14. ECONOMIC AND FINANCIAL EVALUATION

CONTENTS

14.	ECO	NOMIC	AND FINANCIAL EVALUATION	14-1
	14.1	Econor	nic Evaluation	14-1
		14.1.1	Methodology	14-1
		14.1.2	Economic Costs of the Project	14-3
		14.1.3	Economic Benefit of the Project	14-4
		14.1.4	Economic Evaluation	14-11
			Sensitivity Analysis	
	14.2	Financi	ial Evaluation	
		14.2.1	Methodology	14-14
		14.2.2	Financial Cost and Benefit of the Project	14-15
		14.2,3	Financial Evaluation	14 -1 6
		14.2,4	Sensitivity Analysis	14-16
	14.3	Cash F	low Analysis	14-17
		14.3.1	Financial Repayment Plans	14-17
		14.3.2	Sensitivity Analysis	14-18
		14.33	Results of Analysis	

14. Economic and Financial Evaluation

14.1 Economic Evaluation

14.1.1 Methodology

(1) Methodology

Economic evaluation aims at measuring the "economic" impact brought about to a country by implementing a project from a viewpoint of national economy. Here, a comparison of costs and benefits expressed in terms of economic prices will be made by applying the Discount Cash Flow Method, which is widely adopted for such purposes.

The basic approach for this method is as follows. First, the cash outflow (costs) and inflow (benefits) are developed on an annual basis over the project life. Secondly the amount generated during different years will be discounted to the start year of the project and expressed it as an accumulated present value at the same standard year. Then a comparison will be made between the costs and benefits. Evaluation indices to be obtained will be the Net Present Value, the Benefit/Cost Ratio, and the Economic Internal Rate of Return (EIRR). The EIRR is a discount rate at which the present values of the two cash flows become equal. This rate shows the return to be expected from the project. EIRR is expressed in the following equation:

$$\sum_{t=0}^{n} C_{t} / (1+r)^{t} - \sum_{t=0}^{n} B_{t} / (1+r)^{t} = 0.0$$

where, Ct = Cost

Bt = Benefit

- t = year
- n = project life (year)
- r = discount rate (= EIRR)

(2) Basic Conditions

According to the discussions with CEL, as well as in line with the existing reports for other projects in El Salvador, the following basic conditions were adopted.

• Opportunity cost of capital:

Opportunity cost of capital refers to an interest rate at which the appropriateness of investment can be justified. A rate of 10 % was used in view of the rates used for other projects in El Salvador.

• Discount rate:

A discount rate of 10 % will be used. This rate of 10 % is also used by the World Bank, and it has the advantage of easy comparison with the opportunity cost of capital. 8 % and 6 % were also used for sensitivity analysis.

• Conversion factor:

Standard conversion factor of 0.9, adopted by the Inter-American Development Bank, was used to calculate the economic price of the domestic price portion.

• Service life:

Service life of each facility, according to the experience of the Consultant, are as follows:

- 50 years for civil works

- 35 years for hydro-mechanical and electro-mechanical equipment

- 30 years for transmission lines

Replacement costs of the facilities, of which service life expires during the following project life, were considered.

• Project life (Calculation period)

Calculation period for evaluation are 53 years: 50 years of service life of civil facilities and 3 years of construction works. It is assumed that the power plant will become commercially operational in August.

Evaluation Point

Evaluation was made at the entrance of the 15 de Septiembre Substation to which the transmission line from El Chaparral Project is connected. It is also assumed that the alternative thermal power plant would be constructed here.

• Cost Estimate

Estimation of cost was based on the price level of 2003.

14.1.2 Economic Costs of the Project

The economic costs of the Project were calculated from the market price as presented in the Chapter 12. Construction cost and Operation and Maintenance cost were included in the cost stream. The method of economic pricing is as follows:

Foreign portion

- Exclusion of transfer items such as taxes and subsidies (import tax, value added tax)

Local portion 2

- Exclusion of transfer items such as taxes and subsidies
- Use of market prices (applying standard conversion factor)

Import tax is generally exempted for the equipment for generation and for substations in El Salvador. The cost estimate in Chapter 12 does not include taxes; therefore, the foreign currency portion is used as the economic price without conversion.

(1) Initial Investment Costs

Initial investment costs by facility are shown in Table 14.1. The annual investment amount for major items, including the engineering and administration Cost as well as Contingency, is summarized below. (The fourth year includes the payment of retention money):

(Unit: 1000US\$)

	Environment and land acquisision cost	Civil and preparatory works	Hydromechanical and electromechanical equipment	Transmission lines	Total Cost
1st year	12,305	11,618	4,183	455	28,561
2nd year	2,037	18,317	8,074	1,061	29,490
3rd year	2,037	33,075	14,412	1,212	50,737
4th year	2,037	9,409	8,213	303	19,962
Total	18,418	72,418	34,883	3,030	128,749

Economic cost of initial investment

(2) Operation and Maintenance Cost

The operation and maintenance cost was calculated by multiplying the construction cost of each work item by a certain rate, which was determined according to the experiences with similar projects by the Consultant.

Economic cost of O&I		(Unit: 1000US\$)	
Item	Construction Cost	Rate	Amount
Civil Works	729,418	0.5%	362
Equipment	34,883	1.5%	523
Transmission Line	3,030	1.5%	46
Total			931

14.1.3 Economic Benefit of the Project

For the purpose of this study, the following two categories of benefits conceivable for this type of projects were adopted: one is the saved cost of alternative thermal power project from a viewpoint of "with project" and "without project", and the other is income from electricity sale using a marginal cost. In addition, benefits derived from CO_2 emission trading (Certificate of Emission Rights) in accordance with the Kyoto Mechanism were estimated.

(1) Cost of Alternative Thermal Power Plants

Economic benefit can be measured from a viewpoint of "with project" and "without project". For the present case under review, instead of constructing a hydropower station, it is possible to set up a thermal power station to generate the energy with quality and quantity equivalent to the El Chaparral Project. In order to calculate the cost required for this type of alternative thermal plant, the following two-stage process were taken. First, the annual cost was studied for various power plants with different generation systems. Then, the generation plant with the least annual cost was selected for the estimation of its construction cost and O&M cost including fuel.

In light of the existing thermal power plants and the possibility of procurement of fuel in El Salvador, the following four types of thermal-based generation systems were studied to serve as a possible alternative to the planned hydropower project: Gas Turbine; Steam (coal-fired); Slow Speed Diesel; and Combined Cycle.

1) Comparison of Alternative Thermal Power Plants

Item	Unit	Gas Turbine	Steam Coal	Slow Speed Diesel	Combined Cycle
Investment cost	\$/kW	450	1,300	1,000	700
Project life	Year	15	20	20	20
Interest rate	Percent	10%	10%	10%	10%
Capital recovery factor		0.13147	0.11746	0.11746	0.11746
Annual cost	US\$	59.2	152.7	117.5	82.2
O&M cost/kW/year	US\$	11.0	69.0	25.0	44.0
Total cost/kW	\$/kW	70.2	221.7	142.5	126.2

Annual Cost of Alternative Thermal Power Plants

Gas Turbine

Investment cost: US\$450/kW was adopted. This is used in the pre-F/S report (Harza, 1998) as the conservative price. "Plan Indicativo Regional de Expansión de la Generación" (CEAC, 2002) also uses US\$450/kW.

<u>Thermal efficiency and calorific value</u>: 11,500Btu/kWh and 0.133Btu/gallon respectively were adopted. These are taken from the conservative values in the pre-F/S report.

<u>Fuel cost (diesel oil)</u>: US\$0.1937/litter (=US\$0.73/gallon) was adopted. This is the leveled cost for the coming 15 years from 2003 through 2017 provided by CEL.

<u>O&M cost</u>: US0.0055/kWh for the variable cost was adopted. This value was taken from the Monenco-Agra report (1995). US11/kW/year was adopted for the fixed cost. This value was taken from the CEAC report.

• Steam (Coal-fired thermal)

<u>Investment cost</u>: US\$1300/kW was adopted. The Pre-F/S report uses US\$1400/kW as the conservative value. Values used in the CEAC reports vary between US\$1200/kW to \$1500/kW. Based on the experience of the Consultant with extensive experiences in coal-fired thermal power projects, a conservative but reasonable value of \$1300/kW was adopted.

<u>Thermal efficiency and calorific value</u>: 10,000Btu/kWh and 21.6MBtu/ton respectively were adopted. These were taken from the conservative values used in the Pre-F/S report.

<u>Fuel cost (coal)</u>: US\$33.982/tm was adopted. This is the leveled cost for the coming 15 years from 2003 through2017 provided by CEL.

<u>O&M cost</u>: US0.0036/kWh for the variable cost was adopted. This was taken from the Monenco-Agra report. US69/kW/year was adopted for the fixed cost. This was taken from the CEAC report.

Slow Speed Diesel

<u>Investment cost</u>: US\$1000/kW was adopted. This is used in the Pre-F/S report (Harza, 1998) as the very conservative price. Bahamas Electricity Corporation reports the cost of US\$1333/kW (in 2002) for the diesel power plant as 30MW. Therefore, the cost of US\$1000 is still considered conservative.

Thermal efficiency and calorific value: 8200Btu/kWh and 0.133Btu/gallon respectively were adopted. These were taken from the conservative values used in the Pre-F/S report.

<u>Fuel cost (bunker C)</u>: US\$0.1585/litter (=US\$0.60/gallon) was adopted. the leveled cost for the coming 15 years from 2003 through 2017 provided by CEL.

<u>O&M cost</u>: US0.0055/kWh for the variable cost was adopted. This was taken from the Monenco-Agra report. US25/kW/year was adopted. This was taken from the Pre-F/S report.

Combined Cycle

<u>Investment cost</u>: US\$700/kW was adopted. US\$800 is used in the Pre-F/S report; however, a more conservative cost of \$700 was taken from the CEAC report.

<u>Thermal efficiency and calorific value</u>: 8,200Btu/kWh and 0.133Btu/gallon respectively were adopted. These were taken from conservative values used in the pre-F/S report.

<u>Fuel cost (diesel oil)</u>: US\$0.1937/litter (=US\$0.73/gallon) was adopted. This is the leveled cost for the coming 15 years from 2003 through 2017 provided by CEL.

<u>O&M cost</u>: US0.0045/kWh for the variable cost was adopted. This was taken from the Monenco-Agra report. US44/kW/year was adopted for the fixed cost. This was taken from the CEAC report.

Based on these conditions, the annual cost was calculated for each power plant and the unit generation cost at various plant utilization factors. As a result of the comparison at a utilization factor of 40%, which corresponds to that of El Chaparral Project, it was found that the plants costing least are the Slow Speed Diesel and the Steam Power Plant. Here, the Slow Speed Diesel was selected for further comparison, given the past accumulation of technology in El Salvador as well as the fuel handling.

Plant	Fuel	Thermal efficiency Btu/kWh	Calorific value Mbtu/ton or Btu/gallon	Fuel cost \$/ton or \$/gallon	Fuel cost \$/kWh	O&M cost \$/kWh	Energy cost \$/kWh
Gas Turbine	Diesel	11,500	0.133	0.73	0.0634	0.0055	0.0689
Steam	Coal	10,000	21.6	33.98	0.0157	0.0036	0.0193
Slow Speed Diesel	Bunker	8,200	0.133	0.60	0.0369	0.0055	0.0424
Combined Cycle	Diesel	8,200	0.133	0.73	0.0452	0.0045	0.0497

Energy Production Cost of Alternative Thermal Power Plants

(Unit: US\$/kWh)

Total Energy (Cost for Alter	(Un	it: US\$/kWh)		
Utilization factor	Hour per year	Gas Turbine	Steam	Slow Speed Diesel	Combined Cycle
20%	1,752	0.109	0.146	0.124	0.122
25%	2,190	0.101	0.121	0.107	0.107
30%	2,628	0.096	0.104	0.097	0.098
35%	3,066	0.092	0.092	0.089	0.091
40%	3,504	0.089	0.083	0.083	0.086
45%	3,942	0.087	0.076	0.079	0.082
50%	4,380	0.085	0.070	0.075	0.079
55%	4,818	0.083	0.065	0.072	0.076
60%	5,256	0.082	0.062	0.070	0.074
65%	5,694	0.081	0.058	0.067	0.072
70%	6,132	0.080	0.055	0.066	0.070
75%	6,570	0.080	0.053	0.064	0.069
80%	7,008	0.079	0.051	0.063	0.068

Note: The shaded parts correspond to the less energy cost.

Cost Estimation 2)

Characteristics of alternative therman plant				
Item Slow Speed Diesel				
Installed capacity	46.0MW			
Unit cost	US\$ 1,000			
Construction cost	US\$ 46,000,000			
Service life	20 years			

Characteristics of alternative thermal plant

The installed capacity of the alternative thermal power plant was calculated, which took into account the loss rates described in the Table 14.2, based on the effective dependable capacity of the El Chaparral Project. In this Project, due to fluctuating water discharge by season, the effective dependable capacity is very small compared to the installed capacity. Therefore, from a conservative viewpoint, which requires excessive benefits to be excluded from the estimation, the installed capacity of alternative thermal was set lower than that of the El Chaparral Project.

a) Construction Cost for Alternative Thermal Plant

The alternative thermal power plant would be constructed in 18 months, and its initial investment cost is as follows:

Item		Slow Speed Diesel
1st year	60%	US\$ 27,600,000
2nd year	40%	US\$ 18,400,000
Total		US\$ 46,000,000

Construction cost of alternative thermal

b) O&M Cost for Alternative Thermal Plant

The annual O&M cost for the alternative thermal was estimated by the following fixed and variable costs:

Item	Unit cost	Number	O&M cost
Fixed cost	US\$ 25/kW	46,000 kW	US\$ 1,150,000
Variable cost	US\$ 0.0055/kWh	234,590 MWh	US\$ 1,290,000
Total			US\$ 2,440,000

O&M cost for alternative thermal

c) Fuel Cost for Alternative Thermal Plant

The annual fuel cost for alternative thermal will be outlined below. The basic price for Bunker C is the unit cost at Acajutla Port (US\$0.6/gallon). Inland transportation cost, which corresponds to five percent of the fuel price, is added to the basic price, based on the report on past projects; thus, the unit price is US\$0.63/gallon. **Fuel cost**

Item	Unit cost	Fuel cost
Bunker C	US\$ 0.63 / gallon	US\$ 9,112,000/year

(2) Power Sale Revenue

With the progress of the liberalization of the power sector in El Salvador, the power pool market, known as "UT," has been in operation since its establishment in 1998. All electric power supplies except for those contracted as bulk contracts, may be tendered and traded at the price determined by the market mechanism. The following table shows the monthly average unit cost of energy for the last five years. The average price for the entire period was US\$67.65/MWh. Therefore, this average price was used as a unit energy price for power sale, and was multiplied by the annual available energy of 233.21GWh, including an energy increase of 2GWh at 15 de Septiembre Power Station. As a result, the annual income of US\$ 15,776,700 was derived.

Average electricity tariff

(Unit: US\$/MWh)

				`	
Month / Year	2003	2002	2001	2000	1999
January	75.11	67.69	64.08	86.99	61.33
February	78.87	70.75	66.35	91.84	57.87
March	78.60	56.06	66.84	*78.60	61.94
April	78.27	64.85	72.51	*78.27	61.46
May	70.26	69.12	70.49	74.39	65.75
June	60.16	53.05	70,77	65.34	76.81
July	72.03	63.91	73.61	58.12	64.94
August	74.47	70.01	69.88	63.97	57.21
September	65.46	66.57	54.53	64.84	61.39
October	68.52	67.43	58.32	58.87	56.92
November	66.19	71.98	63.14	60.50	67.34
December	-	72.79	69.83	59.58	74.42
Average	71.63	66.18	66.70	70.11	63.95
Average mont	hly price f	or the per	iod studied		67.65

(Source: UT)

*Note: Average tariff for March 2000 and April 2000 was 106.66 and 173.71 respectively. These values are exceptionally expensive, therefore, in order to avoid over-estimate of the average tariff, the average registered in the same months in 2003, which even represents the highest in the last five years, was applied

(3) Benefit from CO₂ Emission Trade

The Kyoto Protocol was adopted at the Third United Nations Framework Convention on Climate Change (COP-3) held in Kyoto, Japan, in 1997. It stipulates that the parties included in Annex I shall ensure that their aggregate anthropogenic carbon dioxide equivalent emissions of the greenhouse gases do not exceed their assigned amounts, with a view to reducing their overall emissions of such gases by at least 5 per cent below the 1990 level in the commitment period from 2008 to 2012.

The Kyoto Mechanism is a system that facilitates cost efficient global measures through a market mechanism, and it is used as a complement to domestic measures designed to attain reduction objectives. Three mechanisms are involved:

- Joint Implementation (JI),
- Clean Development Mechanism (CDM), and
- Emission Trading (ET)

Emission Trading is a system which allows the acquisition or transfer of emission volume (credit) among the Annex I countries with reduction targets for the greenhouse gasses emission volume. With this system, a country can reach its reduction target by purchasing credit from other countries. On the other hand, the country that has sold its creditneeds to face a reduction in the corresponding credit available to itself. There are four types of credit that can be obtained or transferred within the scheme of emission trading. Such transactions will be allowed starting 2008:

- Assigned Amount Unit (AAU)
- Emission Reduction Unit (ERU)
- Certified Emission Reduction (CER)
- Removal Unit (RMU)

Among these, CER is applicable to the El Chaparral Project. This is a scheme to accrue emission reduction volume in developing countries to a developed country through technical and financial assistance by the developed country to implement the project. Transactions involving CER are discussed below.

Reduction Volume of Greenhouse Gasses Emission

In Chapter 13, it is calculated that $168,000 \text{ CO}_2$ -ton/year of greenhouse gasses emission will be reduced by implementing the El Chaparral Project. On the other hand, the newly created reservoir will generate $18,917.4 \text{ CO}_2$ -ton for 50 years (i.e. 378.4 tons/year). Therefore, the net reduction can be estimated as $167,621.6 \text{ CO}_2$ tons/year.

Transaction Price

The emission-trading price (unit price) has eroded very much since the declaration by the United States to exit from the Kyoto Protocol. In fact, it is now traded in the range of US\$2 to \$3 per CO_2 -ton. The price is expected to rise in the near future as the transaction system becomes more primed operationally and as the Kyoto Protocol comes into force. Here, the analysis was made using US\$3 as a base price, and the sensitivity was studied for US\$5 and US\$10.

Transaction Cost

The following cost is required for the transaction of the emission right:

- Cost for CDM executive board (2% for the issued CER)
- Operating cost of CEM scheme
- Application cost and monitoring cost

It is difficult to calculate the cost at this moment, since the transaction scheme has just been put into place; therefore, 5% of CER was estimated as the cost.

In light of the above, the following benefit was calculated. This benefit can be considered as the saved expenditure of foreign currency. According to the rules of CDM, the period for this credit is limited to 21 years.

Item	Case 1	Case 2	Case 3
a) Unit price	US\$3	US\$5	US\$10
b) Reduction volume	116,000.0	116,000.0	116,000.0
c) Net captive capacity (t-CO ₂)	- 801.1	- 801.1	- 801.1
d) Net reduction volume (b - c)	115,198.9	115,198.9	115,198.9
e) Credit price (a x d)	\$ 345,596.7	\$ 575,994.5	\$ 1,151,989.0
f) Transaction cost (e x 5%)	\$ 17,279.8	\$ 28,799.7	\$ 57,599.5
g) Benefit (e – f)	\$ 328,316.9	\$ 547,194.8	\$ 1,094,389.6

Benefit of CER

14.1.4 Economic Evaluation

The total present value of the economic cost during the initial year of the project amounts to US\$109,614,000 (with a discount rate of 10%; the same will be applied to the following calculations). The total present value of the economic benefit with the alternative thermal is US\$120,294,000. The net present value (B-C) is calculated as US\$10,680,000, and the benefit cost

ratio (B/C) was 1.12. The economic internal rate of return (EIRR) was calculated as 11.0%. (See Table 14.3 for details.)

On the other hand, the total present value of the economic benefit with the power sale revenue is US\$111,237,000. The net present value (B-C) was calculated as US\$1,623,000, and the benefit cost ratio (B/C) came out to be 1.01. The economic internal rate of return (EIRR) has been worked out to be 10.2%. (See Table 14.4 for details.)

Evaluation indices like the Net Present Value (B-C) and Benefit Cost Ratio (B/C) at various discount rates, as well as EIRR are summarized below (see Appendix 14.1):

	Benef	īt	Criteria	Discount rate	
	Alternative thermal	Power sales	Criteria	Discount rate	
	72,822	74,637	> 0	6 %	
NPV	34,388	29,323	> 0	8%	
	10,680	1,623	> 0	10 %	
	1.57	1.59	>1	6 %	
B/C	1.29	1.25	>1	8 %	
	1.10	1.01	>1	10 %	
EIRR	11.3%	10.2%	> costo de oportunidad de capit		

Result of evaluation

If the value exceeds the criteria, it is judged to be feasible. It was found that the evaluation indices using the power sale revenue as benefit became lower than those with the alternative thermal. Notwithstanding, all evaluation indices, including those with lower values, still exceed the evaluation criteria, and the Project can be judged as sound from the economic point of view.

It is obvious, however, that the economic values will be lower than the evaluation criteria when the sensitivity analysis is conducted for more inferior conditions. Generally speaking, a low EIRR does not necessarily lead to the rejection of the project, because the EIRR that falls short of the opportunity cost of capital by a few percentage points still remains within the range that is considered only as "questionable". Results of the sensitivity analysis for inferior conditions fall in this range. In the event that an executive agency decides to implement the project despite this risk, a political judgment, in which the difference with the opportunity cost of capital is viewed as a cost (subsidy) to encourage the development of clean energy and/or rural development, will be required.

The results of calculation that factored in the emission trading of CDM are as follows (see Appendix 14.1 for details):

	Bene	fit		[
	Alternative Power thermal sales		Criteria	Unit price	
NPV	12,713	3,656	> 0	US\$3	
(i = 10%)	14,069	5,011	> 0	US\$5	
(1 = 10%)	17,457	8,399	> 0	US\$10	
	1.12	1.03	> 1	US\$3	
B/C	1.13	1.05	> 1	US\$5	
(i = 10%)	1.16	1.08	> 1	US\$10	
	11.6%	10.3%	> 0CC	US\$3	
EIRR	11.7%	10.5%	> 0 C C	US\$5	
	12.1%	10.8%	> 0CC	US\$10	

Result of evaluation with CER

Since the unit price of emission right has remained depressed, the utilization of this system has little effect on the results of the evaluation. However, when the unit price goes up beyond US\$10, it will have a favorable effect on the project.

14.1.5 Sensitivity Analysis

The sensitivity of economic evaluation indices was analyzed for cases with different basic conditions. A discount rate of 10% was used for this analysis.

• Benefit 1 (Alternative thermal)

The following assumptions were made using alternative thermal cost as benefit:

- 1) 10% decrease in alternative thermal cost
- 2) 10% decrease in construction cost
- 3) 10% decrease in alternative thermal cost and 10% reduction in construction cost
- 4) 10% increase in alternative thermal cost
- 5) 10% decrease in construction cost

Sensitivity analysis (1)

Item	NPV	B/C	EIRR
Case 1	-1,349	0.99	9.8 %
Case 2	-281	1.00	10.0 %
Case 3	-12,310	0.90	8.7 %
Case 4	22,710	1.21	12.8 %
Case 5	21,642	1.22	13.0 %

• Benefit 2 (Power sale revenue)

The following assumptions were made:

- 10% decrease in annual available energy 1)
- 10% increase in construction cost 2)
- 10% decrease in annual available energy and 10% increase in construction cost 3)
- 4) 10% increase in annual available energy

5) 10% decrease in construction cost

Item	NPV	B/C	EIRR
Case 1	- 13,944	0.87	8.7 %
Case 2	- 13,619	0.89	8.8 %
Case 3	- 24,249	0.80	7.9 %
Case 4	7,316	1.07	10.7 %
Case 5	6,991	1.07	10.7 %

14.2 **Financial Evaluation**

14.2.1 Methodology

Financial analysis aims at measuring the expected return on investment from a viewpoint of an implementing body. Here, the Discounted Cash Flow method was adopted. The basic approach for this method is as follows. First, the cash outflow (costs) and inflow (benefits) are developed on an annual basis over the project life. Secondly the amount generated during different years will be discounted to the start year of the project and expressed it as an accumulated present value at the same standard year. Then a comparison will be made between the costs and benefits. The evaluation index to be obtained is the Financial Internal Rate of Return (FIRR) on investment.

FIRR on investment is not affected by financing conditions; therefore, it is appropriate to evaluate the profitability of the project itself.

14.2.2 Financial Cost and Benefit of the Project

(1) Financial Cost

The financial cost of the Project includes the initial investment cost, the cost for replacement of equipment, and operation and maintenance cost expressed in terms of the market price. The initial investment and the replacement cost were taken from the cost estimation in Chapter 12.

1) Initial investmet

Financial construction cost

(Unit: 1000 US\$)

	Environment and land acquisition cost	Civil and preparatory works	Hidromechanical/ electromechanical equipment	Transmission Line	Total Cost
1st year	13,431	12,432	4,244	468	30,574
2nd year	2,133	19,463	8,205	1,091	30,892
3rd year	2,133	35,090	14,632	1,247	53,102
4th year	2,133	9,997	8,326	312	20,769
Total	19,830	76,982	35,407	3,117	135,336

2) Operation and Maintenance Cost

The operation and maintenance cost was calculated by multiplying the construction cost of each work item by a certain rate, which was determined according to the experiences with similar projects by the Consultant:

Financial O&M cost	(Unit: 1000US\$)		
Item	Construction Cost	Rate	Amount
Civil Works	76,982	0.5 %	385
Equipment	35,407	1.5 %	531
Transmission Line	3,117	1.5 %	47
Total			963

The O&M cost was calculated by multiplying the initial investment by certain rate according to the experience of the Consultant.

(2) Financial Benefit

The financial benefit of the Project is the revenue to be earned by the electricity sale. The Commercialization Unit and Study Department of CEL elaborated a report entitled "Proyecciones de Generación e ingresos corrientes de la Central Hidroeléctrica El Chaparral, Período 2009-2024", using the optimization model of SDDP. According to this report, the annual salable energy is calculated as 180.2GWh, and the annual average sale price is US\$58.08/MWh. Here, the annual revenue was calculated as US\$10,466,000 based on these values.

14.2.3 Financial Evaluation

The Financial Internal Rate of Return (FIRR) on investment was calculated based on the financial revenue. (See Table 14.5). The results are shown below. It was found that softer loan conditions are required to implement the project.

Result of evaluation								
Item	Result	Criteria						
FIRR	6.4 %	> interest rate						

14.2.4 Sensitivity Analysis

Sensitivity was analyzed for the cases with different basic conditions. Benefit from emission trading scheme was also considered. For the analysis, a discount rate of 10% is used.

- 1) 10 decrease in annual available energy
- 2) 10% increase in construction cost
- 3) 10% decrease in annual available energy and 10% increase in construction cost
- 4) 10% increase in annual available energy
- 5) 10% increase in annual available energy and 10% increase in construction cost
- 6) Use of emission trading scheme with a unit price of US\$3
- 7) Use of emission trading scheme with a unit price of US\$5
- 8) Use of emission trading scheme with a unit price of US\$10

Sensitivity analysis

Case	1	2	3	4	5	6	7	8
FIRR	5.7 %	5.8 %	5.1 %	7.1 %	6.4 %	6.6 %	6.7 %	7.0 %

Results of the analysis show that FIRR varies around the 5%-to-7% range: therefore, there is no item that presents particular sensitivity to a change in conditions.

14.3 Cash Flow Analysis

In this section, a cashflow analysis was conducted based on different financing scenarios. Additionally, the IRR for the cashflow was calculated.

14.3.1 Financial Repayment Plans

In order to implement the El Chaparral Project, the following three cases were considered:

- 1) Borrowing from commercial banks
- 2) Borrowing from international financing institutes such as the World Bank
- 3) Borrowing from bilateral financial cooperation

• Basic Conditions (applicable to all cases)

- 1) Price level: As of 2003
- 2) Annual energy sale: 180.2GWh^{*})
- 3) Average sales price: US&58.08/MWh^{*})
- ^{*)} Commercialization Unit and Study Department of CEL elaborated a report "Proyecciones de Generación e ingresos corrientes de la Central Hidroeléctrica El Chaparral, Período 2009-2024", using the optimization model of SDDP. According to this report, annual salable energy was calculated as 180.2GWh, and the average sale price is US\$58.08/MWh. Here, calculation was made based on these values.
- O&M cost: US\$820,000/year
- 5) Depreciation: Straight-line method. Life year is 50 years for civil facilities; 30 years for electromechanical and hydromechanical equipment, and 35 years for transmission line.

	Life year	Cost	Contingency	Total	Annual
Civil works	50 years	57,114	5,711	62,825	1,257
Hydromechanical Equip	35 years	11,720	586	12,306	352
Eléctri0mechanical Eqp.	35 years	17,786	899	18,675	534
Transmission Lines	30 years	2,597	130	2,727	91

- Related payment: UT: US\$0.27/MWh; SIGET: US\$0.40/MWh; ETESAL: US\$2.77
 /MWh (Source: CEL Memorandum 24/09/2003)
- 7) Calculation period: 30 years from commissioning, considering shorter life years of the transmission line.
- 8) General expenses: The expenses are calculated in proportion to the Ateos Project.
- 9) Financing conditions: The condition is assumed as follows:

Financing conditions

	Case A	Case B	Case C
	Comm. Bank	Int'l Financing	Bilateral loan
(1) Interest rate	8 %	6 %	1.5%
(2) Commitment fee	0.75 %	0.75%	0.75%
(3) Loan period	10 years	15 years	25 years
(4) Repayment period	7 years	12 years	18 years
(5) Grace period	3 years	3 years	7 years
(6) Debt/Capital	70/30	70/30	70/30

Calculation was made based on the above-mentioned conditions.

			Ca	Case A		Case B		Case C	
Item	Unit price US\$/MWh	Energy GWh	IRR	Accum. MUS\$	IRR	Accum. MUS\$	IRR	Accum. MUS\$	
Base case	58.08	180.6	3.4 %	68.28	3.4 %	65.34	2.9 %	86.46	

Result of evaluation

Following tables are shown in Appendix 14.2-14.4. (1) Calendar of annual disbursements for debt service; (2) Statement of results; (3) Source and use of funds; (4) Annual projected balance; (5) IRR after financial cost; (6) IRR before financial cost; (7) Sensitivity analysis, all for the basic case. Generally debt service is made by CEL biannually, but here annual debt service is applied for simplicity.

14.3.2 Sensitivity Analysis

Sensitivity was analyzed for the cases with different basic conditions. Analyzed items are shown below:

- (1) 10% increase in energy sale price
- (2) Average sale price of US\$70.11
- (3) 10% increase in construction cost
- (4) 10% decrease in construction cost
- (5) Salable energy is annual available energy
- (6) Salable energy is annual available energy and average sale price

				Case A		Case B		Case C	
	Item	Unit price US\$/MWh	Energy GWh	IRR	Accum. MUS\$	IRR	Accum. MUS\$	IRR	Accum. MUS\$
0	Base case	58.08	180.6	3.4 %	68.28	3.4 %	65.34	2.9 %	86.46
1	10% increase in energy price	63.89	180.6	4.2 %	.91.75	4.2 %	88.60	3.7 %	109.66
2	Average energy price	67.65	180.6	4.7 %	106.94	4.7 %	103.65	4.2 %	124.68
3	10% increase in construction cost	58.08	180.6	2.7 %	55.06	2.7 %	51.93	2.2 %	75.08
4	10% decrease in construction cost	58.08	180.6	4.2 %	81.50	4.2 %	78.75	3.6 %	97.59
5	Annual available energy	58.08	231.2	5.5 %	130.75	5.4 %	126.63	4.9 %	148.07
6	Annual available energy and average price	67.65	231.2	7.1 %	180.35	6.9 %	175.67	6.3 %	197.27

Sensitivity Analysis

Note: IRR was calculated for the cashflow before financial payment. Accumulation refers to the accumulated cashflow amount at the 30th year.

14.3.3 Results of Analysis

IRR for each case is not very sensitive to the items analyzed. The amount of accumulated cash flow for the base case remains in the red for 30 consecutive years for Case A, turns into black in the 30th year for Case B, and turns into black in the 13th year for Case C. The unsatisfactory results derived from the cashflow analysis may be attrributable a larger investment cost due to great seasonal fluctuations in water discharge by the Torola river, as well as to the introduction of less expensive power supplies with the completion of the region-wide power interconnection through the SIEPAC arrangements expected in the near future. This situation makes it difficult for the private sector to implement this project. On the other hand, if the project is developed by CEL, it is essential for it to seek softer loan terms to secure a sufficient annual cashflow.

.

Year		1	2	3	4	(Unit: US\$1000 Total
1. Preparatory works	FC	313	89	0	45	44
<u></u>	LC	2,535	725	0	362	3,62
Civil works	FC	2,661	5,731	10,962	2,949	22,30
	LC	3,739	8,051	15,399	4 142	31,33
Engineering and administration	FC	1,019	1,596	2,877	820	6,31
	LC	425	666	1,200	342	2,63
Contingency	FC)	297	582	1,096	299	2,27
	<u></u>	627	878	1,540	450	3,49
Total	FC	4,291	7,998	14,936	4,112	31,33
-	LC	7,327	10,318	18,139	5,296	41,08
	Total	11,618	18,317	33,075	9,409	72,41
2. Hydromechanical equipment	FC	1,582	551	3,771	4,644	10,54
	LC	158	55	377	464	1,05
Engineering and administration	FC	180	63	429	529	1,20
	LC	75	26	179	221	50
Contingency	FC	79	28)	189	232	52
	rc	7.9	2.8	18.9	23.2	5
Total	FC	1,842	642	4,389	5,405	12,27
	ъс	241	84	575	708	1,60
	Total	2,083	726	4,964	6,113	13,88
					-	
3. Electromechanical equipment	FC	1,530	5,354	6,883	1,530	15,29
	LC	224	784	1,008	224	2,24
Engineering and administration	FC	182	638	820	182	1,82
	rc	76	266	342	76	70
Contingency	FC	76	268	344	76	7(
	LC	11	39	50	11	1:
Total	FC	1,788	6,259	8,048	1,788	17,88
	ıc	311	1,090	1,401	311	3,11
	Total	2,100	7,349	9,449	2,100	20,99
4. Transmission line	FC	284	663	758	190	1,89
	LC	95	221	253	63	63
Engineering and administration	FC	40	93	107	. 27	24
	LC	17	39	44	11	. 1
Contingency	FC	14	33	38	9	4
	LC	5	11	13	3	:
Total	FC	338	790	902	226	2,2
		116	271	310	77	7
	Total	455	1,061	1,212		
Environmental measures	FC	9 86	986	986	986	3,9
		783	783	783	783	3,1
Engineering and administration	FC	190	190	190	190	70
		79	79	79	79	3
Total	FC	1,176	1,176	1,176	1,176	4,7
	LC	862	862	862	862	3,4
	Total	2,037	2,037	2,037	2,037	8,1
				-		
6. Land acquisition and resettlement	FC	0	0	0	0	
		8,841	. 0	0		8,8
Engineering and administration	FC	1,007	0	0	0	1,0
	<u>rc</u>	420	0	0		4
Total	FC	1,007	0	0	0	1,0
	LC	9,261	0	0	0	9,2
	Total	10,268	0	0	0	10,2
7 Total Constantian Cost		0.245	16 644	20.200	10 517	67 /
7. Total Construction Cost	FC	9,245	16,674	29,260		67,6
		17,619	12,546			58,5
	Total	28,561	29,490	50,737	19,962	128,7

Tabla 14.1 Initial Investment Cost (Economic Cost)

Item	Unit	Slow Spe	ed Diesel	El Cha	parral
				Principal	Sub
Installed Capacity	MW	46	i.0	64.4	1.3
Dependable Capacity	MW	46	i.0	38	3.4
Losses	%	21.	3%	5.8	3%
Effective Dependable Capacity	MW	36	36.2		5.2
Annual Energy Production	MWh	234,	,590	(total)	233,210
				Principal	220,610
				Sub	10,600
				15 Sept.	2,000
Losses		<u>kW</u>	<u>kWh</u>	<u>kW</u>	<u>kWh</u>
Station use	%	5.0%	5.0%	0.3%	0.3%
Forced outage	%	10.0%	_	0.3%	0.3%
Scheduled outage	%	8.0%	-	2.0%	2.0%
Transmission	%	0.0%	0.0%	3.3%	1.9%
Annual Available Energy	MWh	222,	860	222	,860
Service Life	year	2	0	50 (civil)
				30/35 (equipment)
Thermal efficiency	Btu	8,200	/kWh		-
Calorific value	Btu	0.133	/gallon		
Unit cost of fuel	US\$	0.63	/gallon	· ·	-
Unit construction cost	US\$/kW	1,0	00		-
Construction cost	1000US\$	45,9	985		-
Variable O&M cost	US\$	0.0055	/kWh	1.	. .
Fixed O&M cost	US\$	25	/kW/year		
Annual O&M cost	1000US\$	2,440			-
Annual variable O&M cost	1000US\$	1,2	:90		
Annual fixed O&M cost	1000US\$	1,1	.50		
Annual fuel cost	1000US\$	9,1	.12		-

Tabla 14.2 Alternative Thermal Power Plant for Evaluating Economic Justification

Table 14.3 Economic Evaluation

10,680 11.3% 1.10

El Chaparral Project			Alternative therma	l plant		
Installed capacity	65.7 MW		Installed capacity	46.0 MW		
Dependable capacity	38.4 MW		Investment cost	46,000 1000US\$	100%	44,200
Energy generation	233,210 MWh		Fuel price	0.63 US\$/galo	100%	0.63
Construction cost	128,749 1000US\$ 100%	128,749				
			CO2 credit (CER p	orice):		NPV
Discount rate:	10%			0 US\$/CO2to	n	EIRR
				-		B/C

				CHARADD	U. PROT	<u></u>				THE N	BENEFIT							
No		Year	EL	CHAPARRA	u.rkoji	(C)	~ ~	<u>ćo.</u> c	REDIT	<u>oen</u>		ERNATIV	E THEP	/A1	(B)	(B) - (C)		
140	۰ļ	rear	Continuation	Transmission	O&M	TOTAL	Benefit	Cost	CER Price	Subtoral	Construct.		Fuel	Subtotal	TOTAL	(0) (0)		
	1		Cost	Line	Cost	COST	Volume	COSC	US\$/ton	3000010	Cost	Cost	Cost	54010141	BENEFIT	}		
	-+	~				ا کی کے									<u>منتقدة المنامع</u>			
1		2007	28,106	455		28,561				0				0	o	-28,561		
2		2008	28,429	1.061		29,489				0			1	0	0	-29,489		
3	- 1	2009	49,524	1,212	j	50,737	j			0	27,600			27,600	27,600	-23,137		
4	1	2010	19,659	303	388	20,350	48,000	-2,400	0.000	0	18,400	1,017	3,797	23,213	23,213	2,863		
5	2	2011			931	931	115,199	-5,760	0.000	0		2,440	9,112	11,552	11,552	10,621		
6	3[2012			931	931	115,199	-5,760	0.000	D		2,440	9,112	11,552	11,552	10,621		
7	4	2013		1 1	931	. 931	115,199	-5,760	0.000	0		2,440	9,112	11,552	11,552	10,621		
8	5	2014		1	931	931	115,199	-5,760	0.000	0		2,440	9,112	11,552	11,552	10,621		
9	6	2015		1 1	931	931	115,199	-5,760	0.000	0		2,440	9,112	11,552	11,552	10,621		
10	7	2016			931	931	115,199	-5,760	0.000	0		2,440	9,112	11,552	11,552	10,621		
11	8	2017	1	1 1	931	931	115,199	-5,760	0.000	0		2,440	9,112		11,552	10,621		
12	9	2018			931	931	115,199	-5,760	0.000	0		2,440	9,112	11,552	11,552	10,621		
13	10	2019			931	931	115,199	-5,760	0.000	Ŭ 0		2,440	9,112	11,552	11,552	10,621 10,621		
14 15	11 12	2020 2021		l l	931 931	931 931	115,199 115,199	-5,760 -5,760	0.000	0		2,440 2,440	9,112 9,112	11,552 11,552	11,552 11,552	10,621		
16	13	2022		[]	931	931	115,199	-5,760	0.000			2,440	9,112	11,552	11,552	10,621		
17	14	2022		(.	931	931		-5,760	0.000	ŏ		2,440	9,112		11,552	10,621		
18	15	2023			931	931	115,199	-5,760	0.000	0		2,440	9,112		11,552	10,621		
19	16	2025		Ì	931	931	115,199	-5,760	0.000	Ő		2,440	9,112		11,552	10,621		
20	17	2026			931	931	115,199	-5,760		0		2,440	9,112		11,552	10,621		
21	18	2027		1 1	931	931	115,199	-5,760		Ő		2,440	9,112		11,552	10,621		
22	19	2028		Į I	931	931	115,199	-5,760		Ö		2,440	9,112		11,552	10,621		
23	20	2029		1 1	931	931	115,199	-5,760		l o			9,112		39,152			
24	21	2030)	931	931	115,199	-5,760		0			9,112		29,952	29,021		
25	22	2031		l i	931	931	67,199	-960		0		2,440	9,112	11,552	11,552	10,621		
26	23	2032			931	931				0	l I	2,440	9,112	11,552	11,552	10,621		
27	24	2033		1	931	931	· .			0	ų –	2,440	9,112	11,552	11,552	10,621		
28	25	2034			931	931				0		2,440	9,112		11,552	10,621		
29	26	2035			931	931))	6		2,440	9,112					
30	27	2036		Į	931	931	l i		i i	a		2,440	9,112		11,552			
31	28	2037		455	931	1,385				C		2,440	9,112			10,167		
32	29	2038		1,061	931	1,991	{ .			0		2,440	9,112					
33	30	2039		1,212	931	2,143						2,440	9,112		11,552			
34	31	2040		303	931	1,234	}]			2,440	9,112		11,552			
35 36	32 33	2041 2042	4.100	Į .	931 931	931	ļ	ļ	ļ .			2,440	9,112		11,552			
37	34	2042	4,183 8,075		931	5,113			i			2,440 2,440	9,112		11,552			
38	35	2043	14,412		931	15,343	1	1	1			2,440						
39	36	2044	8,213		931	9,144	1		1			2,440						
40	37	2045]	931	931		1	1			2,440						
41	38	2047	l	Į.	931	931	1	[{			2,440						
42	39	2048	1		931	931			1	Ì		2,440						
43	40	2049		1	931		1	1	1	Ì	27,600							
44	41	2050		1	. 931	931	l	l	1	Ċ					29,952	29,021		
45	42	2051	1	1	931	931	.]					2,440	9,112	11,552				
46	43	2052	Į	1	931	931	{	1	1	1		2,440						
47	44	2053		1	931	931		!	1	1 0		2,440						
48	45		ļ	}	931	931			1		ρį –	2,440						
49	46		1	1	931	931		l	Į –			2,440						
50	47	2056)	1	931				1		2	2,440						
51	48	2057	l	1	931			{	{	1	2	2,440						
52	49				931			[2,440						
53	50	2059	-19,933	-1,010	931		<u></u>	<u>⊹</u>	<u>1</u>	+	<u>-23,000</u>	2,440	9,112	2 -11,448	<u>-11,448</u>	<u> </u>		
	<u>م</u> ۳	A T	10000		45,996	191,715		110 000		J .	1 110 000	100 000	450.00	205 0-	205 07	404 100		
	OT		140,668	5,051	######## -118,559 0 0 115,000 120,589 450,283 685,						005,87	685,872	494,157					
	sent Value 10% PV (Cost): 109,614				4 PV (Bene						Reporter	: 120,294	4 10,680					
- ' I	1070		ļ	1	v (COSE):	102,014	1						rv	(Denent)	NPV	10,680		
			1				1								EIRR	11.3%		
							1								B/C	11.10		

Note: The 53rd year corresponds to the residual price of the works and equipment.

421

Table 14.4 Economic Evaluation (2)

El Chaparral Project				Average tariff			
Installed capacity	65.7 MW			Salable energy	233.2 MWh		
Dependable capacity	38.4 MW			Energy cost	67.65 US\$/MWh		
Energy generation	233,210 MWh	100%	233,210				
Construction cost	128,749 1000US\$	100%	128,749			NPV	1,623
	r -			CO2 credit (CER p	rice):	EIRR	10.2%
Discount rate:	10%				0 US\$/CO2ton	B/C	1.01

				CHAPARR	AL BROW	CT.				ENEFI				(Uni	: US\$1000)
No	, ł	Year	L	CINCARC	- I I I I I I I I I I I I I I I I I I I	(C)	<u> </u>	CO.C	REDIT	EREFI		ERGY SA	T ES	(B)	(B) - (C)
140	")	Içai	Concerning in the	Transmission	O&M	TOTAL	Benefit	Cost	×	Subtotal	Salable	Unit	Subtotal	TOTAL	(B)-(C)
			Construction	Line	Cost	COST	Volume	COSI	US\$/ton	Soutora	Energy	Price	Subiolai	BENEFIT	
	╼┽			Luie	<u></u> _		VOIGUIC		034/100		Elicity	<u>rnce</u>	╞━━┉━━┓	DENEFIL	
1	1	2007	28,106	455		28,561				0			0	0	-28,561
2	- (2008	28,100	1,061		29,489]	0	1		0		-29,301
3	Į	2000	49,524	1,212	ļ	50,737				0			0		-50,737
4	1	2010	19,659	303	388	20,350	48,000	-2,400	0,000	Ö	97,171	0.06765	6,574	6,574	-13,777
5	2	2011	19,009	503	931	931	115,199	-5,760	0.000	ŏ	233,210		15,777	15,777	14,845
6	3	2012			931	931	115,199	-5,760		o o	233,210		15,777	15,777	14,846
7	4	2013		(931	931	115,199	-5,760	0.000	0	233,210		15,777	15,777	14,846
8	5	2014		})	931	931	115,199	-5,760			233,210		15,777	15,777	14,840
9	6	2015			931	931	115,199	-5,760		0	233,210	0.06765			14,846
10	7	2016	1		931	931	115,199	-5,760	0.000	0	233,210		15,777	15,777	14,846
11	8	2017	,		931	931	115,199	-5,760	0.000	0	233,210		15,777	15,777	14,846
12	9	2018			931	931	115,199	-5,760	0.000	0	233,210	0.06765	15,777	15,777	14,846
13	10	2019	5	1 1	931	931	115,199	-5,760	0.000	0	233,210	0.06765	15,777	15,777	14,846
14	11	2020	ļ		931	931	115,199	-5,760	0.000	0	233,210		15,777	15,777	14,846
15	12	2021	Í	{ {	931	931	115,199	-5,760	0.000	0.	233,210		15,777	15,777	14,846
16	13	2022)		931	931	115,199	-5,760	0.000	0	233,210		15,777	15,777	14,846
17	14	2023			931	931	115,199	-5,760	0.000	0	233,210		15,777	15,777	14,846
18	15	2024	1	.	931	931	115,199	-5,760		0	233,210		15,777	15,777	14,846
19	16	2025	J		931	931	115,199	-5,760	0.000	0	233,210		15,777	15,777	14,846
20	17	2026	[1 1	931	931	115,199	-5,760	0.000	Ð	233,210		15,777	15,777	14,846
21	18	2027)	1 .]	931	931	115,199	-5,760	0.000	0	233,210		15,777	15,777	14,846
22	19	2028		1 1	931	931	115,199	-5,760	0.000	0	233,210		15,777	15,777	14,846
23	20	2029	}	{ }	931	931	115,199	-5,760	0.000	0	233,210		15,777	15,777	14,846
24	21	2030	1	i l	931	931	115,199	-5,760	0.000	0	233,210		15,777	15,777	14,846
25	22	2031	['	[[931	931	67,199	-960	0.000	0	233,210		15,777	15,777	14,846
26	23	2032	}	1 1	931	931			ļ	0		0.06765	15,777	15,777	14,846
27	24	2033	4		931	931				0	233,210		15,777	15,777	14,846
28 29	25 26	2034 2035	(1	931 931	931 931				0	233,210	0.06765	15,777	15,777	14,846
29 30	20	2035]	j	931	931				0	233,210		15,777	15,777	14,846 14,846
31	28	2030	ļ	455	931	1,385				0	233,210		15,777 15,777	15,777 15,777	14,840
32	29	2038	}	1,061	931	1,385				0	233,210		15,777	15,777	13,785
33	30	2039	1	1,212	931	2,143				0		0.06765	15,777	15,777	13,634
34	31	2039	(303	931	1,234				0	233,210		15,777	15,777	14,543
35	32	2040)	505	931	931				· O	233,210		15,777	15,777	14,846
36	33	2042	4,183	i i	931	5,113				0	233,210		15,777	15,777	10,663
37	34	2043	8,075		931	9,005				0		0.06765	15,777	15,777	6,771
38	35	2044	14,412		931	15,343				ŏ		0.06765	15,777	15,777	434
39	36	2045	8,213		931	9,144	(· ·	1	0	233,210		15,777	15,777	6,633
40	37	2046	.,	!!!	931	931				0		0.06765	15,777	15,777	14,846
41	38	2047	1.		931	931				0	233,210		15,777	15,777	14,846
42	39	2048		()	931	931			1	0		0.06765	15,777	15,777	14,846
43	40	2049]	ļ ļ	931	931				0	233,210		15,777	15,777	14,846
44	41	2050	1	i í	931	931	[ł	0	233,210	0.06765	15,777	15,777	14,846
45	42	2051	ł	!!	931	931) 0	233,210		15,777	15,777	14,846
46	43	2052			931	931				0		0.06765	15,777	15,777	14,846
47	44	2053	1	1	931	931	1			0	233,210		15,777	15,777	14,846
48	45)	2054		ļļļ	931	931				0		0.06765	15,777	15,777	14,846
49	46	2055	1		931	931	[6	233,210		-15,777	15,777	14,846
50	47	2056	{		931	931				0		0.06765	15,777	15,777	14,846
51	48	2057		i i	931	931				0	233,210		15,777	15,777	14,846
52	49	2058	1		931	931			1	0	233,210		15,777	15,777	14,846
53	50	2059		-1,010	931	-20,012				0	233,210	0.06765	15,777	15,777	35,789
										(i .	()	
	<u>0 T</u>		140,668	5,051	45,996	191,715	########	-118,559	0	0			779,630	779,630	587,91
		/alue	ļ	_											
i =	10%			P	V (Cost):	109,614						PV	(Bevetit):		1,623
			<u>۱</u>				ļ							NPV	1,623
			Į											EIRR	10.2% 1.01
	_		L			·								B/C	1.

Note: The 53rd year corresponds to the residual price of the works and equipment.

Table 14.5 Financial Evaluation

El Chaparral Project				Average tariff	
Installed capacity	65.7 MW			Salable energy	180,200 MWh
Dependable capacity	38.4 MW			Energy cost	58.08 US\$/MWh
Energy generation	180,200 MWh	100%	180,200		
Construction cost	135,336 1000US\$	100%	135,336	CO ₂ credit (CER price):	
					0 US\$/CO2ton
Discount rate:	10%				

FIRR

6.4%

			FI	CHAPARR	AT PROTE	<u>cr</u>		R	ENEFICI	0	<u>(Uni</u>	t: US\$1000)
No	.	Year		CITE ALL		(C)	Salable	Sales	Reduced	CER	(B)	(B) - (C)
	· ([Construct,	Transm.	0&M	TOTAL	Energy	Revenue	CO ₂	Transaction	TOTAL	(
			Cost	Line	Cost	COST	MWh	Energía	Emission		BENEFT	
												20.57
1	- 1	2007	30,106 29,801	468 1,091	01 0	30,574 30,892	ļ		1			-30,574 -30,892
2 3		2008	51,855	1,091	0	53,102					, ,	-53,102
4	1	2010	20,457	312	401	21,170	75,083	4,361	45,600	0	4,361	-16,809
5)	2 3	2011	i j		963	963	180,200	10,466	109,439	0	10,466	9,503
6	3	2012	1 I		963	963	180,200	10,466	109,439	0	10,466	9,50
7	4 5	2013			963	963	180,200	10,466	109,439	0	10,466	9,503
8 9	6	2014) 2015			963 963	963 963	180,200 180,200	10,466 10,466	109,439 109,439	0	10,466 10,466	9,50) 9,50)
10	7	2016			963	963	180,200	. 10,466	109,439	0	10,466	9,503
11	8	2017	, (963	963	180,200	10,466	109,439	0	10,466	9,503
12	- 9[2018			963	963	180,200	10,466	109,439	0		9,503
13	10	2019			963	963	180,200	10,466	109,439	0	10,466	9,503
14	11	2020			963	963	180,200	10,466	109,439	0	10,466	9,503
15 16	12 13	2021 2022			963 963	963 963	180,200 180,200	10,466 10,466	109,439 109,439	0 0		9,500 9,500
17	14	2022		{ {	963	963	180,200	10,466		0		9,50
18	15	2024			963	963	180,200	10,466	109,439	Q		9,50
19	- 16	2025			963	963	180,200	10,466		0		9,50
20	17	2026			963	963	180,200	10,466		0		9,50
21	18	2027	ļ	(ļ	963	963	180,200	10,466		0		9,50
22 23	19 20	2028 2029	1		963 963	963 963	180,200 180,200	10,466 10,466		0		9,50 9,50
24	21	2029)		963	963	180,200			i 0		9,50
25	22	2031		}	963	963	180,200			ŏ		9,50
26	23	2032		i I	963	.963	180,200	10,466			10,466	9,50
27	24	2033		! (963	963	180,200				10,466	9,50
28 29	25	2034]	1	963	963	180,200				10,466	9,50 9,50
29 30	26 27	2035 2036	[}	963 963	963 963	180,200 180,200]	10,466 10,466	9,50
31	28	2030	ļ	468	963	1,430	180,200				10,466	9,03
32	29	2038		1,091	963	2,054	180,200			[10,466	8,41
33	30]	2039		1,247	963	2,209	180,200				10,466	8,25
34	31	2040		312	963		180,200				10,466	9,19
35 36	32 33	2041	1 1044	ļ	963	963	180,200			}	10,466	9,50 5,25
30	34	2042	1 1		963 963	5,207 9,168	180,200 180,200			ļ	10,466	
38	35	2044] .	963		180,200				10,466	
39	36	2045			963	9,289	180,200				10,466	
40	37	2046	1	[I	963		180,200				10,466	
41	38	2047			963		180,200			ļ	10,466	
42 43	39 40	2048 2049			963 963		180,200 180,200				10,466	
44	40	2049			903	963	180,200				10,400	
45	42	2050			963		180,200				10,466	
46	43			Į.	963		180,200	10,466		ļ	10,466	9,50
47	44	2053		1	963					l	10,466	
48	45	2054		1	963		180,200				10,466	
49	46	2055		ł	963					1	10,466	
50 51	47 48	2056 2057		Į	963 963					1	10,466	
52	40	2058			963		180,200				10,466	-
53	50			-1,039						 	190,666	
тот	AL_		147,394	5,194	47,577	200,165	8,904,883	517,196	2,300,620		697,396	8,704,71
											FIRR	6.49

Note: The 53rd year corresponds to the residual price of the works and equipment.

15. Additional Investigation

CONTENTS

15.	ADE	DITIONAL INVESTIGATION	15-	1
	15.1	Topographical Survey	15-	·1
	15.2	Geological Investigation	15-	·1

15. ADDITIONAL INVESTIGATION

In order to promote this project to the definite design stage, more detailed information is required on topographical, geological and geotechnical conditions of various civil structure sites proposed in the feasibility design. This chapter presents additional investigation works to be conducted.

15.1 Topographical Survey

Additional topographical survey for definite design is shown in Table 15.1.

Site	Survey Method	Scale of Map	Remarks
Dam Power house	Topographical surveying	1/500	Includes diversion tunnel
Disposal area Temporary facility yard Access road Construction camp	Mapping by aero photograph	1/1,000	Permanent and temporary access roads
Roads around reservoir	Mapping by aero photograph	1/5,000	Includes a part of the reservoir area

 Table. 15.1
 Additional Topographical Survey Works

15.2 Geological Investigation

(1) Dam site and its vicinity

The geological information necessary for DD and the suitable investigation method are as follows.

1) Geological structure

The strata at the dam site and its vicinity inclines gently toward the left bank. The continuity and the weathering degree of the intercalated tuff should be clarified in order to evaluate the stability of the foundation rock. The width and the material of fault along the river should be confirmed for the design of the foundation treatment.

Geological mapping and core boring are recommended.

2) Physical property and rockmass classification of the foundation rock

Based on the physical property and the rockmass classification, a stability analysis of the dam foundation will be conducted, as it is necessary to determine the excavation line of the dam foundation.

15 - 1

Core boring, adit and in-situ rock test are recommended.

3) Permeability of the rock seated at the depth below the riverbed

Permeability of the rock up to a depth equivalent to the height of the dam is necessary in determining the depth of the grout curtain.

Long core boring and the Lugeon test are recommended.

4) The thickness of weathering and permeability of the ridge on the right bank

The thickness of the strongly weathered layer is necessary in the evaluation of the stability of the ridge and slope after the impounding of the reservoir. The permeability of the underlying rock is necessary in determining the length and depth of the grout curtain.

5) Groundwater level on the mountain side

The groundwater level for the area further away from the point of dillholes surveyed for the FS and more toward the mountain side is necessary in the study of hydrogeology, which will indicate the area of the grout curtain.

6) Slope stability

The state and the depth of the weathered layer of the slope of the dam site on the right bank affects its stability after the impounding of the reservoir. Core boring is recommended. The high cut slope of the power station site requires information on the underlying rockmass in the evaluation of its stability and selection of suitable protection. Core boring is also recommended.

The location of additional investigation for DD are shown in Fig.15.1 and Fig.15.2. The quantity and purpose of each investigation is shown in Table 15.2.

Table 15.2 Additional Geological Investigation for DD at Dam Site and its Vicinity

Core boring and

Name of Core boring	CD-1	CD-2	CD-3	CD-4	CD-5	CD-6	CD-7	CD-8	CD-9	CD-10	CD-11	CD-12	CD-13	Total
Length (m)	100	30	100	100	70	100	100	100	100	30	30	50	70	980
Main purposes												L		
Geological structure	yes		yes	yes	yes	yes	yes	yes	yes			yes	yes	
Excavation line	-	yes	yes	yes		yes	yes			yes	yes	Ľ		
Permeability at deeper portion			yes	yes	yes	yes	yes							
Permeability and dept right bank	h of wea	thered zon	ne on the					yes						
Ground water level	yes		yes			yes	yes	yes	yes	[l		
Slope stability	· _		_									yes	yes	
Remarkes					Inclined 60 deg.								At power site	station
Permeability test (section)			18	18	18	18	18	18						108

Adit

Name of Adit	CA-1	CA-2	Total
Length (m)	50	100	150
Main purposes	T		
Geological structure	yes	yes	
Excavation line	yes	yes	
Biock shear test	yes	yes	
Remarkes			

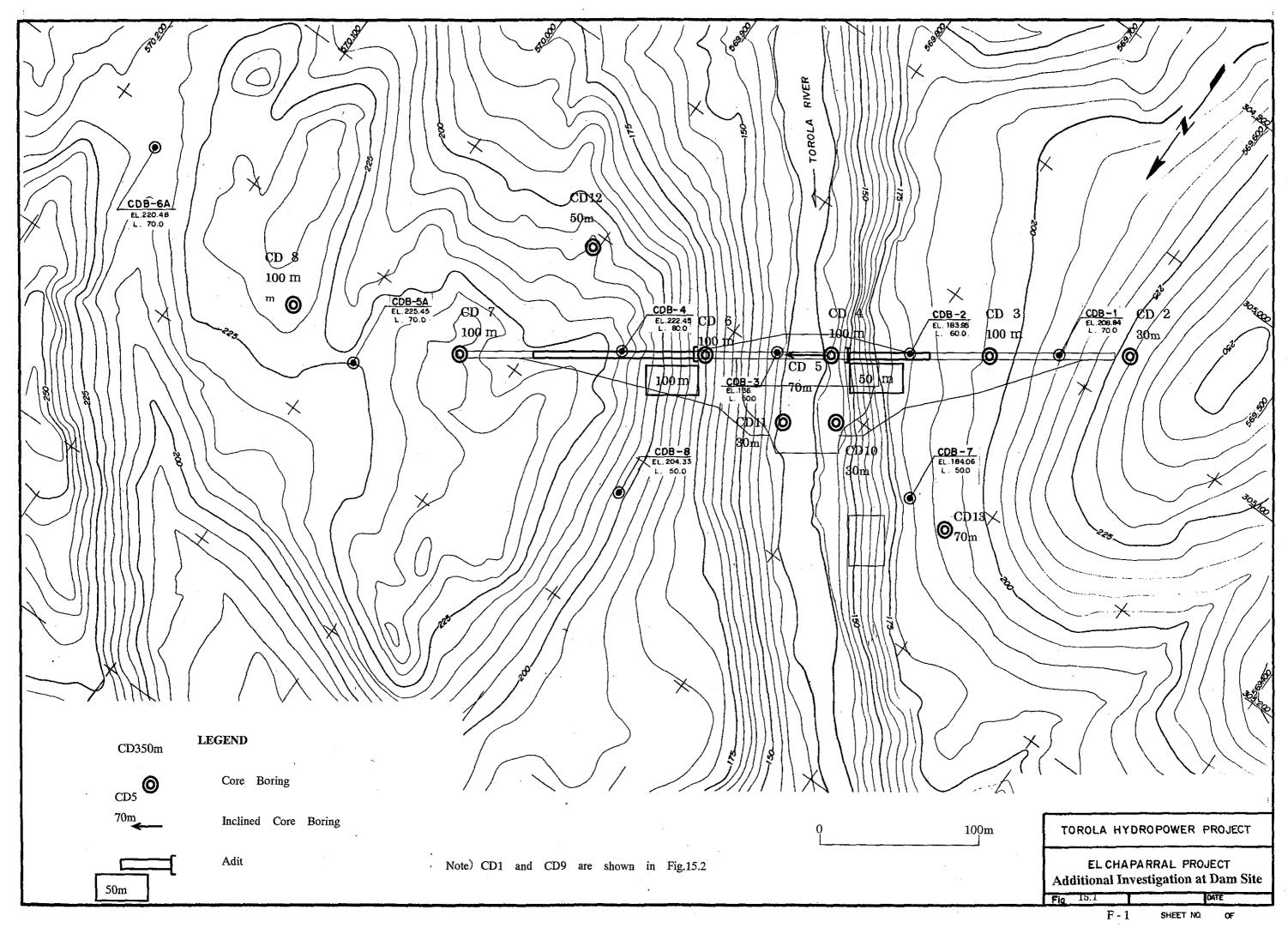
In-situ test

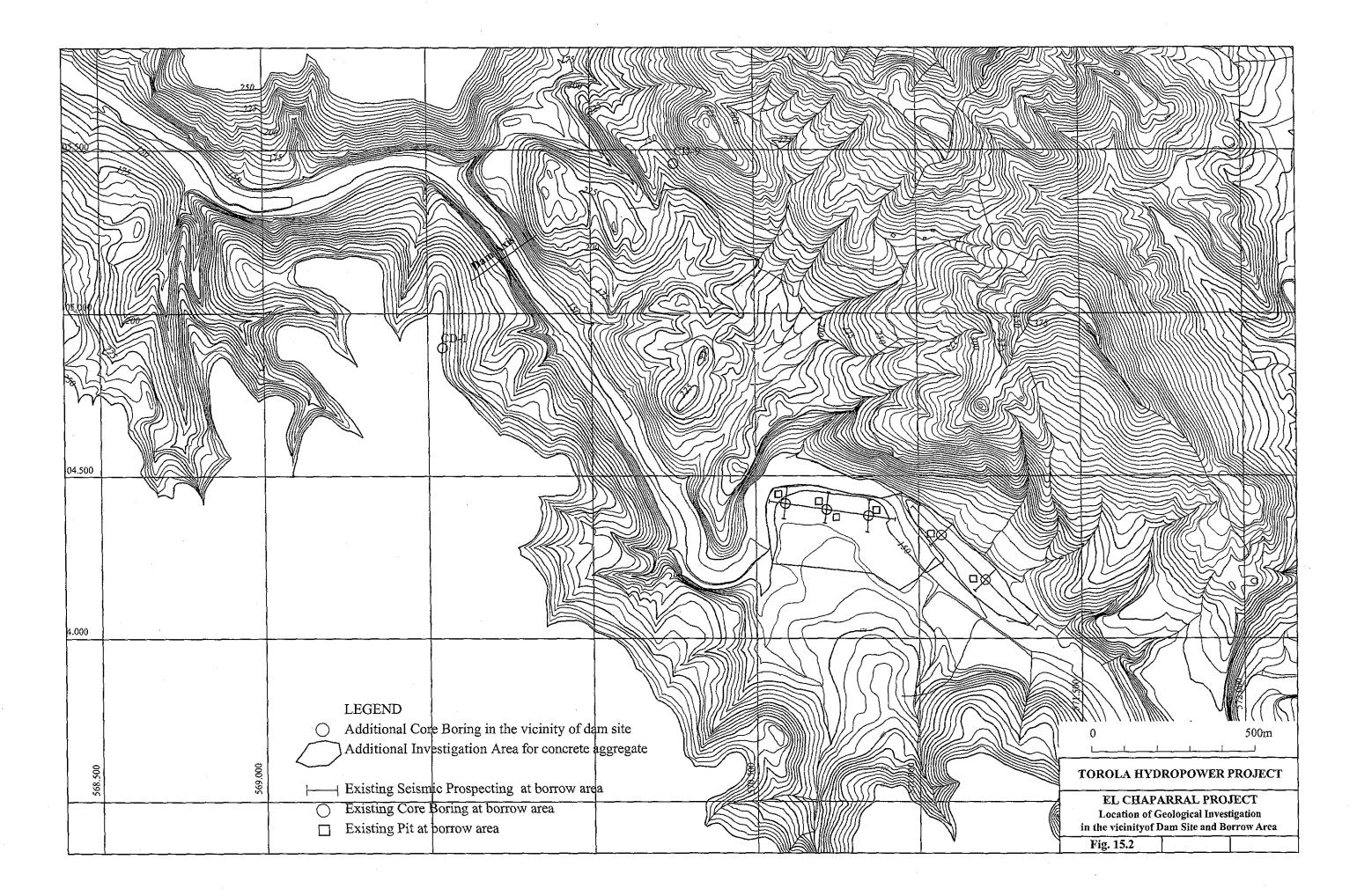
Block shear test	3 sets
Main purposes	
Excavation line	yes

(2) Construction material

The FS study shows a high possibility of obtaining enough quantity and quality of material for concrete aggregate from river deposits. The following investigation is necessary for DD.

1) The volume of sand and gravel


A terrace adjacent to the area investigated for the FS should be investigated to confirm that enough volume of sand and gravel can be obtained.


Core boring, seismic prospecting and pit are recommended.

2) Quality

The aggregate should be produced by sieving, crashing and washing from samples collected from the river and terrace deposits. Subsequently, they should be tested by the method shown in Table 7.12 in Chapter 7. Because these deposits have high possibility of alkali-aggregate reactivity, adequate testing for alkali-aggregate reaction will be needed. The test to confirm such alkali- aggregate reaction is controlled by fly-ash will also be necessary.

Concrete proportioning test is also recommended.

