologic Log of Drill Hole MJIE-P3 (4)

DEPTH (m)	Geologíc Column		LITHOLOGY	ALTERATION	N	MINERALIZAT	ION	RQD
	V V V	150.50	andesite		P3 - 13X			100
								100
	, '		green lapilli - tuff breccia (fragments brown - dark green)					100
	٠, ١		D 2 - 3 cm	prophylitic				100
155_								100
								100
	۵",		green massive lapilli - tuff breccia					100
	" 🛆			prophylitic				100
160_	H H							100
	۵, ۰		and the second s					100
-			green massive lapilli tuff breccia					100
	 \			prophylitic				100
165_	. 4			propriyma				100
	" ۵. " ۱							100
	\$3Ph	167.00 167.60	breccia zone					100
		168.50	green fine tuff					100
170_	1 1			prophylitic				100
			green tuff breccia					100
-	۵.	172.85		1 -	P3 - 16X		P3- 16A	100 50
	<u>'</u> ۵,۵,	172.85 173.25 - 174.03	argillic weak	172,85 - 173,25 argillic wear		172.85 - 173.25 py	P3- 20A P3- 17A	40
175_		-174.03	green clay zone	174.03 - 175.55	P3 - 17X	174.03 - 175.55 py	P3- 21A	40
	- A	175.55	fine tuff	argillic calcite			P3 - 18A	20
	· .		green tuff breccia					100
•	. 4		green an breeda					100
180_	4	179.90		prophylitic		198.80 calcite		100
	9.0	180.80		180.80				90
	۵, ۱	182.50	green tuff breccia	ergillic weak			•	90
•	' 4	182.50 182.90	argillic breccia	182.90				90
185_	۵.',			prophylitic				100
100_	ٔ۵٫۵٫							100
	10/10/0		breccia					70
	4		green massive tuff breccia					100
į	" \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			prophylitic				100
190_	" 4			FE. () 100				100 90
į	٠, ١		green massive tuff breccia					100
+	"\alpha" \alpha"							100
				prophylitic				100
195-	۵,۵,			propriyatio				100
4	740 n n		breccia					100
•	4,4,		green andesitic tuff breccia			thin calcite vein		100
•	۵,۵,			_				100
200	0.0			prophylitic	P3 - 14X			100

Table 4-23 Geologic Log of Drill Hole MJIE-P3 (5)

	r		1 4510 4 20 00010	JIC LOG OF DAIL HOLE IN	10.2 1 0 (0)	Т
DEPTH (m)	Geologic Column		LITHOLOGY	ALTERATION	MINERALIZATION	RQD
	ا ۵ ا ۵	200.70	green tuff breccia			100
	· ·		1. 1			100
	· , ·		dark green compact andesite			100
	v .					100
205-	, ° ,	204.70		prophylitic		100
	414	45_ لا	light green tuff breccia P3-22T			100
	v , v	206.35				100
	V . v		dark green andesite			100
	1/VZV_	-		muna mba aliki a		100
210-	<u> </u>	fracture		prophylitic		70 15
	37		green w grovieh andesite			65
	730		green = grayish andesite			100
	v v					100
	V V					100
215-	V V	-		<u> </u>		100
-	, , ,					
	v		dark green andesite massive			100
	\ \ \ \					100
	V V					100
220-	V V					100
	, v		dark green andesite			100
	v		14,11 9,1441, 41,1441			100
	, v					100
225.	v .					100
	v v	200 20			226.30 calcite vein 0.5 cm	100
	\	226.30 226.30 227.00	green fine grain andesite			100
	v v	227.00				100
	V V	229.00	229.25-229.40		229.00 calcite vein 0.3 cm $\stackrel{\searrow}{}$ 50_ 229.25 calcite vein 0.5 - 2.0 cm	100
230	V V V	229.55 230.30	dark green compact andesite		229.55 calcite vein 0.5 cm > 30_	100
	V V		grayish - dark green andesite			100
-	V V		grayish - dark green andesite			100
	v					100
	v v			235.50 argillic 0.5 cm		100
235-	v v					100
	\\\\	235.90	dark green andesite			100
	V V	236.75				100
	v v		grayish green andesite			100
240-	v v		g, g			100
∠40-	V V				244.20 white who was 5 . 2	100
	*****	241.20 241.63	qtz. vein + silicified 10 - 15 cm clay	241.30 - 243.63 argillic zone	241.20 white qtz. vein 5 - 8 cm py P3- 23A	45
	ر مورات م	242.50	core broken	242.50 - 242.85 argillic weak	1.5.2071	55
	v	242.85				60
245.	v v	244.50		244.50 argillic		50
	(4/1)	245.05	fracture zone	245.30 - 246.35 argillic weak	245.65 qtz. vein 0.5 cm py 246.85 qtz. vein 0.5 cm	25
	V V	246.35 246.05	dark green andesite		246.85 qtz. vein 0.5 cm	60
	۷ ۷ ۷ طاخالت	248.00	grayish green andesite dark green tuff breccia			68
-	V V	1 2,3,50	grayish green andesite	P3- 15X	244.89 calcite vein 243.65 - 244.65 calcite vein 0.3 cm	90
250	2.20	249.50	dark green tuff brecciaa	P3- 15X		100

Table 4-24 Geologic Log of Drill Hole MJIE - P4 (1)

m)	Geologic Column	Lithology	Alteration	Mineralization	RQ
		brown soil			
		yellowish brown soil			
5	<i>∞</i> 0, \$	470			
+	Z Z Z	brown weathered andesite			
1	000				
ļ					
10					
1		brown weathered andesite			
1					
15	To the state of th	1580 cilicified zone brecciated	15.80 - 16.80 m silicified strong	15.80 - 16.80 m qtz. stock work py diss.	
		silicified zone brecciated brown andesite			3
ţ	, , , ,	grayish - blackish green compact andesite		limonite	9
20				innomie	20
ł	V V	20 60			3
]	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	weathered andesite			
}		hlusiah avay avaan navahuvitia andasita 2		limonite	20
25	, , , ,	blueish gray - green porphyritic andesite?			41
]	\$\$\$\$\ \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				50
†					41
}	v v v				100
30	. , ,	green porphyritic andesite ?		-	10
	<u>,×,×,</u>	32 00			30
ŧ	. v v	green - dark green andesite	<u> </u>	33.10	100
35	· · · ·	fine grain andesite	silicified weak	7	100
		35.50 fracture zone			40
ŧ		ளர் gray - whitish gray silicified rock	silicified medium - strong		3:
		(andesite)			5:
40		silicified rock	39.35 - 39.90 m silicified strong	39.35 - 39.90 py rich	2-
	> / >	ີ gray - whitish gray andesite	silicified + argillic 42.45 - 42.80 argillic weak		1:
1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	gray - whitish gray andesite			1:
ļ	· v · v	ಚಾಖ gray - light green andesite			6
45	v v	4929	P4 - 7X		10
]	Δ Δ Δ Δ Δ Δ	green - dark green tuff breccia			10 5
1	Δ Δ Δ				100
- 1	^ ^ ^ * -				100

Table 2-24 Geologic Log of MJIE-P4 (2)

Depth (m)	Geologic Column	Lithology	Alteration	Mineralization	RQD
· · · · · · · · · · · · · · · · · · ·	Δ Δ	grayish green tuff breccia			100
	Δ " Δ	fragment 3 - 5 cm			100
	۵ " ۵				100
	ے "				100
55	۵ " ۵				100
	۵ " ۵				100
	Δ Δ	56.20 56.70 \(\sqrt{40}_\) clay	56.20 - 56.40 argillic weak		88
•]]	340_ 5107	56.70 argillic		100
•	Δ . Δ	green tuff breccia			100
60	Δ Δ	, and the second			100
60	Δ " Δ				100
	۵ " ۵				
	۱.,				100
	<u>م</u> م	green tuff breccia			100
	Δ	(fragments brown-dark green)			100
65	Δ Δ				100
	Δ Δ				
	Δ " Δ	green tuff breccia			100
	Δ Δ				100
70	ω Δ				100
70	, A				100
	Δ , Δ	green - grayish green tuff breccia			
	Δ Δ	groom grayion groom tan zhooda			100
	v " v	73.00	P4 -8X	73.00 qtz. vein 1.0 cm	100
	v v	grayish green - green andesite			100
75	v v				
		76.10 76.40 √₂₀ clay	76.40 clay	76.10 qtz. silicified vein 1.5 cm py. diss.	100
	y/y//	blueish green fine grain andesite	10.40 Clay	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100
	<u>////</u>	auto breccia	silicified weak - medium	P4 -6A	100
		^{78.60} silicified zone ^{79.05} slueish green fine silicified rock		78.60 - 78.90 qtz. silicified py. rich	100
80	V △ V		<u> </u>	79.05 silicified + py vein 2.0 cm	100
	Δ۷Δ	^{80.70} blueish green breccia andesite		80.10 qtz. vein 0,5 cm 80.70 qtz. + py. vein 2.0 cm	
	V	82.00 - 82.40\20_ clay 82.60 blueish green fine tuff	82.00 - 82.25 argillic	82.00 - 82.25 silicified vein py. rich 82.40 qtz. vein 3.0 cm	100 56
	10 10	argillic rock	82.60 - 83.20 argillic argillic weak - medium		100
	† v ^ v	green brecciated andesite	V 25		100
85	Д V Д V V	blueish green fine grain andesite		85.00 qtz. vein 0.5 cm	100
	V V	86.30			100
	ļ v	dark green breccia andesite			100
	V V	blueish green fine grain andesite			
	v	epidote rich			100
90	V A V	dark green breccia andesite			
	V V	dark green prophylitic andesite?			100
	V V		prophylitic		100
	v v	_{93.10} flow band fine tuff			100
		blueish green fine tuff epidote spot			100
95		05.50			100
	1	^{95.50} breccia ^{96.10}			
	V V	green - dark green prophylitic andesite	prophylitic		100
	v v				100
	V A	^{98,90} dark green andesite breccia	D4 6V		100
100	v v	99.80	P4 -9X	98.90 qtz. epidote vein 1.5 cm	100

Table 4-24 Geologic Log of Drill Hole MJIE-P4 (3)

epth (m)	Geologic Column		Lithology	Alteration	Mineralization	RQI
	v v v	100.65	dark green andesite epidote rich		100.65 qtz. vein 1.0 cm	100
	v (V) v v v v					100
	v 🐶 v		dark green andesite (auto breccia)			100
105	V V V					100
	v					100
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					100
•	[v , v , v	109.00⅓ _{30_}			109.40 qtz. vein 0.5 - 1.0 cm	100
110	V V V	109.40 109.65	grayish green andesite		109.65 qtz. vein 0.5 cm	100
	V V V	111.20			111.20 qtz. vein 0.5 cm 111.65 - 112.00 py. diss.	100
	V XV V	111.65		111.65 argillic weak	777.00 - 772.00 py. aloc.	100
,	*		grayish green auto brecciated andesite			100
115	V				•	100
	, v v v		auto breccia andesite epidote rich			100
	V V V V V V V V V V V V V V V V V V V	116.50 117.00	fine grain andesite breccia andesite			100
	v s	118.10	fine grain andesite			100
120	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		green auto breccia			100
	V V V	120.70	andesite		120.70 calcite 1.0 cm	100
v V	V V V/V	121.75	dark green brecciated andesite		120.85 calcite 0.5 cm	100
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		epidote	prophylitic		100
125	*****	r				10
120	v v					100
	<u>√√√</u> √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √	126.70	breccia		126.70 calcite 0.5 cm	10
			dark green andesite			10
400	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	,		P4 -10	X 130.00 calcite 0.5 cm	10 10
130	V V V					10
	v v					10
		132.60	breccia		132.60 calcite 0.5 cm	10
	V V V	,			135.00 calcite	10
135	V V V V V V V	135.95		135.95 - 136.13 argillic P4 -15	X 135.95 - 136.13 py. rich P4-1A	10
	V ⟨ŷ	136.13	dark green andesite	14-10		10
			auto brecciated			10
	Z N					10
140	V 📎					10
	W V	142.00			142.00 calcite 0.5 cm	10
	V V V	1				10
	V V V		dark green andesite			10 10
145						10
	*	'				10
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		dark green andesite			10
	\[\frac{1}{2} \frac{1}{2} \fra	√				10

Table 4-24 Geologic Log of Drill Hole MJIE-P4 (4)

Depth	Geologic Column	Lithology	Alteration	Mineralization	RQD
(m)	v v				100
	\ \ \ \ \ \ \				100
	V V	dark green andesite			100
155	v v		Prophylitic		100 100
	, v	156.30	156.30 - 156.90 P4 - 16X		100
	v v	silicified zone	silicified strong	156.39 - 156.90 py. rich 156.90 qtz. vein	100
	v v	light green fine grain andessite	prophylitic		100
160	v v		ргорпунко		100
	V V	161.30			100
	v	dark green andesite			100
		163.15\ _{50_} tuff breccia 164.30 _{30_}	prophylitic		100
165	v v	~ 30_			100
	\				100
	v v	dark green andessite			100
170	V V		prophylitic		100
	V V				100 100
		dark green andesite			100
	\ v \ v		prophylitic		100
175	V (V)		ргоргунас		100
	(5)	177.00		179.00 calcite 0.2 cm	100
	V	dark green andesite		179.00 Calcile 0.2 Cili	100
180		auto breccia	prophylitic		100 100
160	14/3				100
	200	dark green andesite			100 100
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	auto breccia			100
185		185.40 \ 20_	prophylitic	185.40 calcite vein 1.0 cm	100
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	· 20 <u>.</u>			100 100
		dark green andesite			100
	VV		prophylitic		100 100
190	V	dark graen andosite	P4 - 12X		100
		dark green andesite auto breccia			100
	(V)				100 100
195	[V: V		prophylitic		110
	v v				100 100
	v v v	197.65 198.15 fine grain andesite			100
	≥ V ∠ V∆		prophylitic		100
	SCHWERSH		propriyatio		100

Table 4-24 Geologic Log of MJIE-P4 (5)

Depth (m)	Geologic Column	Lithology	Alteration	Mineralization	RQD
	v v v				100
	[,	gray - light gray tuff breccia andesite			100
1	-7v.	g.u,g.u g.u,			100
Ī	v ".v	20110	prophylitic		100
205	V V V	^{204.10} andesite ^{204.65}	prophylitic		100
205	v v				100
Ī	v v	dark green andesite			100
Ī	v v	g. C. C. C. C. C. C. C. C. C. C. C. C. C.			100
	v v	208.55		208.55 calcite vein 0.5 cm	100
	v v	' 45_	prophylitic		100
210	v v	dark green andesite dyke ?		210.10 calcite vein 0.5 cm	100
-	v				100
-	, , , ,	212.35 ₅₀			100
	. 4 .	green tuff breccia			100
045	4 " 4				100
215	2 " A				100
	4 " 4				100
	Δ " Δ	green - dark green tuff breccia			100
•	4 . 4				100
	۷ " ۷				100
220	<u> </u>		P4 - 13X		100
-	†: 4	green - dark green tuff breccia	-		100
	L * 4	lapilli tuff			100
	- · · ·				100
	4 . 4	tuff breccia			100
225	i " i				100
	v v	226.00 fine andesite		226,70 py. vein 0.2 cm	100
	v	grayish green - light green			400
	- v v	228.35 fine grain andesite ? 228.35	228.35 clay 0.2 cm		100
	v v	228.35		228.65 calcite vein 0.5 cm	100
230	# 				100
		grayish green tuff breccia			100
	4 4 2		232.20 clay		100
		234.50			100
	+ v v	gray fine grain andesite			100
235	Vv	235.45			48
	4 4 3	lapilli size fragment			100
	1 4 n				74
		grayish green tuff breccia			64
	" 4"	3 239.65	239.75 - 241.10 silicified + argillic	238.65 calcite 0.2 cm P4 - 4A 238.75 py. P4 - 5A	100
240	S. S. S.	silicified argillic zone py diss.	240.00 argillic P4 - 17X		77
	" " " " " " " " " " " " " " " " " " "	241.05 grayish green tuff (lapilli)		-' 240.70 qtz. py.	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	fine grain andesite	P4 - 14X		100
	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	- 243.60 auto braccia			100
	V V	^{243.60} auto breccia ^{244.30} grayish-light green andesite	243.60 - 243.80 argillic		100
245	V V	245.30 5 ₅ _			i
	1 4 4	grayish green tuff breccia			81
	1 4 .	grayion groom tan brooda			100
	-	248.30		248.40 silicified + qtz. vein 10 cm	65
	ļ- <u>*</u>	grayish green tuff breccia			100
	4 . 2	1	i	1	

	Depth(m)	Log	Geology	Alteration and Mineralization	RQD	Samples
_						
_			Soil(brown)	(none)		
_	3.90	0000	T. CC. 1	weathered (kaolinized)	23	
5 —	5. 80	^ ~ ~ ~ ~ ~	Tuff breccia? White bleached rock	weathered (Naoriinzed)	95	
_	gradual		Tuff breccia? (red white banded texture.	weak argillic zone (weathered hematitic	98	
_		0 (10)0	secondary, due to weathering)	red FeOx & silicified laminae)	82 95	
10-		1,11	Tuff breccia?		90	
"-		1000	(similar to flow banded lava.)	weak silicification (hydrothermal alteration	90 65	
_		0 0	(numiceous?) norous part	 →Fe0x (reddish)	70	
_		12, 11,	(pumiceous?)porous part silicified part—white rather hard	(bleached) FeOx(pyrite boxwork)	75 50	
15 –		· · · · · · · · · · · · · · · · · · ·			100	
_		1,000			90	
17. 90 –		-======================================	ditto	ditto	90 100	
_	19.30				50	
20 -					80	
-				1911	100	
-			ditto	ditto	95	
25 –]				100 80	
-	-				95	
			ditto	ditto	80	
-	-		29.60~29.70 gray part(pyrite o	isseminited.argillic fragment)	40 95	
30 -]				35	
-	1				60	
-	1		. 33.40~34.50 gray part		45	
35 -]		33.30~34.80 (white) kaolinite? 34.90~35.20	Oxidized zone (red+white)	80	
-	-		•		50	
	37. 30				30	
-	_	~ ~ ~	Fault zone?	Pyrite disseminated	65 45	
40 -		~ ~ ~ .	(soft gray clay)	Argillic zone	10	
		~ ~ ~			70 95	
-	<u> </u>	. ~ . ~ . ~ · . ~ .			25	
45 -	44. 00 44. 80	~ ~	: gradual gradual		100	
-	-			Argillic zone	80 85	
-	1		. gray,harder than clay zone	Pyrite disseminated medium~strong	30	
-	1		(7, 550)	medium~strong	100	
50		<u> </u>	(Tuff?)		85	

			Direction - Inci	······································	1	
	Depth (m)	Log	Geology	Alteration and Mineralization	RQD	Samples
_			Argillic compact massive zone		60	
			gray ,harder than clay zone		80	
			(Original rock:Tuff breccia?)		100	
				Pyrite disseminated	96	
55 —				midium 5~15%	95	
00 —					50	
	57.50	~ ~			80 55	
		~ ~ ~	clay	Pyrite disseminated	65	
-		~ ~ ~	soft, gray	strongly	96	
60 —		~ ~			80	
-		~ ~ ~			92	
		~ ~		Pyrite disseminated strongly	100	
_	C4 00	~ ~		35. Silg.)	100	
	64. 20 65. 00		rather hard (a block in fault?)		100	
65 —					80	
		h ~ ~		Pyrite disseminated	100	
_		~ ~	clay:soft gray	strongly	100	
_		~~~			100	
-		- ~	·		40	
70 —	69.90					·
	-				50 100	ļ
_	70.00		rather hard	Pyrite disseminated	80	
	72.60	~ ~	(a block in fault?)	strongly	80	
_	74. 09	<u></u>	soft		100	
75 —	74.00				100	
	-				100	
	77. 20					
-	1 77.20	~		Pyrite disseminated	60 60	
_		~ ~		strongly	0/100	
80		~			100	
_		~	soft	·	90	
_		~	0010	Pyrite disseminated	94	
_	1	~ ~	very soft	strongly	100	
_	84.00	\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	.,		100	
85		- ~ ~	very weakly consolidated		.	
	85. 20	L ~ ~ ~	·		96	
_	1	~ ~	soft clay	Pyrite disseminated	90	
		~~~	gray		94	
-	_	- ~			100	
90		~ ~			98	ļ
30 <del>-</del>		~ ~		Pyrite disseminated	83	
_		~ ~ ~	soft clay (partly harder)	Type to decomminated	100	
-	1	7.7.7.7.	gray		70	
	1	~~ ~			100	
	1	~ ~ ~	!		98	
95 –	†	~ ~ ~			98	1
_	96.00		gradually become harder		100	
_	1		rather hard	Pyrite disseminated strongly	92	
-	98. 20		4		30	
-	99.00	1 × × × ×	weakly fractured		40	
100		<del></del>		<u> </u>	<u></u>	<u> </u>

# Table 4-25 Geologic Log of MJIE-SI (3/8) Direction • Inclination: East, -80°

	_			Direction · Incli	nation. East, -ov	<del></del>	
		Depth(m)	Log	Geology	Alteration and Mineralization	RQD	Samples
	100		~~~~~	100.95~101.00 soft clay		20	
		101.00	~~~~~	100, 90** 101, 00 3012 0149	Pyrite disseminated	80	
	_			100 00 100 00		70	
	_	103.60	23222	103. 60~103. 80 104. 00~ (qtghan)		30	
		104. 20		100		60	
	105 —	104. 70 105. 10	· · · · · · · · · · · · · · · · · · ·	softer		20	
	_	100.10		1		95	1
10	)7.10		· · · · · ·	106. 90 (gradual)		100	
			v v	(harder)		90	
10	08.80 _			Andesite?(corpart masive)		34	
HO	110 —			100 110.0 gradud		40	
111.00			~~~~	,	Pyrite 5~10% argillic	1 1	l
1	_	111.65	~~~~~		Pyrite disseminated (3~5%)	40	·
NQ 1	12. 45_		\~~~v~~`	Andesite (?)	phyllic-propylitic? argillic	50	
1	14. 45_		\	(dark-gray greenish?	114.00~: silicified weakly	100	
	115 –	<b>.</b>		compart hard)	Pyrite intensely disseminated(10		
1	15. 25	115. 70	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	chilled magine		_ 20	
		~115.80	`~`	Gray silliceous rock (fine tuff orgin?)		50	
	_		AAA	117, 50~117, 70; andesite (block?)	Pyrite disseminated	35	
		]		Coarse tuff, gray rather soft	weakly-moderately	86	
	120 –	119.85		119.55-119.85 fine ~ sandy tuff		27	
	120 -	101.00	v	andesite diabase texture	argillic	75	
	-	121. 20 121. 95	10 1 1	coarse tuff	alteration	25	
	_			sandy tuff		50	
	_	123. 20	V	andesite		90	
	-	124. 00	7 - 7 - 7 - 7	tuff(silems)		50	
	125 –	125. 10		soft clay		55	
	_	125.85		Tuff(?) argillic		80	
		1				95	
	-	128. 25	~ ~ ~ ~	127.85~127.95 soft clay		55	
	-	129. 75	~ ~ ~	soft clay		85	
	130 –	120.70	<u> </u>	130.45~136.85 Gray soft clay		85	
			1-3- %	Fine tuff gray		80	1
	-	-	14 14	partly rather hard		65	
	-	133. 55	~ ~~.	133.15~.25: clay		75	1
	-	-	0.00	Dacitic tuff breccia? Pale gray~gray		50	
	135 -	<del> </del>	<i>::::::::::::::::::::::::::::::::::</i>		Pyrite:strong, veinlets~disseminati		
	-	-	٥ (کرند : :		Fyrite-Strong, venillets~urssellinati	55	
	-	137. 10	· · · · · · · ·		-	100	
	-	138. 35	v	Andesite rather hard	Pyrite:weak, argillic	90	
İ	_	139, 20	~~~	139.20~: Soft clay	<u> </u>		
	140 -	100. 20	. vv	Andesite?		95	
	-	_		(Argillic rock)	Pyrite:strong	100	
1		_	.y. ⊗v.	(massive copact, rather hard)	\$1	100	
		_	v Øv	dark-gray dots(py+SiO2)	yellowish	90	
	_	1433.50~	VVQ	Andesite (Fine tuff?)	mineral	95	]
	145 -	144. 65		144.65~144.90; clay fractured		80	
	140 -	Ţ	0 1 4 0	Lapillituff~Tuff breccia rather hard		65	
	•			146.60:weakly gray-dark green		75	
	•			Andesite breccia(lava?)	Epidote in amygdals	75	
	•		00 V	148.55(2cm) clay		85	
	150	1	~~~~~	- 149.25(2cm) clay		85	
ι	100		<del></del>	<u> </u>	_L		

	·					
	Depth(m)	Log	Geology	Alteration and Mineralization	RQD	Samples
150		~~~~	150.00~150.35 clay(soft)tuff	aray	95	
-		(A)	fractured	rgi ay	90	
_			Tuff breccia~ blueish-green dark green	pyrite disseminated	62	
		****	152.90~153.05(propylite?)	kaoline like	92	
_		$\triangle \bigcirc \lor \bigcirc$	weakly fractive matrix blacky(silica+Maox2)	white minaral		
155 —			- fragment:blue-green	dominant	70	
100		××××	- whitish tuff		55	
		<b>4</b> / △•	‡Lapilli size fragment dominant		70	
		2 4		sericitic l clay	86	
_		کُ کُ		dominant	62	
_		Δ. Δ. Δ			92	
160						
		~~~~~~	161.00~161.20fractureal clay		95	
		4 6	101.00 101.2011 40 641 044		55	
		(A) A/	100.10	nurita vainlate width(1 mm hair	48	
****	1	\$\d^\/	163. 10 20° 60°	pyrite:veinlets width<1 mm hair (dense,2~3cm interval)	60	
_	1		20		38	
165 –	 		gray		40	
_	4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		fault	55	
_	-	~~~~~	166. 60 soft clay 167. 55		64	
_	1	(A)			80	
	1	12/2/	Tuff breccia	chlorite-sericite propylitic	85	
170 –		Δ	blueich-green rather hard	+ pyrite (moderate~strong)		
170-		/° (A)		pyrite streak along cracks	96	
_				(width<1mm)	65	
_		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	22.		100	
-	-	2	22° -0° 173. 85		70	
-	-	Δ' Δ']	84	
175 –					80	
-	4	, , , ,	Lapilli size>Tuff breccia rather soft		88	
_	1	0,0,	gray matrix		78	
_]	10 10	│ ~white │ fragment:greenish lapill			
		0 0			65	
100		/ A O ,			92	
180 -		``^	Lapilli tuff - tuff breccia		85	
-	1	/ 4 ′			90	
-	+	- _A -	-gradual Tuff breccia	7	90	
-	-	\ <u>\</u>	fragment:gray andesite ϕ =10cm		85	
-	4	*	matrix greenish(ash-laplli)		35	
185 -		0 A	20° pyrite disseminated			
-	_	0. 0.	fragment:matrix=1:1		35	
	_		megascopically homogeneous		55	
·		~~~~	187.55 (40°) clay(soft)	_187. 55	82	
-	7	1 1	60° Coarse tuff~lapilli tuff	pyrite disseminated:weakly	75	
-	1	200	10° coarse turi~rapiiii turi	moderate amount	82	
190 -		+*			75	
.	-	, % ,	191. 20 —191. 35		88	
	_	Δ,ο	- 192, 20 Tuff breccia	_	78	
.	_	• D ∆•	lapillituff~tuff breccia	1		
l .		2-2	193. 70 (green patch tuff)		70	
195 -		~~~~~	clay-argillic gray soft	-	77	
190.	7	/	T L		55	ŧ
Ι.	1	1///	Tuff breccia		74	
	-	/ ~ /^			75	
.	4	4/			75	
	4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			78	
200		l			1 "	<u> </u>

	D 11 (2)	1	Coology	Alteration and Mineralization	RQD	Samples
200	Depth(m)	Log	Geology	Afteration and mineralization	75	- Odinp 100
_		,°A , A	Andesitic tuff breccia	D. Sthlu stranglu	98	
		Δ * Δ *		Pyrite partly strongly disseminated veinlets		
		°′ ♦ ′ √△	Fragments: gray max10cm	-pool near the	95	
_		A / 1/4/	r-hard finegramed andesite	fragments	91	
			matrix smaller size green		92	
205 —		Δ . Δ .	graduai)†t	98	
_		A . A	gradual		90	
		, "	└-matrix:similar color(green)		87	
_		\[\text{\lambda} \\ \la	-		94	
_		(, ^{\(\)} , ^{\(\)}			96	
210		Δ • Δ •				
		^ ^ ^ ^		211.0 qtz druse 5mm(pool)	100	
			212 25	212.40 white mineral vein	16	
		~~~~	213. 25	212 25~213 30 (5cm)	55	
		V V		gray-pyrite clay	52	
_		\ \ \ \	Andesite?		42	
215 —	·····	,, v	(weakly breacciated lava	2)	55	
-	216.65	(v).(v)	216. 65	<u> </u>	65	
-	210.05		£10.00	propylitic	65	
-	-		Andesitic tuff breccia (Auto brecciated lava?)	very weak argillic (bluiesh-green)	76	
		A . A	(Auto brecciated lava?)	(blulesn-green)	54	
220 –		, A, 5				
<b>!</b>		A A			78	
		_\X\\ \^		222. 85	34	
		4 4 4	222.60~222.65(5cm)breccia	weak argillic	20	
_		~**************************************		moderate silicification	15	
		~~~~	224. 23	224.23 grayish	75	
225 -	†·····	~~~~~~	225. 00	225.00 soft clay+brecciated	12	
-				225.80 weakly brecciated (gradual)	33	
-	1			227. 00 (gradual)	57	
-	-	Δ , Δ ,		228. 25-228. 50 (0. 25) clay	35	
-	-	, V V		228. 25-228. 50 (0. 25) Clay	36	
230 -	ļ				1	
-		A \A		pyrite dissemnation strong~medium	20	
_	_	~~~~~ <u>~</u>		1 232. 85	55	
_]	~~~~		clayish breccia	45	
		~~~~	1	233.65 234.10~234.20:clay	15	
235 -	1			234. 55	20	
200-	]	<b>V</b> V		weak brecciation with clay	10	
-	7	~~4~~~	007.50	pyrite diss. strong	35	
-	1		237. 50	,	60	
-	†	^~~^^			96	
-	1		30		60	
240 -	<del> </del>	. AA	10	·	30	
-	4	~~~~	241. 100~251. 55		40	
.	4	x~~~x~	Tuff breccia	sillicification strong	65	
1 .	4	~~~~	compact	moderate~weak argillization pyrite dissemination	80	
		Δ Δ		pyrico arosomination	1	
245 -		Δ 4			85	
		Δ Δ	246.70~248.85 porus(fine	tliff?)	90	
1	7	~~~~	7	247.60~247.00 argillic	60	
'	1	Δ Δ	Fine tuff?		55	
.	-	*>	248. 85	1	_ 45	
	-			sillicification moderate~weak	40	
250		L	249.95~245.00 fractured			

	Depth(m)	Log	Geology	Alteration and Mineralization	RQD	Samples
250	•		250. 10 250. 40	250. 10~250. 50	12	
_		~~~~~	Tuff breccia	251. 60~250. 76	52	
_		Δ + Δ+		pyrite:moderte-strong	65	
_		^ ^ ^	gray, rather-hard rather-compact	argillization: moderate	40	
		<b>Α</b> , Δ ,	•	_	15.	
255 –		<u> </u>		255.10~255.25: fractured 255.40~255.75: clay	55	
-		<b>▲  ↓</b> ∆		255. 40~255. 75. Clay	35	
-		Δ Δ	257. 60	257.30~257.50: fractured, pyrite	16	
-		~~~~~	259. 80	257.60~258.80: partly strong argillization, pyrite disseminaed	-	
- 000	1	Δ Δ	200.00		0.	
260 –				260.00~260.33 clay	44	
_		A . A .			73	
-	1	~~~~	262. 30	262.10~0.5cm: calcite veinlet 262.30~262.90:gray clay, fractured, pyrite	53	
_		• • • • • • • • • • • • • • • • • • • •	262. 90		85	
-	1		Tuff breccia gray hard	pyrite:moderate-strong	34	
265 –	1	.~	265, 40		17	
_		<del>;</del> ~∻	Breccia zone dark gray	Pyrite: strong Argillization: strong	60	
] -		~:~;	266. 40		60	
_	]	0.0.	Tuff breccia~lapilli tuff		84	
270 –		, _A ,	porous		44	
270-			Tuff breccia		40	
	273, 60	•	rather compact		30	
	]	· · · ·	7.551		52	
_	274, 00	~,~~,~~	Tuff breccia→tuff (gradual)		52	
275 -					46	
	_	~~~~~	Tuff(coarse tuff)		58	
		• •	irreglar blackly layered		60 33	
-					21	
-	070.05				65	
280 -	279. 95				62	<b></b>
-	_	\ \ \ \ \	Andesite	alunite? pyrite	34	
-	4	2:255	282.20 282.75 fractured andesite? compact		32	
-	-	~ ~ ~ ~	compact		30	
-	4	v			40	
285 -	<del>-</del>	· · ·	285.0		45	
-	-		Andesite tuff breccia		32	Ę
-	-			287.30~288.30: soft clay, gray	5	
-	-	Δ Δ	289.10~289.20:fractured zone	000 00 000 0Ftft .l /10 00° \	10	
-	1	× ×	203, 10203, 20-11 actul ed 2016		30	1
290 -			Diortic∼porphyritic rock	K-feldspar? Pyrite diss moderate	20	ļ
-	201 01	*/^ ^/X		K-feldspar? Pyrite diss.moderate ~strong.pinky color alunite	20	
-	291. 81 292. 35	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	291.85~292.35 clay 292.35~293.75 rather hard		10	
	-	1X/	J	argillization clay(kaoline)	15	
	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	293.75~293.90(0.15) clay 294.10~295.20 fractured		20	
295 -	<b></b>	~~ <u>*</u> ~~*~	Tuff breccia?	295, 35~75 (0-30°) clay	15	
	-	A */A	Tutt biecota:	pyrite diss. moderate~strong	12	
1	-	A \ .	000 00 000 05 (0 05)	295.50: pyrite hair(20')	40	
	~~~~	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	298. 00~298. 35 (0. 35) clay	slicification+pyrite-kaoline	10	
000	-	^ × ^	Igneous rock (porphyry?)		65	
300		<u>.l</u>	1	<u> </u>	1 00	4

	D 11 (1)	1	Coolomy	Alteration and Mineralization	RQD	Samples
300	Depth(m)	Log	Geology Silicified tuff breccia?	Alteration and mineralization		- Camp / CC
	300. 85 301. 25	× ×	Brecciated	301.25 kaoline veinlet(0°) (weakly argillic altered) pyrite dis s	35 35	
	302. 90	~~,	80°	302.90: white clay+pyrite 80°	95	
		× ×	gray~hard compactrock	304.20(qtz+hemetite)	95	
305 —		× ,		white clay 45° +30°	92	
	306, 10	x x		qtg v 1 2mm 40°chalcedonic	92	
	000.10	× ;		qtg v I - 70°-	88	
	307. 65	× ×	gray		85	
_	grodua I	× :			95	
310 —	309, 85.	~~~~	dark gray+partly green	py. diss: partly strong	35	
	312. 00	00	fractured clay py diss helf traghet 20 +matrix (porphyritic	309.85~309.90(0.03 clay)	90	
	012.00	×	20 Hilatrix (porphyritic	311.00 2mm soft white clay 313.85(0°)pyrite veinlet	94	
		× ×		Argillic (Kaoline -pyrophyllite)	96	
ا		× :		314. 40 pyrite veinlet, kaoline halo	90	
315 —		××			90	
_		×	315.65 green dotin wht matrix	+pyrite +serite	95	
		×××	317.00 (alterdin)		100	
_		x x	318, 20~318, 40: fracted	318.30 pyrite veinlets(0~10°)	50	
_			319. 20	319. 20	20	
320 —			weakly fractured	1	30	
		/// ^	321.25 clayey partly clay		65	
		× ×	compact	silicification:weak, pyrite: strong~moderate	95	
-		×	clay(pinky part)+	323.25 weakly argillic (clay)	70	
		*~~~	quartz+pyrite 324.00(10°) Alunite? veinlet		100	
325 —		× ×		325.00 late calcite veinlet	100	
-		×	,	argillic silicified	100	
		× ×		pyrite strong	95	
]	×		326, 90	95	
330 —	<u> </u>	X			60	
_		1/2/2/11		330.75 pyrophylitic mixed zone	25	
_	-	XIXX	 		50	
_					100	
_	1	4	334. 00: gradual	propylitic	95	
335		Δ ' Δ' V Δ V Δ	60°		93	
-		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(Brecciated	336.20 quartz+magnetite	95	
-	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	lava?)	338.30:qtz+magnetite(width:1mm)	100	
-	1	AVAV	30° 338. 70 339. 00	338.70:qtz+pyrite(width:2mm)	85	
_	1	A 4	1000.00	339. 50	60	
340 –	 	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		silicified+clay pyrite(strong	30	
_	1		341. 30	341, 35	65	343. 80
_	1		342.65 Fine tuff? Andesite + Fine tuff	sericite, pyrite+magnetite	100	s 6. 351
-	1	1, 5	1343 75	343. 75	70	
-	1	\ \ \ \ /	344,65 (Andesite dyke?) dark green	_	95	
345 –	1	Δ	Tuff breccia	345.00 (0°): pyrite veinlet (1mm)	90	
-	7	۵۰ ۵۰		346.00 (10°): pyrite veinlet (1mm) Chlorite+ pyrite zone	100	
-	1	X		- Onitorito, pyrito zone	100	
-	1	Δ , Δ ,	Tuff~tuff breccia	000 000	60	
350	7	" A " A	\	350.00:magnetite veinlet	90	

	Depth(m)	Log	Geology	Alteration and Mineralization	RQD	Samples
350	351.00	ZA A	Tuff breccia \45\ Andesite(dyke?)	py: moderate~strong	85	353. 25~354. 25 S1-72:6. 90%S
-		0, 4,	dark-gray		60 85 98	
355 — —		, 8, 6,	Lapilli tuff(353.90~357.10)	weakly-silicified	100 100	
_		A A		White mineral stockwork in propylitic rock	100 100 100	
360 – –		⊗ △ · · · · · · · · · · · · · · · · · · ·	360.30∼360.80 propylitic		100	
_		FA A	greenish magnetite rich	pyrite:moderate	100 100 96	
365 - -	-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	365.45~360.40 silicified(grayish) pyritediss moderately	Ms. ita minaral ataquarl	80	
-		, A , A	20°	White mineral stockwork in propylitic rock 368.40 Molybdenite-qtz.veinlet (1mm) with pyrite, clay 0°~80° py veinlets	96 100 100	S1-76 368.4 102ppm M
370 - -	371. 40	A . A	371.40~372.00:block in tuff br?	370.15:Pyrite veinlet (1mm) 371.42:Pyrite veinlet (1mm)	97 96	
-	374. 00	A , A , A	block andesite	372.90:Mt.chl.epidote 1cm	96 94 100	
375 - -		v v	374.15 374.40~376.40 porphyritic Andesite	374.15:py.epidote.chl.yeinlet.1m	100	
-	1 - -	* *	porphyritic Andesite 378.40~37	376.40~376.70 dioritic(coarse grain) 378.35: 1mm py(60') Magnetite:weal 379.05: 1mm py(65') epidote	100 100 100	
380 -			381.00~381.20 Andesite 381.95~382.00 ndesite	380.50 5mm py sericite (80°) 381.85 1mm qtz (86°) pyrite	100	
		V V V V	474 desite 385 22 22 285 295 474 desite 385 25 25 25 25 25 25 25 25 25 25 25 25 25	382.85 8mm py,chl, qtz (30°) 384.30 1mm py,chl,qtz (45°) 385.65 1mm sericite,qtz,chl py(0°	100 96	
385		* * * * * * * * * * * * * * * * * * *	386. 70~386. 80 dark green	386.20: 1mm qtz (cut qtz veinlet,70°) 386.80: 1mm py (80°) 386.95: 1mm py (40°)		
		* * * * * * * * * * * * * * * * * * *	greenish white	387. 15: 2mm py (40°) 387. 30~387. 40 10mm clay (40°) 387. 60: 1mm py (5°) 388. 20: 1mm py (9°) 388. 50: 1mm py	100 98 99	
390	391.1	* * * * * * * * * * * * * * * * * * *	390.85~391.15 silicified zone silicified block?	389.05: 1mm py chl (30°) 389.20: (25°) 390.10: (85°)weak argillic pylite modeate yellowish white	100	
		△	393.00~ Tuff breccia greenish dioritic rock	390.15: py(60') 390.95:Pyrite 391.05:Pyrite	75 55	
395	395.00		395.00 weakly fractured clay(?)	394.90~395.00:chl-sericite-pyrit (lost core)	e 40 0	
			Δ Tuff breccia	pyite: moderat weakly silicified clayey pyrite:strong-moderate	10	
400		ΔΔ	399. 40~400. 50	argillic, weakly silicified	80	

Table 4-26 Chemical Analysis Results of Drill Hole Samples, Prambon District

Sample No. Depth(m)	Au Au Ag Al	As B Ba Be Bi Ca	Cd Co Cr Cu Fe Ga	a Hg K La Mg Mn Mo Na	Ni P Pb S Sb Sc Sr	Ti TI U V W Zn Zn Ag
	ppb ppm ppm	% ppm ppm ppm ppm ppm	% ppm ppm ppm ppm %	ppm ppm % ppm % ppm ppm <10 <1 0.16 10 2.52 2560 2 0.0	% ppm ppm ppm % ppm ppm ppm ppm ppm ppm	m % ppm ppm ppm ppm ppm % ppm i1 <0.01 <10 <10 60 <10 53
P1-1 41.41~41.65 P1-2 41.65~41.92			87 <0.5 17 21 19 5.72 08 <0.5 17 21 28 4.97	(10 <1 0.16 10 2.32 2360 2 0.0 (10 <1 0.2 10 1.48 1625 1 0.0	01 1 630 3 2.06 <2 10 3	9 <0.01 <10 <10 63 <10 68
P1-3 41.92~42.75	63 1.1 0.	55 52 <10 20 <0.5 <2 0.0	34	<10 1 0.23 <10 0.19 282 4 <0.0 <10 1 0.22 10 0.15 295 8 <0.0	0 020 10 2.00	6 <0.01 <10 <10 19 <10 68 2 <0.01 <10 <10 18 <10 120
P1-4 4275~43.9 P1-5 43.90~44.55		44 49 <10 20 <0.5 <2 0.442 163 <10 20 <0.5 <2 0.5		<10 1 0.19 <10 0.19 519 10 <0.0	01 4 490 1690 5.67 4 5 1	4 <0.01 <10 <10 31 <10 5060
P1-6 44.55~45.77	200	0.7 34 <10 30 <0.5 <2 2.5 25 34 <10 10 <0.5 <2 0	53 <0.5 18 75 85 4.44 .2 59.4 9 210 934 2.28	<10 <1 0.26 <10 0.26 977 3 0.0 <10 1 0.14 <10 0.06 232 9 <0.0		8
P1-7 45.77~45.87 P1-8 45.87~46.90	4,167 30.2 0.1 52 1.7 0.1		34 <0.5 21 62 23 4.09	<10 <1 0.24 <10 0.27 503 3 0.0	01 3 560 16 3.51 <2 7 2	22 <0.01 <10 <10 30 <10 82
P1-9 46.90~47.40	323 8.4 0. 141 1.3 0.				0 300 400 0.77 12 2	1
P1-10 47.40~48.40 P1-11 50.55~51.22	513 4.6 0.	36 38 <10 40 <0.5 <2 1.	16 0.7 15 125 176 3.42	<10 1 0.2 <10 0.22 388 7 <0.0	01 5 400 60 3.13 <2 3 1	5 (0.01 (10 (10 17 (10 246 11 (0.01 (10 35 (10 77)
P1-12 51.22~52.70 P1-13 52.70~53.05	52 1.4 0. 125 7.7 0.	47 40 (10 00 10.0 12	49 <0.5 19 69 22 4.85 44 <0.5 17 107 50 8.65	<10	01 0 0.21 12 9	8 <0.01 10 <10 35 <10 77
P1-14 68.6~68.90	219 4 0.	44 105 <10 30 <0.5 <2 3	.7 1.8 12 110 58 5.18	<10 <1 0.25 10 0.45 1770 5 0.0	01 2 010 101 010	24
P1-15 70.85~71.35 P1-16 73.63~74.82	156 3.3 1. 94 3.1 0.	06 43 <10 30 <0.5 <2 6.3 39 105 <10 30 <0.5 <2 0.		<10 <1 0.22 10 0.58 2850 3 0.0 <10 <1 0.25 <10 0.06 138 5 0.0		8 <0.01 <10 <10 9 10 39
P1-17 82.70~83.70	52 1.2 0.	51 64 <10 20 <0.5 <2 1.	8 <0.5 14 59 19 4.38	<10 <1 0.24 <10 0.22 459 3 0.0		21
P1-18 83.70~84.0 P1-19 84.0~84.90	104 1.8 0. 52 1.9 0.		.6 0.7 12 114 23 4.89 26 <0.5 13 109 17 4.61	<10 1 0.25 <10 0.1 182 6 0.0 <10 <1 0.25 <10 0.06 61 7 0.0		4 <0.01 <10 <10 9 <10 104
P1-20 84.90~85.90	193 3 0.	35 172 <10 20 <0.5 <2 0.	14 0.7 14 161 31 8.23	<10 1 0.22 <10 0.03 32 8 <0.0 <10 1 0.19 <10 0.03 61 18 0.0		2
P1-21 85.90~87.0 P1-22 87.0~88.0	42 16.8 0. 52 18.7 0.	29 95 <10 20 <0.5 <2 0. 32 173 <10 20 <0.5 <2 0.		<10 <1 0.19 <10 0.09 232 19 <0.0	01 19 280 212 >10.0 2 3	12 <0.01 10 <10 15 10 308
P1-23 88.0~88.2	551 37.5 0.	41 57 <10 20 <0.5 <2 0.	48 0.8 19 118 54 5.21 1.4 6.2 11 484 160 3.07	<10 <1 0.25 <10 0.05 94 7 0.0 <10 1 0.15 <10 0.07 210 22 <0.0		8
P1-24 88.80~89.40 P1-25 164.5~165.23	10,420 >100 0. 21 1.3 1.		55 <0.5 18 28 11 4.89	10 <1 0.21 10 0.51 1515 2 0.0	02 <1 580 10 2.91 <2 12 4	14 (0.01 (10 (10 60 (10 62
P1-26 165.23~165.55 P1-27 165.55~166.25		88 687 <10 50 <0.5 <2 0 97 102 <10 30 <0.5 <2 1.	9 1.7 15 164 24 3.82 92 0.7 16 69 18 3.08		00 0 410 00 0.00	31
P1-27 165.55~166.25 P1-42 107.50-107.90	94 7.7 0.	35 479 <10 60 <0.5 <2 0.	12 0.8 16 234 22 4.29	<10 1 0.2 10 0.04 54 22 0.0	01 11 270 63 4.59 12 2	3
P1-43 107.90-108.90 P1-44 108.90-109.5	42 1.9 0. 141 14.7 0.	10 110 110	1.2 <0.5 12 114 31 2.62 37 1.2 17 211 25 3.15	<10 <1 0.2 <10 0.05 97 22 0.0	01 9 270 144 3.41 4 2	21 <0.01 <10 <10 14 <10 453
P1-45 117.70-118.00	63 2.2 0.	49 197 <10 30 <0.5 <2 (0.2 <0.5 25 93 11 4.61	<10 <1 0.24 <10 0.07 56 5 0.0	01 2 440 7 5.09 3 3	21 <0.01 <10 <10 15 <10 77 25 <0.01 <10 <10 19 <10 116
P2-1 84.50 P2-2 82.65			58 <0.5 9 138 36 1.32 10 <0.5 30 172 407 4.56		01 26 430 5 1.8 <2 3	77 <0.01 <10 <10 9 10 118
P2-3 94.85~95.23	83 3.9	0.5 157 <10 90 <0.5 <2 0.	24 11.2 16 112 60 2.74	<10 <1 0.27 <10 0.07 176 14 <0.0	01 17 480 183 2.85 3 3	9 <0.01 <10 <10 13 <10 1400 9 <0.01 <10 <10 9 10 675
P2-4 95.23~95.64 P2-5 95.64~95.95		33 323 <10 10 <0.5 <2	14 4.5 6 510 56 1.48 .2 4.8 12 222 47 2.65	<10 <1 0.21 <10 0.08 569 10 <0.0	01 16 290 74 2.68 2 2	18 <0.01 <10 <10 13 <10 901
P2-6 95.95~96.65	167 12.2 0.	.35 140 <10 10 <0.5 <2 2.	47 12.4 15 210 94 3.14	<10 <1 0.21 <10 0.09 1065 8 <0.0 <10 <1 0.18 <10 0.15 1525 9 <0.0		22
P2-7 96.65~97.15 P2-8 97.15~97.80	125 2.1 0.	53 40 <10 150 <0.5 <2 0.	43 3.7 15 110 62 2.27	<10 <1 0.32 <10 0.1 314 5 <0.0	01 16 610 77 2.01 (2 3	22 (0.01 <10 <10 14 <10 794 59 (0.01 <10 <10 28 <10 56
P2-10 131.13~131.45		.06 138 <10 20 <0.5 <2 10. .31 8 <10 350 <0.5 <2 10.	35 (0.5 17 51 53 4.32 0.7 0.5 3 231 89 1.17			48 <0.01 <10 <10 10 10 67
P2-11 159.60~159.66 P2-12 161.45~161.49	265 10.8 0.	.25 564 <10 100 <0.5 <2 2.	76 0.9 5 348 136 1.88	<10 <1 0.16 <10 0.13 1695 13 <0.6	01 10 100 17 1.02 10	14 < 0.01 < 10 < 10 11 10 220 84 < 0.01 < 10 < 10 17 < 10 69
P2-13 164.87~165.25			49 <0.5 10 112 66 4.32 21 <0.5 20 25 65 4.12			84
P2-14 168.70~169.10 P2-15 169.10~169.55	153 3.4	0.3 195 <10 90 <0.5 <2 1.	94 <0.5 11 373 64 3.31	<10 <1 0.19 <10 0.31 1285 13 <0.0		20 <0.01 <10 <10 11 10 72 50 <0.01 <10 <10 35 <10 44
P2-16 169.55~170.30 P2-17 177.00~178.30			89 <0.5 17 24 57 4.63 98 <0.5 14 24 61 3.36	<10 <1 0.37 10 0.85 3180 4 0.0 <10 <1 0.36 10 0.58 3190 2 0.0	OE 0 000 11 2.2	57 <0.01 <10 <10 19 <10 94
P2-18 178.30~179.30	167 5.1 0	.44 392 <10 20 <0.5 <2 4.	52 0.7 14 162 46 4.25		5) (1) (55) (6)	33
P2-19 179.30~180.30 P2-20 180.30~181.20			1.8 <0.5 17 36 67 3.96 73 <0.5 15 33 56 4.79			42 <0.01 <10 <10 14 <10 84
P2-21 181.20~181.68	70 4.5 0	.28 136 <10 30 <0.5 <2 1.	36 <0.5 9 303 35 2.91	(10 (1 0.17 (10 0.39 839 12 (0.0		16 <0.01 <10 <10 11 10 44 29 <0.01 <10 <10 15 <10 64
P2-22 181.68~182.00 P2-23 182.00~182.5			04 <0.5 15 96 76 4.26 5.1 1.5 3 421 162 1.76	(10 (1 0.3 (10 0.15 551 4 0.0 (10 (1 0.04 (10 1.44 2440 18 (0.0	02 72 000 70	23 <0.01 <10 <10 9 10 399
P2-24 182.50~183.17	250 5.8	0.2 98 <10 20 <0.5 <2	1.5 0.8 6 431 124 2.24	(10 (1 0.14 (10 0.49 868 20 (0.1 (10 (1 0.07 (10 0.43 6310 13 (0.1		12 <0.01 <10 <10 10 204 73 <0.01 <10 <10 7 10 796
P2-25 183.17~183.80 P2-26 183.80~184.20			1.3 2.3 3 321 172 2.51 54 0.8 14 132 79 3.35	<10 <1 0.25 <10 0.08 495 8 0.0	01 13 510 96 3.59 2 2	23 <0.01 <10 <10 10 <10 247
P2-27 184.20~185.00	28 5.3 0	.05 32 <10 <10 <0.5 <2 13		<10 <1 0.03 <10 0.64 4090 11 <0.0 <10 <1 0.22 <10 0.2 717 12 0.0	01 12 30 188 0.83 2 2 01 18 380 176 2.97 2 2	45
P2-28 185.00~186.00 P2-29 186.00~187.00			28 4 10 270 138 3.11 78 2.6 6 440 128 1.94	<10 <1 0.19 <10 0.69 3250 16 0.6	01 20 300 223 0.93 <2 4	33 <0.01 <10 <10 14 10 623
P2-30 187.00~188.00	28 2.5	0.6 126 <10 50 <0.5 <2 3.	27 <0.5 13 26 68 2.52	(10 (1 0.31 10 0.35 1320 2 0.0 (10 (1 0.27 (10 0.47 1370 5 0.0	02 9 730 9 2.28 <2 7 01 10 480 53 2.23 <2 5	44
P2-31 188.00~188.70 P2-35 198.35~199.20			69 1.7 11 104 75 2.7 3.5 2.1 4 374 81 2.26	<10 <1 0.08 <10 1.03 3510 15 <0.0	01 16 100 463 0.78 <2 1	40 <0.01 <10 <10 12 10 514
P2-36 199.20~199.45	125 3.1 1	.16 294 <10 40 <0.5 <2	1.5 <0.5 16 70 40 4.58 4.1 2 5 184 174 2.6	(10) (1) 0.26 (10) 0.28 607 4 0.1 (10) (1) 0.12 (10) 1.2 5100 9 0.1		29 <0.01 <10 <10 27 <10 74 74 <0.01 <10 <10 10 <10 428
P2-37 199.45~200.60 P2-38 200.60~201.35			4.1 2 5 184 174 2.6 29 <0.5 11 149 55 3.32	<10 <1 0.26 <10 0.22 1430 6 0.	.01 12 680 28 3.06 <2 3	42 <0.01 <10 <10 11 <10 93
P2-39 201.35~202.00	1035 0.987 4 0	1.49 259 <10 30 <0.5 <2 1	06 <0.5 10 170 28 3.16 97 <0.5 9 94 26 4.04			18
P2-40 202.00~203.00 P2-41 203.00~204.00		1.49 135 <10 30 <0.5 <2 2	79 <0.5 13 87 40 3.29	<10 <1 0.31 10 0.15 1450 4 0.	.01 7 1060 17 2.87 2 4	27 <0.01 <10 <10 10 10 81
P2-42 204.00~205.25			68 <0.5 13 64 34 4.31 99 <0.5 12 154 34 3.97			30 <0.01 <10 <10 16 10 89 34 <0.01 <10 <10 19 <10 93
P2-43 207.65~208.55 P2-44 245.70~246.90	154 1.9 0	1.45 126 <10 20 <0.5 <2 4	84 <0.5 12 142 33 3.75	<10 <1 0.22 <10 0.73 2590 8 0.	.01 16 500 39 1.87 2 5	35
P2-45 246.90~247.34 P2-46 247.34~248.55			04 <0.5 12 241 35 3.43 06 <0.5 10 191 31 2.45	(10 (1 0.24 (10 0.07 469 12 (0. (10 (1 0.22 (10 0.11 374 9 0.	.01 18 400 16 2.4 2 2	16 <0.01 <10 <10 9 10 43
P2-47 248.55~249.55	231 3.2 0	0.35 181 <10 20 <0.5 <2 1	42 0.5 11 291 66 3.28	<10 <1 0.22 <10 0.09 493 13 0.	.01 21 400 27 3.28 3 2	15
P2-48 249.55~250.20 P2-49 250.20~250.63			45 <0.5 11 169 26 2.72 75 <0.5 10 150 104 6.43	(10) (1) 0.24 (10) 1.14 3850 12 0.	.01 16 410 210 5.25 18 4	56 <0.01 10 <10 13 <10 258
P2-56 94.75~94.85	21 1.3 0	0.84 36 <10 30 <0.5 <2 4	03 <0.5 9 24 32 4.61	<10 <1 0.49 10 0.36 2580 2 <0.	.01 10 830 32 3.05 <2 9	46
P2-57 97.80~97.90 P2-58 168.60~168.70			72 3.6 10 28 28 1.84 36 <0.5 11 12 73 2.26	<10 <1 0.42 10 0.68 3240 1 0.	.02 8 740 4 0.54 <2 12	58 <0.01 <10 <10 32 <10 41
P2-59 188.70~188.80	19 0.5 2	2.08 37 <10 80 0.5 <2 5	11 <0.5 18 5 43 4.11	<10 <1 0.27 <10 1.51 2450 <1 0.	.04 9 510 5 0.4 <2 19	75 <0.01 <10 <10 89 <10 40 87 <0.01 <10 <10 75 <10 43
P2-60 198.25~198.35 P2-61 205.25~205.35		2.15 122 <10 70 <0.5 <2 6 .63 118 <10 40 <0.5 <2 2	05 <0.5 28 6 40 4.38 03 <0.5 14 36 34 4.32	<10 1 0.34 <10 0.91 1655 1 0.	.02 11 830 4 1.59 <2 6	34 <0.01 <10 <10 24 <10 70
P2-62 245.60~245.70	56 0.7 0	0.97 32 <10 30 <0.5 <2 6	.59 <0.5 17 61 41 3.15	<10 <1 0.36 10 1.15 2060 1 0.	03 19 800 2 0.32 <2 15	56 <0.01 <10 <10 49 <10 38 43 <0.01 <10 <10 18 <10 36
P2-63 250.63~250.73 P3-1 41.25~41.50			83 <0.5 9 42 39 2.72 95 <0.5 16 91 29 3.64			12 <0.01 <10 <10 9 <10 53
P3-2 41.50~42.47	83 4.2 1	1.07 164 <10 10 <0.5 <2 1	.68 <0.5 13 48 48 2.78	<10 <1 0.32 <10 0.25 543 2 <0.	.01 11 790 7 0.75 <2 4	15 <0.01 <10 <10 19 <10 61 37 <0.01 <10 <10 29 <10 63
P3-3 42.47~43.20 P3-4 42.20~43.55			4.7 <0.5 17 47 63 4.04 41 0.6 31 171 43 6.47	<10 1 0.22 <10 0.74 1540 11 0.	01 22 470 11 2.53 <2 6	47 <0.01 <10 <10 42 <10 202
P3-10 41.15~41.25	40 8 1	1.58 416 <10 10 <0.5 <2	1.4 <0.5 22 27 45 4.71	<10 <1 0.34 <10 0.53 630 2 <0.	.01 13 900 15 2.12 <2 5	17 <0.01 <10 <10 20 <10 84 61 <0.01 <10 <10 27 <10 65
P3-11 43.55~43.65 P3-16 172.90~173.35			7.2 <0.5 15 7 47 2.5 .45 <0.5 14 4 61 4.71	10 <1 0.29 10 1.61 1875 6 0.	.02 4 890 3 0.49 <2 8	67 <0.01 <10 <10 70 <10 61
P3-17 174.20~174.50	11 0.5	2.26 80 <10 20 <0.5 <2 7	.48 <0.5 16 9 61 4.21	10 1 0.23 10 1.3 2120 10 0.	0.01 4 770 7 1.44 <2 6	80
P3-18 175.00~175.50 P3-20 173.35~174.20			11 <0.5 16 21 42 4.23 .58 <0.5 16 4 62 4.92		.01 6 910 3 0.49 <2 9	70 <0.01 <10 <10 71 <10 65
P3-21 174.50~175.0	19 0.2 2	2.43 9 <10 30 <0.5 <2 4	.84 <0.5 12 5 55 3.98	10 <1 0.29 10 1.23 1695 2 0.	0.01 7 840 5 0.52 <2 6	68 <0.01 <10 <10 59 <10 50 28 <0.01 <10 <10 8 200 164
P3-23 241.2~241.33			.25 1.4 48 25 246 1.05 .12 8.8 18 206 88 4.87			25 0.08 <10 <10 27 <10 2550
P4-1A 135.8~136.07 P4-2A 156.33~156.65	42 1 (0.52 185 <10 10 <0.5 <2	6.2 0.9 18 61 14 2.91	<10 <1 0.26 <10 0.11 1180 5 <0.	0.01 10 380 45 3.13 2 5	28 <0.01 <10 <10 14 <10 88 8 <0.01 <10 <10 16 <10 4340
P4-3A 156.65~156.95 P4-4A 239.65~240.47			.24 24.4 8 471 233 5.59 .79 <0.5 10 44 15 2.69		0.01 7 450 11 1.92 <2 3	42 0.08 <10 <10 11 <10 25
P4-5A 240.47~241.1	42 0.6	0.63 64 <10 10 <0.5 <2 1	.72 <0.5 9 118 16 2.71	<10 <1 0.18 <10 0.2 348 9 <0	0.01 8 550 10 2.15 <2 2	15 0.09 <10 <10 9 <10 22 13 <0.01 <10 <10 7 <10 672
P4-6A 78.60~79.10	222 3.6	0.46 260 <10 10 <0.5 <2 2	.35 29.1 8 202 76 4.5	<10 <1 0.18 <10 0.17 567 90 <0	101 1201 7771 701 71	

Table 4-27 Results of Microscopic Observstion of Thin Sections, Prambon District

					-	Phenocryst or fragment	st or fra	gment			gro	undmas	groundmass or matrix	ί×		alte	alteration		
Sample No.	Depth (m)	Field name	Rock type	Texture	MP	cpx hb	zb	면 작	do	MP.	윤	dz b	Pl ₹	- Bi	8	cb	sm/chl ser	r epi Description	
P1-38T	25.00	25.00 Porphyritic andesite	altered andesite	porphyritic	<u>(</u>	0		0	٥	<u>ô</u>		4	0	<u>©</u>	۵	0	0	Mafic minerals and groundmass are altered into carbonate and smectite.	ıto
P1-39T	67.95	67.95 Fine-grained andesite?	altered andesite	porphyritic	<u>ô</u>	<u> </u>		<u>©</u>	◁	<u>ô</u>	ا	0	ĵ	<u>©</u>	0	0	⊘	Plagioclase is totally replaced by sericite. Mafic minerals by chlorite and carbonate	fic
P1-40T	143.15	143,15 Coarse-grained andesite	altered andesite	porphyritic	<u>ô</u>			0	0	<u>ô</u>		0	0	<u>ô</u>	0	0	0	Mafio minerals by smectite and carbonate. Amygdule by carbonate and smecite.	nygdule by
P1-41T	224.70	224.70 Andesitic lapilli tuff-tuff breccia	volcanic breccia	clastic to	<u>ô</u>		0	<u>(</u>	0	<u>a</u>	 	0	<u>(</u>	<u>ô</u>	0	0	0	Various rock fragments. Plagioclase totally by sericite. Mafic by smectite and cb.	y sericite.
P2-34T	155.50	55.50 Coarse-grained andesite	altered andesite	porphyritic	<u>ô</u>			0	◁	<u> </u>			0	<u>ô</u>	0	0	0		gly by
P2-50T	168.25	168.25 Coarse-grained andesite	altered andesite	porphyritic	<u>ê</u>			(©)	◁	<u>(a</u>	7	4	<u>(</u>	<u>ô</u>	0		0	Mafic minerals by carbonate. Plagioclase by carbonate and serioite.	carbonate
P2-51T	236.00	236.00 Lapilli tuff (hyaloclastite?)	lappile tuff	clastic to porphyrtic	<u>ô</u>		0	0	△		Ŭ	0	0	<u>ô</u>	0	0	0 0	Mafic by carbonate and chlorite. Plagioclase by carbonate and sericite.	by
P2-52T	196.30	196.30 Compact andesite	altered andesite	porphyritic	ô			0	0	ô			0	<u>ô</u>	0	0	0	Mafic by smectite and carbonate. Plagioclase locally by carbonate.	e locally by
P3-6T	43.60	43.60 Altered andesite	altered andesite	porphyritic	(0)			<u>(</u>	٥	<u>ô</u>		0	<u>@</u>	<u>ô</u>	0	0	0	Mafic by carbonate. Plagioclase totally by sericite.	ricite.
P3-7T	44.60	44.60 Andesitic lapilli tuff-tuff breccia	altered andesite	porphyritic	ô		Ĭ	(©)	0	<u> </u>	Ĭ	0	<u>@</u>	<u>ô</u>	0	0	0	Mafic by carbonate and chlorite. Plagioclase by sericite and carbonate.	by sericite
P3-19T	135.00	135.00 Andesitie(lava?)	altered andesite	trachtic	<u>ô</u>			0	0	<u> </u>	Ĭ	0	0	<u>ô</u>	0	0	∇ @	Mafic by smecite and carbonate. Amygdule by smectite and carbonate.	y smectite
P3-22T	206.80	206.80 Andesitie(lava?)	altered andesite	porphyritic	<u>ô</u>		Ŭ.	<u> </u>	0	<u>ô</u>	1	4	(©	<u>ô</u>	0	0	0	Mafic by chlorite and carbonate. Plagioclase totally by sericite and carbonate.	totally by
P4-19T	44.30	44.30 Fine-grained andesite	altered andesite	porphyritic	<u>a</u>			<u>@</u>	0	<u>3</u>	Ĭ	0	<u>ô</u>	ô	0	0	0		nocryst
P4-20T	129,95	129,95 Coarse-grained andesite	altered andesite	porphyritic	<u>ô</u>		Ŭ	<u>(</u>	0	(Ô		<u> </u>	0	<u>ô</u>	0	0	0	A Plagioclase strongly by carbonate and epidote. Mafic by chlorite or carbonate.	e. Mafic by
P4-21T	182.10	182.10 Coarse-grained andesite	volcanic breccia	clastic to porphyrtic	<u>ô</u>			(©	0	ô		Ĭ	0	Ô.	0	0	0	Mafic by carbonate and chlorite. Plagioclase strongly by carbonate, locally by sericite.	strongly
P4-22T	227.00	227.00 Fine-grained andesite	altered andesite	porphyritic	Ô.			(©)	0	(O)		0	(©)	Ô.	0	0	0	O Mafic by carboante and epidote. plagioclase totally by carbonate.	totally by

abbrev. MP-pseudomorph of mafic minerals, cpx=clinopyroxene, pl=plagioclase, op=opaque minerals, qz=quartz, hb=hornblende gl=glass or microcrystalline aggregate, cb=carbonate, ser=sericite, Kf=K-feldspar, epi=epidote, sm/chl=smectite or chlorite @abundant, Ocommon, Asmall, 'rare

Table 4-28 Results of X-ray Diffraction Analysis, Prambon District

6 Operation Kf PM CMM Soe Call Kf PM CPM CPM Soe Call Kf PM CPM CPM Soe Call Kf PM CPM		1						Quartz Index	Index					00
P1—27 SEQ—62.046 59 6 115 26 39 P1—24 SEQ—62.046 108 1 10 26 12 P1—27 16.64.5—166.29 22 14 10 289 22 P1—27 16.64.5—166.29 22 12 16 129 18 P1—27 16.64.5—166.29 22 12 16 19 19 P1—28 18.64.5—166.29 22 22 16 13 1 P1—29 18.66.4 57 1 13 1 12 P1—29 18.64.0 30 3 3 1 1 1 1 P1—27 18.64.0 30 12 1 1 1 1 1 P1—28 18.64.0 31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Sample No	Depai (III)	Otz	苓	₫	ᅙ	Se	Cal	Sid	Kut	Py	Cpx	2012
P1-23 88.00~88.02 10 10 10 48 48 P1-24 88.00~88.02 108 10 10 259 19 22 P1-25 16.48.0—16.23 24 11 11 12 19 19 P1-27 16.48.0—16.23 24 11 12 19 19 19 P1-28 16.48.0—16.20 22 24 11 12 19 19 P1-34 16.48.0 23 22 14 11 19 11 11 P1-34 16.48.0 23 22 29 15 19 10 10 P1-34 16.48.0 31 46 13 19 16 11 <		P1-13	52.70~53.05	29			9	15		26		39		
P1-24 88.80 (8.84 o. 100) 100 11 10 105 21 P1-27 16.85 (8.24 (6.25) 23 14 10 259 19 23 P1-37 16.85 (8.25) 82 18 11 10 10 23 P1-32 16.85 (8.25) 82 18 13 11 10 10 P1-32 16.80 (8.25) 82 18 13 11 10 11 P1-32 16.80 (8.25) 36 16 16 19 10 10 P1-32 16.80 (8.25) 36 16 16 19 16 10 10 P1-32 16.80 (8.25) 36 16 16 10		P1-23	88.0~88.2	79				13				48		
P1−25 1645 −162,3 24 11 15 169 26 22 P1−20 16480 −162,3 24 11 15 19 19 19 P1−20 16480 −162,3 24 17 12 19 19 19 P1−30 16480 −2 23 16 13 16 17 11 P1−34 16460 −2 23 16 13 16 10 10 P1−3 16460 −2 22 29 15 19 10 10 P1−3 16460 −2 22 29 16 11		P1-24	88.80~89.40	108				10				21		
P1−27 168,50 = √66,25 22 24 10 259 10 10 </td <td></td> <td>P1-25</td> <td>164.5~165.23</td> <td>49</td> <td></td> <td></td> <td>14</td> <td>12</td> <td>109</td> <td>26</td> <td></td> <td>22</td> <td></td> <td></td>		P1-25	164.5~165.23	49			14	12	109	26		22		
P1-30 64480 83 18 18 18 19 19 19 19 1480 18 19 10		P1-27	165.55~166.25	22			24	10	528					
P1-3.2 66.45 57 17 13 6.4 23 P1-3.2 96.00 30 12 13 6.4 14 15 19 14 16 19 10		P1-30	44.80	83			18	12		19		19		
P1-32 96.00 30 33 8 94 94 94 P1-34 15360 22 12 14 16 13 4 10 P1-34 116460 40 13 13 13 14 11 11 P1-35 116460 31 13 13 13 14 11	Į.	P1-31	66.45	57			17	13				23		
P1-34 18250 22 19 19 19 14 16 99 19 19 10	MOJE-PI	P1-32	96.00	30			33		94					
P1-34 19460 40 14 14 10 <		P1-33	132.50	22			29	15	137			4		
P1-36 19130 18 37 13 96 14 11 P1-36 22060 53 45 13 130 14 11 P1-36 22060 53 47 12 184 130 14 P2-1 84500 22 13 6 46 13 15 P2-1 84500 123 8 13 6 45 10 P2-1 16800-16910 37 13 6 45 10 14 P2-3 16800-16910 37 11 326 16 12 14 P2-3 16800-16910 37 24 16 25 11 364 45 10 P2-3 16800-16910 37 24 16 12 14 14 14 16 12 14 14 16 12 14 14 16 12 14 14 12 14 14 <		P1-34	164.60	40			14	16	66	19		10		
P1-36 220.60 31 48 11 102 13 P1-37 220.60 59 45 13 77 12 164 16 P2-1 117.30 47 12 164 130 14 P2-8 91.15~97.00 12 22 13 66 16 16 14 P2-8 91.15~97.00 12 12 16 35 16 17 16 <td< td=""><td></td><td>P1-35</td><td>191.30</td><td>18</td><td></td><td></td><td>37</td><td>13</td><td>96</td><td></td><td>14</td><td>=</td><td></td><td></td></td<>		P1-35	191.30	18			37	13	96		14	=		
P1−3.7 249.00 55 45 13 37 15 P2−1.4 117.30 47 12 164 150 14 P2−1.8 117.30 47 12 16 130 14 P2−1.8 117.30 123 1 18 54 16 12 14 P2−1.4 186.070 − 169.10 22 1 13 26 45 16 14 P2−3.2 15.200 − 206.83 23 2 2 3 6 45 16 17 P2−3.4 15.200 − 206.83 37 4 4 16 29 13 20 4 P2−1.7 14.00 22 2 2 3 4 16 45 17 P2−1.4 186.00 24 4 16 29 13 4 16 17 17 P2−1.4 186.00 2 2 2 2 3 4		P1-36	220.60	31			48	=	102		13			
P1-46 117.30 47 7 12 164 15 15 P2-1 84.50 22 7 12 6 134 6 P2-1 18.15 ~ 97.80 122 7 18 64 16 14 P2-1 18.00 ~ 18.30 22 18 64 10 10 P2-14 18.00 ~ 18.30 22 23 15 64 45 10 P2-14 18.00 ~ 18.30 22 23 15 64 45 10 4 P2-32 18.00 ~ 18.30 26 22 23 12 75 10 4 P2-32 18.00 ~ 18.30 24 4 6 13 25 17 45 17 16 45 10 4 P2-32 18.00 ~ 1 4 4 16 49 13 6 89 45 17 P2-34 24.00 ~ 1 4 14 26 89		P1-37	249.00	59			45	13	37					Se: Sericite/smectite mixed layer mineral?
P2-1 94.50 122 6 130 14 P2-8 9.1/15-97.80 122 9 13 60 13 14 P2-8 1 122 1 12 1 14 1 14 P2-14 18.700-718.91 2 1 1 254 10 4 P2-14 18.700-718.30 22 23 13 64 45 10 4 P2-32 1186.80 28 22 23 18 75 17 4 P2-34 245.70-248.90 24 4 16 99 13 20 2 P2-34 246.00-26.63 3 4 16 4 4 17 4 17 4 17 4 17 4 17 4 18 18 18 17 17 18 18 18 18 18 18 18 18 18 18 18 18 <td></td> <td>P1-46</td> <td>117.30</td> <td>47</td> <td></td> <td></td> <td>7</td> <td>12</td> <td>184</td> <td></td> <td></td> <td>15</td> <td></td> <td>Se: Sericite/smectite mixed layer mineral?</td>		P1-46	117.30	47			7	12	184			15		Se: Sericite/smectite mixed layer mineral?
P2-8 9115.6-9180 123 9		P2- 1	84.50	22				9			130	14		Se: Sericite/smectite mixed layer mineral?
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		P2-8	97.15~97.80	123				6			34	5		
P2-14 168 70-168 10 37 18 54 16 12 10 P2-13 17,00~-168 10 28 52 3 11 325 16 12 10 P2-33 18,00 28 52 2 3 12 2 4 P2-33 18,00 26 13 20 2 4 16 30 2 4 P2-43 245,00 24 4 6 13 23 17 45 16 17 17 17 P2-40 250,20 26 2 2 8 47 16 45 17 17 17 17 17 17 17 17 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 18 18 47 16 18 18 47 16 18 18		P2- 9	98.80	72				13	99					
P2-17 1700~1830 32 11 325 16 12 10 P2-32 18680 28 52 23 13 64 45 10 4 P2-33 15730 28 52 23 13 64 45 10 4 P2-34 15730 24 16 99 13 20 2 P2-44 24570~24690 24 16 16 19 13 20 2 P2-51 23600 24 149 26 16 13 20 2 P2-51 23600 41 149 26 8 47 16 45 P2-53 24000 41 46 8 47 16 46 45 17 14 45 17 16 45 17 14 45 17 16 45 17 14 46 18 47 16 46 18		P2- 14	168.70~169.10	37				18	54			14		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		P2-17	177.00~178.30	32				11	325	16	12	10		
P2-33 15730 26 52 23 8 75 9 14 4 4 4 4 4 4 16 35 13 20 2 P2-44 245,0020~260.63 34 149 26 8 47 16 45 17 P2-53 224.00 36 22 8 8 49 13 80 P2-54 220.00 41 59 28 8 49 13 80 P2-54 220.00 41 59 28 8 49 13 80 P2-54 220.00 41 59 28 49 13 80 P3-6 28 28 49 13 80 49 13 80 P3-6 28 28 49 13 80 49 13 80 80 80 80 80 80 80 80 80 80 80		P2-32	186.80	28				13	64	45	2			
P2-44 24570~24690 44 4 16 99 13 20 2 P2-51 22600~2603 34 149 6 13 23 12 17 18 17 17 17 18 17 18 17 17 18 18 17 18 18 17 18<	MJIE-P2	P2-33	157.30	26		52	23	8	75			4		
P2-49 25020-25063 31 6 13 23 12 72 17 P2-51 23600 24 149 26 8 47 16 45 17 16 45 17 16 45 17 16 45 17 16 45 16 8 49 13 80 17 18 17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18		P2- 44	245.70~246.90	44			4	16	66	13	20	2		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		P2- 49	250.20~250.63	37			9	13	23	12	72	17		
P2-54 214,00 38 22 9 13 80 1 P2-54 240,00 41 6 6 8 8 13 80 8 P2-54 220,00 41 6 6 6 8 8 8 8 P3-3 42,47~43,20 65 4 25 10 8		P2-51	236.00	24		149	26	8	47	16	45			
P2-54 24000 7 59 28 49 13 80 P2-55 45 26 6 89 49 13 80 P3-3 42,47-4320 65 41 6 6 89 9 P3-5 42,47-4320 65 26 7 94 7 94 P3-6 43,60 26 44 13 6 88 9 12 P3-6 43,60 26 46 33 6 88 9 12 P3-8 31.70 66 46 33 6 88 9 12 P3-9 23.00 62 46 33 6 88 9 12 9 P3-13 150.20 42 26 26 34 7 26 9 9 P3-14 199.00 25 56 34 7 72 9 P3-15 172,290-173.50		P2-53	214.00	38		22		6						
P2-56 282.50 41 6 6 89 89 9 P3-3 42.47~43.20 65 45 25 10 6 89 9 P3-6 42.60 26 45 25 7 94 8 8 9 P3-6 43.60 26 4 13 6 88 9 8 9 8 9 8 9		P2-54	240.00	7		29	28	8	49	13	80			Se: Sericite/smectite mixed layer mineral?
P3-3 42.47~43.20 66 45 25 10 7 94 7 94 7 94 7 94 7 94 7 94 7 94 7 94 7 94 7 94 7 94 7 94 7 94 7 94 7 94 7 94 7 94 7 94 7 94		P2- 55	252.50	41			9	9	88					
P3-5 1000 39 45 25 7 94 7 94 P3-6 43.60 26 44 13 6 88 6 7 94 7 72 72 7 </td <td></td> <td>P3-3</td> <td>42.47~43.20</td> <td>9</td> <td></td> <td></td> <td></td> <td>25</td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td>Se: Sericite/smectite mixed layer mineral?</td>		P3-3	42.47~43.20	9				25	2					Se: Sericite/smectite mixed layer mineral?
P3-6 43.60 26 44 21 5 102 9 P3-7 44.60 24 44 13 6 88 9 12 19 6 P3-9 23.00 62 46 14 9 12 19 6 8 P3-12 100.20 17 145 21 36 6 88 9 8 34 36 8		5-Ed	10.00	39		45	25	7	94					Se: Sericite/smectite mixed layer mineral?
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		9-Ed	43.60	26			21	5	102					Se: Sericite/smectite mixed layer mineral?
P3-8 3170 66 46 33 6 88 9 12 19 6 8 P3-9 23.00 62 14 9 12 19 6 34 P3-12 150.20 42 206 24 16 6 34 P3-13 150.20 42 206 24 16 6 8 P3-14 199.00 25 56 34 7 72 7 P3-15 124,00 11 334 34 7 72 7 P3-16 172,90 12 12 55 46 7 7 P4-7 143.0 30 163 37 9 82 7 16 P4-8 73.00 22 26 35 17 59 7 16 P4-10 157.85 35 58 19 14 14 104 104 P4-13 2		2-Ed	44.60	24		44	13	9	88					
P3-9 23.00 62 14 9 12 19 6 34 P3-12 100.20 47 208 24 16 9 12 19 6 34 P3-14 100.20 25 56 34 260 6 34 36 34 36 34 36 34 36 34 36 36 34 36 36 34 36 36 34 36 46 36 34 36 46 36 34 36 46 36 46 36 36 36 36 36 36 36 37 36		P3-8	31.70	99		46	33	9	88					
P3-12 100.20 17 145 21 36 34 36 34 36 34 36 34 36 34 36 34 36 34 36 34 36 34 36 34 36 36 34 36 36 34 36 36 37 36 37 37 37 37 37 37 37 37 46 27 46 27 46 27 46 27 46 27 47 27 47 27 47 27 47	M. IIF-D3	P3-9	23.00	62			14	6	12	19	9			\rightarrow
P3-13 150.20 42 208 24 16 P3-14 190.00 25 56 34 7 72 P3-15 249.70 11 334 7 72 9 P3-16 172.90~174.50 12 12 55 46 7 P3-17 174.20~174.50 33 15 22 9 142 7 P3-17 174.20~174.50 30 163 37 9 82 7 P4-7 44.30 30 163 37 25 17 59 P4-8 73.00 22 26 35 25 17 16 P4-9 100.00 50 115 8 7 47 16 P4-10 12.95 35 5 17 474 25 14 P4-12 190.45 27 69 24 4 104 24 P4-14 24.180 89 <t< td=""><td>2</td><td>P3-12</td><td>100.20</td><td>17</td><td></td><td>145</td><td>21</td><td></td><td>36</td><td></td><td></td><td></td><td>34</td><td></td></t<>	2	P3-12	100.20	17		145	21		36				34	
P3-14 193.00 25 36 34 7 260 P3-15 249.70 11 334 34 7 260 P3-16 172.90~173.35 12 121 55 5 46 7 P3-17 172.90~173.35 12 121 55 5 46 7 P3-17 174.20~174.50 33 16 22 9 142 Tr P4-7 44.30 30 16 37 56 17 16 P4-8 73.00 22 26 35 5 47 16 P4-9 100.00 50 115 8 7 47 16 P4-10 129.95 8 102 26 4 4 104 25 P4-12 190.45 27 68 24 4 104 26 26 P4-14 241.80 89 37 50 55 1 26 <		P3-13	150.20	42		208	24	+	91					
P3-15 172.93-10 334 34 7 72 P3-15 172.90-713.35 12 131 55 46 7 P3-17 174.20-713.35 13 16 22 9 142 Tr P4-7 44.30 30 163 37 9 82 Tr P4-8 73.00 22 26 35 25 Tr 59 Tr 16 P4-9 100.00 50 115 8 7 7 16 16 P4-10 125.85 35 8 19 Tr 474 25 25 P4-11 157.85 35 8 24 4 104 25 26 26 26 26 26 26 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 27 26 26 26 <td></td> <td>P3-14</td> <td>199.00</td> <td>67</td> <td></td> <td>000</td> <td>45</td> <td>-</td> <td>707</td> <td></td> <td></td> <td></td> <td></td> <td></td>		P3-14	199.00	67		000	45	-	707					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		P3-15	249.70			334	45	†	7/					
P3-17 14.20~14.30 33 15 22 9 142 Ir P4-7 44.30 30 163 37 9 142 Ir P4-8 73.00 22 26 35 25 Tr 59 Tr 16 P4-9 100.00 50 115 8 47 16 16 P4-10 129.95 8 102 26 47 25 26 P4-11 15.85 35 58 24 4 104 25 26 P4-12 190.45 27 69 24 4 104 25 26 P4-13 220.50 89 24 4 104 25 26 P4-14 241.80 89 24 11 14 38 11 P4-15 15.55 66 7 16 35 16 14 P4-16 156.25 66 7 <td< td=""><td></td><td>P3-16</td><td>1/2.90~1/3.35</td><td>12</td><td></td><td>121</td><td>32</td><td>c ·</td><td>40</td><td></td><td></td><td></td><td></td><td></td></td<>		P3-16	1/2.90~1/3.35	12		121	32	c ·	40					
P4-7 44.30 30 163 31 9 82 Ir P4-8 73.00 22 26 35 25 Tr 59 Ir P4-10 129.95 8 102 26 47 10		P3-17	174.20~174.50	33		15	22	5	142			-		Se: Sericite/smectite mixed layer mineral?
P4-8 73.00 22 26 35 25 1r 59 P4-9 10.00 50 115 8 47 8 P4-10 129.95 8 102 26 47 8 P4-11 157.85 35 68 24 4 104 8 P4-12 190.45 27 68 24 4 104 8 P4-13 220.50 32 88 37 50 55 8 P4-14 23.95 59 74 11 8 73 P4-16 156.25 66 5 18 35 16 P4-16 156.25 66 19 11 14		P4-7	44.30	30		163	37	5	82			-		
P4-9 100.00 50 115 8 47 8 P4-10 129.95 3 102 26 47 8 P4-12 157.85 35 58 19 Tr 47 8 P4-12 190.45 27 69 24 4 104 8 P4-13 220.50 32 88 37 50 55 8 P4-14 241.80 89 24 19 11 38 P4-16 156.25 66 5 18 35 16 P4-17 240.60 85 6 19 11 14		P4-8	73.00	22	26	35	25	-	29				16	Cpx: Diopside?
P4-10 129.95 8 102 26 47 P4-11 157.85 35 58 19 17 474 P4-11 190.45 37 68 24 4 104 P4-13 220.50 32 88 37 50 55 P4-14 241.80 89 24 19 11 P4-15 135.95 66 5 18 35 P4-17 240.60 85 6 19 11 14		P4-9	100.00	20		115	œ							
P4-11 157.85 35 58 19 Ir 474 P4-12 190.45 27 69 24 4 104 P4-13 220.50 32 88 37 50 55 P4-13 241.80 89 24 19 11 P4-15 135.95 59 7 8 73 38 P4-16 156.25 66 5 18 35 16 P4-17 240.60 85 6 19 11 14		P4-10	129.95	8		102	26		47					
P4-12 190.45 27 69 24 4 104 P4-13 220.50 32 88 37 50 55 P4-14 24.180 89 24 19 11 P4-15 135.95 59 7 8 73 P4-16 156.25 66 5 18 35 P4-17 240.60 85 6 19 11		P4-11	157.85	35		28	19	上	474				25	Cpx: Diopside?
220.50 32 88 37 50 55 24.180 89 24 19 11 155.95 59 7 8 73 166.25 66 5 18 35 240.60 85 6 19 11	MJIE-P4	P4-12	190.45	27		69	24	4	104					
24180 89 24 19 11 135.95 59 7 8 73 156.25 66 5 18 35 240.60 85 6 19 11		P4-13	220.50	32		88	37	20	22					
135.95 59 7 8 73 156.25 66 5 18 35 240.60 85 6 19 11		P4-14	241.80	88			24	19	=					
166.25 66 5 18 35 240.60 85 6 19 11		P4-15	135.95	29			/	8	73			88		
240.60 85 6 19 11		P4-16	156.25	99			c	20	င္သ			9		
		P4-17	240.60	85			9	61				14		

Qtz.Quartz, Kf. K-felfspar, Pl. Plagioclase, Chl. Chlorite, Se. Sericite, Cal. Calcite, Sid: Siderite, Kut.Kutnahorite, Py. Pyrite, Cpx. Clino-pyroxene

Table 4-29 Results of Microscopic Observation of Polished Sections, Prambon District

M. Land	(P. Constitution of Constitutio of Constitution of Constitution of Constitution of Constitution		Ore	minerals		Gang	Gangue minerals			ŀ		-		-	1
Sample No.	Depth (m)	Describtion	Py	පි	Sph Asp	Aca	æ	others	. <u>r</u>	ser	ā	늏	г	ebi	cal	others
P1-9P	46.90~47.40	Pyrite disseminated silcified zone	0				•		0	△						Ti(•)
P1-13P	52.70~53.05	Pyrite disseminated silcified zone	0			•	•		0						+	ank(©)
P1-47P	88.05	Pyrite disseminated silcified zone	0						0	0					+	-
P1-15P	70.85~71.35	Pyrite veinlets-disseminated silcified zone	0					Pyr(・)Goe(△)	0	△						cab(@)
P1-22P	87.0~88.0	Pyrite disseminated silcified zone	0				•		0	·						Ti(•)
P2-3P	94.85~95.23	Pyrite disseminated argillic zone	0		٥		•		0	0				1		Ti(•)
P2-6P	95.95~96.65	Pyrite veinlets-disseminated silcified ore	0				△		0	0					_	
P2-25P	183.17~183.80	Pyrite veinlets-disseminated silcified ore	0		-	•	0		0	0					4	$ank(\Delta)$
P2-28P	185.00~186.00	Pyrite disseminated silcified-argillic ore	0		0		◁		0						0	
P2-35P	198.35~199.20	Pyrite veinlets-disseminated quartz-calcite vein	0	◁	0		△		0				◁		0	ank(O)
P2-49P	250.20~250.63	Pyrite disseminated silcified ore	0		4		٥		0						0	dol(△)
P3-4P	42.20~43.55	Pyrite disseminated argillic zone	0		•		•	Ber(•)	0						0	
P4-1P	135.8~136.07	Pyrite veinlets, argillic-silcified zone	0		0		△		0	0			4			
P4-3P	156.65	Pyrite disseminated quartz vein	0				•		0						4	
P4-23P	156.70	Pyrite disseminated quartz vein	0	-	0		△		0	◁						
P4-5P	240.47~241.10	Quartz -calcite vein with pyrite veinlets	0	4					0	0					0	epi(O)

\logontarion:
pyrite, Gn=galena, Goe=goethite, Aca=acanthite,
er=berthierite, Pyr=pyrrhotite

^{&#}x27; minerals, epi=epidote, cal=calcite, ank=ankerite e, Ti=TiO2 polymorph, ank=ankerite,

⁼common, ∆=small, •=rare

Table 4-30 Results of Fluid Inclusion Study of Drill Core Samples, Prambon District (1/3)

		G: / \	l •	f	Phase	Colinity (wtff NoCl)	Th(℃)
Specimen	Mineral	Size (µm)	primary or secondary	form	Phasee	Salinity (wt%.NaCl)	
P1-9Fa-1	quartz	10	secondary	irregular	liquid dominant two phase	0.7	228
P1-9Fa-2	quartz	13	secondary	ellipsoidal	liquid dominant two phases	1.5	193
	quartz	12	secondary	ellipsoidal	liquid dominant two phases	1.1	193
P1-9Fa-3	quartz	6	secondary	shperical	liquid dominant two phases	1.5	201
	quartz	5	secondary	ellipsoidal	liquid dominant two phases	1.3	193
P1-9Fa-4	quartz	6	secondary	ellipsoidal	liquid dominant two phases		236
	quartz	10	secondary	ellipsoidal	liquid dominant two phases		215
	quartz	5	secondary	ellipsoidal	liquid dominant two phases		217
P1-9Fa-5	quartz	15	secondary	irregular	liquid dominant two phases		240
P1-9Fb-1	quartz	13	secondary	ellipsoidal	liquid dominant two phases	0.9	207
1	quartz	9	secondary	irregular	liquid dominant two phases	0.9	244
P1-9Fb-2	quartz	7	secondary	irregular	liquid dominant two phases	0.9	159
	-	20		irregular	liquid dominant two phases	0.7	155
P1-9Fc-1	quartz		secondary		liquid dominant two phases	0.9	169
P1-9Fc-2	quartz	16	secondary	irregular	liquid dominant two phases	4.5	251
P1-9Fd-1	quartz	7	secondary	irregular		; I	
P1-9Fd-2	quartz	10	secondary	ellipsoidal	liquid dominant two phases	4.3	unmeasurable
P1-9Fd-3	quartz	7	secondary	shperical	liquid dominant two phases	4.5	198
1	quartz	6	secondary	shperical	liquid dominant two phases	3.5	204
P1 -9 Fe-1	quartz	10	secondary	ellipsoidal	liquid dominant two phases		202
	quartz	27	secondary	irregular	liquid dominant two phases		204
P1-9Ff-1	calcite	14	secondary	irregular	liquid dominant two phases		230
P1-9Ff-2	quartz	5	secondary	angular	liquid dominant two phases		202
No.2	, -1						
P1-14Fa-1	quartz	7	secondary	idiomorphy	liquid dominant two phases	2.5	244
P1-14Fa-2	quartz	7	secondary	idiomorphy	liquid dominant two phases	1.5	245
P1-14Fa-3	quartz	6	secondary	ellipsoidal	liquid dominant two phases	1.6	unmeasurable
P1-14Fb-1		18	secondary	irregular	liquid dominant two phases	1.3	178
1 1-1-1-1-0-1	quartz	7	secondary	idiomorphic	liquid dominant two phases	1.5	184
	quartz	7	ı , ı	-	liquid dominant two phases	1.5	178
n	quartz		secondary	irregular	1	1.5	148
P1-14Fb-2	quartz	5	secondary	angular	liquid dominant two phases	1 1	
	quartz	5	secondary	angular	liquid dominant two phases	1.6	148
	quartz	20	secondary	irregular	liquid dominant two phases	1.6	154
	quartz	6	secondary	ellipsoidal	liquid dominant two phases	1.6	147
P1-14Fb-3	quartz	8	secondary	ellipsoidal	liquid dominant two phases		244
	quartz	8	secondary	irregular	liquid dominant two phases		201
	quartz	3	secondary	irregular	liquid dominant two phases		220
P1-14Fc-1	quartz	8	secondary	ellipsoidal	liquid dominant two phases	2.0	unmeasurable
P1-14Fd-1	quartz	5	secondary	ellipsoidal	liquid dominant two phases		188
	quartz	5	secondary	ellipsoidal	liquid dominant two phases		218
	quartz	4	secondary	shperical	liquid dominant two phases		217
P1-14Fd-2	_	14	secondary	irregular	liquid dominant two phases		230
11-1414-2	quartz	6	secondary	ellipsoidal	liquid dominant two phases		208
D1 14E4 2	quartz	5		idiomorphic	liquid dominant two phases		230
P1-14Fd-3	quartz		secondary	•			184
	quartz	5	secondary	ellipsoidal	liquid dominant two phases		251
P1-14Fd-4	quartz	8	secondary	idiomorphic	liquid dominant two phases	L	231
No.4	T	Ι	T	····	1	1	
	host mineral	size(µm)	primary or secondary	form	Phasee	salinty(wt%.NaCl)	Th(℃)
P2-25Fa-1	quartz	10	secondary	angular	liquid dominant two phases	1.6	225
P2-25Fa-1 P2-25Fa-2	-	20	secondary	irregular	liquid dominant two phases	1.8	206
1	quartz	§ .		_	liquid dominant two phases	1.0	218
P2-25Fa-3	quartz	17	secondary	irregular	1 .		225
İ	quartz	7	secondary	irregular	liquid dominant two phases		
	quartz	9	secondary	irregular	liquid dominant two phases	1 22	180
P2-25Fb-1	quartz	5	secondary	ellipsoidal	liquid dominant two phases	2.3	181
	quartz	5	secondary	cllipsoidal	liquid dominant two phases	2.3	187
P2-25Fb-2	quartz	7	secondary	ellipsoidal	liquid dominant two phases		178
P2-25Fc-2	quartz	7	secondary	ellipsoidal	liquid dominant two phases	0.9	178
P2-25Fc-3	quartz	17	secondary	irregular	liquid dominant two phases	0.6	243
	quartz	13	secondary	irregular	liquid dominant two phases	0.9	246
	quartz	10	secondary	irregular	liquid dominant two phases	0.7	248
P2-25Fc-4	quartz	13	secondary	irregular	liquid dominant two phases		218
	quartz	20	secondary	irregular	liquid dominant two phases		240
P2-25Fc-5	quartz	5	secondary	irregular	liquid dominant two phases	1	231
12.2010-0	-	11	secondary	irregular	liquid dominant two phases		199
P2-25Fd-1	quartz		1	ellipsoidal	liquid dominant two phases	1.5	205
	quartz	10	secondary		1 -		
P2-25Fe-1	quartz	10	secondary	irregular	liquid dominant two phases	4.5	183
	quartz	5	secondary	idiomorphic	liquid dominant two phases	1	134
P2-25Fg-1	quartz	4	secondary	idiomorphic	liquid dominant two phases	3.7	unmeasurable
1	quartz	3	secondary	ellipsoidal	liquid dominant two phases	3.0	unmeasurable
	quartz	7	secondary	ellipsoidal	liquid dominant two phases	3.0	unmeasurable
P2-25Fh-1	quartz	6	secondary	idiomorphic	liquid dominant two phases		163
	quartz	4	secondary	shperical	liquid dominant two phases		163
P2-25Fi-1	quartz	7	secondary	irregular	liquid dominant two phases		243
	1 7	<u> </u>					I

Table 4-30 Results of Fluid Inclusion Study of Drill Core Samples, Prambon District (3/3)

Specimen	Mineral	Size (µm)	primary or secondary	form	Phasee	Salinity (wt%.NaCl)	Th(℃)
P4-3F 2-1-1	quartz	15	secondary	irregular	liquid dominant two phases	0.6	293
P4-3F 2-1-2	quartz	10	secondary	irregular	liquid dominant two phases	0.7	293
P4-3F 2-1-3	quartz	8	secondary	irregular	liquid dominant two phases	0.7	291
P4-3F 2-1-4	quartz	11	secondary	irregular	liquid dominant two phases	0.6	284
P4-3F 2-2-1	quartz	11	secondary	irregular	liquid dominant two phases	0.7	306
P4-3F 2-2-2	quartz	6	secondary	irregular	liquid dominant two phases	0.6	277
P4-3F 3-1-1	quartz	18	secondary	irregular	liquid dominant two phases	0.9	272
P4-3F 3-1-2	quartz	10	secondary	irregular	liquid dominant two phases	1.1	282
P4-3F 3-3-1	quartz	10	secondary	irregular	liquid dominant two phases		298
P4-3F 3-3-2	quartz	10	secondary	irregular	liquid dominant two phases	0.9	275
P4-3F 3-3-3	quartz	8	secondary	irregular	liquid dominant two phases	0.9	284
P4-3F 3-4-1	quartz	18	secondary	irregular	liquid dominant two phases	0.7	281
P4-3F 3-4-2	quartz	8	secondary	irregular	liquid dominant two phases	0.7	286
P4-3F 4-1	quartz	8	secondary	irregular	liquid dominant two phases	0.6	275
P4-3F 4-2	quartz	14	secondary	irregular	liquid dominant two phases	0.6	287
P4-3F 5-1-1	quartz	10	secondary	irregular	liquid dominant two phases	0.7	248
P4-3F 5-1-2	quartz	6	secondary	irregular	liquid dominant two phases	1.3	254
P4-3F 5-3	quartz	10	secondary	irregular	liquid dominant two phases	1.3	254
P4-3F 6-1-1	quartz	7	secondary	irregular	liquid dominant two phases	1.8	257
P4-3F 6-1-2	quartz	10	secondary	irregular	liquid dominant two phases	2.0	268
P4-3F 6-2-1	quartz	12	secondary	idiomorphic	liquid dominant two phases	0.9	255
P4-3F 6-2-2	quartz	15	secondary	irregular	liquid dominant two phases	0.9	268
P4-3F 6-2-3	quartz	12	secondary	irregular	liquid dominant two phases	0.9	263
No.10							
Specimen	Mineral	Size (µm)	primary or secondary	form	Phasee	Salinity (wt%.NaCl)	Th(℃)
P4-5F 1-1	quartz	10	secondary	irregular	liquid dominant two phases	2.1	unmeasurable
P4-5F 1-2	quartz	4	secondary	irregular	liquid dominant two phases	2.3	288
P4-5F 2	calcite	7	secondary	irregular	liquid dominant two phases	1.8	283

110.10							20.
Specimen	Mineral	Size (µm)	primary or secondary	form	Phasee	Salinity (wt%.NaCl)	Th(℃)
P4-5F 1-1	quartz	10	secondary	irregular	liquid dominant two phases	2.1	unmeasurable
P4-5F 1-2	quartz	4	secondary	irregular	liquid dominant two phases	2.3	288
P4-5F 2	calcite	7	secondary	irregular	liquid dominant two phases	1.8	283
P4-5F 3-1	calcite	8	secondary	irregular	liquid dominant two phases	0.4	374
P4-5F 3-2-1	calcite	10	secondary	irregular	liquid dominant two phases	0.4	unmeasurable
P4-5F 3-2-2	calcite	12	secondary	irregular	liquid dominant two phases	0.6	unmeasurable
P4-5F 3-3-1	calcite	7	secondary	ellipsoidal	liquid dominant two phases	0.4	unmeasurable
P4-5F 3-3-2	calcite	7	secondary	irregular	liquid dominant two phases	0.4	unmeasurable
P4-5F 3-5-1	calcite	7	secondary	ellipsoidal	liquid dominant two phases	0.6	386
P4-5F 3-5-2	calcite	5	secondary	ellipsoidal	liquid dominant two phases	0.6	288
P4-5F 3-6-1	calcite	6	secondary	irregular	liquid dominant two phases	0.7	245
P4-5F 3-6-2	calcite	12	secondary	irregular	liquid dominant two phases	0.6	278
P4-5F 3-6-3	calcite	4	secondary	ellipsoidal	liquid dominant two phases	0.4	284
P4-5F 3-6-4	calcite	4	secondary	irregular	liquid dominant two phases	0.4	284

Two samples (P2-4F,P3-4F) do not contain fluid inclusions that can be measurable.

Table 4-30 Results of Fluid Inclusion Study of Drill Core Samples, Prambon District (3/3)

No.9						· · ·	
Specimen	Mineral	Size (µm)	primary or secondary	form	Phasee	Salinity (wt%.NaCl)	Th(℃)
P4-3F 2-1-1	quartz	15	secondary	irregular	liquid dominant two phases	0.6	293
P4-3F 2-1-2	quartz	10	secondary	irregular	liquid dominant two phases	0.7	293
P4-3F 2-1-3	quartz	8	secondary	irregular	liquid dominant two phases	0.7	291
P4-3F 2-1-4	quartz	11	secondary	irregular	liquid dominant two phases	0.6	284
P4-3F 2-2-1	quartz	11	secondary	irregular	liquid dominant two phases	0.7	306
P4-3F 2-2-2	quartz	6	secondary	irregular	liquid dominant two phases	0.6	277
P4-3F 3-1-1	quartz	18	secondary	irregular	liquid dominant two phases	0.9	272
P4-3F 3-1-2	quartz	10	secondary	irregular	liquid dominant two phases	1.1	282
P4-3F 3-3-1	quartz	10	secondary	irregular	liquid dominant two phases		298
P4-3F 3-3-2	quartz	10	secondary	irregular	liquid dominant two phases	0.9	275
P4-3F 3-3-3	quartz	8	secondary	irregular	liquid dominant two phases	0.9	284
P4-3F 3-4-1	quartz	18	secondary	irregular	liquid dominant two phases	0.7	281
P4-3F 3-4-2	quartz	8	secondary	irregular	liquid dominant two phases	0.7	286
P4-3F 4-1	quartz	8	secondary	irregular	liquid dominant two phases	0.6	275
P4-3F 4-2	quartz	14	secondary	irregular	liquid dominant two phases	0.6	287
P4-3F 5-1-1	quartz	10	secondary	irregular	liquid dominant two phases	0.7	248
P4-3F 5-1-2	quartz	6	secondary	irregular	liquid dominant two phases	1.3	254
P4-3F 5-3	quartz	10	secondary	irregular	liquid dominant two phases	1.3	254
P4-3F 6-1-1	quartz	7	secondary	irregular	liquid dominant two phases	1.8	257
P4-3F 6-1-2	quartz	10	secondary	irregular	liquid dominant two phases	2.0	268
P4-3F 6-2-1	quartz	12	secondary	idiomorphic	liquid dominant two phases	0.9	255
P4-3F 6-2-2	quartz	15	secondary	irregular	liquid dominant two phases	0.9	268
P4-3F 6-2-3	quartz	12	secondary	irregular	liquid dominant two phases	0.9	263
No.10							
0	3.6: 1	6000		Carres	Dhases	Colimita (aut 0% No.C1)	Th/9~)

140.10						[A 11 1	mi (90.)
Specimen	Mineral	Size (µm)	primary or secondary	form	Phasee	Salinity (wt%.NaCl)	Th(℃)
P4-5F 1-1	quartz	10	secondary	irregular	liquid dominant two phases	2.1	unmeasurable
P4-5F 1-2	quartz	4	secondary	irregular	liquid dominant two phases	2.3	288
P4-5F 2	calcite	7	secondary	irregular	liquid dominant two phases	1.8	283
P4-5F 3-1	calcite	8	secondary	irregular	liquid dominant two phases	0.4	374
P4-5F 3-2-1	calcite	10	secondary	irregular	liquid dominant two phases	0.4	unmeasurable
P4-5F 3-2-2	calcite	12	secondary	irregular	liquid dominant two phases	0.6	unmeasurable
P4-5F 3-3-1	calcite	7	secondary	ellipsoidal	liquid dominant two phases	0.4	unmeasurable
P4-5F 3-3-2	calcite	7	secondary	irregular	liquid dominant two phases	0.4	unmeasurable
P4-5F 3-5-1	calcite	7	secondary	ellipsoidal	liquid dominant two phases	0.6	386
P4-5F 3-5-2	calcite	5	secondary	ellipsoidal	liquid dominant two phases	0.6	288
P4-5F 3-6-1	calcite	6	secondary	irregular	liquid dominant two phases	0.7	245
P4-5F 3-6-2	calcite	12	secondary	irregular	liquid dominant two phases	0.6	278
P4-5F 3-6-3	calcite	4	secondary	ellipsoidal	liquid dominant two phases	0.4	284
P4-5F 3-6-4	calcite	4	secondary	irregular	liquid dominant two phases	0.4	284

Two samples (P2-4F,P3-4F) do not contain fluid inclusions that can be measurable.

Table 4-30 Fluid Inclusion Study of Drill Core Samples, Prambon District (4/4)

Inclusion number	mineral	Size(um)	ary or Secon	Form	Phases	Th(°C)	first ice melting temperature(oC)	Final melting temperature (oC)	Major components	Salinity	Remarks
P1-22 1-1-1	quartz	24	primary	idiomorphic	liquid dominant	unmeasurerale due to decrepitation			-9.8 H2O-NaClsystem	14.6 wt % NaCl eq	
P1-22 1-1-2	quartz	9	primary	idiomorphic	liquid dominant	unmeasurerale due to decrepitation		-10.8	-10.8 H2O-NaClsystem	15.7 wt % NaCl eq	
P1-22 1-2	quartz	12	primary ?	idiomorphic	liquid dominant	unmeasurerale due to decrepitation	-21.9		-7.4 H2O-NaClsystem	11.6 wt % NaCl eq	
P1-22 1-3	quartz	25	primary ?	idiomorphic	liquid dominant	292		-2.7	-2.7 H2O-NaClsystem	4.8 wt % NaCl eq	
P1-22 2-1	quartz	25	primary?	idiomorphic	liquid dominant	281		-8.4	-8.4 H2O-NaClsystem	13.0 wt % NaCl eq	
P1 <i>-</i> 22 2-2	quartz	61	secondary	不規則	liquid dominant	unmeasurerale due to gas disappear	-20.6		-0.2 H2O-NaClsystem	0.4 wt % NaCl eq	and control of the co
P1-22 2-3-1	quartz	12	primary	idiomorphic	liquid dominant	221	> -80℃	unfleased			A STATE OF THE STA
P1-22 2-3-2	quartz	10	primary	idiomorphic	liquid dominant	225	೦08->	unfleased			
P1-22 3-1	quartz	13	primary ?	f	liquid dominant	220	-34.1		-19.7 H2O-NaCl-CaCl2system?	21.2 wt % CaCl ₂ et	21.2 wt % CaCl ₂ eq melting temperature and H2O-NaCl-CaCl2system
P1-22 4-1	quartz	27	primary?	idiomorphic	liquid dominant	261		-24.3	-24.3 H2O-NaCl-CaCl2system?	23.3 wt % CaCl ₂ eq	
P1-22 4-2	quartz	30	primary ?	idiomorphic	liquid dominant	Decrepted at 300°C	-54.3		-17.3 H2O-NaCl-CaCl2system?	19.5 wt % CaCl ₂ ec	19.5 wt % CaCl ₂ eq melting temperature and
P1-27 4-3	quartz	45	primary	idiomorphic	liquid dominant	378	-20.6		-3.9 H2O-NaClsystem	6.7 wt % NaCl eq	
P1-22 4-4	quartz	50	primary	<u> </u>	liquid dominant	316	44.2		-21.3 H2O-NaCl-CaCl2system?	21.9 wt % CaCl ₂ er	21.9 wt % CaCl ₂ eq melting temperature and H2O-NaCl-CaCl2system
PI-22 4-5	quartz	20	primary?	idiomorphic	liquid dominant	unmeasurerale due to decrepitation	-33.8		-18.5 H2O-NaCl-CaCl2system?	20.6 wt % CaCl ₂ er	20.6 wt % CaCl ₂ eq melting temperature and H2O-NaCl-CaCl2system
P1-22 5-1	quartz	13	primary?	idiomorphic	liquid dominant	268	C-80,C	unfleased			
P1-22 5-2	quartz		primary ?	idiomorphic	liquid dominant	236	< -8 0°C	unfleased			A STATE OF S
P1-22 5-3	quartz		primary?	idiomorphic	liquid dominant	331	-21.3		-2.4 H2O-NaClsystem	4.3 wt % NaCl eq	Motionstood brown fran 100
P1-22 5-4	quartz	17	primary ?	idiomorphic	liquid dominant	283	-41.5	·	-19.8 H2O-NaCl-CaCl2system?	21.0 wt % CaCl ₂ e	21.0 wt % CaCl ₂ eq melting temperature and H2O-NaCl-CaCl2system

Table 4-31 Chemical Analysis Results of Drill Hole Core Samples of MJIE-S1

													T =									T - T -		T =:	T		<u> </u>			, T		
Width(m)	Field Observation	Description	 	Ag Al	l As	B 1	Ba B	Be Bi	Ca *	Cd	Co Cr	Cu	Fe	Ga	Hg	K	La	Mg	Mn Mo	Na Na	Ni Ni	P Pb	S .	Sb	Sc	Sr	Ti s	TI	U	V	W	Zn
1.00		oxidized zone FeOx,kaoline	0.002	<0.2	0.42	9 <10	40	<0.5	2 0.01	<0.5	<1 ×	46	4 0.95	<10	<1	0.09	<10	0.01	8	1 <	0.01	2 40	5 0.14	4 <	FF:	26	<0.01	<10	<10	5	<10	2
1.00		oxidized zone FeOx,kaoline	0.002		0.43 2	3 <10	30 60	<0.5 <0.5	2 0.01			34	5 1.38 5 1.36	110	<1	0.12	<10 <10		14		0.01	5 40	5 0.22 7 0.32	+	2 1	23 26	<0.01	<10 <10	<10 <10	5	<10	3
1.00	oxidezed zone	oxidized zone FeOx,kaoline oxidized zone FeOx,kaoline	0.001		0.57 1 0.45 2			<0.5	<2 0.01			96	6 1.38	-		0.17	<10		19		0.01	8 100	4 0.21		2 1	59	<0.01	<10	<10	7	10	2
1.00		oxidized zone FeOx,kaoline	0.007		0.42 3	1 110	70	<0.5	<2 0.01			264	9 2.2	-		0.09		10101	29		0.01	1 150	2 0.29		2 1	81	<0.01	<10	<10	11	10	5
1.00		pyrite disseminated soft clay	0.005		0.22 8 0.25 8	*	30	<0.5	2 0.05 5 0.01			35 6	0.0			0.1	<10 <10		43		0.01 4	18 20 18 50	12 6.82 8 7.08		2 5	41	<0.01 <0.01	<10 <10	<10 <10	10	<10 <10	180
1.00		pyrite disseminated rather hard pyrite disseminated rather hard	0.006		0.42 11		40	<0.5	4 0.01			64 4	-			0.03			30		0.01 22		11 7.14		-	40	<0.01	<10	<10	6	<10	18
1.00		pyrite disseminated rather hard +0.20m caly	0.007		0.21 15	_	20	<0.5	9 0.02		57	76 6	9 8.44			<0.01	<10		31		0.01 27	4	20 9.06		-	19	<0.01	<10	<10 <10	9	<10	26
1.00		pyrite disseminated rather soft pyrite disseminated clay	0.004		0.69 7 1.3 5	4 <10	30	<0.5 <0.5	3 0.26		27	90 7	3 5.13 8 4.5	3 <10 7 <10		0.08	<10 <10		132		0.02		22 5.56 19 4.92	-		18	<0.01	<10	<10	35 66	<10 <10	162
1.00		pyrite disseminated clay	0.004		0.21 8	1 <10	10	<0.5	5 0.06	0.9		39 8				0.04	<10		23		0.03 12		6 7.3		2 7	10	<0.01	<10	<10	10	<10	231
1.00		pyrite disseminated clay	0.007		0.81 10 1.76 12		10	<0.5 <0.5	3 0.08		40 31		7 7.05	3 <10 5 10		0.08	<10 <10		48 54				11 7.26 31 7.3		2 8	7 26	<0.01	<10 <10	<10 <10	35 47	<10 <10	319 762
1.00		pyrite disseminated rather soft pyrite disseminated clay	0.008		0.85 13	*	20	⟨0,5	2 0.08			81 5	-			0.07	<10		55				38 8.0	-	2 11	9	<0.01	<10	<10	54	<10	421
1,00		pyrite disseminated rather soft	<0.001		0.68 5		10	<0.5	2 0.11			65 4		-		0.11	<10		29			20	38 8.3		2 9	10	<0.01	<10 <10	<10 <10	29 154	<10 <10	176
1.00	37.30-167.55: argillic	pyrite disseminated rather soft pyrite disseminated rather hard+ 0.40m clay	0.001			7 <10 5 <10	20	0.6	3 0.23	-		168 10 191 7		1 10 B 10	<1 1	0.14	<10 <10		1345		0.07 15		23 8.68 15 6.06	_	- '0	- 14	<0.01	<10	<10	166	<10	209 108
1.00		pyrite disseminated pyrite disseminated	<0.001		4.54 8	-	20	<0.5	2 0.73	<0.5	36	205 2		3 10	1	0.11	<10	4.94	1480		0.04 12		12 5.5		2 16	44	<0.01	<10	<10	171	<10	114
1,00		pyrite disseminated Fine tuff	<0.001		2.9 7 0.93 9	2 <10 9 <10	20	<0.5	<2 0.58 3 0.21	<0.5 2.4		32 3 50 7	0.11	6 10 5 <10	1	0.16	<10 <10		894		0.04 1		11 6,04 14 8,15			31	0.01 <0.01	<10	<10 <10	128 60	<10 <10	98 425
1.25 1.00		pyrite disseminated soft clay pyrite disseminated pyrite veinlets	0.005		1.3 8	5 <10	10	<0.5	4 0.25	-		60 4				0.10	<10		55		0.05 11		14 8.26	-		32	<0.01	<10	<10	49	<10	108
1.00		pyrite disseminated argillic	0.001		2.87 4	' \ ''	20	0.6	<2 0.6	<0.5		24 1	7 0.0	8 10		0.11	<10		585		0.04		13 4.3		2 6	47	<0.01	<10	<10 <10	52 190	<10 <10	108
1.00		pyrite disseminated hard, propylitic pyrite disseminated Tuff breccia, green	0.001		3.75 2 4.97 2	6 <10 6 <10	10	<0.5 <0.5	4 0.5 3 0.54			168 11: 31 12		4 10 8 10	-	0.02	<10 <10		2170 1205	_	0.04 5	630 18 690	10 5.20 11 6.4		2 24		<0.01	<10	<10	276	<10	83
1.10		pyrite disseminated pyrite disseminated sericite	0.005			3 <10	20	0.5	2 0.33		29	34 5	4 7.6	1 10	<1	0.1	<10	3.8	471	<1	0.04	630	10 5.60	-			<0.01	<10	<10	235	<10	51
1,00		pyrite disseminated,veinlets weakly fractured	0.003		4.22 2 0.41 8	9 <10	10	<0.5 <0.5	2 0.29 9 0.12			21 13	5 9.0 4 8.4	-	1 (1	0.1	<10 <10	2.06 0.11	124		0.03	17 370 13 20	9 9.40 37 8.99	-		31 17	<0.01	<10 <10	<10 <10	184	<10 <10	48
1.00		pyrite disseminated soft clay pyrite disseminated propylitic	0.008		5.16 3	8 <10	20	⟨0,5	2 0.38			32 1	-			0.11	<10		628	$\overline{}$	0.03		11 6.08		2 18	26	<0.01	<10	<10	211	<10	84
1.00		pyrite disseminated propylitic	0.017	111	5.18 3	2 <10	20	<0.5	<2 0.32	-		41 3	0 7.8			0.08	<10		664		0.03		12 4.7 7 4.5		2 18		<0.01	<10 <10	<10 <10	204 182	<10	43
1.00		pyrite disseminated propylitic pyrite disseminated propylitic	0.02		5.34 2	7 <10	40 30	<0.5 0.5	<2 0.45 <2 0.43			31 1	2 6.4			0.12	<10 <10		579 678		0.03	9 930	6 2.6	-			<0.01	<10	<10	162	<10	47
1.00	167.55-222,85: propylitic	pyrite disseminated clay	0.013		1,22 4	3 <10	10	<0.5	3 0.28	<0.5		48 2	2 6.6			0.05	<10	0.42	68		0.01		24 6.8	_		29	<0,01	<10	<10	21	<10	15
1.00	107.00 EEE,00. propysido	pyrite disseminated propylitic	0.002	1414	4.92 2 5.4 1	8 <10 7 <10	20	<0.5 <0.5	3 0.68 <2 0.74			38 4	0 7.5 3 6.9	2 10 6 10		0.06	<10 <10		1980 2140		0.05	710	33 5.24 10 4.4			81 78	<0.01 0.04	<10 <10	<10 <10	235 266	<10	92
1.00		pyrite disseminated propylitic pyrite disseminated very weakly argillic	0.002		4.85	9 (10	20	<0.5	<2 0.58			29 4				0.06	<10		2350		0.05	10 560	9 4.3		2 22	60	0.03	<10	<10	270	<10	152
1.00		pyrite disseminated very weakly argillic	0.003		4.38	9 <10	40	<0.5	<2 0.5 <2 0.57	+		27 1	4 7.3	4	<1 <1	0.17	<10 <10		1780		0.02	11 490	10 5.3 22 6.3		2 12		<0.01	<10	<10 <10	162 211	<10 <10	76
1.00		pyrite disseminated very weakly argillic pyrite disseminated soft clay	0.004		4.06 1 3.7 2	1 <10	40	<0.5 <0.5	<2 0.54			22 8	**********		<1	0.09			1010		0.04		24 6.5		3 12		<0.01	<10	<10	138	<10	80
1.00	gradual change	pyrite disseminated in clayish zones	0.016		3.77 7	8 <10	40	<0.5	<2 0.38	+		30 2	4 6.9		<1	0.16	<10	2.98	1005		0.04		14 5.4 13 6.6		2 13 2 13		<0.01 <0.01	<10 <10	<10 <10	152 126	<10 <10	98
1.00		pyrite disseminated argillic-silicification pyrite disseminated weak argillization	0.005		4.19 2 2.87 3	8 <10	20	0.5	3 0.47 2 0.47			16 10 14 6	2 6. 1 5.2	<u> </u>	 	0.07 0.15	<10 <10	2.03 1.86	186 572		0.03	4	36 5.7		2 7	34	<0.01	<10	<10	29	<10	142
1.00		pyrite disseminated clay	0,005	0.2	3.98 2	110	30	0.6	4 0.53	_		19 16	v			0.17	<10		1135		0.05		22 6.3		2 9	32	<0.01	<10	<10	67	<10	492
1.00		pyrite disseminated clay	0.006		3.95 2	3 <10	40	0,6 <0.5	2 0.62 4 0.42	-		21 1	7 6.0	-	-	0.12	<10 <10		1040 344	_	0.06	14 1160 12 590	18 6. 14 5.9	-		45 35	<0.01	<10 <10	<10 <10	82 59	<10 <10	136
1.00	237.50-289.10: sericite+quar	pyrite disseminated clay pyrite disseminated porous tuff breccia	0.009		0.48	9 <10	10	<0.5	<2 0.09	-		22 1	1 5.9		<1	0.01	<10		50	<1	0.01	13 140	12 6.2	1 <	2 3	7	<0.01	<10	<10	11	<10	19
1.10		pyrite disseminated Tuff breccia, compact	0.004		3.62	9 <10	40	0.6	2 0.78			32 1	4 5.0 1 5.2	`\'`	1 <1	0.11	<10 <10		1735		0.03	9 900	15 4.9 13 4.5		2 8	75	<0.01	<10 <10	<10 <10	71 66	<10 <10	160
1.00		pyrite disseminated Tuff pyrite disseminated Tuff	0.003		2.56	3 <10	50	⟨0.5	2 0.6	_	 	24 1	0 4.3		 '' 	0.17	<10		893		0.04	10 710	13 4.4		2 4	57	<0.01	<10	<10	47	<10	90
1.00		pyrite disseminated argillic	0.007		3.56	7 <10	20	<0,5	<2 0.76			23	7 4.8	-	1	0.09	<10		989	_	0.07	8 830	8 4.6		2 10	69	<0.01 <0.01	<10 <10	<10 <10	72 88	<10 <10	50
1.00		mosaic of pyrite disseminated part and pinky (alunite) part clayey-fractured gray rock	t 0.002 0.002		3.80	3 <10	10	<0.5 <0.5	<2 0.73 <2 0.76	-		17 32 1	9 4.6 0 4.5		1 1	0.10	<10 <10		1335		0.06	8 830 14 820	9 4.7		2 7	80	<0.01	<10	<10	69	<10	45
1,00		weakly fractured alunite? pyrite rock	0.016	<0.2	3.88	3 <10	10	<0.5	<2 0.64			28	7 4.9		 	0,12	<10		934		0.05	12 800	32 4.9	-	2 6	63	<0.01	<10	<10	68	<10	91
1,00		silicified, pyrite disseminated	0.005		3.78	6 <10	90 30	<0.5	<2 1.24 <2 0.77	-	16	26 2 45 1	0 4.5 4 4.3			0.11	<10 <10		1005		0.19	13 820 15 740	16 4.6 10 4.2		2 9	257 145	<0.01	<10 <10	<10 <10	85 66	<10 <10	86
1.00	tg 35-329 65: Sadaisa-\#!	silicified, pyrite disseminated tgreen_tuff breccia, pyrite disseminated	800.0	<0.2	3.68	9 <10	30	<0.5	<2 0.72	<0.5		27 1	4 4.7	6 10	<1	0.08	<10	2.85	822	2	0.10	12 790	12 4.7	9 <	2 8	96	<0.01	<10	<10	90	<10	54
1.00	ozo.oo. senote /Alun	precciated, pyrite disseminated	0.007		3.14	8 <10 8 <10	10 40	<0.5 <0.5	3 0.72				4 4.6 5 4.7		(1	0.12 0.16	<10 <10		654 752		0.08	7 820 1 870	8 4.7 8 4.5		2 7	182	<0.01 <0.01	<10 <10	<10 <10	79 61	<10 <10	46 32
1,00		pyrite disseminated s pyrite veinlets pyrite disseminated s pyrite veinlets	0.006		4.58	2 <10	50	<0.5	2 0.90		10	5 6	1 5.3		1	0.14	<10		757		0.16	1 890	10 5.1	5 <	2 10	212	<0.01	<10	<10	141	<10	40
1,00		pyrite disseminated m silicification weal, alunite?	0.006	<0.2	4.24	2 <10	20	<0.5	2 0.73				1 4.9		1	0.18	<10		700			(1 810	8 4.4 12 7.8		2 10	135 198	<0.01	<10 <10	<10 <10	152 124	<10 <10	39
1,00		pyrite disseminated pyrite strong pyrite disseminated pyrite strong	0.007		3.89 4.14	2 <10 7 <10	30 20	<0.5 <0.5	2 0.80				3 7.8 8 7.9			0.20	<10 <10		596 536		0.16	2 820 4 870	9 8.1			298	<0.01	<10	<10	118	<10	31
1.00		pyrite disseminated clayey	0.014	<0.2	4.11	15 <10	30	<0.5	2 0.95	1.2	30		7 10.8			0,14	<10	2.51	860	2	0.19	7 930	13 9.9		2 12		0.01	<10		168	<10	46
1.00		pyrite disseminated weakly fractured pyrite disseminated Magnetite, biotite?	0.009		4.45	3 <10	50 10	<0.5 <0.5	<2 1.47 <2 0.69	+			9 7.8 8 7.6		-	0.11	<10 <10		1270		0.32	2 1010	9 2.1		2 19		0.05	<10 <10		283	<10 <10	78
1.00		pyrite disseminated Magnette, blotte? pyrite disseminated black streak (tuff?)	0.012		3.61	(2 <10	<10	<0.5	<2 0.48				2 7.3		(1	0.07			1085	1	0.08	1 900	5 1.6	0 <	2 19	41	0.04	<10	<10	246	<10	64
1.00		pyrite disseminated black streak (tuff?)	0.012		1.2.	2 <10	10 30	<0.5	<2 0.85				2 7.1 7 7,3		(1	0.09			1090	_	0.16	2 810	4 0.8 7 1.5		(2 18 (2 19	1011	0.07			273 245	<10 <10	61 84
1.00		pyrite disseminated very weakly silicification pyrite disseminated clayish	0.009		5.66	8 <10 59 <10	40	<0.5 <0.5	<2 1.21 <2 1.06				0 6.3			0.16			1255 1410		0.29	1 870	18 3.7	-	(2) 13		0.03			168	<10	97
1,20		pyrite disseminated grayish,compact	0.010	<0.2	4.83	24 <10	20	<0.5	<2 1.76	6 <0.5		20 2	0 7.9	7 10		0.23	<10	2.19	844		0.37	3 890	23 6.3		2 9	199	0.02			139	<10	66
1.00	330.70-394.50; Propylitic	pyrite disseminated m black streak	0.021			16 <10 14 <10	10	<0.5 <0.5	2 1.03				9.8			0.21			1440 800		0.26	6 910 3 780	32 6.9 23 3.4		(2) 14		0.01		<10 <10	164	<10 <10	184
1.00		pyrite disseminated m black streak pyrite disseminated pyrite black streak?	0.011			17 <10	30	<0.5	<2 1.74	-			5 7.9		1	0.20	<10	1.24	856	4	0.61	7 720	12 3.2	25 <	(2 7	170	0.13	<10	<10	138	<10	86
1.35		pyrite disseminated weak silicification	0.007		0.71	14 <10	10	<0.5	<2 0.83			11 6	2 4.2		<1	0.16			1385		0.13	4 740	10 1.5 8 2.1		(2 13		0.10 0.10			126 281	<10 <10	114
0.20 1.00		molybdenite, pyrite clay veinlets 2mm pyrite disseminated Magnetite rich	0.017		3.93 1	45 <10 4 <10	<10 10	<0.5 <0.5	<2 1.14 <2 1.00			18 14			0 <1	0,13 0,11			1295 1095		0.17	7 420 8 620	8 2.1 8 1.5		(2) 16	 	0.10			229	<10	118
1.00		pyrite disseminated porphyritic andesite?	0.011	<0,2	3.40	12 <10	<10	<0.5	<2 0.94	4 <0.5	20	27 14	14 6.7	3 11	1	0.08	<10	3.21	1125	16	0.23	8 510	8 1,9		(2 17		0.21			319	<10	173
1.00		pyrite disseminated Magnetite weak	0.019			32 <10	<10 10	<0.5 <0.5	<2 1.42 <2 2.05			25 11 27 21			(1	0.10		 	1065		0.34	12 510 10 600	17 3.9 21 2.6		(2) 16		0.19			309 297	<10 <10	158 154
1.00		pyrite disseminated (quartz+pyrite+sericite) pyrite disseminated	0.016		3.33	6 <10	<10 <10	<0.5	<2 0.7			12 11	2 6.4) (1	0.07			1190		0.16	6 730	9 0.8	31 <	(2 20	37	0.19	<10	<10	326	<10	122
	argillic?	pyrite disseminated	0.012			11 <10	20		<2 1.5		18	83 37	6.0	10	(1			2.23	1010	1	0.3	11 600	23 6.3	31	2 11	68	0.01	<10	<10	150	<10	142

Table 4-32 Results of Microscopic Observation of Thin Sections, Seweden District

		i	-	-		Pheno	cryst (Phenocryst or fragment	ment				groundmass or matrix	ass or I	паттіх			alteration	tion	Description
Sample No. Depth (m)	Depth (m)	rield name	Rock type	exture	ΦW	čb	윤	д 25	ž a	g	₹	윤	zb	ā	¥	- Is	do	cb sm	sm/chl se	ser epi
\$1-81	108.72	108. 72 Andesite	altered andesite	porphyritic	0			0		0	<u>0</u>		0	0	ت	<u> </u>	0	0	◁	Mafic minerals and glass were totally decomposed into clay minerals.
\$1-82	115. 55	115. 55 Andesite dyke(fragment?)	tuff breccia	clastic to porphyrtic	Q		ļ	0		◁	(O)			0	-	0	0	0	7	Matic minerals and glass were totally into clay minerals. Epidote locally replacing nasioclase
\$1-83	146. 80 Diabase	Diabase	trachite	trachtic	Q			0		△			0	0			0 0	0	7	Mafic minerals into chlorite. Matrix is silicified.
\$1-84	158.60	158. 60 Tuff breccia	silicified volcanics				-						0	0			4	0	7	△ Totally altered and partly silicified. Texture is uncertain.
S1-85	184. 85	184. 85 Gray fragment of andesitic tuff breccia	silicified volcanics	1			-						0	0			0	0		Totally altered and partly silicified. Amygdule of calcednic quartz is common.
\$1-86	232. 00	232. 00 Tuff breccia	altered volcanics										0	0			0	0	◁	Mafic minerals and glass totally decomposed into clay minerals. partly silicified pools.
\$1-88	376. 35	376. 35 Porphyry	altered andesite	porphyritic	0				0	0			◁	0		0	0	_		Mafic minerals and glass into chlorite and △ clay minerals. Actinolite occurs as an aggregate.
\$1-157	300.00	300. 00 Silicified rock	altered volcanics			П	\vdash						0	0			0		7 0	☐ Texture is uncertain. Quartz vein occurs. partly silicified.

rroxene, pl-plagioclase, op-opaque minerals, qz=quartz, hb-hornblende e, ser-sericite, Kf-K-feldspar, epi-epidote, sm/chl=smectite or chlorite Ocommon, Asmall, ·rare

Table 4-33 Results of X-ray Diffraction Analysis, Seweden District

	Cbx																								di La La La La La La La La La La La La La														6			
	Mt																																			49		63	43	51		Carried and an arrangement of the last of
	Py	28	58	34	132			21	118	35	and a constraint			35	48		52	46	44	43	30	43	63	92	14	54	27	33	31	30	29	23	22	15	14		10				47	1
	ΙΥ											48	303		90	7																	The state of the s								-	
Xe	Pyr					∞								48		4										9				22		The second secon										
Quartz Index	Kao					∞						18	11	131	13	24	33				25			25		17				113												
	Se				12	4		4									8				5			6													4			Þ		
	Chi	7	9	9	18		12	34		5	7							17	18	7		10	23		23		21	6	5	I	6	6	01	6	6	17	19	8	13	16		
	Sm	11	5	11			15	6	9	9	9							4	20	7		18	ц					4				11	∞	12	7	6	&				ь	
	Pi																		55	68		66					23				7	19	41	92	13	12		4	134	106	51	
	720	51	52	54	51	51	6	28	19	89	57	135	78	80	89	136	49	47	19	27	34	24	44	13	39	25	21	28	104	900	26	55	63	36	99	28	19	30	12	17	35	
	Depth (m)	290.35	294.60	112.35	126.25	134.30	139.35	186.10	269.35	283.65	283.70	5.00	25.70	41.00	52.90	70.00	82.20	96.00	109.20	120.40	129.00	146.75	158.55	166.40	181.00	194.85	211.35	225.40	241.15	250.20	284.30	290.35	304.00	313.85	325.50	336.90	345.50	361.80	374.60	390.00	385.50	
;	Sample No	S1-101	S1-102	S1-103	S1-104	\$1-105	S1-106	S1-107	S1-108	S1-109	S1-110	S1-111	S1-112	S1-113	S1-114	S1-115	S1-116	S1-117	S1-118	S1-119	S1-120	S1-121	S1-122	S1-123	S1-124	S1-125	S1-126	S1-127	S1-128	81-120	S1-131	S1-132	S1-133	S1-134	S1-135	S1-136	S1-137	S1-139	S1-140	S1-141	S1-142	
	Drill Hole			J	-			1	1		!			-		-	-	,					MJIE-S1					^				-										

Qtz:Quartz, Pl: Plagioclase, Chl: Chlorite, Se: Sericite, Cal: Calcite, Sm: Smectite, Kao:Kaolinite, Py: Pyrite, Cpx: Clino-pyroxene, Al:Aumite, Mt: Magnetite
Pyr:Pyrophyllite

-364 -

Table 4-34 Results of Microscopic Observation of Polished Sections, Seweden District

Sample No	Drilled I engthth(m)		Ö	Ore minerals	nerals						- Ga	ngue 1	Gangue minerals		
Sampre 140.	(mr)mmer pour	Py Cp	Sph	Aca	Sph Aca Cer Ang	\ng \n	others	si	kao	se	kf	chl	cly	cal	others
S1 -8 9	00.69	0	\triangleleft					0	0						
S1-90	141.45	0	abla					0					0		
\$1-91	188.75	0						0					0		$\operatorname{Ti}(\triangle)$
S1-92	205.55	•			•		Pyr(•)					0	0		
S1-93	260.60	0	abla					0					0		$apa(\triangle)$
S1-94	290.30	•				_	$Pyr(\triangle)$	0					0		Ti(△)
S1-95	326.10	•						0			\triangleleft		0		$apa(\triangle)$
S1-96	389.15	•						0	0	0				0	3.3

Abbreviation:

Py=pyrite,Cp=chalcopyrite,Cer=cerussite,Ang=anglesite si=SiO2 minerals, chl=chlorite,cly=clay mineral,kao=kaolinite cal=calcite, kf=K-feldspar Sph=sphalerite, Pyr=pyrrhotite se=sericite or muscovite, Ti=TiO2 polymorph, apa=apatite,

 \bigcirc =abundant, \bigcirc =common, \triangle =small, •=rare

Table 4-35 Fluid Inclusion Study of Drill Core Samples, Seweden District (1/2)

Sample number	Mineral	Size (µm)	primary or secondary	moj	Phasee	Salinity (wt%.NaCl)	(C)
	calcite	17	secondary	irregular	liquid dominant two phases	0.2	163
	calcite	. oc	secondary	irregular	liquid dominant two phases	0.0	unmeasurable
	calcile	9	secondary	irregular	liquid dominant two phases	0.2	unmeasurable
	calcite	717	secondary	idiomorphy	liquid dominant two phases	0.2	200
	calcite	12	secondary	irregular	liquid dominant two phases	0.4	200
	calcite	7	secondary	irregular	liquid dominant two phases	0.2	unmeasurable
	calcite		secondary	irregular	liquid dominant two phases	0.2	201
	calcite	7	secondary	irregular	liquid dominant two phases	0.2	200
\$1-297	calcite	· · · ·	secondary	irregular	liquid dominant two phases	0.0	141
342.65m	calcite	=	secondary	irregular	liquid dominant two phases	9:1	unmeasurable
	calcite	13	secondary	idiomorphy	liquid dominant two phases	0:0	173
	calcite	7	secondary	idiomorphy	liquid dominant two phases	0.0	155
	calcite	9	secondary	idiomorphy	liquid dominant two phases	0.0	172
	calcite	٧	secondary	irregular	liquid dominant two phases	9:0	192
	calcite	٧.	secondary	irregular	liquid dominant two phases	9.0	178
	calcite	31	secondary	irregular	liquid dominant two phases	0.0	193
	calcite	01	secondary	irregular	liquid dominant two phases	0.0	181
	osloito	2	vacondary	irregular	figuid dominant two phases	0.2	195

Complement	lumium	Ciralim	Ciretum) Brimary or Secondary	Form	Phases	CONTE	first ice melting temperature(oC) Final melting temperature (oC)	Final melting temperature (oC)	Major components	Salinity	Remarks
compactantos	HIIIGIGI	Olive (min)	The state of the s		and the second of						
	quartz	٧,	secondary	ellipsoidal	liquid dominant	427					
	quartz	51	secondary	irregular	liquid dominant	unmeasurerale due to decrepitation	44.4	-24.3	H2O-NaCl-CaCl2system?	23.2 wt % CaCl ₂ eq	23.2 wt % CaCl ₂ eq Estimated from linal ice melting temperature and H2O-NaCl-CaCl ₂ eq H2O-NaCl-CaCl ₂ existem
		•	- Constant	allineoidal	limit dominant	426					
	duanz	+	Secondary	culpsoidal	nday commen	2				1	Estimated from final ice melting temperature and
	quartz	10	secondary	irregular	liquid dominant	416		-25.4	H2O-NaCl-CaCl2system?	23.8 wt % CaCl ₂ eq	23.8 wt % CaCl ₂ eq H2O-NaCl-CaCl2system
	Z Della	9	secondary	irregular	liouid dominant	416	45.9	-27.4	H2O-NaCl-CaCl2system?	24.4 wt % CaCl ₂ eq	24.4 wt % CaCl ₂ eq L20 McCl CaCl ₂ eq L20 McCl CaCl ₂ equation
	ļ	:	Ì						0.10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	III Caracica Saleini
	quartz	9	secondary	irregular	liquid dominant	unmeasurerale due to decrepitation		CO-	H2O-NaCisystem	U.S W. % NaCled	
	quartz	81	secondary	irregular	liquid dominant	unmeasurerale due to decrepitation		-0.5	H2O-NaClsystem	0.9 wt % NaCl cq	the second secon
S1-97F	quartz	15	secondary	irregular	liquid dominant	464	40.3	-23.0	H2O-NaCl-CaCl2system?	22.4 wt % CaCl ₂ eq	22.4 wt % CaCl ₂ eq H2O-NaCl-CaCl2switch
							,	0.50	5 - 10 - 10 - 10 Octiv	22 8 m 8 C	Estimated from final ice melting temperature and
	quartz	9	secondary	irregular	liquid dominant	unmeasurerale due to decrepitation	40.7	6:C7-	H2O-NaCi-CaCi Zsystem /	או אי העבויז מן	H2O-NaCl-CaCl2system
	quartz	7	secondary	irregular	liquid dominant	unmeasurerale due to decrepitation	41.2	-25.0	H2O-NaCl-CaCl2system?	23.5 wt % CaCl ₂ eq	23.5 wt % CaCl ₂ eq H2O-NaCl-CaCl2system
	quartz	∞	secondary	cllipsoidal	liquid dominant	426					
	quartz	9	secondary	ellipsoidal	Equid dominant	475					
	quartz	2	secondary	cllipsoidal	liquid dominant	392					
	duartz	7	secondary	ellipsoidal	liquid dominant	400					
	quartz	4	secondary	irregular	liquid dominant	418					

Table 4-35 Fluid Inclusion Study of Drill Core Samples, Seweden District (2/2)

Ziraup	20						(a) a manufacture Common manufacture			
duartz duartz duartz		secondary	irregular	liquid dominant	257	-19.8	-2.2	H2O-NaClsystem	3.7 wt % NaCl eq	
duartz quartz quartz	ç	Canadan	- Company	figurid dominant	unmeasurerale due to decrenitation	-22.8	-2.1	H2O-NaClsvstem	3.5 wt % NaCl co	
quartz	77	secondary	in cons	walling which				Marchan Charles	4 8 wit 9. NaCl on	
dnartz	œ	secondary	ırregular	Isquid dominant	354	1.01	-4.9	TEO-TACES SSICILI		
	35	secondary	irregular	liquid dominant	unmeasurerale due to decrepitation	-22.8	-6.7	H2O-NaClsystem	10.1 wt % NaCl eq	
	'	secondary	irregular	liquid dominant	unmeasurerale due to decrepitation		0.1	H2O-NaClsystem	1.6 wt % NaCl eq	
		secondary	rendular	liquid dominant	nomeasurerale due to decrepitation		17	H2O-NaClsystem	1.8 wt % NaCl cq	
THE PARTY NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PARTY NAMED IN		Conduct	immilar	figured dominant	nomeasurerale due to decrenitation		-0.7	H2O-NaClsystem	1.3 wt % NaCl cq	
Tipenh	- 0	cocondan	ollincoidal	figured dominant	numeasurerale due to decrepitation		5.0-	H2O-NaClsystem	0.9 wt % NaCl eq	
Zirenh	- E	socondary	irregular	lionid dominant	152		6.7	H2O-NaClsystem	3.2 wt % NaCl cq	
zheno		secondary	irrogular	licitid dominant	268		-1.9	H2O-NaClsystem	3.2 wt % NaCl eq	
zimoh	74	secondary	irregular	liouid dominant	265		1.8	H2O-NaClsystem	3.0 wt % NaCl od	
27213	\$ 00	secondary	irregular	liouid dominant	061		6.1-	H2O-NaClsystem	3.2 wt % NaCl eq	
	- 5	secondary	irroniar	lionid dominant	27.7	-17.8	-2.3	H2O-NaClsystem	3.8 wt % NaCl cq	
7 tenh	? 4	canadan	ollineoidal	limit dominant	37.5		6.1-	H2O-NaClsystem	3.2 wt % NaCl cq	
Zinnh.	-	accounts)	improduct	figurial dominant	238			H2O-NaClsystem	3.0 Wt % NaCl eq	
Zuanh	n }	secondary	- Incgura	industry continued	346	12.7	000	H2O-NaCleustom	A S w & NaCl or	
quartz	ę,	secondary	ırregular	inquia dominant	240	*:C1	6.4	ingo ii di	The state of the s	
Zhenp	9	secondary	irregular	liquid dominant	383	_	-2.8	HZO-NaCisystem	4.6 Wt % NaC.1 eq	
משמע	4	secondary	cllipsoidal	figuid dominant	unmeasurerale due to decrepitation		Ŧ	H2O-NaClsystem	1.8 wt % NaCl eq	
zteno		secondary	idiomombic	liquid dominant	326		-2.6	H2O-NaClsystem	4.3 wt % NaCl eq	
Cuantz	, ,	secondary	imegular	liquid dominant	348		-3.1	H2O-NaClsystem	5.1 wt % NaCl cq	
ZHEND	· •c	secondary	irregular	liquid dominant	337			H2O-NaClsystem		
zpenz	, E	secondary	irremlar	liquid dominant	405	-20.3	-1.8	H2O-NaClsystem	3.0 wt % NaCl eq	
	-	, mepuoos	incomilar	lionid dominant	379		-3.0	H2O-NaClsystem	5.0 wt % NaCl cq	

S1-72A Liquid dominant two phase inclusions

Sample number	Mineral	size (nm)	remary or secondary	Louis	Luse	(3) (1)	(a) and the triple combined (a c) and the triple combined (a c)		
S1-72A 1-1	ouartz	91	secondary	irregular	Liquid dominant multi-phase inclusions	Gas disappear		-0.5	6.0
SI-72A 1-2	onartz	7	secondary		Liquid dominant multi-phase inclusions	291		-0.5	6.0
51-77-12	miantz	2	secondary	irregular	Liquid dominant multi-phase inclusions	291	-19.9	-0.5	6.0
41 4CF-13	martz	61	secondary	irregular	Liquid dominant multi-phase inclusions	355		-0.5	6.0
SI-77 & I-5	mant?	:=	secondary	incoular	Liquid dominant multi-phase inclusions	unmeasurerale due to decrepitation	9.61-	-0.5	6.0

S1-72A Liquid dominant multi-phase inclusions

Samula alumba	Mark	(mm) size	Timary of Secondary	E	Lusse		THE DE CACHE PHASE (C.)		Charactery (water
			,		_	KCI	NaCl	gas	
0-1 4:27-13	4	•	secondary	idiomorphic	iomorphic Liquid dominant multi-phase inclusions	_	273	400	NaCl: 36.2 wt %
	-].			_	302	350	No.C1.40.7 urt &
S1-72A 1-10-1	duartz	۰	secondary	Irregular	riding comingent matti-phase inclusions		676		W 141 - 101 - 111 W
C-0-1 422-13	duantz		secondary	irregular	Liquid dominant multi-phase inclusions		331	368	NaCI: 40.7 wt %
		-	representation	idomomic	1 imid dominant multi-chase inclusions		> 446°C	> 446°C	> NaCl: 52.8 wt %
11-1 W7/-1C	duals.	,	account y	THE PRINCE OF THE PARTY OF	Cideria dell'anno marca di la companione				

No measurable inclusions are included in the following samples

Sample No. Drilled Longhth(m)

S1.1-37

S1.98

S1.99

S1.99

S1.90

S1.90

S1.90