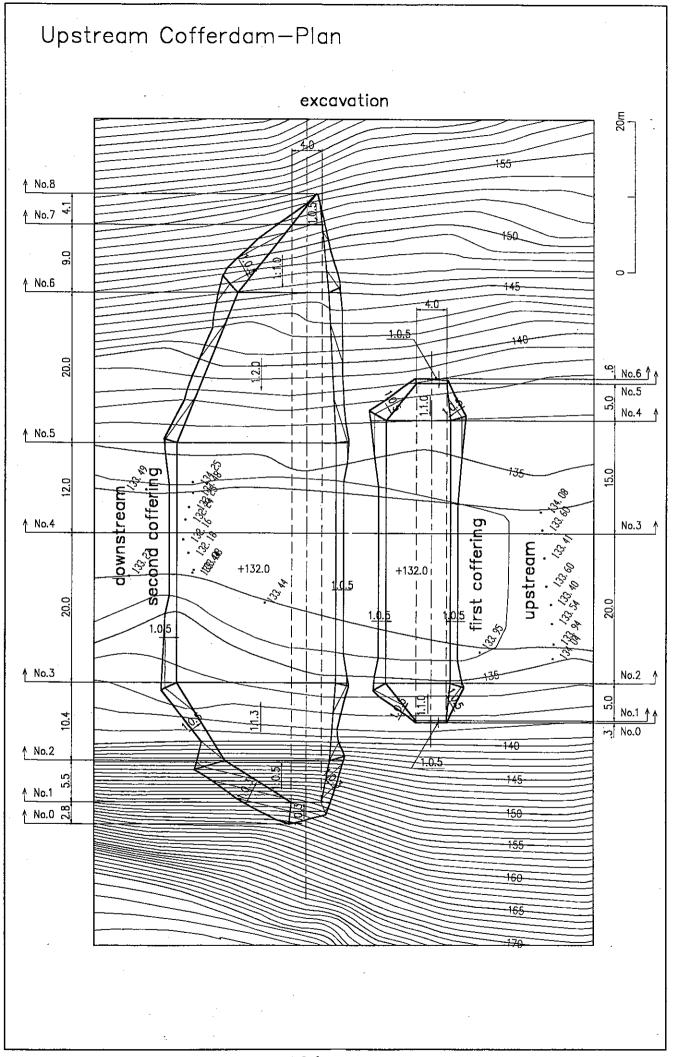
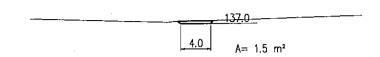
Appendix 12.3.2


Civil Works

(1) Care of River

a) Upstream Cofferdam

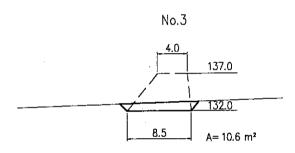

Type of	f Works				Calculati	on				Quantii	t <u>ù</u>
<excav< td=""><td>vation></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></excav<>	vation>										
	First C	offering	-								
ļ.	-	Common Ex	cavation	and Rock	Excavation	ı		<u> </u>	.		
		Survey	Section	Sectional	Mean Area	Volume	Total	Notes			
		Station	Length(m)	Area (m²)	(m ²)	(m ³)	Volume (m³)				
		No.0		0.0							
		No.1	0.3	1.5	0.75	0.2	0.2				
	i I	No. 2	5.0	32.5	17.00	85.0	85.2				
		No. 3	20.0	10.6	21.55	431.0	516.2				
		No.4	15.0	42.3	26.45	396.8	913.0				
		No.5	5.0	3.6	22.95	114.8	1,027.7				
	,	No.6	0.6	0.0	1.80	1.1	1,028.8]		i
	ļ										
	Second	Coffering	•								
		Common Ex	cavation	and Rock	Excavation	1			,		
		Survey	Section	Sectional	Mean Area	Volume	Total	Notes			
		Station	Length(m)	Area (m²)	(m ²)	(m ³)	Volume (m³)				
		No.0		0.0							
	1	No. 1	2.8	33.0	16.50	46.2	46.2				.
		No. 2	5.5	75.1	54.05	297.3	343.5				
		No. 3	10.4	10.8	42.95	446.7	790.2				
		No. 4	20.0	85.8	48.30	966.0	1,756.2				
1		No.5	12.0	78.6	82:20	986.4	2,742.6				
		No.6	20.0	48.4	63.50	1,270.0	4,012.6				
		No. 7	9.0	6.0	27.20	244.8	4,257.4]		
		No. 8	4.1	0.0	3.00	12.3	4, 269.7]		
				n Excavat	ion):(Rock	Excavati	on) = 7 : 3	3			
1 ' '	Ł .	Excavation	n								
	First (Coffering						700.0	3		
		-	1,028.8×	0.7			=	720.2	D,		
	Second	Coffering							ર		
		$V_2 =$	4,269.7×	0.7			=	2,988.8	m'		
	Total										,
		$\Sigma V =$	$V_1 +$	$V_{\dot{2}}$			=	3,709.0	m ³	3, 709	m ³
	1										

Upstream Cofferdam—Section

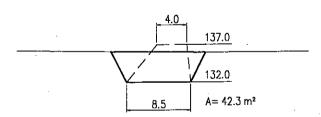
first coffering (excavation)

No.1

No.2

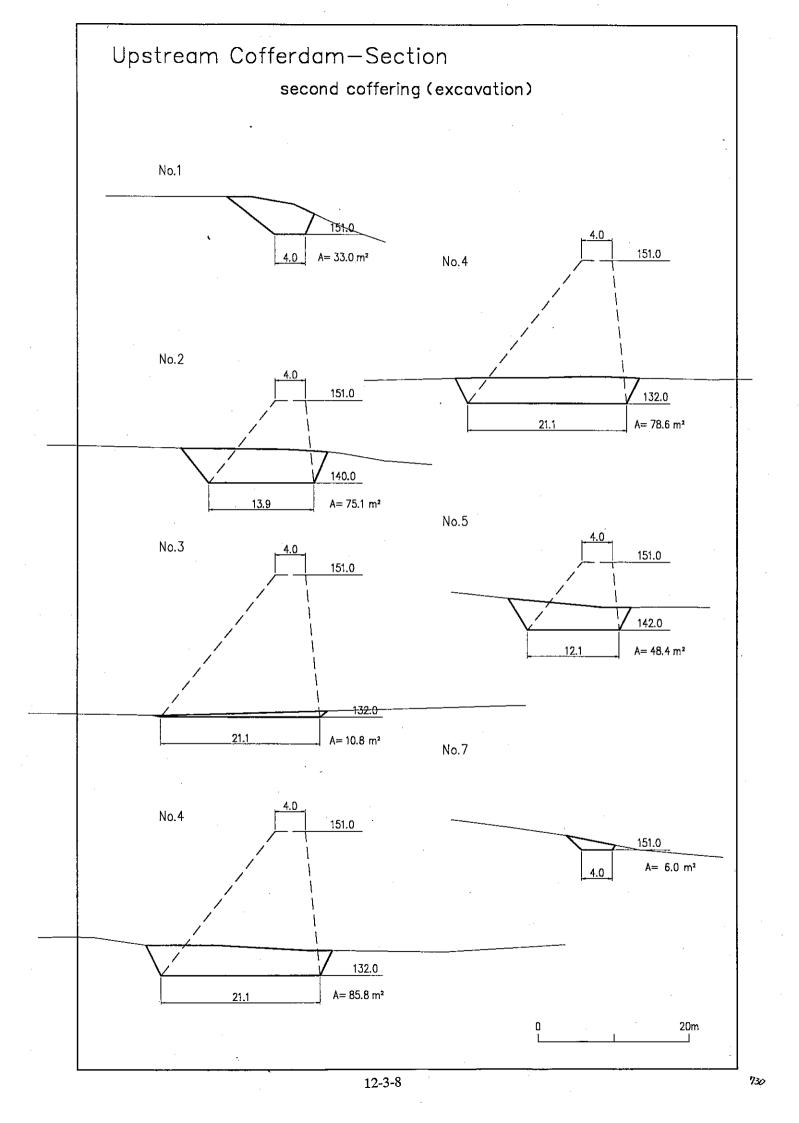

4.0

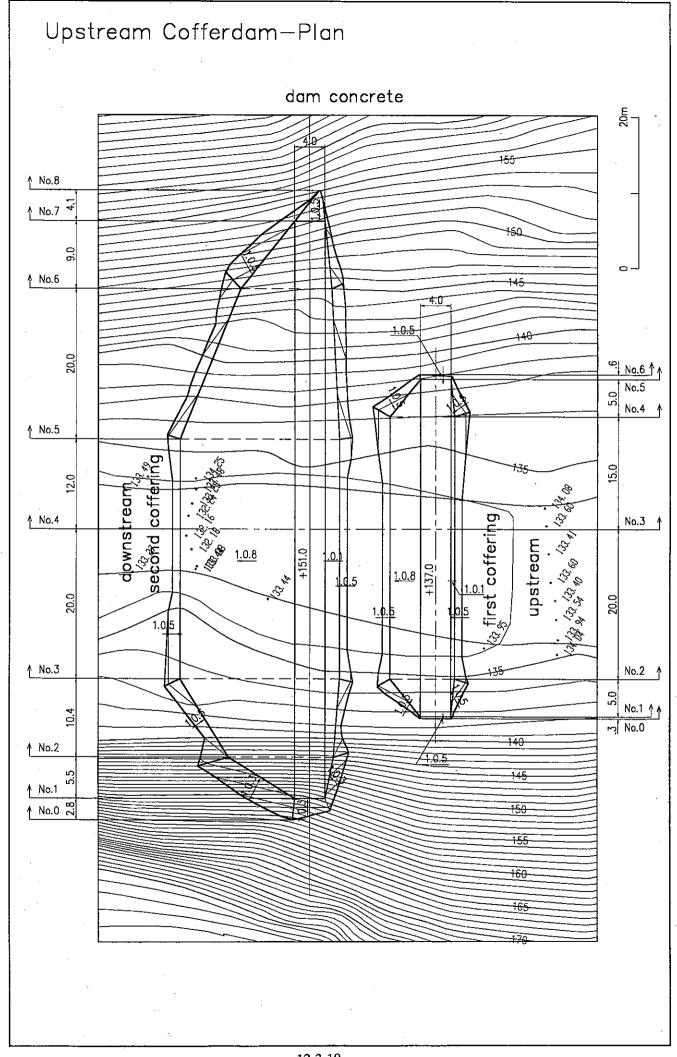
137.0


132.0

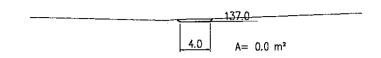
8.5

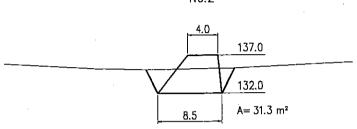
A= 32.5 m²


No.4

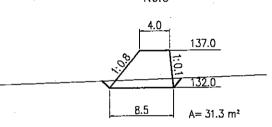

No.5

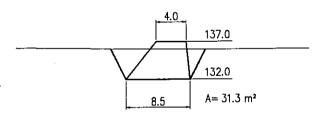
20m


ype of Works				Calculati	on				Quantii	ty
								.		
(2) Rock Exc	cavation									
First 0	offering									-
	$V_1 =$	1,028.8×	0. 3			=	308.6	m ³		
Second	Coffering									
	$V_2 =$	4, 269. 7×	0. 3			=	1, 280. 9	m ³		
Total						,				
	$\Sigma V =$	V ₁ +	V_2			=	1, 589. 5	m ³	1, 590	n
l Cam Concre	te (RCC)	>					,			
First (Coffering			<u>, </u>						
	Survey	Section	Sectional	Mean Area	Volume	Total	Notes			
		Length(m)	Area (m²)	(m ²)	(m ³)	Volume (m³)			•	
	No. 0		0.0							
	No. 1	0.3	0.0	0.00	0.0	0.0				
	No. 2	5.0	31. 3	15. 65	78. 3	78. 3				
'	No. 3	20. 0	31.3	31. 30	626.0	704.3				
	No. 4	15. 0	31. 3	31. 30	469.5	1, 173. 8				
	No. 5	5.0	0.0	15. 65	78. 3	1, 252, 0				
	No. 6	0.6	0.0	0.00	0.0	1, 252. 0				
Second	Coffering Survey	Section		Mean Area	Volume	Total	1, 252. 0 Notes			
	Station	Length(m)	Area (m²)	(m ²)	(m ³)	Volume (m³)				
	No. 0	 	0.0							
	No. 1	2.8	0.0	0.00	0.0	0.0				
	No. 2	5.5	98.5	49. 25	270. 9	270.9				
	No. 3	10.4	238. 5	168. <u>50</u>	1, 752. 4	2, 023. 3				
	No. 4	20.0	238. 5	238. 50	4, 770. 0	6, 793. 3				
	No. 5	12.0	238.5	238. 50	2, 862. 0	9, 655. 3				
	No. 6	20.0	72.5	15 <u>5.</u> 50	3, 110. 0	12, 765. 3				
}	No. 7	9.0	0.0	36. <u>25</u>	32 <u>6.</u> 3	13, 091. 5				
	No. 8	4. 1	0.0	0.00	0.0	13, 091. 5	<u> </u>			
						$v_2 = 13$, 091. 5	m ³		

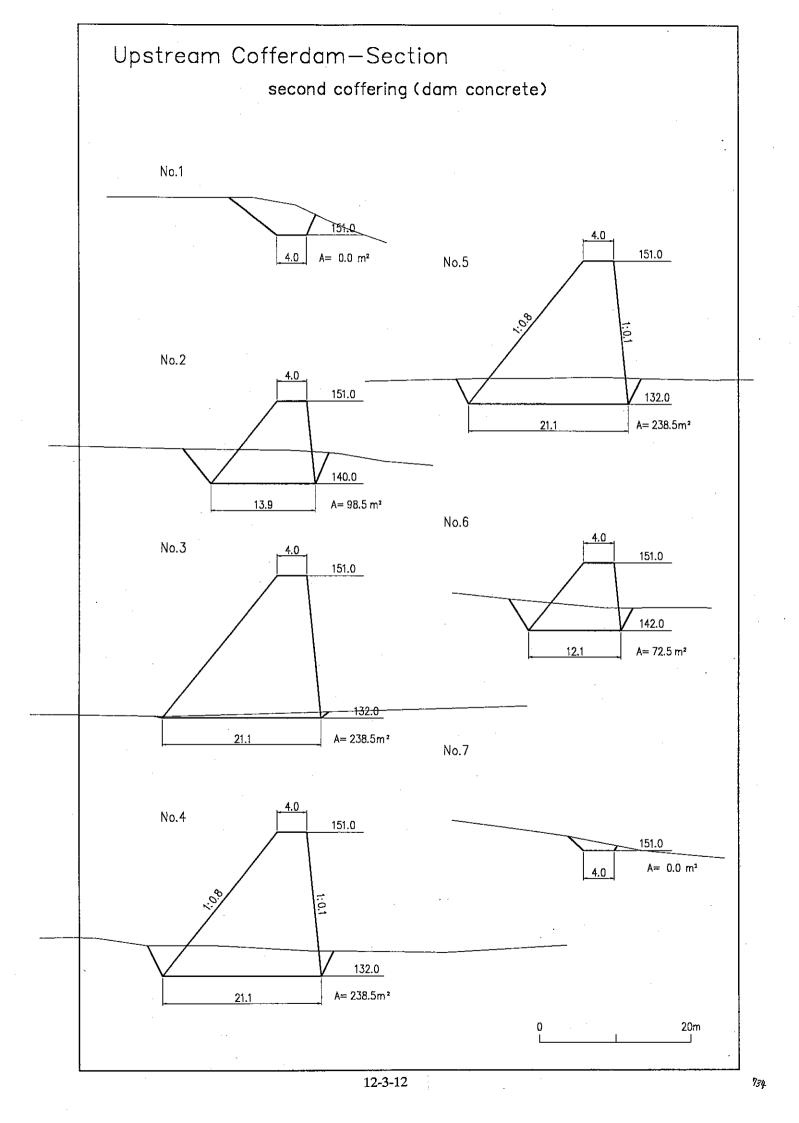

Upstream Cofferdam—Section

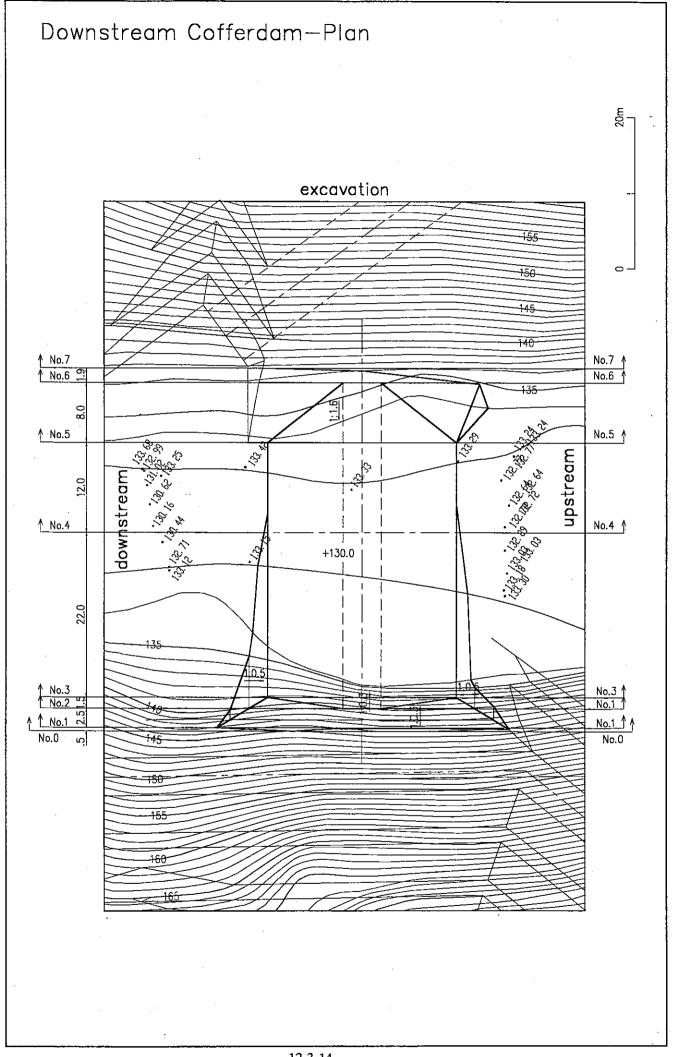
first coffering (dam concrete)

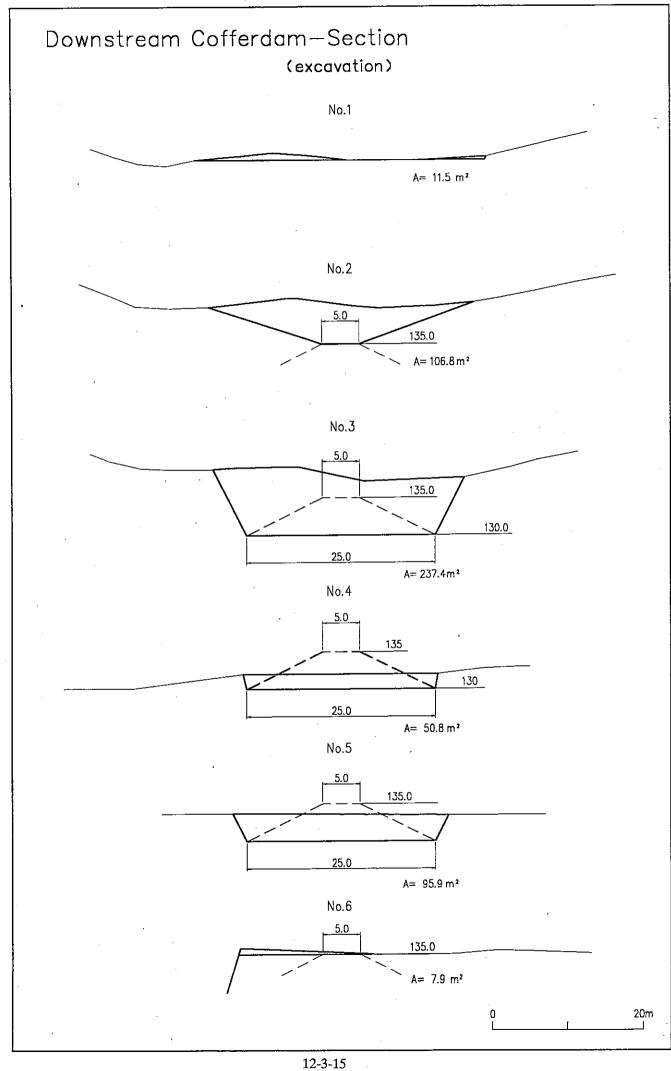

No.1

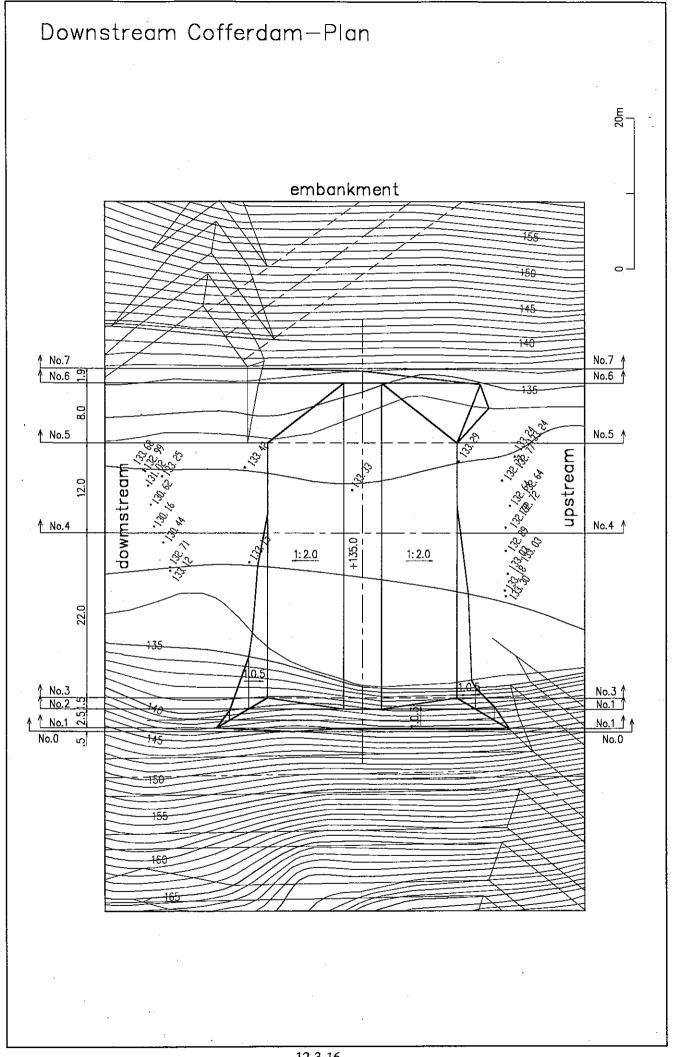

No.2

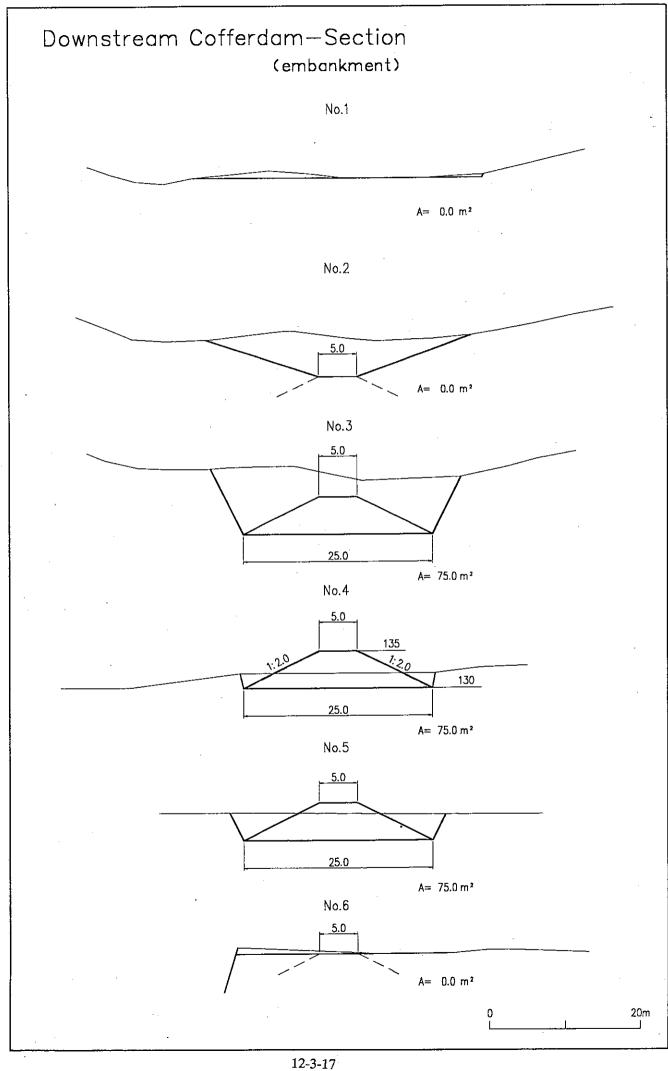

No.3


No.4

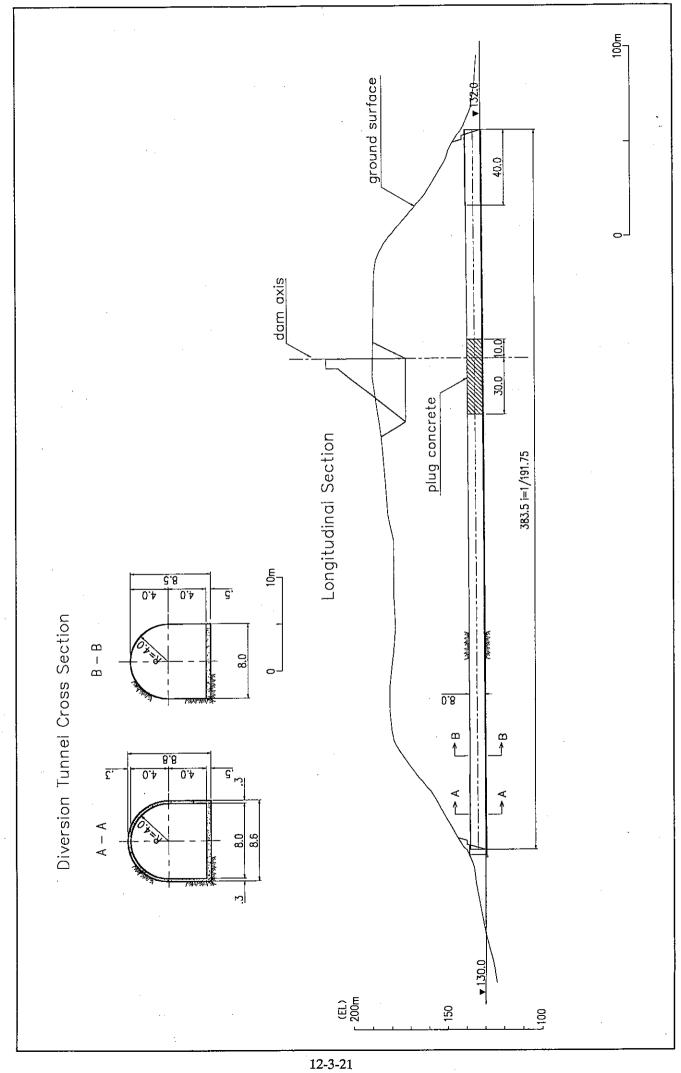

No.5



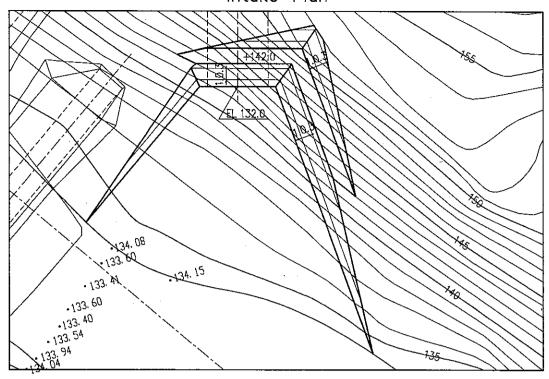

20m



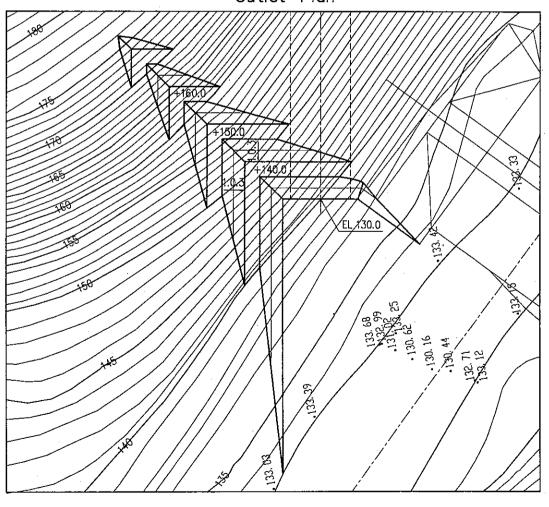
ט נט	ownstrea	m Cofferd	lam	<u> </u>	-						
Type of	Works			<u> </u>	Calculati	on				Quantit	У
< Exca	avation	>									
	ī	Common Ex			Excavation		1		1		
		Survey	1		Mean Area	Volume	Total	Notes			
		Station	Length(m)	Area (m²)	(m ²)	(m ³)	Volume (m ³		-		
		No.0		0.0					-		
		No. 1	0.5	11.5	5.75	2.9	2.9		-		
		No. 2	2.5	106.8	59.15	147.9	150.8				
		No.3	1.5	237.4	172.10	258. 2	408.9				
		No.4	22.0	50.8	144.10	3, 170. 2	3,579.1				
		No.5	12.0	95.9	73.35	880.2	4,459.3				
		No. 6	8.0	7.9	51.90	415.2	4,874.5		-		
		No. 7	1.9	0.0	3.95	7.5	4,882.0				
		cavation	4, 882. 0× 4, 882. 0×							3, 417. 4 1, 464. 6	
< Emba	ankment		1 -	<u> </u>				Notes	1		
		Survey	Section	l _	Mean Area	Volume (m³)	Total Volume (m ³	Notes			
		•	Length(m)	1	(m ²)	(ш.)	LOIGHG (m		1		
		No. 0		0.0	0.00	0.0	0.0				
		No.1	0.5	0.0	0.00	0.0	0.0		1		
		No. 2	2.5	0.0	0.00		56.3		1		
		No. 3	1.5	75.0	37.50	56.3	1,706.3		1		
		No. 4	22.0	75.0	75.00	1,650.0	2,606.3				
		No. 5	12.0	75.0	75.00	900.0	2,806.3		1		
		No. 6	8.0	0.0	37.50	300.0	2,906.3		1		
		No. 7	1.9	0.0	0.00	0.0	2,300.3		J		
		V =								2,906.3	m^3



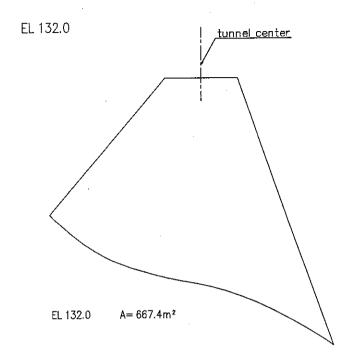
c) Diversion Tunne

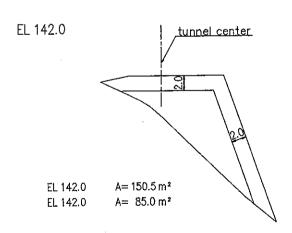

c) D	iversio	n Tunnel									
Type o	f Works				Calculati	on			Quantity		
Com	mon Exc	avation $>$					•				
(1)	Intake										
		Elevation	Head	Sectional	Mean Area	Volume	Total	Notes			
		(m)	(m)	Area (m²)	(m ²)	(m ³)	Volume (m ³				
		EL132.0		667.4		· · · · · · · · · · · · · · · · · · ·			1		
	l .	EL142.0	10.0	85.0	376.2	3,762.0	3,762.0				
		EL142.0	0.0	150.5	117.8	0.0	3,762.0				
		EL152.0	10.0	0.0	75.3	752.5	4,514.5				
		٠									
İ							V = 4,514.	$5 \mathrm{m}^{3}$	1		
					÷				,		
(2)	Outlet										
		r		·							
		Elevation	Head	_	1		Total	Notes			
		(m)	(m)	Area (m²)	(m ²)	(m ³)	Volume (m³				
		EL130.0	·	415.7							
		EL140.0	10.0	64.5	240.1	2,401.0	2,401.0				
			0.0	Ť	91.2	0.0	2,401.0				
			10.0		74.0	739.5	3,140.5				
		EL150.0	0.0	66.8	48.5	0.0	3,140.5				
			• •				3,497.0				
					1		. 3,497.0]		
											
		EL176.0	6.0	0.0	7.2	43.2	3,666.2				
								. 3			
							V = 3,666.	2m°			
	Total	37 4 E1 4	LE 1 2 CC	6 9 <u>-</u> 9 100	3 3			1 Notes (m³			
	Total	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
	ļ `										
				•							
	`										
	<u> </u>										

Type of Works	T	·				Calcu	latio	on –						Quanti	ty_
< Tunnel Exc		>									·				
1 1	of Concre		ing									•			ĺ
				4.3^{2}	/	2	+	8.6	×	4.5	=	67.7	${\tt m}^2$		٠.
		= 40.0			Í							80.0			
											=	5, 416, 0	m ³		
Tunnel															.
l l'umor					/	2	4-	8.0	×	4.5	_	61.1	m^2		
				0	,	_	,	• • •							
				1.2											
Total	V 2	- 110	^	20								·			1
10021	$\Sigma V =$	= V1	+	V 2									=	23, 959, 9	m ³
	. 24		•	, 2											
Lining Cor	ocrata >					÷			•						
1		o Linin	ď												
raito				በፍ		•				.,	=	4. 3	m ²		
													_		Ì
Domt o												011.0	_		
Farto											=	4. 0	m ²		
				0.5											
				1.2											
Total	v 2 –		^	2								1, 22 2. 0	_		
local	5 W =	- 7/1	-1-	7/2									=	1.558.0	m ³
	Z V -	- 1	ı	V 2											
Lining Co	ncrete														
		= π×	(4.3^{2}	_	4.0^{2})	/2							
							,				=	6.3	m^2	· ·	
	ĭ. =									:	=	80.0	m		
													=	504.0	m ³
Total					= 2.0)62. Or	n³							2,062.0	m^3
		2,000			-,					-					
Reinforce	i Bar >														
j 1		einforc	ed 1	har is	cal	culat	ed b	v the	next	formu	ıla.]	
												lm³ conc	ret	е)	
I															
1 1															
1 1					_ 111		J J.10								
The							oner	ete =	64 R	kg/m ³	(See	the ne	xt 1	page)	
ine s		= 848.0						-	J 2. O	01 "	,	55 220	=	55.0	t
	VV =	- 040.0	^	04.	<u> </u>	1,000			-			····			


Type o	f Works	Calculation			Quantity
1370 0	1 1101110	Varoutation			Quantity
	(The a	mount of reinforced bar per 1 m ³ concrete)			
	\-	mount of rolling out but por r m donorous,		'	
	The con	dition of computation			•
		orced bar of circuit direction: D22@20			
İ		orced bar of horizontal direction D16@30			
		The protective covering is 10cm inside of the lining	cond	crete	
	The cal	culation of quantity	0011	01000.	
		irection of extension per 1m)			
	` -	The reinforced bar of the circumference direction			
		$L1 = (2\pi \times 4.1/2 + 4.1 \times 2 + 8.2) \times 5$ number	ers		
			=	146.4 m	
		w1 = 3.04 kg/m (D22)			
		$W1 = 146.4 \times 3.04$	=	445.1kg/m	
		The reinforced bar of the horizontal direction			,
		$L2 = (2\pi \times 4.1/2 + 4.1 \times 2 + 8.2)$	/	0.3	
		,	×		
	1		=	97.6 m	
		w2 = 1.56 kg/m (D16)			
		$W2 = 97.6 \times 1.56$	=	152.3kg/m	
		The total volume of the reinforced bar			
		$\Sigma W = (W1 + W2) \times 1.15$	=	687.0kg/m	·
		X Increase propotionally of 15% considering the joint	leng	th etc.	
,					
	(The a	mount of reinforced bar per 1 m³ concrete)			
1		The lining concrete volume of the lm tunnel length			
		V' = V / L = 848.0 / 80.0	=	$10.6 \text{m}^3/\text{m}$	
		The amount of reinforced bar per 1 m3 concrete			
		$W' = W / V' = 687.0 \text{kg/m} / 10.6 \text{m}^3 / \text{m}$	=	64.8kg/m³	
<pre>Plu</pre>	g Concre	ete >			
		$A = \pi \times 4.0^2 / 2 + 8.0 \times 4.0$	=	57.1 m ²	
		L = 40.0	=	40.0 m	
		$V = A \times L$		=	2,284.0m³
<u></u>	<u> </u>				

Diversion Tunnel—Common Excavaton Intake—Plan

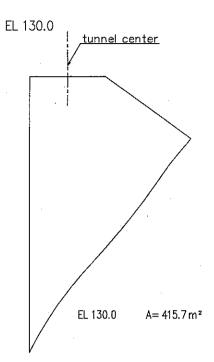

Outlet-Plan

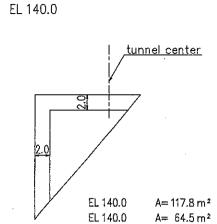


20m

Diversion Tunnel—Common Excavation

common excavation (intake)

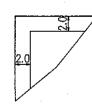




0 20m

Diversion Tunnel—Common Excavation

common excavation (outlet)



EL 150.0

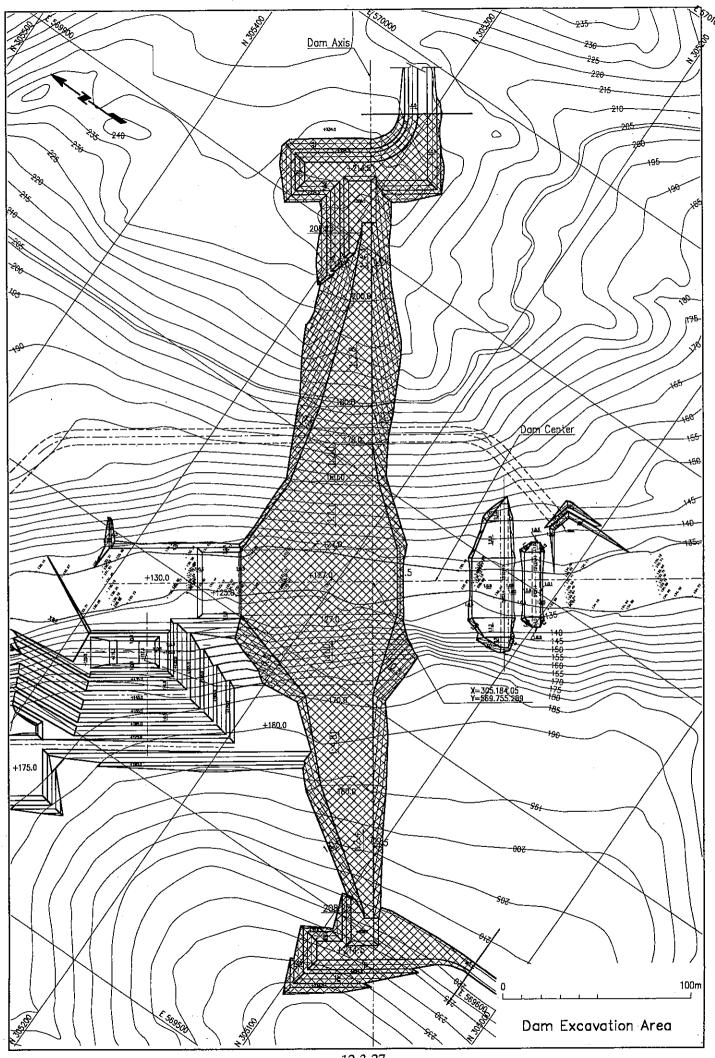
EL 160.0

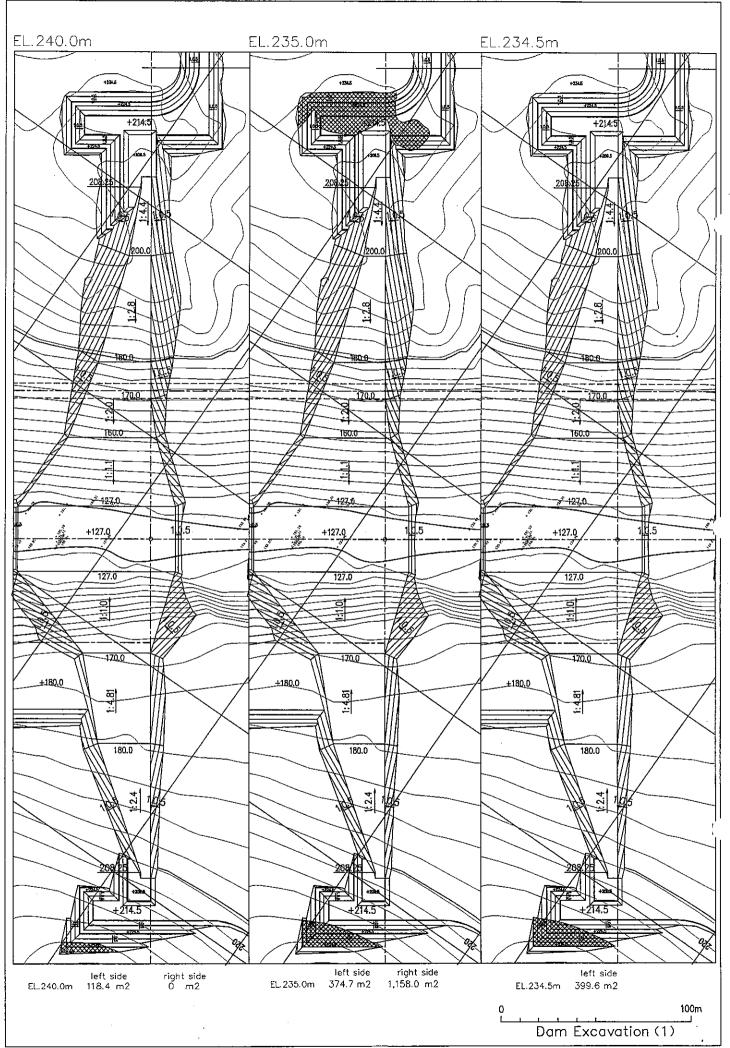
EL 170.0

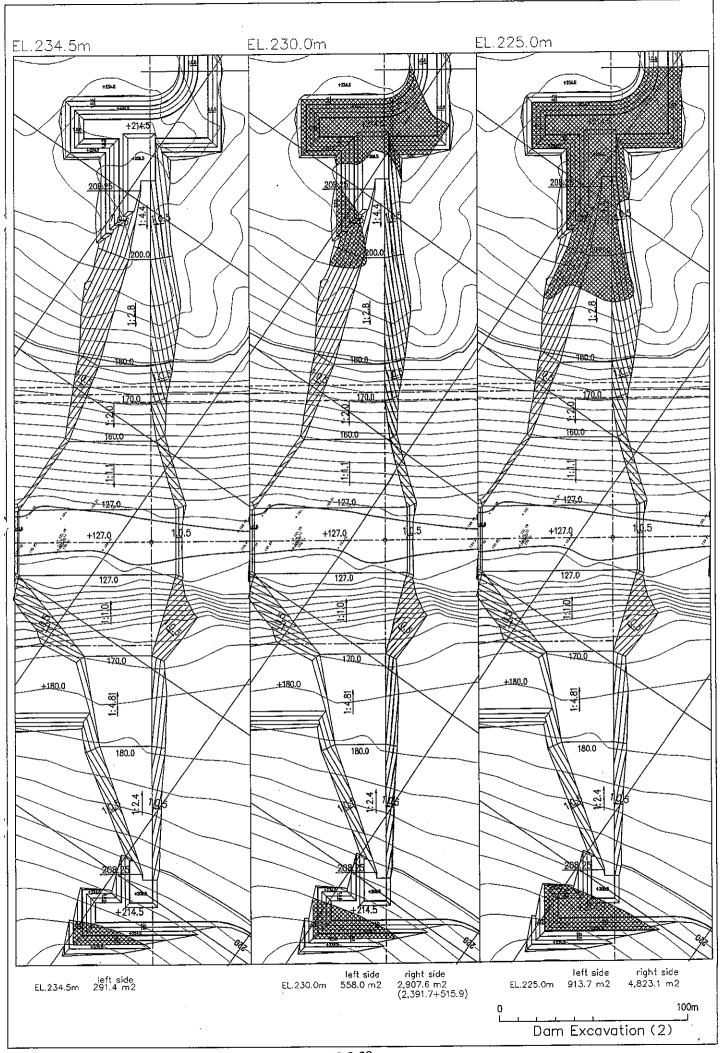
EL 150.0 A= 66.8 m² EL 150.0 A= 30.1 m²

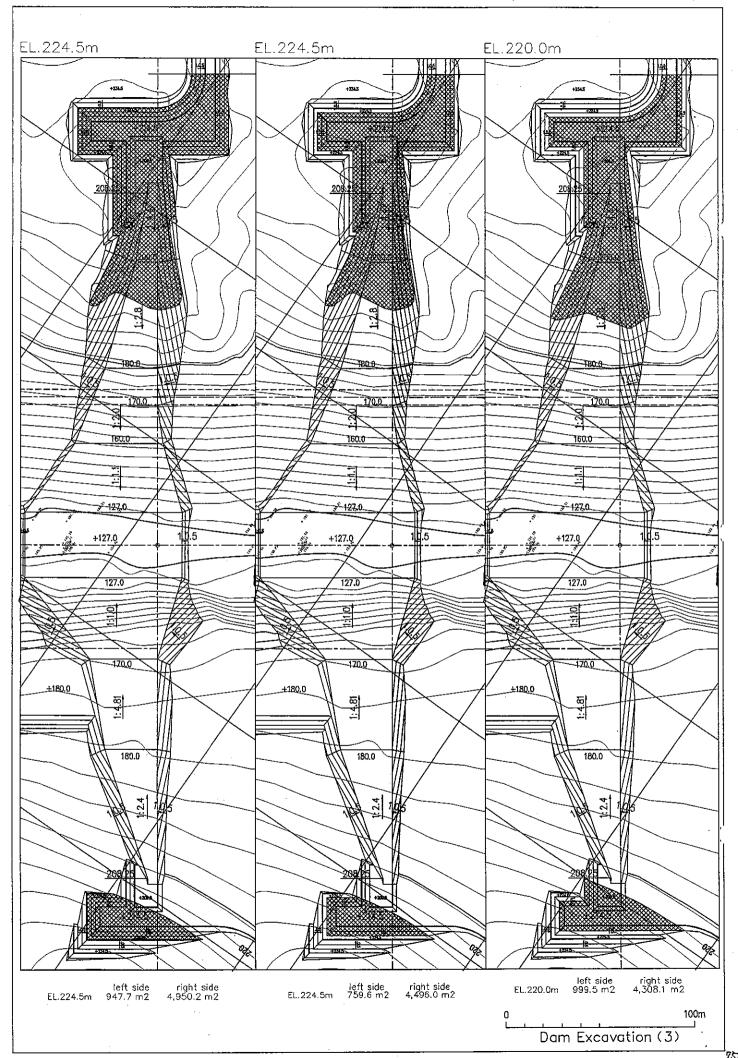
2.0

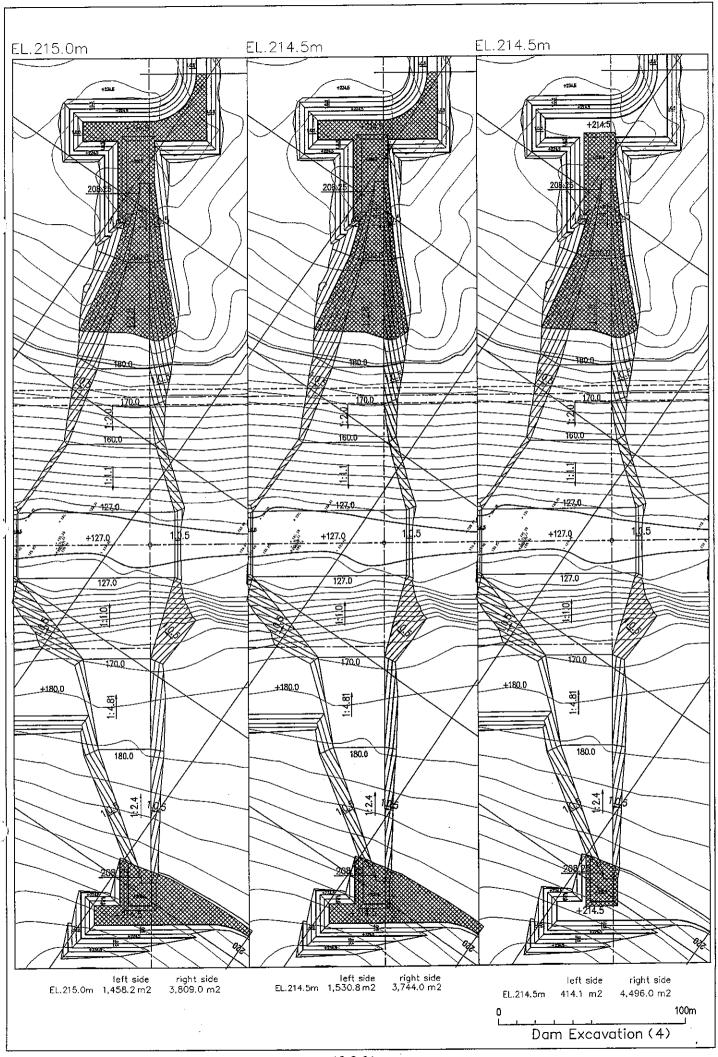
EL 160.0 A= 24.3 m² EL 160.0 A= 4.5 m²

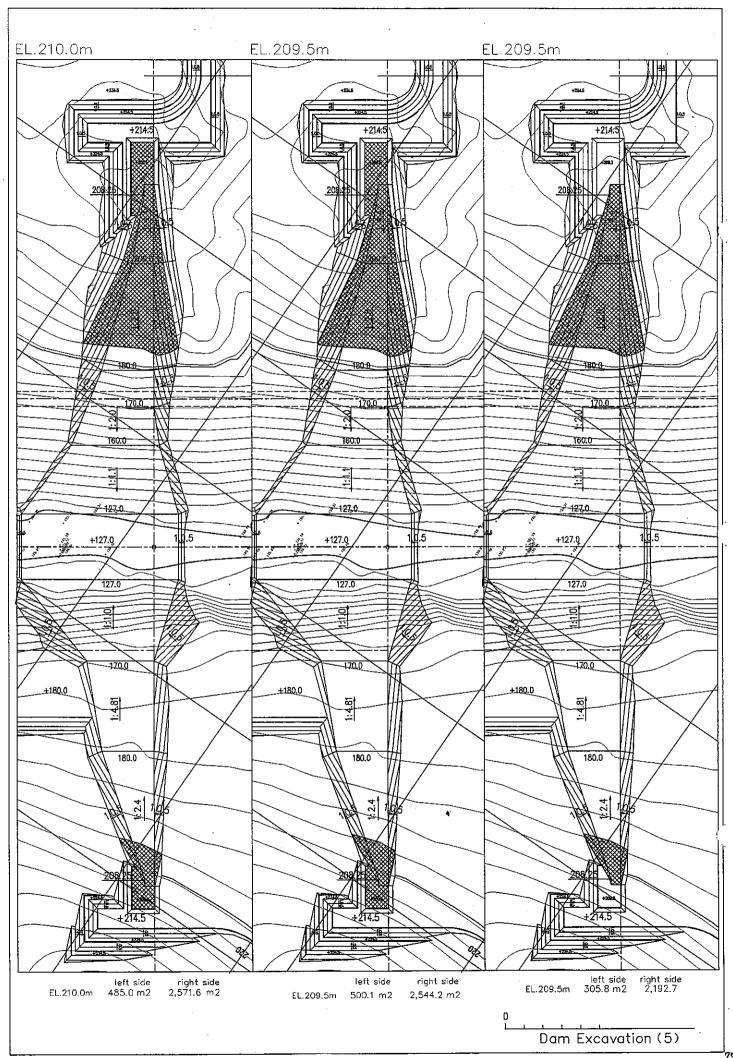

EL 170.0 A= 14.4 m² EL 170.0 A= 0.9 m²

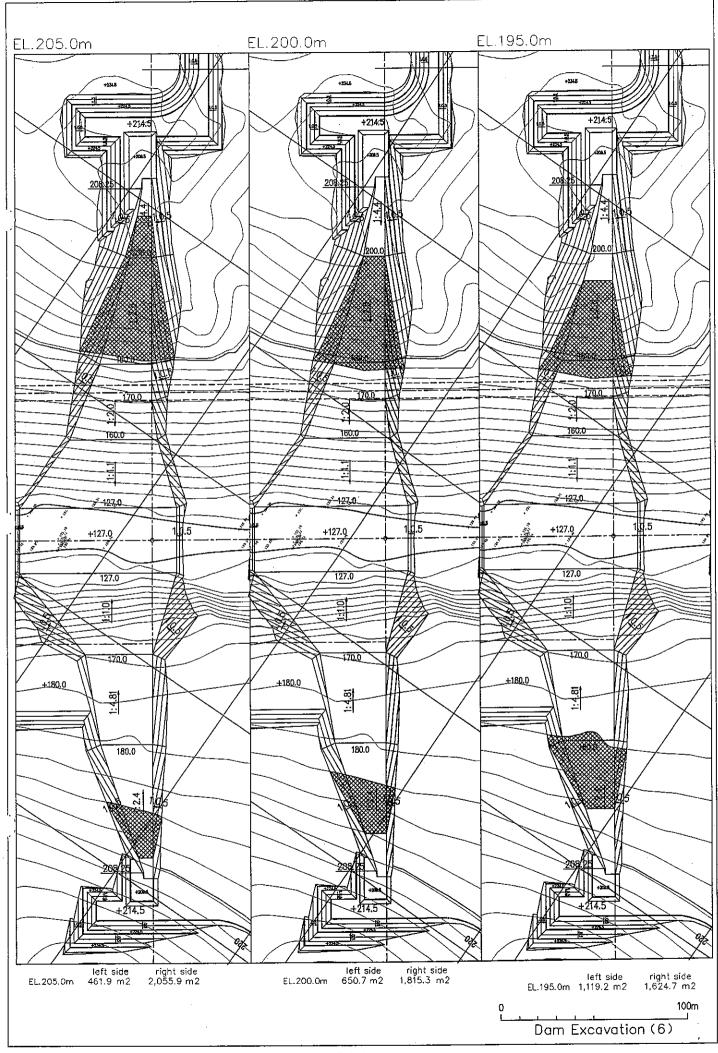

0 200

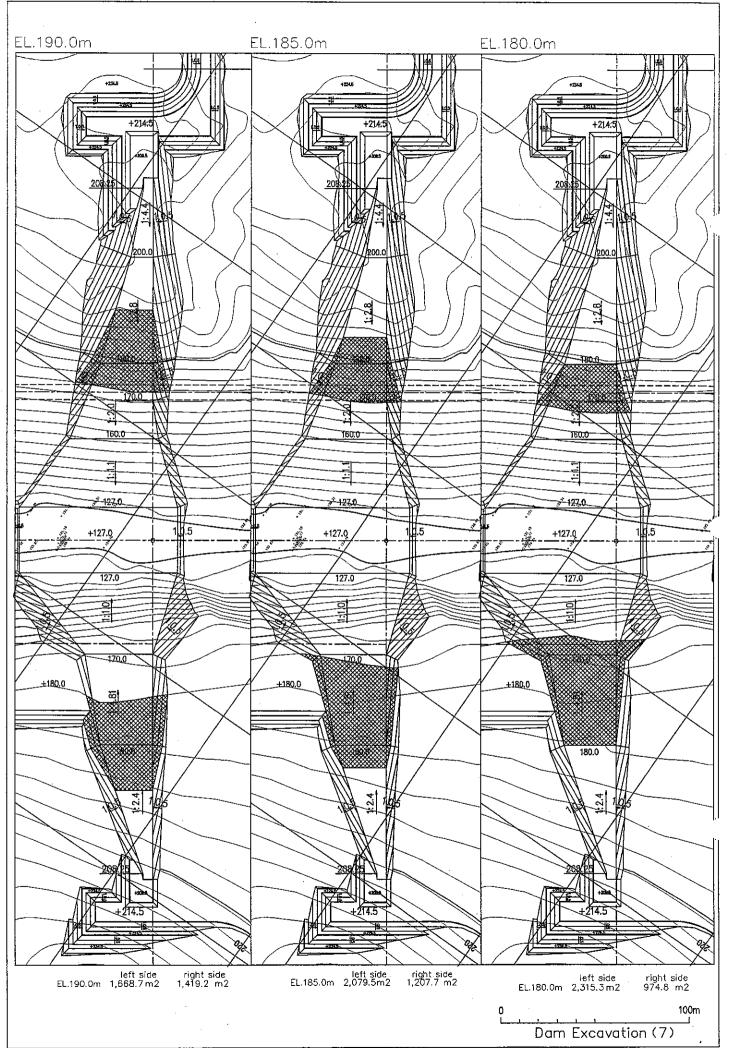

(2) Dam a) Dam

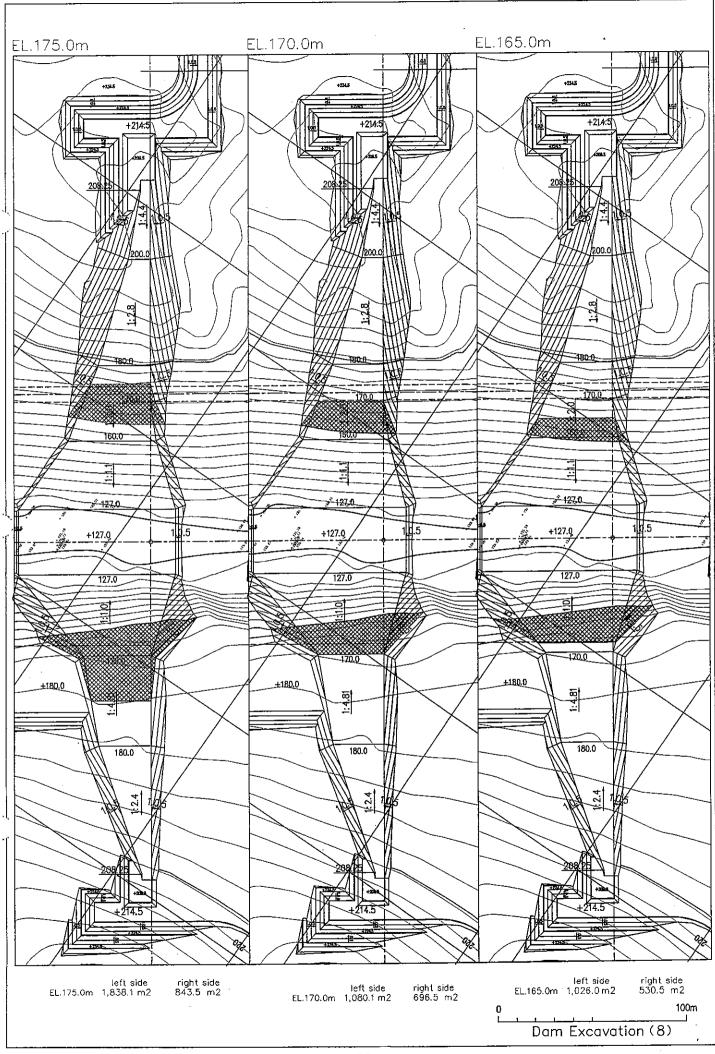

ype of Work	S		· ·	Calculation	n			Quantity
Common Ex	cavation a	nd Roc	k Excava	tion>				
The	l <u>eft bank</u>	of dam	center l	ine [Dam]		 		
	Elevation	Head	Sectional	Mean Area	Volume	Total	Notes	
	(m)	(m)	Area (m²)	(m ²)	(m ³)	Volume(m³)		
	242.0		0.0					
	240. 0	2.0	118.4	59. 2	118. 4	118. 4		
	235. 0	5.0	374.7	246.6	1, 232. 8	1, 351. 2		
	234. 5	0.5	399.6	387. 2	193. 6	1, 544. 8		
	234. 5	0.0	291.4	345. 5	0.0	1, 544. 8		:
	230. 0	4. 5	558.0	424.7	1, 911. 2	3, 456. 0		
	225.0	5.0	913.7	735. 9	3, 679. 3	7, 135. 3		
ŀ	224. 5	0. 5	947.7	930. 7	465. 4	7, 600. 7		
	224. 5	0.0	759. 6	853. 7	0.0	7, 600. 7		
	220. 0	4.5	999. 5	879.6	3, 958. 0	11, 558. 7		
	215. 0	5. 0	1, 458. 2	1, 228. 9	6, 144. 3	17, 703. 0		
	214. 5	0.5	1, 530. 8	1, 494. 5	747.3	18, 450. 3		
	214. 5	0.0	414. 1	972. 5	0.0	18, 450. 3		
	210. 0	4. 5	485.0	449. 6	2, 023. 0	20, 473. 3		
	209. 5	0.5_	500. 1	492. 6	246. 3	20, 719. 6		
	209. 5	0.0	305.8	403.0	0.0	20, 719. 6		
	205. 0	4. 5	461.9	383. <u>9</u>	1, 727. 3	22, 446. 9		
	200. 0	5. 0	650.7	556.3	2, 781. 5	25, 228. 4		
	195. 0	5, 0	1, 119. 2	885. 0	4, 424. 8	29, 653. 2		
	190. 0	5, 0	1, 668. 7	1, 394. 0	6, 969. 8	36, 623. 0		
	185. 0	5. 0	2, 079. 5	1,874.1	9, 370. 5	45, 993. 5		
	180. 0	5. 0	2, 315. 3	2, 197. 4_	10, 987. 0	56, 980. 5		
	175. 0	5. 0	1, 838. 1	2, 076. 7	10, 383. 5	67, 364. 0		
	170. 0	5. 0	1, 080. 1	1, 459. 1	7, 295. 5	74, 659. 5		
	165. 0	5. 0	1, 026. 0	1, 053. 1	5, 265. 3	79, 924. 8		
	160.0	5. 0	967.8	996. 9	4, 984. 5	84, 909. 3		
	155. 0	5. 0	916.8	942. 3	4, 711. 5	89, 620. 8		
	150. 0	5. 0	826. 0	871. 4	4, 357. 0	93, 977. 8		
	145. 0	5.0	745. 3	785. 7	3, 928. 3	97, 906. 1		
	140.0	5.0	665. 4	705. 4	3, 526. 8	101, 432. 9		
	135. 0	5.0	1, 141. 8	903. 6	4, 518. 0	105, 950. 9		
	130. 0	5.0	1, 726. 1		7, 169. 8	113, 120. 7		
	127. 0	3.0	1, 450. 8		4, 765. 4	117, 886. 1		
	Total				117, 886. 1			

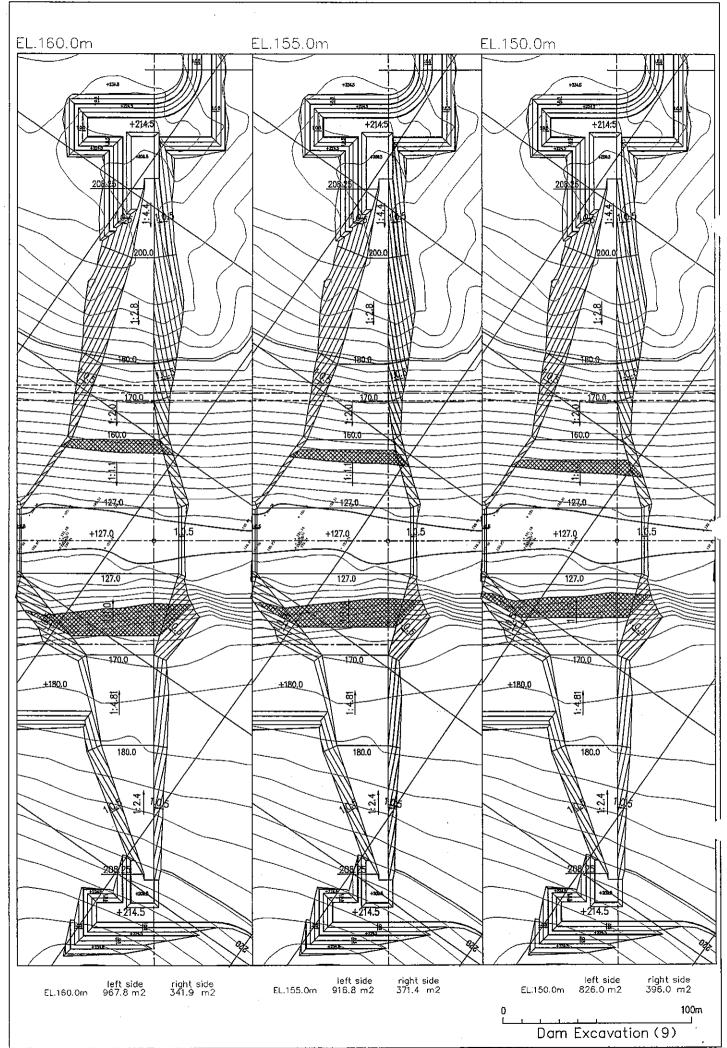

pe of Works				Calculatio	n			Quant	ity
	- 120				_				
The r	ight bank	of dar	n center	line [Dam]			·	,	
	Elevation	Head	Sectional	Mean Area	Volume	Total	Notes		
	(m)	(m)	Area (m²)	(m ²)	(m ³)	Volume(m³)			
	237.5		0.0						
	235.0	2.5	1,158.0	579.0	1,447.5	1,447.5			
	230.0	5.0	2,907.6	2,032.8	10,164.0	11,611.5			
	225.0	5.0	4, 823. 1	3,865.4	19,326.8	30, 938. 3			
	224.5	0.5	4,950.2	4,886.7	2,443.3	33,381.6			
	224.5	0.0	4,496.0	4,723.1	0.0	33,381.6			
	220.0	4.5	4, 308. 1	4,402.1	19,809.2	53, 190.8			
	215.0	5.0	3,809.0	4,058.6	20, 292. 8	73, 483.6			
	214.5	0.5	3,744.0	3,776.5	1,888.3	75,371.9	· · · · · · · · · · · · · · · · · · ·		
	214.5	0.0	4, 496.0	4, 120.0	0.0	75,371.9			
	210.0	4.5	2,571.6	3,533.8	15,902.1	91,274.0			
	209.5	0.5	2,544.2	2,557.9	1,279.0	92,553.0			
	209.5	0.0	2, 192. 7	2,368.5	0.0	92,553.0			
	205.0	4.5	2,055.9	2, 124. 3	9,559.4	102, 112. 4]	
	200.0	5.0	1,815.3	1,935.6	9,678.0	111,790.4			
	195.0	5.0	1,624.7	1,720.0	8,600.0	120,390.4		.	
	190.0	5.0	1,419.2	1,522.0	7,609.8	128,000.2			
	185.0	5.0	1,207.7	1,313.5	6,567.3	134,567.5			
	180.0	5.0	974.8	1,091.3	5, 456.3	140,023.8			
	175.0	5.0	843.5	909.2	4,545.8	144, 569. 6	····		
	170.0	5.0	696.5	770.0	3,850.0	148, 419.6			
	165.0	5.0	530.5	613.5	3,067.5	151,487.1			
	160.0	5.0	341.9	436.2	2,181.0	153,668.1			
:	155.0	5.0	371.4	356.7	1,783.3	155, 451. 4	-		
	150.0	5.0	396.0	383.7	1,918.5	157, 369. 9			
}	145.0	5.0	415.4	405.7	2,028.5	159,398.4			
	140.0	5.0	437.6	426.5	2, 132. 5	161,530.9			
	135.0	5.0	528.6	483.1	2, 415. 5	163,946.4			
	130.0	5.0	1,750.8	1,139.7	5,698.5	169,644.9			
	127.0	3.0	1,450.8	1,600.8	4,802.4	174,447.3	·		
	Total				174, 447.3]	
							•		
Tot	al excavatio	n volun	ne=117,8	86.1(Left Ba	nk)+174,4	47.3(Right B	ank) = 292,3	m ³	
Est	imated Ra	tio··(Common Ex			cavation) =			
						vation) =	=	1	
				V a (Rock Exca	vation) =	175,400.0	m ³	

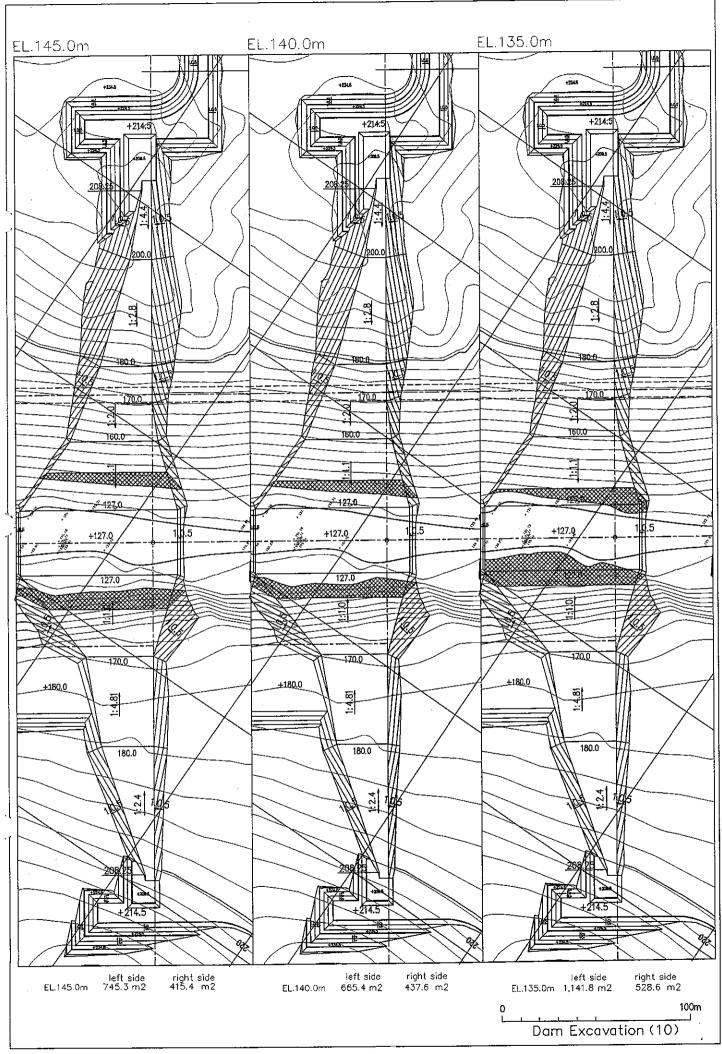


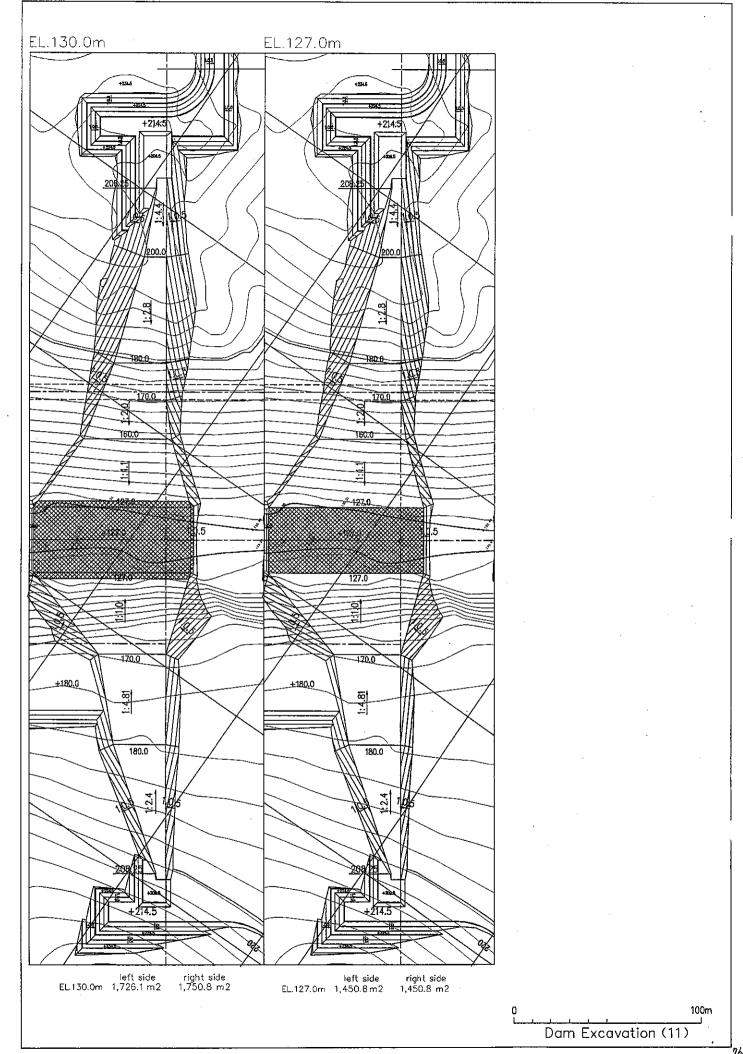


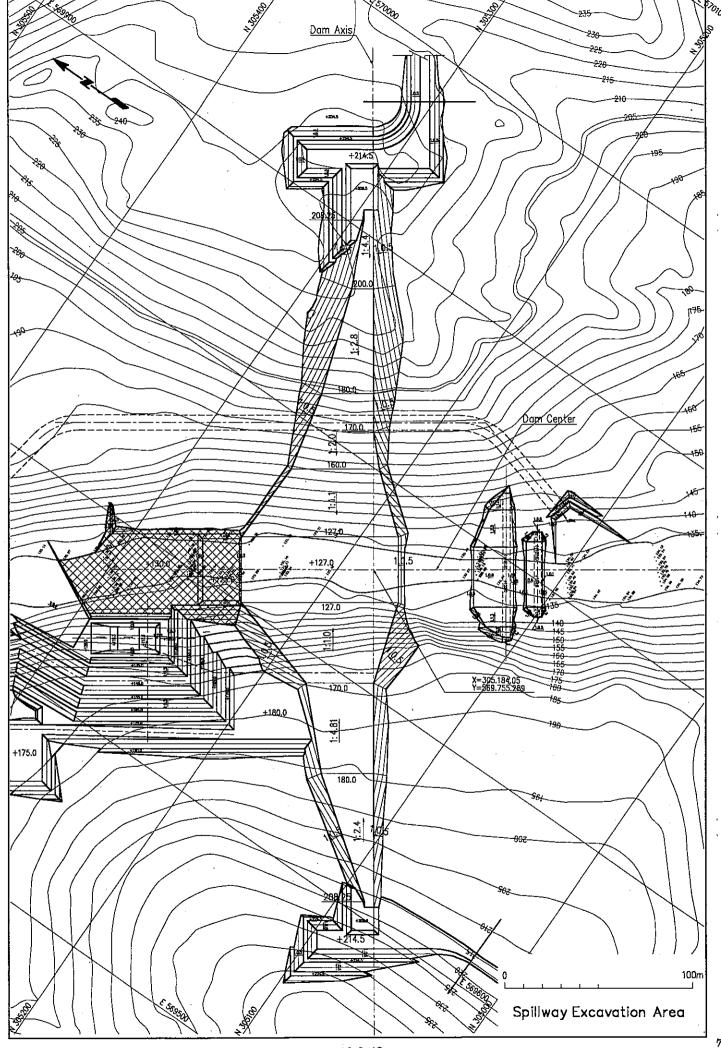


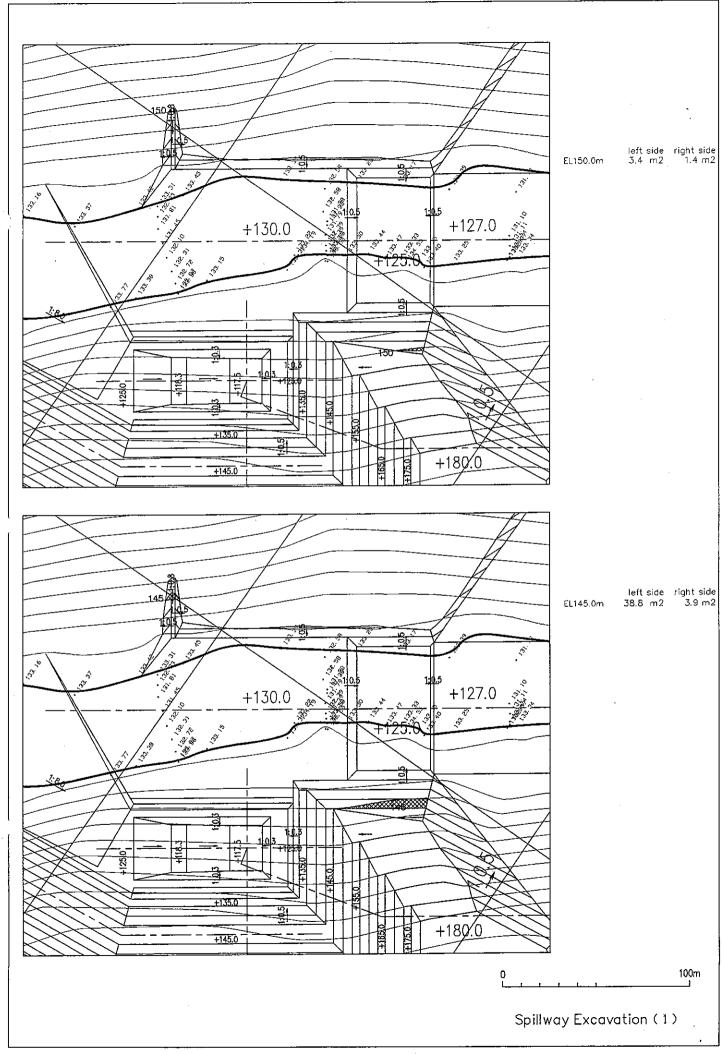


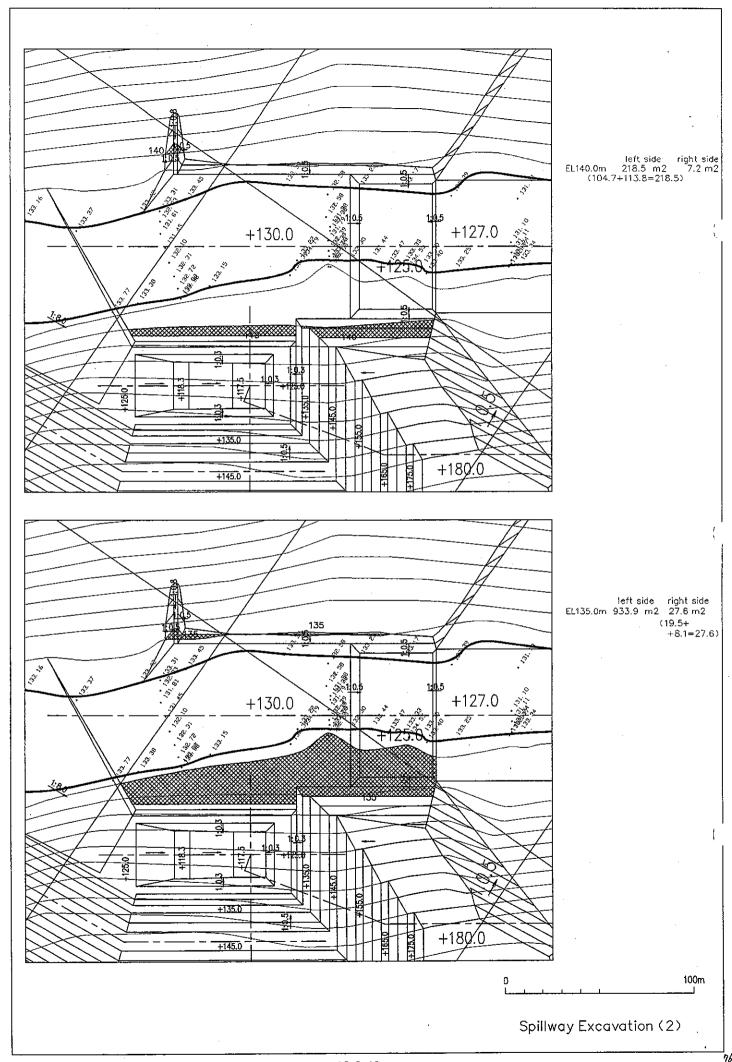


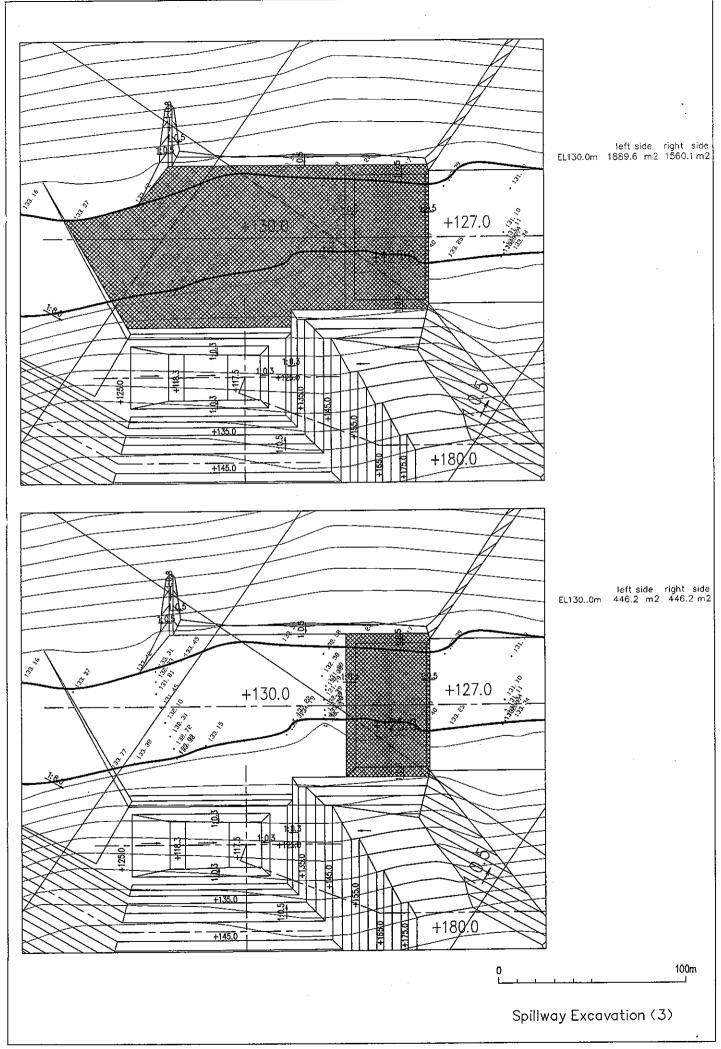


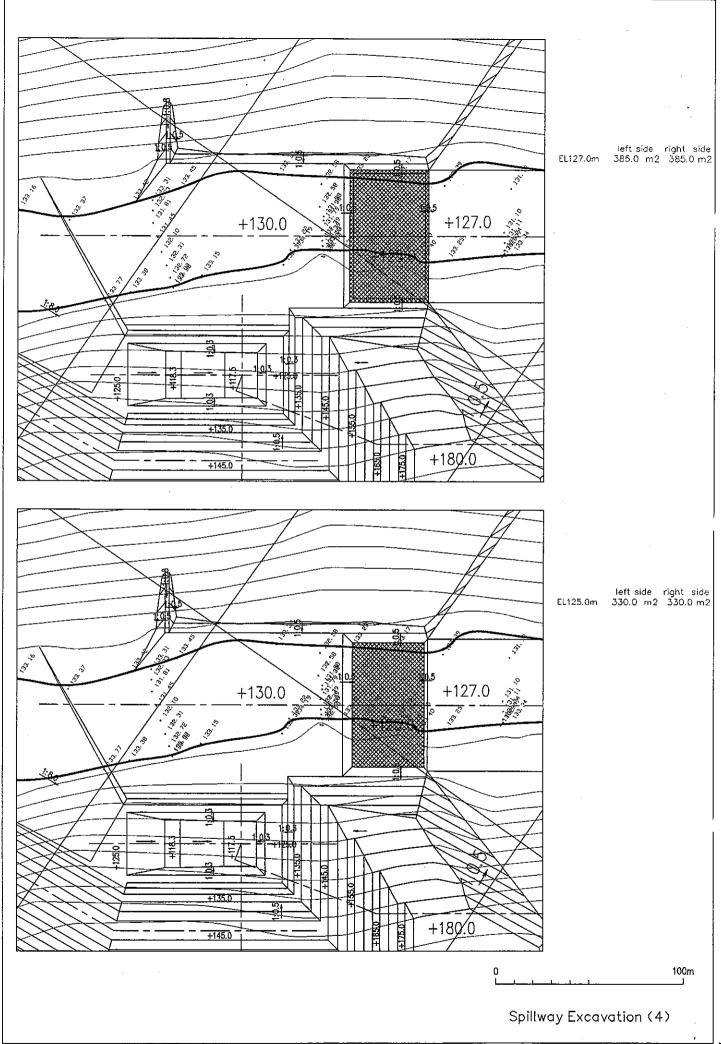











1	3			Calculatio	n			
The :	l <u>eft bank</u>	of dam	1	ine (Flood		Yaterway)		
	Elevation	Head	Sectional	Mean Area	Volume	Total	Notes	
	(m)	(m)	Area (m²)	(m ²)	(m ³)	Volume(m³)		
	151.8		0.0					
	150.0	1.8	3.4	1.7	3.1	3.1		
	145.0	5.0	38.8	21.1	105.5	108.6		
	140.0	5.0	218.5	128.7	643.3	751.9		
	135.0	5.0	933.9	576.2	2,881.0	3,632.9		
	130.0	5.0	1,889.6	1,411.8	7,058.8	10,691.7		
	130.0	0.0	446.2	1,167.9	0_0	10,691.7		
	127.0	3.0	385.0	415.6	1,246.8	11,938.5		
	125.0	2.0	330.0	357.5	715.0	12,653.5		
	Total				12,653.5			
The	right bank Elevation	Head	Sectional	line [Floo	Volume	Total	Notes	
The	right bank Elevation	Head	Sectional	Mean Area	Volume	Total	Notes	
The	right bank	T	1	Mean Area	Volume		Notes	
The	right bank Elevation (m)	Head	Sectional Area (m²)	Mean Area	Volume	Total Volume(m ³)	Notes	
The	right bank Elevation (m) 151.8	Head (m)	Sectional Area (m²) 0.0	Mean Area (m²)	Volume (m ³)	Total Volume(m ³)	Notes	
The :	right bank Elevation (m) 151.8	Head (m)	Sectional Area (m²) 0.0	Mean Area (m²) 0.7 2.7	Volume (m ³)	Total Volume (m³) 1.3 14.6	Notes	
The	right bank Elevation (m) 151.8 150.0 145.0	Head (m) 1.8 5.0	Sectional Area (m²) 0.0 1.4 3.9	Mean Area (m²) 0.7 2.7 5.6	Volume (m ³) 1.3 13.3	Total Volume (m³) 1.3 14.6 42.4	Notes	
The :	right bank Elevation (m) 151.8 150.0 145.0 140.0	Head (m) 1.8 5.0 5.0	Sectional Area (m²) 0.0 1.4 3.9 7.2	Mean Area (m ²) 0.7 2.7 5.6 17.4	Volume (m³) 1.3 13.3 27.8	Total Volume (m³) 1.3 14.6 42.4 129.4	Notes	
The	right bank Elevation (m) 151.8 150.0 145.0 140.0 135.0	Head (m) 1.8 5.0 5.0 5.0	Sectional Area (m²) 0.0 1.4 3.9 7.2 27.6	Mean Area (m ²) 0.7 2.7 5.6 17.4 793.9	Volume (m ³) 1.3 13.3 27.8 87.0	Total Volume (m³) 1.3 14.6 42.4 129.4 4,098.7	Notes	
The	right bank Elevation (m) 151.8 150.0 145.0 140.0 135.0 130.0	Head (m) 1.8 5.0 5.0 5.0 5.0 3.0	Sectional Area (m²) 0.0 1.4 3.9 7.2 27.6 1,560.1	Mean Area (m ²) 0.7 2.7 5.6 17.4 793.9 1,003.2	Volume (m³) 1.3 13.3 27.8 87.0 3,969.3	Total Volume (m³) 1.3 14.6 42.4 129.4 4,098.7 4,098.7 5,345.5	Notes	
The	right bank Elevation (m) 151.8 150.0 145.0 140.0 135.0 130.0	Head (m) 1.8 5.0 5.0 5.0 0.0	Sectional Area (m²) 0.0 1.4 3.9 7.2 27.6 1,560.1 446.2	Mean Area (m ²) 0.7 2.7 5.6 17.4 793.9 1,003.2 415.6	Volume (m³) 1.3 13.3 27.8 87.0 3,969.3 0.0	Total Volume (m³) 1.3 14.6 42.4 129.4 4,098.7 4,098.7 5,345.5	Notes	
The	right bank Elevation (m) 151.8 150.0 145.0 140.0 135.0 130.0 130.0	Head (m) 1.8 5.0 5.0 5.0 5.0 3.0	Sectional Area (m²) 0.0 1.4 3.9 7.2 27.6 1,560.1 446.2 385.0	Mean Area (m ²) 0.7 2.7 5.6 17.4 793.9 1,003.2 415.6	Volume (m³) 1.3 13.3 27.8 87.0 3,969.3 0.0 1,246.8	Total Volume (m³) 1.3 14.6 42.4 129.4 4,098.7 4,098.7 5,345.5 6,060.5	Notes	

Quantity Calculation Type of Works < Dam Concrete (RCC), Inner concrete > 1) Whole volume [Reference drawing] Situation of section, Calculation of concrete volume (1) \sim (6) Survey Section | Sectional | Mean Area | Volume Total Notes Volume (m³) (m^3) Station | Length (m) | Area (m²) (m^2) 8.4 No. 3 116. 75 4, 705. 0 225. 1 4, 705. 0 No. 4 40.3 48.1 343. 20 | 16, 507. 9 | 21, 212. 9 No. 5 461.3 825. 95 | 16, 106. 0 | 37, 319. 0 No. 6-1 19.5 | 1, 190.6 0.0 0. 0 | 1, 137. 5 | 1, 164. 05 37, 319. 0 No. 6-2 2, 570. 6 | 1, 854. 05 | 43, 570. 2 | 80, 889. 1 23.5 No. 7 35. 0 | 2, 570. 6 | 2, 570. 60 | 89, 971. 0 | 170, 860. 1 No. 8 23. 5 1, 242. 7 1, 906. 65 44, 806, 3 215, 666, 4 No. 9-1 0. 0 215, 666. 4 No. 9-2 0. 0 | 1, 295. 1 | 1, 268. 90 784. 1 1, 039. 60 13, 306. 9 228, 973. 3 No. 10 12.8 622.70 12, 454. 0 241, 427. 3 20.0 461.3 No. 11 225. 1 | 343. 20 | 6, 864. 0 | 248, 291. 3 20.0 No. 12 116. 75 | 5, 487. 3 | 253, 778. 6 8.4 No. 13 47.0 Total Volume $V1 = 253,778.6 \text{ m}^3$ 2) Subtract volume [Reference drawing] Calculation of concrete volume(10) (1)Penstock Subtract area $A21 = \pi/4 \times 5.0^2 = 19.6 \text{ m}^2$ Subtract length L21 = 15.2 mSubtract volume $= 297.9 \text{ m}^3$ $V21 = A21 \times L21 = 19.6 \times 15.2$ [Reference drawing] Calculation of concrete volume(7), (9) ②Gallery Subtract area $A22 = 18.0 \text{ m}^2$ Subtract length L22 = 331.9 mSubtract volume $= 5,974.2 \text{ m}^3$ $V22 = A22 \times L22 = 18.0 \times 331.9$ 3Total of subtract volume $= 6,272.1 \text{ m}^3$ V2 = V21 + V22

3) Dam Concrete (RCC)

 $V = V_1 - V_2 =$

253, 778. 6 - 6, 272. 1

=247,506. m³

Type of Works Calculation Quantity

< Dam Concrete (Conventional) , Outer concrete >

(1) Crest of dam

1) Whole volume [Reference drawing] Situation of section, Calculation of concrete volume(1)~(6)

			volume	$(1) \sim (6)$			
Survey		_	Mean Area		Total	Notes	
Station	Length (m)	Area (m²)	(m ²)	(m ³)	Volume (m³)		
No. 1		25.0		-			
No. 2	12. 0	25.0	25. 00	300.0	300.0		
No. 2+19. 7	19. 7	85.6	55. 30	1, 089. 4	1, 389. 4		
No. 3	10.8	85.6	85.60	924. 5	2, 313. 9		
No. 4	40. 3	85.6	85. 60	3, 449. 7	5, 763. 6		
No. 5	48. 1	85.6	85. 60	4, 117. 4	9, 880. 9		
No. 6-1	19.5	85. 6	85. 60	1, 669. 2	11, 550. 1		
No. 6-2	0.0	0.0	42.80	0.0	11, 550. 1		
No. 7	23.5	0.0	0.00	0.0	11, 550. 1		
No. 8	35.0	0.0	0.00	0.0	11, 550. 1		
No. 9-1	23. 5	0.0	0.00	0.0	11, 550. 1		
No. 9-2	0.0	85.6	42.80	0.0	11, 550. 1		
No. 10	12.8	85. 6	85.60	1, 095. 7	12, 645. 8		
No. 11	20.0	85.6	85. 60	1, 712. 0	14, 357. 8	· 	
No. 12	20.0	85.6	85. 60	1, 712.0	16, 069. 8		
No. 13	47.0	85. 6	85. 60	4, 023. 2	20, 093. 0		
No. 14	9.0	85.6	85. 60	770. 4	20, 863. 4		
No. 14+5. 7	5. 7	85, 6	85. 60	487. 9	21, 351. 3		
No. 15	36. 1	25. 0	55. 30	1, 996. 3	23, 347. 7		
No. 16	22. 0	25. 0	25.00	550.0	23, 897. 7		

Total Volume $V1 = 23,897.7 \text{ m}^3$

2)Subtract volume

Gallery [Reference drawing] Calculation of concrete volume(7), (9)

Subtract area

$$A2 = 4.7 \text{ m}^2$$

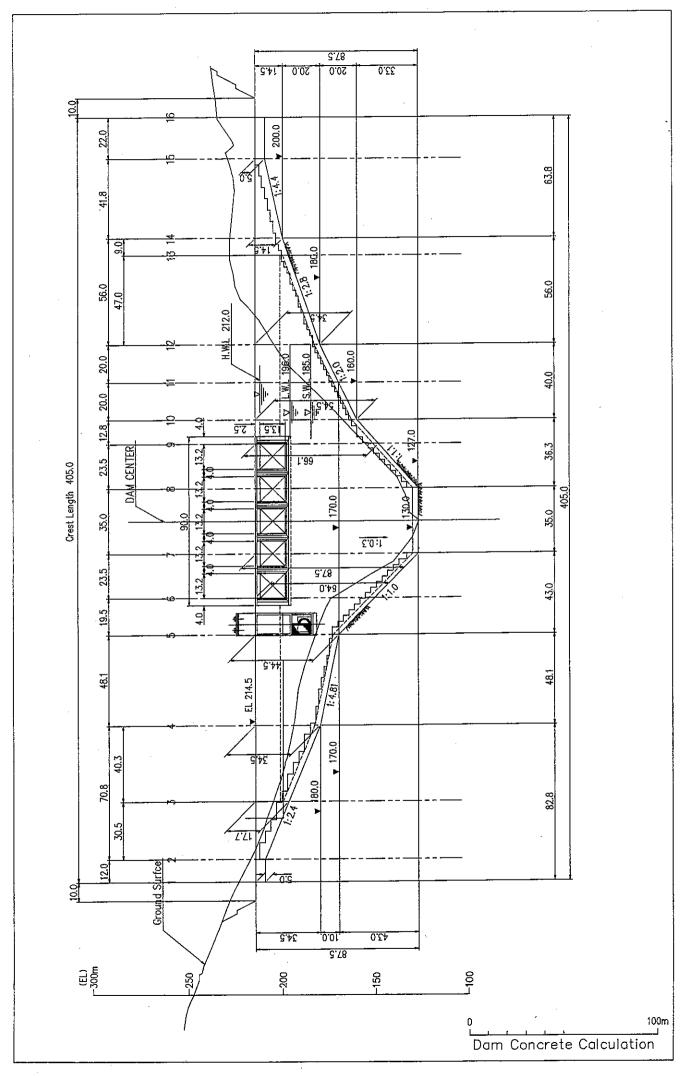
Subtract length

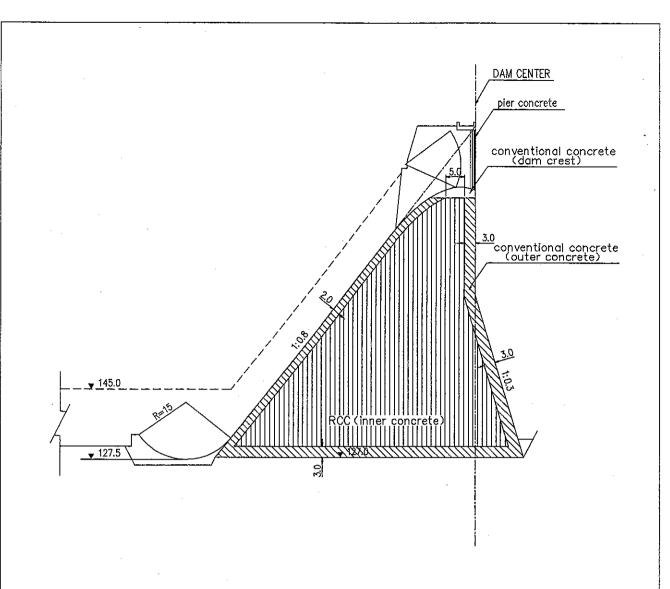
$$L2 = 25.5 + 42.1 = 67.6 m$$

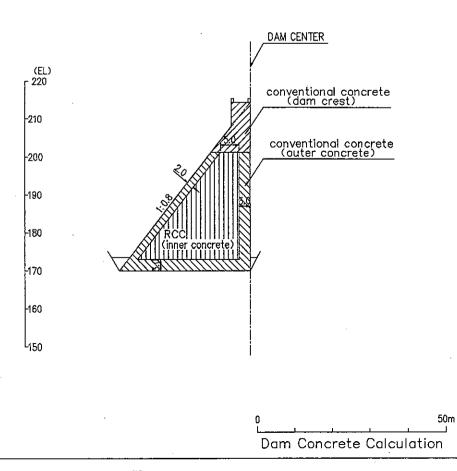
Subtract volume

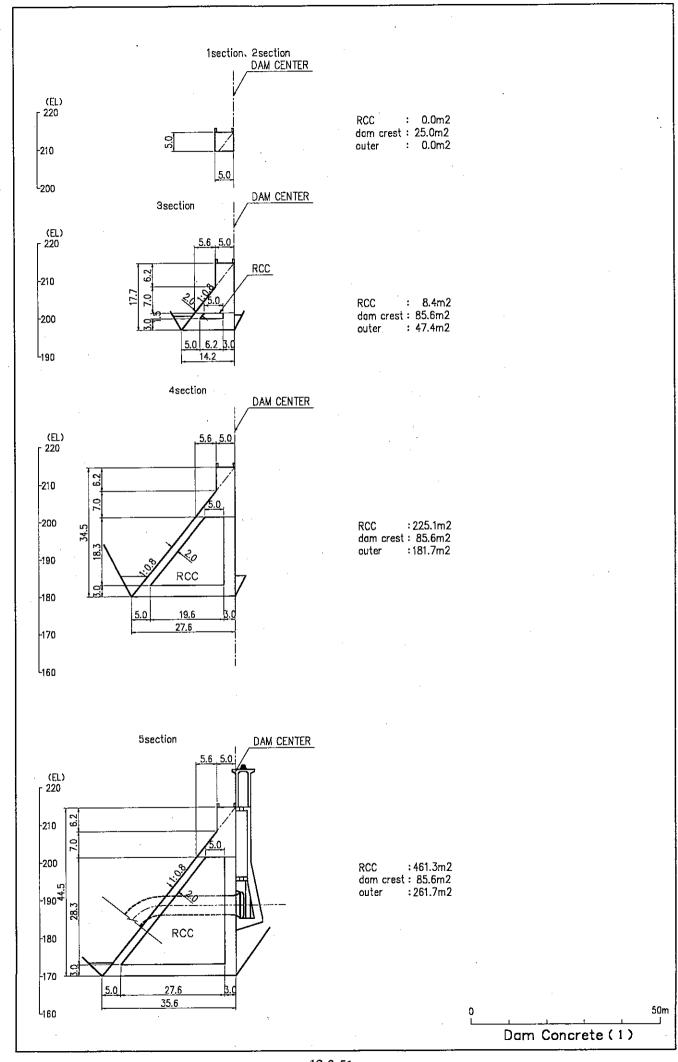
$$V2 = A2 \times L2 = 4.7 \times 67.6$$

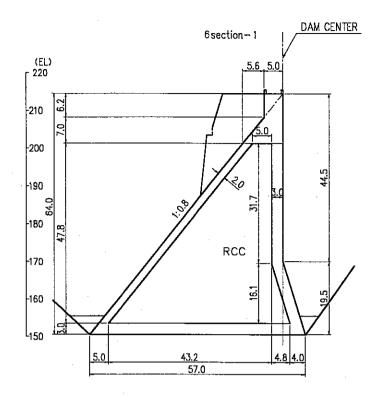
 $= 317.7 \text{ m}^3$

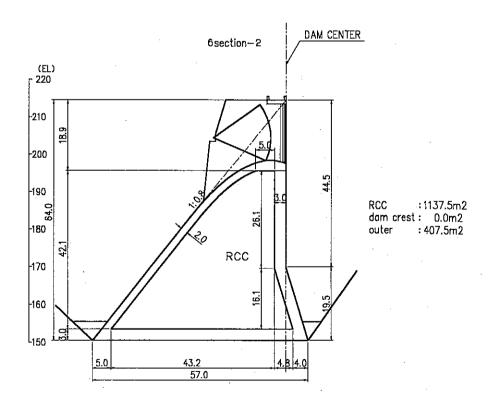

3)Dam Concrete (Conventional) : Crest of dam

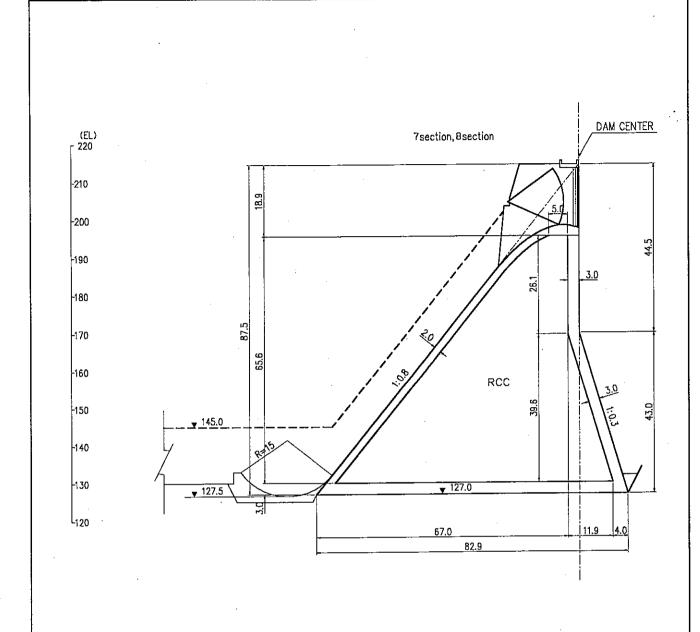

$$Vc = V1 - V2 = 23,897.7 - 317.7$$


 $= 23,580. \text{ m}^3$

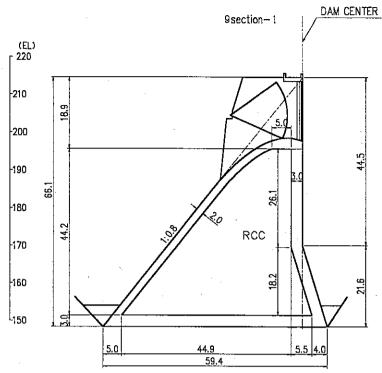

pe o	f Works				Calculati	on			Quantit
(2)	Surface	of dam							
	1)Whole	volume	[Reference	e drawing] Situatio	on of sec	tion, Calcu	<u>lation o</u> f	fconcrete
	:	Survey	Section	Sectional	Mean Area	Volume	Total	Notes	
		Station	Length (m)	Area (m²)	(m ²)	(m ³)	Volume (m³)		
		No. 2+19. 7		0.0					:
		No. 3	10.8	47.4	23. 70	256.0	256. 0		
		No. 4	40. 3	181. 7	114. 55	4, 616. 4	4, 872. 3		
		No. 5	48. 1	261.7	221.70	10, 663. 8	15, 536. 1		
		No. 6-1	19.5	435.7	348.70	6, 799. 7	22, 335. 7		
		No. 6-2	0.0	407.5	421.60	0.0	22, 335. 7		ļ
		No. 7	23. 5	619. 2	513.35	12, 063. 7	34, 399. 5		
		No. 8	35. 0	619. 2	619. 20	21, 672. 0	56, 071. 5		
		No. 9-1	23. 5	426.8	523.00	12, 290. 5	68, 362. 0		
		No. 9-2	0.0	454.7	440.75	0.0	68, 362. 0		
		No. 10	12.8	350. 1	402.40	5, 150. 7	73, 512. 7		
		No. 11	20.0	261.7	305.90_	6, 118. 0	79, 630. 7		
		No. 12	20.0	181. 7	221.70	4, 434. 0	84, 064. 7		
		No. 13	47.0	47.4	114. 55	5, 383. 9	89, 448. 5		
		No. 14	9.0	14. 4	30. 90	278. 1	89, 726. 6		
		No. 14+5. 7	5.7	0.0	7. 20	41.0	89, 767. 7		
	Pens		[Reference a π/4 ×	$5.0^2 =$] Calcula 19.6 m ² 5.5 ²) /		oncrete vol $21.7~{ ext{m}}^2$	ume (10)	
	S.,,1	H22 — otract len		(0.0 1	0.0 //	2	21.1 11		
	Sul			1.5 =	4.1 m				
			1.5 m	1.0	1. 1				
	Sul	tract vol							
	Juk			I.21 =	19.6 ×	4. 1	. =	80.4	m ³
٠					21. 7 ×			32.6	
	Sul	otract vol		Σtή					
	Jul		V21 +	V22			=	113.0	m ³


Type of Works Calculation	Quantity
3) Additional concrete volume	Quantity,
①Environ of gallery [Reference drawing] Calculation of concrete volume	(7), (9)
Additional area	.,, (5)
$A31 = 13.3 \text{ m}^2$	-
Additional length	
L31 = 25.5 + 42.1 = 67.6 m	
Additional volume	
$V31 = A31 \times L31 = 13.3 \times 67.6 = 899.1 \text{ m}^3$	
②Footing [Reference drawing] Calculation of concrete volume(7), (8)	
Standard section area of footing	
$A321 = 6.3 m^2$ (Upper stream; Vertical part)	
$A322 = 10.0 \text{ m}^2$ (Upper stream; Part of fillet)	
$A323 = 16.3 m^2 (Lower stream)$	
Established length of footing	
L321 = 119.0 + 114.7 = 233.7 m (Upper stream; Vertical part)	
L322 = 43.0 + 56.3 = 99.3 m (Upper stream; Part of fillet))
L323 = 150.0 + 156 = 306.0 m (Lower stream)	
Volume of footing	
$V321 = A321 \times L321 = 6.3 \times 233.7$ = 1,472.3 m ³	
$V322 = A322 \times L322 = 10.0 \times 99.3 = 993.0 \text{ m}^3$	4
$V323 = A323 \times L323 = 16.3 \times 306.0 = 4,987.8 \text{ m}^3$	
$\Sigma \text{ V32} = \text{ V321} + \text{ V322} + \text{ V323} = 7,453.1 \text{ m}^3$	
③Total volume of additional concrete	
$V3 = V31 + V32 = 8,352.2 \text{ m}^3$	
5,002.7	
4) Total concrete volume : Surface of dam	
$V = V_1 - V_2 + V_3$	
= 89, 767.7 - 113.0 + 8, 352.2	98,006. m ³
(3) Total volume of dam concrete (conventional) , outer concrete surface of da	
(b) Total volume of dam concrete (conventional), outer concrete surface of da	.ns
$V = 23,580.0 \text{ m}^3 + 98,006.9 \text{ m}^3 =$	=121, 586. m ³

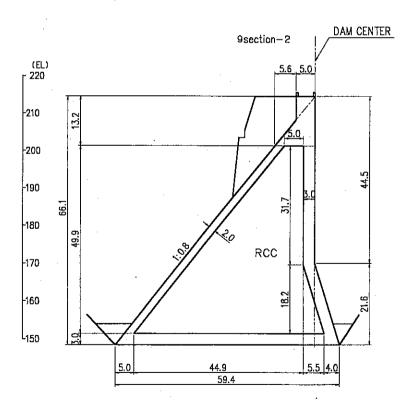




RCC :1190.6m2 dam crest : 85.6m2 outer :435.7m2

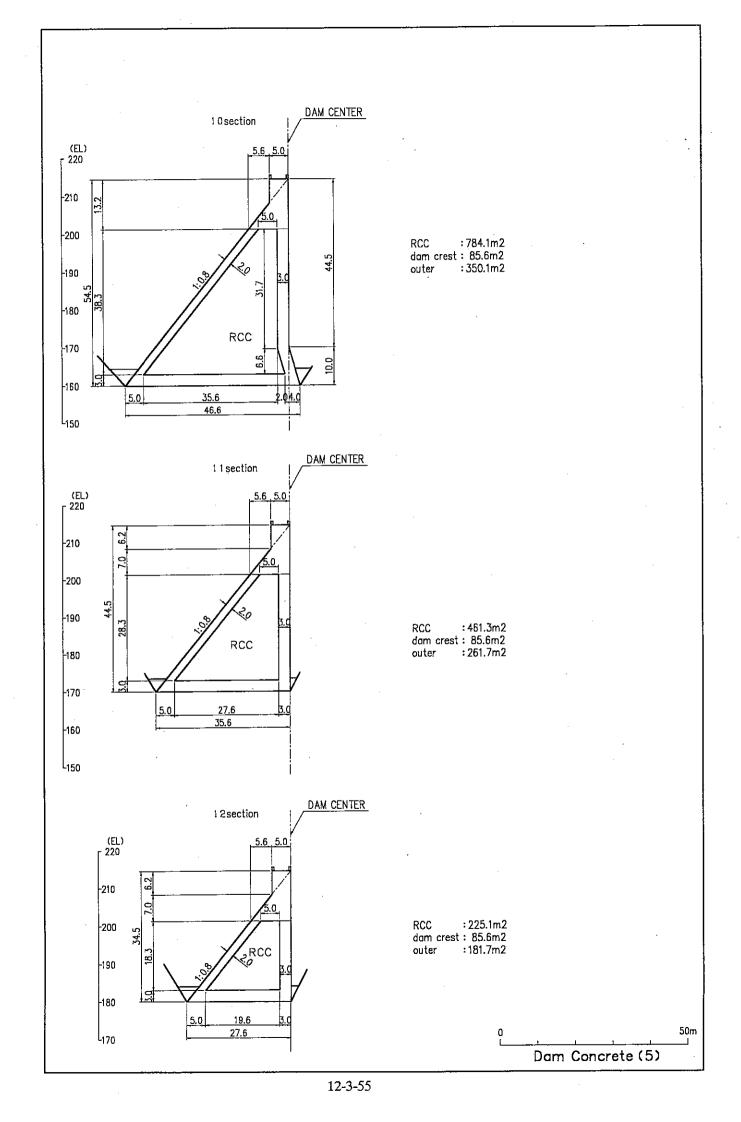


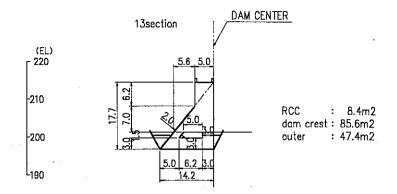
Dam Concrete (2)

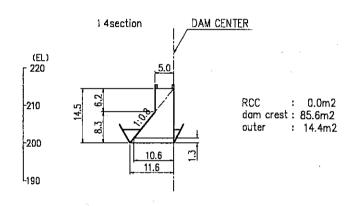


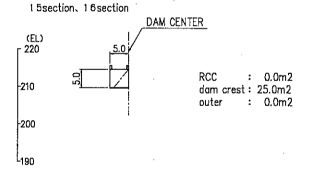
RCC : 2570.6m2 dam crest : 0.0m2 outer : 619.2m2

Dam Concrete (3)

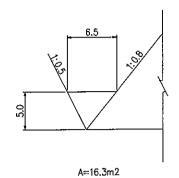


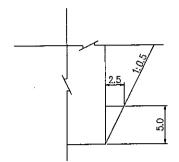

RCC :1242.7m2 dam crest : 0.0m2 outer :426.8m2



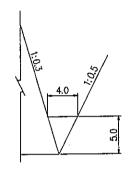

RCC :1295.1m2 dam crest : 85.6m2 outer :454.7m2

Dam Concrete (4)

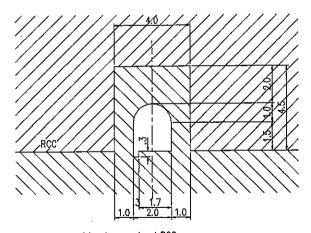


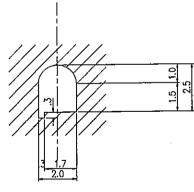

Dam Concrete (6)

Footing Cross Section


downstream

upstream

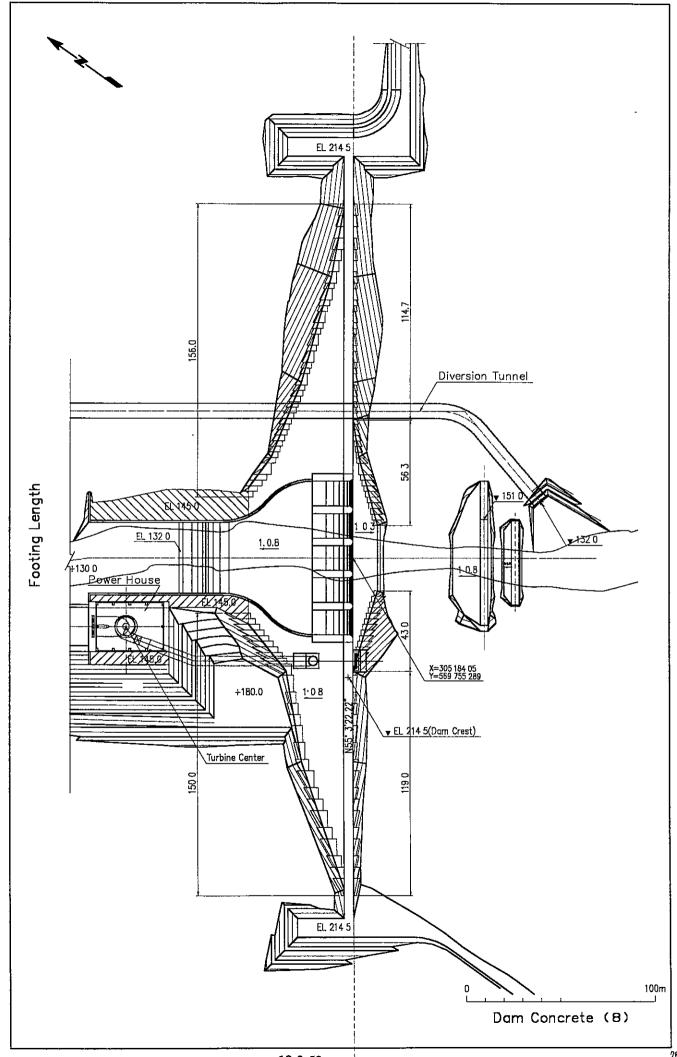

A = 6.3 m2

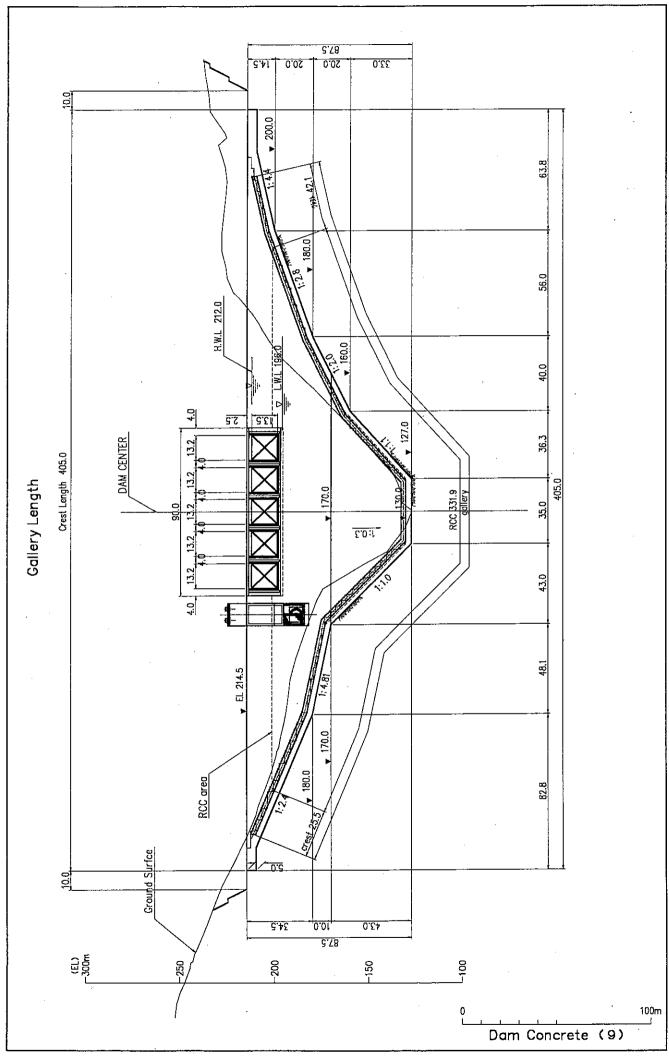

A=10.0m2

Gallery Cross Section

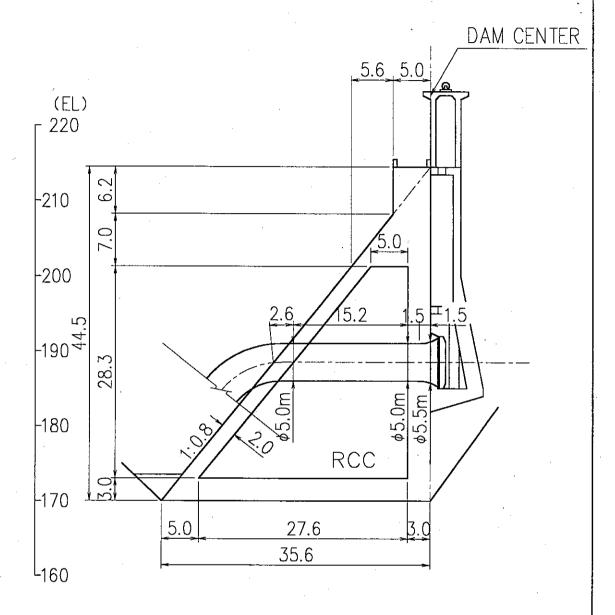
RCC concrete

dam crest concrete

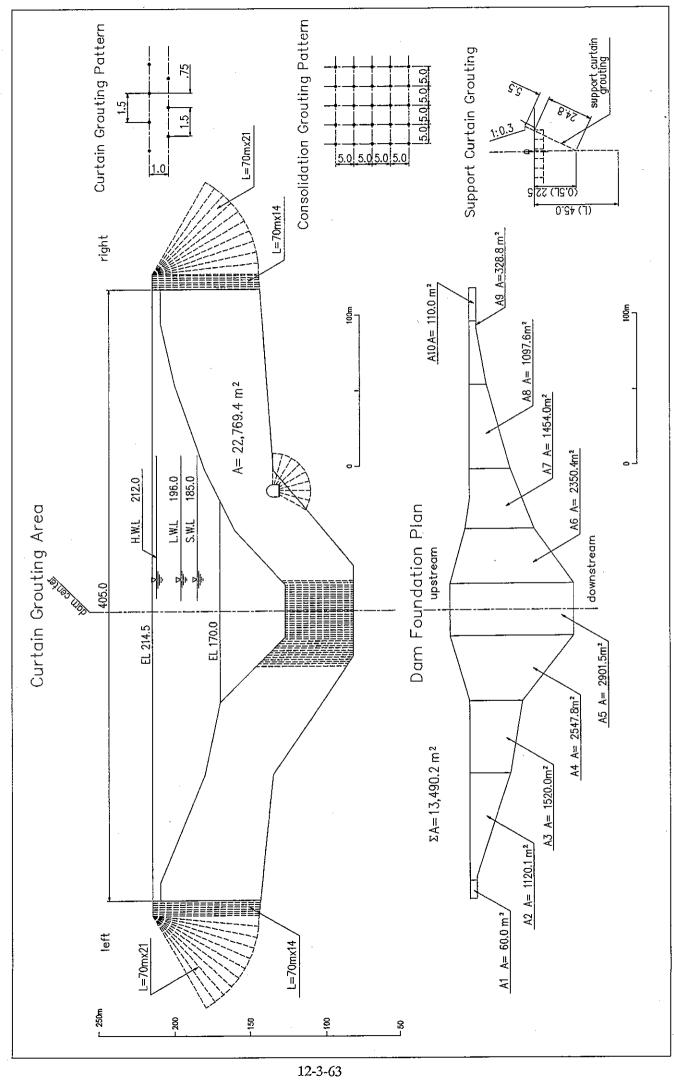

• subtract concrete at dam crest $A=2.0\times1.5+x\times1^2\ /2+0.3\times0.3=4.7m2$


• subtract concrete at RCC A=4.0×4.5=18.0m2

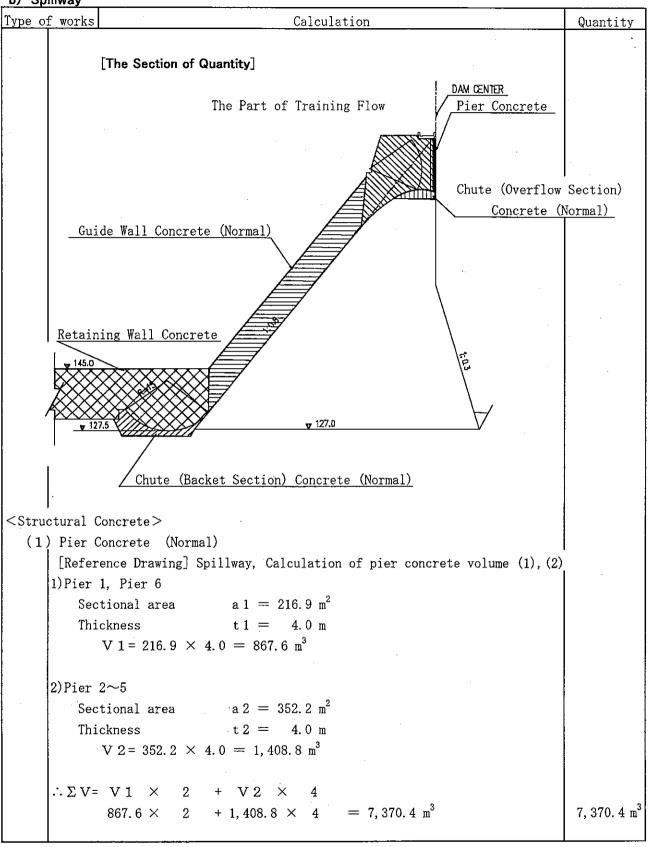
· additional concrete for conventional concrete (outer)
A=4.0×4,5-2.0×1.5-x×1 2/2-0.3×0.3=13.3m2

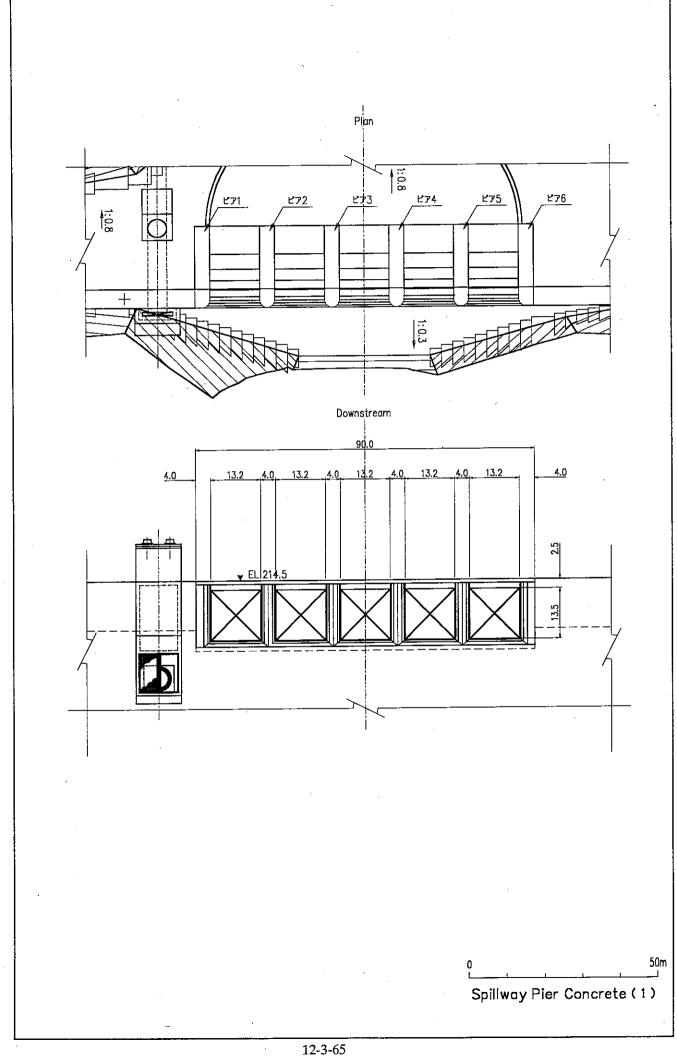

0 25m (footing) 0 10m (gallery)

Dam Concrete (7)

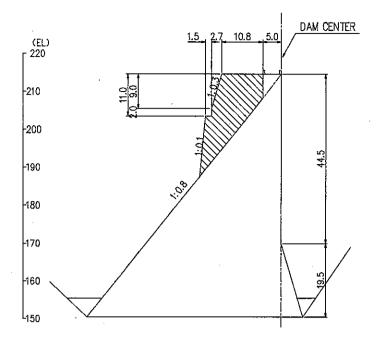


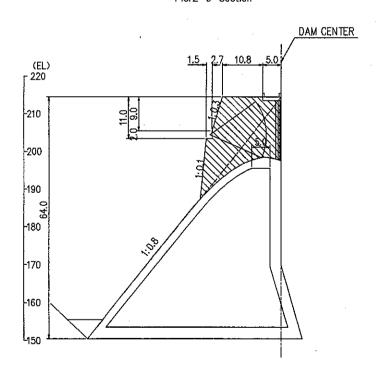
Dam Concrete (10)


Type of Works Calculation	Quantity
<pre></pre> <pre><consolidation drilling="" grouting=""></consolidation></pre>	
Area of dam foundation	
$A = 13,490 \text{ m}^2$	
Useful Area of 1 grouting	i
$a = 5.0 \times 5.0 = 25.0 \text{ m}^2$	
Number of grouting	
N = A / a = 540 Numbers	
Length of consolidation grouting drilling	
The part of rock	
$L1 = N \times 5.0 = 540 \times 5.0 = 2,$	
**Length of grouting	:L=5.0m
The part of concrete	
$L2 = N \times 3.0 = 540 \times 3.0 = 1,$	į l
*Thickness of lift:	t=3.0m
Total length of consolidation grouting drilling	
$\Sigma L = L1 + L2$	= 4,320.0 m
<consolidation cement="" grouting=""></consolidation>	
Impregnation quantity of cement per 1 m length: 30 kg/m	
Total length of consolidation grouting	
L = L1 = 2,700.0 m	
Volume of consolidation Grouting Cement	01 0 +
$W = 2,700.0 \text{ m} \times 30 \text{ kg/m} = 81,000 \text{ kg}$	81.0 t
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
<pre><curtain drilling="" grouting=""></curtain></pre>	
Curtain Grouting	
Part of dam body Part of rock: (extent of execution) / (pitch of grouting)	
Extent of execution $A1 = 22,769 \text{ m}^2 \qquad \text{(Computed by planimeter)}$	
Length of excavation	
·	0,358.´m
%Pitch of grouting b=0.75m	.,
Part of concrete : (number of execution) × (length)	
Number of execution	
No. 75 = 540 Numbers	
%Length of dam's top L=405.0m, pitch 0.75m	
Length of excavation	
	,620.0 m
*Thickness of lift	!
XIIIIOMIOSS OI IIII	


Type of We	orks Calculation	Quantity]
P	art of rim		1
	Part of rock: (number of execution) × (length)		i
	Number of execution		1
	N31 = 21 + 14 = 35 Numbers (left bank)		l
	N32 = 21 + 14 = 35 Numbers (right bank)		
	Σ N3 = N31 + N32 = 70 Numbers		
	Length of excavation		
	$L3 = N \times 70.0 = 70 \times 70.0 = 4,900.0 m$		ļ
	Xlength of grouting L=70.0m		
	Total length of curtain grouting excavation		
	$\Sigma La = L1 + L2 + L3 = 36,878.$ m		
Sup	port Curtain Grouting		
P	art of dam body		
	Part of rock: (extent of execution) / (pitch of grouting)		
	Extent of execution(1/2 of curtain grouting)		
	$A2 = 22,769 / 2 = 11,385 m^2$		l
	(Computed by planimeter)		ĺ
	Length of excavation		
	$L4 = A2 / 1.5 \times \alpha$		
	$= 11,385 / 1.5 \times 1.10 = 8,349.0 \text{ m}$		
'	<pre>%pitch of grouting b=1.5m , Modulus of transformation about</pre>		
	inclined length $\alpha = 24.8/22.5 = 1.10$ (reference of drawing		ļ
	Part of concrete : (number of execution) × (length)		
	Number of execution		
	N5 = 405.0 / 1.5 = 270 Numbers		
	**Length of dam's top L=405.0m, pitch 1.5m		I
	Length of excavation		
	$L5 = N5 \times 5.5 = 270 \times 5.5 = 1,485.0 \text{ m}$		l
	*Thickness of lift t=3.0m, Inclined length (reference of drawing)		l
	Total length of support curtain grouting $\Sigma Lb = L4 + L5 = 9,834.0 \text{ m}$		
	Total length of support curtain grouting excavation $\Sigma L = La + Lb = 0$	40 710 7	
	ZL — La T Lb —	46,712.7 m	
Curtain	Grouting Cement>		
Curtain	Impregnation quantity of cement per 1 m length : 50 kg/m		
	Total length of curtain grouting		
	L = L1 + L3 + L4 = 43,607.7 m		
	(See the "Curtain Grouting Drilling")		
	Impregnation of grouting		
	$W = 43,607.7 \times 50 = 2,180,385 \text{ kg} = $	2,180 t	
	vv — 40, 001.1 A 00 — 2, 100, 000 Ag —	ے, 100 l	1

280



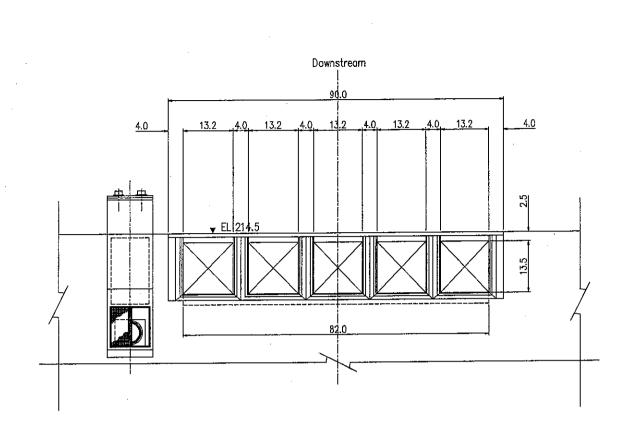


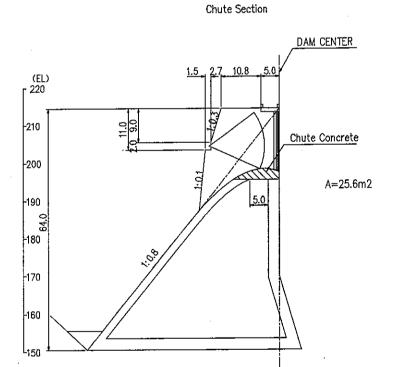
Pier1 Pier6 Section

A=216.9m2

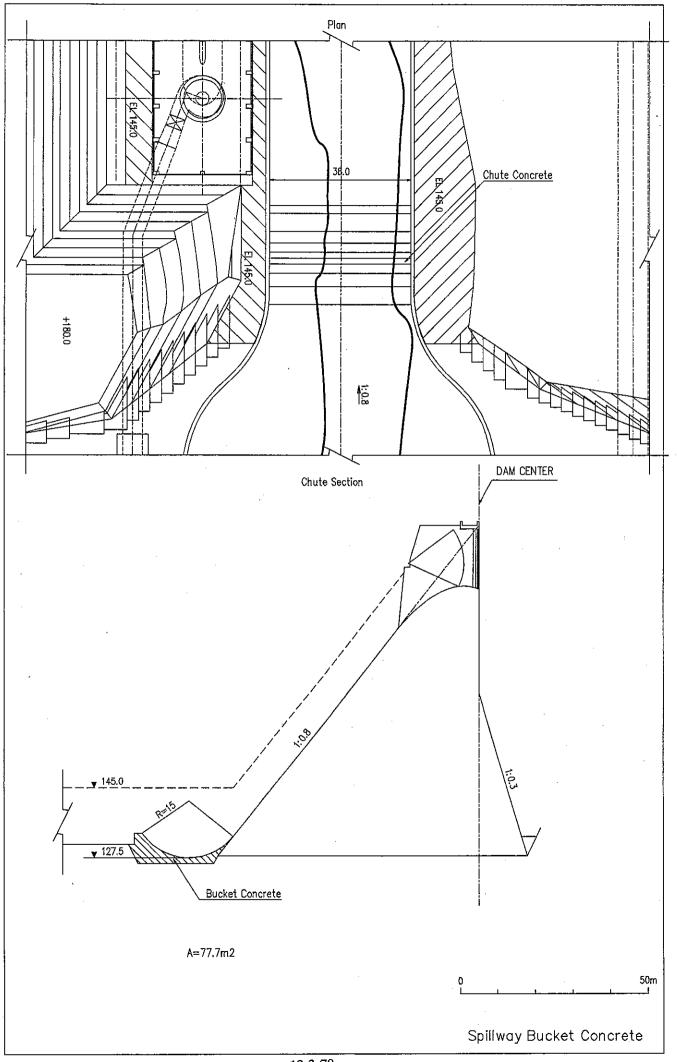
Pier2~5 Section

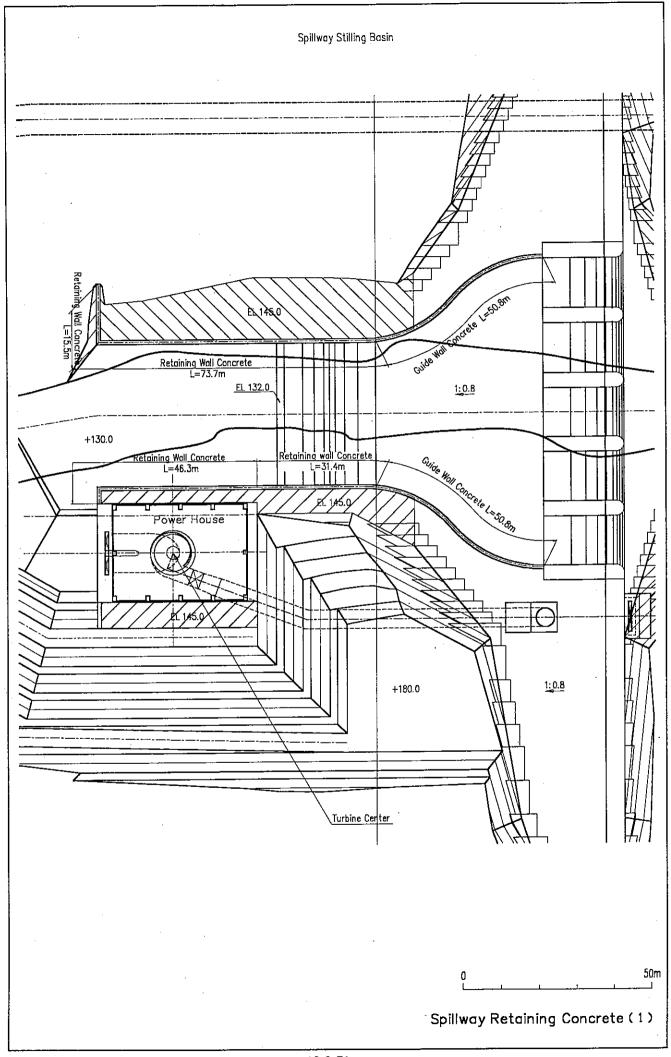
A=352.2m2

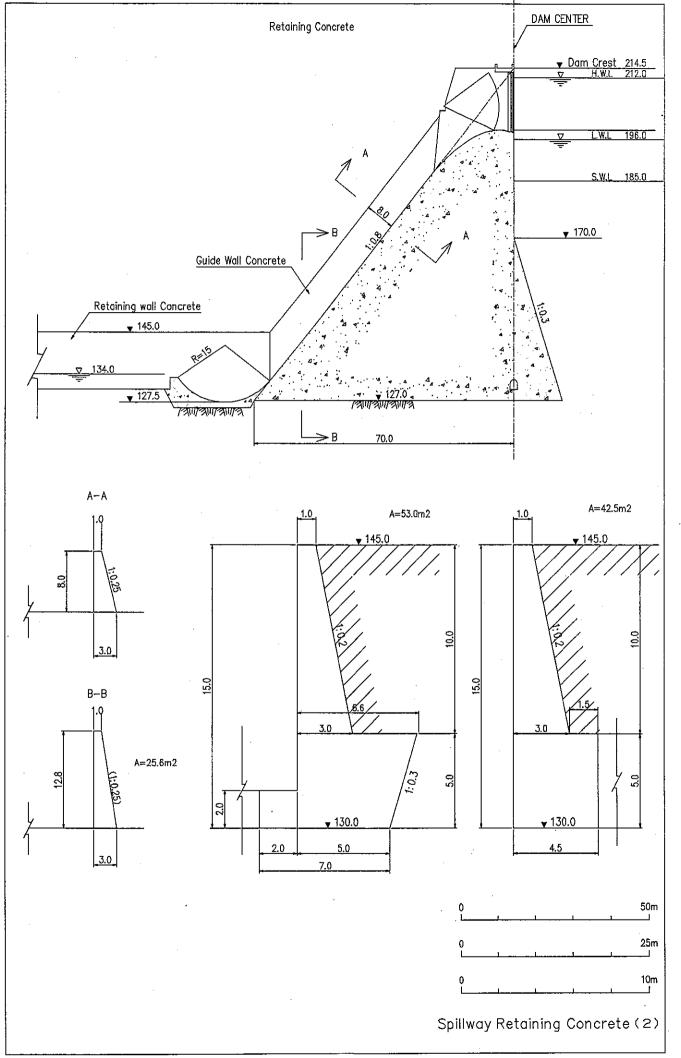

Spillway Pier Concrete (2)


Type of	works Calculation	Quantity
Type of	WOLKS CALOUTAGE	Quantity .
(2)	Chute (overflow section) concrete (normal)	
	[Reference Drawing] Spillway, Calculation of chute (overflow section)	- 1
	concrete (normal) volume	
	Sectional area $a = 25.6 \text{ m}^2$	
	Length $l = 82.0 \text{ m}$	
	$V = 25.6 \times 82.0 = 2,099.2 \text{ m}^3$	
	V - 25.6 × 62.0 — 2,035.2 m	2,099.2 m ³
		2,055.2 m
(3)	Chute (bucket section) concrete (normal)	
	[Reference Drawing] Spillway, Calculation of chute (bucket section)	
	concrete (normal) volume	•
-	Sectional area $a = 77.7 \text{ m}^2$	
	Length $l = 38.0 \text{ m}$	
	$V = 77.7 \times 38.0 = 2,952.6 \text{ m}^3$	2,952.6 m ³
		2, 352.0 m
1 (4)	Guide wall concrete	
(4)	[Reference Drawing] Spillway, Calculation of guide wall concrete volume	1 (1) (2)
	l)Guide wall concrete of overflow spillway	
		section B-
	Sectional area $a = 25.6m^2$ (Retaining wall concrete of overflow Length (left bank side) $11 = 50.8m$ (plane length)	Section b
	Length(right bank side) $12 = 50.8 \text{ m}$ (plane length)	
	77.1 OF 6 V FO 0 1 OF 6 V FO 0 2 CO3 0 -3	
	$V 1 = 25.6 \times 50.8 + 25.6 \times 50.8 = 2,601.0 \text{ m}^3$	
	2)Retaining wall concrete (standard position)	
	Sectional area(standard position) a 2 = 53.0 m ²	
	(Retaining wall concrete, standard position)	
	Length (left bank side) 13 = 31.4 m	
	Length (right bank side) 14 = 73.7 m	
	Length (right bank side) 15 = 15.5 m	
	V 2 = $53.0 \times 31.4 + 53.0 \times 73.7 + (53.0 + 0.0) / 2 \times 15.5 = 5,981.1 \text{ m}^3$	1 }
	$\sqrt{2} = 53.0 \times 31.4 + 53.0 \times 75.7 + (55.0 + 0.0) / 2 \times 15.5 - 5,501.1 \text{ m}$	[
-		
		L

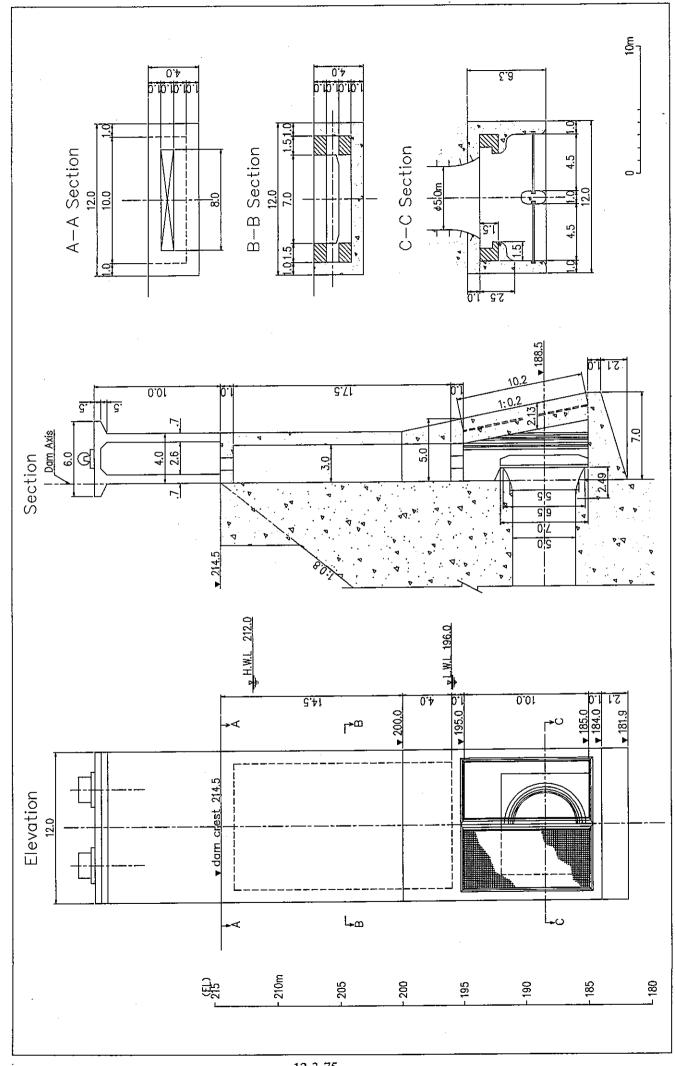
Type of works	Calculation			Quantity
Sec	ining wall concrete (powerhouse position) ctional area(powerhouse position) a 3 = 42.5m ² (Retaining wall concrete, standard position) ngth(left bank side) 16 = 46.3 m			·
	$V 3 = 42.5 \times 46.3$	=	1,967.8	[n ³
			$\sum_{1\sim 3} V =$	10,549.9 m ³
(5) Total	of structural concrete			
	V = 7,370.4 + 2,099.2 + 2,952.6 + 10,549	9.9		22,972.1 m ³
 ≪Reinforced:	Bar>			
1) Reini	forced bar of pier concrete			
(2) Daine	$W1 = 7,370.4 \times 30 \text{ kg/m}^3$	=	221.1 t	
Z) kein	forced bar of chute (overflow section) concrete $W2 = 2,099.2 \times 20 \text{ kg/m}^3$	=	42.0 t	
3) Reini	forced bar of chute (bucket section) concrete			
	$W3 = 2,952.6 \times 20 \text{ kg/m}^3$	=	59.1 t	
4) Reint	forced bar of guide wall concrete $W4= 10,549.9 \times 30 \text{ kg/m}^3$	_	216 5 +	
	W4— 10, 349.9 × 50 kg/m	=	316.5 t	
			$\Sigma W =$	638.7 t
			1~4	
				·
				,
	•			


12-3-68


790

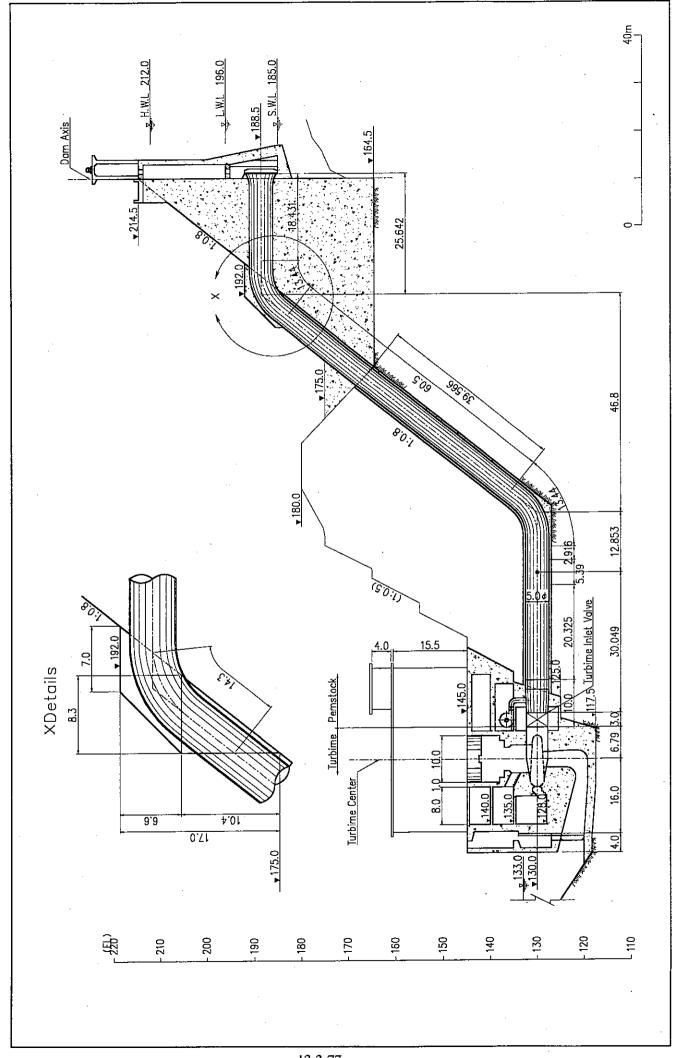


0 50m



(3) Water Way

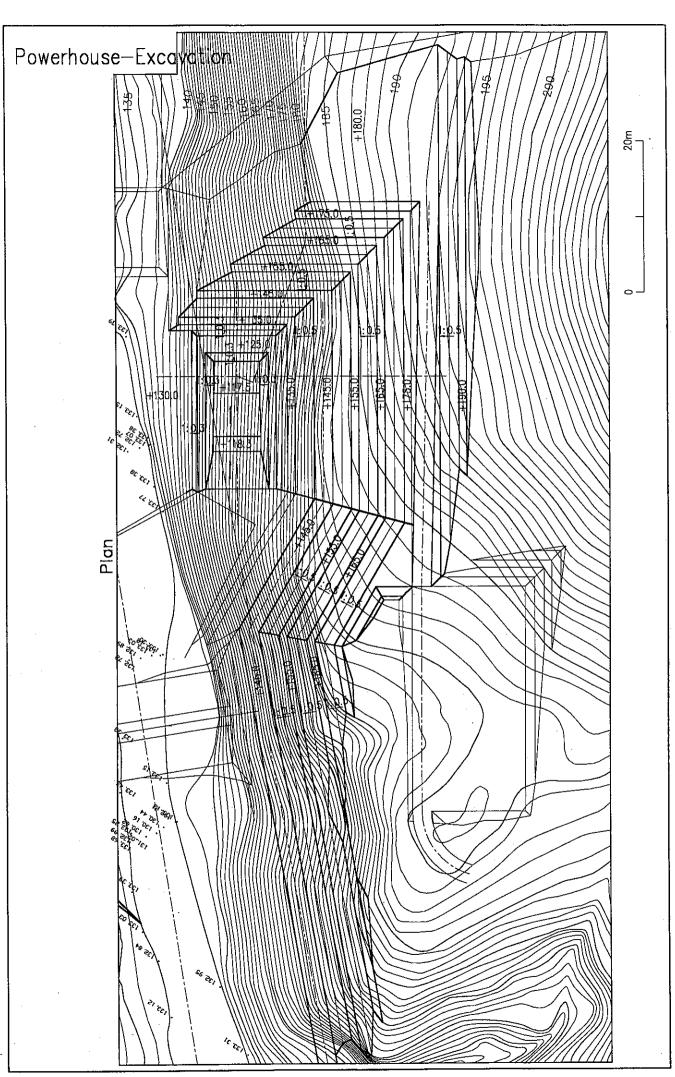
a) Intake

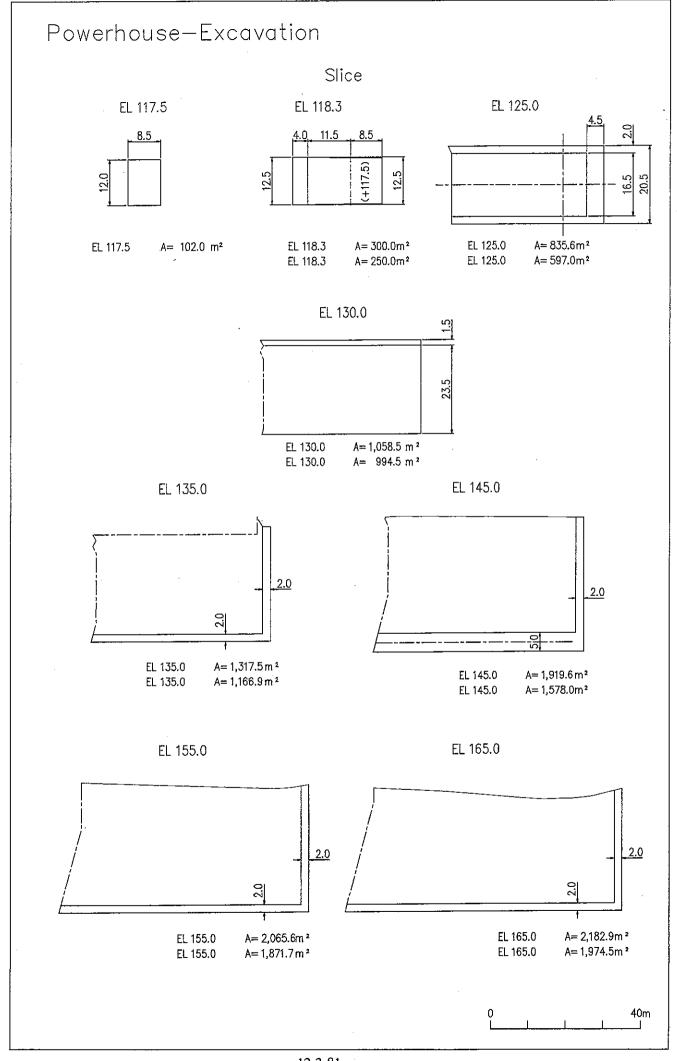

a) Intake Type of Works						Calcul	ati	on						Quantity
<pre>Structural Concre</pre>	te>					222044								
1) True form		ntake(ı	ınde	er EL21	14. 5	im)								
All v														
B.			×	14.5	+	(4. 0	+	7.0)	X	1/2	×	15. 0		
						7. 0								
										·	==	154. 9	m ²	
,	<i>V</i> =	154. 9	X	12. 0							=	1, 858. 8	m ³	
Subtr	acti	on par	t											
V	D ==	1. 0	×	1.0	×	8. 0						8.0	1 .	
V	₂ =	3. 0	×	10.0	×	17. 5				•		525. 0		*
V	3 =	1.0	×	1.0	×	8. 0					=	8.0	m ³	
V	₄ =	(5.0	×	10.0	+	7.0	\times	10.0)	X	1/2				
	×	10.0									=	600.0	m^3	
Σ	<i>v</i> =	$V_{\mathbb{O}}$	~	V_{4}							=	1,141.0	m ³	
·														
Addit	iona	l part												
Pi∈	r of	scree	n										ا	
V	① =	2. 13	×	1.00	×	10.0					=	21. 3	m°	
V.		ary co						:					٦	
						4τ					=	105. 0	m~	
V	_		+	2. 5)	×	1/2	×	1. 5	X	2ケ			3	
		10.0									=	60.0	m	
		e of p								c -2.	2	`		
V					×	1.0	_	$\pi/4$	× (b. 5 ⁻⁺			3	
		1/2									=	41.5	,	
Σ	√ =	V_{\odot}	\sim	V ₄								227.8	m	
						· · · · · · ·								
· ·						f intak	æ				=	945. 6	3	
·	c =	1858. 8	_	1141.0	_	221.0					_	345.0	"	
														٠
														1
				÷									}	
								•						
		÷												

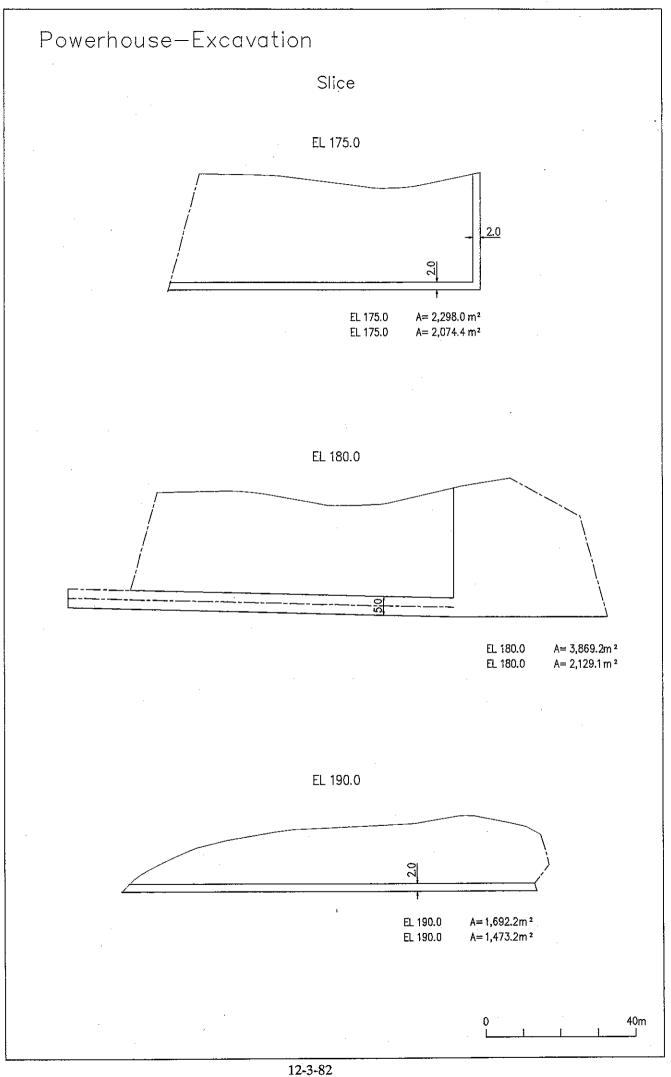
Type of Works Calculation	Quantity
2)Pier concrete	
$A = 6.0 \times 0.5 + (2.2 + 0.7) / 2 \times 0.5 \times 2 + 0.7 \times 9.0 \times 2$	
= 3.0 + 1.5 + 12.6 = 17.1	m ²
$V_c = 17.1 \times 12.0 = 205.2$	3
-205.2	111
3) Total volume of intake concrete	
V = 945.6 + 205.2	$= 1, 150.8 \text{ m}^3$
<reinforced bar=""></reinforced>	
$W = 1,150.8 \times 50.0 \text{ kg/m}^3 = 57,540.0 \text{ kg} = 57.5 \text{ t}$	57.5 t
	·
	·

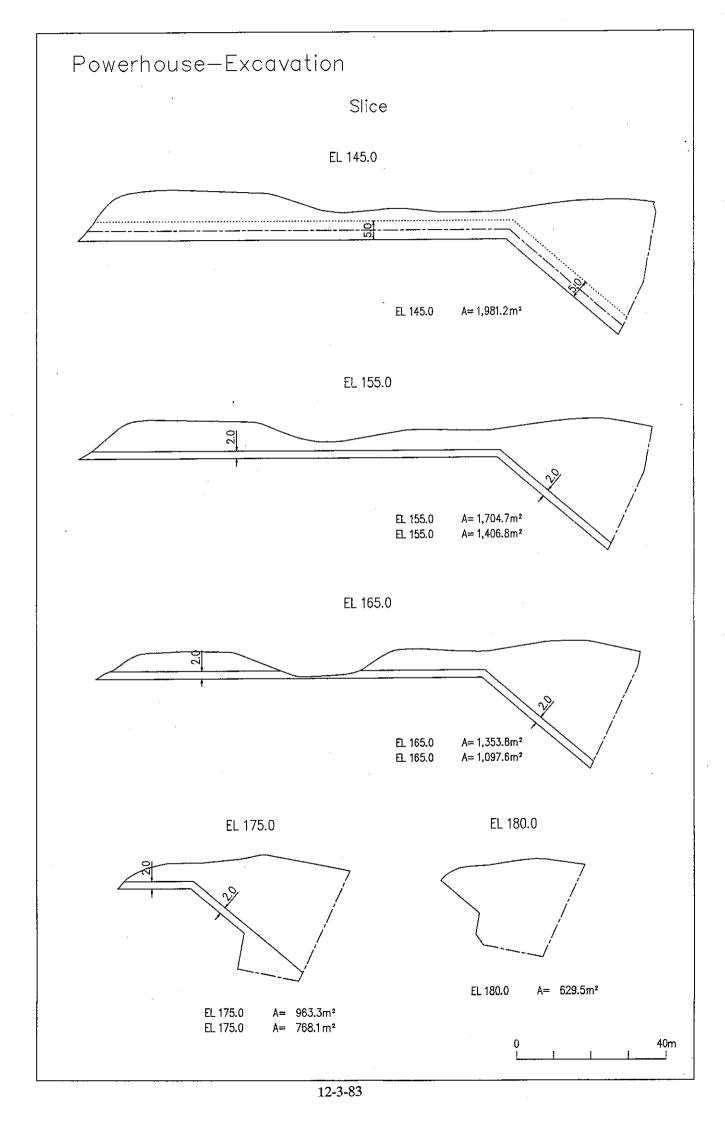
b) Penstock

Type of works Calculation	Quantity
<tunnel excavation=""></tunnel>	
L = 39.566 + 13.44 + 2.916 + 5.39 + 20.325	ı
+ 2.0 = 83.637 m	ı
	- I
$A = \pi/4 \times 6.00^2 = 28.274 \text{ m}^2$	ı
3 (000 4 /)	
$V_e = 83.637 \times 28.274 = 2,364.8 \text{ m}^3$ (6.00 ϕ) =	2, 364. 8 m ³
	ı
Chillian Constant	ı
<pre> <filling concrete=""></filling></pre>	ı
$Ac = \pi/4 (6.00^{\circ} - 5.00^{\circ})$ $= 8.639 \text{ m}^{3}$	ı
- 8. 039 m	!
$V_{c} = 8.639 \times 83.637$ $((5.00 \phi))$;
$= 722.5 \text{ m}^3$	722.5 m ³
	7 22. 0 III
0.59	
<structural concrete=""></structural>	
Total volume	
$A = (7.0 + 8.3) \times 1/2 \times 6.6 + 8.3$	
$\times 1/2 \times 10.4 = 93.65 \text{ m}^2$	
$V = 93.65 \times 8.0 = 749.2 \text{ m}^3$	
Deduction of penstock	
$V = \pi/4 \times 5.00^2 \times 14.3 = 280.8 \text{ m}^3$	
Concrete volume	100 1 3
$V_c = 749.2 - 280.8$	468.4 m ³
<reinforced bar=""></reinforced>	,
Structural concrete	
$W = 468.4 \times 30 \text{ kg/m}^3 =$	14.1 t
100	11.1




(4) Powerhouse


a) Powerhouse


	f Works				Calculati	ion	· · · · · · · · · · · · · · · · · · ·	•	Quantity
		vation and	d Rock Ex	cavation					
		Total exc	avation	volume (po	ower stat:	ion side)			
		Elevation	Head	Sectional	Mean Area	Volume	Total	Notes	
		(m)	(m)	Area (m²)	(m ²)	(m^3)	Volume (m³)		·
		EL117.5		102.0					
		EL118.3	0.8	250.0	176.0	140.8	140.8		
		EL118.3	0.0	300.0	275. 0	0.0	140.8		
		EL125.0	6.7	597.0	448.5	3,005.0	3, 145. 8		ŀ
		EL125. 0	0.0	835.6	716. 3	0.0	3, 145. 8		
		EL130.0	5.0	994.5	915. 1	4, 575. 3	7, 721. 0		
		EL130.0	0.0	1, 058. 5	1,026.5	0.0	7,721.0		
		EL135.0	5. 0	1, 166. 9	1, 112. 7	5,563.5	13, 284. 5		
		EL135.0	0.0	1, 317. 5	1, 242. 2	0.0	13, 284. 5		
		EL145.0	10.0	1,578.0	1, 447. 8	14, 477. 5	27, 762. 0		
		EL145.0	0.0	1,919.6	1,748.8	0.0	27, 762. 0		
		EL155.0	10.0	1,871.7	1, 895. 7	18, 956. 5	46, 718. 5		-
'		EL155.0	0.0	2, 065. 6	1, 968. 7	0.0	46, 718. 5		·
]	EL165.0	10.0	1,974.5	2, 020. 1	20, 200. 5	66, 919. 0		
	<u> </u>	EL165.0	0.0	2, 182. 9	2, 078. 7	0.0	66, 919. 0		
,		EL175.0	10.0	2,074.4	2, 128. 7	21, 286. 5	88, 205. 5		
		EL175.0	0.0	2, 298. 0	2, 186. 2	0.0	88, 205. 5		
		EL180.0	5.0	2, 129. 1	2, 213. 6	11,067.8	99, 273. 3		
		EL180.0	0.0	3, 869. 2	2, 999. 2	0.0	99, 273. 3		
		EL190.0	10.0	1, 473. 2	2, 671. 2	26, 712. 0	125, 985. 3		· , .
		EL190.0	0.0	1, 692. 2	1, 582. 7	0. 0	125, 985. 3		
		EL196.0	6.0	0.0	1, 032. 8	6, 196. 8	132, 182, 1		•
		Total exc	avation v	volume (ou	tlet side	e, over El	L145.0 m)	····	
		Elevation	Head	i	Mean Area		Total	Notes	1
			(m)	Area (m²)	(m ²)	(m ³)	Volume(m³)		1
		EL145.0	0.0	1, 981. 2					
		EL155.0	10.0	1, 406. 8	1, 694. 0	16, 940. 0	16, 940. 0		
		EL155.0	0.0	1, 704. 7	1, 555. 8	0. 0	16, 940. 0		
		EL165.0	10.0	1,097.6	1, 401. 2	14, 011. 5	30, 951. 5		
		EL165.0	0.0	1, 353. 8	1, 225. 7	0.0	30, 951. 5		
		EL175.0	10.0	768.1	1,061.0	10, 609. 5	41, 561. 0		,
·		EL175.0	0.0	963. 3	865. 7	0. 0	41,561.0		
		EL180.0	5. 0	629. 5	796. 4	3, 982. 0	45, 543. 0		
		EL185. 0	5.0	0.0	314.8	1, 573. 8	47, 116.8	[,
			i		<u> </u>				

Type of	Works Calculation	Quantity
	Total excavation volume Total excavation volume (power station side) $V1 = 132,182.1 \text{ m}^3$ Total excavation volume (outlet side, over EL145.0 m) $V2 = 47,116.8 \text{ m}^3$ Total excavation volume	
	Σ V = 179, 298.8 m ³ Estimated Ratio· (Common Excavation) : (Rock Excavation) = 2 : 8	
(1)	Common Excavation $V = 179,298.8 \times 0.2$	= 35,859.8 m ³
(2)	Rock Excavation V = 179,298.8 × 0.8	=143, 439.0 m

