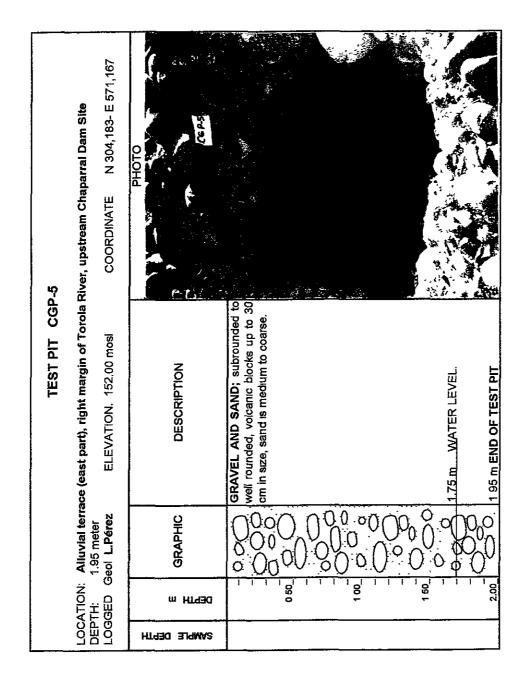
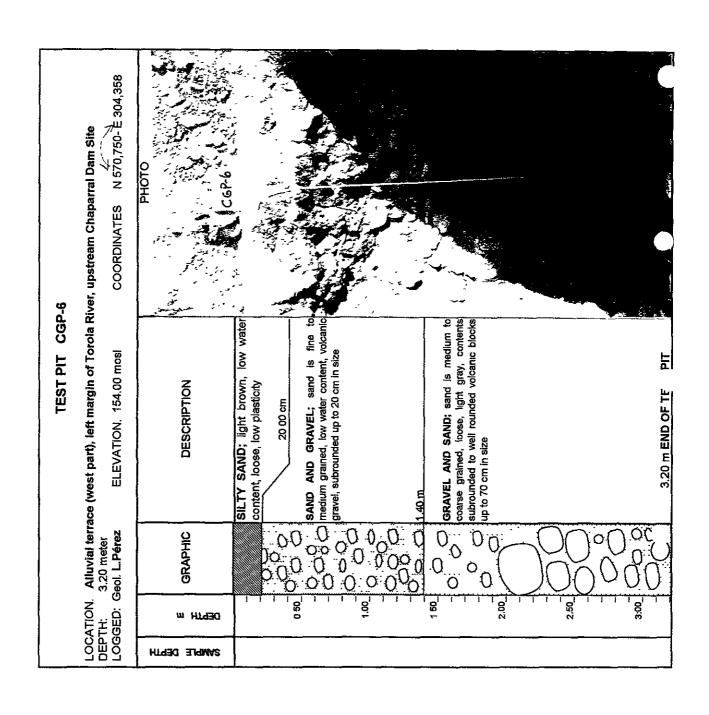
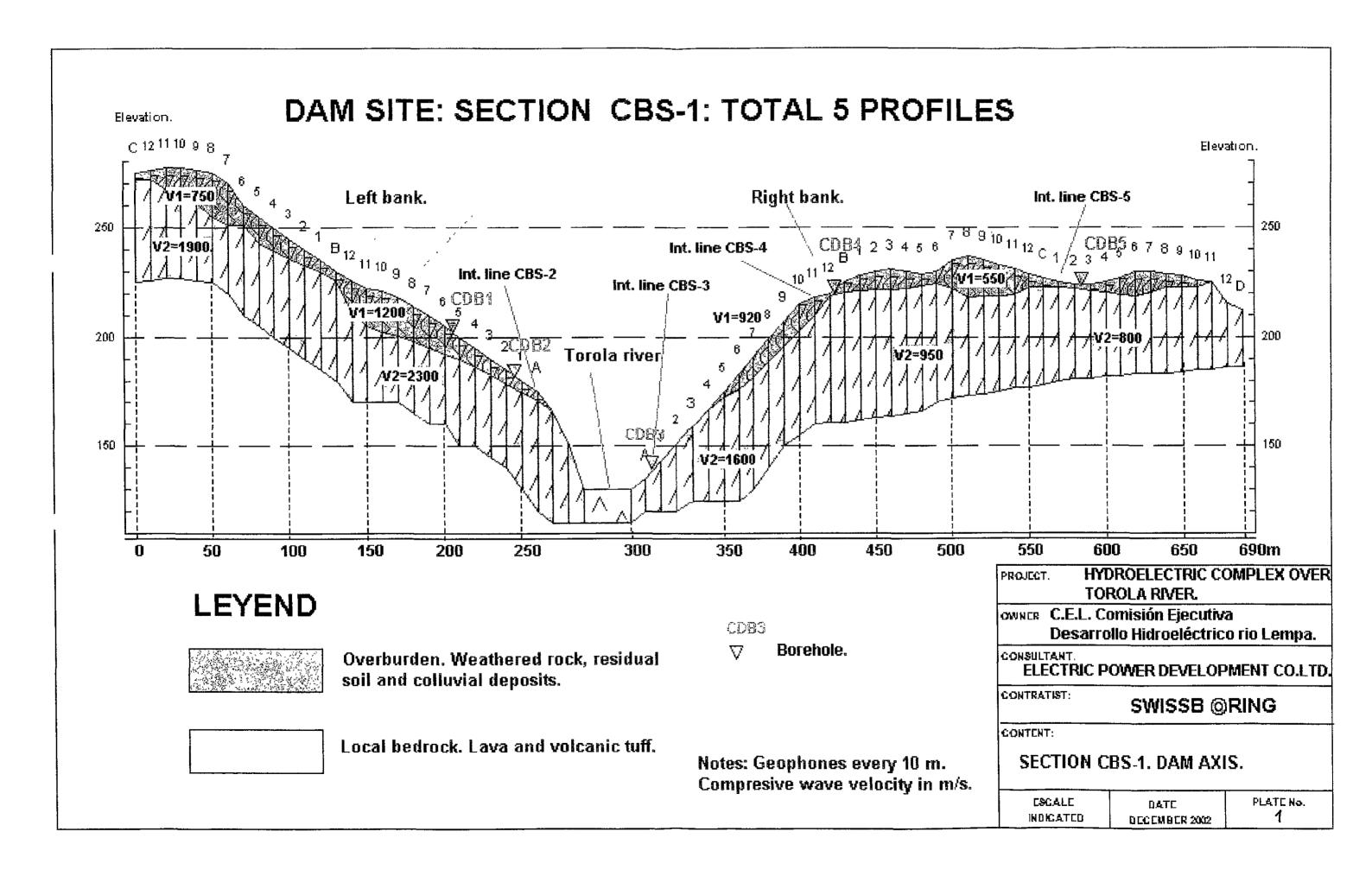

Appendix 7.7

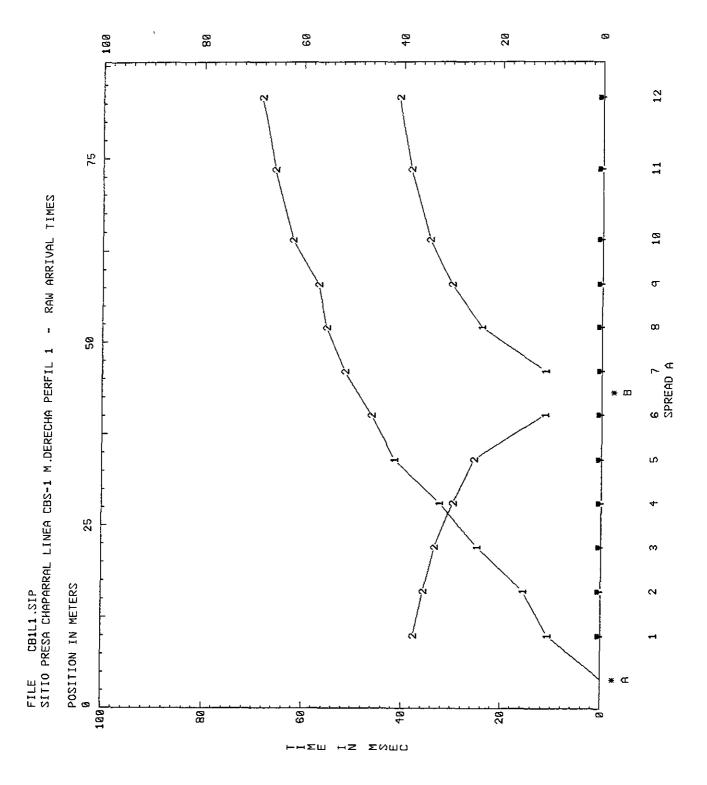

Log and Photograph of Pit

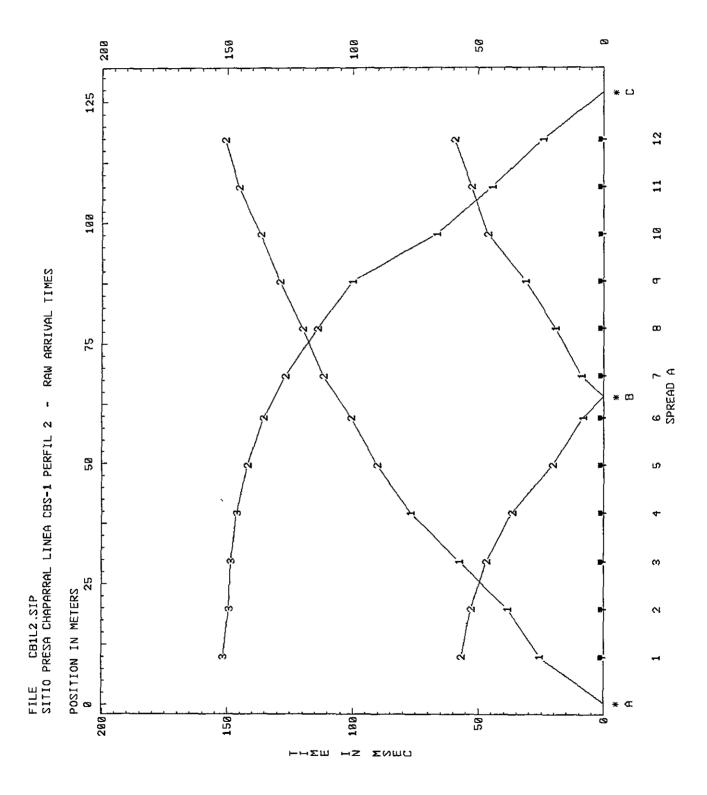


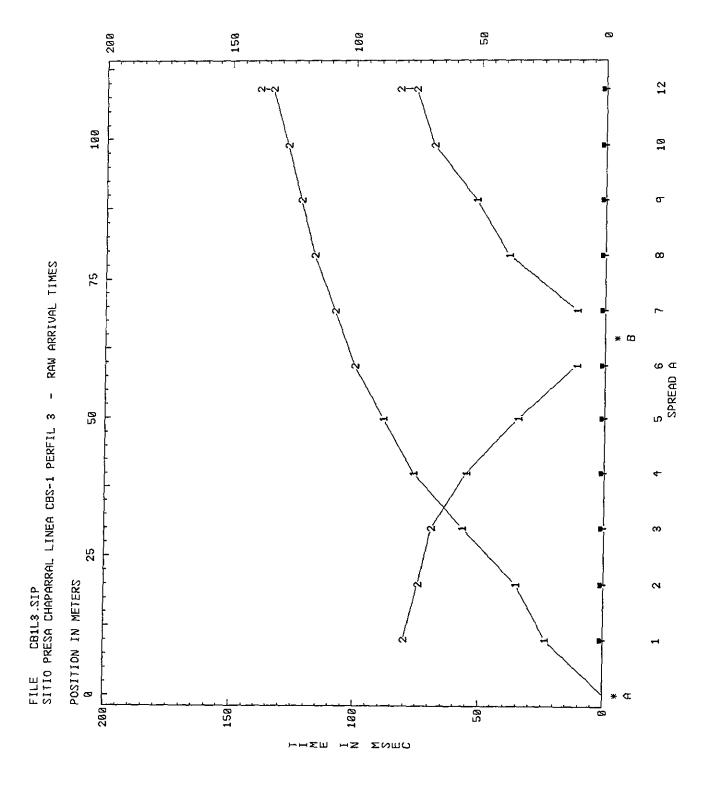
TEST PIT CGP-2 LOCATION: Alluvial terrace (central part), left margin of Torola River, upstream Chaparral Dam Site	, y=304.398, z =148.00m	РНОТО	
TEST PIT CGP-2 ce (central part), left margin of Torola Ri	3.00 meter Geol. L.Pérez Coordinates and elevation: x=570.720, y=304.398, z =148.00m	DESCRIPTION	Sand and gravel, sand are dark brown, low water content, loose, medium to coarse grained, contents volcanıc gravel, subrounded to rounded, hard, up to 80 cm in diarmeter
Alluvial terra	3.00 meter seol. L.Pérez C	GRAPHIC	
ATION:	DEPTH: LOGGED: G	m HT430	6.50 1.00 1.1.1.00 1.1.1.1.00 1.1.1.1.00 1.1.1.1.
Loc.	LOG	SAMPLE DEPTI-	

-3 ver, upstream Chaparral Dam Site y≕304.380, z =147.00m	РНОТО	
LOCATION: Alluvial terrace (east part), left margin of Torola River, upstream Chaparral Dam Site DEPTH 3.00 meter LOGGED: Geol L.Pérez Coordinates and elevation: x≈570.850, y≈304.380, z =147.00m	DESCRIPTION	Sand and gravel, contents medium to medium grained sand, loose, and volcanic gravel, up to 60 cm in diameter, hard, subrounded Tuff, greenish green, highly weathered, fine grained, weak, fissible, poorly cemented, water laid
4: Alluvial terra 3.00 meter Geol L.Pérez C	GRAPHIC	
LOCATION: DEPTH: LOGGED: G	m HT930	30 C C C C C C C C C C C C C C C C C C C
LOCATI DEPTH: LOGGE	-TT430 3J4MA\$	








Appendix 7.8

Result of Seismic Prospecting

INPUT DATA FILE for CB1L1.SIP

TITLE FOR SIPT2/SIPLUS INPUT DATA SET for CB1L1.SIP
SITIO PRESA CHAPARRAL LINEA CBS-1 M.DERECHA PERFIL 1

PROGRAM CONTROL DATA

					-										
S		L	-	PRINTE	R PLOT	SCALES	DATUM	CONTROL	PLOT	CONTROL				0	_
р	Ε	a	0												L
r	X	У	V	Elev	Horiz	Time	Pt 1	Pt 2	Elev	ations			а	f	D
ď	i	r	e										С	S	i
-	t		-	m/col	m/row	ms/col	Elev/X	Elev/X	Top	Bottom	BLim	TLim	е	P	p
-	-	-	-										-	-	-
1	6	2	0	0.0	0.0	0.0	0.0	0.0	0	0	0.5	10.0	0	0	0

SHOTPOINT AND GEOPHONE DATA

Lpread A, 2 SP's, 12 Geo's, X-Shift = 0.0, X-True = 0, Units: Meters.

SP	Elev	X-Loc	Y-Loc	Depth	Uphole T	Fudge T	End SP
Α	135.0	0.0	0.0	0.0	0.0	0.0	1
В	187.0	65.0	0.0	0.0	0.0	0.0	0

ARRIVAL TIMES AND LAYERS REPRESENTED

Geo	Elev	X-Loc	Y	SP A		SP B	
					- L		ــــــــــــــــــــــــــــــــــــــ
1	143.0	10.0	0.0	10.75	1	37.62	2
2	151.0	20.0	0.0	15.62	1	35.50	2
3	159.0	30.0	0.0	24.87	1	33.25	2
4	167.0	40.0	0.0	32.37	1	29.75	2
5	175.0	50.0	0.0	41.50	1	25.50	2
6	183.0	60.0	0.0	46.12	2	11.37	1
7	191.0	70.0	0.0	51.62	2	11.37	1
3	199.0	80.0	0.0	55.25	2	24.12	1
و	207.0	90.0	0.0	57.00	2	30.12	2
10	215.0	100.0	0.0	62.12	2	34.50	2
11	218.0	110.0	0.0	65.75	2	38.37	2
12	220.0	120.0	0.0	68.37	2	40.87	2

INPUT DATA FILE for CB1L2.SIP

TITLE FOR SIPT2/SIPLUS INPUT DATA SET for CB1L2.SIP
SITIO PRESA CHAPARRAL LINEA CBS-1 PERFIL 2

PROGRAM CONTROL DATA

					-										
S		L	V	PRINTE	R PLOT	SCALES	DATUM	CONTROL	PLOI	CONTROL			T	0	
p	E	a	0										r	f	L
-		У		Elev	Horiz	Time	Pt 1	Pt 2	Elev	ations			a	f	D
		-											C	S	i
s	t	s	r	m/col	m/row	ms/col	Elev/X	Elev/X	Top	Bottom	BLim	TLim	е	Ρ	р
_	_	_	_										-	-	-
1	6	3	0	0.0	0.0	0.0	0.0	0.0	0	0	0.5	10.0	0	0	0
							0.0	0.0							

CHOTPOINT AND GEOPHONE DATA

Spread A, 3 SP's, 12 Geo's, X-Shift = 0.0, X-True = 0, Units: Meters.

SP	Elev	X-Loc	Y-Loc	Depth	Uphole T	Fudge T	End SP
							
Α	225.0	0.0	0.0	0.0	0.0	0.0	1
В	233.0	65.0	0.0	0.0	0.0	0.0	0
C	227.0	130.0	0.0	0.0	0.0	0.0	2

ARRIVAL TIMES AND LAYERS REPRESENTED

Geo	Elev	X-Loc	Y SP A	SP B	SP C
	- -			-L	-LL
1	228.0	10.0	0.0 26.00	157.000	2152.00 3
2	230.0	20.0	0.0 38.50	153.000	2149.60 3
3	231.0	30.0	0.0 57.62	146.750	2148.80 3
4	230.0	40.0	0.0 77.12	136.870	2146.50 3
5	229.0	50.0	0.0 90.37	220.620	2142.00 2
5	230.0	60.0	0.0100.70	2 8.250	1135.60 2
1	235.0	70.0	0.0112.00	2 9.125	1127.20 2
8	237.0	80.0	0.0120.10	219.370	1114.10 2
9	235.0	90.0	0.0129.20	231.370	1100.30 1
10	233.0	100.0	0.0136.80	246.250	2 66.62 1
11	231.0	110.0	0.0145.60	252.870	2 44.62 1
12	229.0	120.0	0.0151.20	259.620	2 24.50 1

INPUT DATA FILE for CB1L3.SIP

PROGRAM CONTROL DATA

- -	- 				· -										
S		L	V	PRINTE	R PLOT	SCALES	DATUM	CONTROL	PLOT	CONTROL			T	0	
р	E	a	0										r	f	L
r	x	У	v	Elev	Horiz	Time	Pt 1	Pt 2	Elev	ations			а	f	D
d	í	r	е										С	S	i
s	t	S	r	m/col	m/row	ms/col	Elev/X	Elev/X	Top	Bottom	BLim	TLim	е	Ρ	р
-	-	-	-										-	-	-
1	6	2	0	0.0	0.0	0.0	0.0	0.0	0	0	0.5	10.0	0	0	0
							0.0	0.0							

CHOTPOINT AND GEOPHONE DATA

Spread A, 2 SP's, 12 Geo's, X-Shift = 0.0, X-True = 0, Units: Meters.

SP	Elev	X-Loc	Y-Loc	Depth	Uphole T	Fudge T	End SP
A	227.0	0.0	0.0	0.0	0.0	0.0	1
В	230.0	65.0	0.0	0.0	0.0	0.0	0

ARRIVAL TIMES AND LAYERS REPRESENTED

Geo	Elev	X-Loc	Y	SP A		SP B	
					-L		-I
1	225.0	10.0	0.0	23.50	1	80.12	2
2	224.0	20.0	0.0	35.62	1	74.37	2
3	224.0	30.0	0.0	56.87	1	69.37	2
4	225.0	40.0	0.0	76.37	1	55.37	1
5	227.0	50.0	0.0	88.75	1	34.87	1
6	230.0	60.0	0.03	100.20	2	11.37	1
フ	230.0	70.0	0.03	108,20	2	11.50	1
હે	229.0	80.0	0.01	116.70	2	38.87	1
9	228.0	90.0	0.01	22.20	2	52.00	1
10	226.0	100.0	0.01	27.50	2	69.12	2
11	225.0	110.0	0.01	.33.80	2	76.25	2
12	215.0	120.0	0.03	39.10	2	83.00	2

DEPTH MODEL TABLES for CB1L1.SIP

Spread A Depth and Elev of layers directly beneath SPs and Geos

	Surf	ace	Layer 2		
SP	X-Loc	Elev	Depth		
					
A	4.0	135.0	0.0	135.0	
B	43.0	187.0	8.2	178.8	

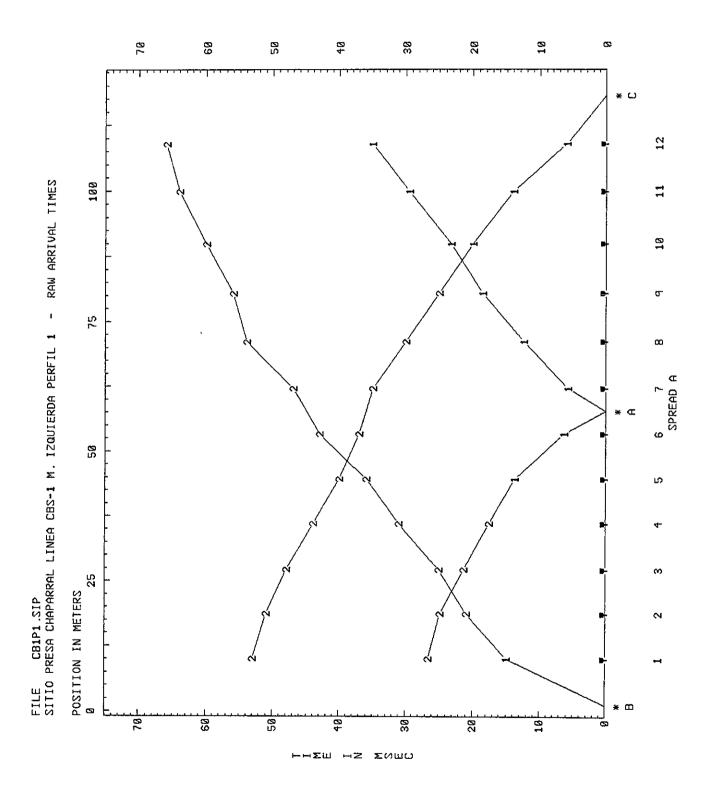
	Surf	face	Layer 2			
Geo	X-Loc	Elev	Depth	Elev		
		· - 				
1	10.0	143.0	0.0	143.0		
2	16.0	151.0	0.0	151.0		
3	22.0	159.0	0.0	159.0		
4	28.0	167.0	0.0	167.0		
5	34.0	175.0	2.4	172.6		
6	40.0	183.0	7.1	175.9		
7	46.0	191.0	9.4	181.6		
8	52.0	199.0	10.5	188.5		
9	58.0	207.0	11.1	195.9		
10	64.0	215.0	12.4	202.6		
11	73.5	218.0	7.9	210.1		
12	83.3	220.0	1.3	218.7		

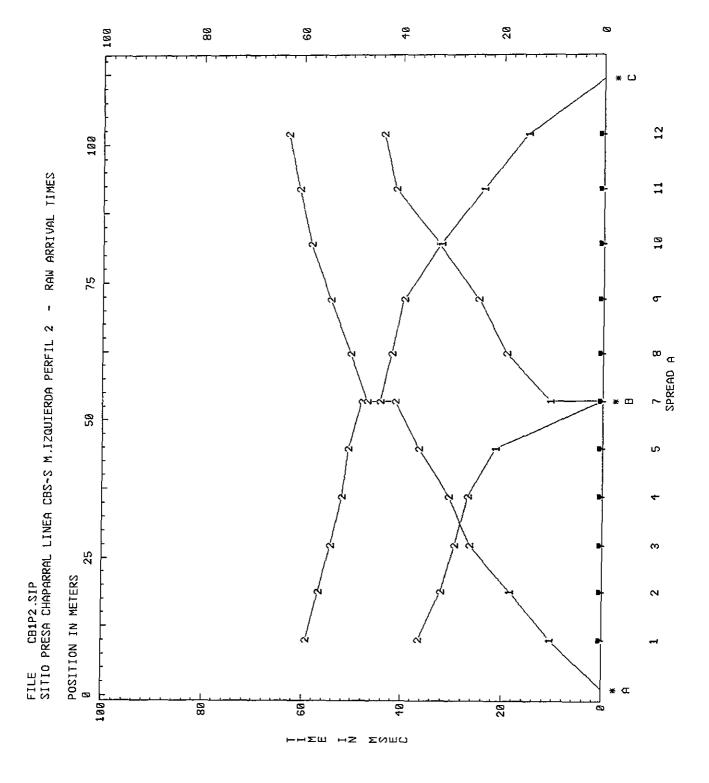
DEPTH MODEL TABLES for CB1L2.SIP

Spread A $\,$ Depth and Elev of layers directly beneath SPs and Geos

	Surf	ace	Laye	r 2	Layer 3		
SP	X-Loc	Elev	Depth	Elev	Depth	Elev	
							
Α	0.5	225.0	4.5	220.5	51.9	173.1	
В	63.9	233.0	9.4	223.6	59.7	173.3	
С	127.0	227.0	4.1	222.9	52.8	174.2	

	Surf	ace	Laye	r 2	Layer 3		
Geo	X-Loc	Elev	Depth	Elev	Depth	Elev	
							
1 '	10.0	228.0	6.8	221.2	54.8	173.2	
2	19.8	230.0	8.5	221.5	56.5	173.5	
3	29.7	231.0	9.1	221.9	57.2	173.8	
4	39.7	230.0	7.8	222.2	55.8	174.2	
5	49.6	229.0	5.6	223.4	55.4	173.6	
6	59.6	230.0	5.2	224.8	56.8	173.2	
7	68.3	235.0	12.6	222.4	61.7	173.3	
8	78.ļ	237.0	18.7	218.3	63.5	173.5	
9	87.9	235.0	16.4	218.6	61.4	173.6	
10	97.7	233.0	14.0	219.0	59.3	173.7	
11	107.4	231.0	11.6	219.4	57.2	173.8	
12	117.2	229.0	6.3	222.7	55.1	173.9	


Spread A	Layer 1	Layer 2	Layer 3
Vertic	cal 527	934	
Horizont	cal	934	4014


DEPTH MODEL TABLES for CB1L3.SIP

Spread A Depth and Elev of layers directly beneath SPs and Geos

	Sur	face	Layer 2		
SP	X-Loc	Elev	Depth		
		- 			
Α	0.2	227.0	3.6	223.4	
В	64.2	230.0	10.3	219.7	

	Suri	Eace	Layer 2		
Geo	X-Loc	Elev	Depth	Elev	
1 '	10.0	225.0	2.4	222.6	
2	19.9	224.0	2.0	222.0	
3	29.9	224.0	2.8	221.2	
4	39.9	225.0	4.7	220.3	
5	49.7	227.0	7.5	219.5	
6	59.2	230.0	11.3	218.7	
7	69.2	230.0	9.3	220.7	
8	79.2	229.0	6.3	222.7	
9	89.1	228.0	5.3	222.7	
10	98.9	226.0	3.3	222.7	
11	108.9	225.0	0.0	225.0	
12	108.9	215.0	0.0	215.0	

INPUT DATA FILE for CB1P1.SIP

PROGRAM CONTROL DATA

				 -	. _										
S		L	V	PRINTE	R PLOT	SCALES	DATUM	CONTROL	PLOT	CONTROL			_	0	
р	E	a	0												L
		У		Elev	Horiz	Time	Pt 1	Pt 2	Elev	ations			а		
đ	i	r	е	i				_					С		
ន	t	S	r	m/col	m/row	ms/col	Elev/X	${ t Elev/X}$	Top	Bottom	BLim	TLim	е	Ρ	р
-	-	-	-			~							-	-	-
1	6	2	0	0.0	0.0	0.0	0.0	0.0	0	0	0.5	10.0	0	0	0
							0.0	0.0							

COTPOINT AND GEOPHONE DATA

Spread A, 3 SP's, 12 Geo's, X-Shift = 0.0, X-True = 0, Units: Meters.

SP	Elev	X-Loc	Y-Loc	Depth	Uphole T	Fudge T	End SP
B	175.0	0.0	0.0	0.0	0.0	0.0	1
A	207.0	65.0	0.0	0.0	0.0	0.0	0
С	230.0	130.0	0.0	0.0	0.0	0.0	2

ARRIVAL TIMES AND LAYERS REPRESENTED

Elev	X-Loc	Y	SP B	SP A	SP C				
			~	-L	-L I	ر			
180.0	10.0	0.0	15.00	126.620	253.000 2	2			
185.0	20.0	0.0	21.00	224.750	251.000 2	2			
190.0	30.0	0.0	25.00	221.250	248.000 2	2			
195.0	40.0	0.0	31.00	217.620	244.000 2	?			
200.0	50.0	0.0	36.00	213.750	140.000 2	2			
205.0	60.0	0.0	43.00	2 6.250	137.000 2	2			
210.0	70.0	0.0	47.00	2 5.750	135.000 2)			
214.0	80.0	0.0	54.00	212.370	130.000 2)			
218.0	90.0	0.0	56.00	218.500	125.000 2	2			
221.0	100.0	0.0	60.00	223.250	120.000 1	_			
222.0	110.0	0.0	64.00	229.500	114.000 1				
226.0	120.0	0.0	66.00	235.120	1 6.000 1				
	180.0 185.0 190.0 195.0 200.0 205.0 210.0 214.0 221.0 222.0	180.0 10.0 185.0 20.0 190.0 30.0 195.0 40.0 200.0 50.0 205.0 60.0 210.0 70.0 214.0 80.0 218.0 90.0 221.0 100.0 222.0 110.0	180.0	180.0	180.0 10.0 0.0 15.00 126.620 185.0 20.0 0.0 21.00 224.750 190.0 30.0 0.0 25.00 221.250 195.0 40.0 0.0 31.00 217.620 200.0 50.0 0.0 36.00 213.750 205.0 60.0 0.0 43.00 2 6.250 210.0 70.0 0.0 47.00 2 5.750 214.0 80.0 0.0 54.00 212.370 218.0 90.0 0.0 56.00 218.500 221.0 100.0 0.0 60.00 223.250 222.0 110.0 0.0 64.00 229.500	180.0			

INPUT DATA FILE for CB1P2.SIP

TITLE FOR SIPT2/SIPLUS INPUT DATA SET for CB1P2.SIP
SITIO PRESA CHAPARRAL LINEA CBS-S M.IZQUIERDA PERFIL 2

PROGRAM CONTROL DATA

~=~~=~~=~															
S	_	Ļ		PRINTE	R PLOT	SCALES	DATUM	CONTROL	PLOT	CONTROL				0	+
р	Ε	a	0												Ļ
r	x	У	V	Elev	Horiz	Time	Pt 1	Pt 2	Elev	ations			а	f	D
d	i	r	е										С	S	i
s	t	s	r	m/col	m/row	ms/col	${\tt Elev/X}$	Elev/X	Top	Bottom	BLim	TLim	е	P	p
~	~	-	_				~						-	-	_
1	б	2	0	0.0	0.0	0.0	0.0	0.0	0	0	0.5	10.0	0	0	0
							0.0	0.0							

SHOTPOINT AND GEOPHONE DATA

spread A, 3 SP's, 12 Geo's, X-Shift = 0.0, X-True = 0, Units: Meters.

SP	Elev	X-Loc	Y-Loc	Depth	Uphole T	Fudge T	End SP
	~						
Α	230.0	0.0	0.0	0.0	0.0	0.0	1
В	265.0	65.0	0.0	0.0	0.0	0.0	0
C	275.0	130.0	0.0	0.0	0.0	0.0	2

ARRIVAL TIMES AND LAYERS REPRESENTED

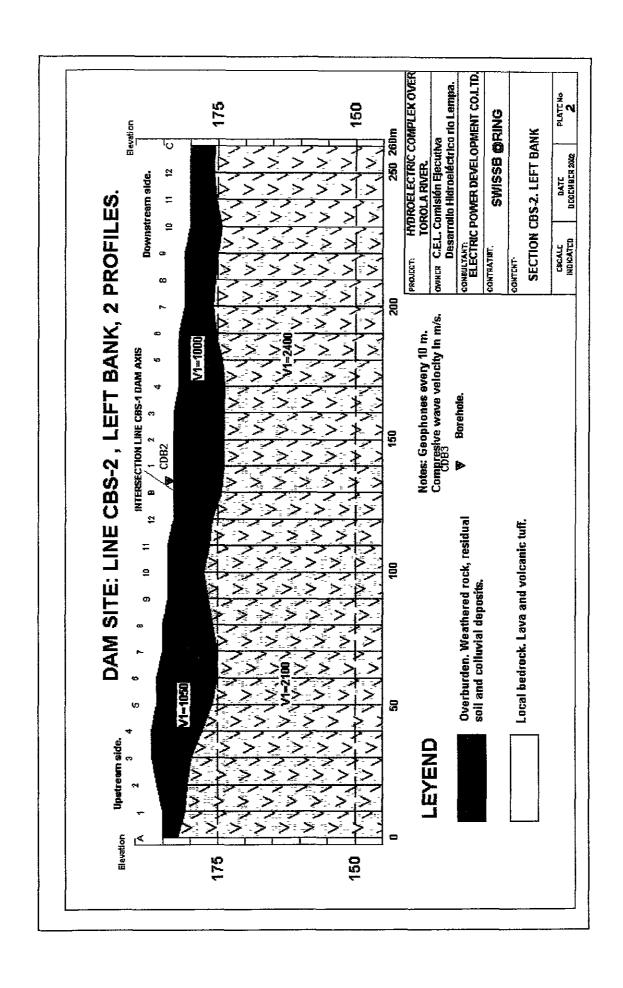
	_								
Geo	Elev	X-Loc	Y	SP A		SP B		SP C	
					-L		-L		-L
1	235.0	10.0	0.0	10.50	1	36.37	2	59.25	2
2	240.0	20.0	0.0	18.50	1	32.12	2	56.87	2
3	245.0	30.0	0.0	26.37	2	29.25	2	54.37	2
4	250.0	40.0	0.0	30.50	2	26.75	2	52.12	2
5	255.0	50.0	0.0	36.37	2	21.25	1	50.75	2
6	260.0	60.0	0.0	41.25	2	10.62	1	48.12	2
7	270.0	70.0	0.0	47.00	2	10.62	1	44.50	2
3	275.0	80.0	0.0	50.37	2	19.25	2	42.12	2
9	276.0	90.0	0.0	54.50	2	24.75	2	39.62	2
10	277.0	100.0	0.0	58.50	2	32.62	2	32.25	1
11	277.0	110.0	0.0	60.87	2	41.37	2	23.75	1
12	276.0	120.0	0.0	63.00	2	43.75	2	15.12	1

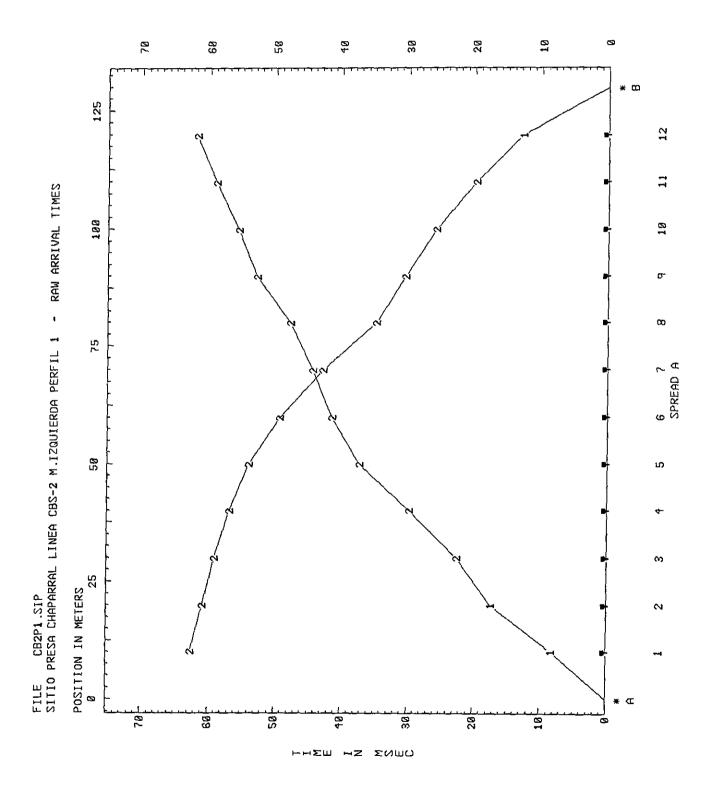
DEPTH MODEL TABLES for CB1P1.SIP

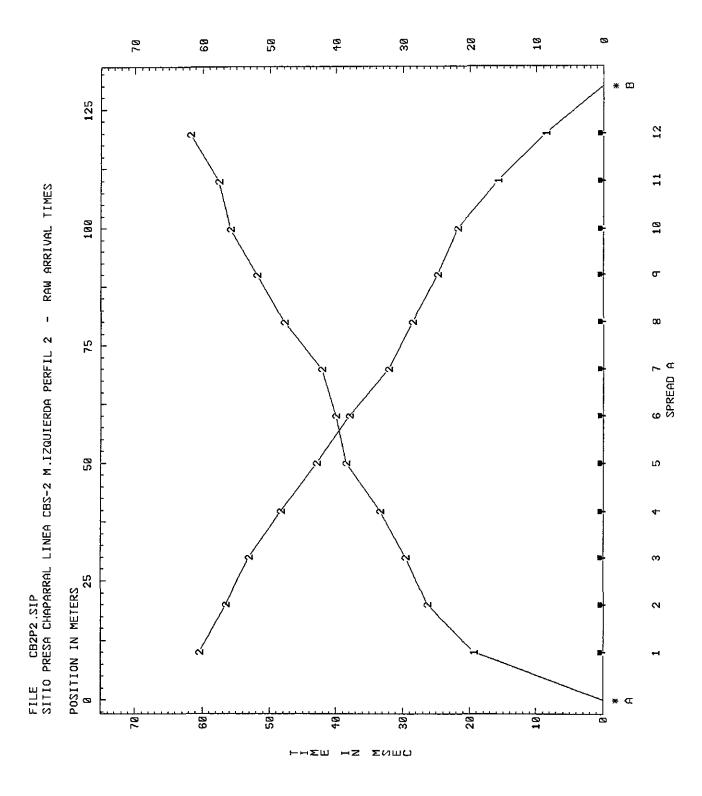
Spread A Depth and Elev of layers directly beneath SPs and Geos

	Suri	face	Laye	
SP	X-Loc	Elev	Depth	Elev
В	1.3	175.0`	4.4	170.6
Α	57.6	207.0	13.5	193.5
C	118.1	230.0	15.8	214.2

	Surf	Eace	Layer 2				
Geo	X-Loc	Elev	Depth	Elev			
1	10.0	180.0	5.7	174.3			
2	18.7	185.0	6.6	178.4			
3	27.3	190.0	7.3	182.7			
4	36.0	195.0	8.5	186.5			
5	44.6	200.0	10.2	189.8			
6	53.3	205.0	13.0	192.0			
7	62.0	210.0	15.1	194.9			
8	71.1	214.0	16.0	198.0			
9	80.3	218.0	17.4	200.6			
10	89.8	221.0	19.1	201.9			
11	99.8	222.0	17.1	204.9			
12	108.9	226.0	14.7	211.3			


DEPTH MODEL TABLES for CB1P2.SIP


Spread A Depth and Elev of layers directly beneath SPs and Geos


	Suri	face	Layer 2				
SP	X-Loc	Elev	Depth	Elev			
-			- 				
Α	1.3	230.0	4.2	225.8			
В	53.3	265.0	13.6	251.4			
C	111.8	275.0	2.8	272.2			

	Suri	face	Layer 2				
Geo	X-Loc	Elev	Depth	Elev			
	- <i></i>						
1	10.0	235.0	5.1	229.9			
2	18.7	240.0	7.0	233.0			
3	27.3	245.0	8.9	236.1			
4	36.0	250.0	10.7	239.3			
5	44.6	255.0	11.8	243.2			
6	53.3	260.0	8.6	251.4			
7	53.3	270.0	18.6	251.4			
8	62.0	275.0	20.0	255.0			
9	71.9	276.0	15.0	261.0			
10	81.9	277.0	15.2	261.8			
11	91.9	277.0	10.0	267.0			
12	101.8	276.0	3.8	272.2			

	Layer 1	
- Vertica		
Horizonta.		1918

INPUT DATA FILE for CB2P1.SIP

PROGRAM CONTROL DATA

_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

S p		L a		PRINTE	R PLOT	SCALES	DATUM	CONTROL	PLOI	CONTROL			_	0 f	L
r	х	y r	v	Elev	Horiz	Time	Pt 1	Pt 2	Elev	ations			a	f	
s	t	ន	r	m/col	m/row	ms/col	Elev/X	Elev/X	Top	Bottom	BLim				
-	-	-										~	-	-	_
1	6	2	0	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0	0	0.5	10.0	0	0	0

"OTPOINT AND GEOPHONE DATA

Spread A, 2 SP's, 12 Geo's, X-Shift = 0.0, X-True = 0, Units: Meters.

SP	Elev	X-Loc	Y-Loc	Depth	Uphole T	Fudge T	End SP
			*				
A	185.0	0.0	0.0	0.0	0.0	0.0	1
В	183.0	130.0	0.0	0.0	0.0	0.0	2

ARRIVAL TIMES AND LAYERS REPRESENTED

Elev	X-Loc	Y	SP A		SP B	
				-L		-L
185.0	10.0	0.0	3.250	1	62.62	2
186.0	20.0	0.017	7.370	1	60.75	2
187.0	30.0	0.022	2.500	2	59.12	2
187.0	40.0	0.029	750	2	56.87	2
186.0	50.0	0.037	7.250	2	54.00	2
186.0	60.0	0.041	1.500	2	49.25	2
185.0	70.0	0.044	1.370	2	42.75	2
185.0	80.0	0.047	7.750	2	34.75	2
184.0	90.0	0.052	2.750	2	30.37	2
184.0	100.0	0.055	5.620	2	25.75	2
184.0	110.0	0.059	000.	2	19.75	2
183.0	120.0	0.061	.870	2	12.75	1
	185.0 186.0 187.0 187.0 186.0 186.0 185.0 184.0 184.0	185.0 10.0 186.0 20.0 187.0 30.0 187.0 40.0 186.0 50.0 186.0 60.0 185.0 70.0 185.0 80.0 184.0 90.0 184.0 100.0 184.0 110.0	185.0	185.0 10.0 0.0 8.250 186.0 20.0 0.017.370 187.0 30.0 0.022.500 187.0 40.0 0.029.750 186.0 50.0 0.037.250 186.0 60.0 0.041.500 185.0 70.0 0.044.370 185.0 80.0 0.047.750 184.0 90.0 0.052.750 184.0 100.0 0.055.620 184.0 110.0 0.059.000	185.0 10.0 0.0 8.250 1 186.0 20.0 0.017.370 1 187.0 30.0 0.022.500 2 187.0 40.0 0.029.750 2 186.0 50.0 0.037.250 2 186.0 60.0 0.041.500 2 185.0 70.0 0.044.370 2 185.0 80.0 0.047.750 2 184.0 90.0 0.052.750 2 184.0 100.0 0.055.620 2 184.0 110.0 0.059.000 2	185.0 10.0 0.0 8.250 1 62.62 186.0 20.0 0.017.370 1 60.75 187.0 30.0 0.022.500 2 59.12 187.0 40.0 0.029.750 2 56.87 186.0 50.0 0.037.250 2 54.00 186.0 60.0 0.041.500 2 49.25 185.0 70.0 0.044.370 2 42.75 185.0 80.0 0.047.750 2 34.75 184.0 90.0 0.052.750 2 30.37 184.0 100.0 0.055.620 2 25.75 184.0 110.0 0.059.000 2 19.75

399 7-8-20

INPUT DATA FILE for CB2P2.SIP

TITLE FOR SIPT2/SIPLUS INPUT DATA SET for CB2P2.SIP
SITIO PRESA CHAPARRAL LINEA CBS-2 M.IZQUIERDA PERFIL 2

PROGRAM CONTROL DATA

_		L	-	PRINTE	R PLOT	SCALES	DATUM	CONTROL	PLOI	CONTROL			_	O f	
r	x	a Y r	v	Elev	Horiz	Time	Pt 1	Pt 2	Elev	rations			a	f	D
-		s	_	m/col	m/row	ms/col	Elev/X	Elev/X	Top	Bottom	BLim	TLim	е	Ρ	p
_	_	_											-	-	-
1	6	2	0	0.0	0.0	0.0	0.0	0.0	0	0	0.5	10.0	0	0	0

CHOTPOINT AND GEOPHONE DATA

.......

Spread A, 2 SP's, 12 Geo's, X-Shift = 0.0, X-True = 0, Units: Meters.

SP	Elev	X-Loc	Y-Loc	Depth	Uphole T	Fudge T	End SP
A	183.0	0.0	0.0	0.0	0.0	0.0	1
В	180.0	130.0	0.0	0.0	0.0	0.0	2

ARRIVAL TIMES AND LAYERS REPRESENTED

Con Plant Vion V CD N CD

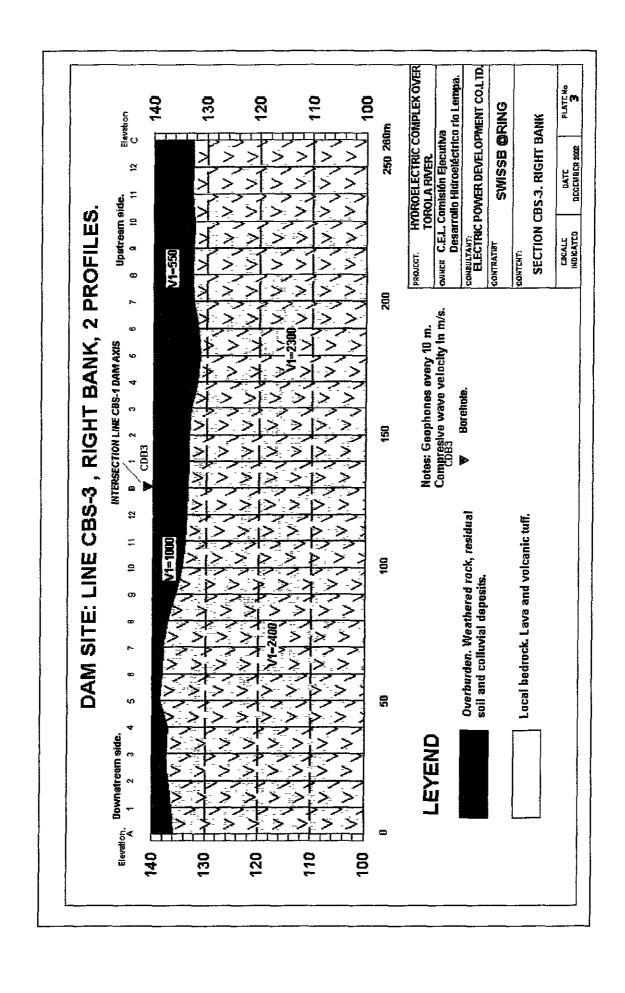
Geo	Elev	X-Loc	Y	SP A	SP B	
					-L	٠L
1	183.0	10.0	0.0	19.37	160.370	2
2	183.0	20.0	0.0	26.37	256.620	2
3	183.0	30.0	0.0	29.62	253.120	2
4	182.0	40.0	0.0	33.25	248.250	2
5	182.0	50.0	0.0	38.50	242.870	2
6	182.0	60.0	0.0	40.00	238.000	2
7	181.0	70.0	0.0	42.12	232.120	2
ر	181.0	80.0	0.0	47.87	228.620	2
9	181.0	90.0	0.0	51.87	224.750	2
10	180.0	100.0	0.0	55.87	221.750	2
11	180.0	110.0	0.0	57.62	215.750	1
12	180.0	120.0	0.0	61.75	2 8.625	1

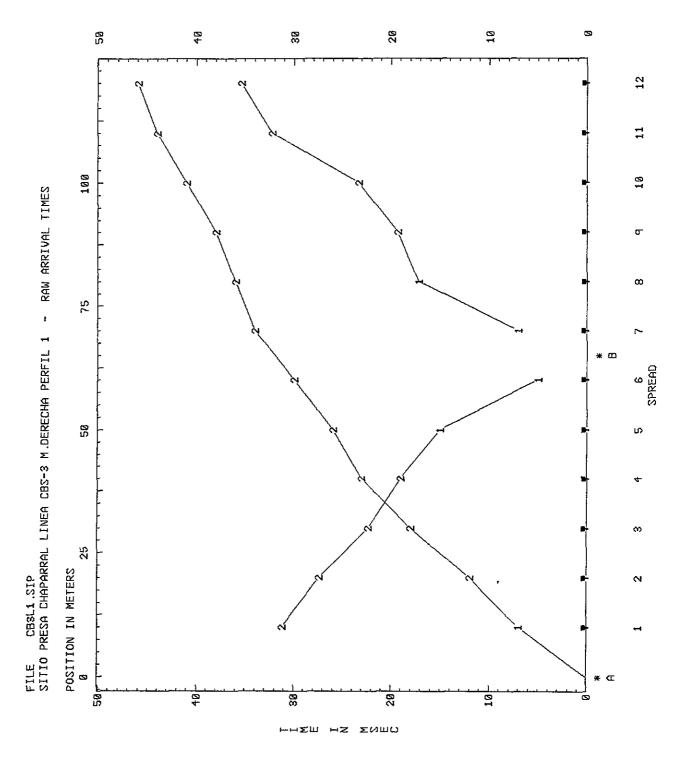
DEPTH MODEL TABLES for CB2P1.SIP

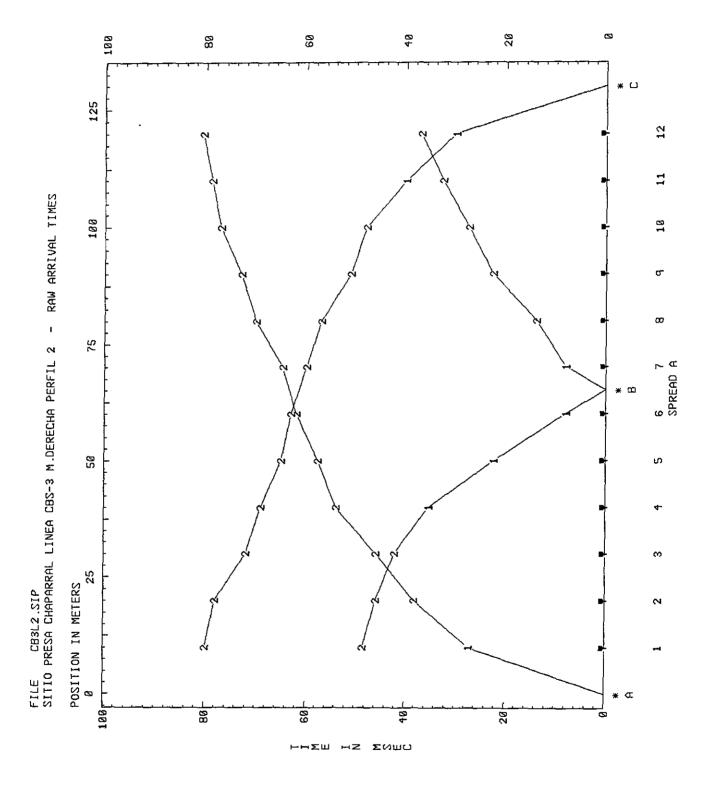
Spread A Depth and Elev of layers directly beneath SPs and Geos

	Sur:	face	Laye	r 2
SP			Depth	
- 				
Α			2.6	
В	129.7	183.0	3.8	179.2

	Sur	face	_	er 2
Geo	X-Loc	Elev	Depth	Elev
				-'
1	10.0	185.0	4.0	181.0
2	19.9	186.0	5.3	180.7
3	29.9	187.0	7.1	179.9
4	39.9	187.0	9.1	177.9
5	49.8	186.0	9.9	176.1
6	59.8	186.0	10.9	175.1
7	69.8	185.0	9.9	175.1
8	79.8	185.0	9.1	175.9
9	89.7	184.0	7.2	176.8
10	99.7	184.0	6.4	177.6
11	109.7	184.0	5.5	178.5
12	119.7	183.0	4.6	178.4


DEPTH MODEL TABLES for CB2P2.SIP


Spread A Depth and Elev of layers directly beneath SPs and Geos


	Suri	Eace	Laye	r 2
SP	X-Loc	Elev	Depth	
	[- .			
Α	0.0	183.0	9.5	173.5
В	129.8	180.0	4.4	175.6

	Suri	face	Laye	r 2
Geo	X-Loc	Elev	Depth	Elev
				
1 '	10.0	183.0	9.2	173.8
2	20.0	183.0	9.1	173.9
3	30.0	183.0	9.2	173.8
4	39.9	182.0	8.3	173.7
5	49.9	182.0	7.8	174.2
6	59.9	182.0	6.7	175.3
7	69.9	181.0	5.1	175.9
8	79.9	181.0	5.6	175.4
9	89.9	181.0	6.1	174.9
10	99.8	180.0	5.6	174.4
11	109.8	180.0	4.7	175.3
12	119.8	180.0	4.3	175.7

Spread A	Layer 1	. Layer 2
,		
Vertic	al 982	
Horizont	al	2462

INPUT DATA FILE for CB3L1.SIP

TITLE FOR SIPT2/SIPLUS INPUT DATA SET for CB3L1.SIP
SITIO PRESA CHAPARRAL LINEA CBS-3 M.DERECHA PERFIL 1

PROGRAM CONTROL DATA

S		L	V	PRINTER	PLOT	SCALES	DATUM	CONTROL	PLOT	CONTROL				0	
p	E	a	0												L
r	x	У	v	Elev 1	Horiz	Time	Pt 1	Pt 2	Elev	ations					D
d	i	r	е										С		
S	t	s	r	m/col r	m/row	ms/col	${ t Elev/X}$	${ t Elev/X}$	qoT	Bottom	BLim	TLim	е	Ρ	р
-	-	-	-		- <i></i>								-	-	-
1	6	2	0	0.0	0.0	0.0	0.0	0.0	0	0	0.5	10.0	0	0	0
							0.0	0.0							

CHOTPOINT AND GEOPHONE DATA

Spread A, 2 SP's, 12 Geo's, X-Shift = 0.0, X-True = 0, Units: Meters.

SP	Elev	X-Loc	Y-Loc	Depth	Uphole T	Fudge T	End SP
Α	140.0	0.0	0.0	0.0	0.0	0.0	1
В	140.0	65.0	0.0	0.0	0.0	0.0	0

ARRIVAL TIMES AND LAYERS REPRESENTED

Geo	Elev	X-Loc	Y	SP A	SP B	
					-L	-L
1	140.0	10.0	0.0	7.00	131.150	2
2	140.0	20.0	0.0	12.00	227.380	2
3	140.0	30.0	0.0	18.00	222.250	2
4	140.0	40.0	0.0	23.00	219.000	2
5	140.0	50.0	0.0	26.00	215.000	1
6	140.0	60.0	0.0	30.00	2 5.000	1
7	140.0	70.0	0.0	34.00	2 7.000	1
ತ	140.0	80.0	0.0	36.00	217.150	1
9	140.0	90.0	0.0	38.00	219.320	2
10	140.0	100.0	0.0	41.00	223.250	2
11	140.0	110.0	0.0	44.00	232.150	2
12	140.0	120.0	0.0	46.00	235.400	2

INPUT DATA FILE for CB3L2.SIP

TITLE FOR SIPT2/SIPLUS INPUT DATA SET for CB3L2.SIP

SITIO PRESA CHAPARRAL LINEA CBS-3 M.DERECHA PERFIL 2

PROGRAM CONTROL DATA

S		L	V	PRINT	ER PLOT	SCALES	DATUM	CONTROL	PLOT	CONTROL	I		T	0	
p	E	а	0										r	f	L
r	\mathbf{x}	У	V	Elev	Horiz	Time	Pt 1	Pt 2	Elev	ations			a	f	D
d	i	r	е										C	S	i
S	t	s	r	m/col	m/row	ms/col	${\tt Elev/X}$	${ t Elev/X}$	Top	Bottom	BLim	TLim	е	P	p
-	-	-	-										-	-	-
1	6	2	٥	0.0	0.0	0.0	0.0	0.0	0	0	0.5	10.0	0	0	0
							0.0	0.0							

SUOTPOINT AND GEOPHONE DATA

Spread A, 3 SP's, 12 Geo's, X-Shift ≈ 0.0, X-True = 0, Units: Meters.

SP	Elev	X-Loc	Y-Loc	Depth	Uphole T	Fudge T	End SP
			~				
A	140.0	0.0	0.0	0.0	0.0	0.0	1
В	140.0	65.0	0.0	0.0	0.0	0.0	0
С	140.0	130.0	0.0	0.0	0.0	0.0	2

ARRIVAL TIMES AND LAYERS REPRESENTED

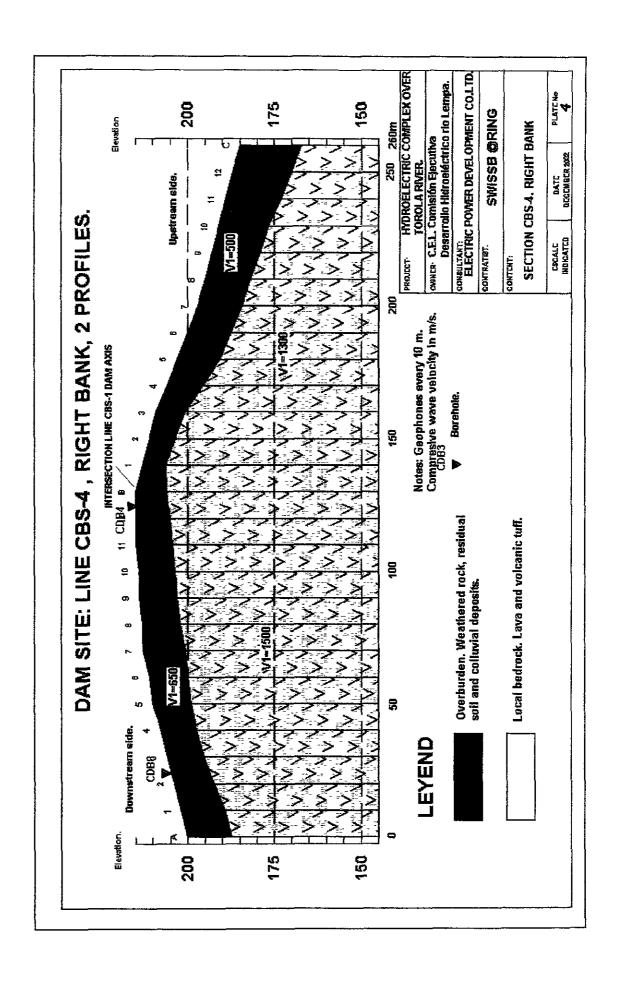
Geo Fley Y-Loc V SD A SD

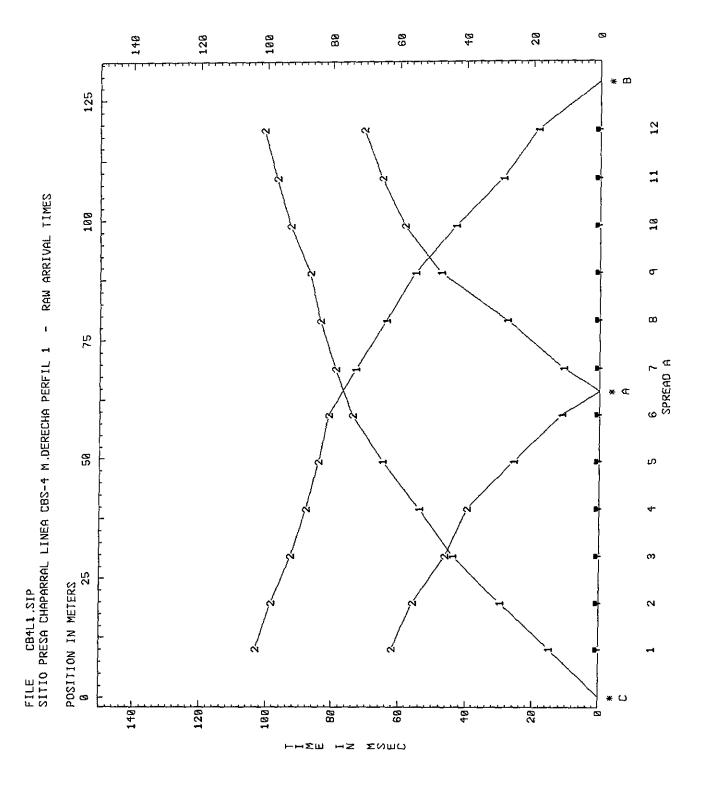
Geo	Elev	X-Loc	Y	SP A	SP B		SP C	
					-L	-L		-L
1	140.0	10.0	0.0	27.12	148.370	2	80.00	2
2	140.0	20.0	0.0	38.12	245.870	2	78.00	2
3	140.0	30.0	0.0	45.90	242.120	2	72.00	2
4	140.0	40.0	0.0	53.90	235.250	1	69.00	2
5	140.0	50.0	0.0	57.62	222.25			

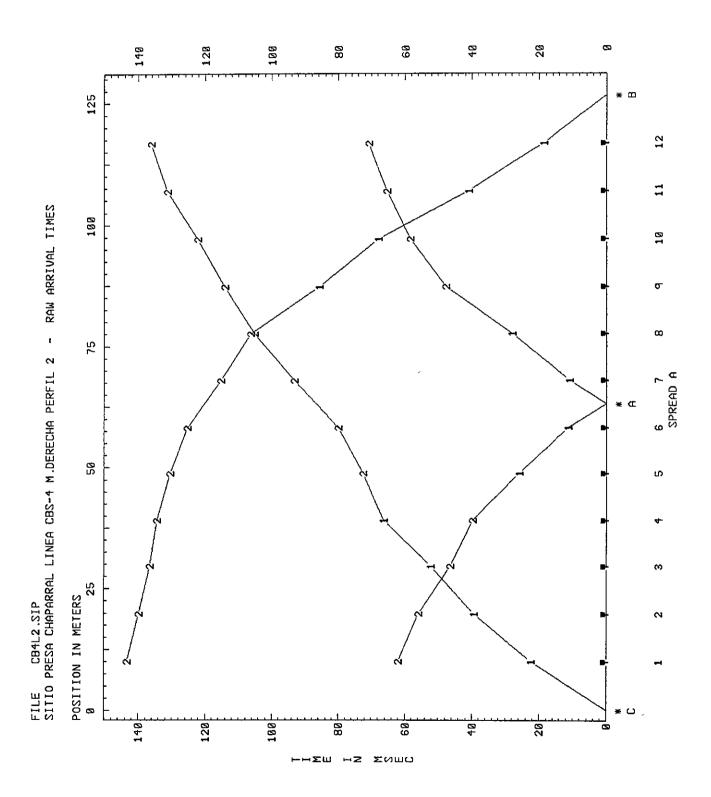
DEPTH MODEL TABLES for CB3L1.SIP

Spread A Depth and Elev of layers directly beneath SPs and Geos

	Surf	ace	Laye	r 2
SP	X-Loc	Elev	Depth	Elev
Α	0.0		4.0	136.0
В	65.0	140.0	1.9	138.1


	Suri	face	Laye	r 2
Geo	X-Loc	Elev	Depth	Elev
		-		
1 '	10.0	140.0	3.6	136.4
2	20.0	140.0	2.9	137.1
3	30.0	140.0	2.7	137.3
4	40.0	140.0	3.0	137.0
5	50.0	140.0	1.3	138.7
6	60.0	140.0	1.9	138.1
7	70.0	140.0	2.0	138.0
8	80.0	140.0	2.8	137.2
9	90.0	140.0	4.2	135.8
10	100.0	140.0	5.5	134.5
11	110.0	140.0	6.1	133.9
12	120.0	140.0	6.3	133.7


DEPTH MODEL TABLES for CB3L2.SIP


Spread A Depth and Elev of layers directly beneath SPs and Geos

	Sur	face	Laye	r 2
SP	X-Loc	${ t Elev}$	Depth	Elev
Α	0.0	140.0	6.1	133.9
В	65.0	140.0	7.9	132.1
С	130.0	140.0	7.3	132.7

	Suri	Eace	Layer 2				
Geo	X-Loc	Elev	Depth	Elev			
		- 					
1 '	10.0	140.0	6.6	133.4			
2	20.0	140.0	6.7	133.3			
3	30.0	140.0	7.2	132.8			
4	40.0	140.0	8.3	131.7			
5	50.0	140.0	8.7	131.3			
б	60.0	140.0	8.4	131.6			
7	70.0	140.0	7.4	132.6			
8	80.0	140.0	7.3	132.7			
9	90.0	140.0	7.5	132.5			
10	100.0	140.0	7.6	132.4			
11	110.0	140.0	7.2	132.8			
12	120.0	140.0	7.3	132.7			

INPUT DATA FILE for CB4L1.SIP

PROGRAM CONTROL DATA

S		L	•	PRINTE	ER PLOT	SCALES	DATUM	CONTROL	PLOI	CONTROL	ı			0 f	L
r	\mathbf{x}	a y r	v	Elev	Horiz	Time	Pt 1	Pt 2	Elev	ations			а	f	Di
٠.	_	_	_	m/col	m/row	ms/col	Elev/X	Elev/X	Top	Bottom	BLim	TLim	_	_	
-	-	-	_	~									_	_	-
1	6	2	0	0.0	0.0	0.0	0.0	0.0	0	0	0.5	10.0	0	0	0

CHOTPOINT AND GEOPHONE DATA

Spread A, 3 SP's, 12 Geo's, X-Shift ≈ 0.0, X-True = 0, Units: Meters.

SP	Elev	X-Loc	Y-Loc	Depth	Uphole T	Fudge T	End SP
- -							~
С	200.0	0.0	0.0	0.0	0.0	0.0	1
Α	212.0	65.0	0.0	0.0	0.0	0.0	0
B	215.0	130.0	0.0	0.0	0.0	0.0	2

Geo	Elev	X-Loc	Y	SP C		SP A		SP B	
					-L		-L		- L
1	202.0	10.0	0.0	15.00	1	62.12	2	103.20	2
2	204.0	20.0	0.0	30.00	1	55.75	2	98.65	2
3	206.0	30.0	0.0	44.00	1	46.37	2	92.87	2
4	208.0	40.0	0.0	54.00	1	39.75	2	88.15	2
5	210.0	50.0	0.0	65.00	1	25.87	1	84.32	2
6	211.0	60.0	0.0	74.00	2	11.25	1	81.20	2
ì	213.0	70.0	0.0	79.00	2	11.00	1	73.12	1
8	213.0	80.0	0.0	84.00	2	28.00	1	63.85	1
9	214.0	90.0	0.0	87.00	2	47.75	1	55.15	1
10	214.0	100.0	0.0	93.00	2	58.25	2	43.25	1
11	215.0	110.0	0.0	97.00	2	65.37	2	29.15	1
12	215.0	120.0	0.01	101.00	2	70.75	2	18.62	1

INPUT DATA FILE for CB4L2.SIP

TITLE FOR SIPT2/SIPLUS INPUT DATA SET for CB4L2.SIP
SITIO PRESA CHAPARRAL LINEA CBS-4 M.DERECHA PERFIL 2

PROGRAM CONTROL DATA

					_										
S		L	-	PRINTE	R PLOT	SCALES	DATUM	CONTROL	PLOT	CONTROL			_	Õ	
р	E	a	O										_	f	_
r	X	У	ν	Elev	Horiz	Time	Pt 1	Pt 2	Elev	ations			а	f	D
d	i	r	e										C	S	i
s	t	s	r	m/col	m/row	ms/col	Elev/X	${ t Elev/X}$	Top	Bottom	BLim	TLim	е	P	p
-	-	-	-										-	-	-
1	6	2	0	0.0	0.0	0.0	0.0	0.0	0	0	0.5	10.0	0	0	0

CHOTPOINT AND GEOPHONE DATA

Spread A, 3 SP's, 12 Geo's, X-Shift = 0.0, X-True = 0, Units: Meters.

SP	Elev	X-Loc	Y-Loc	Depth	Uphole T	Fudge T	End SP
C	215.0	0.0	0.0	0.0	0.0	0.0	1
Α	198.0	65.0	0.0	0.0	0.0	0.0	0
В	185.0	130.0	0.0	0.0	0.0	0.0	2

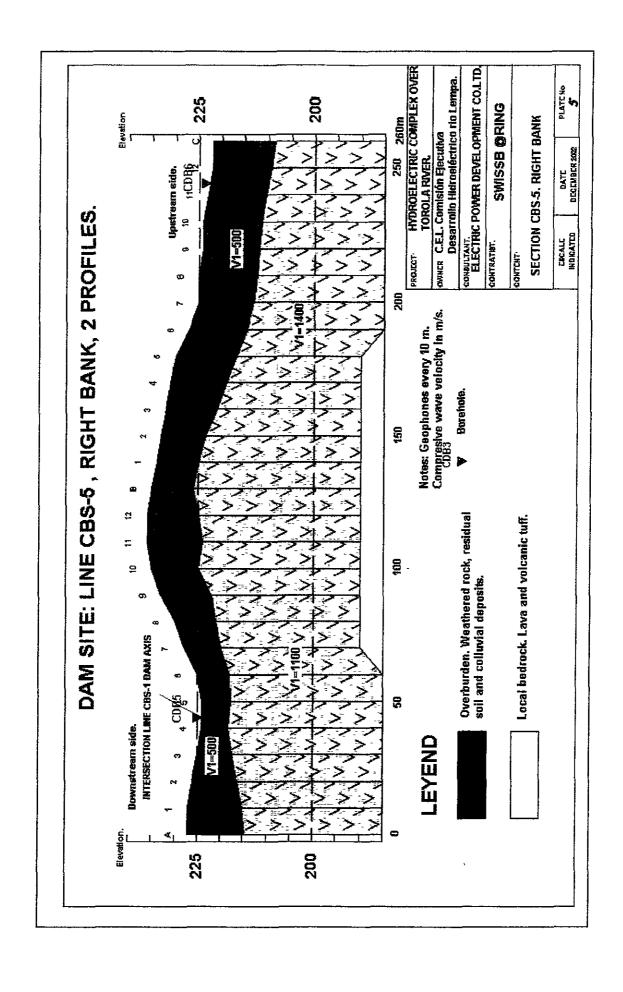
ARRIVAL TIMES AND LAYERS REPRESENTED

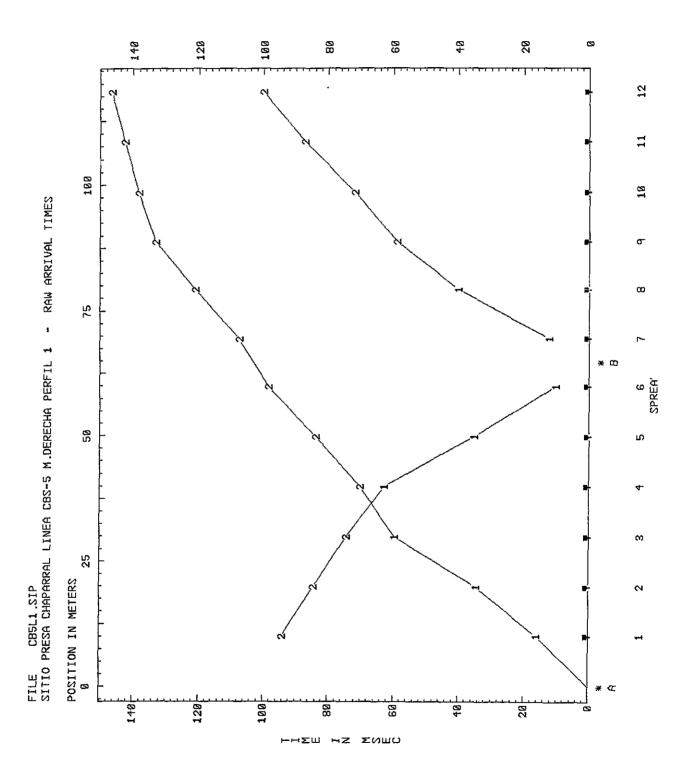
Geo	Elev	X-Loc	Y	SP C		SP A	SP B	
					-L		- <u>L</u>	-L
1	213.0	10.0	0.0	22.25	1	62.12	2143.30	2
2	211.0	20.0	0.0	39.35	1	55.75	2139.80	2
3	209.0	30.0	0.0	52.15	1	46.37	2136.50	2
4	206.0	40.0	0.0	66.25	3	39.75	2134.50	2
5	203.0	50.0	0.0	72.35	2	25.87	1130.60	2
5	200.0	60.0	0.0	80.12	2	11.25	1125.30	2
1	197.0	70.0	0.0	93.15	2	11.00	1115.20	2
8	195.0	80.0	0.03	105.20	2	28.00	1106.30	2
9	193.0	90.0	0.01	14.10	2	47.75	2 85.87	1
10	191.0	100.0	0.01	22.20	2	58.25	2 67.87	1
11	189.0	110.0	0.01	31.30	2	65.37	2 40.87	1
12	187.0	120.0	0.01	36.10	2	70.75	2 18.62	1

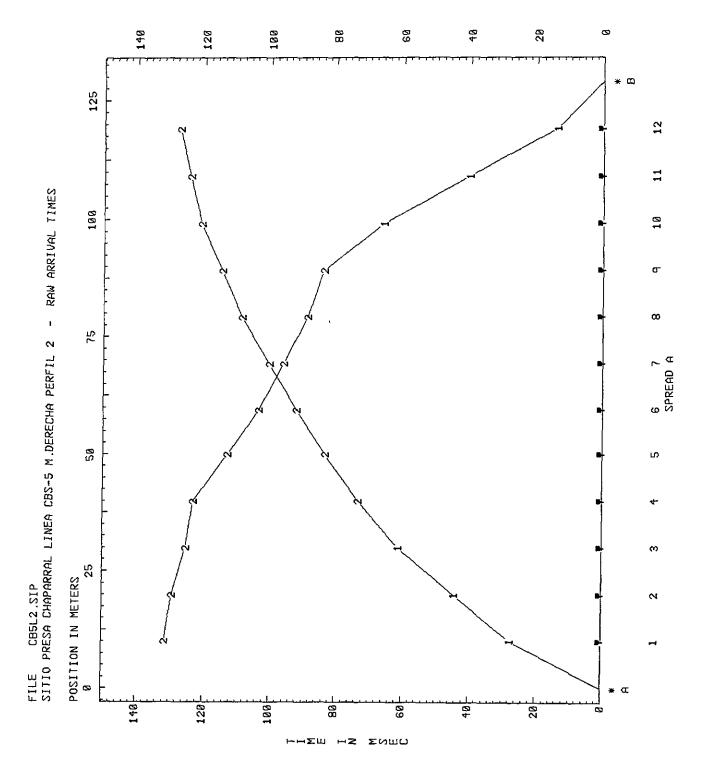
DEPTH MODEL TABLES for CB4L1.SIP

Spread A Depth and Elev of layers directly beneath SPs and Geos

	Suri	face	Laye	r 2
SP	X-Loc	Elev	Depth	Elev
С	0.2	200.0	12.7	187.3
Α	64.0	212.0	11.7	200.3
В	128.8	215.0	8.9	206.1


	Suri	Eace	Laye	
Geo ု	X-Loc	Elev	Depth	Elev
1	10.0	202.0	12.6	189.4
2	19.8	204.0	11.5	192.5
3	29.6	206.0	10.7	195.3
4	39.4	208.0	10.5	197.5
5	49.2	210.0	11.0	199.0
6	59.1	211.0	11.0	200.0
7	68.9	213.0	12.3	200.7
8	78.9	213.0	10.8	202.2
9	88.9	214.0	10.7	203.3
10	98.9	214.0	10.2	203.8
11	108.8	215.0	10.6	204.4
12	118.8	215.0	9.7	205.3


DEPTH MODEL TABLES for CB4L2.SIP


Spread A Depth and Elev of layers directly beneath SPs and Geos

	Sur	face	Layer 2			
SP	X-Loc	Elev	Depth	Elev		
			-			
C	0.2	215.0	4.7	210.3		
A	63.0	198.0	12.1	185.9		
В	126.5	185.0	17.8	167.2		

	Sur	face	Layer 2				
Geo	X-Loc	Elev	Depth	Elev			
							
1	10.0	213.0	6.7	206.3			
2	19.8	211.0	7.3	203.7			
3	29.6	209.0	8.1	200.9			
4	39.1	206.0	10.4	195.6			
5	48.7	203.0	12.3	190.7			
6	58.2	200.0	12.5	187.5			
7	67.8	197.0	12.7	184.3			
8	77.6	195.0	13.1	181.9			
9	87.3	193.0	13.7	179.3			
10	97.1	191.0	14.1	176.9			
11	106.9	189.0	15.8	173.2			
12	116.7	187.0	16.9	170.1			

INPUT DATA FILE for CB5L1.SIP

PROGRAM CONTROL DATA

S	כז	_	V	PRINTE	ER PLOT	SCALES	DATUM	CONTROL	PLOT	CONTROL	ı		_	0	L
r	х	a Y r	v	Elev	Horiz	Time	Pt 1	Pt 2	Elev	ations			a	f	D i
s	t	s	r	m/col	m/row	ms/col	Elev/X	Elev/X	Top	Bottom	BLim	TLim	_		-
_	_	-	-										-	-	_
1	6	2	0	0.0	0.0	0.0	0.0	0.0	0	0	0.5	10.0	0	0	0

CHOTPOINT AND GEOPHONE DATA

Spread A, 2 SP's, 12 Geo's, X-Shift = 0.0, X-True = 0, Units: Meters.

SP	Elev	X-Loc	Y-Loc	Depth	Uphole T	Fudge T	End SP
A	227.0	0.0	0.0	0.0	0.0	0.0	1
В	226.0	65.0	0.0	0.0	0.0	0.0	0

ARRIVAL TIMES AND LAYERS REPRESENTED

Geo Fley Y-Loc V SD A SD B

Geo	Elev	X-Loc	Y	SP A		SP B	
					- L		-L
1	227.0	10.0	0.0	16.12	1	94.12	2
2	226.0	20.0	0.0	34.62	1	84.50	2
3	225.0	30.0	0.0	59.75	1	74.50	2
4	224.0	40.0	0.0	70.12	2	62.87	1
5	224.0	50.0	0.0	83.87	2	35.37	1
6	225.0	60.0	0.0	98.50	2	10.25	1
7	228.0	70.0	0.01	07.60	2	12.50	1
ડ	230.0	80.0	0.01	21.00	2	40.12	1
9	233.0	90.0	0.01	33.00	2	59.00	2
10	235.0	100.0	0.01	38.20	2	72.00	2
11	236.0	110.0	0.01	42.50	2	87.12	2
12	236.0	120.0	0.01	46.60	21	00.10	2

INPUT DATA FILE for CB5L2.SIP

PROGRAM CONTROL DATA

					· -										
S		L	V	PRINTE	R PLOT	SCALES	DATUM	CONTROL	PLOT	CONTROL			T	0	
р	\mathbf{E}	а	0										r	f	Ŀ
r	x	У	v	Elev	Horiz	Time	Pt 1	Pt 2	Elev	ations			a	f	D
d	i	r	е										С	S	i
s	t	s	r	m/col	m/row	ms/col	Elev/X	${\tt Elev/X}$	Top	Bottom	BLim	TLim	е	Ρ	p
-	-	-	-										-	-	
1	6	2	0	0.0	0.0	0.0	0.0	0.0	0	0	0.5	10.0	0	0	0
							0.0	0.0							

CHOTPOINT AND GEOPHONE DATA

Spread A, 2 SP's, 12 Geo's, X-Shift = 0.0, X-True = 0, Units: Meters.

SP	Elev	X-Loc	Y-Loc	Depth	Uphole T	Fudge T	End SP
					~~		
A	235.0	0.0	0.0	0.0	0.0	0.0	1
В	222.0	130.0	0.0	0.0	0.0	0.0	2

Geo	Elev	X-Loc	Y	SP A	SP B	
			-		-L	- L
1	234.0	10.0	0.0	27.62	1131.30	2
2	233.0	20.0	0.0	44.37	1129.20	2
3	232.0	30.0	0.0	61.25	1125.20	2
4	231.0	40.0	0.0	73.25	2123.00	2
5	230.0	50.0	0.0	83.25	2113.00	2
6	227.0	60.0	0.0	92.00	2103.50	2
7	225.0	70.0	0.01	.00.30	2 96.12	2
3	225.0	80.0	0.01	.08.60	2 88.75	2
9	224.0	90.0	0.01	14.70	2 83.87	2
10	224.0	100.0	0.01	20.80	2 65.87	1
11	223.0	110.0	0.01	24.10	2 40.37	1
12	222.0	120.0	0.01	27.20	2 14.00	1

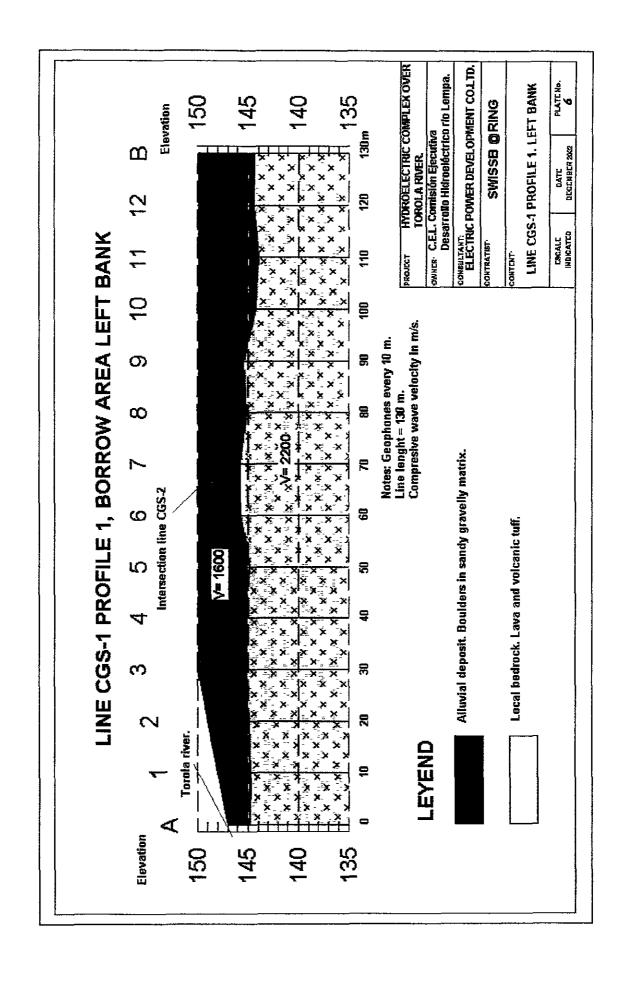
DEPTH MODEL TABLES for CB5L1.SIP

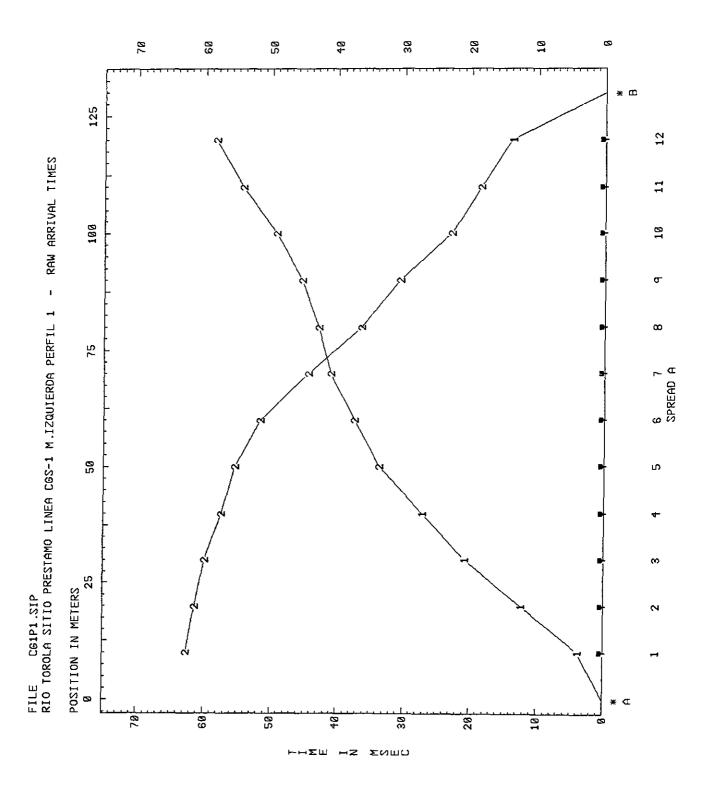
Spread A Depth and Elev of layers directly beneath SPs and Geos

	Sur	Surface		r 2
SP		Elev	Depth	Elev
A	0.0		12.2	,
В	64.6	226.0	7.0	219.0

	Surface		Layer 2	
Geo	X-Loc	Elev	Depth	Elev
-				
1 '	10.0	227.0	11.7	215.3
2	19.9	226.0	9.7	216.3
3	29.9	225.0	7.5	217.5
4	39.8	224.0	5.6	218.4
5	49.8	224.0	6.2	217.8
6	59.8	225.0	7.0	218.0
7	69.3	228.0	8.0	220.0
8	79.1	230.0	8.9	221.1
9	88.7	233.0	11.0	222.0
10	98.5	235.0	10.0	225.0
11	108.4	236.0	7.9	228.1
12	118.4	236.0	1.8	234.2

DEPTH MODEL TABLES for CB5L2.SIP


Spread A Depth and Elev of layers directly beneath SPs and Geos


	Surf	ace	Layer 2		
SP	X-Loc	Elev	Depth	Elev	
Α	0.1	235.0	9.0	226.0	
B	129 0	222 0	13 3	208 7	

	Sur	face	Layer 2		
Geo	X-Loc	Elev	Depth	Elev	
					
1	10.0	234.0	9.9	224.1	
2	19.9	233.0	10.3	222.7	
3	29.9	232.0	11.0	221.0	
4	39.8	231.0	12.0	219.0	
5	49.8	230.0	13.3	216.7	
6	59.3	227.0	12.4	214.6	
7	69.1	225.0	11.9	213.1	
8	79.1	225.0	12.6	212.4	
9	89.1	224.0	12.0	212.0	
10	99.1	224.0	12.6	211.4	
11	109.0	223.0	12.5	210.5	
12	119.0	222.0	12.6	209.4	

Velocities used to formulate the Depth Model

7-8-44

INPUT DATA FILE for CG1P1.SIP

TITLE FOR SIPT2/SIPLUS INPUT DATA SET for CG1P1.SIP

RIO TOROLA SITIO PRESTAMO LINEA CGS-1 M.IZQUIERDA PERFIL 1

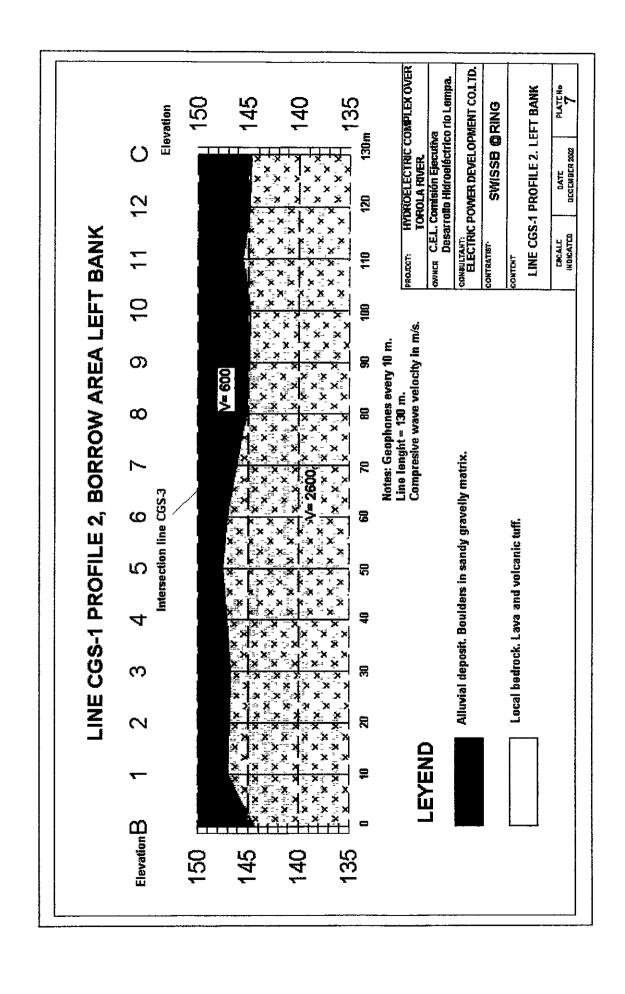
PROGRAM CONTROL DATA

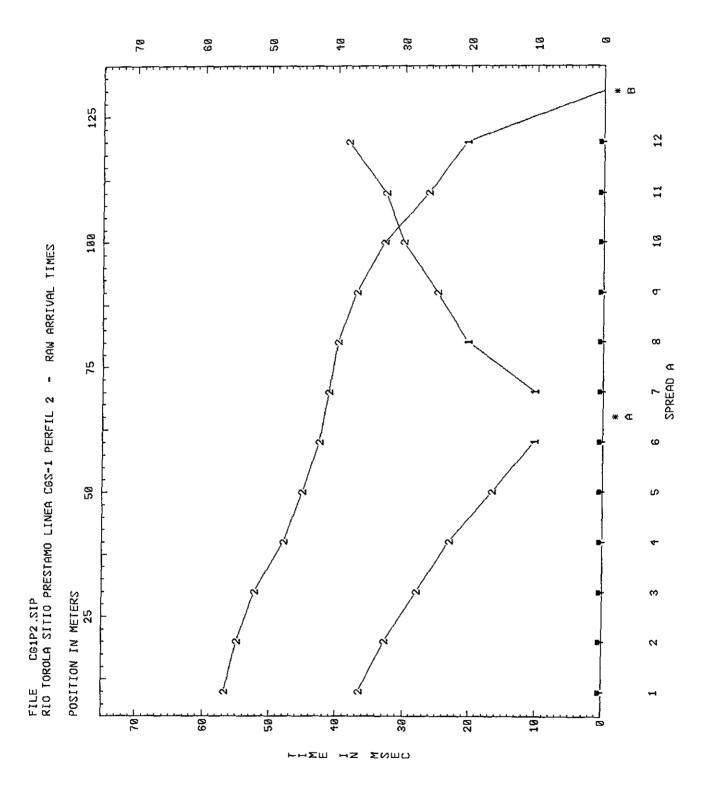
		L		PRINTE	ER PLOT	SCALES	DATUM	CONTROL	PLOT	CONTROL			_	ō	-
r	х	a Y r	v	Elev	Horiz	Time	Pt 1	Pt 2	Elev	ations			r a c		D
	_	s	-	m/col	m/row	ms/col	Elev/X	Elev/X	Top	Bottom	BLim	TLim	_	_	_
-	-	-	-								~		-	-	-
1	6	2	0	0.0	0.0	0.0	0.0	0.0 0.0	0	0	0.5	10.0	0	0	0

SHOTPOINT AND GEOPHONE DATA

Spread A, 2 SP's, 12 Geo's, X-Shift = 0.0, X-True = 0, Units: Meters.

SP	Elev	X-Loc	Y-Loc	Depth	Uphole T	Fudge T	End SP
A	147.0	0.0	0.0	0.0	0.0	0.0	1
В	150.0	130.0	0.0	0.0	0.0	0.0	2


Geo	Elev	X-Loc	Y SP A		SP B
-				-L	I,
1	148.0	10.0	0.0 3.750	1	62.62 2
2	149.0	20.0	0.012.250	1	61.25 2
3	150.0	30.0	0.020.750	1	59.87 2
4	150.0	40.0	0.027.120	1	57.37 2
5	150.0	50.0	0.033.620	2	55.37 2
6	150.0	60.0	0.037.370	2	51.62 2
7	150.0	70.0	0.041.120	2	44.50 2
3	150.0	80.0	0.042.870	2	36.37 2
9	150.0	90.0	0.045.370	2	30.62 2
10	150.0	100.0	0.049.250	2	22.87 2
11	150.0	110.0	0.054.250	2	18.50 2
12	150.0	120.0	0.058.370	2	13.87 1


DEPTH MODEL TABLES for CG1P1.SIP

Spread A Depth and Elev of layers directly beneath SPs and Geos

	Suri	Eace	Layer 2		
SP	** ====		Depth		
Α	0.1	147.0	12.2	134.8	
В	129.9	150.0	5.6	144.4	

	Surface		Layer 2		
Geo	X-Loc	Elev	Depth	Elev	
1	10.0	148.0	13.3	134.7	
2	19.9	149.0	14.1	134.9	
3	29.9	150.0	14.8	135.2	
4	39.9	150.0	14.6	135.4	
5	49.9	150.0	15.2	134.8	
6	59.9	150.0	15.8	134.2	
7	69.9	150.0	16.1	133.9	
8	79.9	150.0	15.8	134.2	
9	89.9	150.0	14.6	135.4	
10	99.9	150.0	11.9	138.1	
11	109.9	150.0	9.2	140.8	
12	119.9	150.0	7.4	142.6	

INPUT DATA FILE for CG1P2.SIP

TITLE FOR SIPT2/SIPLUS INPUT DATA SET for CG1P2.SIP RIO TOROLA SITIO PRESTAMO LINEA CGS-1 PERFIL 2

PROGRAM CONTROL DATA

					-										
S	_	L		PRINTE	R PLOT	SCALES	DATUM	CONTROL	PLOI	CONTROL	ī		_	ō	_
-	E			Elev	Horiz	Time	Pt 1	Pt 2	Elev	ations				f	T D
d	í	r	е											S	
s -	t -	s -	r	m/col	m/row	ms/col	Elev/X	Elev/X	Top	Bottom	BLim	TLim	e -	- P	p
1	6	2	0	0.0	0.0	0.0	0.0	0.0	0	0	0.5	10.0	0	0	0
							0.0	0.0							

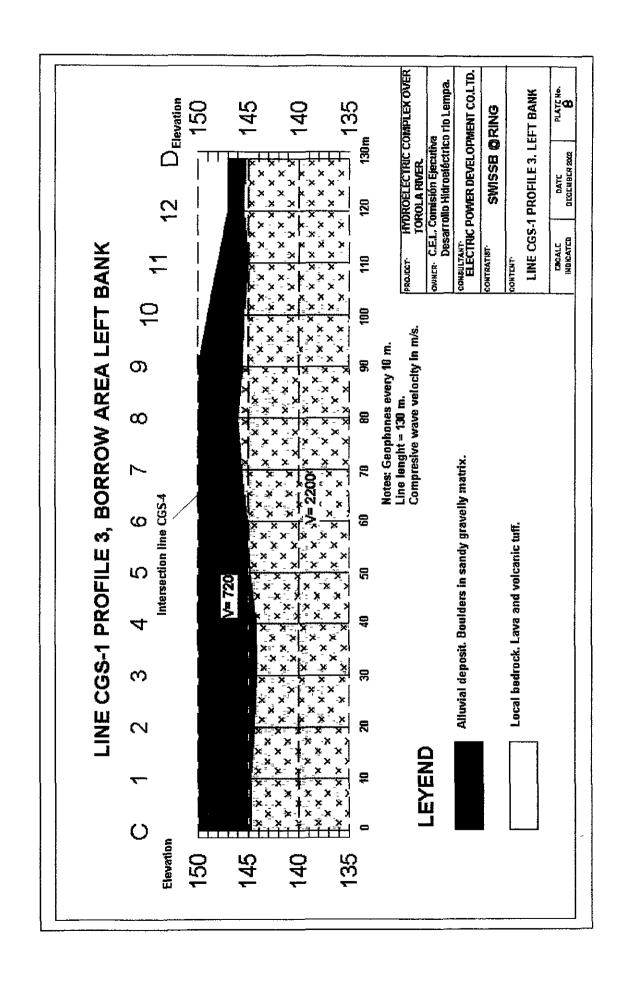
SHOTPOINT AND GEOPHONE DATA

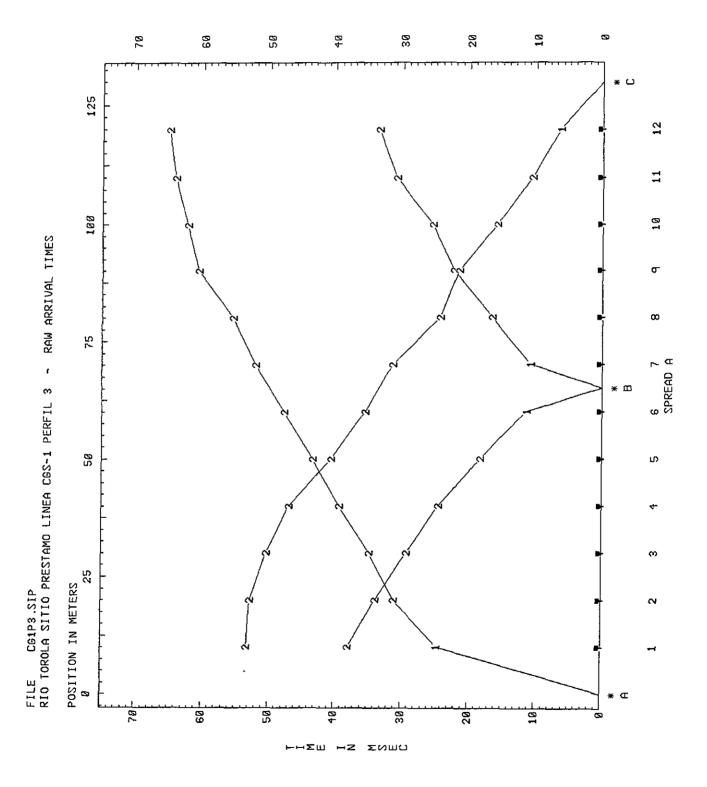
Spread A, 2 SP's, 12 Geo's, X-Shift = 0.0, X-True = 0, Units: Meters.

SP	Elev	X-Loc	Y-Loc	Depth	Uphole T	Fudge T	End SP
A	150.0	65.0	0.0	0.0	0.0	0.0	0
B	150.0	130.0	0.0	0.0	0.0	0.0	2

ARRIVAL TIMES AND LAYERS REPRESENTED

Geo Fley Y-Loc V SD A SD


Geo	Elev	X-Loc	Y	SP A		SP B	
-					-L		-L
1	150.0	10.0	0.0	36.50	2	56.75	2
2	150.0	20.0	0.0	32.75	2	54.87	2
3	150.0	30.0	0.0	28.00	2	52.25	2
4	150.0	40.0	0.0	23.12	2	48.00	2
5	150.0	50.0	0.0	16.62	2	45.12	2
6	150.0	60.0	0.0	10.25	1	42.62	2
7	150.0	70.0	0.0	10.25	1	41.25	2
ر	150.0	80.0	0.0	20.37	1	39.87	2
9	150.0	90.0	0.0	25.00	2	37.12	2
10	150.0	100.0	0.0	30.12	2	33.00	2
11	150.0	110.0	0.0	32.75	2	26.37	2
12	150.0	120.0	0.0	38.37	2	20.62	1


DEPTH MODEL TABLES for CG1P2.SIP

Spread A Depth and Elev of layers directly beneath SPs and Geos

	Surf	ace	Layer 2			
SP			Depth			
		- 				
A	65.0	150.0	3.4	146.6		
B	130.0	150.0	5.3	144 7		

	Suri	face	Layer 2			
Geo	X-Loc	Elev	Depth	Elev		
		-				
1 '	10.0	150.0	3.0	147.0		
2	20.0	150.0	3.2	146.8		
3	30.0	150.0	3.3	146.7		
4	40.0	150.0	2.9	147.1		
5	50.0	150.0	2.5	147.5		
6	60.0	150.0	2.9	147.1		
7	70.0	150.0	3.9	146.1		
8	80.0	150.0	4.8	145.2		
9	90.0	150.0	5.1	144.9		
10	100.0	150.0	5.2	144.8		
11	110.0	150.0	4.5	145.5		
12	120.0	150.0	5.1	144.9		

INPUT DATA FILE for CG1P3.SIP

TITLE FOR SIPT2/SIPLUS INPUT DATA SET for CG1P3.SIP RIO TOROLA SITIO PRESTAMO LINEA CGS-1 PERFIL 3

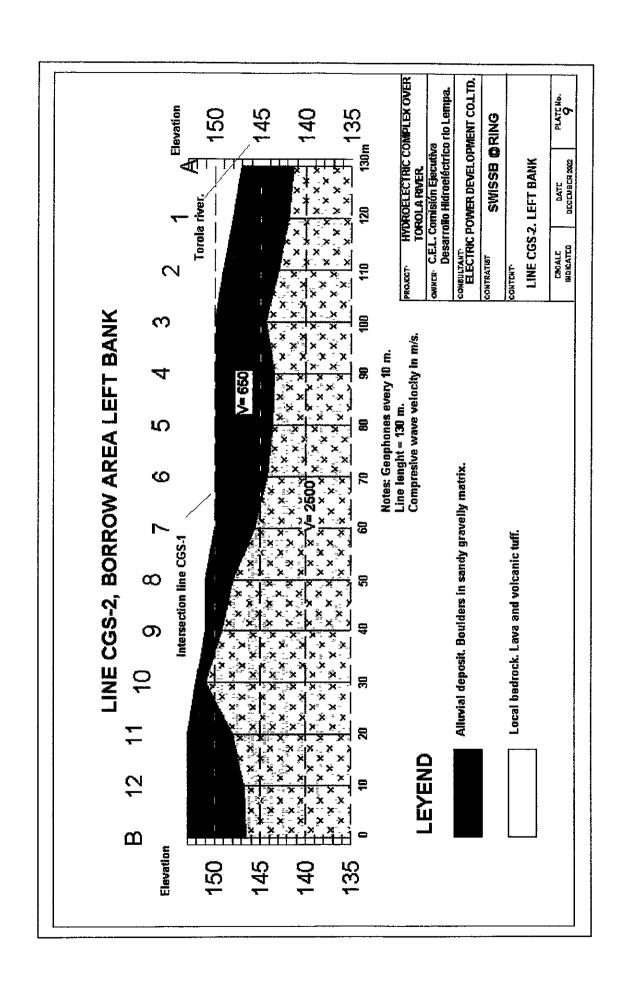
PROGRAM CONTROL DATA

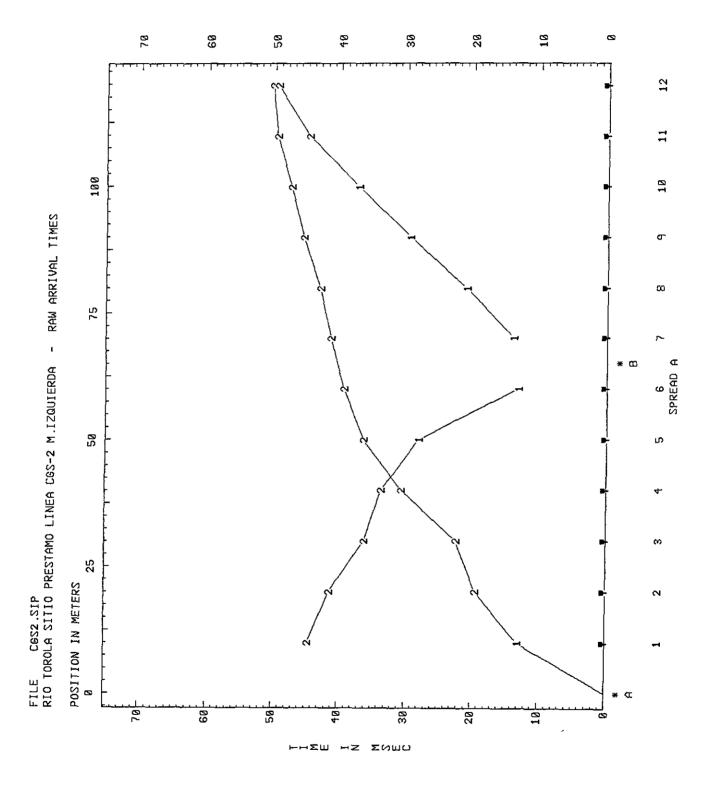
S		L	V	PRINTE	R PLOT	SCALES	DATUM	CONTROL	PLOT	CONTROL			T	0	
q	E	a	0										r	f	$_{ m L}$
r	х	У	ν	Elev	Horiz	Time	Pt 1	Pt 2	Elev	ations			а	f	D
đ	í	r	е										C	S	i
s	t	ន	r	m/col	m/row	ms/col	Elev/X	${ t Elev/X}$	Top	Bottom	BLim	TLim	е	Ρ	p
-	_	-	_										~	-	_
1	6	2	0	0.0	0.0	0.0	0.0	0.0	0	0	0.5	10.0	0	0	0
							0.0	0.0							

SHOTPOINT AND GEOPHONE DATA

Spread A, 3 SP's, 12 Geo's, X-Shift = 0.0, X-True = 0, Units: Meters.

SP	Elev	X-Loc	Y-Loc	Depth	Uphole T	Fudge T	End SP
A	150.0	0.0	0.0	0.0	0.0	0.0	1
B	150.0	65.0	0.0	0.0	0.0	0.0	0
C	147.0	130.0	0.0	0.0	0.0	0.0	2


Geo	Elev	X-Loc	Y	SP A		SP B	SP C	
					-L		-L	-L
1	150.0	10.0	0.0	24.62	1	37.87	253.250	2
2	150.0	20.0	0.0	31.12	2	33.75	252.750	2
3	150.0	30.0	0.0	34.75	2	29.25	250.370	2
4	150.0	40.0	0.0	39.25	2	24.50	247.000	2
5	150.0	50.0	0.0	43.37	2	18.25	240.620	2
5	150.0	60.0	0.0	47.75	2	11.37	135.500	2
	150.0	70.0	0.0	52.12	2	10.75	131.370	2
8	150.0	80.0	0.0	55.50	2	16.62	224.250	2
9	150.0	90.0	0.0	60.62	2	22.25	221.500	2


DEPTH MODEL TABLES for CG1P3.SIP

Spread A Depth and Elev of layers directly beneath SPs and Geos

	Suri	Eace	Layer 2			
SP	X-Loc	Elev	Depth	Elev		
						
A	0.0	150.0	5.4	144.6		
B	65.0	150.0	4.6	145.4		
C	129.8	147.0	1.7	145.3		

	Suri	face	Layer 2		
Geo	X-Loc	Elev	Depth	Elev	
-			- 		
1	10.0	150.0	5.3	144.7	
2	20.0	150.0	5.6	144.4	
3	30.0	150.0	5.8	144.2	
4	40.0	150.0	5.8	144.2	
5	50.0	150.0	5.2	144.8	
6	60.0	150.0	4.8	145.2	
7	70.0	150.0	4.4	145.6	
8	80.0	150.0	4.0	146.0	
9	90.0	150.0	4.5	145.5	
10	99.9	149.0	3.6	145.4	
11	109.9	148.0	2.9	145.1	
12	119.8	147.0	1.6	145.4	

INPUT DATA FILE for CGS2.SIP

TITLE FOR SIPT2/SIPLUS INPUT DATA SET for CGS2.SIP
RIO TOROLA SITIO PRESTAMO LINEA CGS-2 M.IZQUIERDA

PROGRAM CONTROL DATA

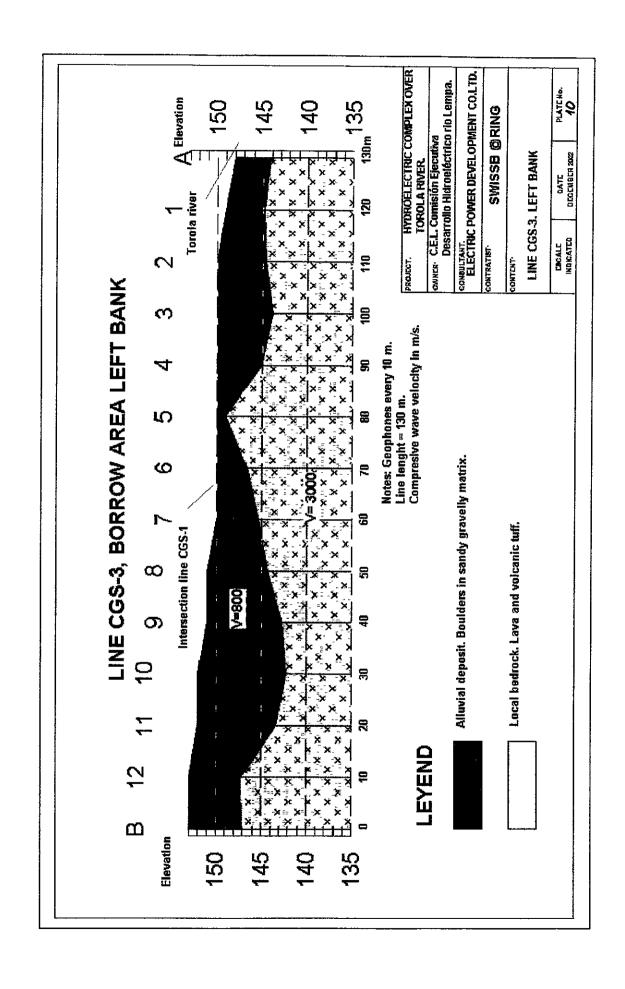
					_										
		Ŀ		PRINTE	R PLOT	SCALES	DATUM	CONTROL	PLOT	CONTROL			_	õ	_
р	Ξ	а	0										r	f	Ъ
r	X	У	v	Elev	Horiz	Time	Pt 1	Pt 2	Elev	ations			а	f	D
ď	i	ŕ	e										C	S	i
-		s	_	m/col	m/row	ms/col	Elev/X	Elev/X	Top	Bottom	BLim	TLim	е	P	р
_	-	_	_										_	-	-
1	6	2	0	0.0	0.0	0.0	0.0	0.0	0	0	0.5	10.0	0	0	0
							0.0	0.0							

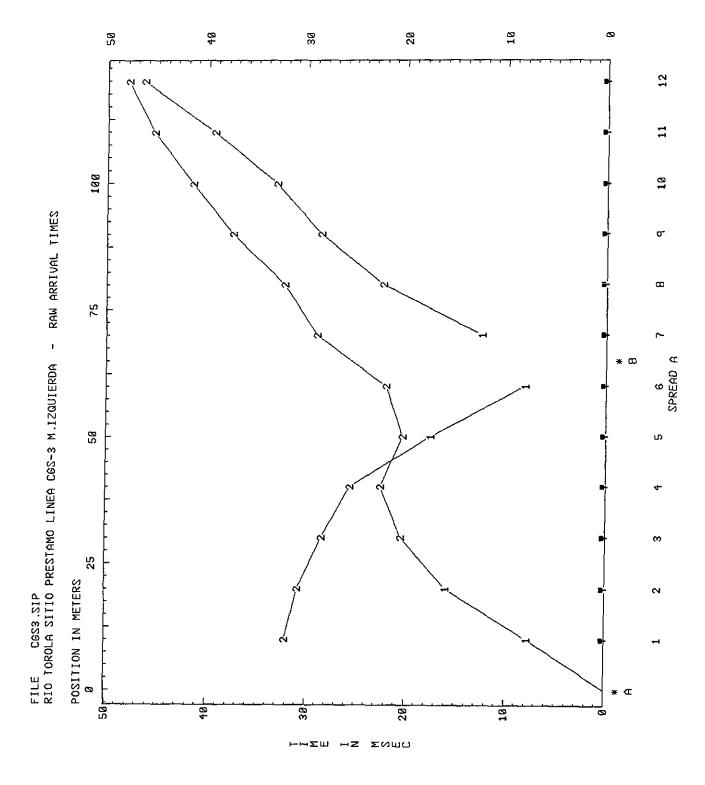
SHOTPOINT AND GEOPHONE DATA

Spread A, 2 SP's, 12 Geo's, X-Shift = 0.0, X-True = 0, Units: Meters.

SP	Elev	X-Loc	Y-Loc	Depth	Uphole T	Fudge T	End SP
A	147.0	0.0	0.0	0.0	0.0	0.0	1
В	150.0	65.0	0.0	0.0	0.0	0.0	0

ARRIVAL TIMES AND LAYERS REPRESENTED


Geo	Elev	X-Loc	Y	SP A		SP B
					- L	L
1	148.0	10.0	0.0	13.00	1	44.62 2
2	149.0	20.0	0.0	19.37	2	41.37 2
3	150.0	30.0	0.0	22.25	2	36.12 2
4	150.0	40.0	0.0	30.62	2	33.62 2
5	150.0	50.0	0.0	36.25	2	28.00 1
6	150.0	60.0	0.0	39.25	2	13.12 1
7	150.0	70.0	0.0	41.37	2	13.87 1
3	151.0	80.0	0.0	43.00	2	21.00 1
9	151.0	90.0	0.0	45.50	2	29.50 1
10	152.0	100.0	0.0	47.50	2	37.25 1
11	153.0	110.0	0.0	49.62	2	44.75 2
12	153.0	120.0	0.0	50.37	2	49.62 2


DEPTH MODEL TABLES for CGS2.SIP

Spread A Depth and Elev of layers directly beneath SPs and Geos

	Suri	Surface		r 2
SP	X-Loc	Elev	Depth	Elev
			-	
A	0.1	147.0	5.5	141.5
B	64.9	150.0	5.1	144.9

	Surface		Layer 2	
Geo	X-Loc	Elev	Depth	Elev
				
1 '	10.0	148.0	6.1	141.9
2	19.9	149.0	6.0	143.0
3	29.9	150.0	5.6	144.4
4	39.9	150.0	6.5	143.5
5	49.9	150.0	6.3	143.7
6	59.9	150.0	5.8	144.2
7	69.9	150.0	4.3	145.7
8	79.8	151.0	3.0	148.0
9	89.8	151.0	1.8	149.2
10	99.8	152.0	1.0	151.0
11	109.7	153.0	5.0	148.0
12	119.7	153.0	6.2	146.8

INPUT DATA FILE for CGS3.SIP

TITLE FOR SIPT2/SIPLUS INPUT DATA SET for CGS3.SIP ------RIO TOROLA SITIO PRESTAMO LINEA CGS-3 M.IZQUIERDA

PROGRAM CONTROL DATA

S		L	•	PRINTE	ER PLOT	SCALES	DATUM	CONTROL	PLOT	CONTROL			T	_	-
r	x	a Y r	v	Elev	Horiz	Time	Pt 1	Pt 2	Elev	ations			a	ffs	D
	_	s		m/col	m/row	ms/col	Elev/X	Elev/X	Top	Bottom	BLim	TLim	_		_
-	_	_	-				-						-	-	-
1	6	2	0	0.0	0.0	0.0	0.0	0.0	0	0	0.5	10.0	0	0	0

CHOTPOINT AND GEOPHONE DATA

Spread A, 2 SP's, 12 Geo's, X-Shift = 0.0, X-True = 0, Units: Meters.

SP	Elev	X-Loc	Y-Loc	Depth	Uphole T	Fudge T	End SP
A	148.0	0.0	0.0	0.0	0.0	0.0	1
В	150.0	65.0	0.0	0.0	0.0	0.0	0

ARRIVAL TIMES AND LAYERS REPRESENTED

Geo	Elev	X-Loc	Y	SP A	SP B	
					-L	- L
1	149.0	10.0	0.0	7.750	132.120	2
2	150.0	20.0	0.01	.5.870	130.750	2

30.0 0.020.370 228.370 2 3 150.0 40.0 0.022.500 225.620 2 4 150.0 50.0 0.020.250 217.500 1 5 150.0 60.0 0.022.000 2 8.125 1 70.0 0.029.000 212.500 1 6 150.0 7 150.0 151.0 80.0 0.032.250 222.250 2 સ

9 151.0 90.0 0.037.500 228.620 2 10 152.0 100.0 0.041.500 233.120 2

11 152.0 110.0 0.045.370 239.370 2 12 153.0 120.0 0.048.000 246.370 2

DEPTH MODEL TABLES for CGS3.SIP

Spread A Depth and Elev of layers directly beneath SPs and Geos

	Sur	face	Layer 2				
SP	X-Loc	Elev	Depth	Elev			
				}			
Α	0.1			144.1			
В	64.9	150.0	4.0	146.0			

	Sur	face	Layer 2				
Geo	X-Loc	Elev	Depth	Elev			
1	10.0	149.0	4.2	144.8			
2	19.9	150.0	5.4	144.6			
3	29.9	150.0	6.1	143.9			
4	39.9	150.0	4.9	145.1			
5	49.9	150.0	1.0	149.0			
6	59.9	150.0	3.4	146.6			
7	69.9	150.0	4.6	145.4			
8	79.9	151.0	6.7	144.3			
9	89.9	151.0	8.3	142.7			
10	99.8	152.0	9.8	142.2			
11	109.8	152.0	8.6	143.4			
12	119.8	153.0	5.8	147.2			

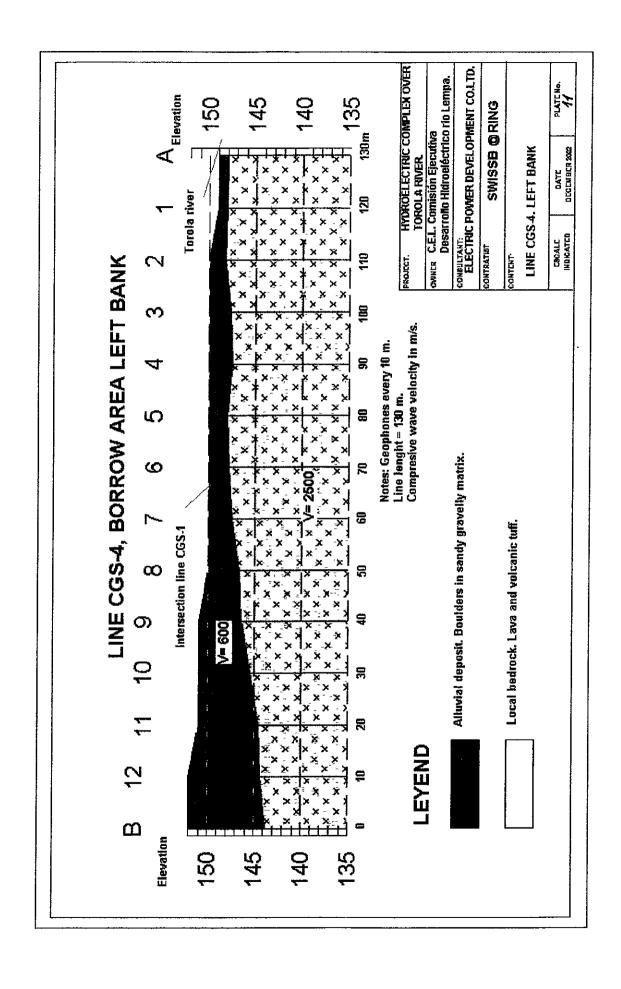
INPUT DATA FILE for CG1P3.SIP

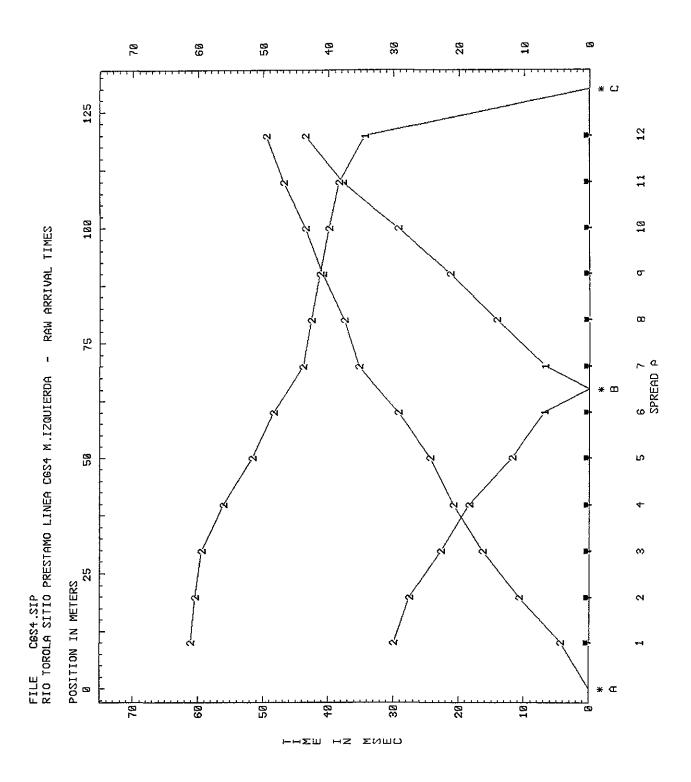
TITLE FOR SIPT2/SIPLUS INPUT DATA SET for CG1P3.SIP
RIO TOROLA SITIO PRESTAMO LINEA CGS-1 PERFIL 3

PROGRAM CONTROL DATA

					_										
S		Ļ	V	PRINTE	R PLOT	SCALES	DATUM	CONTROL	PLOT	CONTROL			-	0	
-	Ε			*** *	TT	m 2	T) to 1	D :- 0	-3						Γ
	x i	_	V	Elev	Horiz	Time	Pt 1	Pt 2	ETev	ations			a		р i
	_	_	r	m/col	m/row	ms/col	Elev/X	Elev/X	Top	Bottom	BLim	TLim			
-	_	~	_										_	_	_
_	_	_	_										_	_	_
1	6	2	0	0.0	0.0	0.0	0.0	0.0	0	0	0.5	10.0	0	0	0
							0.0	0.0							

SUOTPOINT AND GEOPHONE DATA


Spread A, 3 SP's, 12 Geo's, X-Shift = 0.0, X-True = 0, Units: Meters.


- SP	Elev	X-Loc	Y-Loc	Depth	Uphole T	Fudge T	End SP
Α	150.0	0.0	0.0	0.0	0.0	0.0	1
В	150.0	65.0	0.0	0.0	0.0	0.0	0
С	147.0	130.0	0.0	0.0	0.0	0.0	2

ARRIVAL TIMES AND LAYERS REPRESENTED

- 			 -					
Geo	Elev	X-Loc	Y	SP A		SP B	SP C	
			~		-L		-L	-L
1	150.0	10.0	0.0	24.62	1	37.87	253.250	2
2	150.0	20.0	0.0	31.12	2	33.75	252.750	2
3	150.0	30.0	0.0	34.75	2	29.25	250.370	2
4	150.0	40.0	0.0	39.25	2	24.50	247.000	2
5	150.0	50.0	0.0	43.37	2	18.25	240.620	2
~	150.0	60.0	0.0	47.75	2	11.37	135.500	2
	150.0	70.0	0.0	52.12	2	10.75	131.370	2
8	150.0	80.0	0.0	55.50	2	16.62	224.250	2
9	150.0	90.0	0.0	60.62	2	22.25	221.500	2
10	149.0	100.0	0.0	62.25	2	25.50	215.750	2
11	148.0	110.0	0.0	64.12	2	30.87	210.620	2
10	147 0	100 0	Λ Λ	CE 30	^	22 50	0 6 000	-

12 147.0 120.0 0.0 65.12 2 33.50 2 6.375 1

INPUT DATA FILE for CGS4.SIP

TITLE FOR SIPT2/SIPLUS INPUT DATA SET for CGS4.SIP RIO TOROLA SITIO PRESTAMO LINEA CGS4 M.IZQUIERDA

PROGRAM CONTROL DATA -------

S	E	L a	V	PRINTE	ER PLOT	SCALES	DATUM	CONTROL	PLOT	CONTROL	ı		_	0 f	
r	x		v	Elev	Horiz	Time	Pt 1	Pt 2	Elev	ations			a	f	D
		s	-	m/col	m/row	ms/col	Elev/X	Elev/X	Top	Bottom	BLim	TLim			
1	6	2	0	0.0	0.0	0.0	0.0	0.0	0	0	0.5	10.0	0	0	0

SHOTPOINT AND GEOPHONE DATA -----

Spread A, 3 SP's, 12 Geo's, X-Shift = 0.0, X-True = 0, Units: Meters.

SP	Elev	X-Loc	Y-Loc	Depth	Uphole T	Fudge T	End SP
A	149.0	0.0	0.0	0.0	0.0	0.0	1
В	150.0	65.0	0.0	0.0	0.0	0.0	0
C	152.0	130.0	0.0	0.0	0.0	0.0	2

ARRIVAL TIMES AND LAYERS REPRESENTED

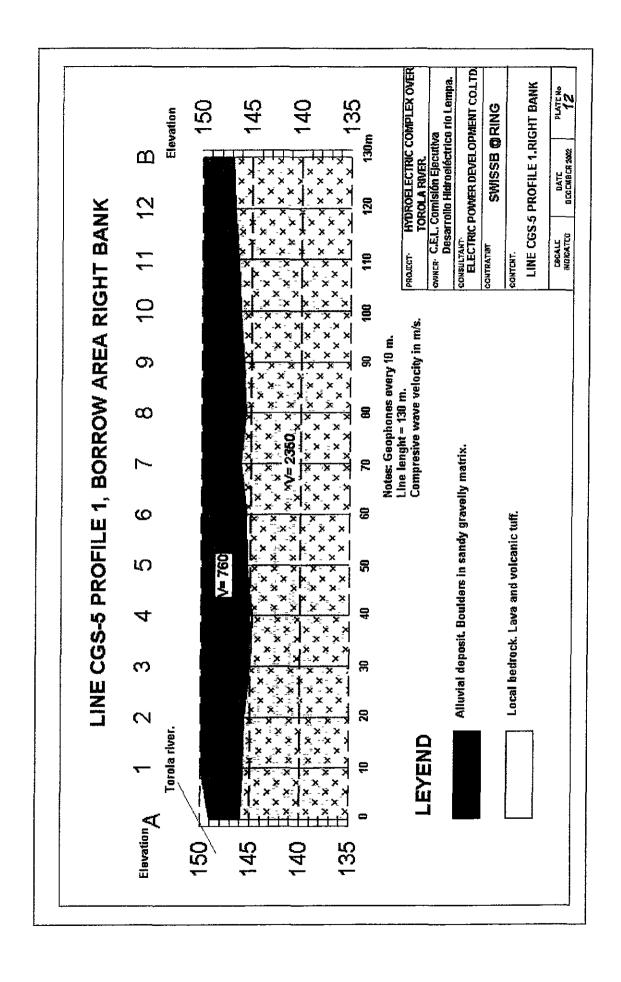
______ Geo Elev X-Loc Y SPA SPB -----L -----L _ _ _ _ 10.0 0.0 4.375 230.000 2 61.12 2 1 149.0 150.0

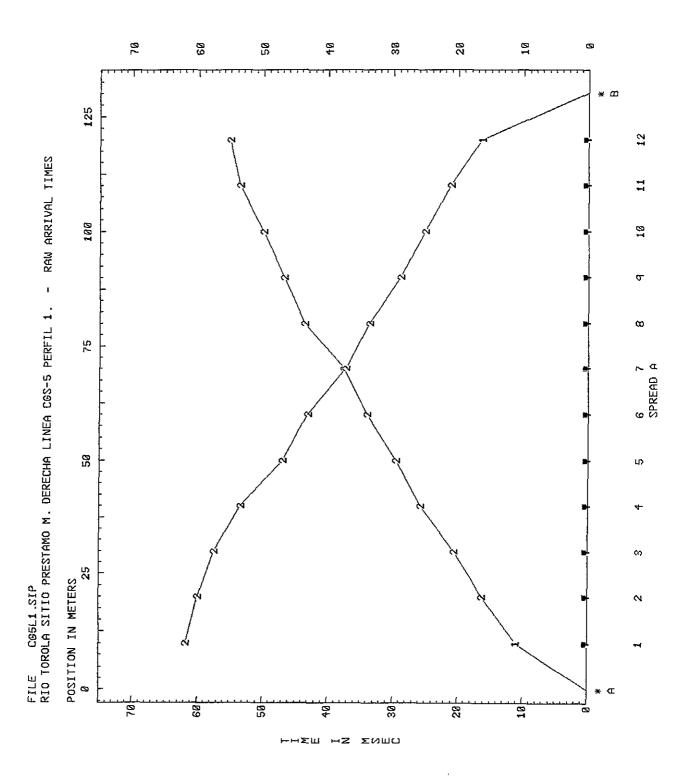
3 150.0 150.0

20.0 0.010.750 227.620 2 60.37 2 30.0 0.016.370 222.750 2 59.50 2 40.0 0.020.870 218.370 2 56.12 2 50.0 0.024.370 211.870 2 51.62 2 60.0 0.029.250 2 6.875 1 48.37 2 70.0 0.035.250 2 6 750 1 43.37 5 150.0 5 150.0

150.0 8 150.0 80.0 0.037.620 214.250 2 42.62 2 9 151.0 90.0 0.040.870 221.250 2 41.25 2

10 151.0 100.0 0.043.500 229.250 2 39.87 2


11 151.0 110.0 0.046.870 237.750 2 38.37 2 12 152.0 120.0 0.049.500 243.500 2 34.25 1


DEPTH MODEL TABLES for CGS4.SIP

Spread A Depth and Elev of layers directly beneath SPs and Geos

	Sur	face	Laye	r 2		
SP	X-Loc	Elev	Depth	Elev		
		{				
Α	0.0	149.0	1.0	148.0		
${\mathtt B}$	64.9	150.0	2.4	147.6		
C	129 8	152.0	8.2	143.8		

	Sur	face	Layer 2				
Geo	X-Loc	Elev	Depth	Elev			
1	10.0	149.0	0.9	148.1			
2	19.9	150.0	1.7	148.3			
3	29.9	150.0	2.4	147.6			
4	39.9	150.0	2.6	147.4			
5	49.9	150.0	2.0	148.0			
6	59.9	150.0	2.2	147.8			
7	69.9	150.0	2.6	147.4			
8	79.9	150.0	3.4	146.6			
9	89.9	151.0	4.6	146.4			
10	99.9	151.0	5.5	145.5			
11	109.9	151.0	6.4	144.6			
12	119.8	152.0	7.6	144.4			

INPUT DATA FILE for CG5L1.SIP

TITLE FOR SIPT2/SIPLUS INPUT DATA SET for CG5L1.SIP

RIO TOROLA SITIO PRESTAMO M. DERECHA LINEA CGS-5 PERFIL 1.

PROGRAM CONTROL DATA

S		L	V	PRINTE	R PLOT	SCALES	DATUM	CONTROL	PLOT	CONTROL			T	0	
р	E	а	0												L
r	x	У	v	Elev	Horiz	Time	Pt 1	Pt 2	Elev	ations				f	
d	i	r	е			_								S	_
s	t	s	r	m/col	m/row	ms/col	Elev/X	${ t Elev/X}$	qoT	Bottom	BLim	TLim	е	Ρ	р
-	-	-	-										-	-	-
1	6	2	0	0.0	0.0	0.0	0.0	0.0	0	0	0.5	10.0	0	0	0
							0.0	0.0							

SUOTPOINT AND GEOPHONE DATA

. -----

Spread A, 2 SP's, 12 Geo's, X-Shift = 0.0, X-True = 0, Units: Meters.

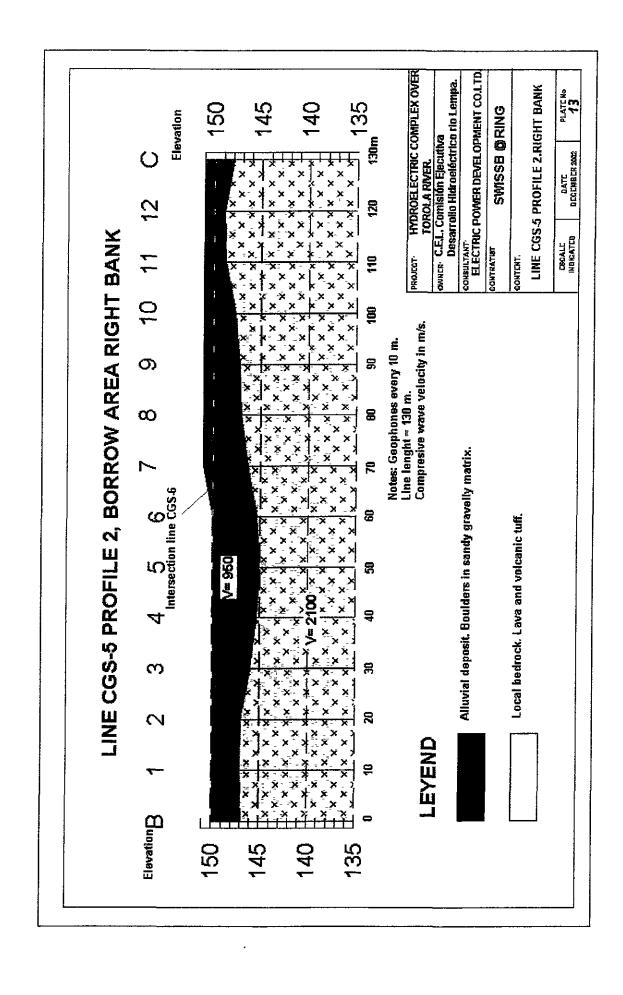
SP	Elev	X-Loc	Y-Loc	Depth	Uphole T	Fudge T	End SP
A	149.0	0.0	0.0	0.0	0.0	0.0	1
В	150.0	130.0	0.0	0.0	0.0	0.0	2

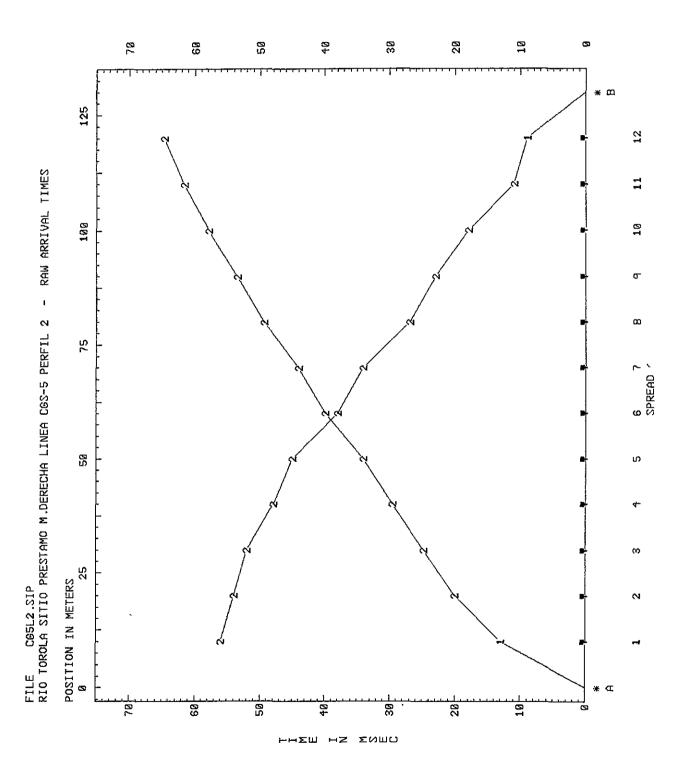
ARRIVAL TIMES AND LAYERS REPRESENTED

	 	-	-	-	-	-	-	_	-	-	-	_	-	-	-	-	-	_	_	-	-	-	-	-	_	_	-	-	-	_	-	
000		777	7	_	~ +					v		7	_	_				77				~	ה		70					^	7	

Geo	Elev	X-Loc	Y	SP A		SP B	
					-L		-L
1	150.0	10.0	0.0	11.12	1	61.75	2
2	150.0	20.0	0.0	16.25	2	60.00	2
3	150.0	30.0	0.0	20.62	2	57.37	2
4	150.0	40.0	0.0	25.75	2	53.37	2
5	150.0	50.0	0.0	29.62	2	47.00	2
6	150.0	60.0	0.0	34.00	2	43.12	2
7	150.0	70.0	0.0	37.62	2	37.25	2
د	150.0	80.0	0.0	43.62	2	33.62	2
9	150.0	90.0	0.0	46.75	2	28.87	2
10	150.0	100.0	0.0	50.00	2	25.12	2
11	150.0	110.0	0.0	53.62	2	21.12	2
12	150.0	120.0	0.0	55.12	2	16.37	1

7-8-72


DEPTH MODEL TABLES for CG5L1.SIP


Spread A Depth and Elev of layers directly beneath SPs and Geos

	Suri	Eace	Laye	r 2
SP				
		- 		
	0.1	,		
R	130.0	150.0	3.1	146.9

	Suri	face	Laye	r 2
Geo	X-Loc	Elev	Depth	Elev
-		-		
1 '	10.0	150.0	4.2	145.8
2	20.0	150.0	4.4	145.6
3	30.0	150.0	5.0	145.0
4	40.0	150.0	5.2	144.8
5	50.0	150.0	4.7	145.3
6	60.0	150.0	4.6	145.4
7	70.0	150.0	4.0	146.0
8	80.0	150.0	4.5	145.5
9	90.0	150.0	4.2	145.8
10	100.0	150.0	3.9	146.1
11	110.0	150.0	3.7	146.3
12	120.0	150.0	3.3	146.7

		Layer 2
- Vertica		-
Horizonta	= · · ·	2346

INPUT DATA FILE for CG5L2.SIP

TITLE FOR SIPT2/SIPLUS INPUT DATA SET for CG5L2.SIP

RIO TOROLA SITIO PRESTAMO M.DERECHA LINEA CGS-5 PERFIL 2

PROGRAM CONTROL DATA

															
		L		PRINTE	R PLOT	SCALES	DATUM	CONTROL	PLOT	CONTROL			_	0	
р	Ε	a	0										r	f	L
r	X	У	v	Elev	Horiz	Time	Pt 1	Pt 2	Elev	ations			a	f	D
d	í	r	е										С	S	í
s	t	s	r	m/col	m/row	ms/col	${ t Elev/X}$	Elev/X	Top	Bottom	BLim	TLim	е	Ρ	р
-	-	-	_										-	-	-
1	6	2	0	0.0	0.0	0.0	0.0	0.0	0	0	0.5	10.0	0	0	0

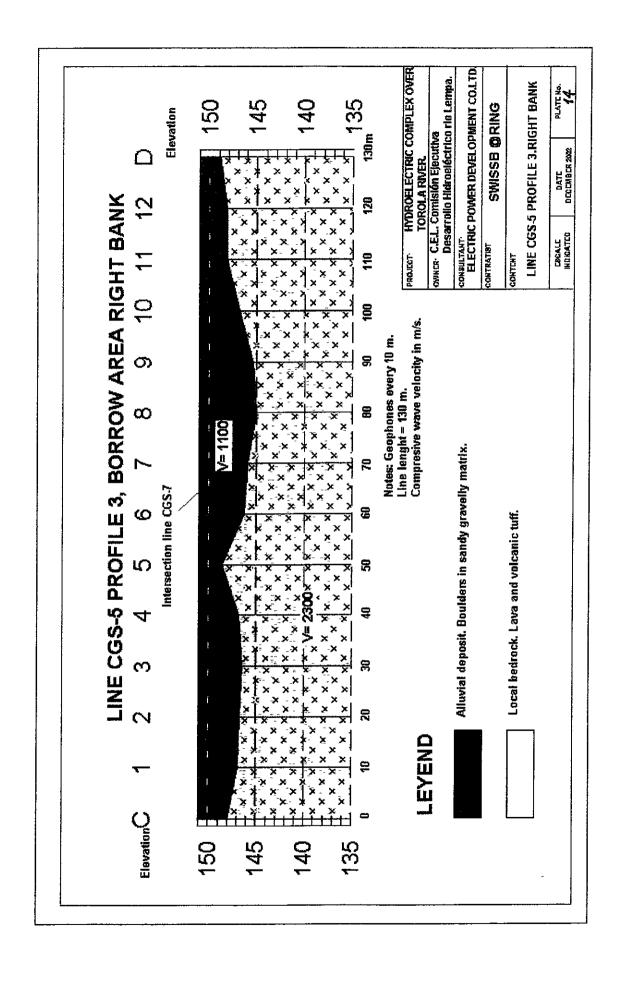
STOTPOINT AND GEOPHONE DATA

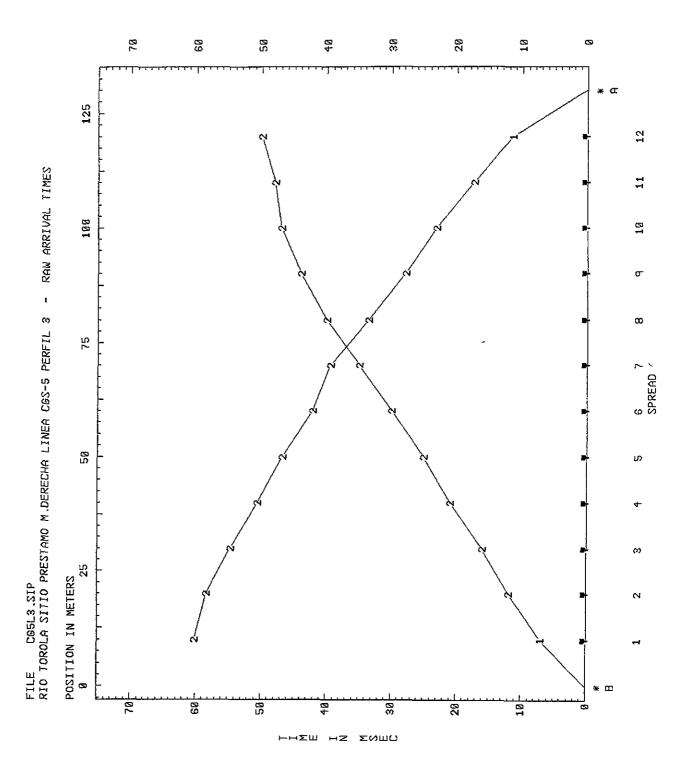
Spread A, 2 SP's, 12 Geo's, X-Shift = 0.0, X-True = 0, Units: Meters.

SP	Elev	X-Loc	Y-Loc	Depth	Uphole T	Fudge T	End SP
Α	150.0	0.0	0.0	0.0	0.0	0.0	1
В	151.0	130.0	0.0	0.0	0.0	0.0	2

ARRIVAL TIMES AND LAYERS REPRESENTED

						_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
--	--	--	--	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---


Geo	Elev	X-Loc	Y	SP A	SP B	
					-L	- L
1	150.0	10.0	0.0	13.00	156.000	2
2	150.0	20.0	0.0	20.12	254.000	2
3	150.0	30.0	0.0	24.75	252.000	2
4	150.0	40.0	0.0	29.62	248.000	2
5	150.0	50.0	0.0	34.00	245.000	2
6	150.0	60.0	0.0	39.87	238.000	2
7	151.0	70.0	0.0	44.00	234.000	2
٠	151.0	80.0	0.0	49.37	227.000	2
9	151.0	90.0	0.0	53.50	223.000	2
10	151.0	100.0	0.0	57.75	218.000	2
11	151.0	110.0	0.0	61.62	211.000	2
12	151.0	120.0	0.0	64.62	2 9.000	1


DEPTH MODEL TABLES for CG5L2.SIP

Spread A Depth and Elev of layers directly beneath SPs and Geos

	Surf	ace	Laye	r 2
SP	X-Loc	Elev	Depth	
				
A	0.0	150.0	2.4	147.6
В	129.9	151.0	1.5	149.5

	Suri	face	Layer 2		
Geo	X-Loc	Elev	Depth	Elev	
1	10.0	150.0	2.9	147.1	
2	20.0	150.0	3.0	147.0	
3	30.0	150.0	4.0	146.0	
4	40.0	150.0	4.6	145.4	
5	50.0	150.0	5.0	145.0	
6	60.0	150.0	4.6	145.4	
7	69.9	151.0	4.6	146.4	
8	79.9	151.0	3.9	147.1	
9	89.9	151.0	3.7	147.3	
10	99.9	151.0	3.3	147.7	
11	109.9	151.0	2.2	148.8	
12	119.9	151.0	2.0	149.0	

INPUT DATA FILE for CG5L3.SIP

TITLE FOR SIPT2/SIPLUS INPUT DATA SET for CG5L3.SIP

RIO TOROLA SITIO PRESTAMO M.DERECHA LINEA CGS-5 PERFIL 3

PROGRAM CONTROL DATA

S		L	V	PRINTE	R PLOT	SCALES	DATUM	CONTROL	PLOT	' CONTROL	ı		T	0	
р	E	a	0										r	f	L
r	\mathbf{x}	У	v	Elev	Horiz	Time	Pt 1	Pt 2	Elev	ations			а	f	D
đ	i	r	е										С	S	i
S	t	s	r	m/col	m/row	ms/col	${\tt Elev/X}$	${ t Elev/X}$	Top	Bottom	BLim	TLim	е	Ρ	р
-	-	-	-	- 		~							-	-	-
1	6	2	0	0.0	0.0	0.0	0.0	0.0	0	0	0.5	10.0	0	0	0
							0.0	0.0							

SHOTPOINT AND GEOPHONE DATA

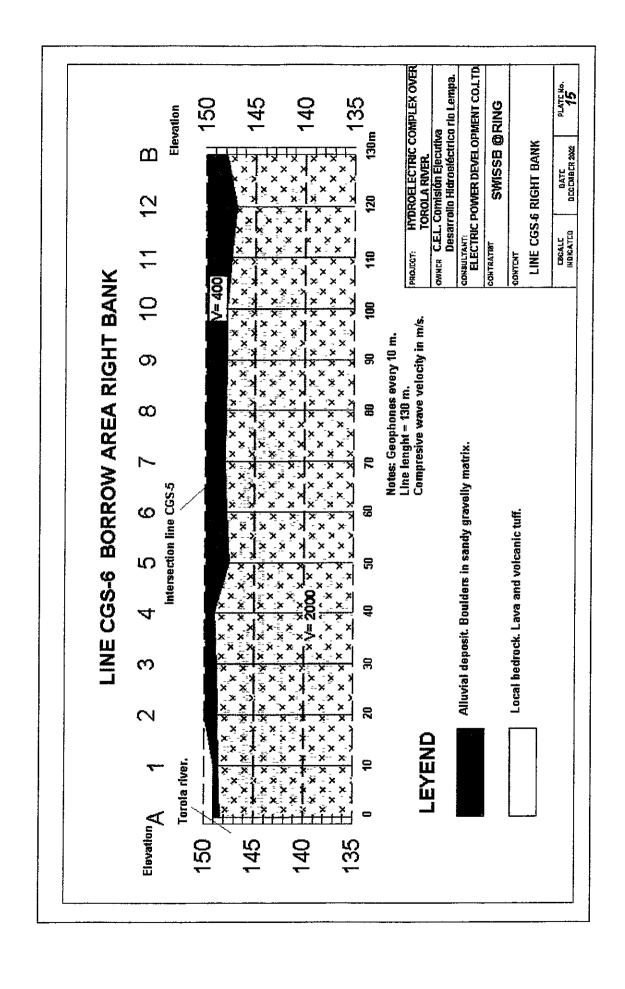
OTIOINI AND GEOFINONE DAIR

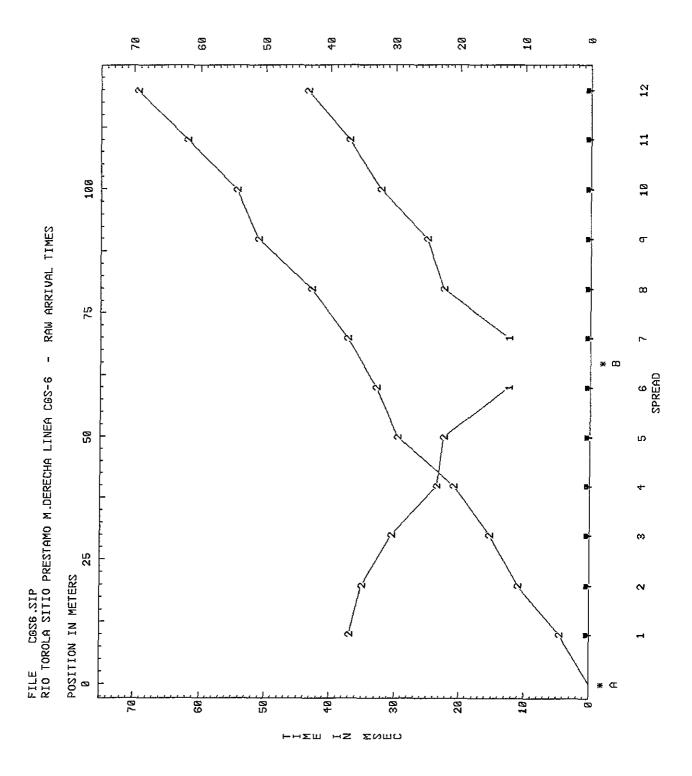
Spread A, 2 SP's, 12 Geo's, X-Shift = 0.0, X-True = 0, Units: Meters.

SP	Elev	X-Loc	Y-Loc	Depth	Uphole T	Fudge T	End SP
В	151.0	0.0	0.0	0.0	0.0	0.0	1
A	151.0	130.0	0.0	0.0	0.0	0.0	2

ARRIVAL TIMES AND LAYERS REPRESENTED

Geo	Elev	X-Loc	Y	SP B		SP A	
					-L		-L
1	151.0	10.0	0.0	7.000	1	60.12	2
2	151.0	20.0	0.01	2.000	2	58.25	2
3	151.0	30.0	0.01	6.000	2	54.62	2
4	151.0	40.0	0.02	1.000	2	50.62	2
5	151.0	50.0	0.02	5.000	2	46.75	2
6	151.0	60.0	0.03	0.000	2	42.12	2
7	151.0	70.0	0.03	5.000	2	39.37	2
	151.0	80.0	0.04	0.000	2	33.50	2
9	151.0	90.0	0.04	4.000	2	27.75	2
10	151.0	100.0	0.04	7.000	2	23.12	2
11	151.0	110.0	0.04	8.000	2	17.37	2
12	151.0	120.0	0.05	0.000	2	11.50	1


DEPTH MODEL TABLES for CG5L3.SIP


Spread A Depth and Elev of layers directly beneath SPs and Geos

	Sur	face	Layer 2			
SP			Depth	Elev		
B	0.0		4.2	146.8		
Α	130.0	151.0	2.1	148.9		

	Sur	face	Layer 2			
Geo	X-Loc	Elev	Depth	Elev		
		+				
1 '	10.0	151.0	4.1	146.9		
2	20.0	151.0	4.3	146.7		
3	30.0	151.0	4.5	146.5		
4	40.0	151.0	4.2	146.8		
5	50.0	151.0	2.4	148.6		
6	60.0	151.0	4.7	146.3		
7	70.0	151.0	5.1	145.9		
8	80.0	151.0	6.0	145.0		
9	90.0	151.0	5.6	145.4		
10	100.0	151.0	4.2	146.8		
11	110.0	151.0	2.8	148.2		
12	120.0	151.0	2.8	148.2		

	Layer 1	
	l 1149	
Horizonta		2335

INPUT DATA FILE for CGS6.SIP

TITLE FOR SIPT2/SIPLUS INPUT DATA SET for CGS6.SIP RIO TOROLA SITIO PRESTAMO M.DERECHA LINEA CGS-6

PROGRAM CONTROL DATA

					• •										
_		L a		PRINTE	ER PLOT	SCALES	MUTAG	CONTROL	PLOI	CONTROL	ı		_	O f	T,
r	x		V	Elev	Horiz	Time	Pt 1	Pt 2	Elev	ations			а	f	D
	_	s	_	m/col	m/row	ms/col	Elev/X	Elev/X	Top	Bottom	BLim	TLim			
1	6	2	0	0.0	0.0	0.0	0.0	0.0	0	0	0.5	10.0	0	0	0

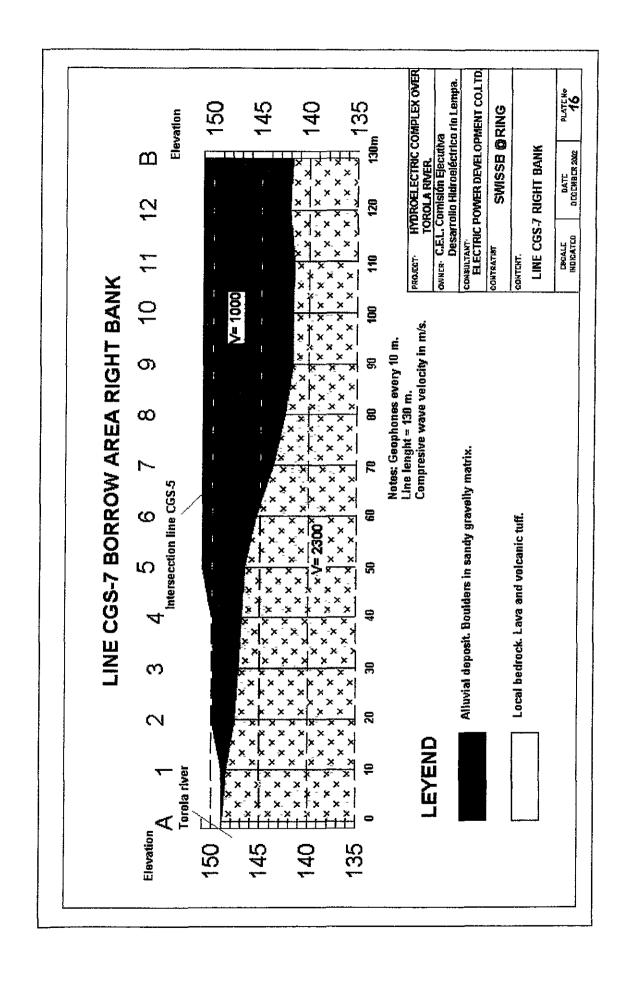
STOTPOINT AND GEOPHONE DATA

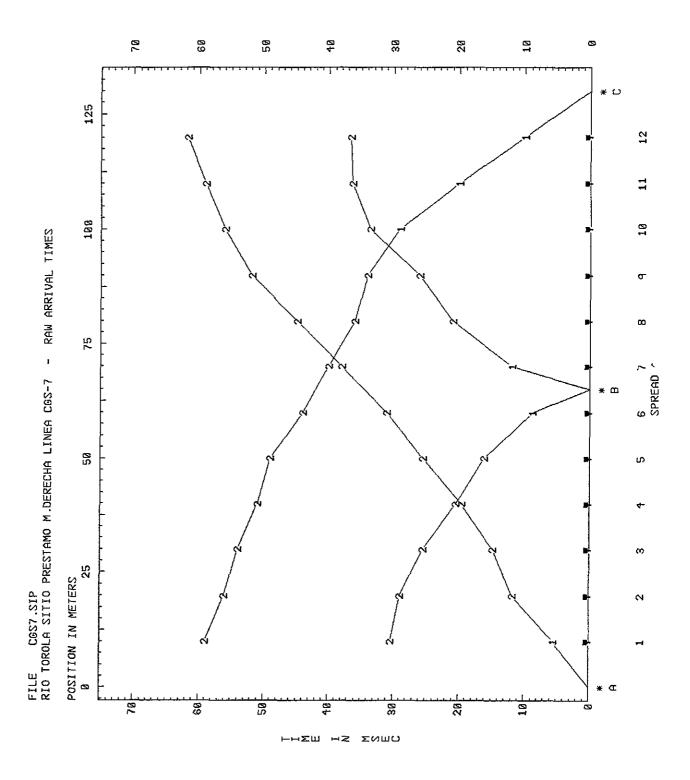
Spread A, 2 SP's, 12 Geo's, X-Shift = 0.0, X-True = 0, Units: Meters.

\mathtt{SP}	Elev	X-Loc	Y-Loc	Depth	Uphole T	Fudge T	End SP
A	149.0	0.0	0.0	0.0	0.0	0.0	1
B	150.0	65.0	0.0	0.0	0.0	0.0	0

ARRIVAL TIMES AND LAYERS REPRESENTED

Geo	Elev	X-Loc	Y	SP A		SP B	
					-L		-L
1	149.0	10.0	0.0 4	1.625	2	36.87	2
2	150.0	20.0	0.013	L.000	2	35.00	2
3	150.0	30.0	0.015	5.250	2	30.37	2
4	150.0	40.0	0.020	.870	2	23.50	2
5	150.0	50.0	0.029	9.620	2	22.37	2
6	150.0	60.0	0.032	2.870	2	12.50	1
7	150.0	70.0	0.037	7.250	2	12.50	1
J	150.0	80.0	0.042	.870	2	22.50	2
9	150.0	90.0	0.051	.120	2	25.12	2
10	150.0	100.0	0.054	.370	2	32.25	2
11	150.0	110.0	0.062	.000	2	37.12	2
12	150.0	120.0	0.069	.370	2	43.50	2


DEPTH MODEL TABLES for CGS6.SIP


Spread A Depth and Elev of layers directly beneath SPs and Geos

	Sur	face	Layer 2			
SP	X-Loc	Elev	Depth	Elev		
Α	0.0		0.6			
B	64.9	150.0	2.1	147.9		

	Sur	face	Layer 2		
Geo	X-Loc	Elev	Depth	Elev	
1	10.0	149.0	0.4	148.6	
2	19.9	150.0	1.3	148.7	
3	29.9	150.0	1.2	148.8	
4	39.9	150.0	1.0	149.0	
5	49.9	150.0	2.4	147.6	
6	59.9	150.0	2.2	147.8	
7	69.9	150.0	2.0	148.0	
8	79.9	150.0	2.1	147.9	
9	89.9	150.0	2.2	147.8	
10	99.9	150.0	2.2	147.8	
11	109.9	150.0	2.6	147.4	
12	119.9	150.0	3.1	146.9	

 $\label{thm:continuous} \mbox{Velocities used to formulate the Depth Model} \\$

INPUT DATA FILE for CGS7.SIP

TITLE FOR SIPT2/SIPLUS INPUT DATA SET for CGS7.SIP
RIO TOROLA SITIO PRESTAMO M.DERECHA LINEA CGS-7

PROGRAM CONTROL DATA

S		L	V	PRINTE	ER PLOT	SCALES	DATUM	CONTROL	PLOI	CONTROL	ı		T	0	
р	E	а	0										r	£	L
		У	v	Elev	Horiz	Time	Pt 1	Pt 2	Elev	ations			а	f	D
d	i	r	е											S	
s	t	s	r	m/col	m/row	${\sf ms/col}$	Elev/X	${ t Elev/X}$	Top	Bottom	BLim	TLim	е	₽	p
-	-	-	-										-		~
1	6	2	0	0.0	0.0	0.0	0.0	0.0	٥	0	0.5	10.0	0	0	0
							0.0	0.0							

CHOTPOINT AND GEOPHONE DATA

Spread A, 3 SP's, 12 Geo's, X-Shift = 0.0, X-True = 0, Units: Meters.

SP	Elev	X-Loc	Y-Loc	Depth	Uphole T	Fudge T	End SP
Α	149.0	0.0	0.0	0.0	0.0	0.0	1
В	151.0	65.0	0.0	0.0	0.0	0.0	0
C	151.0	130.0	0.0	0.0	0.0	0.0	2

ARRIVAL TIMES AND LAYERS REPRESENTED

X-Loc Y SPA SPB SPC Geo Elev -------149.0 10.0 0.0 5.500 130.250 2 59.00 2 150.0 20.0 0.011.750 228.870 2 56.00 2 2 150.0 30.0 0.011.750 225.370 2 54.00 2 150.0 40.0 0.019.620 220.500 2 51.00 2 151.0 50.0 0.025.370 216.120 2 49.00 2 151.0 60.0 0.031.000 2 8.750 1 44.00 2 151.0 70.0 0.038.000 212.000 1 40.00 2 151.0 90.0 0.044.870 231.000 2 3.600 2 3 4 5 5 8 151.0 80.0 0.044.870 221.000 2 36.00 2 9 151.0 90.0 0.051.870 226.000 2 34.00 2 10 151.0 100.0 0.056.000 233.620 2 29.00 1 11 151.0 110.0 0.059.000 236.250 2 20.00 1

151.0 120.0 0.061.750 236.620 2 10.00 1

12

DEPTH MODEL TABLES for CGS7.SIP

Spread A Depth and Elev of layers directly beneath SPs and Geos

	Surf	ace	Layer 2			
SP	X-Loc	Elev	Depth	Elev		
A '	0.0	149.0	0.0	149.0		
В	64.9	151.0	6.4	144.6		
C	129.9	151.0	9.2	141.8		

	Suri	face	Layer 2		
Geo	X-Loc	Elev	Depth	Elev	
-		 			
1 '	10.0	149.0	0.5	148.5	
2	19.9	150.0	2.4	147.6	
3	29.9	150.0	2.7	147.3	
4	39.9	150.0	3.1	146.9	
5	49.9	151.0	4.4	146.6	
6	59.9	151.0	5.5	145.5	
7	69.9	151.0	7.3	143.7	
8	79.9	151.0	8.5	142.5	
9	89.9	151.0	9.3	141.7	
10	99.9	151.0	9.3	141.7	
11	109.9	151.0	9.4	141.6	
12	119.9	151.0	8.9	142.1	

Appendix 7.9

Result of Petrological Analysis

Geotérmica Salvadoreña, S.A. de C.V.

Km. 11 ½ al Puerto de La Libertad, Colonia Utila, Nueva San Salvador La Libertad, El Salvador, C.A Teléfonos:(503)211-6700 Fax:(503)211-6746 Email: info@gesal.com.sv

January 24, 2002

Engr Rodolfo Alvarado Swissboring Overseas Corporation Ltd Present

Dear Sir

Attached are the petrographic and XRD analyses of five samples collected in Río Torola, Morazan

We hope that these analyses will be of great help for the technical study being undertaken by CEL and the government of Japan

Sincerely yours,

JAG/ecdh

RESULTS OF PETROGRAPHIC AND XRD ANALYSIS

Origin of samples: Río Torola, Morazán

Submitted by: Swissboring Overseas Corporation Ltd.

I. PETROGRAPHIC ANALYSIS

a. Sample: CDB –1 M-1 Depth: 50.34 – 50.45m

The sample was described megascopically due to the presence of very pronounced striations (Quality = 1), which indicate structural evidences.

b. Megascopic Structural Description:

Very defined striations were observed, indicating the presence of fault. Although the direction was not indicated (top and bottom) and assuming the sore was taken in a vertical position, the movement of the block and the measured angle ($\approx 50^{\circ}$) suggest the presence of a reverse fault combined with a strike-slip component, probably sinistral.

These striations indicate a very important fault system in the area.

No filling materials or gouge were observed.

c. Megascopic (petrographic) Description:

The sample is vesicular, brownish, slightly altered. Striations can be recognized by the presence of the alignment of brownish and blackish minerals.

d. Microscopic Description:

The sample is mostly composed of amygdules and primary minerals such as plagioclases (An31-An38), mostly andesine which are twinned and zoned and biotite being altered to clay. Secondary minerals like clay minerals (smectite), chloritic clays and chalcedony fill up the amygdules. Matrix is mostly altered

glass sprinkled with opaque minerals. Veinlets are present, cutting across plagioclase crystals and mostly filled up by secondary biotite, chloritic clays and silica (chalcedony).

Plagioclase – 60%
Biotite – 7%
Clay minerals – 5%
Chloritic clays – 7%
Chalcedony - 5%

Matrix - 16%

e. Rock name: Amygdaloidal biotite andesite

II. PETROGRAPHIC ANALYSIS

a. Sample: CDB -2 M-2 Depth: 47.10 - 47.20m

b. Microscopic description:

The sample is composed of plagioclase (An60-An68), mostly labradorite which are twinned and partially fractured, opaque minerals being altered to hematite, pyroxene being altered to clay and chlorite embedded in a matrix of intergranular crystals of plagioclase and small pyroxenes. Vesicles and veinlets are filled up by chlorite.

Plagioclase – 30%
Opaque minerals – 10%
Pyroxene – 7%
Clay minerals – 10%

Chlorite – 10%

Matrix - 33%

c. Rock Name: Slightly altered basalt

III. PETROGRAPHIC ANALYSIS

a. Sample : CDB -2 M-3 Depth: 54.52-54.63m

b. Microscopic description:

The sample contains abundant fragments of scoria, altered fine lithics and crystals of plagioclases, pyroxene and olivine in a clayey matrix.

Scoria –	20%
Plagiociase crystals –	10%
Pyroxene crystals -	7%
Altered lithics -	5%
Olivine crystals -	1%

Matrix - 57%

c. Rock Name: Scoriaceous lithic-crystal tuff

IV. XRD ANALYSIS

a. Sample : CDB -2 M-3 Depth: 54.52-54.63m

b. Mineral composition:

XRD analysis identified only few minerals such as plagioclase (anorthite) and saponite (type of smectite) which are in abundance both in fragments of scoria and as individual crystals.

Plagioclase – 87% Saponite - 13%

V. XRD ANALYSIS

a. Sample : CDB -1 M-1 Depth: 64.85 - 65.00m

b. Mineral composition:

Saponite – 85% Nontronite – 15%

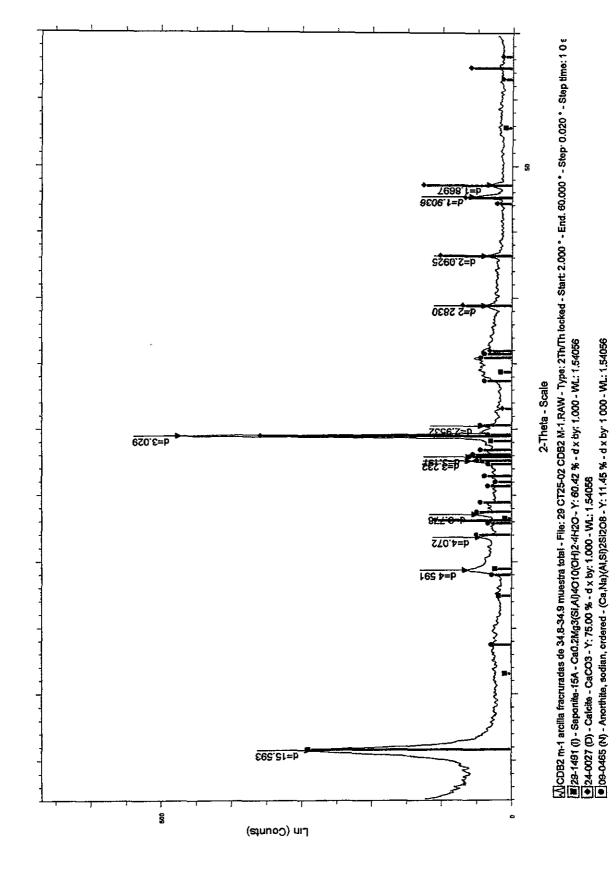
Both clay minerals belong to smectite group, although saponite belongs to trioctahedral smectite while nontronite to dioctahedral smectite. They are low temperature clay minerals giving around 100 °C as temperature of formation.

VI. XRD ANALYSIS

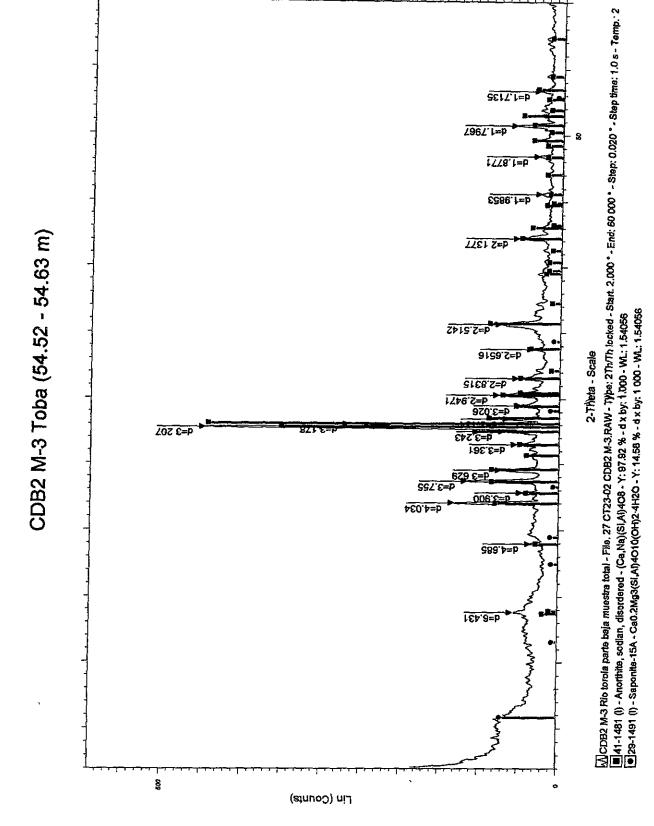
a. Sample: CDB -- 2 M-1 Depth: 34.80-34.90m

b. Mineral composition:

Calcite - 51%
Saponite - 41%
Plagioclase - 8%

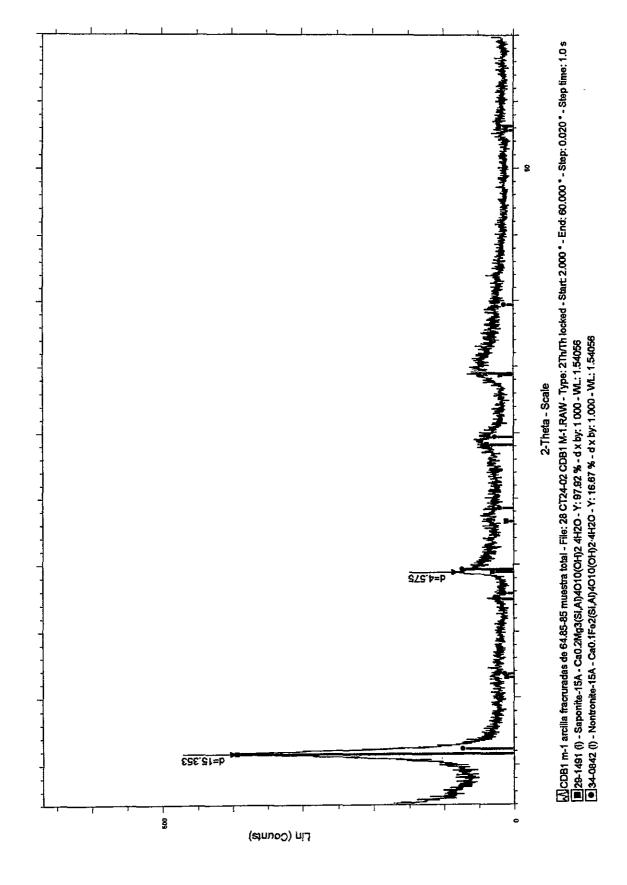

The only clay mineral present is saponite.

Petrographic and XRD analysis by: Elizabeth de Henriquez


Structural analysis by: Marvyn Oziel García

24/01/02

CDB2 M-1 Arcilla en Fracturas de 34.80-34.90m



7-9-6

7-9-7

CDB1 M-1 Arcilla en Fracturas de 64.85-65.00m

Geotérmica Salvadoreña, S.A. de C.V.

Km. 11 ½ al Puerto de La Libertad, Colonia Utila, Nueva San Salvador
La Libertad, El Salvador, C.A
Teléfonos:211-6700 Fax:211-6743
Email: info@gesal.com.sv

February 11, 2003

Engr. Rodolfo Alvarado Swissboring Overseas Corporation Ltd. Present

Dear Sir:

Attached are the petrographic and XRD analyses of the four samples collected in Rio Torola, Morazan.

We hope that these analyses will be of great help for the technical study being undertaken by CEL and the government of Japan.

Sincerely yours,

enorio Mejía

JTM/ecdh

RESULTS OF PETROGRAPHIC AND XRD ANALYSIS

Origin of samples: Río Torola, Morazán

Submitted by: Swissboring Overseas Corporation Ltd.

I. PETROGRAPHIC ANALYSIS

a. Sample: CDB –4 M-1 Depth: 39.00-39.09m

b. Megascopic Description:

Phenocrysts of dark-green prismatic and tabular crystals and plagioclase in a very fine dark-glassy matrix:

c. Microscopic Description

The sample is composed of fine laths of plagioclase, which are twinned and zoned, with the composition mostly of andesine. Plagioclases show partial flow structure. Clinopyroxene is present but is generally altered to brownish green chlorite (in plane polarized light). Few small fragments of olivine are present as phenocryst and as part of the matrix. Phenocrysts of opaque minerals are few, most of them are observed in the matrix. Matrix is mostly glassy with interstitial microlites of feldspar, fragments of pyroxene and opaque minerals.

Plagioclase	_	40%
Clinopyroxene (unaltered)	-	3%-
Olivine	_	3%
Opaque minerals	-	3%
Pyroxene altered to chloritic clays/chlorite	-	7%
Matrix		39%

mati ix

d. Rock name: Fine-grained basaltic andesite

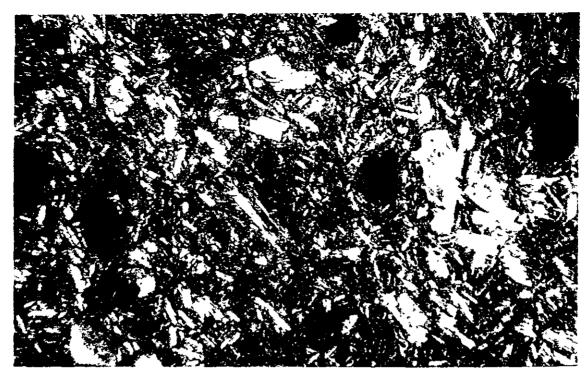


Photo 1 Crystals of olivine, chloritized pyroxene and plagloclases as observed under crossed nicols, sample CDB-4

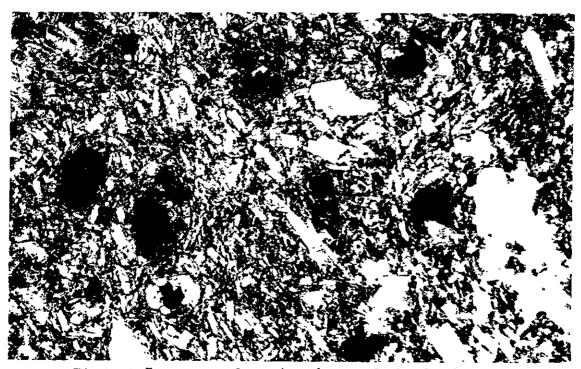


Photo 2 Same sample under plane polarized light

II. PETROGRAPHIC ANALYSIS

a. Sample. CDB -3 M-2 Depth: 18.00-18.10m

b. Megascopic Description.

Various subangular to angular fragments of lithics, scoria and pumice with varying sizes upto 1.5 cm (as seen from the core), lapilli size, in an argillaceous matrix with silica and chlorite in vesicles.

c. Microscopic description:

The sample is composed of angular fragments of mostly andesites with dark glassy matrix, basaltic andesite, scoria and pumice in an argillaceous matrix. Most vesicles are filled up by chloritic clays and chlorite.

d. Rock Name: Lapilli tuff

Photo 3 Angular fragments of andesites, basaltic andesites under crossed nicols, sample CDB-3.

XRD ANALYSIS

III. X-ray Diffraction analysis

a. Sample No: CBD – 3 Depth: 24.40-24.50m

b. Megascopic description:

The sample is color beige mainly with fine particles of clay and other small crystals of plagioclase, quartz and some ferromagnesian minerals.

c. XRD analysis

The sample is composed of clay minerals mostly saponite and montmorillonite which belong to the smectite group. All other primary minerals are masked by the clay, minerals. Analysis of clay minerals was done with air dried and glicolated procedure.

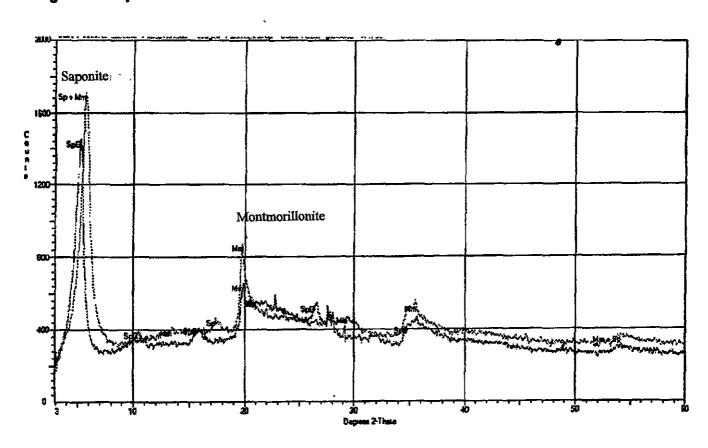


Figure 1 Graph of clay minerals

IV. X-ray Diffraction analysis

a. Sample No.: CBD-4
Depth: 26.65-26.70m
62.65-62.70

b. Megascopic Description

The sample is dark gray, clayey with rock and crystals fragments highly altered.

c. XRD analysis

Two types of clay minerals are observed: smectite (mostly montmorillonite) and halloysite: Some of the clay minerals in the spectrum are mixed layers of smectite and halloysite.

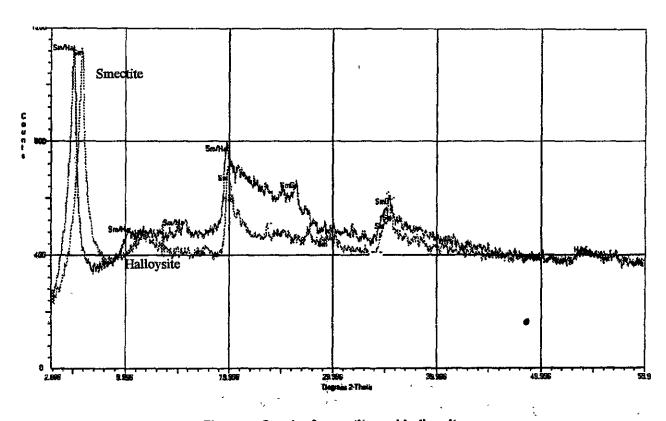


Figure 2 Graph of smectite and halloysite

Comments:

Smectite is a group of clay minerals, both dioctahedral and trioctahedral, all of which display the property of being able to expand and contract their structures while maintaining two-dimensional crystallographic integrity. Expansion takes place as water or some polar organic compound, such as ethylene glycol, enters the interlayer space.

Montomorillonite belongs to the dioctahedral smectite group while saponite is still debatable whether dioctahedral or trioctahedral, as it has a positive charge on the octahedral sheet and a large negative charge on the tetrahedral sheet.

An important source of smectite is the alteration of volcanic glass with relatively high silica content. It also seems to precipitate directly in pores of sandstone and apparently forms in weathering environments characterized by very slow movement of water.

Halloysite belongs to the kaelin minerals. It is a highly disordered form of kaelinite disordered enough to take water enough into the interlayer space.

Kaolinite and halloysite are probably the most ubiquitous aluminosilicate mineral in soils and permeable bedrock in warm, moist regions forming as a residual weathering product, or sometimes by hydrothermal alteration of other aluminosilicates, especially of feldspars.

Petrographic analysis by:

Elizabeth de Henriquez

Reviewed by: Ing. Arturo Quezada

11/02/03

Appendix 7.10

Result of Laboratory Tests

on

Physical Property at Dam Site

ANIBAL RODAS MAZARIEGOS ingeniero Civii Periferico 20-01 Zona 7 Tel. Y Fax 5949644 Guatemala, C.A

MATERIALS QUALITY CONTROL COMPRESSIVE STRENGTH OF CORES ROCK

TO **PROJECT** SWISSBORING (Ing. Rodolfo Alvarado) RIO TOROLA (SAN SALVADOR) COMPRESSIVE STRENGTH TEST

SUBJECT DATE

23 DE ENERO DE 2002

NOTE

CORES CUT WITH DIAMOND BLADE

					TEST DATE	23/1/2002	
SONDEO No	CORE.	HEIGHT	INITIAL LONG (CM)	FINAL HEIGHT H (CM)	DIAMETER D (CM)	WEIGHT (GRMS)	MAX LOAD (KG)
CDB-1	M-1	50.14 - 50 34	19 80	9.61	4 77	336 40	2960
	M-2	51.58 - 51.85	26 30	9.97	4.76	350 60	1320
	M-3_	54 17 - 54 74	25 40	9 82	4.76	367 80	9200
	M-4	64.37 - 64.53	14.80	10 80	4 77	499 20	17200
	M-5	65 00 - 65.25	23.90	9 59	4.77	477.50	20800
	M-6	66 56 - 66.72	14.60	9.68	4 77	480 80	18800
CDB-2	M-1	39 55 - 39 74	17.50	9 61	4.77	384.50	3640
	M-2	42.50 - 42.75	24.20	9 74	4.77	360 80	3480
	M-3	47.20 - 47 44	23 50	9 24	4.77	449.60	17000
	M-4	50.00 - 50 24	19 80	10 11	4 77	499 80	12800
	M-5	54 17 - 54 40	22.30	9.71	4 77	270.60	1520
	M-6	57.25 - 57.51	25 30	9 58	4.77	425 10	5100
CDB-7	M-1	10.75 - 11 00	21.40	9 15	4.77	440.50	17000

SONDEO	CORE	HEIGHT	DENSITY	SLENDERNESS	NET STRESS	DESCRIPTION
No	No_	[]	KG/M3	(H/D)	(KG/CM2)	<u> </u>
CDB-1	M-1	50.14 - 50.34	1959.9	2 01	165.7	BASALTO ALTERADO
	M-2	51 58 - 51.85	1977.1	2 09	74.2	BASALTO ALTERADO
	M-3	54.17 - 54 74	2105.8	2.06	517.3	BASALTO ALTERADO
	M-4	64.37 - 64 53	2587.9	2 26	963.0	BASALTO SANO
	M-5	65.00 - 65.25	2787.7	2 01	1164.5	BASALTO SANO
	M-6	66 56 - 66.72	2780.9	2 03	1052.6	BASALTO SANO
CDB-2	M-1	39 55 - 39.74	2240.1	2 01	203.8	BASALTO ALTERADO
	M-2	42.50 - 42 75	2074.0	2 04	194.8	BASALTO ALTERADO
	M-3	47.20 - 47 44	2724.3	1.94	951.8	BASALTO SANO
	M-4	50 00 - 50 24	2767.8	2.12	716.6	BASALTO SANO
	M-5	54.17 - 54 40	1560.3	2 04	85.1	TOBA LITICA
	M-6	57.25 - 57 51	2484.4	2 01	285.5	AGLOMERADO TOBACEO
CDB-7	M-1	10.75 - 11.00	2695.4	1.92	951.8	BASALTO ALTERADO

SUPPLEMENTARY CORE TEST

SONDEO No	CORE No	HEIGHT	INITIAL LONG (CM)	FINAL HEIGHT H (CM)	DIAMETER D (CM)	WEIGHT (GRMS)	MAX LOAD (KG)
CDB-1	M-2	51 58 - 51 85	26 30	7.78	4 76	286 70	6800
	M-5	65.00 - 65.25	23 90	7.71	4 77	379 00	24600
CDB-2	M-2	42.50 - 42 75	24.20	9 29	4 77	349 80	2860
	M-3	47.20 - 47 44	23.50	9.50	4 77	461 40	19600
	M-4	50 00 - 50.24	19 80	7.67	4.77	376 70	14200
	M-6	57.25 - 57 51	25 30	9 57	4.77	431.20	5200

SONDEO No	CORE No	HEIGHT	DENSITY KG/M3	SLENDERNESS (H/D)	NET STRESS (KG/CM2)	DESCRIPTION
CDB-1	M-2	51.58 - 51 85	2071.9	1 63	382.3	BASALTO ALTERADO
	M-5	65 00 - 65.25	2752.2	1.62	1377.3	BASALTO SANO
CDB-2	M-2	42 50 - 42.75	2108.1	1.95	160.1	BASALTO ALTERADO
	M-3	47.20 - 47.44	2719.2	1 99	1097.4	BASALTO SANO
	M-4	50 00 - 50.24	2749.8	1.61		HASALTO SANO
	M-6	57.25 - 57 51	2522.7	2 01	291.1	AGLOMERADO TOBACEO

ATENTAMENTE

Appendix 7.11

Result of Laboratory Tests for Concrete Aggregate

Result of Laboratory Tests for Concrete Aggregates

Concrete aggrigate

Basalt Outcrop

Location	C	127	C535	C88	C295	C289	C227
	s g.	abs.	L. A	stability	1		(%)
[. <u></u>	(g/cm³)	(%)	(%)	(%)	pet class	alkali-silica	alkali-silica
Out crop	2 56	36	18.2	64.2	basalt	INOCUO	0.0
(0-1)*							

^{*} location of O-1 is shown in Dam site reconnaissance map in Appendix as sampling site OC-1

Gravel and Sand Fine agrregate

Location	depth		2128	C131	C88	C136	C142	C123
		s g.	abs	L. A	stability		clay lumps	light particles
	(m)	(g/cm^3)	(%)	(%)	(%)	sieve	(%)	
CGP-1	0-19	2 32	3.9	20.3	22.5	C	1.7	16
CGP-2	0-3	2.28	5.3	21.9	15.8	C	0.7	11
CGP-3	0-1.6	2.37	4.3	20.9	13.0	C	1.2	22
CGP-4		2.30	6.1		4.6	C	0.4	05
CG <u>P-5</u>		2.33	5.4	18.6	7.5	С	0.5	0.0
CGP-6		2.43	53		83	C	06	0.0

Corse aggregate

Location	depth		127	C535	C88	C136
		s.g.	abs.	L. A.	stability	
_	(m)	(g/cm ³)	(%)	(%)	(%)	sieve
CGP-1	0-1.9	2 26	4.7	142		Ī
CGP-2	0-3	2.75	0.9	175	-	
CGP-3	0-1.6			177		
CGP-4		2.52	3.1	15.0	9.8	С
CGP-5		2 56	2.3		4.5	С
CGP-6		2 56	2.5	148	7.4	С

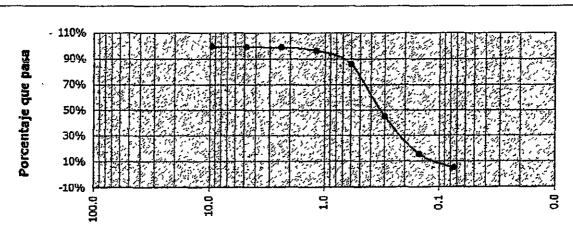
SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES (ASTM C 136-01)

ANALISIS GRANULOMETRICO ASTM C-136

SOLICITOR: Ing. Rodolfo Alvarado, SWISSBORING

PROYECT: Factibilidad Rio Torola LOCATED: Parte Baja del Rio Torola

DATE EXPERIMENT: 15-Ene-02
TEC. RESPONSIBLE: Arieth Moran


FILE No: 24-GE, des-san-lig, (CGP), 31-1-2, swissboring

o Inicial (grs) = 2,797.0 Sondeo CGP-1, M-1, profundidad 0.00 a 1.90 m.

Malia (mm)	Retained Weigth	Retained parcially	Retained Acumulated	Percentage that happens	Malla (pul)
9.520	12.7	0.45%	0.45%	99.55%	3/8"
4.760	10.1	0.36%	0.82%	99.18%	No.4
2 390	162	0.58%	1.39%	98.61%	No, 8
1.190	69.4	2.48%	3.88%	96.12%	No,16
0.590	291.2	10.41%	14.29%	85.71%	No, 30°
0.297	1,155.3	41.30%	55.59%	44,41%	No, 50
0.149	815 5	\ 29.16%	84.75%	15.25%	No, 100
0.074	0.074 296.0		95.33%	4.67%	No, 200
Fondo	130.6	4.67%	100.00%	0.00%	
Sumas	2,797.0				,

Modulo de Finura =

1.60

Abertura de maila (mm) Esc Log

sampling carrier out by applicant

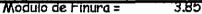
INSTITUTO TECNOLOGICO CENTROAMERICANO ITCA LABORATORIOS DEPTO. INGENIERIA CIVIL Y ARQUITECTURA

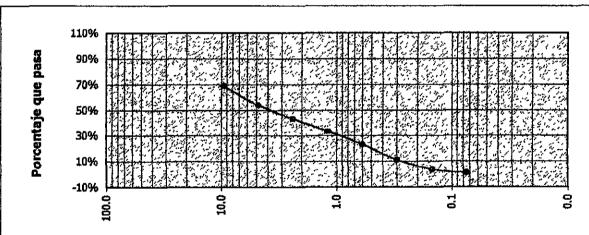
ADMON. FEPADE

Ing. Joaquin Humberto Montenegro Jefe Laboratorios Control de Calidad Suelos, Concreto, Asfalto y Materiales

ANALISIS GRANULOMETRICO ASTM C-136

SOLICITOR: Ing. Rodolfo Alvarado, SWISSBORING


PROYECT: Factibilidad Rio Torola LOCATED: Parte Baja del Rio Torola


DATE EXPERIMENT: 18-Ene-02

TEC. RESPONSIBLE: Mauricio Najera

FILE No: 24-GE, des-san-lig, (CGP), 31-1-2, swissboring

Pe	Peso Inicial (grs) = 2,931.0 Sondeo CGP-2, M-1, profundidad 0.00 a 3 00 m.								
Malla (mm)	Retained Weigth	Retained parcially	Retained Acumulated	Percentage that happens	Malla (pul)				
9.520	915.5	31.24%	31 24%	68.76%	3/8"				
4.760	441.5	15.06%	46.30%	53.70%	No.4				
2.380	302,0	10.30%	56.60%	43.40%	No, 8				
1.190	290.4	9.91%	66.51%	33.49%	No,16				
0.590	296.6	10.12%	76.63%	23 37%	No, 30				
0.297	365.0	12.45%	89.08%	10.92%	No, 50				
0.149	212.0	7.23%	96.32%	3.68%	No, 100				
0.074	74.0	2.52%	98.84%	1.16%	No, 200				
Fondo	34.0	1.16%	100,00%	0.00%					
Sumas	2,931.0								

Abertura de malla (mm) Esc Log

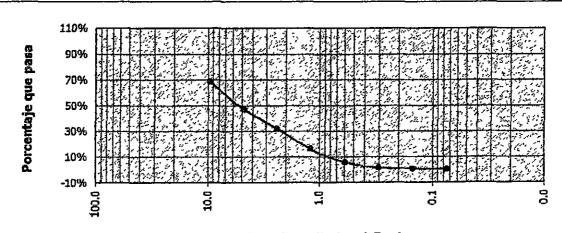
sampling carrier out by applicant

INSTITUTO TECNOLOGICO
CENTROAMERICANO ITCA
LABORATORIOS
DEPTO. INGENIERIA CIVIL Y ARQUITECTURA
ADMON. FEPADE

Ing. Joaquín Hymnerto Montenegro Jefe Laboratorios Sontrol de Calidad Suelos, Concreto, Asfaito y Materiales

ANALISIS GRANULOMETRICO ASTM C-136

SOLICITOR: Ing. Rodolfo Alvarado, SWISSBORING


PROYECT: Factibilidad Rio Torola LOCATED: Parte Baja del Rio Torola

DATE EXPERIMENT: 18-Ene-02 TEC. RESPONSIBLE: Mauricio Najera

FILE No: 24-GE, des-san-lig, (CGP), 31-1-2, swissboring

Pe	so Inicial (grs) =	2,927.0	Sondeo CGP-3 N	1-1, profundidad 0.0	00 a 1.60 m.	
Malla (mm)	Retained Weigth	Retained parcially	Retained Acumulated	Percentage that happens	Malla (puj)	
9.520	917.5	31,35%	3135%	68.65%	3/8"	
4.760	626.3	21.40%	52.74%	47.26%	No.4	
2.380	451.1	15.41%	68.16%	31.84%	No, 8	
1.190	464,0	15.85%	84.01%	15.99%	No,16	
0.590	312.4	10.67%	94.68%	5.32%	No, 30	
0.297	113.6	3.88%	98.56%	1.44%	No, 50	
0.149	26.3	0.90%	99.46%	0.54%	No, 100	
0.074	8.3	0.28%	99.74%	0.26%	No, 200	
Fondo	7.5	0.26%	100.00%	0.00%		
Sumas	2,927.0	,				

Modulo de Finura = 4.45

Abertura de malia (mm) Esc Log

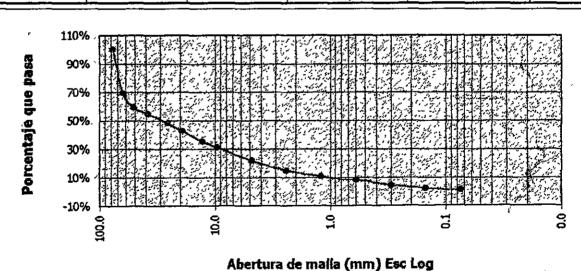
sampling carrier out by applicant

INSTITUTO TECNOLOGICO CENTROAMERICANO ITCA LABORATORIOS DEPTO. INGENIERIA CIVIL Y ARQUITECTURA ADMON. FEPADE

Ing. Joaquin Numberto Montenegro Jefe Laboratores Control de Calidad Suelos, Concreto, Asfalto y Materiales

ANALISIS GRANULOMETRICO ASTM C-136

SOLICITOR: Ing. Rodolfo Alvarado, SWISSBORING


PROYECT: Estudio Factibilidad Rio Torola

LOCATED: CGP-4
DATE EXPERIMENT: 16-Ene-03
TEC. RESPONSIBLE: Arleth Moran

FILE No: 15-01-03,torola,swissboring,cgp4

Peso inicial (grs) = 5,000.0

Malla (mm)	Retained Weigth	Retained parcially	Retained Acumulated	Percentage that happens	Maila (pul)	
76.200	0.0	0.00%	0.00%	100,00%		
63,500	1,522.0	30.44%	30.44%	69.56%	2 1/2 ^u	
50.80	515.0	10.30%	40.74%	59.26%	2*	
38.10	234.0	4.68%	45.42%	54.58%	1 1/2"	
25.40	337.0	6.74%	52.16%	47.84%	1"	
19.10	257.0	5.14%	57.30%	42.70%	3/4"	
12.70	364.0	7.28%	64.58%	35,42%	1/2"	
9.52	212.0	4.24%	68.82%	31.18% 21.84% 14.79%	3/8" No.4 No. 8	
4.760	467.0	9.34% 7.05%	78.16% 85.21%			
2.380	0 352.3					
1.190	196.1	3.92%	89.13%	10.87%	No,16	
0.590	141.0	2.82%	91.95%	8.05%	No, 30	
0.297	177,1	3.54%	95.49%	4.51%	No, 50	
0.149 110.5		2.21%	97.70%	2.30%	No, 100	
0.074 57.1		1.14%	98.84%	1.16%	No, 200	
Fondo	57.9	1.16%	100 00%	0.00%		
Sumas	5,000.0		,			

sampling carrier out by applicant

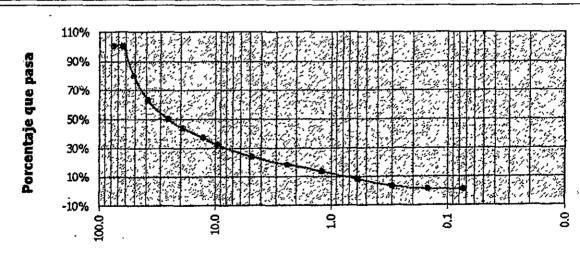
INSTITUTO TECNOLOGICO CENTROAMERICANO ITCA LABORATORIOS DEPTO. INGENIERIA CIVIL Y ARQUITECTURA

ADMON. FEPADE

Ing. Joaquín Humbe to Montenegro Jefe Laboratorios Control de Calidad Suelos, Concreto, Asfalto y Materiales

ANALISIS GRANULOMETRICO ASTM C-136

SOLICITOR: Ing. Rodolfo Alvarado, SWISSBORING


PROYECT: Estudio Factibilidad Rio Torola

LOCATED: CGP-5
DATE EXPERIMENT: 16-Ene-03
TEC RESPONSIBLE: Arleth Moran

FILE No. 15-01-03,torola,swissboring,cgp5

Peso Inicial (grs) = 5,000.0

Malia (mm)	Retained Weigth	Retained parcially	Retained Acumulated	Percentage that happens	Malla (pul)
76.20	0.0	0.00%	0.00%	100.00%	3"
63.50	50 0.0		0.00%	100.00%	2 1/2"/
50.80	1,009.0	20.18%	20.18%	79.82%	2"
38.10	832.0	16.64%	36.82%	63.18%	1 1/2
25.40	651.0	13.02%	49.84%	50.16%	1.
19.10	327.0	6.54%	56.38%	43.62%	· 3/4*
12.70 317.0		6.34%	62.72%	37.28% (1/2*
9.52	265.0	5.30%	68,02%	31.98%	` 3/8°
4.760	410.0	8.20%	76.22%	23.78%	No.4
2.380	282.9	5.66%	81.88%	18.12%	No, 8
1.190	228.7	4.57%	86.45%	13.55%	No,16
0.590	281.5	5.63%	92.08%	7.92%	No, 30
0.297	236.2	4.72%	96.81%	3.19%	No, 50
0.149	84.2	1.68%	98.49%	1.51%	No, 100
0.074	27.6	0.55%	99.04%	0.96%	No, 200
Fondo	47.9	0.96%	100.00%	0.00%	
Sumas	5,000.0	· · · · · · · · · · · · · · · · · · ·			

Abertura de malla (mm) Esc Log

sampling carrier out by applicant

INSTITUTO TECNOLOGICO CENTROAMERICANO ITCA LABORATORIOS

DEPTO. INGENIERIA CIVIL Y ARQUITECTURA
ADMON. FEPADE

Ing. Joaquín filmberto Montenegro Jefe Laboratorio Control de Calidad Suelos, Concreto, Asfalto y Materiales

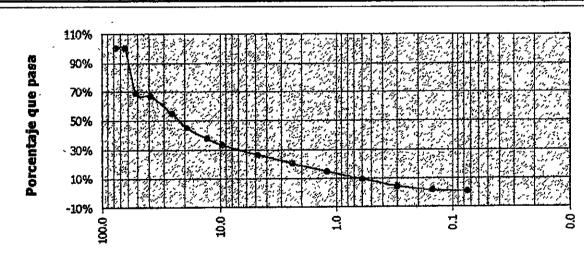
SOUDNESS OF AGGREGATES BY USE OF SODIUM SULFATE OR MAGNESIUM SULFATE (ASTM C 88)

ANALISIS GRANULOMETRICO ASTM C-136

SOLICITOR: ing. Rodolfo Alvarado, SWISSBORING

PROYECT: Estudio Factibilidad Rio Torola

LOCATED: CGP-6


DATE EXPERIMENT: 16-Ene-03

TEC. RESPONSIBLE: Arleth Moran

FILE No: 15-01-03,torola,swissboring,cgp4

Peso inicial (grs) = 5,000.0

Malia (mm)	Retained Weigth	Retained parcially	Retained Acumulated	Percentage that happens	Malla (pul
76.200	0.0	0.00%	0.00%	100.00%	3"
63.500	0.0	0.00%	0,00%	100.00%	2 1/2".
50.80	1,567.0	31,34%	31.34%	68.66%	2"
38.10	84.0	1.68%	33.02%	66.98%	1 1/2*
25.40	620.0	12:40%	45.42%	54.58%	1,
19.10	487.0	9.74%	55,16%	44,84%	3/4*
12.70	371.0	7.42%	62,59%	% 37.42%	
9.52	207.0	4.14%	66.72%	33.28%	3/9"
4.760	357.Q	7.14%	73.86%	26.14%	No.4
2.380	293.0	5.86%	79.72%	20.28%	No, 8
1.190	294.4	5.89%	85.61%	14.39%	No,16
0.590	245.7	4.91%	90.52%	9.48%	No, 30
0.297	256.1	5.12%	95.64%	4.36%	No, 50
0.149	126.5	2.53%	98.17%	1.83%	No, 100
0.074	0.074 48.5		99.14%	0.86%	No, 200
Fondo	42.8	0.86%	100.00%	0.00%	
Sumos	5,000.0				

Abertura de malla (mm) Esc Log

sampling carrier out by applicant

INSTITUTO TECNOLOGICO CENTROAMERICANO ITCA LABORATORIOS

DEPTO, INGENIERIA CIVIL Y ARQUITECTURA
ADMON. FEPADE

Ing. Joaquín Nymberto Montenegro Jefe Laboratorios Control de Calidad Suelos, Concreto, Asfalto y Materiales

SANIDAD AGREGADOS PARA CONCRETO

ASTM C-88

SOLICITOR: Ing. Rodolfo Alvarado, SWISSBORING

PROYECT: Factibilidad Rio Torola LOCATED: Parte Baja del Rio Torola

DATE EXPERIMENT: 18-Ene-02 TEC. RESPONSIBLE: Mauricio Najera

FILE No: 24-GE, des-san(O1), 31-1-2, swissboring

Sondeo O-1, Muestra M-1,

Gre	inulometria F	reparada		Granulon	etna Designada		Analisis Cuali		tativo.	
Tamiz	Ret-Parcial	Preparado (gr)	Temiz	Retenido (gr)	(%)	PERDIDA	Particulas	Particulas	Parliculas /	
No	M. Original	antes ensayo.	No	ensayado	Perdida	Funcion M Original	Iniciales -	Pulveri.	Fracturadas	
2 1/2 "					, , ,	,,		,	7	
2 "				i l						
11/2 *	ļ	1,412.0	_1% *	505.12	64.23%					
1"				1	-					
3/4 *			5/8 "							
1/2 "			5/16 *	1					-	
3/8 *			·6/16 "							
No 4			No 5							

Totales

Lest after five cycles = 64.2%

Reactivate used sulfate of sodium

Sample of rock in rough bring for solicitor

INSTITUTO TECNOLOGICO
CENTROAMERICANO ITCA
CENTROAMERICANO
LABORATORIOS
DEPTO. INGENIERIA CIVIL Y ARQUITECTURA
ADMON. FEPADE

ing. Joaquin Hamberto Montenegro Jefe Laboratorios Control Calidad Suelos, Concreto, Asfaito y Materiales

SANIDAD AGREGADOS PARA CONCRETO ASTM C-88

SOLICITOR: Ing. Rodolfo Alvarado, SWISSBORING

PROYECT: Factibilidad Rio Torola LOCATED: Parte Baja del Rio Torola

DATE EXPERIMENT: 18-Ene-02

TEC. RESPONSIBLE: Mauricio Najera

FILE No: 24-GE, des-san-lig, (CGP), 31-1-2, swissboring

Sondeo CGP-1 Muestra No M-1, profundidad 0.00 a 1.90 m.

Gr	anulometria Pre	parada	Granulometria Designada							
Tamiz No	Ret-Parc(%) M. Original							1 '*' 1	(%) Perdida	% perdida Funcion M Origina
4	0.36%		4							
៉ូ ខ	0.58%		8							
¹ 16	2.48%		16							
. 30	10.41%	100.0	30	72.10	27.90%	2,90%				
50	41.30%	100.0	50	73.20	26,80%	11.07%				
100	29.16%	100.0	100	70.80	29.20%	8.51%				

300.0

216.1

lost after five cicles = 22.5%

Observaciones: sampling carrier out by applicant

Reactive used sulfate of sodium

INSTITUTO TECNOLOGICO
CENTROAMERICANO ITCA
LABORATORIOS
DEPTO. INGENIERIA CIVIL Y ARQUITECTURA
ADMON. FEPADE

Ing. Joaquin Humberto Montenegro.

Jete Laboratorios Control Calidad

Suelos y Concreto Astalto y Materiales

SANIDAD AGREGADOS PARA CONCRETO ASTM C-88

SOLICITOR: Ing. Rodolfo Alvarado, SWISSBORING

PROYECT: Factibilidad Rio Torola LOCATED: Parte Baja del Rio Torola

DATE EXPERIMENT: 18-Ene-02

TEC. RESPONSIBLE: Mauricio Najera

FILE No: 24-GE, des-san-lig, (CGP), 31-1-2, swissboring

Sondeo CGP-2 Muestra No M-1, profundidad 0.00 a 3.00 m.

Gra	anulometria Pre	parada	Granulometria Designada			
Tamiz No	Ret-Parc(%) M. Original	Retenido (gr) antes ensayo	Tamiz No	Retenido (gr) ensayado	(%) Perdida	% perdida Funcion M Original
4	15.06%	100.0	4	75.00	25.00%	3.77%
8	10.30%	100.0	6	78.40	21.60%	2.23%
16	9.91%	100.0	16	76.80	23.20%	2.30%
30	10.12%	100.0	30	74.60	25.40%	2.57%
50	12.45%	100.0	50	73.50	26.50%	3.30%
100	7.23%	100.0	100	76.70	23.30%	1.69%

600.0 455.0

lost after five cicles = 15.8%

Observaciones: sampling carrier out by applicant

Reactive used sulfate of sodium

INSTITUTO TECNOLOGICO
CENTROAMERICANO ITCA
LABORATORIOS
DEPTU. INGENIERIA CIVIL Y ARQUITECTURA
ADMON. FEPADE

Ing. Joaquin Humanitat Montenegro.

Jete Laboratorios Control Calidad

Suelos y Concreto Astalto y Materiales

SANIDAD AGREGADOS PARA CONCRETO ASTM C-88

SOLICITOR: Ing. Rodolfo Alvarado, SWISSBORING

PROYECT: Factibilidad Rio Torola LOCATED: Parte Baja del Rio Torola

DATE EXPERIMENT: 18-Ene-02 EC. RESPONSIBLE: Mauricio Najera

FILE No: 24-GE, des-san-lig, (CGP), 31-1-2, swissboring

Sondeo CGP-3 Muestra No M-1, profundidad 0.00 a 1.60 m.

Gra	anulometria Pre	eparada	Granulometria Designada					
Tamiz No	Ret-Parc(%) M. Original	· ·		· · · · · · · · · · · · · · · · · · ·		Retenido (gr) ensayado	(%) Perdida	% perdida uncion M Origina
4	21.40%	100.0	4	85.70	14.30%	3.08%		
8	15.41%	100.0	8	83.10	16.90%	2,60%		
16	15.85%	100.0	18	79.00	21.00%	3.33%		
30	10.67%	100.0	30	71.90	28.10%	3.00%		
50	3.88%	100.0	50	74.00	26.00%	1.01%		
100	0.90%		100					

500.0

393.7

lost after five cicles = 13.0%

Observaciones: sampling carrier out by applicant

Reactive used sulfate of sodium

INSTITUTO TECNOLOGICO CENTROAMERICANO ITCA LABORATORIOS DEPTO. INGENIERIA CIVIL Y ARQUITECTURA ADMON. FEPADE

Ing. Joaquin Highberto Montenegro. Jete Laboratorios Control Calidad Suelos y Concreto Astalto y Materiales

SANIDAD AGREGADOS PARA CONCRETO ASTM C-88

SOLICITOR: Ing. Rodolfo Alvarado, SWISSBORING

PROYECT: Estudio Factibilidad Rio Torola

LOCATED: CGP-4

DATE EXPERIMENT: Ene-03

TEC. RESPONSIBLE: Arleth Moran

FILE No: 15-01-03,torola,swissboring,cgp4

AGREGADO GRUESO

Gran	nulometria l	Preparada				itativo			
Tamiz	Tamiz Ret-Parcia reparado (g		Tamiz	ketenido (gr	(%)	PERDIDA	Particulas	Particulas	Particulas !
No	M. Origina	antes ensaya	No	ensayado	Perdida	incion M Origin	Iniciales	Pulveri.	Fracturada
2 1/2 "	30.4%								
2 "	10.3%				!		1	1	
11/2"	4.7%	1,481.0	1%"	1238.4	16.38%	0.8%	12	1	1
1"	6.7%	1,016.0		859.3	15.42%	1.0%	24	1	2
3/4 "	5.1%	500.0	5/8 "	363.4	27.32%	1.4%	33	5	-,-
1/2 "	7.3%	670.0	· 5/16 "	481.5	28.13%	2.0%	130	29	-,-
3/8 "	4.2%	330.0	5/16 "	218	33.94%	1.4%	189	-,-	-,-
No 4	9.3%	300.0	No 5	201.8	32.73%	3.1%	560		

Total 78.2% 4,297.0

3,362

lost after five cicles = 9.8%

Observaciones: sampling carrier out by applicant

Reactive used sulfate of sodium

lost after five cicles (fine + coarse) = 14%

INSTITUTO TECNOLOGICO CENTROAMERICANO ITCA LABORATORIOS DEPTO. INGENIERIA CIVIL Y ARQUITECTURA

ADMON. FEPADE

Ing. Joaquín Humberto Montenegro. Jefe Laboratorios Control Calidad Suelos, Concreto, Asfalto y Materiales

SANIDAD AGREGADOS PARA CONCRETO ASTM C-88

SOLICITOR: Ing. Rodolfo Alvarado, SWISSBORING

PROYECT: Estudio Factibilidad Rio Torola

LOCATED: CGP-4

DATE EXPERIMENT: Ene-03

TEC. RESPONSIBLE: Arleth Moran

FILE No: 15-01-03,torola,swissboring,cgp4

Granulometria Preparada			Granulometria Designada					
Tamiz No	Ret-Parc(%) M. Original	Retenido (gr) antes ensayo	Tamiz No	Retenido (gr) ensayado	(%) Perdida	% perdida Función M Original		
4								
8	7.05%	100.0	8	69.90	30.10%	2.12%		
16	3.92%	100.0	16	77.90	22.10%	0.87%		
30	2.82%	100.0	30	75.80	24.20%	0.69%		
50	3.54%	100.0	50	75.10	24.90%	0.88%		
100	2.21%							

400.0

298.7

lost after five cicles = 4.6%

Observaciones: sampling carrier out by applicant

Reactive used sulfate of sodium

lost after five cicles (fine + coarse) = 14%

INSTITUTO TECNOLOGICO CENTROAMERICANO ITCA LABORATORIOS DEPTO, INGENIERIA CIVIL Y ARQUITECTURA

ADMON. FEPADE

Ing. Joaquin Humberto Montenegro.

Jete Laboratorios Control Calidad Suelos y Concreto Astalto y Materiales

SANIDAD AGREGADOS PARA CONCRETO ASTM C-88

SOLICITOR: Ing. Rodolfo Alvarado, SWISSBORING

PROYECT: Estudio Factibilidad Rio Torola

LOCATED: CGP-5

DATE EXPERIMENT: Ene-03

TEC. RESPONSIBLE: Arleth Moran

FILE No: 15-01-03,torola,swissboring,cgp5

AGREGADO GRUESO

								<u>-</u>		
Gran	Granulometria Preparada			Granulometria Designada				Analisis Cualitativo		
Tamiz No		Preparado (gr) antes ensayo		Retenido (gr) ensayado	(%) Perdida	PERDIDA Funcion M Origina	Particulas Iniciales	Particulas Pulveri.	Particulas Fracturadas	
2 ½ "	0.0%									
2"	20.2%	3,006.0		2878.4	4.24%	0.9%	9			
11/4"	16.6%	2,043.0	1%"	1905.9	6.71%	1.1%	18	~, <u>-</u>	1	
1"	13.0%	1,016.0		927.5	8.71%	1.1%	21	2	-,-	
3/4 "	6.5%	500.0	5/8 "	456.8	8.64%	0.6%	26	1	-,-	
1/2 "	6.3%	406 0	5/16 "	354 0	12.81%	0.8%	75		1	
3/8 "	5,3%		5/16 °					<u> </u>		
No 4	8.2%		No 5							
		4 6 5 4 6		1 700						

Total 76.2% 6,971.0

6,523

Perdida despues de cinco ciclos = 4.5%

Observaciones: sampling carrier out by applicant

Reactive used sulfate of sodium

lost after five cicles (coarse + fine) = 12%

INSTITUTO TECNOLOGICO CENTROAMERICANO ITCA LABORATORIOS DEPTO, INGENIERIA CIVIL Y ARQUITECTURA ADMON. FEPADE

Ing. Joaquín/Humberto Montenegro. Jefe Laboratorios Control Calidad Suelos, Concreto, Asfalto y Materiales

SANIDAD AGREGADOS PARA CONCRETO ASTM C-88

SOLICITOR: Ing. Rodolfo Alvarado, SWISSBORING

PROYECT: Estudio Factibilidad Rio Torola

LOCATED: CGP-5

DATE EXPERIMENT: Ene-03

TEC. RESPONSIBLE: Arleth Moran

FILE No: 15-01-03,torola,swissboring,cgp5

Granulometria Preparada			Granulometria Designada					
Tamiz No	Ret-Parc(%) M. Original	Retenido (gr) antes ensayo	Tamiz No	Retenido (gr) ensayado	(%) Perdida	% perdida Funcion M Original		
4 -	8.20%	308.0	4	204.40	31.87%	2,61%		
8	5.66%	100.0	8	73.90	26.10%	1.48%		
16	4.57%	100.0	16	78.10	23.90%	1,09%		
30	5.63%	100.0	30	75.60	24.40%	1.37%		
50	4.72%	100.0	50	79,30	20.70%	0.98%		
180	1.68%							

700.0

509.3

lost after five cicles = 7.5%

Observaciones: sampling carrier out by applicant

Reactive used sulfate of sodium

lost after five cicles (coarse + fine) = 12%

INSTITUTO TECNOLOGICO CENTROAMERICANO ITCA

LABORATORIOSLING. Joaquin Humberto Montenegro. DEPTO. INGENIERIA CIVIL Y ARQUITECTURANTE Laboratorias Control Calidad
ADMON. FEPADE Selos y Concreto Astalto y Mater

Lelos y Concretò Astalto y Materiales

SANIDAD AGREGADOS PARA CONCRETO ASTM C-88

SOLICITOR: Ing. Rodolfo Alvarado, SWISSBORING

PROYECT: Estudio Factibilidad Rio Torola

LOCATED: CGP-6

DATE EXPERIMENT : Ene-03

TEC. RESPONSIBLE: Arleth Moran

FILE No: 15-01-03,torola,swissboring,cgp4

AGREGADO GRUESO

	Granulometria Preparada		Granulometria Designada				Analisis Cvalitativo		
Tamiz No		Preparado (gr) antes ensayo		Retenido (gr) ensayado		PERDIDA Funcion M Origina	Particulas Iniciales	Particulas Pulveri.	Particulas Fracturadas
2 1/2 "	0.0%	,							٠,
2 "	31.3%		/	1. 1	i	1	1 '	1	
11/2"	1.7%		114"						
1"	12.4%	1,008.0	[773.4	23.27%	2.9%	21	2;	
3/4 "	9.7%	500.0	- 5/8 "	378.0	24.40%	2.4%	- 29	4	-,-
1/2"	7.4%	670.0	5/16 "	472.9	29.42%	2.2%	102	7 1	-,-
3/8 "	4.1%	<u> </u>	5/16 "				<u></u>	<u> </u>	<u> </u>
No 4	7.1%		No 5						

Total 73.9% 2.178.0

1.624

Perdida despues de cinco ciclos = 7.4%

Observaciones: sampling carrier out by applicant

Reactive used sulfate of sodium

lost after five cicles (fine + coarse) = 16%

INSTITUTO TECNOLOGICO
CENTROAMFRICANO ITCA
LABORAFORIOS
DEPTO. INGENIERIA CIVIL Y ARQUITECTURA
ADMON. FEPADE

Ing. Joaquin Humberto Montenegro. Jefe Laboratories Cantrol Calidad Suelos, Concreto) Astalto y Materiales

SANIDAD AGREGADOS PARA CONCRETO ASTM C-88

SOLICITOR Ing Rodolfo Alvarado, SWISSBORING

PROYECT. Estudio Factibilidad Rio Torola

LOCATED: CGP-6

DATE EXPERIMENT Ene-03

TEC RESPONSIBLE Arleth Moran

FILE No 15-01-03, torola, swissboring, cgp4

Gr	Granulometria Preparada			Granulometria Designada					
Tamız No	Ret-Parc(%) M Onginal	Retenido (gr) antes ensayo	Tamız No	Retenido (gr) ensayado	(%) Perdida	% perdida Funcion M Original			
4	7 14%	300.0	4	197.40	34.20%	2.44%			
8	5 86%	108.0	8	66 20	33.10%	1 94%			
16	5 89%	100 0	16	78.30	21.70%	1.28%			
30	4 91%	100.0	30	77 10	22.90%	1 13%			
50	5.12%	100.G	50	71 00	29.00%	1.49%			
100	2 53%								

700.0

490.7

lost after five cicles = 8.3%

Observaciones: sampling carrier out by applicant

Reactive used sulfate of sodium

lost after five cicles (fine + coarse) = 16%

A CHARLES CONTROLOGICO
LA CALLATIO LICA
LA CALLATIO LA CALLATIONE
LA CALLATION CALLATIONE
LA CALLATIONE
LA CALLATION CALLATIONE
LA CALLATION CALLATIONE
LA CALLATION CALLATION CALLATION
LA CALLATION
LA CALLATION CALLATION
LA CALLATION
LA CALLATION CALLATION
LA CALLATION
LA CALLATION CALLATION
LA CALLATION
LA CALLATION CALLATION
LA CAL

Ing. Joaquin Humberto Montenegro.

Jete Laboratorios control Calidad

Suelos y Concreto Astalto y Materiales