ANNEX 2 GLOBAL ANALYSIS RESULT OF WATER QUALITY

_
lina
10
Ü
iğ.
tac
豆
SOS
<u>í</u> gi
ioló
e
ba
>
SOS
Ē
nb
So.
físic
is
ij
an
Ď
픃
Ě
2
al y
g
뎚
tad
Sul
2
Tabla A2.1 Resultado g
Ä
Tabla A
Ë

				7		Valores			2		Valores	Maxima concentración adminible	oldian	
Darámetros	Unidad	Minimo	Máximo	Promedio	09-Oct-01	23-Oct-01 07-Nov-01 20-Nov-01	7-Nov-01	20-Nov-01	04-Dic-01	Promedio	Vida acuáfica	Agua potable		Riedo
		Pre	Prefactibilidad (1999)	(666			Factibilidad (2001)	ad (2001)	1		CMC (EPA, 1998)	CEE	ONACYT (1996)	FAO
Temperatura del agua	ပွ	26 70	3180	2960	27 30	25 07	23 97	28 56	28 59	26 70				
Temperatura del ambiente	၁	28 40	38 00	33 41	34 00	32 00	25 00	32 00	33 00	31 20				
ьн	Unidad	6 14	7 95	7 10	8 74	9 55	9 37	9.20	9 29	9 23	65to90	62-85	60 to 85	65to 84
Conductibilidad eléctrica	mp/soquin	00'09	615.00	173 33	0.0100	0.0048	0.0123	0.0113	0.0124	0.0101			1,600 000	
Turbidez	UTN	3 03	39 20	15 67	33 40	93 75	4 10	157	4 85	27 53		4 NTU (Nonmicrobial)	1 000	
Oxígeno disuelto	mg/l.	5 03	069	5.76	8 40	8 45	8.49	8 00	7.46	8 16				
% de la Saturación de oxígeno	%	67.60	91 50	78 16	107 55	116.35	98.37	110 97	8980	104.61				
Olor		no realizado	no realizado no realizado	no realizado	Ningun ofor	Ningun olor Ningun olor Ningun olor Ningun olor	lıngun olor	√Ingun olor	Ingun otor					
Color	Pt Co	no realizado	no realizado no realizado	no realizado	55 00	175 00	12 00	12 00	23	55 40	20 mg Pt-Co/L			
Sólidos Totales Disueltos (TDS)	mg/L	76 00	344 00	158.16	40 00	145 50	122.00	128 00	93 50	105 80		Ninguna Norma	1,000 000	
Sólidos Suspendidos Totales (TSS)	mg/L	no realizado	no realizado no realizado	no realizado	44 00	153 50	3.00	3.00	2.00	41 10				
Sólidos totales	mg/L	64.00	1,255.50	339 42	no realizado	no realizado no realizado no realizado no realizado no realizado	o realizado n	10 realizado r	o realizado	0.00				
Alcalınıdad	mg/L	no realizado	no realizado no realizado	no realizado	4080	40 80	56 10	51 00	6120	49 98				
Dureza	mg/L	21 14	40 35	31 12	3480	29 80	42 60	41.67	42.53	38.28		50 mg/L		
Demanda Bioquímica de Oxígeno (BOD5)	mg/L	0.45	12 92	5 48	No realizado No realizado	No realizado	11 97	4 06	00.9	4 57				
Demanda Química de Oxígeno	mg/L	no realizado	no realizado no realizado	no realizado No realizado No realizado	No realizado	No realizado	125 00	36 59	33 50	51 76				
Nitrógeno total Kjeldahí (TKN)	mg/L	no realizado	no realizado no realizado	no realizado	2 85	560	3 25	2.00	4 10	3 56			1 00 mg/l	
				-									1	

CMC (EPA); CEE: CONACYT FAO.

Criterio de máxima concentración (Agencia de los Estados Unidos para la protección del medio ambiente – USEPA)
Comunidad Económica Europea
Consejo Nacional de Ciencia y Tecnologia, Norma Salvadoreña
Organización de las Naciones Unidas para la Agricultura y la Alimentación

Tabla A2.2 Parámetros físicos, químicos y bacteriológicos. Estación Carolina

Parámetros	Inidad					Valores		T P P P P P P P P P P P P P P P P P P P			Máxim	a concentrac	Máxima concentración admisible	7.7.7
		Minimo	Máximo	Promedio	09-Oct-01	23-Oct-01	07-Nov-01	20-Nov-01 04-Dic-01	04-Dic-01	Promedio	Vida acuática	Agua p	Agua potable	Riego
		Pref	Prefactibilidad (1999)	999)			Factibilidad (2001)	ıd (2001)			CMC (EPA, 1998)	CEE	CONACYT (1996)	FAO
Selenio (Se)	mg/L	0 002	0.005	0 0037	0.0001	no realizado	no realizado no realizado no detectado	no detectado	no realizado	0 0001	0.00001 mg/l	0.01 mg/L	0.01 mg/l	0 02 mg/l
Cobre (Cu)	mg/L	no realizado	no realizado	no realizado	no realizado no realizado no realizado no detectado no realizado		no realizado no detectado	no detectado	no realizado	00 0	0.013 mg/L	No standard	1.00 mg/l	0 20 mg/l
Cromo (Cr)	mg/L	no realizado	no realizado no realizado	no realizado	no realizado no detectado	no realizado	no realizado no detectado	no detectado	no realizado	00 0	0 16 mg/L	0 05 mg/L	0 05 mg/l	100 000
Plomo (Pb)	mg/L	no realizado	no realizado	no realizado no realizado	no detectado	no realizado	no realizado no detectado	no detectado	no realizado	000	0.065 mg/L	0 05 mg/L	0.01 mg/l	50 mg/l
Barro (Ba)	mg/L	no realizado	no realizado no realizado no realizado	no realizado		no detectado no realizado	no realizado no detectado	no detectado	no realizado	000				
Cianuros (SNC) mg/L	mg/L	no realizado	no realizado	no realizado	no detectado	no realizado	no realizado no realizado no realizado no detectado no realizado no realizado no detectado	no detectado	no realizado	00:00	0 022 mg/L	0 05 mg/L		
Aceite y Grasa	mg/L	no realizado	no realizado no realizado no rea	no realizado	4.00	no realizado	no realizado	14 80	no realizado	9 40			no detectado	
Fenoles	mg/L	no realizado	no realizado	no realizado	no detectado	no realizado	no realizado no detectado	no detectado	no realizado	0.00				
Silice	mg/L	25 73	46 00	40 45	no realizado	no realizado	no realizado no realizado no realizado no realizado	no realizado	no realizado	0.00			125 0 mg/l	

Criterio de máxima concentración (Agencia de los Estados Unidos para la protección del medio ambiente – USEPA)
Comunidad Económica Europea
Consejo Nacional de Ciencia y Tecnologia, Norma Salvadoreña
Ciganización de las Naciones Unidas para la Agricultura y la Alimentación CMC (EPA) CEE CONACYT. FAO

Tabla A2.3 Parámetros físicos, químicos y bacteriológicos. Estación Vado Nuevo.

-					Resultados				Máxima concentración Admisible*	1 Admisıble * *	
Parámetros	Unidad							Vida acuática	Agua potable	otable	Riego
	_	09-Oct-01	23-Oct-01	07-Nov-01	20-Nov-01	04-Dic-01	Promedio	CMC (EPA, 1998)	CEE	CONACYT (1996)	FAO
Temperatura del agua	ပွ	28 17	26 83	26.78	26 34	29 10	27 44				
Temperatura del ambiente	ပ္	32 00	2630	30 00	28 00	33 00	29 86				
Hd	Unidad	988	8.64	951	8 95	9.52	9.30	651090	62-85	60 to 85	65 to 84
Conductibilidad efectnoa	pmhos/cm	0.0115	0 0081	0 0122	0.0130	0 0074	0 0104			1.600.000	
Turbidez	NTU	5 90	02 69	17.20	1.05	1.65	19 10		4 NTU (Nonmicrobial)	1 000	
Oxígeno disuelto	mg/L	8.25	8,49	8.38	8 78	8 20	8 42				
% de la Saturación de Oxígeno	%	107 65	104 15	101 65	108 60	98 20	104 05				
Olor		Ningún otor	Ningún otor	Ningún olor	Ningún olor	Ningun olor					
Color	Pt.Co	33.00	175 00	12 00	12 00	23 00	5100	20 mg Pt-Co/L			
Sólidos Totales Disueltos (TDS)	mg/L	79 50	133 50	124 00	128 00	121 50	117 30		Ninguna Norma	1.000 000	
Sólidos Suspendidos totales (TSS)	mg/L	10 50	147.50	6 00	3 00	1 50	33.70		X		
Solidos totales	mg/L	no realizado no real	no realizado	no realizado	no realizado	no realizado	000				
Alcalındad	mg/L	40 80	4080	56.10	56.10	71 40	53.04				
Dureza	mg/L	39 30	21 30	46 80	43 75	51.10	40 45		50 mg/L		
Demanda Bioquímica de Oxígeno (BOD5)	mg/L	No realizado No real	No realizado	17 15	3.39	8 00	571				
Demanda Química de Oxígeno	mg/L	No realizado	No realizado No realizado	115 38	28 46	20 00	48 05				
Nitrógeno total Kjeldahl (TKN)	mg/L	2 93	7 60	1 60	3 15	3 95	385			1 00 ma/l	
Amoníaco (NH3-N)	mg/L	0 10	100	0 10	0 04	0.04	0.26	Crite4to segun pH	0.5 mg/L	0 50 ma/l	
Nitrato (NO3-N)	mg/L	1 20	1 10	0 30	0.80	0 1127	0.70	10 00 mg/l	50 mg/L	10 00 ma/L	
Nitrito (NO2-N)	mg/L	QN	0.0011	no defectado	no detectado	no defectado	0 0011	10 00 mg/l	0,1 mg/L	1 00 ma/l	
Reactivo (ortho -) Fósforo	mg/L	0 062	0.042	0 32	0.185	0 228	0 17			,	

Criterio de máxima concentración (Agencia de los Estados Unidos para la protección del medio ambiente – USEPA)
Comunidad Económica Europea
Consejo Nacional de Ciencia y Tecnología, Norma Salvadoreña
Organización de las Naciones Unidas para la Agricultura y la Alimentación

CMC (EPA) CEE CONACYT FAO.

Tabla A2.4 Parámetros físicos, químicos y bacteriológicos. Estación Vado Nuevo

			.]	600000		Carrier of the control of the contro		Oppa Holor	2		
Parámetros	Unidad			Resultados	qos			Máxima c	Máxima concentración Admisible**	dmisıble**	
								Vida acuática	Agua b	Agua potable	Riego
		09-Oct-01	23-Oct-01	07-Nov-01	20-Nov-01	04-Dic-01	Promedio	CMC (EPA, 1998)	CEE	CONACYT (1996)	FAO
Fósforo total	mg/L	0.21	0.26	1 40	0 694	0 62	0.64		5 mg/L	0 10 mg/l	
Carbono Orgánico Total	mg/L.	1.40	9 10	4 40	1 00	3 03	3.79				
Fosfato	mg/L	no realizado	no realizado	no realizado	no realizado	no realizado	000	0 05 mg/l		0.01 mg/l	
Calcio (Ca)	mg/L	10 20	6.80	29 80	29 20	34 04	22 01			75 00 mg/l	
Magnesio (Mg)	mg/L	3.30	1 03	17 20	14 60	17 02	10 63			50 00 mg/L	
Sodro (Na)	mg/L	089	4.73	6 80	8 48	8,81	7 12		75-150 mg/L	150 00 mg/L	
Potasio (K)	mg/L	180	2 11	2 20	2 06	234	2 10		12 mg/L	10 00 mg/L	
Cloruro (CI)	mg/L	0.75	1 05	1.20	0 72	0.45	0 83		25 mg/L	250 mg/l	10 meq/l
Sulfato (SO4)	mg/L	009	4 60	2 80	2 26	5.74	4 28		Ninguna Norma	250 0 mg/l	
Hierro (Fe)	mg/L	0 134	0 78	0 39	0 0 0 0 0 0 0 0	0 0 0	0 29	1 00 mg/L	0.2 mg/L	0 30 mg/L	5 00 mg/L
Manganeso (Mn)	mg/L	0 204	0 225	0 024	0.046	0 024	0.10	0 10 mg/l	0.2 mg/L	0 05 mg/l	0 20 mg/l
Boron(B)	mg/l	no defectado	no realizado	no detectado	no detectado	no detectado	000	0 01 mg/l	1.0 mg/L	0 30 mg/L	0 75 mg/l
Bacterias de Coliformes totales	NMP/100mL	5,000	30,000	006	220	02	7,238		0 or MPN < 1	no detected	5000 in 100 ml
Bacterias de Coliformes											
fecales	NMP/100mL	110	30,000	80	23	30	6,049		0,00	no detected	
Mercuno (Hg)	mg/L	0 002	no realizado	no realizado	0 000602	no realizado	0 001301	0.0014 mg/L	0 001 mg/L	0.002 mg/l	
Arsénico (Como)	mg/L	no detectado	no realizado	no realizado	0 0018	no realizado	0 002	0.34 mg/L	0 05 mg/L	0.01 mg/l	0.1 mg/l
Selenio (Se)	mg/L	no detectado	no realizado	no realizado	< 0.01	no realizado	0 00	0 00001 mg/l	0.01 mg/L	0 01 mg/l	0 02 mg/l
Cobre (Cu)	mg/L	no detectado	no realizado	no realizado	no detectado	no realizado	000	0 013 mg/L	No standard	1 00 mg/l	0 20 mg/l
Cromo (Cr)	mg/L	no detectado	no realizado	no realizado	no detectado	no realizado	0.00	0 16 mg/L	0.05 mg/L	0.05 mg/l	100.000
Plomo (Pb)	mg/L	no detectado	no realizado	no realizado	no detectado	no realizado	000	0.065 mg/L	0 05 mg/L	0.01 mg/l	5 0 mg/l
Bano (Ba)	mg/L	no detectado	no realizado	no realizado	no detectado	no realizado	000				
Cianuros (SNC)	mg/L	no detectado	no realizado	no realizado	no detectado	no realizado	000	0 022 mg/L	0 05 mg/L		
Aceite y Grasa	mg/L	4 50	no realizado	no realizado	12 50	no realizado	85			no detected	
Fenoles	mg/L	no detectado	no realizado	no realizado	no detectado	no realizado	000	•			
Silice	mg/L	no realizado	no realizado	no realizado	no realizado	no realizado	0000			125 0 mg/l	

Criterio de maxima concentración (Agencia de los Estados Unidos para la protección del medio ambiente – USEPA)
Comunidad Económica Europea
Consejo Nacional de Ciencia y Tecnología, Norma Salvadoreña
Organización de las Naciones Unidas para la Agricultura y la Alimentación

CMC (EPA) CEE CONACYT. FAO:

Juan
e San
Jén d
No E
n Nuc
Estació
ógicos.
acteriol
uímicos y k
físicos, q
Parámetros
Tabla A2.5

	5		- 1	dallinoos	y Macterior	ogicos, Es	ימכיטון זאנ	marcos, quimicos y sacientiologicos. Estacion indevo Eden de San Juan	all Juan		
Cortomoreo	Lebial			Q				Máxima	Máxima concentración Admisible * *	sible * *	
ratamenos	Ouldad	:	!	Resultados	dos			Vida acuática	Agua potable		Riego
		09-Oct-01	23-Oct-01	07-Nov-01	20-Nov-01	04-Dic-01	Promedio	CMC (EPA, 1998)	CEE	CONACYT (1996)	FAO
Temperatura del agua	၁	28 17	26 83	26 78	26 34	29 10	27 44				
Temperatura del ambiente	ပ	32 00	26 30	30 00	28 00	33 00	29.86				
Н	Unidad	9 88	8 64	9 51	8 95	9 52	9 30	65 to 90	62-85	60 to 85	65 to 84
Conductibilidad eléctrica	mp/soquin	0 0115	0 0081	0 0122	0 0130	0 0074	0 0104			1,600 000	
Turbidez	UTU	5 90	69 70	17 20	1 05	1 65	19 10		4 JTU (Nonmicrobial)	1 000	
Oxígeno disuelto	mg/L	8 25	8 49	8 38	8 7 8	8 20	8 42				
% de la Saturación de Oxígeno	%	107 65	104 15	101 65	108 60	98 20	104 05				
Olor		Ningún olor	Ningún ofor	Nıngún olor	Ningún olor	Ningún olor				 	
Color	Pt Co	33 00	175 00	12 00	12 00	23 00	51 00	20 mg Pt-Co/L	· ·	1	
Sólidos Totales Disueltos (TDS)	mg/L	79 50	133 50	124 00	128 00	121 50	117 30		Ninguna Norma	1,000,000	
Sólidos Suspendidos totales (TSS)	mg/L	10 50	147 50	009	3 00	1 50	33 70				
Sólidos totales	mg/L	no realizado	no realizado no realizado no realizado		no realizado no realizado	no realizado	000				
Alcalinidad	mg/L	40 80	40 80	56 10	56 10	71 40	53.04				
Dureza	mg/L	39 30	21 30	46 80	43 75	51 10	40 45		50 mg/L		
Demanda Bioquímica de Oxígeno (BOD5)	mg/L	No realizado	No realizado No realizado	17 15	3 39	8 00	5 71				
Demanda Química de Oxígeno	mg/L	No realizado	No realizado	115 38	28 46	50 00	48 05		1		
Nitrógeno total Kjeldahi (TKN)	mg/L	2 93	7 60	160	3.15	3 95	3 85			1 00 mg/l	}
Amonfaco (NH3-N)	mg/L	0 10	1 8	0 10	0 04	0 04	0 26	Crite4io según pH	0 5 mg/L	0 50 mg/l	
Nitrato (NO3-N)	mg/L	1 20	1 10	0.30	080	0 1127	0 70	10 00 mg/l	20 mg/L	10 00 mg/L	
Nitrito (NO2-N)	mg/L	S	0 0011	no detectado	no detectado no detectado	no detectado	0 0011	10 00 mg/l	0 1 mg/l.	1 00 mg/l	
Reactivo (ortho -) Fósforo	mg/L	0 062	0 0 42	0 32	0 185	0 228	0 17				Ì

CMC (EPA) CEE CONACYT: FAO

Criterio de máxima concentración (Agencia de los Estados Unidos para la protección del medio ambiente – USEPA)
Comunidad Económica Europea
Consejo Nacional de Ciencia y Tecnológía, Norma Salvadoreña
Cyganización de las Naciones Unidas para la Agricultura y la Alimentación

Tabla A2.6 Parámetros físicos, químicos y bacteriológicos. Estación Nuevo Edén de San Juan

		1		5	2	ביניינים כל יוכיסים לתייינים ל בתייינים ל בתייינים ואתכנס בתייו מת סמון מתפון	301010	II de Sali Suali	
			:	Resultados	8		Amin	100	i i
Parámetros	Unidad	10-volv-70	20.Wov.04	04-Dir-04	Promodio	Vida acuática	₩ ₩	Ayuz potable	Chego
			10-1011-01	10-217-10		CMC (EPA, 1998)	CEE	CONACYT (1996)	FAO
Carbono Orgánico Total	mg/L	009	3.30	4.60	4 63				
Fosfato	mg/L	no realizado	no realizado	no realizado	0.00	0.05 mg/l		0.01 mg/l	
Calcio (Ca)	mg/L	29 80	37.50	42 55	36 62			75 00 mg/l	
Magnesio (Mg)	mg/L	29 80	20 80	21 28	23 96			50 00 mg/L	
Sodio (Na)	mg/L	1100	14.12	13.31	12.81		75-150 mg/L	150 00 mg/L	
Potasio (K)	mg/L	3.90	4 33	4 48	4 24		12 mg/L	10 00 mg/L	
Cloruro (CI)	mg/L	2 80	2 98	4.40	3.39		25 mg/L	250 mg/l	10 meq/l
Sulfato (SO4)	mg/L	4.80	9 22	10 65	8 22	77.	No standard	250 0 mg/l	
Hierro (Fe)	mg/L	0 33	0 10	0 10	0 18	1.00 mg/L	0.2 mg/L	0 30 mg/L	5 00 mg/L
Manganeso (Mn)	mg/L	0 024	0 046	0 119	90 0	0 10 mg/l	0.2 mg/L	0.05 mg/l	0 20 mg/l
Boro (B)	mg/l	no detectado	no detectado	no detectado	00'0	0.01 mg/l	1.0 mg/L	0 30 mg/L	0 75 mg/l
Bacterias de Coliformes totales	NMP/100mL	2400.00	170 00	20 00	873 33		0 or MPN < 1	no detectado	5000 m 100 ml
Bacterias de Coliformes fecales	NMP/100mL	500 00	20 00	50 00	206,67		000	no detectado	
Mercurio (Hg)	mg/L	no realizado	0 00085	no realizado	0 00085	0 0014 mg/L	0 001 mg/L	0 002 mg/l	
Arsénico (Como)	mg/L	no realizado	0 0027	no realizado	000	0 34 mg/L	0 05 mg/L	0.01 mg/l	0.1 mg/l
Selento (Se)	mg/L	no realizado	< 0.01	no realizado	000	0 00001 mg/l	0 01 mg/L	0 01 mg/l	0 02 mg/l
Cobre (Cu)	mg/L	no realizado	no detectado	no realizado	0.00	0,013 mg/L	No standard	1 00 mg/l	0 20 mg/l
Cromo (Cr)	mg/L	no realizado	no detectado	no realizado	0000	0 16 mg/L	0 05 mg/L	0 05 mg/l	100 000
Plomo (Pb)	mg/L	no realizado	no detectado	no realizado	00 0	0 065 mg/L	0 05 mg/L	0.01 mg/l	5 0 mg/l
Bano (Ba)	mg/L	no realizado	no detectado	no realizado	00 0				
Clanuros (SNC)	mg/L	no realizado	no detectado	no realizado	00 0	0.022 mg/L	0 05 mg/L		
Acete y Grasa	mg/L	no realizado	14 00	no realizado	14.00			no detectado	
Fenoles	Mg/L	no realizado	no detectado	no realizado	00 0				
Silice	mg/L	no realizado	no realizado	no realizado	000			125 0 mg/l	

Criterio de máxima concentración (Agencia de los Estados Unidos para la protección del medio ambiente – USEPA)
Comunidad Económica Europea
Consejo Nacional de Ciencia y Tecnologia, Norma Salvadoreña
Organización de las Naciones Unidas para la Agricultura y la Atimentación

CMC (EPA) CEE: CONACYT FAO

ANNEX 3 GENERATION OF GASES FROM GREENHOUSE EFFECT (GHG)

Annex 3 Generation of Gases from Greenhouse Effect (GEI)

1) Introduction

Although developing countries are not required, at this moment, to assume reduction or limitation commitments in the emission of greenhouse gases (GHG), the increase in concentration of GHG in the atmosphere and its potential consequences to the climate deserve the attention of all the countries of the planet. The fact that an increasing number of third world developing countries, including El Salvador, have signed and ratified the United Nations Framework Convention on Climatic Change (UNFCCC) of 1992 and have engaged in the production of a GHG emission inventories is proof of the fast realization of these countries of the necessity to deal with this issue.

In the Kyoto Protocol, of 1997, an overall goal for the reduction of GHG emissions was set for a group of countries that, with some exceptions, corresponds to those that have already assumed commitments under the UNFCCC, European countries plus Canada and the United States of America (countries listed in Annex I of the UNFCCC). Compliance with these goals implies that the carbon dioxide equivalent emissions for the 2008-2012 period, on average, must be at least 5.2 % below the corresponding levels of 1990.

This increase of the emission control commitments had, as a counterpart, the introduction in the Protocol of the so called Cooperation Mechanisms for Protocol Application to allow the countries that accepted commitments to meet them at lower cost. These mechanisms are joint implementation and clean development. Joint Implementation (JI) is defined in Article 6 of the Protocol and consists of the transfer of Emission Reduction Units (ERUs) in exchange for the financing of projects to reduce emissions and increase GHG sinks in any economic sector and only between the Annex I countries of the UNFCCC. The "Clean Development Mechanism" (CDM) is defined in Article 12 of the Protocol and consists of the transfer of Certified Emission Reductions (CERs) in exchange for the financing of projects to reduce emissions. In this case, member countries of Annex I obtain GHG emission credits through the financing of emission reductions projects in countries not included in Annex I, like El Salvador.

One CER is equal to a ton of CO_2 equivalent, or tCO_2e .

2) Project GHG

The Project will produce GHG during its construction from the use of construction equipment and during its operation because of the loss of CO₂ capture capacity due to the flooding of land by the reservoir.

During construction, estimated at 40 months, construction equipment is estimated to require 100,000 gallons of fuel per month. The burning of each gallon of fuel would produce 8 kg of CO₂. Therefore, the production of CO₂ would be 800 metric tons per month or a total of 32,000 metric tons over the 40 months.

The factors to consider in generation of greenhouse gases at hydroelectric plants must include various factors such as flooded area, vegetation, climate, soil composition and age and the service life of the plant. At a reservoir short-, medium- and long-term sources can be distinguished. Among the short-term sources are emissions due to vegetation (leaves, small branches, flowers) found at the flooded site. The slow-decomposition woody material that remains at the flooded site is a medium-term source. Finally, the residual organic carbon in the soil is a long-term source.

Besides the continuous emissions connected with existence of the river, one must consider the emissions connected with construction of the plant, mainly the carbon dioxide generated in production of the materials used and by burning of fuel in the machinery used.

3) Thermal Power Generation Emissions

To determine the potential carbon credits that could be attributed to the Project, the GHG emissions have to be estimated for thermal power generation in El Salvador during the period of operation of the Project. The Environment and Natural Resources Ministry (Ministerio de Medio Ambiente y Recursos Naturales, MARN) made this estimate in their "Study of Options for Mitigation of GHG in the Energy System of El Salvador" (Estudio de Opciones de Mitigación de Gases de Efecto Invernadero en el Sistema Energetico de El Salvador) in 1999. In this study the GHG emissions were estimated for the thermal power generation units in El Salvador up to the year 2020 for two cases, a base case energy scenario and a mitigation case. A sensitivity analysis was also performed to the entrance of the El Cimarron Hydroelectric Project.

The base case energy scenario considered an increase in annual demand of from 4.0 to 4.5 %, that there were no hydroelectric additions, that capacity increases up to 2010 would be geothermal and combined cycle plants burning fuel oil, and that the additions after 2010 would be coal-fired steam plants and combined cycle plants burning natural gas.

The mitigation case considered that the San Marcos Lempa Hydroelectric Project of 80 MW would start operation in 2010, that the geothermal plants initial operation would be the same as the base case scenario, that there would be a large introduction of natural gas in 2005 so that the capacity

increments after that year would be from combined or simple cycle units burning natural gas, and that the existing thermal generators would convert to natural gas. In this mitigation scenario demand increases according to the rate at which the natural gas enters the market so that demand in 2020 is 867 GWh above the base scenario demand for that year.

The sensitivity analysis to the El Cimarron Hydroelectric Project entry was performed under the mitigation scenario considering that El Cimarron, at 243 MW, would initiate operations in 2010 instead of San Marcos Lempa, with the other hypothesis remaining the same.

Electric energy, CO₂ emissions and the emissions factor, electric energy divided by emissions, is presented in Table A3.1

Table A3.1 Electric Energy and Emissions

Year	<u> 1995</u>	2005	<u> 2010</u>	2020
Base Case Scenario				
Electric Energy, GWh/year	3,384	4,754	5,745	8,430
Emissions, ktCO2e/MWh	1,368	1,958	2,707	4,279
Emissions Factor, tCO2e/MWh	0.404	0.412	0.471	0.508
Mitigation Scenario				
Electric Energy, GWh/year	3,384	5,007	6,190	9,297
Emissions, ktCO ₂ e/MWh	1,368	1,539	1,271	1,254
Emissions Factor, tCO ₂ e/MWh	0.404	0.307	0.205	0.135
El Cimarron Sensitivity				
Electric Energy, GWh/year	3,384	5,007	6,189	9,292
Emissions, ktCO ₂ e/MWh	1,368	1,539	1,267	1,116
Emissions Factor, tCO2e/MWh	0.404	0.307	0.205	0.120

The emissions factor increases slightly in the base case scenario and decreases substantially in the other two cases as can be seen in Table A3.1.

In 2002, the hydroelectric generation company Fortuna S. A. of Panama prepared a baseline study to request carbon credits, which were awarded. Currently Panama has 50 % of its electric generation from hydroelectric plants, almost the same as the total hydroelectric and geothermal generation of El Salvador. According to that study the Panama emissions factor decreases from 0.691 tCO₂e/MWh in 2004 to 0.580 tCO₂e/MWh in 2014. Which means that in a country with a generation mix similar to El Salvador the emissions factor is significantly higher.

The low emission factors in the mitigation scenario are a result of the hypothesis of a large introduction of natural gas starting in 2005, which seems doubtful. Therefore, to estimate an emissions factor for the Project the base case scenario and the experience in Panama are considered

relevant. Based on this, an emissions factor of 0.500 tCO₂e/MWh is estimated for the Project

The electric energy generation attributable to the Project, including the increase in the 15 de Septiembre Plant, is 232,000 MWh per year, which equals 116,000 tCO₂e per year.

4) Loss of Capture Capacity

In "Changes in the Carbon Balance of Tropical Forests: Evidence from Long-Term Plots", O.L. Phillips et al., ¹ is presented new long-term, large-scale evidence that mature tropical forests can absorb significant quantities of carbon.

They suggest that neo-tropical forests (in tropical areas of Central and South America) could put a brake on increase of atmospheric CO₂. By measurement of permanent pilot areas they found that the increase in biomass exceeded the loss in tropical wet forests and that those pilot areas have accumulated 0.71 tons of carbon per hectare a year in recent decades.

The loss of present CO₂ capturing capacity in the area occupied by the Project (dam and ancillary installations) caused by the loss of vegetal coverage estimated at 25% of the occupied surface area has been determined on the basis of the fact that the vegetation consists of mixed deciduous forest (trees, shrubs and thicket). For such calculation a methodology developed by the Climate Change Intergovernmental Panel (PICC) of the CMNUCC has been used. According to that methodology the CO₂ capturing capacity is 3.67 (44/12) times the carbon capturing capacity. Each hectare captures 2.6 tons of CO₂e a year. The total surface area occupied is 10.2 km², or 1,020 ha, 25% of which is 255 ha. Loss of those 255 hectares is equivalent to 663 tons of CO₂e a year, or 33,150 tons of CO₂ during the 50-year service life.

5) Increase in Capture Capacity

The increase in CO₂ capture capacity due to the increase of forest cover by the planting of 100 hectares of mixed forest (the area calculated to be reforested by the Project) was estimated. Using a CO₂ capture value of 2.6 tCO₂e per hectare per year, the gain of these 100 hectares is equivalent to 260 tCO₂e per year.

¹ En "Changes in the Carbon Balance of Tropical Forests: Evidence from Long-Term Plots" (Cambios en el Balance de Carbono de Bosques Tropicales: Evidencia de Áreas Piloto), O. L. Phillips de U. of Leeds en Leeds, RU; Y. Malhi y J. Grace de U. of Edinburgh en Edinburgh, RU; N. Higuchi, W. F. Laurance, S. G. Laurance, y L V. Ferreira del Instituto Nacional de Pesquisas da Amazonía en Manaus, Brasil; P. V. Nez de Biodiversidad Amazónica en Cusco, Perú; R. M. Vsquez de Missouri Botanical Garden - Proyecto Flora del Perú en Iquitos, Perú; M. Stern de New York Botanical Garden en Bronx, NY, S. Brown de U. of Illnois en Urbana, IL, 1998.

6) Obtaining Carbon Credits

The World Bank has established the Prototype Carbon Fund (PCF) to provide technical and financial assistance to obtain credits. The credits themselves are given by certain countries (Holland, Japan, etc.) through bids.

Projects can be submitted to the PCF through their website www.carconfinance.org. To initiate the process a Project Idea Note (PIN) must be prepared which can be downloaded from this website and sent by email to projects@carbonfinance.org. The Project and El Salvador comply with the requirements of the PCF, but it is worth mentioning that the Project must be in commercial operation before January 1st, 2008. Because the Project could be built in 40 months, this date is achievable but the construction must start in 2004.

Basically, the PIN consists of approximately five pages providing indicative information on:

- The type and size of the project
- · Its location
- The estimated total amount of GHG reduction
- The suggested crediting life time
- The suggested CERs price in US\$/tCO₂e reduced
- The structure and sources of the project financing
- The project's other socioeconomic and environmental effects/benefits

Once approved and supported by the PCF a project can participate in the biddings for carbon credits.

7) Economic Aspects

Financing of the Project has to be from sources independent of the PCF. The contribution of the PCF cannot be less than 2 % or more than 10 % of the total amount of the PCF. Currently this range corresponds to US\$ 3.6 to 10 millions. To access the PCF the CER offered price should preferably be below US\$ 3/tCO₂e, approximately.

The most relevant experience in bidding for CERs is that of the CERUPT program (Certified Emission Reduction Unit Procurement Tender) of Holland. In the first quarter of 2003 CERUPT approved 18 projects to provide CDM credits. The CERUPT bought 16.7 million tCO₂e, or CERs, at an average cost of € 4.70/tCO₂e, equal to US\$ 5.08/tCO₂e at that moment. The prices of the

CERs were close to the prices predetermined by CERUPT of \in 5.50/tCO₂e (US\$ 5.94/tCO₂e) for renewable energy projects not including biomass, \in 4.40/tCO₂e (US\$ 4.75/tCO₂e) for biomass projects and \in 3.30/tCO₂e (US\$ 3.56/tCO₂e) for other projects. Of the 18 projects four were large hydroelectric plants, three in Panama and one in Costa Rica, with a total of 5 million CERs and one geothermal plant in El Salvador with 100,000 CERs.

Recently, according to "Carbon Market Europe" dated January 30th, 2004, the prices of the CERs are around the € 13.00/tCO₂e, equal to US\$ 16.25/tCO₂e on that date. These values are based on little activity in the carbon credit market and, because of this, they are not characteristic of large biddings.

Considering the approximate average value of the last CERUPT bid, US\$ 5.00/tCO₂e, the electric generation of the Project could have a value of US\$ 580,000 per year and the value of the credits that the Project could sell for the increase of 100 hectares in the forest surface is US\$ 1,300 per year. In the case of the Fortuna Project in Panama, mentioned above, credits were obtained on the basis of the project's production over 11 years. If this period is applied to the Project, the value of the possible credits is US\$ 6.38 million for the electric generation and US\$ 14,300 for the increase is forest surface.

8) Perspectives

Even though the CERUPT bid in 2003 was for similar projects in similar countries and in El Salvador, the market of the CERs is changing. Generally, the projects will have to be smaller, less than 20 MW, and there is criticism that the 18 CERUPT projects were not projects implemented only to offer CERs but were planned and constructed under business as usual scenarios.

Due to the size of the Project and the probability that it will not go into operation before January 1st, 2008, its perspective for obtaining carbon credits is limited. Nonetheless, the Project should be presented to the PCF for that determination.

It is worth mentioning the value of carbon credit for the increase of forest surface to capture CO₂ is much less the value of the possible credits for electric generation.

ANNEX 4 QUESTIONNAIRE ON SOCIOECONOMY SURVEY

Anexo 4

Formulario de ecuesta para el diagnóstico Socio Económico de las familias localizadas en el área de influencia directa del Proyecto Hidroeléctrico El Chaparral

(Encuesta realizada <u>únicamente</u> con jefes de familias localizadas en el área de influencia directa)

2	Municipio:		Caserio		Identificación	I dentificación (de acuerdo al mapa)	apa)
	Composición familiar.						
	Nombres	0.00		7 7 1	Educación		
	Comenzar por el jefe del hogar	raremesco	Sexo	Edad	(ultimo grado estudiado)	Ocupacion	
<u>_</u> :							$\overline{}$
2							γ-
က	The state of the s						
4.							1
ري ا						The state of the s	$\overline{}$
6						<u> </u>	Т
7.							
8							
တ							
10							

2 Características de la vivienda:

PAREDES	ТЕСНО	PISO
Madera	Teja	Tierra
Lamina	Paja o palma	Cemento
Mixto	Duralita	Ladrillo
Bloque saltex	Plafón	Cerámica
Otro (especifique)	Lamina metálica	Otros (especifique)
	Otro (especifique)	

Observaciones.

(es de dos plantas, tiene baranda y/o tapial, etc)

Formulario de ecuesta para el diagnóstico Socio Económico de las familias localizadas en el área de influencia directa del Proyecto Hidroeléctrico El Chaparral Anexo 4

2.2 Estimacion del costo (valor en colones) de la Vivienda
2.1.1 (Si responde alquilada o prestada) Nombre del dueño
i responde a
2.1 Esta parcela es: Propia Alquilada Prestada

.; Tipo de negocio:

9 8

Si

otros anexos

2.4 ¿Cual es la extensión de esta parcela? (en mz)

Valor aproximado del negocio en colones_

2.5 Tiene algún negocio en esta vivienda:

2.6 Servicio básico a la vivienda

Cocina	Alumbrado	Agua	Desagüe	Uso del terreno de la vivienda	Medio de transporte que mas usa la familia
Eléctrica	Eléctrico	Cañería	Letrina	Arboles frutales	Vehículo de fam
Gas propano	Lámpara	Pila	Letrina abonera	Forestales	Bus
Querosén	Candil	Pozo	Fosa Séptica	Huertos casero	pick up
Leña	Candela	Rio	Ninguno	Corrales	Bestia
Otro (especifique)	Otro (especifique)	Olo de agua	Otro (especifique)	Patio	A pie
		Otro (especifique)		Otro (especifique)	Otro (especifique)

Anexo 4

Formulario de ecuesta para el diagnóstico Socio Económico de las familias localizadas en el área de influencia directa del Proyecto Hidroeléctrico El Chaparral (Encuesta realizada <u>únicamente</u> con jefes de familias localizadas en el área de influencia directa)

Salud y saneamiento básico က

Disp	Disposición de la basura y otras con	contaminaciones	Ø				
3.1	¿Cómo purifican el agua que cons Otra	consumen? La Hierven	ierven	Cloración	Filtran	Ninguna	
3.1.1	3.1.1 ¿Cree usted que el Río Torola está	está contaminado? Si		No Que tij	oo de contamir	Que tipo de contaminación cree que tiene:	
3.2	Las basuras: Se queman	Se entierran		Se amontonan	Se tiran		
3.3	Hay vectores: Si No	Cuáles?					
3.4	Hay humos en la cocina: Si	No	¿Cómo le	¿Cómo les afecta el humo?	0?		
Salud	ਹ						
3.5	Enfermedades más frecuentes:						
3.6	¿Dónde consultan?						- 1
3.7	¿A que distancia se encuentra donde consultan?	onde consulta	n?				
3.8	¿Reciben la atención necesaria?	ria? Si	No No	A veces	ı		
3.9	¿Obtienen medicinas?	Si	% S	A veces	1		
3.10	3.10 Niños menores de 5 años, ¿estár	stán vacunados? Si	Si	No ON			
3.11	3.11 Vacunas recibidas: B.C.G.	D.P.T P	POLIO	Sarampión			
3.12	3.12 ¿Existen mujeres embarazadas en este hogar? :	en este hogar	.:	Si	No	¿Cuántas?	
3.13	3.13 ¿Están los niños y niñas en control? Si	rol? Si	oN	1			
3.14	3.14 ¿Están las mujeres embarazadas en control? Si	s en control?	Si	No No			

Anexo 4 Formulario de ecuesta para el diagnóstico Socio Económico de las familias localizadas en el área de influencia directa

	(Encuesta realizada <u>í</u>	del Proy <u>ínicamente</u> con	ecto Hidroeléc jefes de familia	del Proyecto Hidroeléctrico El Chaparral <u>ente</u> con jefes de familias localizadas en	del Proyecto Hidroeléctrico El Chaparral (Encuesta realizada <u>únicamente</u> con jefes de familias localizadas en el área de influencia directa)	cta)
3.15 ¿Reciben visita	3.15 ¿Reciben visitas de Promotores de salud?: Si	salud?: Si	No	A veces	i	
3.16 Se han encontr	3.16 Se han encontrado las enfermedades siguientes: Malaria	es siguientes:	Malaria	, Dengue	, Schistosomiasis	(Contestar Si o No)
4 Actividades agropecuarias	ıgropecuarias					
4.1 ¿Cultiva usted	¿Cultiva usted alguna propiedad con vocación agropecuaria?	n vocación agı	ropecuaria?	Si	No No	
4.2 Ubicación de la parcela Ésta es: Propia Alqu	ilada	cuál es su extensión en Mz: Prestada Otro	sión en Mz:Otro	Valor total (en con Nombre del dueño	Valor total (en colones): mbre del dueño	
4.3 ¿A que destina Otro	¿A que destina la tierra agrícola que dispone? Otro		Ganado	Cultivos	, MixtoPastizal	ral
4.4 Cultivos.						
Cultivos	Variedad / tipo	Rendimiento en qq x mz		Valor de venta	Cantidad para Consumo	No. de cosechas por año
MAÍZ						
FRÍJOL						
MAICILLO						
AJONJOLÍ						
CAÑA DE AZÚCAR						
TULE						1.00
HORTALIZAS						
Otros					1,000	

Formulario de ecuesta para el diagnóstico Socio Económico de las familias localizadas en el área de influencia directa del Proyecto Hidroeléctrico El Chaparral (Encuesta realizada <u>únicamente</u> con jefes de familias localizadas en el área de influencia directa) Anexo 4

Ganadería: 4.5

Cultivos	Tipo	Número de cabezas	Valor Total
VACUNOS			
CABALLOS	1		
ASNOS			
AVES	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
CERDOS			**
OTROS ANIMALES			

4.6 Mercados visitados habitualmente:

Lugares donde habitualmente compra								
SA SIL I	VIS	VISITA		FRECUENCIA	ENCIA			Г
	Si	No	Diario	Semanal	Mes	Año	Distancia	
Tienda local								Ţ
Mercado, tienda o tiangue en San Antonio del Mosco								Ţ
Mercado, tienda o tiangue en San Luis de la Reina								Ţ
Mercado, tienda o tiangue en Carolina						-		Ţ
Mercado, tienda o tiangue en Ciudad Barrios								Ţ
Mercado, tienda o tiangue en Sesori								Ţ
Mercado, tienda o tiangue en Chapeltique								1
Mercado, tienda o tiangue en Moncagua								
Mercado, tienda o tiangue en San Miguel								Ţ
Mercado, tienda o tiangue en Villa el Triunfo								Ţ <u></u>
Mercado, tienda o tiangue en San Salvador							i	Ţ
Mercado, tienda o tiangue en Honduras								Ţ
Otros:]

Formulario de ecuesta para el diagnóstico Socio Económico de las familias localizadas en el área de influencia directa del Proyecto Hidroeléctrico El Chaparral (Encuesta realizada <u>únicamente</u> con jefes de familias localizadas en el área de influencia directa)	¿Dónde vende habitualmente su cosecha o su producción?	ar	Lugar Distancia:	Lugar Distancia:	8 ¿Con que frecuencia va a esos lugares a vender su producción?: Diario Semanal Mensual
Formul	, ¿Dónde vend	Lugar	y/o Lugar	y/o Lugar	Con que frec

5 Ingresos familiares

5.1 ¿Cuánto gana anualmente con sus actividades económicas? (Marque con una X) Menos de 738 colones (\$ 84.34) Entre 738 y 2000 colones Entre 4001 y 6000 Entre 2001 y 4000 Mas de 6000 No sabe

5.2 ¿Cuál es el origen de estos ingresos? (Marque con una X)	
Sueldo / salario / jornal	
Pensión	
Ayuda de familiares en el país	
Remesas en el exterior	

Anexo 4

Formulario de ecuesta para el diagnóstico Socio Económico de las familias localizadas en el área de influencia directa del Proyecto Hidroeléctrico El Chaparral	onómico de las familias localizadas en el área de influencia directa Hidroeléctrico El Chaparral
Actividades agrícolas o pecuarias	de ramilias localizadas en el area de influencia directa)
Otros (especifique)	
Si recibe remesas del exterior, ¿cada cuanto las recibe? (frecuencia)	scuencia) Cantidad estimada que recibe:
5.3 En que gasta su ingreso (en porcentaje): Agrícola: (%); Tienda (%); comida (%), salud (%), ed (%)	(%), salud(%), educación(%) recreación
 6 Percepción del proyecto 6.1 ¿Puede decirme tres beneficios que podría traer a usted y su familia la construcc Chaparral? 	traer a usted y su familia la construcción de la Central Hidroeléctrıca El
6.2 Ahora podría decirme tres daños que podría ocasionarle a usted y su familia construcción de la Central Hidroeléctrica de el Chaparral	rle a usted y su familia construcción de la Central Hidroeléctrica de el

Formulario de ecuesta para el diagnóstico Socio Económico de las familias localizadas en el área de influencia directa del Proyecto Hidroeléctrico El Chaparral Anexo 4

(Encuesta realizada <u>únicamente</u> con jefes de familias localizadas en el área de influencia directa)

Torola?
acen del Río To
a
s hacen
se due ustedes
dne
es son los usos mas frecuentes que
mas
sosn
os
son
Mencione cuale
6.3

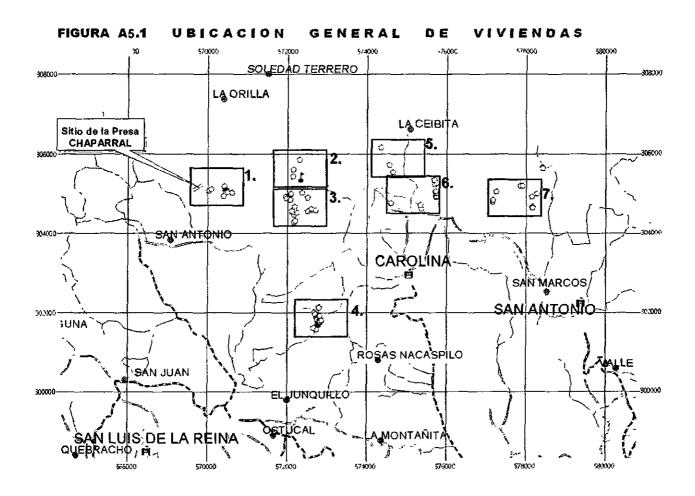
က \sim En caso de una posible reubicación de su familia a qué lugar le gustaría trasladarse: 84

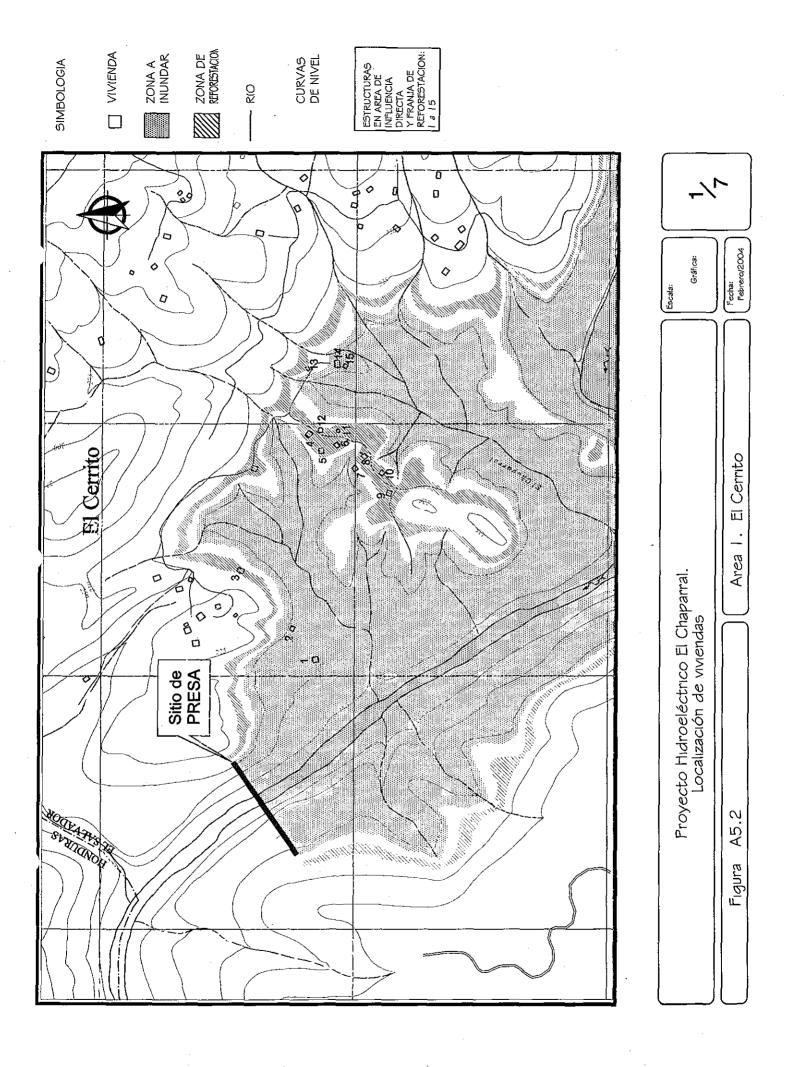
En el mismo caserío		
	į	
Otro Cantón dentro de este mismo municipio		
En otro Cantón de este municipio		
Cabecera de municipio		
Al otro lado del río		
Otro (especificar)		

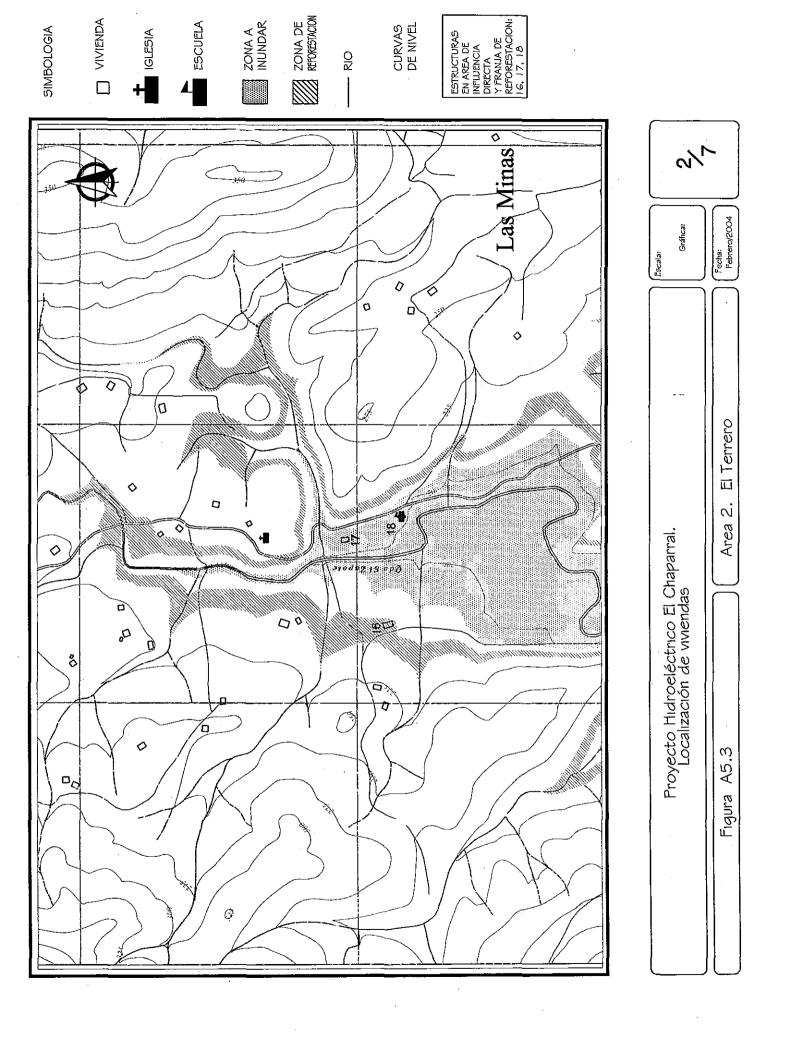
Recursos Culturales

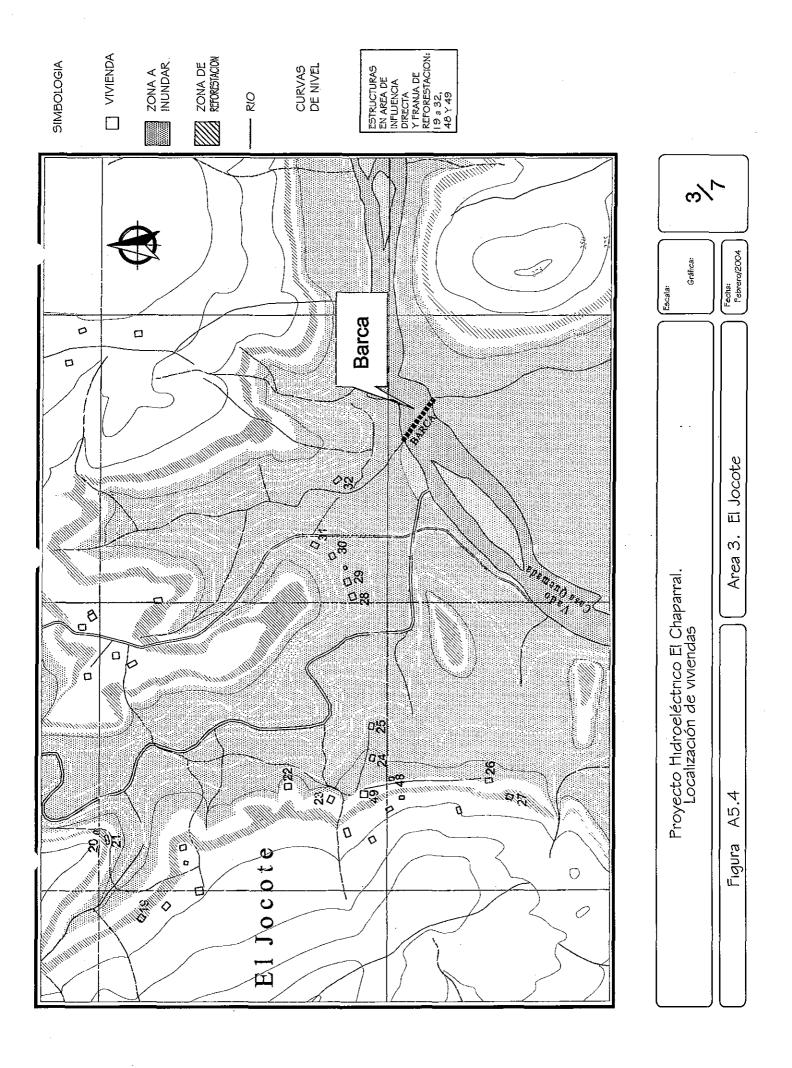
7.1 Han visto restos indígenas en la zona?

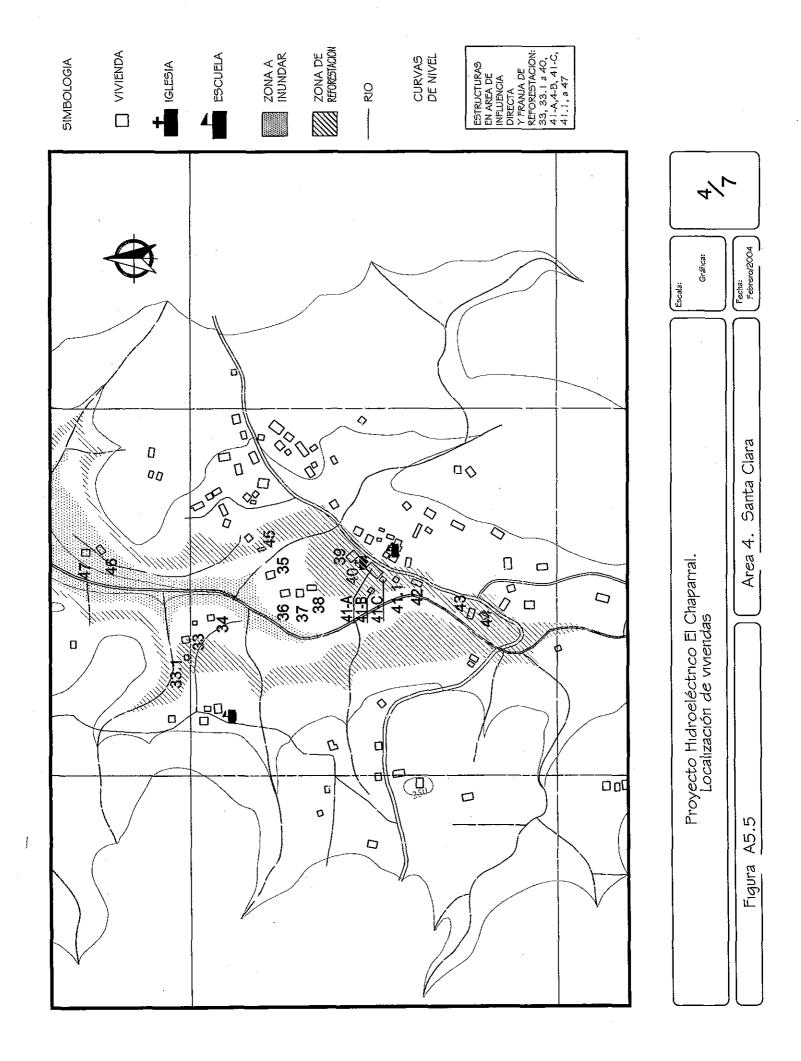
Han salido fragmentos de cerámica o barro en la excavación de zanjas y letrinas? 7.2

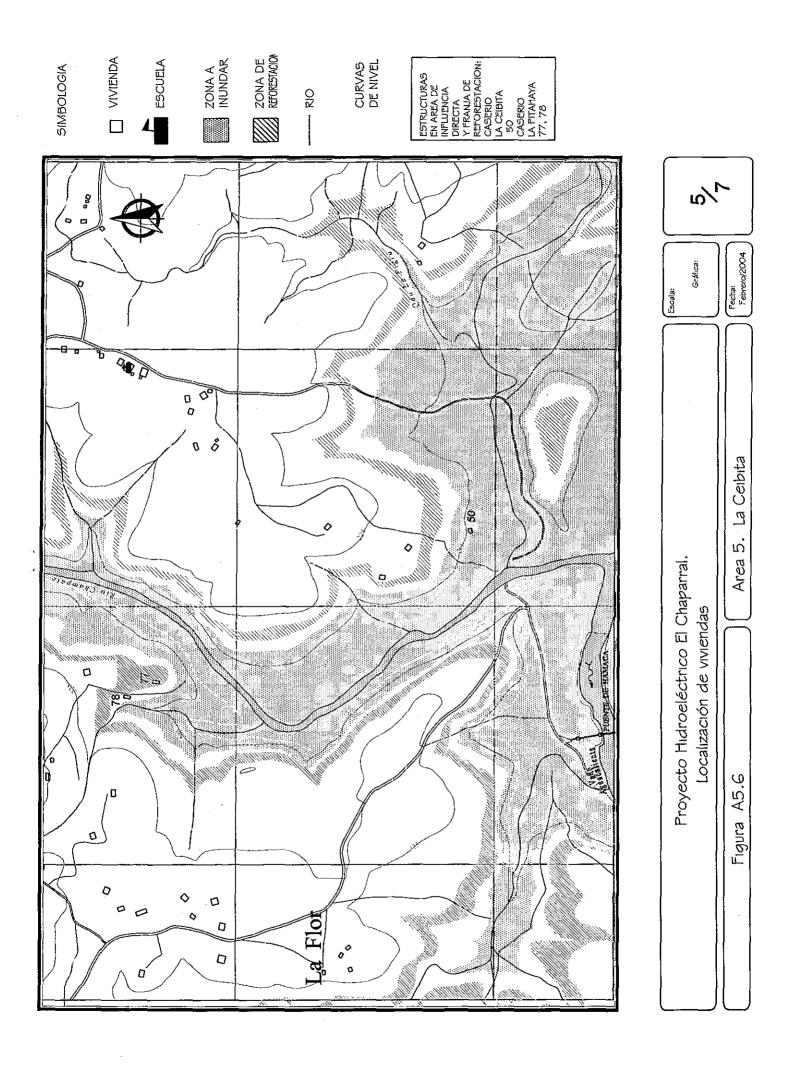

7.3 Han visto dibujos o pinturas en las piedras?

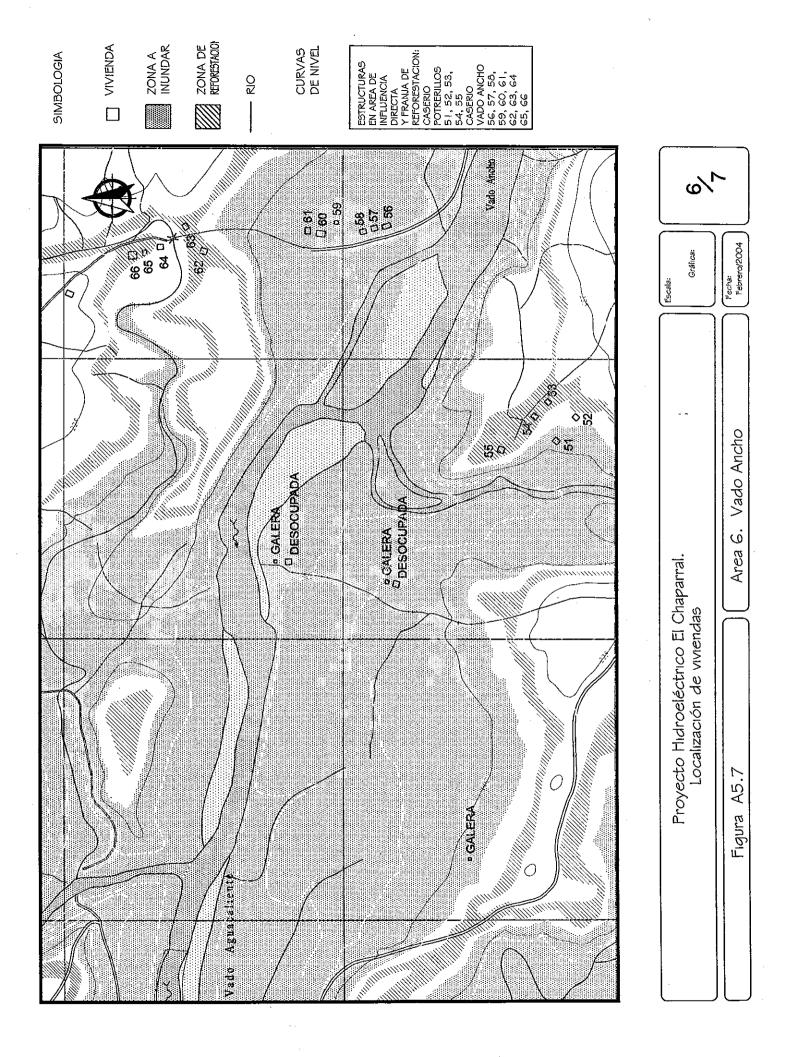

7.4 Han visto restos de edificios, muros, u otros?

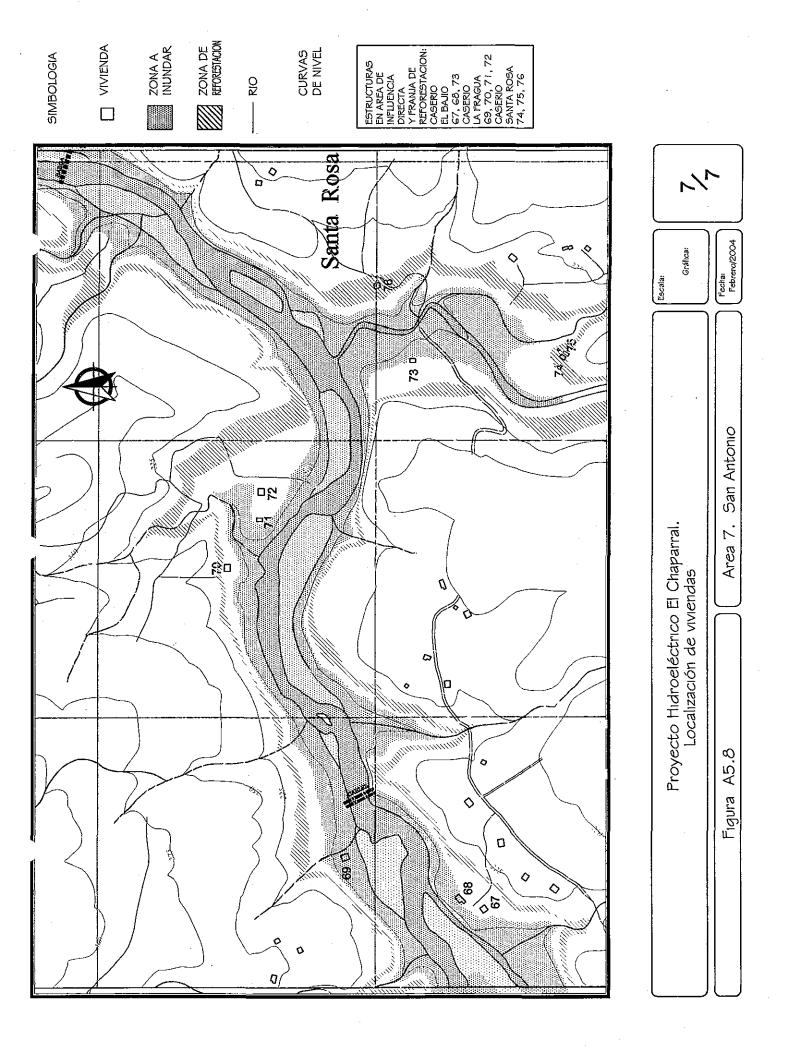

Formulario de ecuesta para el díagnóstico Socio Económico de las familias localizadas en el área de influencia directa de comulario de competa del Proyecto Hidroeléctrico El Chaparral (Encuesta realizada <u>únicamente</u> con jefes de familias localizadas en el área de influencia directa) Anexo 4


Numero de Bolefa Nombre del Encuestador_ Actitud del Encuestado No colaboró () Reservado (Colaboró (). Esquivo () 9


ANNEX 5 LOCATION MAPS OF HOUSES







ANNEX 6 LIST OF HOUSE-HOLDER IN DIRECT INFLUENCE AREA

		•

Anexo 6

Tabla A6.1 Lista de jefes de familia en la zona de influencia directa

de Referenci		le familia en la zona de int	
en mapa	Jefe de familia	Habitantes vivienda	Tenencia
VII IIII PII	Joen de lamma	RECORDING VITTORIA	
Are	a 1. Caserío El Cerrito	, cantón La Orilla, Mun	nicipio de Carolina
1	Julia Hernández	4	Adquirida por CEL
2	Paz Hernández	7	Adquirida por CEL
3	Juan Castro	4	Adquirida por CEL
4	Elba Díaz	6	Propia
5	Pedro Guzmán	3	Propia
6	Porfirio Díaz	10	Propia
			Casa Félix Lemus, Terreno o
7	Félix Lemus	3	Antonio Díaz
8	Israel Lemus	6	Propia
9	Pedro Lemus	8	Propia
10	Santos Lemus	7	Propia
11	Luciana Díaz	4	Propia
			Casa de Gonzalo Días,
12	Gonzalo Díaz	4	Terreno de Juana Díaz
			Casa de Silveria Lemus
13	Silveria Lemus	3	Terreno de Andrés Guzmár
			Casa de Amanda Castro
14	Amanda castro	4	Terreno de Andrés Guzmán
15	Andrés Guzmán	2	Propia
Area 2.	Caserío El Terrero, Ca	ntón Soledad Terrero, N	
4.5		_	Casa de Juana Del Cid
16	Juana del Cid	5	Prestada María V. Ayala.
17	Lázaro Ayala	No respondió	Propia
18	Escuela El Terrero	138 estudiantes	Gobierno
	G / F1 T / G	// C. I. I. 175 34	Constitute de Constitue
19		tón Soledad Terrero, M	Propia
20	Julio Ayala Casa de oración		De la comunidad
20	Casa de oración	No aplica	Casa de Martina Guevara
21	Martina Guevara	3	Prestada a María Reyes
22	Pedro Argueta	Deshabitada	Propia
	reuro Argueia	Desnaultada	Casa de Félix Interiano
23	Lucila Vázquez	5	Prestada a Lucila Vázquez.
24	Virgilio Interiano	Desahabitada	Adquirida por CEL
25	Luz Castro	Desanautada 1	Propia
48		8	Propia
49	Mario Vasquez	1	Propia
	Brigido Vasquez	4	
26	Gabriel Lobos	6	Propia
27	Encarnación Lobos	0	Propia Cose de Sentes Costre h
20	Saute - C - 4 - 1	Doobobited	Casa de Santos Castro h.
28	Santos Castro h.	Deshabitada	Terreno Santos Castro p.
29	Elmer Castro	3	Casa de Elmer Castro Terreno de Santos Castro.
	Himor Cactro	i 1	i erreno de Santos Castro.

Continuación Tabla A6.1

Referencia	ación Tabla A6.1		
en mapa	Jefe de familia	Habitantes vivienda	Tenencia
30	Santos Castro	2	Propia
31	Felipe Nolasco	8	Propia
32	Eliborio Rivas	No respondió	Propia
	<u> </u>		
Area 4.		anton Rosas Nacaspilo	, Municipio de Carolina
22	José González	5	Casa de Pascual Portillo
33	Henriquez	5	Prestada a José G. Henríquez
33.1	María Márquez	2	Propia
34	Basilio Portillo	4	Propia
35	Gumercinda Márquez	14	Propia
		Deshabitada, reside	_
<u> 36</u>	Luz García	en San Salvador	Propia
		Deshabitada, reside	
37	Francisca García	en San Salvador	Propia
		Deshabitada, reside	
38	Oscar García	en San Salvador	Propia
39	Presentación Guzmán	4	Propia
	Santos García		
40	Casa de oración	3	Propia_
41.a	Neftalí García	8	Propia
			Casa de Nehemías García
41.b	Nehemías García	5	Terreno de Neftalí García
			Casa de Mario Elvis García
41.c	Mario Elvis García	3	Terreno de Neftalí García
41.1	María Leticia Portillo	9	Propia
			Casa de Cesareo García,
42	Joel Guevara	4	Prestada a Joel Guevara
43	José Ángel Medrano	9	Propia
44	Luis Medrano	4	Propia
45	Rigofredo Portillo	6	Propia
<u>-</u>	Desposorio García		
46	(falleció recientemente)	2	Propia
47	David García	Deshabitada	Casa de Desposorio García
	a 5. Caserío La Ceibita,		
50	Luis Alonso díaz	6	Prestada
Area 5.	Caserío La Pitahava. Ca	antón Soledad Terrero	, Municipio de Carolina.
77	Juan Santos Guzmán	Deshabitada	Propia
<u></u>			Casa y terreno de Juan
78	Juan santos Guzmán	2	Guzmán
<i>i</i> U	Juni Santos Guzinan	_	Habitada por Adelia Guzmár

Continuación Tabla A6.1

	uación Tabla A6.1	· · · · · · · · · · · · · · · · · · ·	
Referencia			
en mapa	Jefe de familia	Habitantes vivienda	Tenencia
Area (6. Caserío Potrerillos, C	antón Cerro Miracapa,	Municipio de Carolina.
51	Marta Guzmán	10	Propia
52	Rigoberto Guevara	4	Propia
53	Lorenza Guevara	5	Propia
54	Margarito Guevara	5	Propia
55	Virgilio Martínez	7	Propia
	6. Caserío Vado Anche		
56	Diógenes Pineda	6	Prestada
57	Herbert Pineda	5	Prestada
58	Doré Andino Pineda	4	Propia
59	Sebastián Aguilar	7	Prestada
60	Estenia Pineda	4	Propia
61	Samuel Portillo	7	Prestada
62	Cipriano Guevara	5	Propia
63	Simeón Guevara	Deshabitada	Propia
64	Pedro Juan Andino	6	Propia
65	Ulises Andino	5	Propia
66	Gregoria Reyes	8	Propia
. = ~	/ TIP // @ ./		10
			de San Antonio del Mosco
67	Cirilo Ventura	9	Propia
68	Víctor Ventura	7	Propia
73	Porfirio Martínez	6	Propia
Area 7. Ca	aserío La Fragua, Cantó	on San Diego, Municipio	o de San Antonio del Mosco
69	Braulio Ramos	7	Propia
70	Felipe Ramos	5	Propia
	, <u></u>		Casa de Santos Raúl Díaz
71	Miguel A. Ventura	1	Parcela de Rosa Díaz
72	Santos Raúl Díaz	6	Parcela y casa de Rosa Díaz
Area 7. Cas	serío Santa Rosa, Cantó	n San Marcos, Municip	io de San Antonio del Mosco
74	Vinicio Martínez Díaz	3	Propia
75	Olegario Martínez	7	Propia
	Exaltación Aguilar	3	Propia
76	Examación Agunar	<u> </u>	гторіа

