MIME (JICA)

	Chapter	1	General Provisions		Desument
Category	Paragraph	4	Prevention of Electric Power Disasters	No SS5-	
	Clause	9 Prevention of Electric Power Disasters			NO. 335-1
Title	Installation o	of fire	-extinguishing Equipment (1/2)		

Fire prevention equipment described below should be installed at substations and switching stations.

1. Clearance or a firewall between transformers

As for high-voltage transformers, the clearance should be as follows. If a firewall is installed between transformers, the clearance is not necessary.

Clearance between a Transformer and Other Transformers or Buildings

Liquid Volume	With other transformers [m]	With fireproof buildings [m]	With non-fireproof buildings [m]
Over 1,000 L, but not exceeding 2,000 L	3	3	7.6
Over 2,000 L, but not exceeding 20,000 L	5	5	10
Over 20,000 L, but not exceeding 45,000 L	10	10	20
Over 45,000 L	15.2	15.2	30.5

IEC61936-1: Power installations exceeding 1kV a.c. - Part1: Common rules

The firewalls should be installed as follows,

a. The firewalls should be self-supporting and withstand fire for one hour.

b. The height and length are the value shown in following figure.

Reference to IEC 619361 Ed1/CVD (IEC TC99)

J-POWER & CEPCO

	Chapter	1 (General Provisions		Desument
Category	Paragraph	4	Prevention of Electric Power Dis	asters	No. SS5-2
	Clause	9	Prevention of Electric Power Dis	asters	
Title	Installation of	of fire-e	xtinguishing Equipment (2/2))	
2. Approp Approp importar	riate extinguis riate fire-extir nce of substat	hers Iguishii ions.	ng equipment should be ap	oplied according	to size and
	Fire extinguis	her	Hydrant	Sprinkler	system
	Small-scale f	ire	Large-scale fire	Transfor	mer
			FEMORAT		
Remarks				2003/Nov.	visions Original

<u> </u>		0				<u> </u>			
Cata		Chapter	1	General Provis	Sions		Document		
Cate	gory	Paragraph	4	Prevention of	Electric Power Disaste	rs	No. SS6-1		
		Clause	9	Prevention of	Electric Power Disaste	rs	<u>. </u>		
Title	Title Temperature-rise limit of Transformers (1/2)								
The Pow	The temperature-rise limit of transformers is as follows, according to IEC 60076-2: Power transformer-Part: Temperature rise.								
	Te	emperature-	rise	Limits for O	il-immersed Type	Transform	ners		
	Tem insul	perature-rise ation oil	limit	at the top of	60K				
	Tem (No	perature-rise l ormaliy measure	limit d d by th	of a winding ne resistance)	65K, For transformen 70K, For transformen	s identified as (s identified as (DN or OF DD		
The temperature-rise limits are valid for transformers with solid insulation designed as class A according to IEC 85, and immersed in mineral oil or synthetic liquid with fire point not above 300°C (first code letter:O)						gned as th fire			
Rema	arks					Rev	risions		
		<u> </u>				2003/Nov.	Original		
						I DON			

		Cha	oter	1	General	Provisio	ns	·	
Cate	gory	Para	graph	4	Preventi	on of Ele	ctric Power Disasters		Document
		Clau	se	9	Preventi	on of Ele	ctric Power Disasters		NU. 330-2
Title		Tem	perature	e-rise	limit of T	ransfor	mers (2/2)		
[su	pplem ON	entar AN: (y explar Dil-imme	nation rsed n] aturally c	ooled ty	pe,OFAN: Forced-oil natu	rally-cool	ed type
	Order symł	r of ool	E	xplanat	ion	Symbol	Kind of cooling medium ar mechanism	ıd its circulat n	ion
	First le	etter	Internal co contact wi	oling m th windi	edium in ing and	0	Mineral Oil or synthetic liquid or below.	with fire poin	t of 300 ℃
			core			A G	Air Gas (e.g. sulfur hexafluoride SF	6)	
.						N	Natural (Natural thermo-siphon flequipment and in winding)	ow through co	ooling
	Second	letter	Circulation	n mecha	nism for	F	Forced circulation through cooling siphon flow winding	g equipment, t	hermo-
			internal co	oling m	edium	D	Forced circulation through cooling from them into at least the main w	g equipment, l vinding	Directed
	Third l	etter	External c	ooling 		W	Water		
	Fourth	letter	Circulation external co	n mecha ooling m	nism for edium	<u>N</u> F	Natural convection Forced circulation (cooling fans, b	olowers, pump	es)
			<u> </u>	A	N		AF		
	ON	ON	AN Rac				ONAF Radiator		
	OF.	OF	AN Rac Pump for cooling		×		OFAF Radiator Fun Pump for cooling		
	OD	OD	AN Rac Pump for cooling				ODAF Radiator Fun Pump for cooling		
	 AN : No Fun ON : Circulation is natural and not forced. OF : There is a forced circulation system through cooling equipment, but not any forced circulation system into winding. OD : There is not only a forced circulation system through cooling equipment, but also a forced circulation system into winding. 								
Rem	narks							Revisi	ons
	<u> </u>						200	3/Nov. J-POWE	Original R & CEPCO

	Chanter	1	General Provisions	 				
	Paragraph	4	Prevention of Electric Power Disasters	Document				
Category	Clause	10	Prevention of Accidents Caused by Electric	No. SS7-1				
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Power Facilities					
Title	Title Safety of Personnel (1/3)							
1. Patrol operato Width (behind	Aisles aisles and ors/workers to of an aisle s metal-closed	l oth oper hould d equi	er maintenance spaces should be taken ate and safely carry out maintenance. be 800mm wide or more in accordance with pment needs 500mm).	n to enable IEC 61936-1				
Remarks			Rev	isions				
			·]				
			2003/Nov	Original				
			J-POW	ER & CEPCO				

	Chapter	1	General	Provisions						
	Paragraph	4	Preventic	on of Electric	Power Disasters		Document			
Category	Clause	10	Preventio	Prevention of Accidents Caused by Electric						
•			Power Fa	acilities		-				
Title	Title Safety of Personnel (2/3)									
 Prevention of contact with facilities Appropriate measures should be taken to prevent operators/workers from ea contacting live parts of facilities. 										
a.Insta	allation of pro	otective	e fences (or walls						
b.Insta	allation of sig	ns at t	he entrar	nces/exits						
c. Insta	allation of a lo	ocking	device o	r another a	ppropriate devic	ce at the er	ntrances/exits			
[Supplementary Explanation of " a. Installation of protective fences or walls "] Appropriate measures listed below should be taken where the height of live parelectrical equipment is N+2,250 mm or less. These are based on IEC 619361 Ed1/CVD (IEC TC99) .										
					Distance/clear	ance wall to l	ive ive			
Min Hig	inimum insulating clearance lighest voltage for equipment clearance		<u>\</u>	Structure of protecti fence or wall	ve Protectiv clean [m	re barrier rance m]				
	100	<u>N</u>	<u>mm]</u>		Wall without openin	ng l	Ň			
	123	<u>1</u>			Fence (Highest Volta	ige N+	-80			
L	245	<u>1</u>	900		Fence (Highest Volta is over 52kV)	nge N+	100			
	Live pa	arts is hig I+2,250m	her than	Live p	arts is lower than N+2,2	50mm				
	HTrB is installed on the stand.				sed					
				Live parts on 1 HTrB is cover by the wire mesh.	he ed					
	HTrB: Station	service tra	nsformer							
Remarks Revisions										
					Ę					
					ŀ	2002/Nov	Original			
						<u>2003/NOV.</u> .I-POV				

	Chapter	1	General Provisions				
Catogory	Paragraph	4	Prevention of Electric Power Disasters		Document		
	Clause	10	Prevention of Accidents Caused b Power Facilities	y Electric	No.SS7-3		
Title	Safety of Pe	rsonr	nel (3/3)				
1. Counte Appro faulty	ermeasures fo opriate meas maintenance	or fail ures and/o	ures of maintenance should be taken to prevent operat or operation, as follow.	ors/worke	rs from doing		
(1) Pi	rovision of cle	ar ph	ase-signs and equipment-number-s	igns			
Equipment-number-sign							
(2) Pr	ovision of ind	icato	rs showing switching status				
(3) Pr	ovision of inte	erlock	system				
Remarke				Rev	isions		
i toma no							
				002/Nav	Original		
			2		UTIGINAI		

	Chapter	1	Genera	Provisions			Decument	
Category	Paragraph	4	Prevent	ion of Electric Powe	r Disasters	3	No. SS8	
	Clause	11	Safety of	of Third Persons				
Title	Title Safety of Third Persons							
1. Follo subs	1. Following measures should be taken to prevent the danger of third persons at substations and switching stations.							
(1) External fences and walls Example of 115kV								
r c v	Height of e not be lowe clearance sh values descr values are b IEC TC99).	xternal or thar ould r ibed in ase o	Overhe → ref 'He	ad line fer to eight of Ov	Clause verhead			
	Nominal volt [kV]	age B c	Boundary Hearance [mm]	Minimum line-to- ground insulating clearance N[mm]	<u>Bo</u>	oundary clea	arance	
 	160 kV or less	115	Wall: N+1,000	1100		Fence		
	Over 160kV	230	Fence: N+1,500	1900	Ц ∕∖	Height of 1800mm	fence or more	
(2)	Signs to ma entrances/ea	ake th kits.	ird perso	ons recognize da	Outside	e Inside	stalled at the	
(3)	(3) Locking devices or other appropriate devices should be installed at the entrances/exits.							
Remarks	 3			<u> </u>		Rev	visions	
					ŀ	0000/bl	Original	
				<u> </u>		2003/NOV.	Unginal	

	Chapter	1	General Provisions		
Category	Paragraph	4	Prevention of Electric Power Disasters	Document	
	Clause	12	Prevention of Failures of Electric Power Facilities from Natural Disasters	No. SS9	
Title	Floods Desi	Floods Design for Substations			

1. Electrical equipment should be installed not to suffer damage from submersion due to foreseeable floods.

The ground level should be decided, based on past records of floods.

- 2. Following measures should be taken by the following methods not to suffer damage to electrical equipment from rainwater under the normal conditions.
 - (1) Installation of drainage facilities.
 - (2) Waterproofing of buildings in which electrical equipment is installed.

J-POWER & CEPCO

MIME (JICA)

	Chapter 1 General Provisions		Desumant	
Category	Paragraph 6 Preservation of Environment		Preservation of Environment	No SS10.1
	Clause	14	Compliance with the Environmental Standards	110.3510-1
Title	Mitigation M	easu	res for Environmental Impact (1/2)	

1. Appropriate measures should be taken to prevent outflow and seepage of insulation oil, referring to IEC 619361 Ed1/CVD (IEC TC99), as followings;

The quantity of insulating liquid in equipment, the volume of water from rain and fire protection system, the proximity to watercourses and soil conditions should be considered in the selection of a containment system. Sump with integrated

•Tanks

•Sump with integrated-catchment-tank for the whole fluid (see the following figure)

•Sump with separate catchment-tank. Where there are several sumps, the drainpipes may lead to a common catchment-tank; this common catchment tank should then be capable of holding the fluids of the largest transformer. (see the following figure)

Sump with integrated common catchment-tank for several transformers. It should be capable of holding the fluids of the largest transformer.

catchment-tank

Gravel layer for fire protection

Remarks	Revisions
	· · · · · · · · · · · · · · · · · · ·
	2003/Nov. Original
	J-POWER & CEPCO

	Chapter	1	General Provisi	ons		
Category	Paragraph	6	Preservation of	Environment		Document
	Clause	14	Compliance wit	h the Environment	al Standards	NO. 3310-2
Title	Mitigation M	easu	res for Environr	nental Impact (2/	2)	
2. Electric used, n Althou which c	al equipment nust not be in: ligh PCB (pol auses a skin	t, for stalle lychlo	which insulation d. prinated biphen acle and a liver	on oil containing yl) is chemically obstacle. It is a	polychlorinate v stable, it ha substance with	d biphenyl is s the toxicity n a possibility
of not c becaus emitted	only polluting e of remaining into environn	enviro ng wi nent.	ithout decompo	o accumulating to a long	period of tim	igh fishes etc le when it is
3. For election 3. That SF6	ctrical equipm 5 gas is not er	nent ti mitted	hat uses SF6 g I into the atmos	as, appropriate i phere.	measures shal	l be taken so
Since dischar global e	SF6 is one o ge of SF6 ga environment.	of Glo s sho	bal Warming (buld be control!	Gas (CO2, N2O, ed as much as p	CH4, HFCs, cossible in cor	PFCs, SF6), nsideration of
Remarks			<u>_</u>		Rev	visions
					2003/Nov.	Original

MIME (JICA)

	Chapter	2	Technical	Standar	ds of Electric F	owe	r Facilitie	s	
Category	Paragraph	5	Transmiss	ion and	Distribution Fa	aciliti	es		Document
	Clause	36	Protection	against	: Over-current	2			NO. 8811
Title	Protective R	lelay :	system			<u> </u>			
1.Circuit E The circu	Breaker uit breaker sh	ould h	nold suffici	ent cap	eacity for inter	сер	ting curr	ent.	
2.Protectiv The syst	ve Relay Syst tem should b	tem e suf	ficiently se	ensitive	to distinguis	h in	ternal fa	ult [.]	from external
The main keep the p If the m clear,but v	n relay should bower system ain relay res with a longer	l clea stabi spons opera	r quickly th ility includii ible to the ation time,	ne fault ng circu e fault which y	within a defin uit breaker int fails to clea will give a big	nite erru r it,i ger	operation ption tim the back disturba	n tir ie. kup nce	ne in order to relay should to the power
(1) Regu Circu referri	lar use state mference ter ing to IEC619	npera 36-1.	ature shou	ıld be	40 °C or le	ess	and —	10	° C or more,
(2) Breal	king-time for h	nigh v	oltage(100	kV or r	nore)				
2sec	Breaking	-tim			<u> </u>	_)c	ecided	de	pending
\sim	Ň			[back	un	ין	hermal		
1sec	Breaking	-time	(City		<u></u>	— J			
\sim	ř					۵)ecided	de	pending
			mainRy] I00msec 5cvcles)		[mainRy] 140msec (7cycles)	F	ower		system
	23	ûk∨		115kV					
Remarks							1	Rev	/isions
NGIBAINS									
							2002/11	<u></u>	Original
							2003/11		UED & CEDCO

J-POWER & CEPCC

MIME (JICA)

J-POWER & CEPCO

MIME (JICA)

	Chapter	2	Technical Standards of Electric Power	Facilities	Document
Category	Paragraph	5	Transmission and Distribution Facilitie	es 🛛	No. SS12-4
ļ	Clause	39	Classification of Grounding for Electric	cal Lines	
Title	Grounding f	or sut	ostations (4/4)		
Step8- 10 Calcul the step	. Calculation ation of Mesh 8-10 as follo	i of M i Volta ws.	esh Voltage and Estimation age and Estimation of the voltage s	should be c	arried out for
Em (Mesh	voltage)= <i>p</i> ∗l	Km*Ki	*I/L=50*0.40*3.75*16000/4200= 286 ∨	<pre>/ < Etouch 2</pre>	90V [OK]
Km	$=\frac{1}{2\pi}[ln(\frac{D^2}{16hd}+$	<u>(D+2+</u> 8Dł	$\frac{h^2}{1} - \frac{h}{4d} + \frac{Kii}{Kh} * \ln(\frac{8}{\pi(2n-1)}) = 0.40$		
	n (number of Kii=1/(2*n) ^{2/}	f paral ^{⁄n} =0.7	lel lines)=21	•	
	Kh≔√ (1+h/I	n0)=1.(δ (h0: grid reference depth=1)		
	D (separatio	n)=5			
	d (diameter)	=0.016			
	= 0.044+0.148n	= 3.7:	>		
4. Counte In the below s (1) Gr alth (2) The (3) Su (4) A p (5) Ma (6) Gro (7) En	rmeasures to case that the hould be take rounding rods ough ground e interval of a rface layer wi hart of ground iterial to decre bunding current try should be	Improve resume an. S sho ing re mesi th hig ing cu ease g int sho forbic	ove Grounding ult of estimation is unsatisfied, cou- uld be used when grounding me sistance is high. In should be contracted. In resistance should be installed. Interest should be made to shunt towa grounding resistance should be use build be restricted. Iden.	intermeasur ish cannot ard other cir id.	res described be extended rcuits.
Remarks				Re	visions
]					
				2003/Nov.	Original

-

MIME (JICA)

	Chapter	2	Technical Standards of Electric Power Facilities	
Category	Paragraph	6	Transmission and Distribution Facilities (High Voltage)	Document No. SS13-1
	Clause	48	Surge Arresters	
Title	itle Installation of surge arresters (1/2)			

1. Installation points for surge arresters

Surge arresters should be installed at points listed below in high-voltage electrical circuits at substations and switching stations except for cases where there is no risk of damage to such electrical equipment.

- a. Receiving and outgoing points on overhead electrical lines at substations
- b. Receiving points on the HV and MV user's sites to which power is supplied from high-voltage and medium voltage overhead electrical lines.
- c. Other points where installation of surge arresters are effective. For instance, installation of a surge arrester near a transformer might be necessary after detailed calculation of a valied reach of the suege arresters mentioned above in the article a and b.

Installation points for surge arresters

J-POWER & CEPCO

. F	Disapter				ei i acinties	B • • • • •
Category	Paragraph	6	I ransmiss	sion and Distribution Facili	lies	No. SS13-2
	Clause	48	Surge Arre	esters		
Title	Installation	ofsur	ge arrester	rs (2/2)		
2.Performa	inces of sur	ge arre	esters		· .	
The perf should co	ormances o onform to th	f surge e follov	e arresters wing provis	to be installed at subst sions, IEC60099 and otl	ations and H her relevant	IV user's sites IEC.
a. Rated The	d voltage rated voltag	e of s	urge arres	tters should be chosen	so that the s	surge arrester
that te earth f	mporarily of ault and loa	ccur a d rejec	t stations t tion.	and HV and MV user's	sites due to	o a single-line
b. Nomi Nom	nal discharg inal dischar	je curr ge cu	ent rrent of su	urge arresters at high-v	oltage subst	lations should
be no	less than 10) kA.	····· •· ••			
	•		• • •		• *	
				•	· .	
•				•		
•	Nom	inal d	lischarge	e current of surge a	rresters	
	Nom	inal d	lischarge	e current of surge a	rresters	
Surma arm	Nom Installat	inal d	lischarge nt of the su	e current of surge a	rresters	charge current
Surge arr	Nom Installat esters to be in	inal d ion:poi stalled	lischarge ntof the su in high-yolt	e current of surge a rge arrester age electrical circuits It is unnecessary to	rresters Nominal dis 10	charge current D kA
Surge arr	Nom Installat esters to be in cresters to	inal d ionpoi stalled be in	lischarge nt of the su in high-yolt stalled in	e current of surge a rge arrester age electrical circuits It is unnecessary to treat switching surge.	rresters Nominal dis 10 5	charge current) kA kA
Surge arr Surge ar medium- y	Nom Installat esters to be in cresters to voltage electri	inal d ion poi stalled be in cal circ	lischarge nt of the su in high-yolt stalled in wits	e current of surge a rge arrester age electrical circuits It is unnecessary to treat switching surge. It is necessary to treat	rresters Nominal dis 10 5 10	charge current) kA kA) kA
Surge arr Surge an medium- Surge arre	Nom Installat esters to be in cresters to voltage electri	inal d on poi stalled be in cal circ	lischarge nt of the su in high-yolt stalled in suits in medium	e current of surge a rge arrester age electrical circuits It is unnecessary to treat switching surge. It is necessary to treat switching surge voltage electrical circuits	rresters Nominal dis 10 5 10	charge current) kA kA) kA
Surge arr Surge ar medium- Surge arre to be conn	Nom Installat esters to be in cresters to be in voltage electri esters to be in ected with an	inal d ion poi stalled be in cal circ stalled overhe	lischarge nt of the su in high-yolt stalled in suits in medium ead distribu	e current of surge a ige arrester age electrical circuits It is unnecessary to treat switching surge. It is necessary to treat switching surge voltage electrical circuits tion line to be installed on	rresters Nominal dis 10 5 10 10	charge current) kA kA) kA) kA
Surge arr Surge an medium- Surge arre to be conn the top of a	Nom Installat esters to be in cresters to voltage electri esters to be in ected with an an overhead t	inal d ionpoi stalled be in cal circ stalled overhe ransmi	lischarge nt of the su in high-yolt stalled in suits in medium ead distribu ssion electri	e current of surge a rgc arrester age electrical circuits It is unnecessary to treat switching surge. It is necessary to treat switching surge voltage electrical circuits tion line to be installed on cal line	rresters Nominal dis 10 5 1(1(charge current) kA kA) kA) kA
Surge arr Surge an medium- Surge arre to be conn the top of a Referring	Nom Installat esters to be in cresters to voltage electri esters to be in ected with an an overhead t to IEC 60099	inal d on poi stalled be in cal circ stalled overhe ransmi	lischarge nt of the sur in high-yolt stalled in suits in medium ead distribut ssion electri	e current of surge a ige arrester age electrical circuits It is unnecessary to treat switching surge. It is necessary to treat switching surge voltage electrical circuits tion line to be installed on cal line	rresters Nominal dis 10 5 1(1(charge current) kA kA) kA) kA
Surge arr Surge an medium- Surge arre to be conn the top of a Referring	Nomi Installat esters to be in cresters to voltage electri esters to be in ected with an an overhead t to IEC 60099	inal d ionpoi stalled be in cal circ stalled overhe ransmi	lischarge nt of the su in high-yolt stalled in suits in medium ead distribu ssion electri	e current of surge a rgc arrester age electrical circuits It is unnecessary to treat switching surge. It is necessary to treat switching surge voltage electrical circuits tion line to be installed on cal line	rresters Nominal dis 10 5 10 10	charge current) kA kA) kA) kA
Surge arr Surge an medium- Surge arro to be conn the top of a Referring	Nom Installat esters to be in cresters to voltage electri esters to be in ected with an an overhead t to IEC 60099	inal d on poi stalled be in cal circ stalled overhe ransmi	lischarge nt of the su in high-yolt stalled in suits in medium ead distribu ssion electri	e current of surge a age electrical circuits It is unnecessary to treat switching surge. It is necessary to treat switching surge voltage electrical circuits tion line to be installed on cal line	rresters Nominal dis 10 5 1(1(charge current) kA kA) kA) kA
Surge arr Surge an medium- Surge arre to be conn the top of a Referring	Nomi Installat esters to be in cresters to voltage electri esters to be in ected with an an overhead t to IEC 60099	inal d ionpoi stalled be in cal circ stalled overhe ransmi	lischarge nt of the su in high-yolt stalled in suits in medium ead distribu ssion electri	e current of surge a rgc arrester age electrical circuits It is unnecessary to treat switching surge. It is necessary to treat switching surge voltage electrical circuits tion line to be installed on cal line	rresters Nominal dis 10 5 10 10	charge current) kA kA) kA) kA
Surge arr Surge an medium- Surge arro to be conn the top of a Referring	Nom Installat esters to be in cresters to be in exters to be in ected with an an overhead t to IEC 60099	inal d on poi stalled be in cal circ istalled overhe ransmi	lischarge nt of the su in high-yolt stalled in suits in medium ead distribu ssion electri	e current of surge a rge arrester age electrical circuits It is unnecessary to treat switching surge. It is necessary to treat switching surge voltage electrical circuits tion line to be installed on cal line	rresters Nominal dis 10 5 1(charge current) kA kA) kA) kA
Surge arr Surge arr Surge arre to be conn the top of a Referring	Nom Installat esters to be in cresters to be in ected with an an overhead t to IEC 60099	inal d ionpoi stalled be in cal circ stalled overhe ransmi	lischarge nt of the su in high-yolt stalled in suits in medium ead distribu ssion electri	e current of surge a rgc arrester age electrical circuits It is unnecessary to treat switching surge. It is necessary to treat switching surge voltage electrical circuits tion line to be installed on cal line	rresters Nominal dis 10 5 10 10	charge current) kA kA) kA) kA
Surge arr Surge arr medium- Surge arro to be conn the top of a Referring	Nom Installat esters to be in cresters to voltage electri esters to be in ected with an an overhead t to IEC 60099	inal d on poi stalled be in cal circo stalled overhe ransmi	lischarge nt of the su in high-volt stalled in suits in medium ad distribu ssion electri	e current of surge a rge arrester age electrical circuits It is unnecessary to treat switching surge. It is necessary to treat switching surge voltage electrical circuits tion line to be installed on cal line	rresters Nominal dis 10 5 10 10	charge current) kA kA) kA) kA
Surge arr Surge an medium- Surge arro to be conn the top of a Referring	Nom Installat esters to be in cresters to be in ected with an an overhead t to IEC 60099	inal d ionpoi stalled be in cal circ stalled overhe ransmi	lischarge nt of the sur in high-yolt stalled in suits in medium ead distribut ssion electri	e current of surge a ige arrester age electrical circuits It is unnecessary to treat switching surge. It is necessary to treat switching surge voltage electrical circuits tion line to be installed on cal line	rresters Nominal dis 10 5 10 10	charge current) kA kA) kA) kA
Surge arr Surge arr medium- Surge arro to be conn the top of a Referring	Nom Installat esters to be in cresters to voltage electri esters to be in ected with an an overhead t to IEC 60099	inal d on poi stalled be in cal circo stalled overhe ransmi	lischarge nt of the su in high-volt stalled in suits in medium ad distribu ssion electri	e current of surge a rge arrester age electrical circuits It is unnecessary to treat switching surge. It is necessary to treat switching surge voltage electrical circuits tion line to be installed on cal line	rresters Nominal dis 10 5 10 10	charge current kA kA kA kA kA kA
Surge arr Surge arr Surge arre to be conn the top of a Referring	Nom Installat esters to be in cresters to be in ected with an an overhead t to IEC 60099	inal d ionpoi stalled be in cal circo stalled overhe ransmi	lischarge nt of the su in high-yolt stalled in suits in medium ead distribut ssion electri	e current of surge a rge arrester age electrical circuits It is unnecessary to treat switching surge. It is necessary to treat switching surge voltage electrical circuits tion line to be installed on cal line	rresters Nominal dis 10 5 10 10	charge current kA kA D kA D kA
Surge arr Surge an medium- Surge arro to be conn the top of a Referring	Nom Installat esters to be in cresters to voltage electri esters to be in ected with an an overhead t to IEC 60099	inal d on poi stalled be in cal circo stalled overhe ransmi	lischarge nt of the su in high-volt stalled in suits in medium ad distribut ssion electri	e current of surge a rge arrester age electrical circuits It is unnecessary to treat switching surge. It is necessary to treat switching surge voltage electrical circuits tion line to be installed on cal line	rresters Nominal dis 10 5 1(1(charge current kA kA kA kA kA kA
Surge arr Surge arr Surge arr to be com the top of a Referring	Nom Installat esters to be in cresters to be in ected with an an overhead t to IEC 60099	inal d on poi stalled be in cal circ overhe ransmi	lischarge nt of the sur in high-yolt stalled in suits in medium ead distribut ssion electri	e current of surge a ige arrester age electrical circuits It is unnecessary to treat switching surge. It is necessary to treat switching surge voltage electrical circuits tion line to be installed on cal line	rresters Nominal dis 10 5 10 10	charge current kA kA kA kA kA kA
Surge arr Surge arr Surge arre to be conn the top of a Referring	Nom Installat esters to be in cresters to voltage electri esters to be in ected with an an overhead t to IEC 60099	inal d onpoi stalled be in cal circo stalled overher ransmi	lischarge nt of the su in high-yolt stalled in suits in medium ead distribut ssion electri	e current of surge a rge arrester age electrical circuits It is unnecessary to treat switching surge. It is necessary to treat switching surge voltage electrical circuits tion line to be installed on cal line	rresters	charge current kA kA kA kA kA kA
Surge arr Surge arr Surge arr Surge arre to be conn the top of a Referring	Nom Installat esters to be in cresters to be in ected with an an overhead t to IEC 60099	inal d on poi stalled be in cal circo istalled overher ransmi	lischarge nt of the su in high-volt stalled in suits in medium ad distribut ssion electri	e current of surge a rge arrester age electrical circuits It is unnecessary to treat switching surge. It is necessary to treat switching surge voltage electrical circuits tion line to be installed on cal line	rresters Nominal dis 10 5 10 10 Re 2003/Nov	charge current kA kA kA kA kA kA kA kA

-

	Chapter	1	General Provisions	Document			
Category	Paragraph		Definitions	- No. TL1			
	Clause	_1	Definitions				
Title	Main Compor	nents d	of Transmission Line				
Main con 1.Supportir "Support	nponents of hig ng structure ing structure" n	neans	age lines are as follows. a structure to support ground wires, conductors	and so on.			
2.Foundatio "Foundation"	on lion" means an	under	rground structure designed to support the support	rting structure.			
3.Conducto Conduct	or tor" means an e	electric	cal conductor to transmit electricity.				
4.Ground w "Ground protect elec	vire wire" means n ctrical lines fron	netal v n dam	wires, generally installed on the top of a suppo age by lightning.	rting structure to			
5.Insulator "Insulato	assembly r assembly" me	eans a	set which consists of insulator discs and the fitti	ngs.			
	Groun	d wire	e				
Conduct	tor	K	insulator assembly	àround wire			
/		<u>}</u>		Conductor			
		$\left[\right]$		Conductor			
		-	Supporting structure	Sonductor			
			Foundation	-			
Remarke				evisions			
' ICHIAINS			T				
····.			2003/Nov	1. Original			
			J-P(WER & CEPCO			

	Chapter	2	Technical Standards of Electric Powe	r Facilities	Deserves
Category	Paragraph	5	Transmission and Distribution Faciliti	es	
	Clause	32	Prevention of Climbing on Supporting	Structures	
Title 1.Installatio	An Example o	of a W	arning Sign te)		
An exam	ple of a dange	r plate	is as follows.		
	1			I	
	<		410	->	
	Γ.,				<u> </u>
	[-⊕				
)ander!		
			Juli Sci i		
			FDG		
	l l ,	-	EDC		
			0,0		
					450
		町			
		5	Fedc		
		_			
			Jon't climb!		
				Do:	<u></u>
amarka			•		
Remarks Referring	to the standa	rds of	the KANSAI Electric Power Co	Rev	
emarks teferring nc.	to the standa	rds of	the KANSAI Electric Power Co.,		

	GUIDE	B00	K FOR POWER ENGINEER	S	MIME (JICA)
	Chapter	2	Technical Standards of Electric Power	Facilities	
Category	Paragraph	5	Transmission and Distribution Facilitie	es	No. TL7
	Clause	39	Classification of Grounding for Electri	cal Lines	
Title	Measuring o	of Tow	er-footing Resistance		
1. Measurii	ng Method				
The follo figure, L-10	owing figure sh 0 type (YOKOC	nows a GAWA	a typical measuring method of tower ELECTRIC CORPORATION) Measuri	-footing resising Device is	stance. In the used.
P	2		Supporting structure]	C2
	<u></u>		/\ _		
Electrod	ie 🔰		C1,P1 Earth	\lor	Electrode
	1	Abou	it 60m ' About 60m	L F	
2. Notes of	the Measuring	t			
Notes o	on the measuri	ng are	as follows.	-	
a. Distan b. Electro c. Measu d. Electro	ice between a t odes should be uring should no odes should be	tower instal t be d exter	and electrodes should be more than 60 led deeply. one in case that ground surface is moi ided at right angles to the transmissior)m long. st. 1 line.	
j.					
Domortic					
Hemarks					
				2003/Nov	Original
				2000/1100	

J-POWER & CEPCO

	Chapter	2	Technical Stand	ards of Electric Power	Facilities	
	Paragraph	6	Transmission ar	d Distribution Facilitie	S	Decument
Category			(High Voltage)			No TI 8
	Clause	40	Design of Supp	porting Structures of	Overhead	
	·		High-voltage Lin	ie		
Title	Assumed Ma	ximun	n Wind Velocity			
Supporti considerati 30m/s is Cambodia	ng structure a on of wind pres appropriate f	and fo ssure or the	undation of over based on the ass maximum wind	rhead high-voltage li umed maximum wind velocity for tower de	nes shall be velocity. sign, based	e designed in on records in
Records	of wind velocit	y for 5	years are as foll	ows.		
	Observation	point	Direction	Wind velocity [m/s]	Date	
	Dashart		W	24	29.AUG.1	999
	Pochenic	ong oov	W	20	27.JUN.2	2000
	(1990-20	02)	W	20	25.JUN.2	2001
	0. 5		NW	26	25.MAY.1	998
	Siem Re	ap	W	24	21.JUN.1	997
1	(1996-20	02)	W	24	24.JUN.1	997
			SW	25	1.SEP.1	995
	Sihanouk	ville	SW	18	2.JUN.1	994
	(1994-19	98)	N	18	20.NOV.	1994
However maximum period, tak changed a	r, the quantity wind velocity ing into accou ccording to roll	of the for hig nt relia ing up	e records that we gh-voltage lines ability required. T of the records.	e can get is not enou should be decided w herefore, the figure 3	ugh because <i>i</i> ith about 50 0m/s sugges	the assumed years return sted should be
Remarks					Re	visions
			ı			
			<u></u>	۰. 	2003/Nov.	Original

	Chapter	2	Technical Standards of Electric Power Facili	ties]
	Paragraph	6	Transmission and Distribution Facilities		Document
Category	Clause		(High Voltage)	bood	No. TL10-1
	Viause	40	High-voltage Lines	neau	
Title	Design of Suj	oportir	ng Structures (1/11)		
1. Applicati The Doc while desi Electrical F	on uments No.TL gn for medium Power Technica	10-2 t and al Stan	to No.TL10-11 describe a design method for low voltage lines are described in the oth dards and the Guidebook.	or high er pro	-voltage lines, per articles in
2. Kind of lo Loads fo loads and	oads r supporting st horizontal long	ructur itudina	es are classified by 3 types, vertical loads, l al loads, as follows.	horizor	ntal transverse
-			Vertical loads		
-		ongitu	Idinal loads	loads	_
Remarks				Rev	/isions
				<u> </u>	
			2003	/Nov.	Original

J-POWER & CEPCO

	Paragra	2 ph 6	Transmission and Distribution Facilities	Document	
Category	Clause		(High Voltage)40Design of Supporting Structures of Overhead		
Title	Design o	f Supportir	ng Structures (2/11)		
3. Subdivis The load	ion of load s are subc	ls livided as f	ioliows	· .	
Type Loa	of d		Contents	Symbol	
	w	eiaht of th	e supporting structure	Wt	
	W	eight of the cessories	he conductors and the ground wires and the supported by the supporting structure	• Wc	
Vertical loads	- We	eight of th	e insulator strings and the fittings supported by	/ Wi	
	A wi	vertical co res suppo	omponent of the maximum tension of the guy rting the supporting structure, if any	Ws	
	Wi ma	ind press aximum w	sure of the supporting structure under the individual of the supporting structure under the individual of the support of the s	Ht	
Horizon	Wi su tal wi	nd press pported b	ure of the conductors and the ground wires y the supporting structure under the maximum y	Hc	
transvei loads	rse Wi su	nd press	ure of the insulator strings and the fittings y the supporting structure	^S Hi	
	A ter	horizonta sion of th	al transverse component of the maximum ne conductors and the ground wires supported	n Ha	
	by the	the supp supporting	oorting structure and the guy wires supporting ng structure, if any	g Hs	
	Wi ma	nd press ximum w	sure of the supporting structure under the ind velocity	Ht'	
Horizon longitud loads	tal A inal ma suj ter	horizonta ximum te pported b ision of	I longitudinal component of the unbalanced ension of the conductors and the ground wires by the supporting structure and the maximun the guy wires supporting the supporting	d S P N Ws'	
	str	ucture, if a	any		
				<u> </u>	
Remarks			Rev	isions	
			2003/Nov.	Original	

	Chapter	2	Technical Standards of Ele	ectric Power Facilities					
	Paragrap	h 6	Transmission and Distribu	tion Facilities	Decument				
Categ	ory		(High Voltage)						
	Clause	40	Design of Supporting Str	ructures of Overhead	NO, 1210-5				
			High-voltage Lines						
Titl	Title Design of Supporting Structures (5/11)								
5. Hor (1)"Ht'	izontal transver	se loads			of all mambars				
of tran	isverse face. W	ind pressu	re "P" is obtained from the	following equation.	or air members				
	$P = (1 / 2 \times$	$\rho \times V^2$)×C×g [N/m²]						
whe	re, P: Wind pre	ssure							
	ρ :Air densi V: Design v C: Coefficie	ity[kg · se vind veloci ent of air re	c²/m²] ty [m/s] esistance						
	g: Apparent	gravity, 9	.8[m/s ²]						
۳ ا		<u> </u>	Ht [N	J/m ²]	······				
	Height[m]	Con	crete pole (Circle type)	Steel tower					
Ĺ			teel pole (Circle type)	Single steel po	le				
ļ	~40		450	1600					
	~50		480	1700					
	~60		500	1800					
(2)"Ho "Ho whe	(2)"HC" "Hc" Is calculated as follow. $Hc=Ww \times D \times S \times n \times 10^{-3} \times g [N]$ where, Ww : Wind pressure, where Ww for twin or quad bundle conductors are 90 % of Ww for a single conductor D: Diameter of conductor [mm] S: Weight span [m] n: Number of conductor g: apparent gravity, 9.8[m/s ²] Ww1 Single conductor								
Twin conductors									
Bems	urks			Re	visions				
rioma	ano								
	2003/Nov Original								

· · · · · · · · · · · · · · · · · · ·	Chapter	2	Technical S	standards of I	Electric Pow	er Facilities	<u> </u>					
	Paragraph	Paragraph 6 Transmission and Distribution Facilities										
Category			(High Voltage)				No TI 10-6					
	Clause 40 Design			Supporting	Structures	of Overhead						
<u>-</u>			High-voltag									
Title Design of Supporting Structures (6/11)												
							_					
			Diameter	Weight	Number of	of Hell						
	ype of conducto	or	[mm]	span [m]	conductor	r neu	······································					
	ACSR 410		28.5	300	1	502	7					
	ACSR 810		38.4	300	1_	6774	4					
(3)"Hi" "Hi" is calculated multiplying a wind pressure by the sum of the projected areas of insulator assembly of transverse face. The wind pressure of the standard insulator strings is as follows.												
	Number of insu	lator	discs —	110137	Hi (N)	000-37						
	0			115KV 250		<u>Z30RV</u>						
	0					400						
15					I	400						
"Ha" is calculated as follow. $Ha = T1\sin \alpha + T2\sin \beta$ [N] where, T1,T2 :Horizontal component of maximum working tension of conductors[N] α, β :Horizontal angle of conductors T1 Ha												
Remarks						Rev 2003/Nov.	visions Original					
						T_DOT	UED & OFDOC					

J-POWER & CEPCO

		Chapter	2	Technical Stand	ards of Electric Powe	r Facilities					
C		Paragraph	6	Transmission ar	nd Distribution Facilitie	Document					
	ategory	Cloues		(High Voltage)		Quarkaart	No. TL10-9				
		Clause	40	High-voltage Lir	porting Structures of les	Overnead					
	Title Design of Supporting Structures (9/11)										
7. Oblique wind for bigger towers											
Regarding relation between direction of wind and the intensity of the wind pressure, wind with direction of 60 degree to lines might be the most severe (pessimum) condition for tall towers with large cross arms, though normally perpendicular direction (90 degrees to lines) of wind is the most severe.											
Therefore, towers with voltage of 230kV or more should be designed taking into account the oblique direction wind.											
Generally, an oblique wind pressure is derived, multiplying coefficients by the 90-degree-wind pressure.											
		lte	ms		Coefficients (in case of square tower)						
	······································		Wind pressure load to body		1.6						
	to steel to		Wind pressure load to cross arm		0.5 (for the wind pressure in the direction of electrical line)						
	Wi	nd pressure lo	bad to s	strung wire	0.75						
	Remarks					Rev	visions				
F	lemarks					Hev	/isions				
L					·	2003/Nov.	Original				
MIME (JICA)

Cotomore	Chapter Paragraph	2 T 6 T	echnical Stand	ards nd Di	of El stribu	ectric	Pow Facil	/er F	aciliti	es	Document		
Category	Clause	40 C	Design of Supporting Structures of Overhead High-voltage Lines							No. TL10-10			
Title	Design of S	upporting	Structures (10/	'11)									
8.Combina Combina	8.Combination of loads Combination of loads is as follows.												
		De	sign cases	Combination of assumed lo					ned lo	bads			
of supporting structure	n g Type	Load	Wind direction	Ve	rtical le	oad	Hori	zontal Io	transv ad	/erse	Honzontal longitudinal load		tal I load
		condition		Wi	We Wi	Ws	H	H₀ Hi	Ha	нs	н,	Р	W's
	Tension &	Normal	Horizontal transverse	0	0	0	0	0	0	0			
Concrete pol	• Type Tower	Norman	Horizontal longitudinal	0	0	0			0		0		0
Steel pole	Dead-end	Normat	Horizontal transversø	0	0	0	0	0		0		0	
· · · ·	Type Tower		Horizontal longitudinal	0	0	0					0	0	0
		Normal	Horizontal transverse/60°	0	0	0	0	0	0	0			
	Tension & Suspension		Horizontal longitudinal	0	0	0			0		0		0
	Type Tower	Abnormal	Horizontal transverse	0	0	0	0	0	0	0		0	
Steel tower	· · · · · · · · · · · · · · · · · · ·		Iongitudinal	0	0	0			0		0	0	0
Single steel			transverse	0	0	0	0	0		0		0	
pole	Dead-end	Normai	Horizontal Iongitudinal	0	0	0		-			0	0	0
	Type Tower	Abnormal	Horizontal transverse	0	0	0	0	0		0		0	
			Horizontal longitudinal	0	0	0					0	0	0
where, Dea	d-end type:	Suppo	orting structure	with	a lar	ge ui iret ta	nbala	anceo from	t load a su	d in t Ibstat	he h tion	orizo	ntally
Abn	ormal Condit	ion:		, . .g.					- 50				
	condu	An ass ctors and	sumption for to around wires w	wer o vill he	lesig	n who	ere a	ny o	ne or	two	of		
Notes: Circ	eles "O" indica	ate the as	sumed loads to	be o	consi	dere	d at t	he sa	amet	time.			
The wind direction that brings the bigger assumed load should be selected.													
Bomarka				· · · ·				-		Po	vicion		
nemarks								\vdash			15101	13	
						·		20	03/N	lov.	C)rigir	nal

	Chapter	2	Technical Standar	ds of Electric Power	Facilities		
Category	Paragraph	6	Transmission and (High Voltage)	Distribution Facilitie	S	Document	
	Clause	40	Design of Suppo High-voltage Line	rting Structures of s	Overhead	No. TL10-11	
Title	Design of Su	oportir	ng Structures (11/11)			
9.Safety f	actors						
Safety	factors of sup	portin	g structures are a	is follows.			
Cla	ssification of su	upport	ing structure	load condition	Safety fa	ctor	
Co Ste	ncrete pole el pole			Normal	2.0		
				Normal	1.5		
Ste	eitower			abnormal	1.0		
				· · · · · · · · · · · · · · · · · · ·			
Remarks					Ke		

MIME (JICA)

	Chapter	wer Facilities									
	Paragraph	6	Transmission	and Distribution Faci	ilities	Document					
Category			(High Voltage	»)		No. TL11-2					
	Clause	40	Design of S	upporting Structures	of Overhead						
			rign-voitage		1						
Title	Design of Fou	Design of Foundations (2/5)									
2.Kinds of	loads										
There ar One is f foundation	e 2 types of fou oundation to b).	undatio e desi	on from viewpo igned with a d	bint of design. compression load and	d a tension load	(vertical-load					
And the	other is tounda	tion to	be designed	with a moment load							
	(Vertical-load foundation) (Moment-load foundation)										
A. 6- 11- 14			r Assidad an A	- tt- of secults of	auch verterier	Laturdu oo tho					
A founda	ation type should renetration Test	lia de 1 The	foundation type	he basis of results of bes are as follows.	such geologica	i study as the					
r											
	Found	ation	type	Value of N	Condition						
	Anchor found	ation		· –	Rock						
	Pad and chim	ney fo	undation	20~							
	Caisson type]	oile fo	undation	12~	Normal grou	na					
	Mat foundatio	n									
				~19	Soft ground						
	Pile foundatio	n			9rown						
[
Remarks	· · · · · · · · · · · · · · · · · · ·			·····	Rev	visions					
					<u> 2003/Nov.</u>	Original					

Chapter 2 Technical Standards of Electric Power Facilities Paragraph **Transmission and Distribution Facilities** 6 Document Category (High Voltage) No. TL11-3 Clause 40 Design of Supporting Structures of Overhead High-voltage Lines Title Design of Foundations (3/5) (Anchor foundation) (Pad and chimney foundation) (Caisson type pile foundation) (Pile foundation) (Mat foundation) Revisions Remarks 2003/Nov. Original

GUIDEBOOK FOR POWER ENGINEERS

MIME (JICA)

					<u> </u>	
	Chapter	2	Technical Standards of Electric Power	Facilities		
	Paragraph	6	Transmission and Distribution Facilities	6	Docume	ent
Category			(High Voltage)		No. TL11	1-5
}	Clause	40	Design of Supporting Structures of	Overhead		
· · · · · · · · · · · · · · · · · · ·			High-voltage Lines			
- 741			/- - \			
r itte	Design of Fou	indatio	ons (5/5)			
	ļ					
[Examinat	ion of horizon	tal str	ength]			
$\left \begin{array}{c} \frac{q_f \cdot A_f}{F_f \cdot F_f} \right \geq 0$	≧Q					
-1 -2						
$q_f \cdot A_f =$	392×4.1×1.5	=1 204	5 ATENI > 89 5[I-N]			
$\overline{F_1 \cdot F_2}$	2.0	-1,20.	5.4[kin] > 62.5[kin]			
~ 2						
1 0-1 1 1						
4. Safety fa	actors of a found	dation				
Allowing	strength "P " i	s calci	ulated as follows			
Fullowing		3 6416				
P. =	$= -\frac{1}{2} P_{\rm m} = -\frac{1}{2}$	ł	-P			
u	$F_1 \cdot F_2 \downarrow$	$1.5F_{1}$	F_2^{μ}			
Р	a: Allowing str	ength	(kN)			
Р	. : Capitulating	g strer	ngth (kN)			
Р	u: Maximum s	- trengti	h (kN)			
F	1: Safety facto	or aga	inst the loads			
F	2 : Safety facto	or aga	inst the ground			
				Safety	factors	
				<u> </u>	F ₂	
Long-	term load			1.5	1.33	
Short	term load calc		by instantaneous wind velocity agains	+		
the m	aximum wind v	elocity	/ whice whice version agains	" 1.0	1.33	
Short	term load calc	ulated	by average wind velocity against the	e		
maxir	num wind veloc	ity		1.5	1.33	
Remarka			·		isions	
nemarks						
				·		
				003/Nov	Origing	<u>, </u>
·			Ž	.003/1404.		1

	Chapter	2	Technical Standards of Electric Power Facilities	
Cotor	Paragraph	6	Transmission and Distribution Facilities	Document
Category	Clause	41	(High Voltage)	No. TL12-2
			Ground Wires of Overhead High-voltage Lines	
Title	Kinds of Ins	ulator	rs (2/2)	
2.Long-rod	insulator		· · _ · · · · · · · · · · · ·	
Propertie and IEC604	es of long-rod in 171) or equival	nsulate ent.	ors should comply with IEC standards (e.g., IEC604	143, IEC6012
÷	, ,			
. •				· .
	圳北	i andi N		
	- <u>}</u>	5		
	Æ	$\mathbf{S}^{\mathbf{a}}$		
	d a		x	
	D			
	2			
	रम्म	7		
	JHE)		
			Mu <u>96-53</u>	
	н 1 Р 4.		Long-rod insulator	
	·			
	,			
Remarks		-	Rev	isions
			· · · · · · · · · · · · · · · · · · ·	

	·	Chapter	2	Technical Standards of E	Electric Power F	acilities	
		Paragraph	6	Transmission and Distrit	oution Facilities		Document
Cate	gory	0		(High Voltage)			No. TL14
		Clause	41	Ground Wires of Overhe	ad High-voltage	rs ano/or e Lines	
Ti	tle	Insulator Stre	nath		ind High Volag		
			J .				
A :	safety	factor of insul	ator a	ssemblies for overhead t	ransmission lin	es shall be	no less than
- 2.3. Th	e safe	ty factor is deri	ived a	s follows:			
a.	For ter	nsion insulator	asser	nblies			
ູເຮ	Safety fa	ctor] = [Tensile br	eaking	strength] / [Assumed maximum	tension at a suppo	orting point]	
b.	For su	spension insul	ator a	ssemblies			
[S	Safety fa	actor] = [Tensile	breakir	ng strength] / [Assumed maxi transverse load	mum resultant of s]	vertical load	s and horizontal
c.	For su	pporting insula	tor as	semblies, such as Long-r	od insulator ass	semblies	
la	Safety fa	ictor] = [Bending I	breakin	g strength] / [Assumed maximi assembly]	um load perpendic	ular to the axi	s of the insulator
Th	e follo	wing table sho	ws for	eign countries' standards	for reference.		
					1		
					Safety facto	or based on	U.T.S.
		Technica	l Stan	dard: Japan	No less than 2.5		
	1	National Electri	cal Sa U.S.	afety Code(NESC): A.	No less than 2.0 against tensile No less than 2.5 against bend		
	The	Electricity (Ov	erhea U.K	d Lines) Regulations:	No regulation		
		VDEC	210: (Germany	No le	ess than 3.3	3
Borr	orka					Do	deione
rien	ans						1310113
						2003/Nov.	Original

	Chapter	2	Technical Standards of E	lectric Power Facilities				
Category	Paragraph	6	Transmission and Distrit (High Voltage)	Transmission and Distribution Facilities (High Voltage)				
	Clause	41	Safety Factor of Fittings Ground Wires of Overhe	o for Conductors and/or ad High-voltage Lines	NO. 1215			
Title	Safety Factor	of Fit	tings for Conductors and	Ground Wires				
Safety fa conductors	ctor for tensile and ground w	stren ires fo	gth (the maximum tensile r overhead high-voltage li	strength, breaking streng nes shall be 2.5 or more.	th) of fittings of			
Foreign a	countries' stand	lards a	are described below for re	ference.				
				Safety factor based on yield stre	ength			
	Technica	l Stan	dard: Japan	No less than 2.	5			
	National Electri	cal Sa U.S.	fety Code(NESC): A.	No less than 2.0 again No less than 2.5 again	st tensile hst bend			
The	Electricity (Ov	verhea U,K	d Lines) Regulations:	No regulation				
	VDEC	210: 0	Germany	No less than 3.	3			
Romarke				Ray	isions			
TUTIAINS								
				2003/Nov.	Original			

	Chapter	12	Technical Standards of Electric Power Facilities					
	Paragraph	6	Transmission and Distribution Facilities	Document				
Category	Oleves		(High Voltage)	No. TL17				
	Clause	42	High-voltage Lines					
Title	Arcing Horns	.		1				
Arcing he	orns shall be in	stalled	to protect overhead high-voltage lines against lig	htning				
When lig damage of lightning su surface of counterme	When lightning strikes an electrical line, insulators are occasionally destroyed. Normally, damage of insulators is caused by follow-current (50Hz), after the lightning stroke and not the lightning surge itself. Application of arcing horns, which move the arcs of the lightning surge on a surface of an insulator assembly to the end of the arcing horns, is the effective and economical countermeasure.							
The gap the critical insulator st	of the arcing h cascading flas ring.	orns n shover	nust be decided to withstand at least switching-su voltage of the horn gap can be predominant o	rge, and so that over one of the				
		X0	Arcing horns					
	(Suspensio	n type) (Tension type)					
(An example of a set of arching horns for a quadruple conductor)								
Remarks			Re	visions				
Referring to	o the standard	s of K	ANSAI Electric Power Co., Inc.					
			2003/Nov	Original				
				WER & CEPCO				

	Chapter	2	Technical Standards of Electric Power Facilitie	s				
	Paragraph	6	Transmission and Distribution Facilities	Document				
Category			(High Voltage)	- No. TL18				
	Clause	43	Bare Conductors of Overhead High-volta	ge				
· · · · ·			Lines					
Title	Kinds of Cond	ductor	;					
Propertie steel wire, standards.	es of solid wire , etc.) that co	es (ha ompos	rd-drawn aluminum wire, zinc-coated steel w e an electrical conductor should comply v	ire, aluminum-clad vith following IEC				
IEC60889 Hard-drawn aluminum wire for overhead line conductors IEC60888 Zinc-coated steel wires for stranded conductors IEC61232 Aluminum-clad steel wires for electrical purposes								
Cross se	ection of a typic	al stra	nded wire (ACSR) is as follows.					
Where c Aluminum A size of a. Loadii b. Short- c. Mecha	Fig.1 Cr corrosion of co Conductor Alua i a conductor sing current circuit current anical strength	oss se nducte hould	Zinc-coated steel wire Aluminum wire ction of stranded wire (ACSR410mm ²) ors and ground wires is expected due to suc Clad Steel Wire Reinforced (ACSR/AS) should be decided in consideration of the following poi	id wire h pollution as salt, f be adopted. nts.				
Remarks				Revisions				
			2003/1	lov. Original				
L			J.	POWER & CEPCO				

Chapter 2 Technical Standards of Electric Power Facilities								
Category	Paragraph	6	Transmission and Distribution Facilities (High Voltage)	Document				
	Clause	43	Bare Conductors of Overhead High-voltage Lines	140.1219				
Title	Current-car	ying (Capacity					
Current- equations.	carrying capac	ity of	overhead high-voltage lines can be computed l	by the following				
$I = \sqrt{\frac{\left\{Hw + \left(Hr - \frac{Ws}{\pi\theta}\right)\eta\right\}\pi D\theta}{\beta \cdot R}}$ where, $Hw = \frac{0.00572}{\left(273 + T + \frac{\theta}{2}\right)^{0.123}} \cdot \sqrt{\frac{V}{D}}$								
$Hr = 0.000567 \frac{\left(\frac{273 + T + \theta}{100}\right)^4 - \left(\frac{273 + T}{100}\right)^4}{\theta}$								
			$R = R_{20} \{ 1 + \alpha (t - 20) \}$					
			$\theta = t - T$					
	I:CurreHw:CoeffHr:CoeffR:Cond R_{20} :Cond θ :Tempt:CondT:AmbiaWs:Solar η :SurfaD:OveraV:Wind α :Temp β :AC/D	nt-cari icient d icient d uctor r uctor r erature uctor t ent ten radiati ce coe all dian velocit erature C resis	ying capacity (A) f conventional heat dissipation (W/°C. cm ²) f radiative heat dissipation (W/°C. cm ²) esistance at the conductor temperature t (ohm/cm esistance at 20°C (ohm/cm) rise of conductor (°C) emperature (°C) perature (°C) on energy (W/cm ²), assumed to be 0.13 ficient, assumed to be 0.9 eter of conductor (cm) y (m/sec) coefficient of resistance (per °C), assumed to be tance ratio, assumed to be 1.0) 0.004				
Remarks			Re	evisions				
			2002/4/20	Original				

Chapter		2	Technical Standards of Electric Power Facilit	ties
Category	Paragraph	6	Transmission and Distribution Facilities (High Voltage)	Document
	Clause	43	Bare Conductors of Overhead High-vol Lines	tage No. TL20-1
Title	Sag of Condu	uctors	(1/4)	
(1) Calcula	tion of Tension	of Co	nductors	
A tensior	n of a conducto	or is ca	Iculated based on the quadratic approximatio	on, as follows:
In the fol	lowing equatio	n, sub	script 1 and 2 mean the Conditions, respectiv	vely.
<u>Con</u>	dition 1		Condition 2	
$L_1 =$	$S[1 + (w_1/T_1)]$	² (<i>S</i> ²/2	4)]1) $L_2 = S[1 + (w_2/T_2)^2]$	(\$2/24)]2)
whe	re,			
i i	L =	Len	gth of conductor[m]	
-	<i>T</i> =	Ten	sion of the conductor[kg]	
Å.	<i>S</i> =	Spa	n[m]	
1	w =	Loa	d of conductor [kg/m]	
whe	re,			
	$w = \sqrt{W_c^2} + Pv$	v' ²		
	Wo	: 1	lass of Conductor[kg/m]	
	Pw	r': \	Vind Pressure of Conductor	
			$Pw' = d \times Pw \times 10^{-3} [kg/m]$	
			Pw = Wind Pressure of Conductor[kg/m	,2]
			d = Diameter of Conductor[mm]	
Remarks				Revisions
l			2003	/Nov. Original J-POWER & CEPC

	Chapter	2	Technical Standards of Electric Bow	or Equilition					
	Paragraph	6	Transmission and Distribution Eacilit	ioc					
Category	raiagiapii	0	(High Voltage)	162	Document				
outogory	Clause	43	Bare Conductors of Overhead 1	High-voltage	No. TL20-2				
			Lines	ingn-vollage					
Title	Sag of Condu	ictors	(2/4)						
On the o	ther hand, exp	ansion	of conductor is described as follows:						
	· ·								
	7	, ſ	$(T_2 - T_1)$						
$L_2 - L_1 = \{ (L_2 - L_1) \mathcal{E} + {A \cdot E} \} L_1 \dots 3 \}$									
		L	a b j						
when	re,								
($t_2 - t_1 \varepsilon =$	Len	gth difference by temperature chang	ge					
, 	$T_2 - T_1$	Lon	th difference by tension shance						
_	$A \cdot E$	Len	gen unterence by tension change						
t	$t = \text{Temperature}[^{\circ}\text{C}]$								
ε	=	= Coefficient of linear expansion[/°C]							
Ŀ.	4 =	= Sectional area of conductor $(total)$ [mm ²]							
,	g =	= Modulus of electricity[kg/mm ²]							
~	-	1,100							
in the sh	ove equations :	from 1) through (2), accuming as follows:						
in the ab	ove equations		r m r						
	$\int (t_2 - t_1)$	$(1)\varepsilon -$	$\frac{T_2 - T_1}{2} \left\{ \frac{S^2 \cdot w_1^2}{2} = 0 \right\}$						
		17	$A-E \int 24T_1^2$						
The follow	wing equation 4	4) is de	erived.						
			_						
	$\frac{S^2 w_2^2}{2}$	S^2	$\frac{w_1^2}{w_1} - (t_1 - t_1) c_1 + \frac{T_1 - T_2}{w_1} - 0$ (1)						
	$24T_{2}^{2}$	24	$T_1^2 \xrightarrow{-(\iota_2 - \iota_1) \varepsilon} A \cdot E \xrightarrow{-0} \dots $						
In the abo	- ove equation, a	Issum	ing as follows;						
	T	52	$2 \cdot \mu^2 \cdot F$						
	$K = \frac{1}{A}$		$\frac{m_1}{24T^2}$						
	11								
	$M = \frac{S^2 \cdot w_2^2 \cdot E}{2}$								
		24 <i>A</i>	-						
	$f_{2} = -\frac{1}{2}$	Γ_2							
Demeria		A							
Hemarks				Hevi	SIONS				
				└ <u>──</u> ──┤					
				2003/Nov	Original				

	Chapte	anh	2 Techn	ical Stand	ards of E	lectric Pow	er Fa	cilities		
Category	Faragr	apn	6 Transi	mission ai Voltage)	na Distric	ution Facili	lies		Doc	ument
	Clause	4	3 Bare Lines	Conducto	ors of (Overhead	High-	voltage	NO.	1 20-3
Title	Sag of	Conducto	rs (3/4)							
The follo	wing equ	tation is determined $\frac{M}{2} - f_2$	erived. $= -K + \epsilon$	$s(t_2 - t_1)$	E					
		f_2^2		(21)						
		$f_{2}^{2}[f_{2}-$	${K-\varepsilon(t)}$	$(2-t_1)E$	$\Big\}\Big]=M$	5)				
(2) Exampl Physica	e of the (al consta	Calculation	n h conduct	or are as:	sumed as	s follows.				
							ACSR	429		
	Calcula	ted Sectio	nal Area	A	[mm ²]		484	.5		
	Overall	Diameter	d		[mm]		28.	62		
	Mass p	er meter V	Vc		[kg/m]		1.6	21		
	Coeffici	ent of Lin	ear Expar	ision ε	[/°C]	1	1.9 54 :	× 10 ⁻⁵		
-	Modulu	s of elasti	city E	[k	g/mm²]		798	37		-
As the " S ^N V V	Condition pan IWT emperate Vind Pres V1[kg/m]	n 1" menti ure ssure ACSR429	oned in (* S [m] T ₁ [kg] t ₁ [°C] P _{w1} [kg 0 1.984	I), when f g/m ²]	ollowing 350 3,400 10 40	values are :	select	ed,		
"Conditic	on 2" (ten	sion of co	nductor)	mentioned	d in (1) is	derived as	follow	vs;		
Conducto	r	Input				1 /		A	nswei	
	[°C]	P _{w2} [kg/m ²]	w2 [kg/m]	K	M	K-ε (t ₂ -	t1) E	f₂ [kg/m·n	nm²]	T_2 [kg]
ACSR	30	0	1.621	-6.871	456.338	-9.99	2	5.43	9	2.635
429	90	0	$\frac{1.621}{1.621}$	-6.871 -6.871	456.338	-17.01	15 56	4.59	6 4	2.227
L		.		<u> </u>			· · · · · · · · ·		<u> </u>	
Remarks								Rev	/ision	5
							20	03/Nov.	0	riginal
L								J-POV	VER 8	& CEPCO

MIME (JICA)

	Chapter	2	Technical Standards of Electric Power Facilities	
Category	Paragraph	6	Transmission and Distribution Facilities (High Voltage)	Document
	Clause	43	Bare Conductors of Overhead High-voltage Lines	NO. 1 20-4
Title	Sag of Condu	ictors	(4/4)	, ,

(3)Sag Calculation

Sags are described with the result of the tension calculation mentioned in (1) and (2), and the following equation.

$$Sag = \frac{S^2 \cdot w}{8 \cdot T}$$

(4) Sag Template Calculation

Sag Template is made on the basis of the assumption in which all spans between two tension towers have the same tension.

$$T = \frac{S_1^2 \cdot w}{8 \cdot Sag_1} = \frac{S_2^2 \cdot w}{8 \cdot Sag_2}$$

<u>Basic Span 350 m</u>

Conductor ACSR 429 mm² Zebra (90 °C)

$$\frac{S_1^2 \cdot w}{8 \cdot Sag_1} = \frac{S_2^2 \cdot w}{8 \cdot Sag_2} \rightarrow \frac{350^2}{11.37} = \frac{S_2^2}{Sag_2}$$

$$Sag_2 = \frac{11.69}{350^2} = S_2^2 = 9.543 \times 10^{-5} S_2^2$$

According to this relation, Sag Template for Basic Span 350 m is prepared.

Sag Template for ACSR 429 mm² for Basic Span 350 m and 90 °C

	Span (m)	Sag (m)		
	200	3.82		
	250	5.96		
	300	8.59		
	350	11.69		
	400	15.27		
	450	19.32		
	500	23.86		
Remarks		<u> </u>	Rev	isions
•	· · · · · · · · · · · · · · · · · · ·		2003/Nov.	Original
			J-POW	ER & CEPCO

	Chapter	2	Technical Standards of Ele	ctric Power Facilit	ies	
Category	Paragraph	6	Transmission and Distribut (High Voltage)	ion Facilities		Document
	Clause	43	Bare Conductors of Ov	erhead High-vol	tage	No. TL 21
Title	Safety Factor	of Co	nductors		I	
A safety than 2.5 to	factor of condition the tensile stre	uctors ength	and ground wires for overhe (ultimate tensile strength; bro	ead high-voltage leaking strength).	ines sl	nall be no less
Foreign	countries' stand	dards	are described below for refe	rence.		
				Safety factor b	based (on U.T.S.
	Techni	cal Sta	Indard: Japan	No less	than 2	2.5
	National Elec	trical S U.S	Safety Code(NESC): S.A	No less	than 1	.67
	ne Electricity (0	Overhe ป	ead Lines) Regulations: .K.	No less th	1an 2.0)-2.5
	VDI	E0210	: Germany	No less th	nan 2.3	3-2.5
				· · · · · · · · · · · · · · · · · · ·	D -	
Hemarks					He\	ISIONS
				2003,	/Nov.	Original

Chapter 2 **Technical Standards of Electric Power Facilities** Paragraph Transmission and Distribution Facilities 6 (High Voltage) Document Category Clause 42 Protection against Lightning for Overhead No. TL22 High-voltage Lines Bare Conductors of Overhead High-voltage 43 Lines Title Measures for Aeolian Vibration The following measures shall be taken to prevent aeolian vibration for overhead high-voltage lines. 1.Installation of vibration dampers Examples of dampers are shown as follows. 2.Installation of armor rods An example of armor rods is shown as follows. \sim **Double Torsional Damper Bate Damper** Stock Bridge Damper **Christmas Tree Damper** Vibration Less Damper Armor rod Center Conductor Armor rods Revisions Remarks 2003/Nov. Original

J-POWER & CEPCO

	Chapter	2	Technical Standards of Electric Powe	r Facilities	
	Paragraph	6	Transmission and Distribution Faciliti	es	Document
Category			(High Voltage)		No. TL23
	Clause	43	Lines	high-voltage	
Title	Connection of	f Conc	luctors		
For con sleeves sh major jobs	nections of co all be used. Ar of the construc	nducto Id che tíon si	ors and ground wires of high-voltag cking of the condition before and afte upervision, shown as follows.	ge lines, con r the compre	npression type ssion is one of
		DNS-T EXP	マーキ > ケ 住ま 永 永 内 ACSR /ACSID_名 以中 9 月 9 日 (Before joint)		
	DNS 圧縮 平式	ママ ママ TAC 伸か い 人	-キング 位置表示板 No SR/AC810 2 上中相 信心量 506 (After joint) n example of jointing of conductors		
Remarks				Rev	isions
Referring	to the standard	ls of k	KANSAI Electric Power Co., Inc.		
				2002/Nov	Original
				_2003/1909. J-POV	VER & CEPCO

			Technical Standards of Electric Power Facilities	
Category	Paragraph	6	Transmission and Distribution Facilities (High Voltage)	Document
	Clause	43	Bare Conductors of Overhead High-voltage Lines	
Title	Kinds of Grou	und wii	res	-
Properti steel wire,	es of solid wire etc.) that comp	es (ha ose ar	rd-drawn aluminum wire, zinc-coated steel wire, n ground wire should comply with following IEC sta	aluminum-cla ndards.
IEC608 IEC608 IEC612	89 Hard-drawn 88 Zonic-coate 32 Aluminum-c	alumi d stee	inum wire for overhead line conductors I wires for stranded conductors eel wires for electrical purposes	
Cross s	ection of a ty	oical s	stranded wire (GSW and AS) is as follows.	
Where o Aluminum Galvanizeo	orrosion of co Clad Wire (A I Steel Wire (G	nducto S) sh SW) a	ors and ground wires is expected due to such po ould be adopted. For an example in Kansai A pplies in areas of more than 30km away from seac	ollution as sal Area in Japar coast.
A size of	a ground wire	should	d be decided in consideration of the following points	s.
a. Mecha b. Currei c. Count	anical strength nt-carrying cap ermeasures of	acity a electro	gainst inductive current omagnetic induction against communication lines	
			Zinc-coated steel wire	
e.				
			(GSW55mm ²)	
			(GSW55mm²)	
			(GSW55mm ²)	
· ·			(GSW55mm ²) Aluminum-clad steel wire (AS55mm ²)	
			(GSW55mm ²) Aluminum-clad steel wire (AS55mm ²)	
			(GSW55mm ²) Aluminum-clad steel wire (AS55mm ²)	
Remarks			(GSW55mm ²) Aluminum-clad steel wire (AS55mm ²) Rev	visions
Remarks			(GSW55mm ²) Aluminum-clad steel wire (AS55mm ²)	visions

		Chapter	2	Technical Standards of Elec	tric Power Facilities	
Cate	gory	Paragraph	6	Transmission and Distributio	on Facilities	Document
		Clause	43	Bare Conductors of Ove	erhead High-voltage	NO. 1L25
Tit	tle	Safety Factor	r of Gr	round Wires		
A s than :	safety 2.5 to	factor of conductive the tensile stre	uctors ength	and ground wires for overhea (ultimate tensile strength; brea	ad high-voltage lines s aking strength).	shall be no less
Fo	reign (countries' stand	dards	are described below for refere	ence.	
					Safety factor base	d on U.T.S.
		Techn	ical St	tandard: Japan	No less thar	12.5
		National Elec	ctrical U	Safety Code(NESC): I.S.A	No less than	1.67
	T	The Electricity (Overh l	nead Lines) Regulations: J.K.	No less than 2	2.0-2.5
		VD	E021	0: Germany	No less than 2	2.3-2.5
Rem	arks				Re	visions
					2003/Nov.	Original
L					1 =	

MIME (JICA)

	Chapter	2	Technical Standards of Electr		3
	Paragraph	6	Transmission and Distribution	Facilities	
Cotogony		_	(High Voltage)		Document
Category	Clause	44	Clearance among Bare	Conductors an	No. TL26
			Supporting Structures of Ove	rhead High-voltag	le
	<u> </u>		Lines		
Title	Clearance an Pole Braces	nong I	Bare Conductors and Supporti	ng Structures, An	ms, Guy Wires or
Clearanc with the sw switching s	e between a c /itching surge v urge voltages a	onduc /oltage are de	ctor and a supporting structure e, taking into account the swir cided as follows.	e should be decid ng of the conduct	ed in accordance ors. Normally, the
Nomi	al voltage :V[k	<u></u>		115	230
Highe	st equipment v	oltage	Vm=V×1.2/1.1[kV]	125.5	250.9
Peak	value of line to	aroun	d voltage $Vm \times \sqrt{(2/3)[kV]}$	102.5	204.9
Switch	nina surae mul	iple		2.8	2.8
Switch	ning surge volta	age[k\	/]	287.0	573.7
Insula	ting drop coeff	cient		1,1	1.1
Requi	red withstand v	oltage	e[kV]	316	631
Cleara	ance[m]			0.68	1.44
where,	switching surg	e mul	iple is following;		
ĺ	Type of neur	ral gro	ounding Multiple		
	Neutral direc	tor yr	Inding 2.8		
	Neutral resis	tance	arounding 2.0		
			Clearance 2		
Remarks				F	Revisions
				2003/No	v. Original

Category	Chapter Paragraph	2	Technical Sta Transmission (High Voltage	ndards of Electric and Distribution	Power Facilities Facilities	Document No. TL28-1
·	Clause	45	Height of Ove	rhead High-volta	ge Lines	
Title	Height of Co	nducto	rs (1/4)		· ·	
1. Height o	f Conductors i	n and a	around Urban /	Area		
An exam as follows.	ple of height o	of cond	uctors of overh	ead high-voltage	lines in and aroun	d urban area is
	Steel tower				Steel tov	ver
					A	
_	Marrie A				A CONTRACTOR OF	
						_
·					X	
	-11-		Co	anductor	1	
				<u></u>		
,				in a span	west point	
			<u> </u>	<u>y</u>		
		/oltane	[kV]	Height	ím	
	·	115	j	No less th	nan 7.0	
		230)	No less th	an 7.7	
	L				ł	
The Heig area shall in complia dominant f	hts shall be k be decided tha nce with Clai or extra-high v	ept at a at an e use 47 roltage	any points in a lectric field at 7. Normally, th lines.	span. Furthermo he height of 1 m le latter height,	ore, height of cond from the ground i decided by the e	luctors in urbai s 3kV/m or les: electric field, is
The Hei Technical S standards a	ghts have be Mandards for c are described l	een de listribu below f	cided, taking tion lines and or reference.	into account fo	oreign countries' s in Cambodia. Fo	standards, and reign countries
Voltage [l		<u></u>		hts [m]	Germany	
115	6.0)	6.1	6.6	-	
230	6.8		6.8	7.1	7.7	
٠	Hemark: Defi	nition (ot "urban area"	is different in the	e countries.	
Remarks					Re	visions
						1

	Chapter	2	Technical	Standards of	Electric Pow	er Facilities	
Category	Paragraph	6	Transmiss (High Volt	sion and Distr age)	ibution Facili	lies	Document No. TL28-3
	Clause	45	Height of	Overhead High	gh-voltage Lir	ies	
Title	Height of Cor	ducto	rs (3/4)				
3. Height of	f Conductors c	rossin	g over Roa	ds and/or Ra	ilways		
Height o national roa of distributio	f conductors o ads, and/or rai on line along th	of ove Iways ne roa	erhead hig should be ds and/or ra	h-voltage line decided takii ailway, show	es crossing ing into accou as below.	roads, such i int possibility	main roads as of construction
Ste	eel tower					Steel tower	
				··			
,			•				
			•				
_						Å	
	A					A	
			Cor	ductor		-//>	
	3-5m 1	• 1	Height T	be lowest no	int		
		₹ (over a ro	ad			•
	8-1011		,				
		Boad	\				
623	Mediu	m/low	voltage li	nes			
		-14			Lininhilmi	--	
		01120	[KV]	No	less than 13	5	
		020	· <u> </u>	No	less than 14	2	
		230	<u> </u>	INU .	1655 (1)411 14.	~	
Where a l conductors the roads. road near t supporting	high-voltage lir should be dec Appropriate de he supporting structure not s	ie cros cided s ssign a structi o high	sses over s so that dist as shown i ure and no	such a major ribution lines n the above i t at the bigge	road as Natio and/or house figure, in whi est sagging p	nal Roads, th es can be cor ch the line cro oint, can mak	e height of the astructed along osses over the e height of the
Remarks						Rev	visions
					•		
						2003/Nov	Original
						J-POW	VER & CEPCO

ace sha
TL30-1
ace sha charge
ace sha charge
ise
ISE
ISC
—
s
<u>s</u>
MIME (JICA)

JICA

GUIDEBOOK FOR POWER ENGINEERS

English Edition

VOL. No.6 MEDIUM & LOW VOLTAGE DISTRIBUTION SYSTEM

Dec. 2003

MINISTRY OF INDUSTRY, MINES AND ENERGY ELECTRICITY AUTHORITY OF CAMBODIA ELECTRICITE DU CAMBODGE

Document No. Title DS1 **Distribution System** DS2 Low-voltage Supply System DS3 Management of Voltage DS4 Fettanti Effect DS5 Voltage Regulating Equipment DS6 Calculation of Voltage Drop DS7 Quality of Power DS8 Flicker DS9 Planning of Distribution Facility **DS10 Demand Forecast for Distribution Facilities DS11** Power Factor **DS12** Medium-voltage Dielectric Test **DS13** Voltage Tests for 22kV Transformer **DS14** Power Meter **DS15** Performance of Conductors Dielectric Strength and Insulation Resistance of Insulated Conductor **DS16 DS17** Insulator Thickness of Insulated Conductors **DS18** Configuration of Low-voltage XLPE Cable **DS19** Configuration of Medium-voltage XLPE Cable **DS20** Tensile Strength of Overhead Conductors DS21 Clearance on Side by Side Use and Joint Use of Lines **DS22** Installation Methods of Underground Line **DS23** Connection of Medium-voltage Cables **DS24** System Grounding

Contents of Medium & Low Voltage Distribution System

Document No.	Title
DS25	Single-line Earth Fault Current
DS26	Setting Depth of Supporting Structure
DS27	Wind Load
DS28	Calculation of Safety Factor of Foundation
DS29	Calculation of Strength of Iron-reinforced Concrete Pole and Steel Pole
DS30	Strength Test for Iron-reinforced Concrete Pole
DS31	Calculation of Strength of Wooden Pole
DS32	Installation of Guy
DS33	Calculation of Strength of Guy
DS34	Types of Conductors for Overhead Line
DS35	Connection Methods of Conductors
DS36	Cables for Overhead Line
DS37	Installation Conditions of MV/LV Transformer
DS38	Medium-voltage Over Current Circuit Breaker
DS39	Property of Fuses as Medium-voltage Over Current Circuit Breaker
DS40	Installation Position of Switchgear
DS41	Lightening Damage
DS42	Installation of Lightning Arrester
DS43	Height of Overhead Line
DS44	Clearance between Overhead Line and Structure of Building
DS45	Clearance between Overhead Line and Tree
DS46	Adjacency and Crossing of Overhead Line
DS47	Sag of Line
DS48	Composition of Overhead Distribution System
DS49	Diagram of Distribution Substation
DS50	Vehicle for Distribution Work
DS51	Interconnection of Privately Owned Power Generators

Chapter 1 General Provisions Document Category Paragraph 3 Quality of Electric Power No.DS1-1 Clause Voltage 6 Title Distribution System (1/2) Three-Phase, Three-wire System Three phase Single phase Three phase transformer(s) transformer(s) transformer(s) SWER System SWER **Isolating Transformer** Three phase transformer(s) SWER distribution transformers Remarks Revisions **Resource: EDC document** 2003/Nov. Original

GUIDEBOOK FOR POWER ENGINEERS

MIME (JICA)

MIME (JICA)

	- Chaptor		General Provisions			- Docum
Category	Paragraph	3	Quality of Electric Pov	wer		- No.DS
	Clause	6	Voltage		· · · · · · · · · · · · · · · · · · ·	
Title	Low-voltage	Supply	y System (1/3)			
Low-vol	tage Supply	Syste	em			
•					N	
				<u> </u>	à	
$(\Delta$	()				b	
	L		· · · · · · · · · · · · · · · · · · ·		C	
	τ.					
<u>`</u>	<u>-, ,</u>	N	ominal Voltage	Variati	on of Volt	age
<u>a-N,</u> b-N	, c-N	N	ominal Voltage 220V	Variati From 2	on of Volt 207 <u>V to</u> 24	age 44V
a-N, b-N a-b, b-c, Nominal v of voltag	i, c-N c-a voltage is con e is decideo	ventio	ominal Voltage 220V 380V onal nominal voltage nsidering the confor	Variati From 2 From 3 in used in Can mity with IEC	on of Volt 207V to 24 360V to 44 abodia. Au bodia. Au	age 44V 24V nd the vari tage stan
a-N, b-N a-b, b-c, Nominal v of voltag assuming	i, c-N c-a voltage is con e is decided the usage of	vention vention impo	ominal Voltage 220V 380V Donal nominal voltage nsidering the confor rited apparatuses.	Variati From 2 From 3 in used in Cam mity with IEC	on of Volt 207V to 2 360V to 4 bodia. An bodia. An bow-vol	age 44V 24V nd the vari tage stan
a-N, b-N a-b, b-c, Nominal v of voltag assuming	, c-N c-a voltage is con e is decided the usage of	vention t cor impo	ominal Voltage 220V 380V onal nominal voltage sidering the confor orted apparatuses.	Variati From 2 From 3 in used in Can mity with IEC	on of Volt 207V to 2 360V to 4 bodia. An bodia. An bow-volt	age 44V 24V nd the vari tage stan
a-N, b-N a-b, b-c, Nominal v of voltag assuming	i, c-N c-a voltage is con e is decided the usage of	vention vention impo	ominal Voltage 220V 380V onal nominal voltage nsidering the confor orted apparatuses.	Variati From 2 From 3 in used in Cam mity with IEC	on of Volt 207V to 2 360V to 4 bodia. An bodia. An bodia. An bow-volt	age 44V 24V nd the vari tage stan
a-N, b-N a-b, b-c, Nominal v of voltag assuming	, c-N c-a voltage is con e is decided the usage of	ventid	ominal Voltage 220V 380V onal nominal voltage nsidering the confor orted apparatuses.	Variati From 2 From 3 in used in Can mity with IEC	on of Volt 207V to 2 360V to 4 bodia. An bodia. An bow-volt	age 44V 24V nd the vari tage stand
a-N, b-N a-b, b-c, Nominal v of voltag assuming	, c-N c-a voltage is con e is decided the usage of	ventio	ominal Voltage 220V 380V onal nominal voltage nsidering the confor orted apparatuses.	Variati From 2 From 3 in used in Cam mity with IEC	on of Volt 207V to 2/ 360V to 4/ hbodia. An low-volt R R	age 44V 24V nd the vari tage stan

MIME (JICA))

Chapter 1 General Provisions Document Category Paragraph 3 Quality of Electric Power No.DS2-3 Clause 6 Voltage Title Low-voltage Supply System (3/3) **Current of Each Distribution System Distribution System Current in Phase Line** I P/3 Ρ $I = \frac{1}{3E\cos\theta}$ EÒ Ē 00 Ε P/3 P/3 ł J = **3 E cos** θ P/3 P/3 Ε Ε Ε P/3 * Loads are assumed to be balanced. Revisions Remarks 2003/Nov. Original J-POWER & CEPCO

GUIDEBOOK FOR POWER ENGINEERS

MIME (JICA))

	Chapter	1	General Provisions					
Category	Paragraph	3	Quality of Electric Power		Document			
	Clause	6	Voltage		NO.DS3			
Title	Title Management of Voltage							
Licensees the Electri	have to con ic Power Tech	trol ti inical	ne supply voltage at the receiving p Standard.	point in acc	cordance with			
As the vo Power Te anytime.	oltage fluctuat chnical Stand	tes ai dard	ways, the conformity of the supply shall be certified not just when it	/ voltage to is measu	o the Electric red, but also			
On the oth the outgoin customers necessary	her hand, it is ing voltage at s will be mana /.	diffic a sui aged	ult and not realistic to monitor the substation or a power station. Therefore by assumption of a voltage drop or	upply voltag re the supp r measuring	ge, other than bly voltages to g it in case of			
Generally electrical designed, within the	the voltage characteristic the voltage target voltage	of di s of c of the ə.	stribution line is managed by the listribution lines and demand. When e end of the lines based on the a	assumption distribution ssumed de	n considering n facilities are emand will be			
To put it o lines, the The desig each targ increase installation transform licensees exceed th	To put it concretely, licensees decide the target voltages at the end of medium-voltage lines, the branching point from a main low-voltage line or the primary side of a meter. The designs of facilities will be made considering the voltage to be in conformity with each target voltage. When the voltage at each point will be out of the target by the increase of demand, such countermeasures as the scale up of conductors, the installation of boosters, the change of low-voltage networks, or the change of tap of transformers will be done. In case of the installation of boosters or the change of tap, licensees also have to examine that the voltage at the time of minimum demand will not exceed the maximum voltage regulated the Electric Power Technical Standard							
After the expansion of distribution facilities, the change of distribution network, and the supply to bulk customers, licensees should measure voltages of some critical points and examine the conformity with the Electric Power Technical Standard. In addition, the supply voltage should be measured regularly, because the total residential demand will increase gradually. The voltage, fluctuating all the time, should be measured not at a spot but for a long term enough for examination, including both a low demand period and a high demand period.								
Even whe other faci be out of not suppl avoid bac	Even when there are enough capacities in transformers in a substation, conductors and other facilities, for new large customers, if the supply voltages for some customers will be out of regulated voltage taking the new demand into consideration, licensees should not supply to the new large customers before a countermeasure construction works to avoid bad influence to other customers.							
Remarks				Re	visions			
Į								
L				2003/Nov.	Original			
				J-PO	WER & CEPCO			

J-POWER & CEPCO

MIME (JICA)

Categony	Chapter	$-\frac{1}{2}$	General Provisions		Docume
•	Clause	6_\	/oltage		No.DS6
Title	Calculation o	f Volta	ge Drop (2/2)	1	
Es = √ ≒ Er	(Er+IRcos θ + IRcos θ +IXs	+lXsin sin θ	$(\theta - \theta)^2 + (IX\cos\theta - IR\sin\theta)^2$		
herefore	the voltage dr	op is ç	jiven the following formula.		
e = Es - = I(Rco = I×Re	Er $s \theta + X sin \theta$)				
Re: Equ	uivalent resista	ince.			
The appro	oximate voltag	e drop	for each load distribution mode	l is as follows	,
$e = f \times IF$	Re				
f: Dispe	rsal load facto	r			
	Мос	lel of d	dispersal load	Dispersal	load
Conce end o	entrating on f line	the		1	
Distrit the lin	outing equally le	/ on		0.5	
Increa goes	asing, so th to the end of li	at it ne		0.67 (=2/3)	
	ning the mavi	mum		0.5	
Becor in the	middle of line				
Becor in the Decre goes	middle of line easing, so th to the end of li	at it ne		0.33 (=1/3)	
Becor in the Decre goes	middle of line middle of line asing, so th to the end of li	iat it ne		0.33 (=1/3)	
Becor in the Decre goes	middle of line easing, so th to the end of line roltage drop is	nat it ne given	as follows;	0.33 (=1/3)	
Becor in the Decre goes The line v Single ph	middle of line middle of line asing, so th to the end of li roltage drop is ase two wires	iat it ne given systen	as follows; n: v = 2e	0.33 (=1/3)	
Becor in the Decre goes The line v Single ph Three pha	middle of line middle of line asing, so the to the end of line roltage drop is ase two wires ases three wire	iat it ne given systen ∋s syst	as follows; n: v = 2e tem: $v = \sqrt{3}e$	0.33 (=1/3)	
Becor in the Decre goes The line v Single ph Three pha Remarks	middle of line middle of line asing, so th to the end of line roltage drop is ase two wires ases three wire	iat it ne given systen	as follows; n: $v = 2e$ tem: $v = \sqrt{3}e$	0.33 (=1/3)	visions
Becor in the Decre goes The line v Single ph Three pha Remarks	middle of line middle of line asing, so the to the end of line roltage drop is ase two wires ases three wire	at it ne given systen es syst	as follows; n: $v = 2e$ tem: $v = \sqrt{3}e$	0.33 (=1/3)	visions

Chapter 1 General Provisions Document Paragraph Category 3 Quality of Electric Power No.DS7 Clause 6 Voltage Title Quality of Power The quality of power is evaluated by following items. Bad condition of power source Fluctuation of Voltage Voltage Flicker Distortion of Wave Form Noise Continuous **Power Outage** supply Instant Outage Frequency Fluctuation of Frequency Revisions Remarks 2003/Nov. Original J-POWER & CEPCO

GUIDEBOOK FOR POWER ENGINEERS

MIME (JICA)

	Chapter	1	General Provisions		
Category	Paragraph	3	Quality of Electric Power		Document
•••	Clause	6	Voltage		NO.DS8
Title	Flicker				
When in a If the fluc change, a of change apparatus	an instance th ctuation is to ind twinkling v e. This pheno ses.	e der o int will be menc	nand changes large, the voltage will ense, the brightness of lamps and e felt depending on the difference of on is called "flicker" and following in	also fluctua d fluorescen the voltage fluence may	ate intensely. I lights will and its time happen on
1. Twinklir 2. Damag 3. Noise c	ng on lightenii le on electron on communica	ng ap ic app ation a	paratuses paratuses apparatuses etc.		
The typica elevator a	al facilities tha Ind a pressing	at ger 1 mac	herate flicker are a welding machine hine.	e, an electric	: furnace, an
The sens measured annoying. frequencie Generally	ible annoying by flicker me In IEC61000 es and limitati the limitation	is d eters -2-2, ons c of fli	ifferent depending on the voltage a provided in IEC61000-4-15 indicates there shows a curving line that sho of changes of voltages. cker is shown as follows;	and the freq s the digitali ws the relat	uency. "Pst" zation of the tion between
Pst ≦	1				
Raising ti source of	he size of cc flicker is an e	nduc xamp	tors or installing an exclusive line ble of countermeasures against flick	for a custo er.	mer with the
Bemarks	<u></u>	<u> </u>			isions
ronars				1101	
				2003/Nov.	Original
				I-POV	VER & CEPC

MIME (JICA)

	Chapter	1	General Provisions	Dooument				
Category	Paragraph	3	Quality of Electric Power	No.DS9				
	Clause	-	Others					
Title	Planning of	distrik	oution facility					
Distribution facilities are installed near the buildings, on the public roads or in the private sites. Therefore when licensees plan distribution facilities, they should consider not only the economy (cost) but also the safety or the efficiency for maintenance, As far as the economy is concerned, both initial costs and running costs such as maintenance costs and energy losses should be considered. The reduction of technical losses lead to the reduction of the expansion costs of generation, transmission and distribution facilities as well as the reduction of fuel costs for consolidated licensees, because the reduction of technical loss contributes to the increase of the margin of the capacities of facilities. As well, for the distribution licensees the reduction of technical loss means the reduction of the expansion costs of distribution facilities and electricity purchase costs from generation licensees. Technical loss is classified into the resistance loss caused from conductors, and the iron loss and copper loss from transformers.								
The resist	ance loss is g	iven	by					
P = N	×I²×R (W)							
Where N: Th I: Cur R: Im	e number of c (Single phase rent (A) pedance of co	condu e two onduc	ictor wires = 2, Three phases three wires = 3) stors					
The powe	r loss is given	ı by						
W = F	$W = P \times T (W h)$							
Where T: Ho	ur							
fron loss of On the oth in proporti	of transforme ner hand, cop on to the squa	rs wit per lo are of	h same characteristic is constant, not depend oss, like resistance loss, generated by the curr currents.	ling on loads. ent increases				
Generally, to expand expansion considerin	when power low-voltage of facilities s g the long-ter	comp lines hould m co	panies supply to new low-voltage customers, to considering only initial costs. However, it is be done to meet the increase of demand in the sts.	they are likely desired that he future, and				

· · · · · · · · · · · · · · · · · · ·	Revisions
	2003/Nov. Original
	J-POWER & CEPCO

	Chapter	1	General Provisions		Document				
Category	Paragraph	3	Quality of Electric Power		No.DS10				
·. <u> </u>	Clause	-	Others						
Title Demand Forecast by Distribution Licensee									
Licensees	Licensees should expand their distribution facilities to meet the assumed future demand.								
Demand f	orecasting wi	ll be c	lone considering the following items	totally.					
a. Historic b. Econor c. Deman	al trend of de nic index d of bulk cust	mano omer	l s (now and future)						
Maximum demand f	demand wi actor and the	ll be diver	decided in consideration of the sity factor.	assumed	demand, the				
D	emand Facto	r = M	aximum Demand / Installed Capac	ity					
Di	iversity Facto)r = 1	Σ Maximum Demand of each load	/ Maximur	n Demand				
Demand real dema	factor and div ands or contra	ersity act de	factor will be assumed based on the mands and installed capacities.	e past recc	ords regarding				
Distributio maximum	on facilities v demand.	vill b	e expanded considering both curr	ent and v	oltage at the				
Domostra				D_	visione				
			F						
				2003/Nov.	Original				
	J-POWER & CEPCO								

MIME (JICA)

	Chapter	1	General Provisions	Destimant
Category	Paragraph	3	Quality of Electric Power	Document
	Clause	-	Others	
Title	Power Facto	or (1/2	2)	

The power of AC circuit is as follows;

 $P = VI \cos \theta$ (W)

P is called effective power. On the other hand, the charged power in reactor is called reactive power and is given by the following;

 $Q = VI \sin \theta$ (var)

The composition of P and Q is called apparent power and is given by the following;

S = VI (VA)

 θ is the difference of phases on current and voltage. Therefore even when VI is constant, P changes in proportion to $\cos \theta$. $\cos \theta$. is called power factor and the less the power factor is, the more the loss increases. Generally power factor should be no less than 85%.

To improve the power factor, a capacitor is connected to load and parallel (Fig.1 and 2).

Remarks	Revisions
	2003/Nov. Original

MIME (JICA)

MIME (JICA)

	Chapter 1		General Provisions	Desument
 	Paragraph	4	Prevention of Electric Power Disasters	
Category	Clause	9	Prevention of Electric Power Disasters	10.0312
Title	Medium-volta	ge Di	electric Tests	

1. Dielectric Tests for Medium-voltage Facilities

Medium-voltage facilities shall be withstand when the test voltage is applied at the parts given in the following table for 10 minutes continuously

Faci	lity		Applied parts	Test Voltage
Transformer	7000V less	or	Between the winding to be tested, and the	1.5 times the maximum voltage
	More 7000V	than	other winding, the iron core and the case	1.25 times the maximum voltage
Switchgear Circuit breaker	7000∨ less	or	Between charged part and the ground	1.5 times the maximum voltage
Instrument transformer etc.	More 7000∨	than		1.25 times the maximum voltage

2. Dielectric Test for Medium-voltage Line

Medium-voltage lines shall withstand a test made by impressing the voltage given in following table, between the line and the ground for 10 minutes.

Maximum-voltage	Test voltage	
7000V or less	1.5 times of maximum-voltage	
More than 7000V	1.25 times of maximum-voltage	

Remarks	Revi	sions
	2003/Nov.	Original
L	<u>2003/Nov.</u>	Original

MIME (JICA)

	Chapter	1	General Provisions	Decument
Category	Paragraph	4	Prevention of Electric Power Disasters	No DS12-1
	Clause	9	Prevention of Electric Power Disasters	N0.D313-1
Title	Voltage Tests	for 2	2kV Transformer (1/2)	

1 Lightning impulse test

The primary winding of transformer shall be tested, whether it has sufficient dielectric strength to withstand the definite voltage of positive and negative polarities. This test shall be repeated 3 times. The test voltage is given in following table.

Voltage	wave form			1/40µs
Crest	values	of	Full wave voltage	150kV
voltages	l		Chopped wave voltage	165kV

2 Withstand voltage test

The transformer shall be tested whether it is able to withstand the voltage nearly sinusoidal waveform at 50 Hz for 1 minute. The applied parts and the test voltage are given in following table.

Applied parts	Test vol	tage
Between the primary winding and the ground, the secondary winding and the iron core being connected to the ground		50,000V
Between the secondary winding and the ground, the primary winding and the iron core being connected to the ground		4,000V
	<u> </u>	
Remarks	Rev	isions
	0000/01	
· · · · · · · · · · · · · · · · · · ·	2003/NOV.	

MIME (JICA)

MIME (JICA)

	Chapter	2	Technical Standards of Electric Power Facilities	
Category	Paragraph	1	General	Document
	Clause	20	Accuracy of Power Meters	N0.0514
Title	Power Meter			
	_			

The accuracy of power meters for trading electricity shall be in conformity with Clause 20 of the Electric Power Technical Standards in Cambodia.

The accuracy shall be confirmed not only when the meter is manufactured but also regularly after it is installed. Power meters shall be sealed for the third person not to handle them.

The power meter shall be installed in manners as follows;

1 It is installed to be measured easily. 2 It is not an obstacle to the third person, when it is installed at a supporting structure on the public street.

3 It is in the water proof boxes, when it is installed outside a house and there is a risk to splash rain on it.

	01010
2003/Nov.	Original
_	2003/Nov.

MIME (JICA)

		Cha	oter	2	Technical Stand	ards of Electric P	ower Facilities		
6	Category	Para	graph	5	Transmission and Distribution Facilities Document				
		L			(Common)			No.DS15-1	
		Clau	se	_31	Property of Con	ductors			
	Title Performance of Conductors (1/2)								
1	. Abbrev	iatio	ns of Co	onduc	tors				
	Nar	me Al	bbreviat	tion		Conducto	or Type		
	 		Cu		Copper (9	7% IACS)+			
	 				All Alumini	um Conductor			
			C1120		All Alumini	um Alloy (1120)	Conductor		
	ļ	AAA	<u>C(6201)</u>		All Alumini	um Alloy (6201)	Conductor *		
			<u>GZ</u>	,	Galvanise	d Steel			
ļ	<u> </u>		AZ	··- <u>-</u>	Aluminised	Steel			
	+ = intent	natior	ia alna l	alea C	opper Standal	a d Aldrov			
	··· = AllOy	0201	15 2150 1	CHOWH	as Aimelec an	a Alarey			
2	. Proper	ties c	of Condu	uctor	Materials				
						Temperature			
					Desistivity	Coefficient	Modulus	Coefficient	
	Cod	e	CONOUL	CCN CCN	resistivity	of	OI Electicity	or Linear	
			(%IA)	63)	(μ.5.4111)	Resistance*	Clasticity (CPa)	(per °C)	
			<u></u>			(per °C)	(Gra)	(per c)	
		^	10	٥	0.01724	0.00393	100	17.0 x 10 ⁻⁶	
	IACS		10	<u> </u>					
	IACS Cu		97	7	0.01777	0.00381	124	17.0 x 10 ⁻⁶	
	IACS Cu AAC		97 60	7 .9	0.01777 0.0283	0.00381 0.00403	124 68	$\frac{17.0 \times 10^{-6}}{23.0 \times 10^{-6}}$	
	IACS Cu AAC AAAC/1	Cu 2 1120	97 60 58	7 .9 .8	0.01777 0.0283 0.0293	0.00381 0.00403 0.00390	124 68 68	$\frac{17.0 \times 10^{-6}}{23.0 \times 10^{-6}}$	
	IACS Cu AAC AAAC/1 AAAC/6	Cu 2 1120 2201	97 60 58 52	9 .9 .8 .5	0.01777 0.0283 0.0293 0.0328	0.00381 0.00403 0.00390 0.00360	124 68 68 70	$ \begin{array}{r} 17.0 \times 10^{-6} \\ 23.0 \times 10^{-6} \\ 23.0 \times 10^{-6} \\ 23.0 \times 10^{-6} \\ 23.0 \times 10^{-6} \\ 44.5 \times 10^{-6} \\ \end{array} $	
	IACS Cu AAC/1 AAAC/1 AAAC/6 GZ	Cu 2 1120 201	97 60 58 52	7 .9 .8 .5 .0	0.01777 0.0283 0.0293 0.0328 0.17	0.00381 0.00403 0.00390 0.00360 0.0044	124 68 68 70 193	$\frac{17.0 \times 10^{-6}}{23.0 \times 10^{-6}}$ $\frac{23.0 \times 10^{-6}}{23.0 \times 10^{-6}}$ $\frac{11.5 \times 10^{-6}}{11.5 \times 10^{-6}}$	
	IACS Cu AAC/I AAAC/I AAAC/I GZ AZ	Cu 2 1120 201	97 60 58 52 1.1	9 .9 .8 .5 .0 .5 .5	0.01777 0.0283 0.0293 0.0328 0.17 0.15	0.00381 0.00403 0.00390 0.00360 0.0044 0.0044	124 68 68 70 193 193	$\frac{17.0 \times 10^{-6}}{23.0 \times 10^{-6}}$ $\frac{23.0 \times 10^{-6}}{23.0 \times 10^{-6}}$ $\frac{11.5 \times 10^{-6}}{11.5 \times 10^{-6}}$ $\frac{11.5 \times 10^{-6}}{10.0 \times 10^{-6}}$	
	IACS Cu AAC AAAC/1 AAAC/6 GZ AZ AC	CU 120 201	97 60. 58. 52. 1.1 1.1 20	9 .9 .8 5 0 5 0	0.01777 0.0283 0.0293 0.0328 0.17 0.15 0.085	0.00381 0.00403 0.00390 0.00360 0.0044 0.0044 0.0036	124 68 68 70 193 193 162	$ \begin{array}{r} 17.0 \times 10^{-6} \\ 23.0 \times 10^{-6} \\ 23.0 \times 10^{-6} \\ 23.0 \times 10^{-6} \\ 11.5 \times 10^{-6} \\ 11.5 \times 10^{-6} \\ 12.9 \times 10^{-6} \\ \end{array} $	
3998	IACS Cu AAC AAAC/1 AAAC/6 GZ AZ AC B. Proper Single constrength standards	ties of nduct per L	97 60 58 52 1.1 1.1 20 ors shall unit area tensile	9 8 5 5 5 5 0 5 0 5 0 5 0 5 0 1 have a mul streng	0.01777 0.0283 0.0293 0.0328 0.17 0.15 0.085 ductors the conductive tiplied by its th of hard-draw	0.00381 0.00403 0.00390 0.00360 0.0044 0.0044 0.0036 vity and tensile sectional area wn copper wires	124 68 68 70 193 193 162 strength equ confirming s shall have	$ \begin{array}{r} 17.0 \times 10^{-6} \\ 23.0 \times 10^{-6} \\ 23.0 \times 10^{-6} \\ 23.0 \times 10^{-6} \\ 11.5 \times 10^{-6} \\ 11.5 \times 10^{-6} \\ 12.9 \times 10^{-6} \\ 12.9 \times 10^{-6} \\ al to the tensile to related IEC properties given \end{array} $	
3 S S S	IACS Cu AAC AAAC/1 AAAC/6 GZ AZ AC B. Proper Single constrength standards n followin	ties c nduct per L The g tabl	97 60 58 52 1.1 1.1 20 of Single ors shal unit area tensile e.	9 8 5 5 0 5 0 5 0 5 0 5 0 1 have a mul streng	0.01777 0.0283 0.0293 0.0328 0.17 0.15 0.085 ductors the conductivitiplied by its th of hard-drave	0.00381 0.00403 0.00390 0.00360 0.0044 0.0044 0.0036 vity and tensile sectional area wn copper wires	124 68 68 70 193 193 162 strength equ confirming s shall have	$\frac{17.0 \times 10^{-6}}{23.0 \times 10^{-6}}$ $\frac{23.0 \times 10^{-6}}{23.0 \times 10^{-6}}$ $\frac{23.0 \times 10^{-6}}{11.5 \times 10^{-6}}$ $\frac{11.5 \times 10^{-6}}{12.9 \times 10^{-6}}$ al to the tensile to related IEC properties given	
3 S S S S II	IACS Cu AAC AAAC/1 AAAC/6 GZ AZ AC B. Proper Single constrength standards n followin	ties of nduct per L	97 60. 58. 52. 1.1 1.1 20 of Single ors shal unit area tensile e.	9 9 5 5 0 5 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 1 have a mul streng	0.01777 0.0283 0.0293 0.0328 0.17 0.15 0.085 ductors the conductive tiplied by its th of hard-draw	0.00381 0.00403 0.00390 0.00360 0.0044 0.0044 0.0036 rity and tensile sectional area wn copper wires	124 68 68 70 193 193 162 strength equ confirming s shall have	$\frac{17.0 \times 10^{-6}}{23.0 \times 10^{-6}}$ $\frac{23.0 \times 10^{-6}}{23.0 \times 10^{-6}}$ $\frac{11.5 \times 10^{-6}}{11.5 \times 10^{-6}}$ $\frac{11.5 \times 10^{-6}}{12.9 \times 10^{-6}}$ al to the tensile to related IEC properties given	
3 S S S i	IACS Cu AAC AAAC/1 AAAC/6 GZ AZ AC Single constrength standards followin Diame	ties of nduct per L	97 60 58 52 1.1 1.1 20 ors shal unit area tensile e. single o	9 8 5 5 5 5 0 5 5 0 5 5 0 5 5 0 5 7 7 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 7 7 8 7 7 7 7 7 7 8 7	0.01777 0.0283 0.0293 0.0328 0.17 0.15 0.085 ductors the conductive tiplied by its th of hard-draw	0.00381 0.00403 0.00390 0.00360 0.0044 0.0044 0.0036 vity and tensile sectional area wn copper wires	124 68 68 70 193 193 162 strength equ confirming s shall have	$\frac{17.0 \times 10^{-6}}{23.0 \times 10^{-6}}$ $\frac{23.0 \times 10^{-6}}{23.0 \times 10^{-6}}$ $\frac{11.5 \times 10^{-6}}{11.5 \times 10^{-6}}$ $\frac{11.5 \times 10^{-6}}{12.9 \times 10^{-6}}$ al to the tensile to related IEC properties given	
3 S S S S in	IACS Cu AAC AAAC/1 AAAC/6 GZ AZ AC B. Proper Single constrength standards n following Diame 0.4 or m	ties c nduct per L The g tabl	ors shal init area tensile e. single c and 12.0	9 9 5 5 0 5 0 5 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 5 0 0 5 5 0 0 5 5 0 0 5 5 0 0 5 5 0 0 5 5 0 0 5 5 0 0 5 5 0 0 5 5 0 0 5 5 0 0 5 5 0 0 5 5 0 0 5 5 0 0 5 5 0 0 5 5 0 0 5 5 0 0 5 5 0 0 5 5 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0	0.01777 0.0283 0.0293 0.0328 0.17 0.15 0.085 ductors the conductive tiplied by its th of hard-draw	0.00381 0.00403 0.00390 0.00360 0.0044 0.0044 0.0036 vity and tensile sectional area wn copper wires Tensil (462-10.8d) o	124 68 68 70 193 193 162 strength equ confirming s shall have s shall have	$\frac{17.0 \times 10^{-6}}{23.0 \times 10^{-6}}$ $\frac{23.0 \times 10^{-6}}{23.0 \times 10^{-6}}$ $\frac{11.5 \times 10^{-6}}{11.5 \times 10^{-6}}$ $\frac{11.5 \times 10^{-6}}{12.9 \times 10^{-6}}$ al to the tensile to related IEC properties given	
S S S S i	IACS (Cu AAC) AAAC/1 AAAC/6 GZ AZ AC B. Proper Single constrength standards n following Diame 0.4 or m	ties of the second seco	ors shal tensile e. single c and 12.0	9 9 5 5 0 5 0 5 0 5 0 0 5 0 0 2 Cond 3 streng 2 0 0 r les	0.01777 0.0283 0.0293 0.0328 0.17 0.15 0.085 ductors the conductive tiplied by its th of hard-draw	0.00381 0.00403 0.00390 0.00360 0.0044 0.0044 0.0036 rity and tensile sectional area wn copper wires Tensil (462-10.8d) o	124 68 68 70 193 193 162 strength equ confirming s shall have	$\frac{17.0 \times 10^{-6}}{23.0 \times 10^{-6}}$ $\frac{23.0 \times 10^{-6}}{23.0 \times 10^{-6}}$ $\frac{11.5 \times 10^{-6}}{11.5 \times 10^{-6}}$ $\frac{11.5 \times 10^{-6}}{12.9 \times 10^{-6}}$ al to the tensile to related IEC properties given	
9 V S S ii	IACS Cu AAAC AAAC/1 AAAC/6 GZ AZ AC Bingle col strength standards n followin Diame 0.4 or m	ties of nduct per L The g table	97 60. 58 52. 1.1 1.1 20 ors shall unit area tensile e. single c and 12.0	9 9 8 5 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0	0.01777 0.0283 0.0293 0.0328 0.17 0.15 0.085 ductors the conductivitiplied by its th of hard-drave otors: d (mm)	0.00381 0.00403 0.00390 0.00360 0.0044 0.0044 0.0036 ity and tensile sectional area wn copper wires Tensil (462-10.8d) o	124 68 68 70 193 193 162 strength equ confirming s shall have le strength (N r more	$\frac{17.0 \times 10^{-6}}{23.0 \times 10^{-6}}$ $\frac{23.0 \times 10^{-6}}{23.0 \times 10^{-6}}$ $\frac{11.5 \times 10^{-6}}{11.5 \times 10^{-6}}$ $\frac{11.5 \times 10^{-6}}{12.9 \times 10^{-6}}$ al to the tensile to related IEC properties given $\frac{1}{\text{mm}^{2}}$ Revisions	
3 % S S ii	IACS Cu AAC AAAC/1 AAAC/6 GZ AZ AC 8. Proper Single constrength standards following Diame 0.4 or m Remarks	ties of nduct per L The g table	ors shal unit area tensile e. single c and 12.0	9 9 8 5 5 0 5 0 5 0 5 0 1 have a mul streng	0.01777 0.0283 0.0293 0.0328 0.17 0.15 0.085 ductors the conductive tiplied by its th of hard-draw	0.00381 0.00403 0.00390 0.00360 0.0044 0.0044 0.0036 vity and tensile sectional area wn copper wires Tensil (462-10.8d) o	124 68 68 70 193 193 162 strength equ confirming s shall have s shall have	$\frac{17.0 \times 10^{-6}}{23.0 \times 10^{-6}}$ $\frac{23.0 \times 10^{-6}}{23.0 \times 10^{-6}}$ $\frac{23.0 \times 10^{-6}}{11.5 \times 10^{-6}}$ $\frac{11.5 \times 10^{-6}}{12.9 \times 10^{-6}}$ al to the tensile to related IEC properties given $\frac{1}{\text{mm}^{2}}$ Revisions	
3 V S S ii	IACS Cu AAC AAAC/I AAAC/I AAAC/G GZ AZ AC B. Proper Single constrength standards n followin Diame 0.4 or m Remarks	ties of the second seco	ors shal unit area tensile e. single c and 12.0	9 9 8 5 0 5 0 5 0 5 0 2 8 Cond 1 have a mul streng	0.01777 0.0283 0.0293 0.0328 0.17 0.15 0.085 ductors the conductive tiplied by its th of hard-draw	0.00381 0.00403 0.00390 0.00360 0.0044 0.0044 0.0036 rity and tensile sectional area wn copper wires Tensil (462-10.8d) o	124 68 68 70 193 193 162 strength equ confirming s shall have le strength (N r more	$\frac{17.0 \times 10^{-6}}{23.0 \times 10^{-6}}$ $\frac{23.0 \times 10^{-6}}{23.0 \times 10^{-6}}$ $\frac{11.5 \times 10^{-6}}{11.5 \times 10^{-6}}$ $\frac{11.5 \times 10^{-6}}{12.9 \times 10^{-6}}$ al to the tensile to related IEC properties given $\frac{1}{\text{mm}^{2}}$ Revisions	
3 V S S it	IACS Cu AAAC/I AAAC/I AAAC/G GZ AZ AC B. Proper Single constrength standards n following Diame 0.4 or m Remarks	ties of nduct per L. The g table	ors shall tensile e. single c and 12.0	9 9 8 5 5 0 5 0 5 0 5 0 5 0 5 0 2 8 Cond 8 Cond 8 treng 2 2 0 1 have 8 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 1 5 0 0 1 5 0 0 1 5 0 0 1 5 0 0 1 5 0 0 1 5 0 0 1 5 0 0 1 5 0 0 1 5 0 0 1 5 0 0 1 5 0 0 1 5 0 0 1 5 0 0 1 5 0 0 1 1 1 1	0.01777 0.0283 0.0293 0.0328 0.17 0.15 0.085 ductors the conductivity tiplied by its th of hard-dra	0.00381 0.00403 0.00390 0.00360 0.0044 0.0044 0.0036 ity and tensile sectional area wn copper wires Tensil (462-10.8d) o	124 68 68 70 193 193 162 strength equ confirming s shall have le strength (N r more F 2003/No	$ \begin{array}{r} 17.0 \times 10^{-6} \\ 23.0 \times 10^{-6} \\ 23.0 \times 10^{-6} \\ 23.0 \times 10^{-6} \\ 11.5 \times 10^{-6} \\ 11.5 \times 10^{-6} \\ 12.9 \times 10^{-6} \\$	

MIME (JICA)

	Chapter	2	Technical Standards of Electric Power F	acilities				
Category	Paragraph	5	Transmission and Distribution Facilities (Common)		Document No.DS15-2			
	Clause	31	Property of Conductors					
Title Performance of Conductors (2/2)								
Copper o	r Aluminum							
The differe	ences on cha	racte	ristics between copper and aluminum	are as foll	ows;			
1. The e of ha alumi	electrical cond rd drawn alu inum wire is a	ductiv Iminu about	ity of the hard drawn copper wire is a m wire is about 61%. The resistanc 1.6 times of that of the copper wire	about 96-9 e per unit	8%, and that area of the			
2. The r 2.7. 7 equiv	elative densi The weight of alent electric	ty to i an a al pei	water of copper is about 8.9, and tha luminum wire is about 50-55% of tha formance.	tt of alumin at of a cop	num is about per wire with			
3. The alumi alumi perfo	tensile stren inum wire is inum wire is rmance.	gth o abo aboເ	f a copper wire is about 340-470N ut 160-180N mm ² . Therefore the f ut 75% of that of a copper wire wit	l/mm², and tensile str th equival	d that of an ength of an ent electrical			
Licensee	should choos	e cor	ductors taking into account their char	acteristics	•			
Remarks		_		Rev	visions			
L		<u></u> -		2003/Nov.	Original			

	Chapter	2	Technical Standards of Electric Power Facilities	
Category	Paragraph	5	Transmission and Distribution Facilities (Common)	Document No.DS16
	Clause	31	Property of Conductors	
Title	Dielectric St	rengt	h and Insulation Resistance of Insulated Cond	uctor
	L			

The insulated conductors shall have the following dielectric strength and insulation resistance.

1. Dielectric strength test of medium-voltage insulated conductors

After immersion in fresh water for 1 hour, medium-voltage cross-linked polyethylene (XLPE) insulated conductors shall withstand the test of impressing AC 25,000V between the conductor and the ground for 1 minute.

2. Dielectric strength test of low-voltage insulated conductors

After immersion in fresh water for 1 hour, low-voltage polyvinyl chloride (PVC) insulated conductors shall withstand the test of impressing the AC 3,500V between the conductor and the ground for 1 minute.

3. Insulation resistance

After completion of the dielectric strength test, the insulation resistance of insulated conductors shall be no less than the values given in table, when impressed DC current of 100V for 1 minute.

Type of Insulating Materials	Insulation resistance (Mega ohms-km)	Volume resistivity (ohms-cm)
XLPE	R=3.665×10 ⁻¹² $\rho \log_{10}$ (D/d)	2.5 × 10 ¹⁵
PVC		5×10^{13}

Where

ρ:Volume resistivity

D :Outside diameter of the insulator (mm) d :Inside diameter of the insulator (mm) When D/d is 1.8 or more, D/d is 1.8 for calculation.

Remarks	Revisions
	2003/Nov. Original

·····	Chapter	2	Tech	nical Sta	Indard	Is of F	lectri	c Power	Facilities	<u>.</u>	
O ata a s	Paragraph	5	Tran	smissior	and	Distrih	ution	Facilitie	S	Docu	iment
Category			(Con	nmon)					-	No.[DS17
	Clause	31	Prop	erty of C	ondu	ctors					
Title	insulator Th	ickne	ss of I	nsulate	ed Co	nduct	ors				
The insulation values give	ator thickness en in followin	s of le g tabl	ow-vo e.	ltage ir	nsulat	ed co	ondu	ctors s	hall be no	less th	an the
		Ca	ondud	ctors					Thicl insula	kness (tors (m	of nm)
Ти	visted conduc	tors		S	Single	cond	lucto	rs	PVC	λι	PÉ
(Nomina	al sectional ar	ea: m	1m²)		(Dian	neter:	mm)	insulator	insu	ilator
0.75 or r	nore, and 3.5	or les	SS	0.8 or	more	, and	2.0	or less	0.0	3	0.8
More that	an 3.5, and 5.	5 or le	ess	More less	than	2.0,	and	2.6 or	1.()	1.0
More that	an 5.5, and 8	or les	S	More less	than	2.6,	and	3.2 or	1.2	2	1.0
More that	an 8, and 14 c	or less	3	More less	than	3.2,	and	4.0 or	1.4	1	1.0
More that	an 14, and 30	or les	SS	More less	than	4.0,	and	5.0 or	1.0	5	1.2
More that	an 30, and 38	or les	SS						1.	3	1.2
More that	an 38, and 60	or les	SS						1.1	3	1.5
More that	an 60, and 80	or les	SS						2.0	0	1.5
More the	an 80, and 10	0 or l	ess						2.	0	2.0
More that	an 100, and 1	<u>50 or</u>	less						2.	2	2.0
More that	an 150, and 2	50 or	less						2.	4	2.5
More that	an 250, and 4	00 or	less						2.	6	2.5
More that	an 400, and 5	00 or	less						2.	8	3.0
More the	an 500, and 7	'25 or	less						3.	0	3.0
More th	ian 725, and	100	0 or						3.	2	3.5
More th less	an 1000, an	d 140)0 or						3.	5	3.5
More th	an 1400, an	d 200)0 or						4.	0	4.0
More th	an 2000								4.	5	4.5
The insul	ator thicknes s given in foll	s of r owing	mediu table	m-volta	ige in	sulat	ed c	onducto	ors shall be	e no le	ss tha
	Nominal se	ction	al are	a (mm	2		T	nickne	ss of insul	ators (<u>mm)</u>
22 or m	ore, and 38 c	or less	<u> </u>								2.5
More th	nan 38, and 1	<u>50 or</u>	less								3.0
More th	nan 250, and :	500 o	r less	<u></u>				<u> </u>			3.5
Remarks									Re	evisions	;
										1	

	Chapter	2	Technical Standards of Electric Power Facilities	
Category	Paragraph	5	Transmission and Distribution Facilities	Document
	Clause	31	Property of Conductors	NO.D310
Title	Configuration	of Lov	w-voltage XLPE Cable	
			3	
 Condu XLPE Lead c Shield Externation 	ctor (Cross Linkec over for neutr tape layer al cover (Poly	l Poly al line vinyl	ethylene) insulator e chloride)	
Remarks			Rev	isions
			2003/Nov.	Original

MIME (JICA)

	Chapter	2	Technical Sta	ndards of Electric Po	wer Facilities	
	Paragraph	5	Transmission	and Distribution Fac	cilities	Document
Category			(Common)			/ No.DS20
	Clause	33	Safety Factor	r of Bare Conductor	rs and Ground	
		L	Valles of Ove	mead Electrical Line	51	
Title	Tensile Stre	ngth c	of Overhead (Conductors		
Overhead following t	conductors able.	shall	be with a ten	sile strength no le	ess than the va	lues given in
			1 ONI-NI	olizae	Medium-volta	ae
		30	0V or less	More than 300V	Wealdin voice	90
Urban a	rea		3.44kN	8.01kN	21.67	kN
Other a	rea		3.44kN	5.26kN	8.71	kN
						,
Remarks					He	
					2003/Nov.	Original

MIME (JICA)

	onapter	2	Technical Standards of Electric Power	r Facilities	
Category	Paragraph	5	Transmission and Distribution Facilitie	es	Documen
			(Common)		No.DS22-
	Clause	35	Underground Lines		
Title	Installation M	ethod	s of Underground Line (2/3)		
2. The dep	oth of underg	round	d lines of direct burial system		
At a from	place where t	here her o	is a danger of receiving pressure bjects	D = 1.2 m o	or more
Othe	r place ue of D is de	ecideo	d considering the present situation	D = 0.6m o	or more
Othe * The val Cambodia	r place ue of D is de and the rest	ecideo ult in o	d considering the present situation other countries.	D = 0.6m o	or more
Othe * The val Cambodia	r place ue of D is de and the rest	ecideo ult in o	d considering the present situation	D = 0.6m o	or more
Othe * The val Cambodia	r place ue of D is de and the resu	ecideo	d considering the present situation other countries.	D = 0.6m o of undergr Rev	ound lines
MIME (JICA)

r		_						
	Chapter	2	Technical Standards of Electric Power Facilities					
Category	Paragraph	5	Transmission and Distribution Facilities	Document				
		05	(Common)	NO.D522-3				
	Clause	35	Underground Lines					
Title	Fitle Installation Methods of Underground Line (3/3)							
Other prof	lection metho	d (Tro	bugh type)					
		Start Barriston						
Aside from permission undergrout regarding	n this, before from a loc nd facilities. the location o	e ins cal g In th f facil	tallation of underground facilities, licensees overnment who manages the road struc his case, licensees should notice the loca lities including the depth of them.	s have to get ture to install al government				
As "Unde companies location of	rground" is s s, water comp its undergrou	share anies ind fa	d such utilities as power companies, teled s, or gas companies etc Each company mu acilities by drawings or other proper measures	communication st manage the s.				
				·				
				{				
Remarks	· · · · · · · · ·		Re	visions				
			<u>2003/Nov.</u>					

J-POWER & CEPCO

MIME (JIĆA)

	Chapter	2	Technical Standards of Electric Power Facilities	
Category	Paragraph	5	Transmission and Distribution Facilities (Common)	Document No.DS20
	Clause	35	Underground Lines	
Title	Connection o	f Medi	um-voltage Cables	
An examp	le of connect	ing m	ethod of Cables	
	•	•		
		3	000 66.0	
		\ N#2	1 the state of the	
,, ,	America	XA.		
·. ,			z. ²	
1 Connec 2 Adhesiv 3 Waterp 4 Lead ta 5 Cross li 6 Semi-co 7 Shied n	cting pipe ve polyethyler roof tape inked polyethy onductive fusi netallic tape	ne tap ylene ion bo	e nding tape	
•		•		
Connectir the conne In concre	ng devices for acted cables te, requireme	r cabl nts ar	es shall be required to have the equivalent e as follows;	performance to
1. The de conditio 2. The de permiss 3. The de	evice shall be ons. evice shall be sible current c vice shall pre	e to w e in g of the vent v	ithstand external forces that will be exerted ood order when it is applied the current ec connected cables. vater and moisture from entering into the con	under the use quivalent to the nected cables.
•				
	•			· · ·
Remarks	<u> </u>	<u> </u>	F	levisions
			2003/No	v. Original
			J-Ľ	UWER & CEPCU

MIME (JICA)

	Chapter 2		Technical Standards of Electric Power Facilities	
Category	Paragraph 5		Transmission and Distribution Facilities (Common)	Document No.DS24-1
	Clause	39	Classification of Grounding for Electrical Lines	
Title	System Grou	ndıng	(1/2)	

The current will flow to the earth through the system grounding, when a medium-voltage line breaks down and gets in touch with a low-voltage line. In this case the voltage to the earth of low-voltage line will increase in proportion to the single-line earth fault current and the resistance of the system grounding. Therefore, the value of resistance of the system grounding shall be the level to protect low-voltage apparatuses from the damage caused by the increase of the voltage to the earth.

J-POWER & CEPCO

GUIDEBOOK FOR POWER ENGINEERS MIME (JICA)

Chapter 2 Technical Standards of Electric Power Facilities			
Paragraph 5 Transmission and Distribution Facilities (Common) (Common)		Document No.DS24-2	
Clause 39 Classification of Grounding for Electrical Lines			
System Grou	nding	(2/2)	,
	Paragraph Clause System Grou	Chapter2Paragraph5Clause39System Grounding	Paragraph 5 Transmission and Distribution Facilities (Common) Clause 39 Classification of Grounding for Electrical Lines System Grounding (2/2)

When a medium-voltage line contacts a low-voltage line, the voltage of the low-voltage line will increase. Therefore if human being gets in touch with the low-voltage line, it is more dangerous compared with the normal situation.

According to some experiment, the relation between he limit charged period and current to a human being is given by following formula.

 $I = 165 / t^{1/2} (mA)$

If human being get in touch with a charged part, the link between the current and the influence to human being is reported as follows;

Current (mA)	Influence to human being
· 1.2	Human being will feel electrical shock.
3.5	Human being will feel stiff slightly.
8.0	Human being will feel stiff and will not be able to get away from the charged part.
12.0	Human being will feel stiff and will not be able to bear more than 30 seconds.
20.0	Human being will not be able to get away from the charged part and to bear more than 15 seconds.
100.0	Human being will be fatally wounded.

Remarks	Revisions	
		- <u></u>
		iyinai
	J-POWER &	: CEPC

GUIDEBOOK FOR POWER ENGINEERS MIME (JICA)

Category	Chapter 2		Technical Standards of Electric Power Facilities		
	Paragraph 5		Transmission and Distribution Facilities (Common)	Document No.DS25-1	
	Clause 3		Classification of Grounding for Electrical Lines		
Title	Single-line Earth Fault Current (1/2)				

The single-line earth fault current used for calculation of resistance to earth for class B grounding should be derived from actual measurement in principle. However, it is difficult to measure realistically. In that case, the single-line earth fault current can be calculated by following formula.

$$I_{0} = \frac{V}{\sqrt{3}} \sqrt{\left[\frac{1}{R_{N}} + \frac{R_{L}}{R_{1}^{2} + X_{1}^{2}}\right]^{2} + \left\{3\omega(C_{1}I_{1}+C_{2}I_{2})\times10^{-6} - \frac{X_{L}}{R_{1}^{2} + X_{1}^{2}}\right\}^{2}}$$

Where

I₀: Single-line earth fault current (A)

V: Maximum voltage (V)

 R_N : Value of resistance of resister used for neutral grounding (Ω)

 R_L : Value of resistance of reactor used for neutral grounding (Ω)

 X_L : Value of inductive reactance of reactor used for neutral grounding (Ω)

 ω :Angular frequency (=100 π)(rad/s)

I1:Total span of medium-voltage lines without cables connected to one bus(km)

l2:Total span of medium-voltage lines of cables connected to one bus(km)

C1:Electrostatic capacity to ground of I1 per one phase(μ F/km)

C₂:Electrostatic capacity to ground of I₂ per one phase(μ F/km)

Remarks	Revisions
	· ·
	2003/Nov. Original

Chapter Technical Standards of Electric Power Facilities 2 Paragraph 5 Transmission and Distribution Facilities Document Category No.DS25-2 (Common) Clause 39 Classification of Grounding for Electrical Lines Title Single-line Earth Fault Current (2/2) Bus l₂: Total Span of Cable l₁: Total Span without Cable \mathbf{R}_{L} $R_N \ge$ jΧĽ Medium-voltage Distribution System 6 1 -j - $3\omega C_1 l_1 \times 10^{-6}$ $3\omega C_2 l_2 \times 10^{-6}$ RL \mathbf{R}_{N} jΧ∟ IN lci I_{C2} **Equivalent Circuit** Revisions Remarks 2003/Nov. Original

GUIDEBOOK FOR POWER ENGINEERS

MIME (JICA)

MIME (JICA)

	Chapter	2	Technical Sta	ndards of Electric Po	wer Facilities				
Category Paragraph 7 Transmission and Distribution Fa					ilities	Document			
	01	- 10	(Medium and	Low Voltage)		No.DS26			
		49	Supporting Si	ructures		<u> </u>			
Title	Setting Depth of Supporting Structure								
The settin are as foll	g depth of su ows;	ipport	ing structures	s defined in Article	49-1 of Tech	nical Standard			
					A (m)	<u>B (m)</u>			
				Wooden pole,	7	1.2			
				Iron pole,	8	1.4			
	1. 1. (1. (1. (1. (1. (1. (1. (1. (1. (1. (9	1.5			
					11	1.7			
					12	2.0			
Leng	th of				13	22			
Pole	(A)				14	2.4			
					15	2.5			
					16				
				Iron-reinforced	17	2.8			
	2000 2000 2000			concrete pole	18				
					19				
					20				
		S D	etting lepth (B)						
* The valu each cond	e of B is dec ition.	ided	based on the	calculation consid	ering the wor	st situation of			
Remarks					Rev	visions			
					2003/Nov	Original			
						VER & CEPCO			