9. DEVELOPMENT PLAN

# CONTENTS

| 9 | DEV | <b>VELOP</b> | MENT PLAN                                      | 9-1  |
|---|-----|--------------|------------------------------------------------|------|
|   | 9.1 | Review       | w of Existing Development Plan                 | 9-1  |
|   |     | 9.1.1        | Pre-FS (Phase 1A)                              | 9-1  |
|   |     | 9.1.2        | Pre-FS (Phase 1B)                              | 9-3  |
|   | 9.2 | Comp         | arative Study of Alternative Development Plans | 9-4  |
|   |     | 9.2.1        | Preliminary Study of Development Plans         | 9-4  |
|   |     | 9.2.2        | Comparative Study of Development Plans         | 9-6  |
|   | 9.3 | Select       | ion of Development Scheme                      | 9-14 |
|   |     |              | Selection of Development Scheme                |      |

#### 9 DEVELOPMENT PLAN

# 9.1 Review of Existing Development Plan

## 9.1.1 **Pre-FS (Phase 1A)**

CEL has already finished a self-funded Pre-FS (by HARZA) for the hydroelectric complex over the Torola River, which was conducted from December 1997 to March 1999 for the purposes below.

- To cope with the increasing electric demand by making use of competitive and sustainable water resources
- 2. To contribute to increased saving of oil products by hydro power
- 3. To make use of the present unused hydro power potential of the Torola River

The Pre-FS was divided into two stages, Phase 1A and Phase 1B, and the development scheme study for the whole river basin was executed, and individual projects that consist of development scheme were studied at the stage of Phase 1A.

#### (1) Site Characteristics of Candidate Project Sites

First, seven dam sites (El Chaparral, Carolina, La Honda, Las Marias, Cerro Pando, Las Mesas, Maroma) were selected and each site characteristic was examined by comparing their development plans. The selection of the seven potential dam sites was considered appropriate at the stage of the preliminary selection of the dam axis.

The generation type for each project is fundamentally the dam type and, in addition to the economic comparison study for different heights of a dam, the study on the dam and waterway type was made for certain sites.

Fig. 9.1 shows the location of the candidate project sites and Table 9.1 is the comparison table of generation features. It is fundamentally reasonable to set the HWL for each project based on the dam site's riverbed elevation so that no residual head arises. However in the case of the El Chaparral and Carolina sites, the reservoir areas would enter into the territory of Honduras with an HWL elevation of more than about 212 m, and it is not adequate to prepare a study case where the HWL is 255 m in the table.

It was judged that Cerro Pando does not offer good economy and also creates great environmental impact; therefore the elimination of this site from the candidate project sites was considered appropriate.

# (2) Composition of Development Scheme

Two kinds of development schemes are conceivable for the survey reach (L=58 km, maximum difference of riverbed  $\Delta H$ =327 m) of the Torola river. One development scheme has three dams (100 m height class) and the other one with four dams (80 m height class). A development scheme was composed of several individual projects after examining each characteristic of each project site. Technical points, which were considered for the composition of the development scheme, are as follows.

- 1) Compared with El Chaparral, the economy of Carolina is superior, and El Chaparral was eliminated from the development scheme. (at the stage of Phase 1B, El Chaparral was added back to the roster of candidates for development schemes because it was found that the head for El Chaparral was increased by 10m from the initial study.)
- 2) The high HWL case (El352 m) for La Honda was liminated from the development scheme, because this case would accompany a large-scale resettlement of inhabitant and require to relocated the existing road near Osicala.
- 3) The High HWL case (EL456 m) for Las Mesas was eliminated from the development scheme because this case was uneconomical.

Fig. 9.2 shows the location map of each development scheme, and Table 9.2 is the comparison table for each generation feature.

The dam and waterway type case for the Maroma project site was judged appropriate, as it is designed to eliminate the problems of location and environment in the upstream of the Las Mesas project site.

Thus, of the four schemes proposed in Phase 1A, only Scheme 1 and Scheme 2 fundamentally serve as the study results of that Phase, as the other two schemes involve the maximum HWL for Carolina, which is EL212m at the most.

#### 9.1.2 **Pre-FS (Phase 1B)**

### (1) Re-composition of Development Scheme

Following Phase 1A, the proposed development schemes were studied again at the stage of Phase 1B. The purpose of Phase 1B was to select the project sites that should be studied at the next step (FS stage).

In this case, the degree of the study level was increased through more accurate estimation of energy calculation and construction cost and through the incorporation of subsequent investigation results for topography, geology and socio-environment.

During this phase, Las Cruses was newly proposed as a project site. This site is located in the upstream of Maroma site and was selected in order to moderate the problems of location and environment.

The El Chaparral and Las Cruces sites were added to the last five sites (Carolina, La Honda, Las Marias, Las Mesas, Maroma), which were studied at the stage of Phase 1A.

Table 9.3 shows the generation features for each project. In this case, each generation feature is the individually planned one, and the influence from upstream project was not taken into account. Table 9.4 shows the comparison table of indexes showing environmental impact and socio-environment impact for each project site.

Table 9.5 lists the final candidate project sites selected for the development scheme based on the study results made so far. Technical points considered for setting the generation features are as follows.

- The El Chaparral site has good economy and has less environmental impact compared with other projects. And it is appropriate to select it as one of the promising project sites.
- 2) The Carolina site also has good economy but there is a limit on the HWL, which cannot be raised above EL212m. Therefore, it would be difficult to secure the economy shown in Table 9.3. As a result, it was judged appropriate not to select it as a candidate for the development scheme.
- 3) The La Honda site has relatively good economy and has less environmental impact because it is unnecessary to relocate the existing road near Osicala. The selection of it as one of the promising project sites was considered appropriate.
- 4) The Las Marias site offers poor economy, and it is reasonable not to select it as candidate for development scheme.

- The Las Mesas site creates great environmental impact for the high HWL case and its economy is less than desired. However, it is the promising project site in the upstream of the Torola River, and thus, it is acceptable to select it as the candidate site of the key project in the upstream basin.
- 6) The Maroma site offers poor economy and would not be improved even if the dam and waterway type was adopted to moderate the problems of location and environment in the downstream of the dam site. It also poses great impact on the location and environment by reservoir impounding. However, it is a very important project because its reservoir operation would strongly affect the downstream projects. Therefore, it is acceptable to select it as a candidate for the development schemes.
- 7) The Las Cruces site, on the other hand, was proposed in the upstream of the Maroma site in order to moderate the above-mentioned problems. But it offers poor economy and thus was eliminated.

The development in the Torola River basin is divided into the upstream basin area (Las Mesas, Maroma, Las Cruses) and the downstream basin area (El Chaparral, Carolina, La Honda, Las Marias). as explained so far in Phase 1A and Phase 1B. Conclusions from both studies indicate that we should proceed with the development of the downstream basin. This conclusion is acceptable. Table 9.5 and Fig. 9.2 show the final development scheme as proposed.

# 9.2 Comparative Study of Alternative Development Plans

# 9.2.1 Preliminary Study of Development Plans

Based on the development scheme proposed at the stage of Pre FS, a development plan for the Torola River was restudied. As Table 9.5 shows, El Chaparral, La Honda, Las Mesas and Maroma were proposed. However, it was judged that the upstream development would accompany many difficulties in the near term from the view of the problems of locations and environment. Therefore, the object of the study was limited to the downstream development.

Therefore, in the FS, the El Chaparral and La Honda sites were selected for the development plans to be studied. First, the characteristics of economy for each development plan was clarified based on the single development scheme for each. Subsequently, the possibility of a joint development scheme for the two projects was studied

# (1) Development Scheme

# 1) Single Development Scheme

- a) It is reasonable to adopt the reservoir type, which allows the reservoir to regulate the river flow seasonally, and the dam type, which allows the powerhouse to be located at a point just downstream of the dam.
- b) The Dam and waterway type, which uses the head given by waterway, was not studied because the riverbed gradient is moderate.

### 2) Joint Development Scheme

- a) The joint development scheme is composed of the La Honda project (dam type reservoir type) and the El Chaparral project (dam type reservoir type).
- b) The fundamental concept of the joint development scheme is that the El Chaparral dam in downstream can receive the regulated discharge from the La Honda dam in upstream, while the river flow in the remaining catchment between the two dams is regulated.

#### (2) Development plan site

#### 1) El Chaparral Project

The El Chaparral dam is the most downstream project among the projects along the Torola River and is located at about 20 km upstream from the conjunction point with the Lempa River. That 20-km section is the border with Honduras and the construction of a concrete dam at about 300 m upstream from the border and a power house at just downstream of dam was proposed in the Pre-FS.

The valley at the dam site is a topographical gorge and the width of valley widens sharply. Therefore, the layout in the Pre-FS was respected to serve as a basis in FS. The width of the valley at the dam site is about 30 m, and the slopes at both abutments are steep in lower elevations and gentle in higher elevations. Therefore, the length of the dam crest with long wings at both sides will become long.

In setting the HWL for reservoir, it was considered that the reservoir area should not enter into the territory of Honduras and the upper HWL was set as EL212 m.

### 2) La Honda Project

La Honda project is located at the end of the reservoir, about 15 km from the El Chaparral dam. The construction of a concrete dam at that site and powerhouse at just downstream of dam was proposed in Pre-FS. The width of valley at the dam site is

about 50 m and the slope at both abutments is gentle and has the gently-sloped form. Therefore, the length of the dam crest would be long and the dam volume large.

There is an alternative dam site at the relatively narrow valley point about 1.5 km upstream from the proposed dam site. In the FS, the upstream development plan was studied in addition to the dam site in the Pre-FS. The upstream dam site is a topographical gorge and has the steep slope especially at the right abutment. However, there is a topographical saddle part (around EL280m) on the left side of river and it is necessary to have a sub dam for a higher HWL case. Fig.9.3 shows the positions of the two dam axes including El Chaparral dam, and Fig. 9.4 presents a rough comparison of the La Honda project.

In selecting the development plan, a comparative study was made for both axes. Comparison in terms of economy was made for both plans, which have the same generation features (HWL=EL275m, Qmax=80m³/s). Table 9.6 shows the study results, and the construction cost of the upstream axis plan was found to be decreased by approximately 3% as compared with the original one because the energy production would be down according to the reduction of effective head in spite of the reduction of the dam construction cost. The generation features used for this comparison are those that would give the most economical results to be elaborated in "9.2.2 Comparative Study of Development Plans".

Therefore, the El Chaparral and La Honda sites proposed in Pre-FS were selected for the development plans in FS.

### 9.2.2 Comparative Study of Development Plans

#### (1) Basic Matters for Study

#### 1) Topographical Map

At the stage of Pre-FS, the study was made based on 1/50,000 and 1/10,000 maps. On the other hand, a new 1/25,000 map was collected in the first round of the site survey (June 2001) and a 1/5,000 map was completed based on the existing aerial photograph in August 2001. They was used for a comparative study of the development plans.

#### 2) Geological Investigation Results

In the detailed investigation for the El Chaparral project, the geological investigation such as borings and others was executed by subcontractors together with the topographical survey.

In "11. Feasibility Design," feasibility design was made for the El Chaparral project based on the 1/1,000 map and river cross-section survey results, but the rough design for the La Honda project was based on the 1/5,000 map.

# 3) Catchment Area

Catchment areas for each dam site were newly measured based on the 1/50,000 map.

# 4) Area Capacity Curve of Reservoir

Reservoir capacity curve for each dam site was newly made. Figures 9.5 and 9.6 show the reservoir capacity curves for the La Honda and El Chaparral dam sites.

# 5) River Flow Discharge

#### a) Low River Flow

River flow discharge has been measured at Osicala GS and was used for the estimation of the river flow at the dam site. River flow discharge at the dam site was estimated based on the monthly data (1942~2000). Firm discharge with 95% probability was calculated by mass curve operation.

## b) Flood Discharge

Design discharge for the care of the river was decided by the flood probability calculation (one-year probability for concrete gravity dam) and design discharge for the spillway by PMF

#### c) Evaporation

Evaporation from the surface of the reservoir was estimated by observed evaporation data of PAN and potential evapo-transpiration. It was considered in the energy calculation.

# 6) Reservoir Operation

#### a) Basic Idea of Reservoir Operation

Annual average inflow at Osicala GS is 30.0 m<sup>3</sup>/s, with about 90% of the annual inflow occurring during the rainy season (May through October) and the fluctuation of river discharge is very large. Therefore, it is necessary to regulate the river discharge according to seasons, making use of the reservoir capacity. Reservoir operation rules were determined based on the items below.

- River water in the wet season is to be stored and released in the dry season to make the firm discharge as large as possible.
- Reservoir is to be operated so that the spill is as small as possible.

 Reservoir is to be operated so that a stable supply of power is assured for a long period and at the same time the energy production is large.

### b) Operation Rules

Reservoir operation rules were prepared to maximize the energy production, using the Dynamic Programming Method, based on the basic ideas of operation. Dynamic programming is a mathematical technique to solve multi-decision processes, and it was applied to derive the reservoir operation rules. A multi-decision process is defined as a process to determine a series of control vectors (outflow from reservoir at some time) that make evaluation functions extreme (maximizing accumulated energy production from some reservoir water level to the water level at the end of calculation), based on "the principle of optimality" (Refer to Appendix 9.7).

## c) Energy Calculation

Energy was obtained with the discharge for generation and reservoir water level that were given from the reservoir operation based on the above-mentioned rule curve. The procedure of energy calculation is shown in Fig.9.7 and the manner of reservoir operation by rule curve in Fig.9.8. Generation features are described below.

Peaking time: Peaking time required in the balance of electric demand

and supply, Tp=3 to 4hr was assumed.

Maximum discharge is a peaked discharge used for a

peak hour generation and was compared and examined in

some different cases in the scale examination study.

Head loss: It was counted as friction loss (penstock) +other loss.

Dependable capacity: Dependable capacity is guaranteed within the peaking

period (95% probability) except the period of accident.

Normal water level: Normal water level was set at an elevation less 1/3 of the

available drawdown depth. In this case, the maximum discharge is limited by the constant rated output when the

water level is higher than the normal water level.

### (2) Manner of Comparative Study

#### 1) Scale Examination Study

a) Maximum discharge is a peaked discharge for the required peaking time (three to four hours) in the balance of electric demand and supply. In this scale examination

study, various maximum discharges were set for a comparison and examination. If the amount of spilled water is large, it is increased to save the spilled water in order to improve the economy of development plan.

- b) Comparative study of economy for different dam heights (HWL) in light of sedimentation capacity was made after different reservoir effective volumes were set.
- c) Ecological minimum flow (2 m³/s) would be constantly released from the dam. The way of discharge is to release the water through a small turbine equipped at the end of the penstock branching from the end part of the main penstock tube. Energy production by the small turbine would be counted as the energy at the power plant concerned.
- d) Owing to the reservoir operation of El Chaparral and La Honda dams, the duration of inflow at existing 15 de Septiembre power plant would be improved and energy production increased. Increased energy would be counted as the energy at the power plant concerned.

Based on the above-mentioned conditions, some different combinations of maximum discharges and different dam heights (HWL) were prepared to make scale examination study.

#### Method of Economic Comparison

The method used for the evaluation of alternative development plans is "the benefit cost method (BC method)." The method uses an assumption that a standard thermal power plant would be built instead of the Torola project, and the assumed cost of the thermal power plant serves as the benefit of the project.

A diesel power plant (Motor) was selected as an alternative thermal power plant. B-C and B/C were used as the fundamental indexes for judging the economy of the project. C is the equalized annual cost for hydro power, and B is considered as the equalized cost of alternative thermal power that has the same power ability as hydro power.

In addition to the indexes (B/C, B-C), the energy cost per kWh was used as another index.

## a) Annual cost (C)

The equalized annual cost of the Torola project consists of depreciation, interest, operation and maintenance costs. This is estimated by multiplying the annual cost factor by the investment cost.

Equalized cost (C)

= Depreciation + Interest + Operation &

Maintenance Costs

= Annual cost factor×Investment cost

Depreciation + Interest

Investment cost ×Capital recovery factor

Capital recovery factor

 $= i (1+i)^n/((1+i)^n-1)$ 

n: service life

Civil facility: 50 years 0.1009

Hydro mechanical equipment: 35 years 0.1037

Electric equipment: 35 years 0.1037

i; discount rate 10%

Operation and Maintenance costs (rate to investment cost):

n: service life 50 years

Civil facility: 0.5 %

Hydro mechanical equipment: 1.5 %

Electric equipment: 1.5 %

Annual cost factor

Civil facility: 10.6 %

Hydro mechanical equipment: 11.9 %

Electric equipment: 11.9 %

Assuming the rate of (hydro mechanical & electric equipment cost) / (total investment cost) as 25%, annual cost factor will be 10.9%.

Annual cost (C) =  $10.9 \% \times Investment cost$ 

#### b) Benefit (B)

The benefit of the Torola project is summarized according to the fixed cost (Depreciation + Interest + Operation & Maintenance Cost) and Variable Cost (Fuel Cost + Operation & Maintenance Cost) of an alternative thermal power plant. And kW value and kWh value were calculated as shown in Table 9.7. Effective power output and effective energy production used in calculating the benefit are given according to the conditions below.

Effective power output:

Effective power output at the receiving end is expressed by the equation below. This equation reduces station service rate by 0.3%, forced outage rate by 0.3%, scheduled outage rate by 2.0% and transmission line loss rate by 3.3% from firm peak output.

Effective power output=

(1-0.003)×(1-0.003)×(1-0.02)×

(1-0.033)×Dependable capacity

Effective energy:

Effective energy at the receiving end is expressed

by the equation below.

This equation reduces station service rate by 0.3% and transmission line loss rate by 1.9% from the average annual energy.

Effective energy

 $= (1-0.003) \times (1-0.019) \times \text{Average annual energy}$ 

Benefit of hydro power would be calculated below.

 $B = Effective power output \times kW value + Effective energy \times kWh value$ 

= Effective power output × 171.0 \$/kW + Effective energy × 0.046 \$/kWh

# (3) Comparative Study Case

In the comparative study of generation layout and scale examination, alternative cases were prepared based on the above-mentioned method for the comparative study. Tables below show the list of alternatives.

(La Honda Project by Single Development Scheme)

|                                      | HWL=295 m  Dam type /Reservoir type |      |       | H       | HWL= 285m  Dam type /Reservoir type |      |      | HWL= 275 m  Dam type /Reservoir type |      |  |
|--------------------------------------|-------------------------------------|------|-------|---------|-------------------------------------|------|------|--------------------------------------|------|--|
| Туре                                 |                                     |      |       | Dam tyj |                                     |      |      |                                      |      |  |
| Ve (10 <sup>6</sup> m <sup>3</sup> ) | 304                                 | 300  | 292   | 200     | 196                                 | 188  | 117  | 114                                  | 106  |  |
| Hd (m)                               | 102.5                               |      |       | 92.5    |                                     |      | 82.5 |                                      |      |  |
| Qf (m <sup>3</sup> /s)               | 18.5                                | 18.3 | 17.8  | 14.1    | 13,9                                | 13.4 | 8.8  | 8.6                                  | 8.1  |  |
| Qmax (m <sup>3</sup> /s)             | 90                                  | 120  | 150   | 70      | 100                                 | 130  | 50   | 80                                   | 110  |  |
| He (m)                               | 83.0                                | 83.0 | 84.0  | 76.0    | 76.0                                | 77.0 | 69.0 | 69.0                                 | 70.0 |  |
| Pmax (MW)                            | 66.1                                | 88.1 | 111.5 | 47.1    | 67.2                                | 88.5 | 30.5 | 48.8                                 | 68.1 |  |

(El Chaparral Project by Single Development Scheme)

|                                      | HWL=212 m  Dam type /Reservoir type |      |      | HWL=204 m |                          |      | HWL=198 m |                          |      |
|--------------------------------------|-------------------------------------|------|------|-----------|--------------------------|------|-----------|--------------------------|------|
| Туре                                 |                                     |      |      | Dam typ   | Dam type /Reservoir type |      |           | Dam type /Reservoir type |      |
| Ve (10 <sup>6</sup> m <sup>3</sup> ) | 111                                 | 106  | 96   | 54        | 50                       | 40   | 31        | 23                       | 19   |
| Hd (m)                               | 87.5                                |      |      | 79.5      |                          |      | 73.5      |                          |      |
| Qf (m <sup>3</sup> /s)               | 8.9                                 | 8.6  | 8.0  | 4.9       | 4.5                      | 3.8  | 3.0       | 2.3                      | 2.0  |
| Qmax (m <sup>3</sup> /s)             | 70                                  | 100  | 130  | 50        | 80                       | 120  | 20        | 40                       | 60   |
| He (m)                               | 71.8                                | 72.8 | 72.8 | 66.8      | 66.8                     | 67.8 | 61.8      | 61.8                     | 62.8 |
| Pmax (MW)                            | 44.5                                | 64.4 | 83.7 | 29.5      | 47.3                     | 72,0 | 10.9      | 21.9                     | 33.3 |

(La Honda - El Chaparral Project by Joint Development Scheme)

|                                      | La Honda                 | El Chaparral             |
|--------------------------------------|--------------------------|--------------------------|
|                                      | HWL=275 m                | HWL=212 m                |
| Туре                                 | Dam type /Reservoir type | Dam type /Reservoir type |
| Ve (10 <sup>6</sup> m <sup>3</sup> ) | 114                      | 106                      |
| Hd (m)                               | 82.5                     | 87.5                     |
| Qf (m <sup>3</sup> /s)               | 8.6                      | 11.3                     |
| Qmax (m <sup>3</sup> /s)             | 80                       | 100                      |
| He (m)                               | 69.0                     | 72.8                     |
| Pmax (MW)                            | 48.8                     | 64.4                     |

# (4) Comparative Study Results

Tables 9.8 through 9.10 and Figures 9.9 and 9.10 show the comparative study results that are summarized below.

(Single Development Scheme)

#### 1) La Honda Project

- In the case of the La Honda dam site, the topographical condition at both abutments
  is gentle, and every study case revealed a large amount of mass concrete volume.
  Therefore, the investment cost will increase according to the dam height, attributing
  to the poor economy of the project.
- On the other hand, the benefit does not increase very much even if the dam height is raised. Energy cost for the low height of the dam (HWL275 m) is the most inexpensive (0.08 \$/kWh level), but, if the target energy cost for the development is assumed to be US\$ 0.06 ~0.07/kWh, investment cost needs to be reduced by about 20%, leading to a low likelihood of its development. The priority of the development is not high compared with the alternative thermal power plant because the values of B/C and B-C are low.

# 2) El Chaparral Project

- In the case of the El Chaparral dam site, the topographical condition at both abutments is relatively steep, and the dam cost does not increase so much even if the dam height is raised.
- On the other hand, reservoir effective capacity is not large compared with that of La Honda. Energy cost for the high height of the dam (HWL212 m) is inexpensive (US\$ 0.065/kWh), and this value is competitive enough in the electric market, where

the actual wholesale energy price is in the range of US\$  $0.06 \sim 0.07$  /kWh. However, the priority of development is not especially high compared to the alternative thermal power plant with 1.01 (B/C) and US\$  $0.16 \times 10^6$  (B-C).

• The reason is that a river discharge is very small in the dry season and the discharge in a required peaking time cannot be increased with additional water from the reservoir. As a result, the firm peak output is small and the kW benefit is also small.

# (Joint Development Scheme)

- The joint development scheme is composed of La Honda (HWL=275 m) and El Chaparral (HWL212 m). In this case, the sediment volume for El Chaparral dam was reduced by that of La Honda dam and the inflow for El Chaparral dam was estimated as the total of regulated water from La Honda dam and the water for the remaining catchment area between the two dams.
- As Table 9.10 shows, energy of El Chaparral project increases with the regulated discharge from the La Honda reservoir and its economy showed improvement.
- However, the economy of the La Honda project itself is poor, and the combined economy of the two projects is still less than desired as explained by the following unfavorable values:

```
(energy cost = US$ 0.077/kWh, B/C=0.88, B-C=US$-3.94 \times 10^6)
```

Therefore it seems difficult to develop the two projects at the same time.

# (Change in the required peaking time)

Based on the above examination results, the required peaking time has been changed. A peaking time is hydroelectric operation hours (three to four hours) required to meet the peak energy demand, and, in this case, four hours were applied. Table 9.11 shows a result of the economic comparison made, just applying the three-hour peaking time to the technical profiles selected in the scale examination study above.

By changing the peaking time, the kW benefit was boosted, and the development scheme's economical conditions were also boosted to an extent of US\$ 0.065/kWh (energy cost), 1.14 (B/C) and US\$ $2.10 \times 10^6$  (B-C).

# 9.3 Selection of Development Scheme

## 9.3.1 Selection of Development Scheme

Based on the above-mentioned comparative development study results for development schemes (single and joint development schemes), a development scheme was selected.

- La Honda project is the key project in the downstream area of the Torola River, because the regulated discharge from La Honda dam would contribute to the elevation of the economy of the downstream El Chaparral project. However, the economy of the La Honda project itself is poor and the combined economy by the joint development along with the El Chaparral project also fails to reach the level that would allow us to approve the development scheme.
- On the other hand, the El Chaparral project has successfully reached the level required to
  proceed with its development, after an increase in the HWL to the limit and a change to three
  hours of peaking time. This, in our opinion, offers an economically high possibility of
  development.

Therefore, the single development scheme for the El Chaparral project is proposed, while the La Honda project will be retained as a potential project to be launched in some future time.

Table 9.1 Project Features of Torola River (Phase 1A)

| Project        | HWL | TWL      | Pmax | Energy     | Construction             | B/C  | Remark               |
|----------------|-----|----------|------|------------|--------------------------|------|----------------------|
|                | (m) | (m)      | (MW) | (GWh/year) | Cost(10 <sup>6</sup> \$) |      |                      |
| El Chaparral   |     |          |      |            |                          |      |                      |
| Dam type       | 202 | _ 141    | 43   | 175        | 103.8                    | 1.3  |                      |
| Dam type       | 255 | 141      | 80   | 352        | 210.9                    | 1.28 |                      |
| Carolina       |     |          |      |            |                          |      |                      |
| Dam type       | 202 | 150      | 36   | 149        | 77.7                     | 1.47 |                      |
| Dam type       | 202 | 141      | 42   | 176        | 89.1                     | 1.5  | riverbed excavation  |
| Dam & waterway | 202 | 141      | 41   | 169        | 126.3                    | 1.04 | tunnel               |
| Dam type       | 255 | 150      | 72   | 310        | 165.8                    | 1.43 |                      |
| Dam type       | 255 | 141      | 79   | 338        | 177.5                    | 1.46 | riverbed excavation_ |
| Dam & waterway | 255 | 141      | 77   | 331        | 214.5                    | 1.19 | tunnel               |
| La Honda       |     |          |      |            |                          |      |                      |
| Dam type       | 285 | 202      | 50   | 205        | 146.6                    | 1.09 |                      |
| Dam type       | 352 | 202      | 90   | 407        | 406.4                    | 0.77 |                      |
| Las Marias     |     |          |      |            |                          |      |                      |
| Dam type       | 285 | 255      | 16   | 67         | 44.5                     | 1.17 |                      |
| Dam type       | 352 | 255      | 51   | 226        | 135.9                    | 1.27 |                      |
| Cerro Pando    |     | <u> </u> |      |            |                          |      |                      |
| Dam type       | 352 | 285      | 31   | 128        | 115.1                    | 0.87 |                      |
| Las Mesas      |     | {        |      | <u> </u>   |                          |      |                      |
| Dam type       | 352 | 290      | 20   | 84         | 61.1                     | 1.07 |                      |
| Dam type       | 456 | 290      | 55   | 247        | 372,3                    | 0.52 |                      |
| Maroma         |     |          |      |            |                          | L    |                      |
| Dam type       | 456 | 352      | 33   | 145        | 107.8                    |      |                      |
| Dam & waterway | 456 | 285      | 54   | 235        | 155                      | 1.17 | tunnel               |

Table 9.2 Project Features of Development Scheme (Phase 1A)

| Scheme          | HWL         | TWL | Pmax  | Pf    | Energy     | Ve                                    | Construction             | B/C  | Area     | Resettled |
|-----------------|-------------|-----|-------|-------|------------|---------------------------------------|--------------------------|------|----------|-----------|
| 1               | (m)         | (m) | (MW)  | (MW)  | (GWh/year) | $(10^6 \text{m}^3)$                   | Cost(10 <sup>6</sup> \$) | 1    | $(km^2)$ | Houses    |
| Scheme 1        |             |     |       |       |            |                                       |                          |      |          |           |
| Carolina        | 202         | 141 | 49.8  | 43.2  | 188.4      | 54                                    | 89.1                     | 1.5  | 4.23     | 2         |
| La Honda        | 285         | 202 | 60.1  | 49.7  | 222        | 251                                   | 146.6                    | 1.09 | 12.38    | 24        |
| Las Mesas       | 352         | 290 | 24.6  | 21.5  | 94.4       | 43                                    | 61.1                     | 1.07 | 2.72     | 3         |
| Maroma          | 456         | 352 | 40    | 31    | 144.9      | 278                                   | 107.8                    | 1.04 | 10.14    | 86        |
| ***             |             |     | 174.5 | 145.4 | 649.7      | 626                                   | 404.6                    | 1.23 | 29.47    | 115       |
| Scheme 2        |             |     |       |       |            | · · · · · · · · · · · · · · · · · · · |                          |      |          |           |
| Carolina        | 202         | 141 | 49.8  | 42.6  | 188.7      | 54                                    | 89.1                     | 1.5  | 4.23     | 2         |
| La Honda        | 285         | 202 | 60.1  | 48.4  | 221.5      | 251                                   | 146.6                    | 1.09 | 12.38    | 24        |
| Maroma (tunnel) | 456         | 285 | 61.2  | 51,1  | 234.7      | 278                                   | 155                      | 1.17 | 10.14    | 86        |
|                 |             |     | 171.1 | 142.1 | 644.9      | 583                                   | 390.7                    | 1.27 | 26.75    | 112       |
| Scheme 3        |             |     |       | L     | L          | }                                     |                          |      |          |           |
| Carolina        | 255         | 141 | 93.6  | 95.8  | 361.4      | 450                                   | 177.5                    | 1.46 | 17.29    | 44        |
| Las Marias      | 352         | 255 | 62.2  | 57    | 234.9      | 464                                   | 135.9                    | 1.27 | 18.19    | 94        |
| Maroma          | 456         | 352 | 40    | 31    | 144.9      | 278                                   | 107.8                    | 1.04 | 10.14    | 86        |
|                 |             |     | 195.8 | 183.8 | 741.2      | 1192                                  | 421.2                    | 1.34 | 45.62    | 224       |
| Scheme 4        | · · · · · · |     |       |       |            |                                       |                          |      |          |           |
| Carolina        | 255         | 141 | 93.6  | 80.6  | 352.7      | 450                                   | 177.5                    | 1.46 | 17.29    | 44        |
| Las Marias      | 285         | 255 | 19.2  | 15.2  | 72.6       | 23                                    | 44.5                     | 1.17 | 0.95     | 4         |
| Maroma (tunnel) | 456         | 285 | 61.2  | 51.1  | 234.7      | 278                                   | 155                      | 1.17 | 10.14    | 86        |
|                 |             |     | 174   | 146.9 | 660        | 751                                   | 377                      | 1.34 | 28.38    | 134       |

Table 9.3 Project Features of Torola River (Phase 1B)

| Project      | HWL | TWL | Pmax | Energy     | Construction             | B/C  |
|--------------|-----|-----|------|------------|--------------------------|------|
|              | (m) | (m) | (MW) | (GWh/year) | Cost(10 <sup>6</sup> \$) |      |
| El Chaparral | 202 | 133 | 58.8 | 205.6      | 92.5                     | 1.61 |
| Carolina     | 240 | 152 | 76.3 | 267.6      | 118                      | 1.64 |
| La Honda     | 285 | 204 | 59.6 | 207.8      | 130.7                    | 1.18 |
| Las Marias   | 285 | 257 | 19.7 | 55.2       | 65.5                     | 0.64 |
| Las Mesas    | 352 | 292 | 30.2 | 105        | 81.4                     | 0.97 |
| Maroma       | 456 | 352 | 42.7 | 148.4      | 100.2                    | 1.1  |
| Las Cruces   | 456 | 394 | 24.4 | 85.1       | 78.7                     | 0.82 |
|              |     |     |      | L          | <u> </u>                 |      |

Table 9.4 Environmental Features of Projects (Phase 1B)

| Project      | Biological<br>Impact<br>Index | Social &<br>Economical<br>Impact | Physical<br>Impact<br>Index | Total of<br>Index | Index/kWh | Evaluation |
|--------------|-------------------------------|----------------------------------|-----------------------------|-------------------|-----------|------------|
| El Chaparral | 26                            | 55                               | 18                          | 99                | 0.48      | very good  |
| Carolina     | 27                            | 80                               | 23                          | 132               | 0.49      | very good  |
| La Honda     | 28                            | 66                               | 24                          | 118               | 0.57      | good       |
| Las Marias   | 21                            | 32                               | 12                          | 65                | 1,2       | very bad   |
| Las Mesas    | 24                            | 58                               | 14                          | 96                | 0.91      | regular    |
| Maroma       | 29                            | 112                              | 28                          | 169               | 1.14      | bad        |
| Las Cruces   | 23                            | 42                               | 16                          | 81                | 0.95      | regular    |
|              | ł                             | ,                                |                             | J                 |           |            |

Table 9.5 Project Features of Development Scheme (Phase 1B)

| Project      | HWL | TWL | Pmax | Energy     | Construction              | A                  | Relocated<br>People |
|--------------|-----|-----|------|------------|---------------------------|--------------------|---------------------|
|              | (m) | (m) | (MW) | (GWh/year) | Cost (10 <sup>6</sup> \$) | (km <sup>2</sup> ) | (people)            |
| El Chaparral | 202 | 133 | 59   | 206 (223*) | 92.5                      | 8.2                | 210                 |
| La Honda     | 285 | 204 | 60   | 208 (221*) | 129                       | 11.6               | 195                 |
| Las Mesas    | 352 | 292 | 30   | 105 (107*) | 81                        | 2.7                | 190                 |
| Maroma       | 456 | 352 | 43   | 148 (148*) | 98.7                      | 10.1               | 600                 |
|              |     |     |      |            |                           |                    | 1                   |

<sup>\*:</sup> Energy that considered the upstream projects operation

Table 9.6 Comparison Study of La Honda and Upstream Alternative

| Case                                             |                                | La Honda | Upstream Alternative |
|--------------------------------------------------|--------------------------------|----------|----------------------|
| Catchment Area                                   | km <sup>2</sup>                | 1,065    | 1,059                |
| High Water Level HWL                             | EL m                           | 275      | 275                  |
| Low Water Level LWL                              | EL m                           | 254      | 257                  |
| Drawdown Depth Hd                                | EL m                           | 21       | 18                   |
| Normal Water Level NWL                           | EL m                           | 268      | 269                  |
| Sedimentation Level SL                           | EL m                           | 244      | 247                  |
| Tail Water Level TWL                             | EL m                           | 198      | 204                  |
| Penstock Diameter (V=5m/s)                       | m                              | 4.5      | 4 5                  |
| Gross Storage Capacity Vg                        | 10 <sup>6</sup> m <sup>3</sup> | 182      | 156                  |
| Effective Storage Capacity Ve                    | 10 <sup>6</sup> m <sup>3</sup> | 114      | 91                   |
| Peaking Time                                     | hr                             | 4        | 4                    |
| Firm Discharge Qf without EMF 2m <sup>3</sup> /s | m <sup>3</sup> /s              | 8.6      | 7.1                  |
| Maximum Discharge Qmax                           | m³/s                           | 80 0     | 80.0                 |
| Gross Head Hg                                    | m                              | 70 0     | 65.0                 |
| Effective Head He                                | m                              | 69.0     | 64.0                 |
| Installed Capacity Plmax (main)                  | MW                             | 48.8     | 45.3                 |
| Installed Capacity P2max (sub)                   | MW                             | 1.3      | 1.2                  |
| Pmax=P1max+P2max                                 | MW                             | 50.1     | 46.5                 |
| Dependable Capacity Pf1 (main)                   | MW                             | 24.6     | 0.0                  |
| Dependable Capacity Pf2 (sub)                    | MW                             | 0.9      | 0 9                  |
| Pf=Pf1+Pf2                                       | MW                             | 25 5     | 0.9                  |
| Annual Average Inflow                            | 10 <sup>6</sup> m <sup>3</sup> | 1,300 6  | 1,293.3              |
| Annual Average Power Discharge                   | 10 <sup>6</sup> m <sup>3</sup> | 1,030 5  | 1,016.0              |
| Annual Average Overflow                          | $10^{6} \text{m}^{3}$          | 203 9    | 214.6                |
| Annual Average Energy E1 (main)                  | GWh                            | 179.5    | 163.6                |
| Annual Average Energy E2 (sub)                   | GWh                            | 9.9      | 7.9                  |
| Annual Average Energy E3 (15Sep)                 | GWh                            | 2.0      | 2.0                  |
| E=E1+E2+E3                                       | GWh                            | 191.3    | 173.5                |
| Plant Factor                                     | %                              | 44       | 43                   |
| Project Cost                                     | 10 <sup>6</sup> \$             | 157.6    | 5 152.2              |
| Energy cost per kw                               | \$/kW                          | 3,143    | 3,273                |
| Energy cost per kwh                              | \$/kWh                         | 0.092    | 0 098                |
| B/C                                              |                                | 0.74     | 4 0.48               |
| B-C                                              | 10 <sup>6</sup> \$             | -4.40    | 6 -8.64              |

EMF: Ecological Minimum Flow

Table 9.7 Alternative Thermal Power Plant for Comparison Study

| Item                    | Unit       | Diesel (Motor) |
|-------------------------|------------|----------------|
| Installed Capacity      | MW         | 10×6           |
| Annual Usage            | hr         | 3500 (pf=40%)  |
| Capital Cost            | \$/kW      | 1000           |
| O&M Cost (Fixed)        | \$/kW/year | 25             |
| O&M Cost (Variable)     | \$/kWh     | 0.0055         |
| Fuel Cost (Bunker C)    | \$/kWh     | 0.0387         |
| Discount Rate           | %          | 10             |
| Service Life            | Year       | 20             |
| Construction Period     | Year       | 2              |
| Capital Recovery Factor |            | 0.1175         |

| Annual Cost      |                    | Fixed Cost | Variable Cost |
|------------------|--------------------|------------|---------------|
| Capital Recovery | 10 <sup>6</sup> \$ | 7.05*1     | 0             |
| O&M Cost         | 106\$              | 1.50*2     | 1.16*3        |
| Fuel Cost        | 10 <sup>6</sup> \$ | 0          | 8.13*4        |
| Total            | 10 <sup>6</sup> \$ | 8.55       | 9.29          |

| Annual Cost at Receiving End |        |                     |
|------------------------------|--------|---------------------|
| kW Cost                      | \$/kW  | 171.0 <sup>*5</sup> |
| kWh Cost                     | \$/kWh | 0.046*6             |

| Adjustment Factor for kV | V & kWh | Dies | el  | Hydro Power |     |
|--------------------------|---------|------|-----|-------------|-----|
| •                        |         | kW   | kWh | kW          | kWh |
| Transmission Loss Rate   | %       | 0.0  | 0.0 | 3.3         | 1.9 |
| Station Service Rate     | %       | 5.0  | 5.0 | 0.3         | 0.3 |
| Forced Outage Rate       | %       | 10.0 | -   | 0.3         | 3   |
| Scheduled Outage Rate    | %       | 8.0  | - [ | 2.0         | )   |

kW adjustment factor =  $(1-0.033) \times (1-0.003) \times (1-0.003) \times (1-0.02) / ((1-0.05) \times (1-0.1) \times (1-0.08)) = 1.20$ 

kWh adjustment factor =  $(1-0.019) \times (1-0.003) / (1-0.05) = 1.03$ 

\*1:  $60000 \times 1000 \times 0.1175 = 7.05 \times 10^6$ 

 $*2:60000 \times 25 = 1.50 \times 10^6$ 

\*3:  $60000 \times 3500 \times 0.0055 = 1.16 \times 10^6$ 

\*4 :  $60000 \times 3500 \times 0.0387 = 8.13 \times 10^6$ 

 $*5:8.55 \times 10^6 / (60000 / 1.20) = 171.0$ 

 $*6:9.29\times10^6/\left(60000\times3500/1.03\right)=0.046$ 

Table 9.8 Scale Examination of El Chaparral Project by Single Development Scheme

| High Water Level HWL EL m 1212 212  Low Water Level LWL EL m 195 196  Drawdown Depth Hd EL m 195 196  Normal Water Level NWL EL m 206 207  Sedimentation Level SL EL m 185 185  Tail Water Level TWL EL m 133 133  Gross Storage Capacity Vg 10 <sup>6</sup> m³ 189 189  Effective Storage Capacity Ve 10 <sup>6</sup> m³ 189 8.6  Firm Discharge Qf without 2m³/s m³/s 8.9 8.6  Maximum Discharge Qf without 2m³/s m 73.0 74.0  Gross Head He m 73.0 74.0  Effective Head He m 71.8 72.8  Installed Capacity P1max (main) MW 45.8 65.7  Dependable Capacity Pf (main) MW 29.3 26.6  Dependable Capacity Pf (main) MW 30.4 27.7  Annual Average Inflow 10 <sup>6</sup> m³ 1489.1  Annual Average Inflow 10 <sup>6</sup> m³ 1489.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 212<br>16<br>16<br>16<br>207<br>133<br>50<br>50<br>139<br>100<br>100<br>100<br>100<br>100<br>13<br>64.4<br>64.4<br>64.4<br>65.7 | 212<br>198<br>14<br>14<br>207<br>207<br>207<br>208<br>133<br>189<br>189<br>189<br>4<br>4<br>8.0<br>4<br>8.0<br>74.0<br>68<br>77.8<br>66<br>67<br>130<br>130<br>130<br>130<br>130<br>130<br>130<br>130 | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | 204     204       195     197       9     7       9     7       201     202       185     185       133     133       4.5     5.5       128     128       50     40       4     4       4     4       4     4       4     4       80     120       80     69.0       6.8     67.8       7.3     72.0 | 198<br>191<br>196<br>196<br>185<br>183<br>2.3<br>93<br>93<br>31<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>63.0 | 198<br>193<br>196<br>196<br>185<br>133<br>3.2<br>3.2<br>93<br>40<br>40<br>63.0<br>61.8 | 198<br>194<br>197<br>185<br>133<br>93<br>93<br>93<br>19<br>60<br>60<br>64.0<br>62.8      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| LWL   EL m   195   1     Hd   EL m   17   206   2     SL   EL m   133   1     SL   EL m   133   1     TWL   EL m   133   1     pacity Ve   10 <sup>6</sup> m <sup>3</sup>   189   1     pacity Ve   10 <sup>6</sup> m <sup>3</sup>   199   1     pacity Ve   10 <sup>6</sup> m <sup>3</sup>   199   1     pacity Ve   10 <sup>6</sup> m <sup>3</sup>   111   1     pacity Ve   10 <sup>6</sup> m <sup>3</sup>   1489   1     pacity Ve   10 <sup>6</sup> m <sup>3</sup>   1489   1   1489     WW   1.3   1   1     WW   1.3   1     WW   1.3   1     WW   1.3   1     WW   1.3   1     Ow   10 <sup>6</sup> m <sup>3</sup>   1489   12.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>7<br>7<br>7<br>7<br>7<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6                      | 198<br>14<br>207<br>185<br>133<br>5.8<br>189<br>96<br>96<br>4<br>4<br>8.0<br>130<br>72.8<br>83.7                                                                                                      |                                                                    | 991                                                                                                                                                                                                                                                                                                  | 191<br>185<br>185<br>133<br>2.3<br>93<br>93<br>93<br>93<br>63.0<br>63.0                                    | 193<br>196<br>185<br>133<br>3.2<br>93<br>93<br>23<br>40<br>63.0<br>61.8                | 194<br>4 4 4 4 4 185<br>133<br>3.9<br>93<br>93<br>93<br>19<br>60<br>64.0<br>62.8<br>33.3 |
| Hd EL m 17  NWL EL m 206  SL EL m 185 11  TWL EL m 133 11  (V=5m/s) m 4.2 5  sity Vg 10 <sup>6</sup> m <sup>3</sup> 189 11  pacity Ve 10 <sup>6</sup> m <sup>3</sup> 111 1  pacity Ve 10 <sup>6</sup> m <sup>3</sup> 8.9 8  ithout 2m <sup>3</sup> /s m <sup>3</sup> /s 8.9 8  Amax (main) MW 44.5 64  P2max (sub) MW 45.8 65  y Pf1 (main) MW 45.8 65  y Pf2 (sub) MW 1.3 11  MW 30.4 27  ow 10 <sup>6</sup> m <sup>3</sup> 1489.1 1489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2<br>1<br>1<br>1<br>1<br>1<br>7<br>7<br>7<br>7<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6                           | 14<br>207<br>185<br>133<br>5.8<br>189<br>96<br>96<br>96<br>74.0<br>77.8<br>83.7                                                                                                                       | (a) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d                 | 991                                                                                                                                                                                                                                                                                                  | 196<br>185<br>133<br>2.3<br>93<br>93<br>4<br>4<br>4<br>4<br>63.0<br>63.0                                   | 196<br>185<br>133<br>3.2<br>93<br>23<br>23<br>40<br>63.0<br>61.8                       | 197<br>185<br>133<br>339<br>93<br>93<br>19<br>60<br>60<br>62.8<br>62.8                   |
| NWL   EL m   206     SL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9 9                                                                                                                             | 207<br>185<br>133<br>5.8<br>189<br>96<br>4<br>8.0<br>130<br>72.8<br>83.7                                                                                                                              | (2) (2) (4)                                                        | 991                                                                                                                                                                                                                                                                                                  | 196<br>185<br>133<br>2.3<br>93<br>93<br>31<br>4<br>4<br>4<br>4<br>4<br>63.0                                | 196<br>185<br>133<br>3.2<br>93<br>23<br>23<br>4<br>40<br>63.0<br>61.8                  | 197<br>185<br>133<br>3.9<br>93<br>19<br>19<br>60<br>60<br>64.0<br>62.8<br>33.3           |
| SL         EL m         185           TWL         EL m         133           (V=5m/s)         m         4.2           iiy         Vg         10 <sup>6</sup> m <sup>3</sup> 189           pacity         Ve         10 <sup>6</sup> m <sup>3</sup> 111         4           rithout 2m <sup>3</sup> /s         m <sup>3</sup> /s         8.9         8.9           rithout 2m <sup>3</sup> /s         m <sup>3</sup> /s         8.9         70           Plantax (main)         m         73.0         7           Plmax (main)         MW         44.5         6           PPT (main)         MW         45.8         6           y Pf1 (main)         MW         45.8         6           y Pf1 (main)         MW         29.3         2           y Pf2 (sub)         MW         30.4         2           ow         10 <sup>6</sup> m <sup>3</sup> 1489.1         148           ow         10 <sup>6</sup> m <sup>3</sup> 1065.9         122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 2 9 9                                                                                                                         | 185<br>133<br>5.8<br>189<br>96<br>96<br>8.0<br>130<br>72.8<br>83.7                                                                                                                                    |                                                                    | 9912                                                                                                                                                                                                                                                                                                 | 185<br>2.3<br>2.3<br>93<br>31<br>4<br>4<br>4<br>4<br>4<br>63.0<br>63.0                                     | 185<br>133<br>3.2<br>93<br>23<br>23<br>40<br>40<br>63.0<br>61.8                        | 185<br>133<br>3.9<br>93<br>19<br>19<br>60<br>60<br>64.0<br>62.8<br>33.3                  |
| EL m   133   134   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135   135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 2 9 9                                                                                                                         | 5.8<br>189<br>96<br>96<br>4<br>4<br>8.0<br>130<br>72.8<br>83.7<br>1.3                                                                                                                                 | 0 0 0 4                                                            | 9912                                                                                                                                                                                                                                                                                                 | 133<br>2.3<br>93<br>31<br>4<br>4<br>4<br>4<br>20<br>20<br>63.0<br>63.0                                     | 133<br>3.2<br>93<br>23<br>4<br>40<br>63.0<br>61.8                                      | 133<br>3.9<br>93<br>93<br>19<br>64.0<br>64.0<br>62.8<br>33.3                             |
| 5m/s  m   4.2   10 <sup>6</sup> m <sup>3</sup>   10 <sup>6</sup> m <sup>3</sup>   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0                                                                                                                             | 5.8<br>189<br>96<br>4<br>4<br>8.0<br>130<br>74.0<br>72.8<br>83.7<br>1.3                                                                                                                               | 0 0 4                                                              | 991                                                                                                                                                                                                                                                                                                  | 2.3<br>93<br>93<br>3.0<br>3.0<br>20<br>20<br>63.0<br>63.0                                                  | 3.2<br>93<br>23<br>4<br>40<br>63.0<br>61.8                                             | 3.9<br>93<br>93<br>19<br>60<br>60<br>60<br>62.8<br>93.3                                  |
| 10 <sup>6</sup> m <sup>3</sup> 189  10 <sup>6</sup> m <sup>3</sup> 111  hr 4  m <sup>3</sup> /s 8.9  m 73.0  m 73.0  7 m 71.8  7 MW 44.5 6  MW 45.8 6  MW 45.8 6  MW 29.3  MW 1.1  MW 1.1  MW 1.1  MW 1.1  MW 1.1  MW 2.9.3  1.0 <sup>6</sup> m <sup>3</sup> 1.065.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 0                                                                                                                             | 189<br>96<br>4<br>8.0<br>130<br>72.8<br>83.7<br>1.3                                                                                                                                                   | 0 0 0                                                              | 991                                                                                                                                                                                                                                                                                                  | 93<br>3.0<br>3.0<br>20<br>20<br>63.0<br>61.8                                                               | 93<br>23<br>4<br>40<br>40<br>63.0<br>61.8                                              | 93<br>19<br>19<br>64.0<br>64.0<br>62.8<br>33.3                                           |
| 10 <sup>6</sup> m <sup>3</sup> 111<br>hr 4<br>111<br>10 <sup>6</sup> m <sup>3</sup> 111<br>111<br>4<br>8.9<br>70<br>70<br>70<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8<br>71.8 |                                                                                                                                 | 96<br>4<br>8.0<br>130<br>72.8<br>83.7<br>1.3                                                                                                                                                          | 66 66 66 66 66 66 66 66 66 66 66 66 66                             | 000                                                                                                                                                                                                                                                                                                  | 31<br>3.0<br>20<br>20<br>63.0<br>61.8                                                                      | 23<br>4<br>40<br>40<br>63.0<br>61.8                                                    | 2.0<br>64.0<br>64.0<br>62.8                                                              |
| m 3/8 8.9 8.6  m 3/8 8.9 8.6  m 73.0 74.0  m 73.0 74.0  m 71.8 72.8  0) MW 44.5 64.4  MW 45.8 65.7  MW 29.3 26.6  MW 1.1 1.1  MW 30.4 27.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.6<br>10<br>10<br>74.0<br>72.8<br>1.3<br>1.3                                                                                   | 8.0<br>130<br>74.0<br>72.8<br>83.7<br>1.3                                                                                                                                                             | 66 66 66                                                           | 991                                                                                                                                                                                                                                                                                                  | 3.0<br>20<br>20<br>63.0<br>61.8                                                                            | 2.3<br>40<br>63.0<br>61.8<br>21.9                                                      | 2.0 60 64.0 62.8 33.3                                                                    |
| m 3/8 8.9 8.9 m 3/8 m 3/8 70 m 73.0 77 m 73.0 77 m 71.8 77 m 71.8 77 m 71.8 mW 1.3 mW 44.5 60 mW 45.8 60 mW 29.3 20 mW 1.1 mW 1.065.9 1.22.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7 7 7 9                                                                                                                         | 8.0<br>130<br>74.0<br>72.8<br>83.7<br>1.3                                                                                                                                                             | 66 66 1                                                            | 9 9 1                                                                                                                                                                                                                                                                                                | 3.0<br>20<br>63.0<br>61.8<br>10.9                                                                          | 2.3<br>40<br>63.0<br>61.8                                                              | 2.0<br>64.0<br>62.8<br>33.3                                                              |
| m 73.0 77 m 73.0 77 m 73.0 77 m 71.8 77 0 MW 44.5 66 MW 45.8 66 MW 29.3 29 MW 1.1 MW 1.1 MW 30.4 2 106m <sup>3</sup> 1065.9 122.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 2 9 9                                                                                                                         | 130<br>74.0<br>72.8<br>83.7<br>1.3                                                                                                                                                                    | 666                                                                | 9 2                                                                                                                                                                                                                                                                                                  | 20<br>63.0<br>61.8<br>10.9                                                                                 | 40<br>63.0<br>61.8<br>21.9                                                             | 64.0<br>62.8<br>33.3                                                                     |
| Hg m 73.0  He m 71.8  ain) MW 44.5  b) MW 1.3  n) MW 45.8  n) MW 29.3  n) MW 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                 | 74.0<br>72.8<br>83.7<br>1.3                                                                                                                                                                           |                                                                    |                                                                                                                                                                                                                                                                                                      | 63.0                                                                                                       | 63.0                                                                                   | 64.0                                                                                     |
| He m 71.8  ain) MW 44.5  (b) MW 45.8  n) MW 45.8  n) MW 29.3  n) MW 1.1  MW 1.1  MW 30.4  10 <sup>6</sup> m <sup>3</sup> 1489.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                 | 83.7<br>1.3                                                                                                                                                                                           | -                                                                  |                                                                                                                                                                                                                                                                                                      | 61.8                                                                                                       | 61.8                                                                                   | 33.3                                                                                     |
| ain) MW 44.5 b) MW 1.3 m) MW 45.8 n) MW 29.3 n) MW 1.1 mw 30.4 no mw 30.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                 | 1.3                                                                                                                                                                                                   |                                                                    |                                                                                                                                                                                                                                                                                                      | 10.9                                                                                                       | 21.9                                                                                   | 33.3                                                                                     |
| (a) MW 1.3<br>(b) MW 45.8<br>(c) MW 29.3<br>(c) MW 1.1<br>(c) MW 30.4<br>(c) MW 30.4<br>(c) MW 30.4<br>(c) MW 30.4<br>(c) MW 30.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                 | 1.3                                                                                                                                                                                                   |                                                                    |                                                                                                                                                                                                                                                                                                      |                                                                                                            |                                                                                        | -                                                                                        |
| m) MW 45.8<br>m) MW 29.3<br>m) MW 30.4<br>mos 10 <sup>6</sup> m <sup>3</sup> 1489.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                 | 95.1                                                                                                                                                                                                  |                                                                    | 2 1.2                                                                                                                                                                                                                                                                                                | 1.1                                                                                                        | 1.1                                                                                    | 1.1                                                                                      |
| m) MW 29.3<br>MW 1.1<br>MW 30.4<br>10 <sup>6</sup> m <sup>3</sup> 1489.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                 | 1.00                                                                                                                                                                                                  | 30.8 48.5                                                          | 5 73.2                                                                                                                                                                                                                                                                                               | 12.0                                                                                                       | 23.0                                                                                   | 34.4                                                                                     |
| MW 1.1<br>MW 30.4<br>10 <sup>6</sup> m <sup>3</sup> 1489.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                               | 21.5                                                                                                                                                                                                  | 14.6                                                               | 8 0.0                                                                                                                                                                                                                                                                                                | 5.5                                                                                                        | 4.1                                                                                    | 0:0                                                                                      |
| MW 30.4<br>10 <sup>6</sup> m <sup>3</sup> 1489.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                 | 1.1                                                                                                                                                                                                   | 1.0                                                                | 1.1                                                                                                                                                                                                                                                                                                  | 1.0                                                                                                        | 1.0                                                                                    | 1.0                                                                                      |
| 10 <sup>6</sup> m <sup>3</sup> 1489.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                 | 22.6                                                                                                                                                                                                  | 15.6                                                               | 1.1                                                                                                                                                                                                                                                                                                  | 6.5                                                                                                        | 5.1                                                                                    | 9:1                                                                                      |
| Discharge 106.3 10659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                 | 1489.1                                                                                                                                                                                                | 1489.1 1489.1                                                      | 1489.1                                                                                                                                                                                                                                                                                               | 1489.1                                                                                                     | 1489.1                                                                                 | 1489.1                                                                                   |
| 2222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1226.9                                                                                                                          | 1304.7                                                                                                                                                                                                | 844.0 1088.4                                                       | 4 1303.1                                                                                                                                                                                                                                                                                             | 419.6                                                                                                      | 6.769                                                                                  | 921.6                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                 | 117.7                                                                                                                                                                                                 | 578.4 334.0                                                        | 0 153.0                                                                                                                                                                                                                                                                                              | 1003.6                                                                                                     | 726.0                                                                                  | 513.1                                                                                    |
| I (main)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                 | 235.9                                                                                                                                                                                                 | 139.0                                                              | 9 210.4                                                                                                                                                                                                                                                                                              | 64.9                                                                                                       | 107.0                                                                                  | 140.2                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                 | 10.7                                                                                                                                                                                                  | 9.8                                                                | 9 10.0                                                                                                                                                                                                                                                                                               | 9.1                                                                                                        | 9.3                                                                                    | 9.4                                                                                      |
| ( <u>G</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                 | 2.0                                                                                                                                                                                                   | 2.0                                                                | 0 2.0                                                                                                                                                                                                                                                                                                | 2.0                                                                                                        | 2.0                                                                                    | 2.0                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                 | 248.6                                                                                                                                                                                                 | 150.8 190.7                                                        | 7 222.4                                                                                                                                                                                                                                                                                              | 76.0                                                                                                       | 118.3                                                                                  | 151.6                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                 | 33                                                                                                                                                                                                    | 56 4                                                               | 45 35                                                                                                                                                                                                                                                                                                | 72                                                                                                         | 59                                                                                     | 20                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                 | 142.2                                                                                                                                                                                                 | 110.3 117.0                                                        |                                                                                                                                                                                                                                                                                                      | 95.8                                                                                                       | 100.1                                                                                  | 104.3                                                                                    |
| per kw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                 | 1672                                                                                                                                                                                                  | 3586 2413                                                          | 3 1717                                                                                                                                                                                                                                                                                               | 7958                                                                                                       | 4356                                                                                   | 3029                                                                                     |
| Energy cost per kwh \$/kWh 0.071 0.065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                 | 0.064                                                                                                                                                                                                 | 0.081 0.068                                                        | 8 0.063                                                                                                                                                                                                                                                                                              | 0.140                                                                                                      | 0.094                                                                                  | 0.077                                                                                    |
| B/C 1.00 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 | 96.0                                                                                                                                                                                                  | 0.77 0.82                                                          | 2 0.74                                                                                                                                                                                                                                                                                               | 0.43                                                                                                       | 0.56                                                                                   | 0.61                                                                                     |
| B-C 10°S 0.00 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                 | -0.67                                                                                                                                                                                                 | -2.72                                                              | 6 -3.51                                                                                                                                                                                                                                                                                              | -5.98                                                                                                      | -4.76                                                                                  | -4.38                                                                                    |

Table 9.9 Scale Examination of La Honda Project by Single Development Scheme

| 436)                                         |                                | LH1-1 | LH1-2 | LH1-3 | LH2-1   | LH2-2 | LH2-3 | LH3-1 | LH3-2 | LH3-3          |
|----------------------------------------------|--------------------------------|-------|-------|-------|---------|-------|-------|-------|-------|----------------|
| High Water I evel HWL                        | ELm                            | 295   | 295   | 295   | 285     | 285   | 285   | 275   | 275   | 275            |
|                                              | ELm                            | 255   | 256   | 258   | 254     | 255   | 257   | 253   | 254   | 256            |
|                                              | EL m                           | 40    | 39    | 37    | 31      | 30    | 28    | 22    | 21    | 19             |
| je je                                        | ELm                            | 282   | 282   | 283   | 275     | 275   | 276   | 268   | 268   | 269            |
|                                              | ELm                            | 244   | 244   | 244   | 244     | 244   | 244   | 244   | 244   | 244            |
|                                              | EL m                           | 198   | 198   | 198   | 198     | 198   | 198   | 198   | 198   | 198            |
| =5m/s)                                       | E                              | 5     | 9     | 9     | 4       | 5     | 9     | 4     | 5     | 5              |
| Gross Storage Capacity Vg                    | 10 <sup>6</sup> m <sup>3</sup> | 376   | 376   | 376   | 268     | 268   | 268   | 182   | 182   | 182            |
| city                                         | 10 <sup>6</sup> m <sup>3</sup> | 304   | 300   | 292   | 200     | 196   | 188   | 117   | 114   | 106            |
| Peaking Time                                 | hr                             | 4     | 4     | 4     | 4       | 4     | 4     | 4     | 4     | 4              |
| Firm Discharge Of without 2m <sup>3</sup> /s | m <sup>3</sup> /s              | 19    | 18    | 18    | 14      | 14    | 13    | 6     | 9     | 80             |
| Maximum Discharge Omax                       | m³/s                           | 06    | 120   | 150   | 70      | 100   | 130   | 50    | 80    | 110            |
| Gross Head Hg                                | E                              | 84    | 84    | 85    | 11      | 11    | 78    | 70    | 70    | 71             |
| Effective Head He                            | u.                             | 83    | 83    | 84    | 76      | 92    | 77    | 69    | 69    | 70             |
| Installed Capacity P1max (main)              | MM                             | 99    | 88    | 111   | 47      | 29    | 89    | 31    | 49    | 89             |
| Installed Capacity P2max (sub)               | MM                             | 2     | 2     | 2     | 1       | 1     | 1     | 1     | 1     | 1              |
| Pmax=P1max+P2max                             | MW                             | 89    | 06    | 113   | 46      | 69    | 06    | 32    | 50    | 69             |
| Dependable Capacity Pf1 (main)               | MM                             | 36    | 37    | 36    | 29      | 32    | 32    | 22    | 25    | 25             |
| Dependable Capacity Pf2 (sub)                | MM                             | 1     | 1     | 1     | 1       | 1     | 1     | 1     | 1     | <del>, ,</del> |
| Pf=Pf1+Pf2                                   | MM                             | 37    | 38    | 37    | 30      | 32    | 33    | 23    | 26    | 26             |
| Annual Average Inflow                        | $10^6 \mathrm{m}^3$            | 1301  | 1301  | 1301  | 1301    | 1301  | 1301  | 1301  | 1301  | 1301           |
| Annual Average Power Discharge               | 10 <sup>6</sup> m <sup>3</sup> | 1124  | 1158  | 1193  | 1014    | 1114  | 1164  | 839   | 1031  | 1120           |
| Annual Average Overflow                      | $10^6 m^3$                     | 108   | 75    | 40    | 219     | 120   | 70    | 395   | 204   | 114            |
| Annual Average Energy E1 (main)              | GWh                            | 239   | 251   | 258   | 195     | 219   | 230   | 145   | 179   | 199            |
| Annual Average Energy E2 (sub)               | GWh                            | 11    | 12    | 12    | 11      | 11    | 11    | 10    | 10    | 10             |
| Annual Average Energy E3 (15Sep)             | GWh                            | 2     | 2     | 2     | 2       | 2     | 2     | 2     | 2     | 2              |
| E=E1+E2+E3                                   | GWh                            | 252   | 264   | 272   | 208     | 231   | 243   | 156   | 191   | 211            |
| Plant Factor                                 | %                              | 43    | 34    | 27    | 49      | 38    | 31    | 56    | 44    | 35             |
| Project Cost                                 | 106\$                          | 217.7 | 224.5 | 231.6 | . 182.2 | 188.8 | 195.7 | 151.2 | 157.6 | 164.2          |
| Energy cost per kw                           | \$/kW                          | 3213  | 2501  | 2047  | 3753    | 2748  | 2173  | 4749  | 3143  | 2364           |
| Energy cost per kwh                          | \$/kWh                         | 960'0 | 0.095 | 0.095 | 0.098   | 0.091 | 060 0 | 0.108 | 0.092 | 0.087          |
| B/C                                          |                                | 0.73  | 0.73  | 0.72  | 0.71    | 0.75  | 0.76  | 0.65  | 0.74  | 0.76           |
| B-C                                          | 106                            | -6.39 | -6.51 | -7.08 | -5.68   | -5 10 | -5.10 | -5.75 | -4.46 | -4.23          |
|                                              |                                |       |       |       |         |       |       |       |       |                |

Table 9.10 Joint Development of La Honda and El Chaparral

| Case                                         |                                | La Honda | Chaparral | Combined |
|----------------------------------------------|--------------------------------|----------|-----------|----------|
| High Water Level HWL                         | EL m                           | 275      | 212       |          |
| Low Water Level LWL                          | EL m                           | 254      | 196       |          |
| Drawdown Depth Hd                            | EL m                           | 21       | 16        |          |
| Normal Water Level NWL                       | EL m                           | 268      | 207       |          |
| Sedimentation Level SL                       | EL m                           | 244      | 161       |          |
| Tail Water Level TWL                         | EL m                           | 198      | 133       |          |
| Penstock Dia (V=5m/s)                        | m                              | 4.5      | _ 5       |          |
| Gross Storage Capacity Vg                    | 10 <sup>6</sup> m <sup>3</sup> | 182      | 189       | -        |
| Effective Storage Capacity Ve                | 10 <sup>6</sup> m <sup>3</sup> | 114      | 106       |          |
| Peaking Time                                 | hr                             | 4        | 4         |          |
| Firm Discharge Qf without 2m <sup>3</sup> /s | m <sup>3</sup> /s              | 8.6      | 11.3      |          |
| Maximum Discharge Qmax                       | m <sup>3</sup> /s              | 80       | 100       |          |
| Gross Head Hg                                | m                              | 70.0     | 74.0      |          |
| Effective Head He                            | m                              | 69.0     | 72.8      |          |
| Installed Capacity P1max (main)              | MW                             | 48.8     | 64.4      | 113.2    |
| Installed Capacity P2max (sub)               | MW                             | 0.0      | 1.3       | 1.3      |
| Pmax=P1max+P2max                             | MW                             | 48.8     | 65.7      | 114.5    |
| Dependable Capacity Pf1 (main)               | MW                             | 24.6     | 29.2      | 53.8     |
| Dependable Capacity Pf2 (sub)                | MW                             | 0.0      | 1.1       | 1.1      |
| Pf=Pf1+Pf2                                   | MW                             | 24.6     | 30.3      | 54.9     |
| Annual Average Inflow                        | 10 <sup>6</sup> m <sup>3</sup> | 1300.6   | 1502.7    |          |
| Annual Average Power Discharge               | 10 <sup>6</sup> m <sup>3</sup> | 1030.5   | 1271.1    |          |
| Annual Average Overflow                      | 10 <sup>6</sup> m <sup>3</sup> | 203.9    | 547.0     |          |
| Annual Average Energy E1 (main)              | GWh                            | 179.5    | 229.0     | 408.5    |
| Annual Average Energy E2 (sub)               | GWh                            | 0.0      | 10.6      | 10.6     |
| Annual Average Energy E3 (15Sep)             | GWh                            | 2.0      | 2.0       | 4.0      |
| E=E1+E2+E3                                   | GWh                            | 181.5    | 241.6     | 423.1    |
| Plant Factor                                 | %                              | 42       | 42        |          |
| Project Cost                                 | 10 <sup>6</sup> \$             | 156.6    | 135.3     | 292.0    |
| Energy cost per kw                           | \$/kW                          | 3207     | 2060      | 2549     |
| Energy cost per kwh                          | \$/kWh                         | 0.096    | 0.062     | 0.077    |
| B/C                                          |                                | 0.71     | 1.07      | 0.88     |
| B-C                                          | 10 <sup>6</sup> \$             | -4.94    | 1.00      | -3.94    |

Table 9.11 El Chaparral Project Comparison of Peaking Time

| Case                                         |                                | CH1-1  | CH1-2  | CH1-3  | CH1-1  | CH1-2  | CH1-3  |
|----------------------------------------------|--------------------------------|--------|--------|--------|--------|--------|--------|
| Peaking Time                                 | hr                             | 4 hr   | 4 hr   | 4 hr   | 3 hr   | 3 hr   | 3 hr   |
| High Water Level HWL                         | ELm                            | 212    | 212    | 212    | 212    | 212    | 212    |
| Low Water Level LWL                          | ELm                            | 195    | 196    | 198    | 195    | 196    | 198    |
| Drawdown Depth Hd                            | EL m                           | 17     | 16     | 14     | 17     | 16     | 14     |
| Normal Water Level NWL                       | EL m                           | 206    | 207    | 207    | 206    | 207    | 207    |
| Sedimentation Level SL                       | EL m                           | 185    | 185    | 185    | 185    | 185    | 185    |
| Tail Water Level TWL                         | EL m                           | 133    | 133    | 133    | 133    | 133    | 133    |
| Penstock Dia (V=5m/s)                        | m                              | 4.2    | 5.0    | 5.8    | 4.2    | 5.0    | 5.8    |
| Gross Storage Capacity Vg                    | 10 <sup>6</sup> m <sup>3</sup> | 189    | 189    | 189    | 189    | 189    | 189    |
| Effective Storage Capacity Ve                | 10 <sup>6</sup> m <sup>3</sup> | 111    | 106    | 96     | 111    | 106    | 96     |
| Peaking Time                                 | hr                             | 4      | 4      | 4      | 3      | 3      | 3      |
| Firm Discharge Qf without 2m <sup>3</sup> /s | m <sup>3</sup> /s              | 8.9    | 8.6    | 8.0    | 8.9    | 8.6    | 8.0    |
| Maximum Discharge Qmax                       | m³/s                           | 70     | 100    | 130    | 70     | 100    | 130    |
| Gross Head Hg                                | m                              | 73.0   | 74.0   | 74.0   | 73.0   | 74.0   | 74.0   |
| Effective Head He                            | m                              | 71.8   | 72.8   | 72,8   | 71.8   | 72.8   | 72 8   |
| Installed Capacity P1max (main)              | MW                             | 44.5   | 64.4   | 83.7   | 44.5   | 64.4   | 83.7   |
| Installed Capacity P2max (sub)               | MW                             | 1.3    | 1.3    | 1.3    | 1.3    | 1.3    | 1.3    |
| Pmax=P1max+P2max                             | MW                             | 45.8   | 65.7   | 85.1   | 45.8   | 65.7   | 85.1   |
| Dependable Capacity Pf1 (main)               | MW                             | 29.3   | 26.6   | 21.5   | 35.9   | 38.4   | 33.2   |
| Dependable Capacity Pf2 (sub)                | MW                             | 1.1    | 1.1    | 1,1    | 1.1    | 1.1    | 1.1    |
| Pf=Pf1+Pf2                                   | MW                             | 30.4   | 27.7   | 22.6   | 37.0   | 39.5   | 34.3   |
| Annual Average Inflow                        | $10^6 \mathrm{m}^3$            | 1489.1 | 1489.1 | 1489.1 | 1489.1 | 1489.1 | 1489.1 |
| Annual Average Power Discharge               | 10 <sup>6</sup> m <sup>3</sup> | 1065.9 | 1226.9 | 1304.7 | 1065.9 | 1226.9 | 1304.7 |
| Annual Average Overflow                      | 10 <sup>6</sup> m <sup>3</sup> | 355.4  | 194.9  | 117.7  | 355.4  | 194.9  | 117.7  |
| Annual Average Energy E1 (main)              | GWh                            | 190.2  | 219.7  | 235.9  | 190.6  | 220.6  | 238.1  |
| Annual Average Energy E2 (sub)               | GWh                            | 10.5   | 10.6   | 10.7   | 10.5   | 106    | 10.7   |
| Annual Average Energy E3 (15Sep)             | GWh                            | 20     | 2.0    | 2,0    | 2.0    | 2.0    | 2,0    |
| E=E1+E2+E3                                   | GWh                            | 202.7  | 232.3  | 248,6  | 203.1  | 233.2  | 250.8  |
| Plant Factor                                 | %                              | 51     | 40     | 33     | 51     | 40     | 34     |
| Project Cost                                 | 10 <sup>6</sup> \$             | 128.5  | 135.3  | 142,2  | 128.5  | 135.3  | 142.2  |
| Energy cost per kw                           | \$/kW                          | 2806   | 2059   | 1672   | 2806   | 2059   | 1672   |
| Energy cost per kwh                          | \$/kWh                         | 0.071  | 0.065  | 0.064  | 0.071  | 0.065  | 0.063  |
| B/C                                          |                                | 1.00   | 1.01   | 0.96   | 1.08   | 1.14   | 1.08   |
| B-C                                          | 10 <sup>6</sup> \$             | 0.00   | 0.16   | -0.67  | 1.08   | 2 10   | 1.31   |

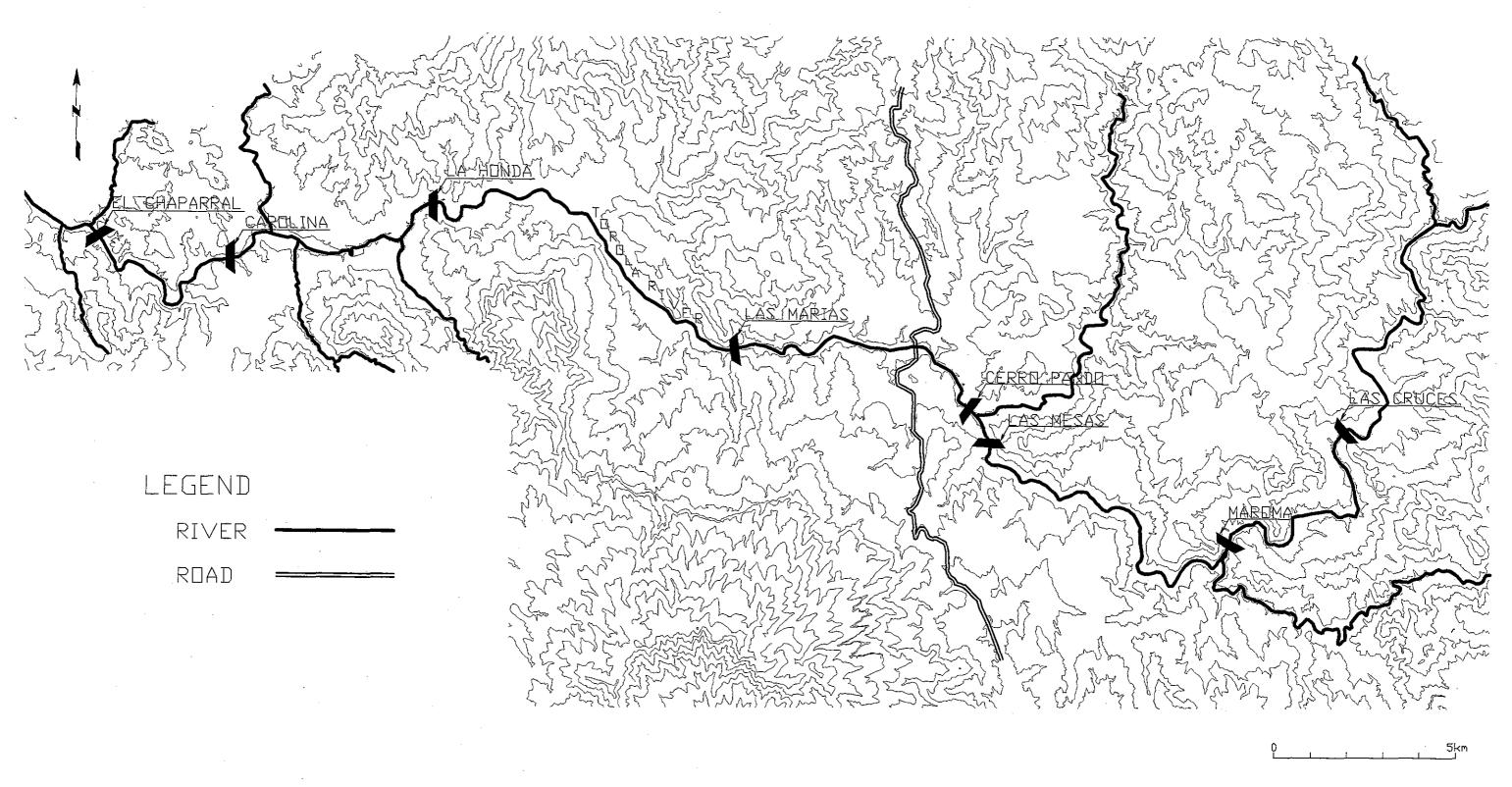



Fig. 9.1 Projects in Torola River (Phase 1A · Phase 1B)

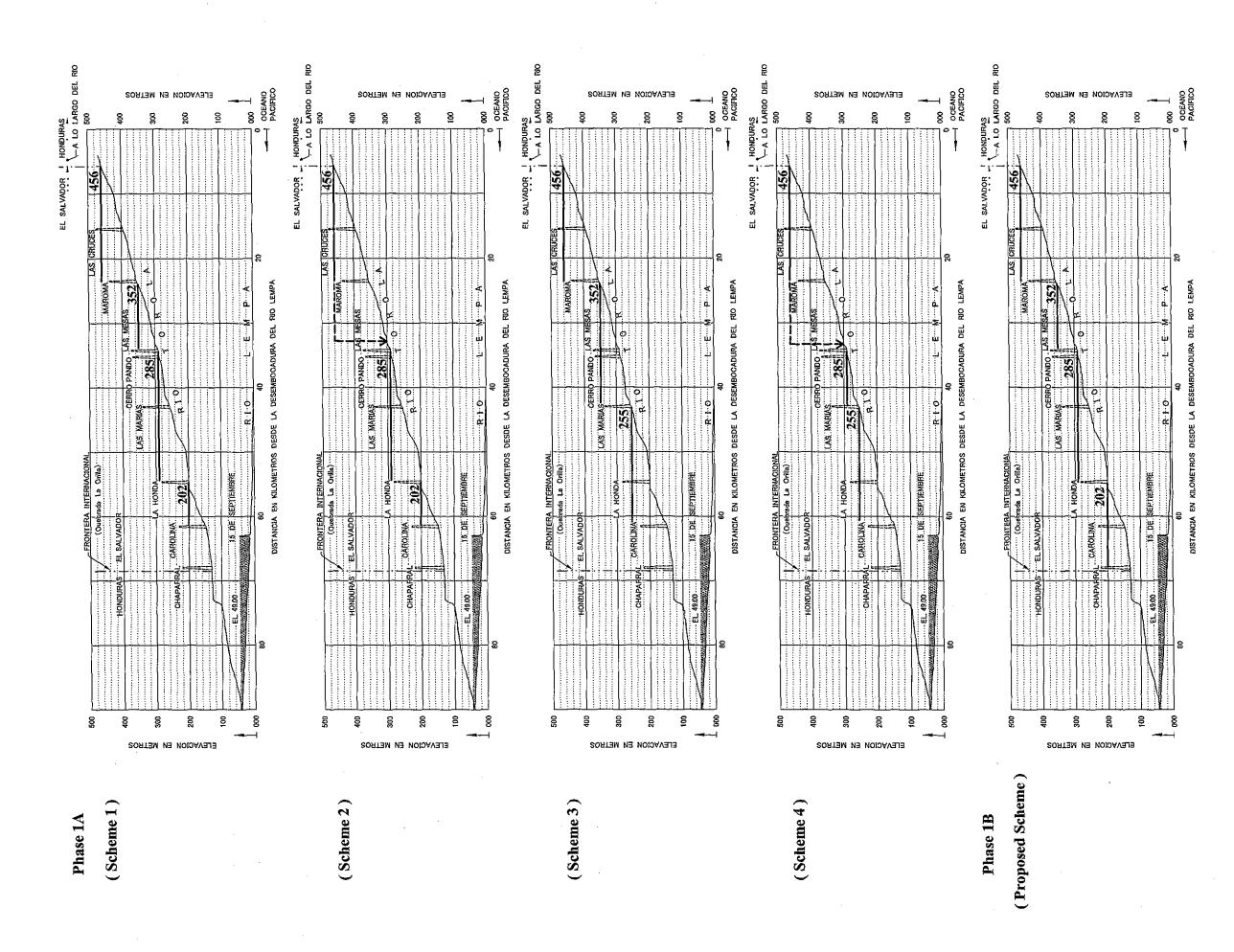



Fig. 9.2 Development Scheme in Torola River (Phase 1A, Phase 1B)

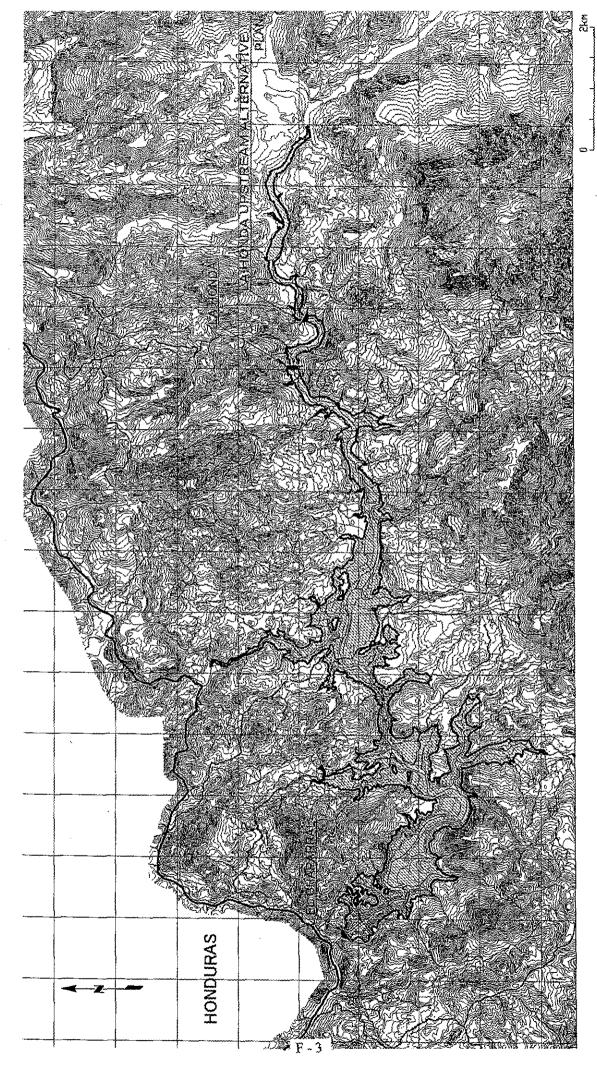
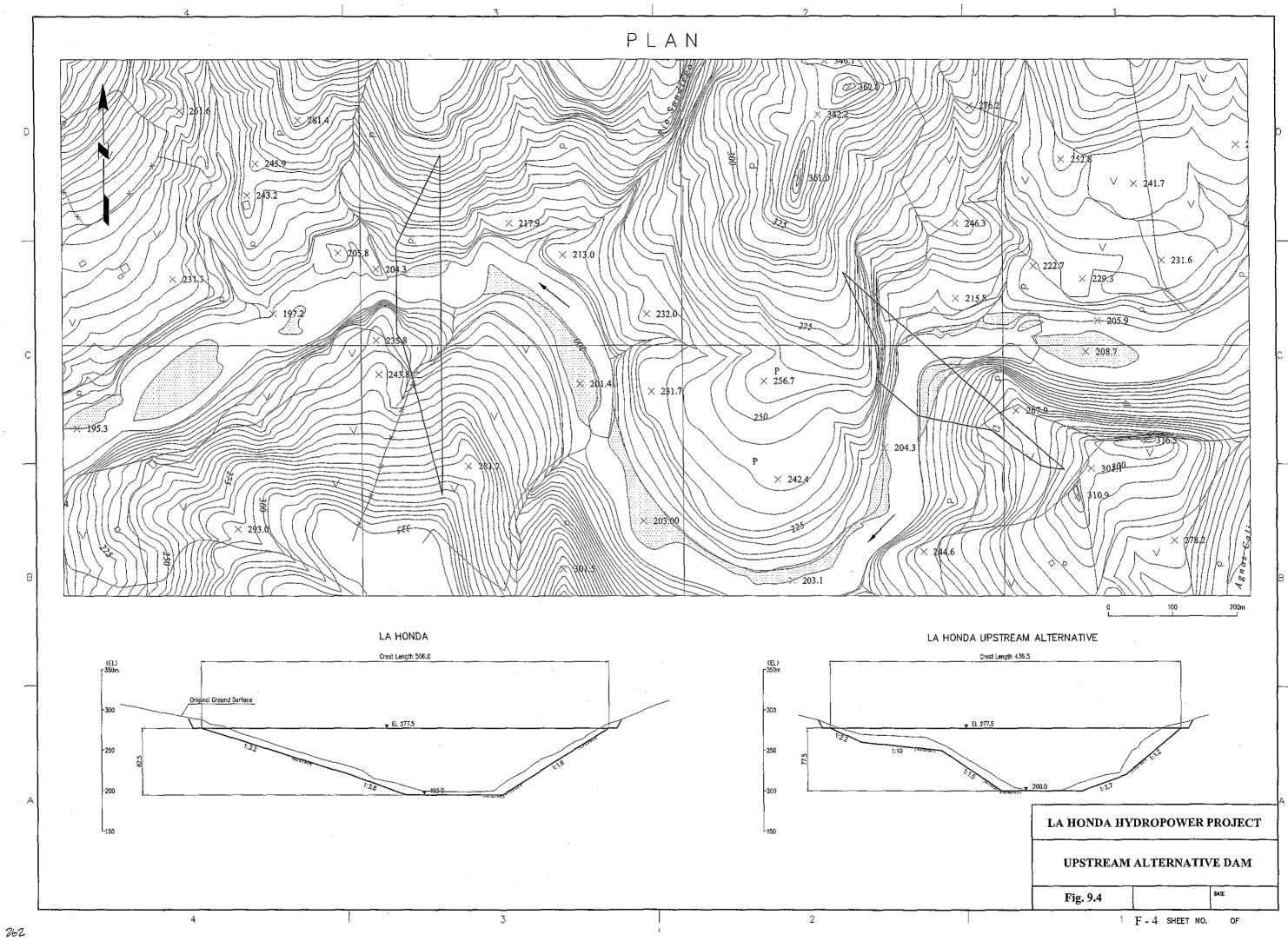




Fig. 9.3 Location of El Chaparral and La Honda Development Plan



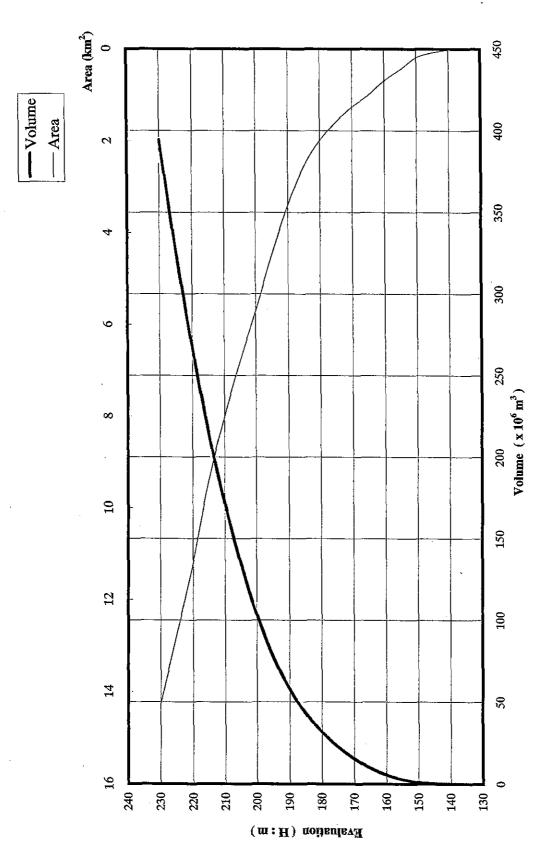
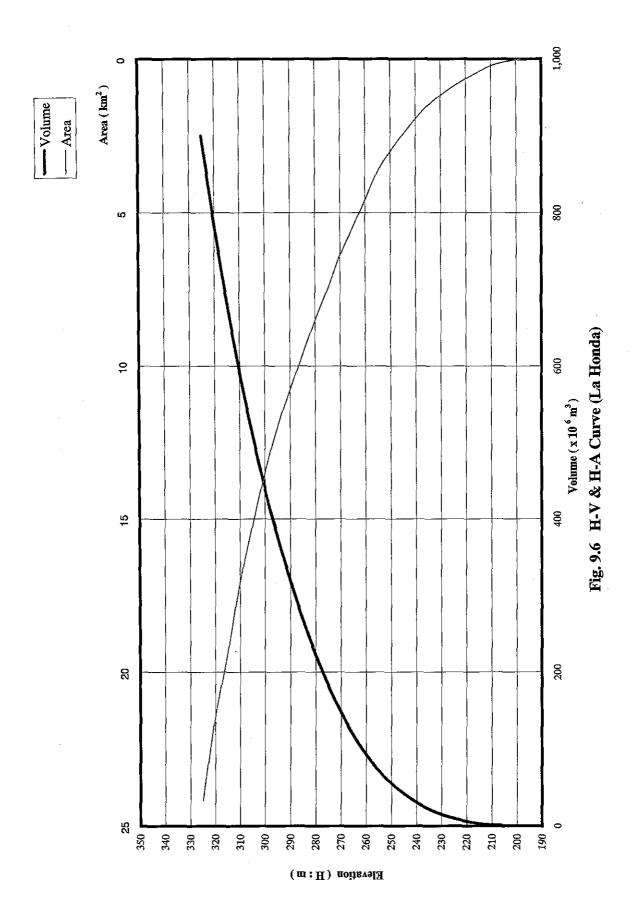




Fig. 9.5 H-V & H-A Curve (EL Chaparal)



F - 6

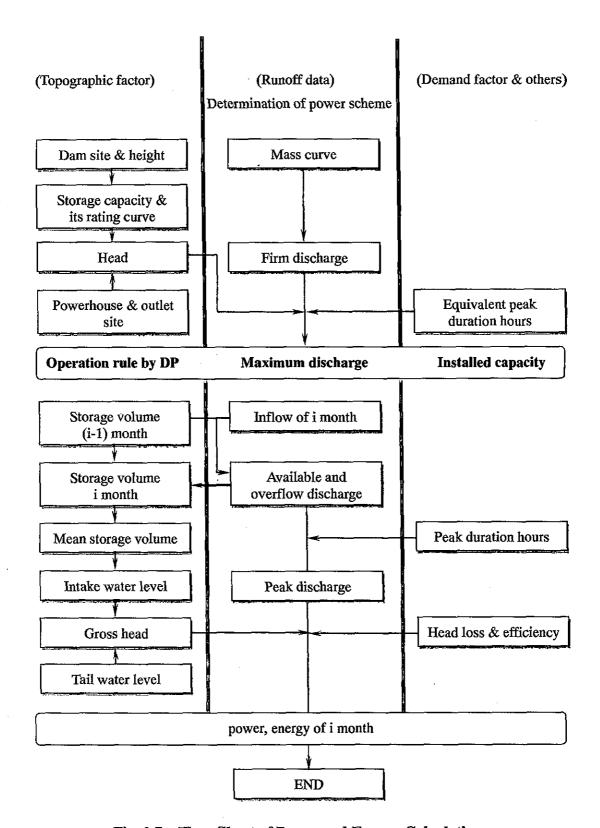
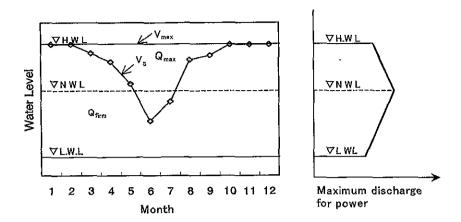




Fig. 9.7 Flow Chart of Power and Energy Calculation



Symbols Vn-1: Storage at the end of previous month

Vn : Storage at the end of current month

V'n : Temporary storage at the end of current month
Vmax : Maximum storage (effective storage capacity)

Vs : Secured storage for firm discharge

Fn : Spill in current month
On : Inflow in current month

Qn : Available discharge for power in current month

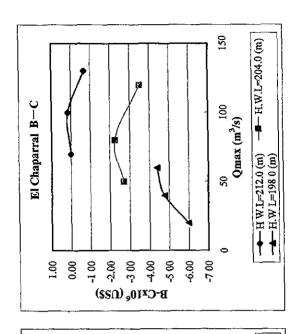
Ofirm: Firm discharge for power

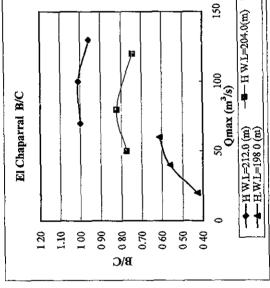
Qmax: Maximum discharge for power, variable depending on water level

En : Evaporation at the end of current month

# Operation Rule

$$V'n = Vn-1 + qn - En$$


- 1.  $V'n \ge Vs$ 
  - (1)  $V'n Vs \ge Qmax \rightarrow Qn = Qmax$
  - (2)  $Qmax > V'n Vs \ge Qfirm \rightarrow Qn = V'n Vs$
  - (3)  $Qfirm > V'n Vs \rightarrow Qn = Qfirm$
- 2. Vs > V'n
  - (1)  $V'n \ge Qfirm \rightarrow Qn = Qfirm$
  - (2)  $Qfirm > V'n \rightarrow Qn = V'n$


$$V'n - Qn - Vmax \ge 0.0 \Rightarrow fn = V'n - Qn - Vmax$$

$$V'n - Qn - Vmax < 0.0 \Rightarrow fn = 0.0$$

$$Vn = V'n - Qn - fn$$

Fig.9.8 Operation Rule of Reservoir by Dynamic Program method for Energy Maximum





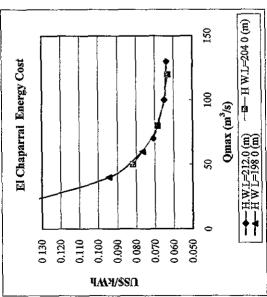
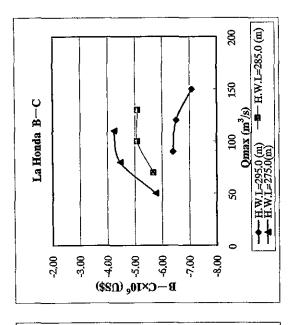
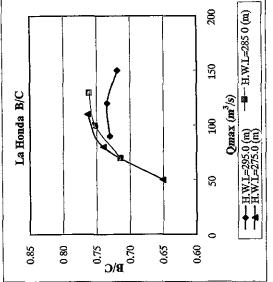





Fig.9.9 Energy Cost, B/C, B-C





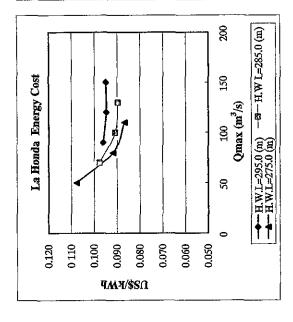
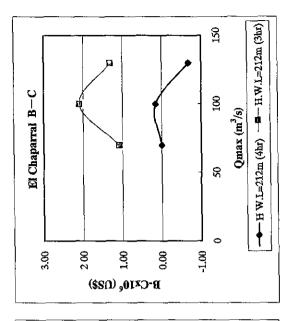
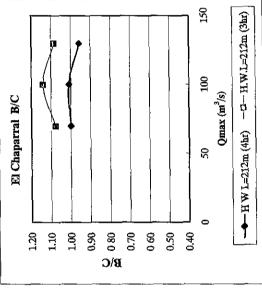





Fig.9.10 Energy Cost, B/C, B-C





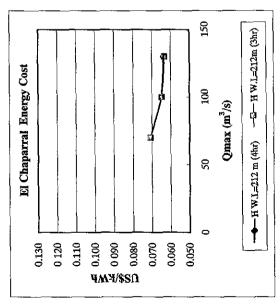



Fig. 9.11 Energy Cost, B/C, B-C

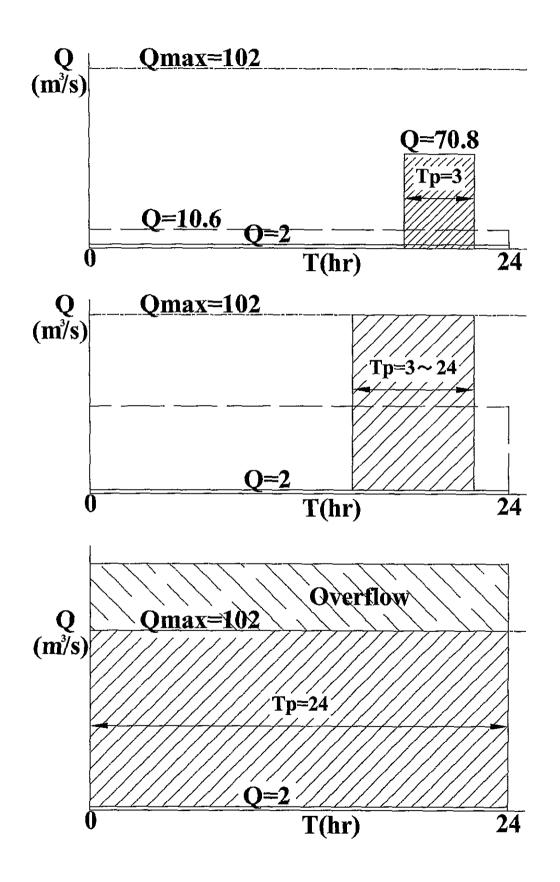



Fig. 9.12 Daily Operation Pattern at El Chaparral Power Plant

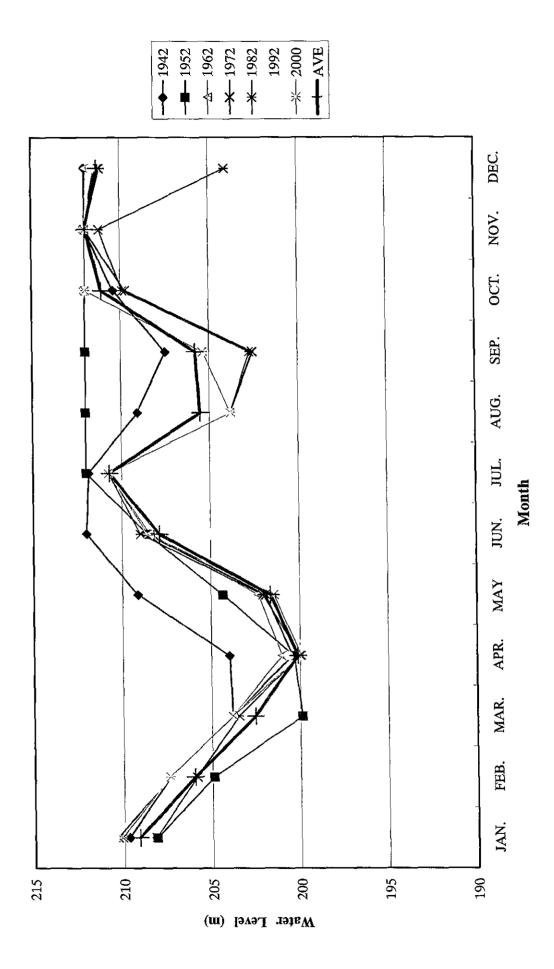



Fig. 9.13 Yearly Reservoir Water Level

10. TRANSMISSION PLAN

# **CONTENTS**

| 10. | Trans | mission P | lan                                | 10-1 |
|-----|-------|-----------|------------------------------------|------|
|     | 10.1  | Outline   | of Transmission System             | 10-1 |
|     | 10.2  | Transmi   | ission Line Plan                   | 10-2 |
|     |       | 10.2.1    | Transmission Line Routes           | 10-2 |
|     |       | 10.2.2    | Transmission System                | 10-2 |
|     |       | 10.2.3    | Composition of Switching Station   | 10-3 |
|     |       | 10.2.4    | Specifications of Main Equipment   | 10-3 |
|     |       | 10.2.5    | Comparison of Transmission Systems | 10-4 |
|     | 10.3  | Power S   | System Analysis                    | 10-5 |
|     |       | 10.3.1    | Scope of Simulation Studies        | 10-5 |
|     |       | 10.3.2    | Load Flow Calculation              | 10-6 |
|     |       | 10.3.3    | Three-Phase Short Circuit Capacity | 10-7 |
|     |       | 10.3.4    | Power System Stability             | 10-8 |
|     | 10.4  | Recomm    | nendation of Transmission System   | 10-9 |

#### 10. Transmission Plan

## 10.1 Outline of Transmission System

Fig.10.1 shows the transmission system in El Salvador as of 2002. The transmission system in this country is composed of 230 kV/115 kV transmission lines. Each transmission line length is 1022 km for the 115 kV lines and 107 km for the 230 kV lines (as of 2002). The main transmission systems are based on 115 kV.

The main power stations, such as the largest thermal power station, Acajutla, and the four major hydro power stations, 15 de Septiembre, Cerron Grande, 5 de Noviembre and Guajoyo, are connected to the power system by two routes or two circuits to maintain reliability, and the power is supplied to the metropolitan area and local cities. Moreover, for the metropolitan area with the greatest power demand, the system, composed of an outer ring transmission line, contributes to better reliability.

The interconnection line exists with the neighboring country of Guatemala at present. The transmission voltage is 230 kV, and transmission capacity is 120 MW. The line is connected to Ahuachapan Substation. The 230 kV interconnection line (with a transmission capacity of 100 MW) between Honduras and El Salvador was connected to the 15 de Septiembre Substation (230 kV) in 2002.

Fig.10.2 shows the expected transmission system to be completed by 2010. The 230 kV transmission system will be enhanced in line with the plan for the Central American interconnection system (SIEPAC), which will connects six countries of Central America. It is planned that the present interconnection line between El Salvador and Guatemala and the interconnection line between El Salvador and Honduras will be run on two circuits, and 230 kV transmission lines connecting the east and west of El Salvador are going to be constructed. The second 230 kV interconnection line, which connects the combined-cycle power plant (IPP) in Puerto Cortes in northern Honduras and Nejapa Substation, is going to be constructed. It is planned that the transmission line length will be 373 km and the capacity of power purchase will be about 450 MW.

#### 10.2 Transmission Line Plan

#### 10.2.1 Transmission Line Routes

Fig. 10.3 shows alternative transmission line route plans that were proposed for this project. The respective outlines are as follows.

### (1) Route A

Route A runs from El Chaparral Power Station to 15 de Septiembre Substation by way of Cerro Chucuyote. It passes the northern side of 15 the de Septiembre dam. The route must cross rivers that flow into the dam, but the width of the rivers is about 150 m. Therefore, long-span steel towers are unnecessary. The transmission line length is 43 km (14 km from El Chaparral to Cerro Chucuyote, 29 km from Cerro Chocuyote to 15 de Septiembre).

### (2) Route B

Route B runs from El Chaparral Power Station to San Miguel Substation. It passes the west side of Cerro Cacahuatique. The transmission line length is 51 km from El Chaparral to San Miguel.

## 10.2.2 Transmission System

Plans based on one circuit transmission were proposed for the sake of economic efficiency. For the enhancement of reliability, the use of a single-phase reclosing system will be necessary. The transmission line route used in this study and the reasons for the selection will be explained later.

The transmission voltage is set at 115 kV, which is the voltage used in most part of the transmission system in El Salvador. Because the rated output of El Chaparral Power Station is 65.7 MW (main turbine: 64.4 MW, sub turbine: 1.3 MW) and the transmission line length will be about 50 km regardless of the selection of Route A or Route B, the transmission voltage (115 kV) is sufficient for the heat capacity of the transmission line and for the power system stability. The number of conductors per phase was examined as a parameter. The results of the study will be described later.

10.2.3 Composition of Switching Station

The single bus system (Fig. 10.4) was given attention as a candidate to be selected from the point

of view of economic efficiency, but we propose using the  $1\frac{1}{2}$  CB bus system instead (Fig. 10.5),

because (1) Almost no damage on the power system in case of a bus fault, and the transmission line

is available for use during maintenance and circuit breaker trouble, (2) the  $1\frac{1}{2}$  CB bus system is

used in El Salvador System as the standard system, and it is desirable to apply the standard system

from the viewpoint of operation and maintenance. Fig. 10.5 shows the switching station of El

Chaparral plant operation. Because there are only two circuits in the switching station, the

installation of a bypass circuit is necessary for the maintenance of the circuit breaker. This will

also make it easier should the need develop in the future for additional circuits to be connected to

the switching station. Fig. 10.6 shows general arrangements of the switching station. The

switching station needs the space of more than 65 m  $\times$  25 m.

10.2.4 Specifications of Main Equipment

Specifications of the main equipment are outlined below. They basically conform to the standard

specifications used in El Salvador.

(1) Conductors

477 MCM ACSR (Flicker) was selected. The capacity is about 126 MVA (630 A) per conductor.

(2) Type and Number of Insulators

· Type:

Ball and Socket Type

• Disc Diameter:

254 mm

Spacing:

146 mm

Standards:

ANSI C.29.1/29.2

To determine the number of insulators investigation of contamination will be needed in the area of

this project.

For the time being, however, we selected the suspension insulator with eight discs and the tension

insulator with nine discs, both of which correspond to CEL's existing 115 kV transmission system.

10 - 3

## (3) Overhead Ground Wire

To protect the transmission line from lightning, the overhead ground wire is placed over the entire length of the transmission line. The following galvanized steel overhead ground wire is appropriate.

• Type and Material: E.H.S galvanized steel

• Exterior diameter: 9.52 mm

Standards: ASTM-A-363

## (4) Transmission Tower

Fig. 10.7 shows the conceptual diagram of the 115 kV transmission tower based on CEL's specifications. This type of tower has been selected for this project.

## (5) Circuit Breaker

Type: Gas (live tank or dead tank)

Rated voltage (RMS): 115 kV
 Rated continuous current: 2,000 A

Symmetrical interrupting capability at rated voltage: 40 kA RMS

Rated Duty Cycle: O-0.3s-CO-3min-CO

### 10.2.5 Comparison of Transmission Systems

In terms of transmission routes, two alternative route plans were prepared. In one of the route plans, the line is connected to 15 de Septiembre Substation, and in another plan it is connected to San Miguel Substation. In addition, the number of conductors used in a phase needed to be reviewed (single or double). Therefore, a total of four transmission patterns were compared, whose results are indicated below.

Table 10.1 shows the transmission capacity, construction cost and annual expense for each of the transmission patterns. The calculation method for the initial cost and annual expense is shown in Table 10.2.

The cost was calculated for all of the circuit breakers and disconnectors at the switching stations, and a series of a circuit breaker and disconnectors at the connected substation. The construction cost in Case 1 is smallest, with k\$4,138, because in Case 1, the transmission line length is the shortest, and the conductor per phase is single. As for the annual expense, Case 2, where the number of conductors per phase is double, costs the least, due to the conversion of the transmission

loss into the monetary term. However, the difference between Case1 and Case 2 in terms of the annual expense is insignificant, as it would require about 15 years of operations to fully recapture the difference in the construction cost by the difference in the annual expense. It is possible to add two circuits in all cases for future expansion. However, the double conductor per phase offers slightly more advantages.

In addition, El Salvador has a plan to build a hydropower station (Eltigre) near the border in cooperation with Honduras, and its electric power will be sent to Cerro Chokuyote via the 230 kV transmission line. Since the plan is not clear at present, the expenses of building transmission lines of 230 kV specifications from Cerro Chokuyote to 15 de Septiembre is shown in Table 10.2 for reference purposes.

In this study, we propose using Case1 for the following reason.

#### (1) Lower construction cost

The difference between Case 1 and Case 2 in terms of annual expenses is considered insignificant.

- (2) Specifications concerning the heat capacity and stability are satisfied. (The results of the stability study will described later)
- (3) In the cases where the connection is made to San Miguel Substation (Case 3 and Case 4), it may be difficult to acquire the rights of way along and around the transmission route.

### 10.3 Power System Analysis

## 10.3.1 Scope of Simulation Studies

The simulated range for the power system analysis is the entire length of the transmission system (230 kV / 115 kV transmission system) in El Salvador. The following items were added to the present power transmission system in an attempt to better reflect the future configuration to be available in 2010, which is the subject of this power system analysis.

- El-Chaparral Power Station and related transmission lines.
- Removal of two generators (installed capacity of single generator: 37 MW) and addition of three generators (ditto: 16 MW) at Acajutla Power Station
- Addition of a generator (installed capacity: 27.5 MW) at Berlin Power Station

- The 230 kV transmission lines related to Central American interconnection system (SIEPAC)
- Newly-established 115 kV transmission line between Acajutla and Ateos
- The 115 kV transmission line between Acajutla and Opico will be go through Sonsonate Substation
- The 115 kV transmission line between San Bartoro and Sun Martin will be replaced by a
  double circuit line.
- · Addition of shunt capacitors to Nejapa, Ateos and Ozatlan Substations

Fig. 10.8 shows the positive sequence impedance map reflecting the above-mentioned items.

## 10.3.2 Load Flow Calculation

## (1) Load Conditions

The peak demand and off-peak demand in 2010 were predicted by using the data of the actual load of each substation in 2000 (Table 10.3 reference) received from CEL. According to the actual load in 2000, the peak demand of the dry season is the annual maximum demand, and the off-peak demand of the wet season is the annual minimum demand. Two cases (peak demand and off-peak demand) in 2010 were predicted by using these actual loads. The results are summarized in Table 10.4. The detailed points of view used in the prediction are as follows.

- The peak demand in 2010 (national sum total) was set to be 1,076 MW. It was decided based on the assumption that 96% of the expected peak power of 1,121 MW is supplied to the load (transmission loss: 4%).
- The off-peak demand in 2010 (national sum total) was set to be 488 MW. It was decided
  based on the assumption that the ratio of the maximum load to the minimum load in 2010
  would not change from the ratio based on the actual loads observed in 2000.
- The load for each substation was assigned based on the actual load in 2000.
- The load power factor was determined based on the actual load in 2001 whose data was obtained from CEL.

## (2) Supply Conditions

Power supply was determined based on the following assumptions.

 The power stations where operating cost is low are operated at maximum output levels as much as possible. This means that the output of the geothermal power plant and the hydroelectric power stations are raised, while demand and supply are kept balanced by adjusting the generator output of Acajutla and Nejapa Power Stations.

Power supplies from Guatemala and Honduras are assumed to be 50 MW and 100 MW
 (Power purchase from IPP: 50 MW is included) during peak demand.

During off-peak demand it is assumed that there is no power supply from other countries.

• In order to check that the generating power of El Chaparral P/S would not cause the overload of transmission lines near the power station, Cerron Grande, 5 de Noviembre, 15 de Septiembre, El Chaparral are operated at maximum output levels.

## (3) Operating Conditions of System

• System voltage: Wit

Within 95% - 105 %

• Generator voltage:

100 ±5 %

• Generator's power factor:

From 95% (lag) to 100%

# (4) Load Flow Calculation Results

Fig. 10.9 and Fig. 10.10 show load flow calculation results for peak demand and off-peak demand. Calculation results are summarized as follows.

- System voltage can be maintained within the proper range (95-105 %) during peak demand and off-peak demand, without relying on additional reactive power suppliers who are not considered in the plan.
- There is no overloaded transmission line caused by the addition of El Chaparral Power Station.

The determination of overloads is carried out based on the Flicker's transmission capacity of 630 A/conductor.

### 10.3.3 Three-Phase Short Circuit Capacity

Three-phase short circuit capacities and currents of each bus in 2010 were calculated. In order to calculate the maximum short circuit capacities and currents, it was assumed that all the generators of El Salvador's system are parallel in the system (Generators are simulated as Xd"). Results are shown in Table 10.5. The maximum three-phase short circuit current in each voltage class is shown in the following table.

| Nominal voltage<br>[kV] | Maximum three-phase short circuit current [kA] |
|-------------------------|------------------------------------------------|
| 230                     | 10.7                                           |
| 115                     | 18.7                                           |
| 46                      | 9.3                                            |
| 34                      | 6.2                                            |
| 23                      | 20.0                                           |
| 13.8                    | 55.1                                           |
| 13.2                    | 24.8                                           |

When the calculation results were compared with specifications of circuit breakers in the 230 kV /115 kV system received from CEL (Table 10.6), it was found that most breakers are capable of cutting off short-circuit currents. However, the interrupting capacity of the circuit breaker (rated interrupting capacity is 3,500 MVA) in 115 kV at Nejapa Substation may be insufficient, and it is considered that the potential replacement need to be investigated. In addition, the rated interrupting current of the circuit breaker at the low-voltage of El Chaparral power station is required to be more than 30 kA.

## 10.3.4 Power System Stability

Power system stability in peak demand and off-peak demand was studied separately. A one-phase ground fault and a three-phase ground fault were simulated in stability studies. The following outlines each of the cases.

| Fault point             | Point close to El-Chaparral Power Station | Point close to 15 de Septiembre S/S on the transmission line connecting 15 de Septiembre and San Martin |
|-------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Fault aspects           | 1LG-(150 ms)-1LO-(300 ms)-1LC             | 3LG-(150 ms)-3LO<br>(no reclosing)                                                                      |
| Peak demand in 2010     | Fig. 10.11                                | Fig. 10.12                                                                                              |
| Off-peak demand in 2010 | Fig.10.13                                 | Fig. 10.14                                                                                              |

<sup>\* 1</sup>LG: Single line-to-ground fault / 1LO: One line open / 1LC: One Line Close (Automatic reclose)

<sup>\* 3</sup>LG: Triple line-to-ground fault / 3LO: Three lines open

Fault clearing time was set at 150 ms, which is the maximum fault clearing time carried out by UT. In the case of the three-phase ground fault, reclosing was not carried out to make conditions severe.

The excitation control systems of each generator were simulated based on the data received from CEL. The governor systems were not simulated, as this study focused on the confirmation of short-range stability. Results are shown in Fig. 10.11-10.14. All cases were confirmed to be stable.

# 10.4 Recommendation of Transmission System

The transmission system recommended for this project is as follows based on the results of economic comparisons and the power system analysis.

1) Transmission route: El Chaparral Power Station -(43 km)- 15 de Septiembre Substation

2) Transmission voltage: 115 kV

3) Transmission line: 3\*1-477 MCM ACSR (Flicker)

4) Overhead Ground Wire: D=9.52 mm (E.H.S galvanized steel)



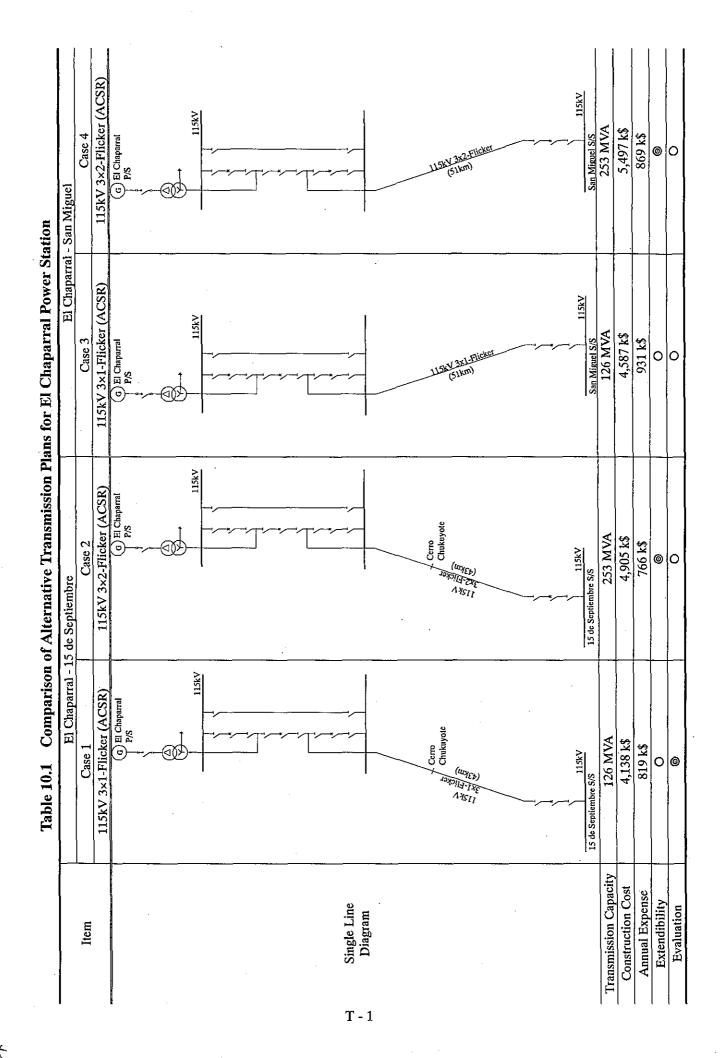



Table 10.2 Economic Comparison of Alternative Transmission Plans

|                                       | Table rose for    | onomine Compariso | TI Charles 15 de Contracto de la Contracto de |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commence of the Commence of th | Con Minnel        |
|---------------------------------------|-------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                       | Cose 1            | Case 2            | Case 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Taference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Case 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - San iviguel     |
| Item                                  | 115kV 3v1-Flicker | 115kV 3×2-Flicker | 115kV 3×1-Flicker(14km)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 115kV 3x2-Flicker(14km)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 115kV 3×1-Flicker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 115kV 3x2.Flicker |
|                                       | (43 km)           | (43 km)           | +<br>230kV 3×2-Flicker(29km)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +<br>230kV 3×2-Flicker(29km)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (51 km)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (51 km)           |
| 1. Construction cost [\$*1000]        |                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| a. Transmission line                  | 2,416             | 3,183             | 3,771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4,020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,775             |
| b. Transformer & Switch               | 1,722             | 1,722             | 1,722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,722             |
| c. Subtotal [\$*1000]                 | 4138              | 4,905             | 5,493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5,742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5497              |
| 2. Annual expense rate                |                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| a. C.K.F $[\infty]$ Transmission line | 10.61             | 10.61             | 10.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10,61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.61             |
| Transformer & Switch                  | 11.02             | 11.02             | 11.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.02             |
| b. O/M [%] <sup>-2</sup>              |                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Transmission line                     | 2.00              | 2.00              | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.00              |
| Transformer & Switch                  | 1.50              | 1.50              | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.50              |
| c. Sub-total [%]                      | <u> </u>          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Transmission line                     | 12.61             | 12.61             | 12.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.61             |
| Transformer & Switch                  | 12.52             | 12.52             | 12.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.52             |
| 3. Transmission line loss             |                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| a. Peak power loss [kW]               | 2,180             | 1,090             | 1,445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,293             |
| b. Annual energy loss [MWh]"          | 4,258             | 2,129             | 2,822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5,050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,525             |
| 4. Annual expense [\$*1000]           |                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| a. Transmission line                  | 305               | 401               | 475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 476               |
| b. Transformer & Switch               | 216               | 216               | 216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 216               |
| c. Transmission line loss             | 298               | 149               | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 177               |
| (loss profit) <sup>*4</sup>           |                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                 |
| Total [8*1000]                        | 810, 481          | 99L               | 688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 698               |
| NI-4-1                                |                   |                   | 77.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The state of the s | WALL COLORS OF THE STREET, THE |                   |

Note)

\*1: C.R.F (Capital Recovery Factor) is calculated from the following assumptions.

- Annual discount rate: 10.0 %

- Service life of equipment

Transformer & Switch; 25 years

Transformer & Switch; 25 years

- (C.R.F. for Transmission line) =  $0.10^*(1+0.10)^{30} / \{(1+0.10)^{30-1}\}^*100 = 10.61$  [%] - (C.R.F. for Transformer & Switch) =  $0.10^*(1+0.10)^{25} / \{(1+0.10)^{25}-1\}^*100 = 11.02$  [%]

\*2: O/M (Operation and Maintenance of the equipment): Annual expense rate on the construction costs (%/annum)

\*3: Annual energy loss is calculated as follows.

(Loss Factor) = 0.3\*(Annual Load Factor)+0.7\*(Annual Load Factor)<sup>2</sup>
\*4; power rate: 0.07 USS/kWn (Annual Energy Loss) = (Peak Power Loss)\*8,760\*(Loss Factor)

Table 10.3 Actual Load of Each Substation in 2000

|                                         |                   | Dry S               | Season               | Wet                 | Season               |
|-----------------------------------------|-------------------|---------------------|----------------------|---------------------|----------------------|
| Voltage                                 | Substation        | Peak Demand<br>[MW] | Off-peak Demand [MW] | Peak Demand<br>[MW] | Off-peak Demand [MW] |
|                                         | Nuevo Cuscatlan   | 53.0                | 25.8                 | 54.1                | 25.5                 |
|                                         | Nejapa            | 64.1                | 48.6                 | 71.0                | 42.9                 |
| 23 kV                                   | San Antonio Abad  | 71.0                | 28.1                 | 73.5                | 27.9                 |
|                                         | San Bartolo       | 43.1                | 28.5                 | 43.3                | 25.3                 |
|                                         | Soyapango         | 73.5                | 39.2                 | 77.7                | 42.3                 |
| 241-37                                  | Acajutla          | 8.1                 | 3.5                  | 8.2                 | 3.5                  |
| 34 kV                                   | Ateos             | 6.8                 | 5.1                  | 6.5                 | 4.5                  |
| - 31                                    | 15 de Septiembre  | 24.8                | 10.0                 | 25.3                | 9.4                  |
|                                         | Acajutla          | 11.1                | 4.5                  | 11.8                | 4.5                  |
|                                         | Ahuachapán        | 16.1                | 6.7                  | 12.0                | 4.3                  |
|                                         | Ateos             | 27.2                | 13.3                 | 26.0                | 13.1                 |
|                                         | Cerrón Grande     | 12.7                | 4.4                  | 12.5                | 3.6                  |
|                                         | Guajoyo           | -4.1                | -7.4                 | -4.1                | -7.4                 |
| 46 kV                                   | Opico             | 14.4                | 8.3                  | 13.4                | 6.5                  |
| 40 K V                                  | Santa Ana         | 42.6                | 21.6                 | 42.6                | 19.6                 |
|                                         | San Miguel        | 43.3                | 19.7                 | 26.5                | 11.2                 |
|                                         | Sonsonate         | 10.8                | 2.5                  | 8.7                 | 0.6                  |
|                                         | Soyapango         | 19.7                | 8.9                  | 20.6                | 7.3                  |
|                                         | San Rafael Cedros | 27.6                | 9.5                  | 27.5                | 9.0                  |
|                                         | Santo Tomás       | 44.0                | 19.4                 | 41.9                | 20.3                 |
|                                         | Tecoluca          | 14.4                | 6.2                  | 13.9                | 4.3                  |
| *************************************** | TOTAL             | 624.2               | 306.4                | 612.9               | 278.2                |

Table 10.4 Forecasted Load of Each Substation in 2010

| ¥7.1.   |                   |         | Peak Demand | 1      | Of     | f-peak Dema | nd           |
|---------|-------------------|---------|-------------|--------|--------|-------------|--------------|
| Voltage | Substation        | P [MW]  | Q [MVar]    | PF [%] | P [MW] | Q [MVar]    | PF [%]       |
|         | Nuevo Cuscatlan   | 89.1    | 22.9        | 96.9   | 42.8   | 11.0        | 96.9         |
|         | Nejapa            | 107.8   | 30.5        | 96.2   | 72.0   | 20.3        | 96.2         |
| 23 kV   | San Antonio Abad  | 119.4   | 25.6        | 97.8   | 46.8   | 10.1        | 97.8         |
|         | San Bartolo       | 72.5    | 12.5        | 98.5   | 42.5   | 7.3         | 98.5         |
|         | Soyapango         | 123.6   | 26.6        | 97.8   | 71.0   | 15.3        | 97.8         |
| 34 kV   | Acajutla          | 13.6    | 4.5         | 95.0   | 5.9    | 1.9         | 95.0         |
| 34 K V  | Ateos             | 11.4    | 2.0         | 98.5   | 7.6    | 1.3         | 98.5         |
|         | 15 de Septiembre  | 41.7    | 11.4        | 96.5   | 15.8   | 4.3         | 96.5         |
|         | Acajutla          | 18.7    | 6.1         | 95.0   | 7.6    | 2.5         | 95.0         |
|         | Ahuachapán        | 27.1    | 5.9         | 97.7   | 7.2    | 1.6         | 97.7         |
|         | Ateos             | 45.7    | 19.8        | 91.8   | 22.0   | 9.5         | 91.8         |
|         | Cerrón Grande     | 21.4    | 6.4         | 95.8   | 6.0    | 1.8         | 95.8         |
|         | Guajoyo           | 8.6     | 2.7         | 95.4   | 2.7    | 0.8         | 95.4         |
|         | Opico             | 24.2    | 9.6         | 93.0   | 10.9   | 4.3         | 93.0         |
| 46 kV   | Santa Ana         | 71.6    | 20.2        | 96.2   | 32.9   | 9.3         | 96.2         |
|         | San Miguel        | 72.8    | 27.8        | 93.4   | 18.8   | 7.2         | 93.4         |
|         | Sonsonate         | 18.2    | 7.0         | 93.4   | 1.0    | 0.4         | 93.4         |
|         | Soyapango         | 33.1    | 4.5         | 99.1   | 12.3   | 1.7         | 99.1         |
|         | San Rafael Cedros | 46.4    | 8.9         | 98.2   | 15.1   | 2.9         | 98.2         |
|         | Santo Tomás       | 74.0    | 23.3        | 95.4   | 34.1   | 10.7        | 95.4         |
|         | Tecoluca          | 24.2    | 7.2         | 95.8   | 7.2    | 2.2         | 95.8         |
|         | El Pedregal       | 11.0    | 2.2         | 98.0   | 6.0    | 1.2         | 98.0         |
|         | TOTAL             | 1,076.2 | 287.6       | -      | 488.0  | 127.6       | <del>-</del> |

Table 10.5 Maximum Short Circuit Currents in 2010 (1/2)

| No. | Bus Name             | Rated Voltage [kV] | 3-phase Short Capacity [MVA] | 3-phase Fault Current [kA] |
|-----|----------------------|--------------------|------------------------------|----------------------------|
| 1   | AHUA-230             | 230                | 4267                         | 10.7                       |
|     | NEJA-230             | 230                | 3898                         | 9.8                        |
|     | 15SE-230             | 230                | 3992                         | 10.0                       |
|     | PAVA-230             | 230                | 4191                         | 10.5                       |
|     | AHUA-115             | 115                | 3111                         | 15.6                       |
|     | SANA-115             | 115                | 1369                         | 6.9                        |
|     | GUAJ-115             | 115                | 682                          | 3.4                        |
|     | SONS-115             | 115                | 2358                         | 11.8                       |
|     | ACAJ-115             | 115                | 2306                         | 11.6                       |
|     | OPIC-115             | 115                | 1878                         | 9.4                        |
|     | ATEO-115             | 115                | 1912                         | 9.6                        |
|     | SANT-115             | 115                | 2575                         | 12.9                       |
|     | NCUS-115             | 115                | 1479                         | 7.4                        |
|     | NEJA-115             | 115                | 3720                         | 18.7                       |
|     | SOYA-115             | 115                | 2726                         | 13.7                       |
|     | SBAR-115             | 115                | 2461                         | 12.4                       |
|     | STOM-115             | 115                | 1838                         | 9.2                        |
|     | SMAR-115             | 115                | 3058                         | 15.4                       |
|     | CGRA-115             | 115                | 2524                         | 12.7                       |
|     | SRAF-115             | 115                | 2377                         | 11.9                       |
|     | TECO-115             | 115                | 916                          | 4.6                        |
|     | ELPE-115             | 115                | 640                          | 3.2                        |
|     | 5NOV-115             | 115                | 1759                         | 8.8                        |
|     | OZAT-115             | 115                | 698                          | 3.5                        |
|     | 15SE-115             | 115                | 3656                         | 18.4                       |
|     | BERL-115             | <del></del>        | 1896                         | 9.5                        |
|     | ·                    | 115                |                              | 5.9                        |
|     | SMIG-115<br>ELCH-115 | 115                | 1185<br>728                  | 3.7                        |
|     |                      | 115                |                              | <del></del>                |
|     | AHUA-46              | 46                 | 710                          | 8.9                        |
|     | GUAJ-46              | 46                 | 296                          | <del></del>                |
|     | SANA-46              | 46                 | 333                          | 4.2<br>2.1                 |
|     | OPIC-46              | 46                 | 168                          |                            |
|     | SONS-46              | 46                 | 392                          | 4.9                        |
|     | ACAJ-46              | 46                 | 146                          | 1.8                        |
|     | ATEO-46              | 46                 | 496                          | 6.2                        |
|     | SOYA-46              | 46                 | 397                          | 5.0                        |
|     | STOM-46<br>ELPE-46   | 46                 | 506                          | 6.3                        |
|     |                      | 46                 | 261                          | 3.3                        |
|     | TECO-46<br>SRAF-46   | 46                 | 308                          | 3.9                        |
|     |                      | 46                 | 377                          | <del></del>                |
|     | 15SE-46              | 46                 | 250                          | 3.1                        |
|     | 15SE-46b             | 46                 | 739                          | 9.3                        |
|     | SMIG-46              | 46                 | 600                          | 7.5                        |
|     | CGRA-46              | 46                 | 213                          | 2.7                        |
|     | OZAT-46              | 46                 | 302                          | 3.8                        |
|     | ACAJ-34              | 34                 | 363                          | 6.2                        |
|     | ATEO-34              | 34                 | 195                          | 3.3                        |
|     | SANT-23              | 23                 | 665                          | 16.7                       |
|     | NCUS-23              | 23                 | 561                          | 14.1                       |
| 50  | SBAR-23              | 23                 | 668                          | 16.8                       |

Note: Calculation Conditions

All the generators are connected to the power system.
El Chaparral P/S is connected to 15 de Septiembre S/S. (Transmission line: 3\*1 Flicker)

Table 10.5 Maximum Short Circuit Currents in 2010 (2/2)

| No. | Bus Name | Rated Voltage<br>[kV] | 3-phase Short Capacity [MVA] | 3-phase Fault Current [kA]                       |
|-----|----------|-----------------------|------------------------------|--------------------------------------------------|
| 51  | SOYA-23  | 23                    | 797                          | 20.0                                             |
|     | NEJA-23  | 23                    | 755                          | 19.0                                             |
| 53  | AHUA-U1  | 13.8                  | 699                          | 29.2                                             |
| 54  | AHUA-U2  | 13.8                  | 699                          | 29.2                                             |
| 55  | AHUA-U3  | 13.8                  | 412                          | 17.2                                             |
| 56  | ACAJ-U1  | 13.8                  | 510                          | 21.3                                             |
| 57  | ACAJ-U2  | 13.8                  | 524                          | 21.9                                             |
| 58  | ACAJ-U5  | 13.8                  | 1171                         | 49.0                                             |
| 59  | ACAJ-U6  | 13.8                  | 292                          | 12.2                                             |
| 60  | ACAJ-U7  | 13.8                  | 292                          | 12.2                                             |
| 61  | ACAJ-U8  | 13.8                  | 292                          | 12.2                                             |
| 62  | GUAJ-U1  | 13.8                  | 276                          | 11.5                                             |
| 63  | SOYA-U1  | 13.8                  | 559                          | 23.4                                             |
| 64  | SOYA-U2  | 13.8                  | 558                          | 23.3                                             |
| 65  | CGRA-U1  | 13.8                  | 1098                         | 45.9                                             |
| 66  | CGRA-U2  | 13.8                  | 1316                         | 55.1                                             |
| 67  | 5NOV-U1  | 13.8                  | 338                          | 14.1                                             |
| 68  | 5NOV-U2  | 13.8                  | 290                          | 12.1                                             |
| 69  | 5NOV-U3  | 13.8                  | 193                          | 8.1                                              |
| 70  | 5NOV-U4  | 13.8                  | 485                          | 20.3                                             |
| 71  | 5NOV-U5  | 13.8                  | 485                          | 20.3                                             |
| 72  | 15SE-U1  | 13.8                  | 1585                         | 66.3                                             |
| 73  | 15SE-U2  | 13.8                  | 1585                         | 66.3                                             |
|     | BERL-U2  | 13.8                  | 566                          | 23.7                                             |
|     | BERL-U3  | 13.8                  | 516                          | 21.6                                             |
|     | SOYA-U3  | 13.2                  | 511                          | 22.4                                             |
| 77  | SMIG-U1  | 13.2                  | 306                          | 13.4                                             |
| 78  | BERL-U1  | 13.2                  | 566                          | 24.8                                             |
| 79  | ELCH-U1  | .,                    | , , 618                      | 25.9 Line 10 10 10 10 10 10 10 10 10 10 10 10 10 |

Note: Calculation Conditions

<sup>All the generators are connected to the power system.
El Chaparral P/S is connected to 15 de Septiembre S/S. (Transmission line: 3\*1 Flicker)</sup> 

Table 10.6 Specifications of Circuit Breakers in Transmission System (1/5)

|     |                |         | Ale container  | <b></b>        |                 |                               | •                  |                                    |                                    | Ì                      |
|-----|----------------|---------|----------------|----------------|-----------------|-------------------------------|--------------------|------------------------------------|------------------------------------|------------------------|
| No. | Substation     | Code    | Manufacturer   | Model-Type     | Voltage<br>[kV] | Rated Opening<br>Time [cycle] | Rated Current [kA] | Rated Interrupting<br>Current [kA] | Methods of Current<br>Interruption | Year of<br>Manufacture |
| H   | 5 de Noviembre | 10-7-01 | ABB            | LTB145D1/B     | 145             | 1.8                           | 3,150              | 40                                 | SF <sub>6</sub>                    | 1995                   |
| 2   | 5 de Noviembre | 10-7-02 | ABB            | LTB145D1/B     | 145             | 1.8                           | 3,150              | 40                                 | $\mathrm{SF}_6$                    | 1995                   |
| 6   | 5 de Noviembre | 10-7-03 | HVB            | HVB121-40000   | 121             | 1.9                           | 2,000              | 40                                 | SF <sub>6</sub>                    |                        |
| 4   | 5 de Noviembre | 10-7-04 | HVB            | HVB121-40000   | 121             | 1.9                           | 2,000              | 40                                 | SF                                 |                        |
| 5   | 5 de Noviembre | 10-7-05 | HVB            | HVB121-40000   | 121             | 1.9                           | 2,000              | 40                                 | SF                                 | ;<br>;                 |
| 9   | 5 de Noviembre | 10-7-06 | ABB            | LTB145D1/B     | 145             | 18                            | 3,150              | 40                                 | SF <sub>6</sub>                    | 1995                   |
| 7   | 5 de Noviembre | 10-7-07 | ASEA           | HLD 145/1250 B | 138             | 3.0                           | 1,250              | 5,000 MVA                          | Oil                                |                        |
| ∞   | Guajoyo        | 11-7-01 | ABB            | LTB145D1/B     | 145             | 1.8                           | 3,150              | 40                                 | ${ m SF}_6$                        | 1995                   |
| 6   | Acajutla       | 12-7-06 | ABB            | HPL145/25A1    | 145             | 1.4                           | 2,500              | 40                                 | $SF_6$                             | 1992                   |
| 10  | Acajutla       | 12-7-07 | ABB            | HPL145/25A1    | 145             | 1.4                           | 2,500              | 40                                 | $\mathrm{SF}_{6}$                  | 1992                   |
| 11  | Acajutla       | 12-7-08 | ABB            | HPL145/25A1    | 145             | 1.4                           | 2,500              | 40                                 | SF,                                | 1992                   |
| 12  | Acaiutla       | 12-7-09 | ABB            | HPL145/25A1    | 145             | 1.4                           | 2,500              | 40                                 | ${ m SF}_6$                        | 1992                   |
| 13  | Acaiutla       | 12-7-10 | ABB            | HPL145/25A1    | 145             | 1.4                           | 2,500              | 40                                 | $SF_6$                             | 1992                   |
| 14  | Acajutla       | 12-7-11 | ABB            | HPL145/25A1    | 145             | 1.4                           | 2,500              | 40                                 | $SF_6$                             | 1992                   |
| 15  | Acaputla       | 12-7-13 | ABB            | HPL145/25A1    | 145             | 1.4                           | 2,500              | 40                                 | $\mathrm{SF}_6$                    | 1992                   |
| 16  | Acaiutla       | 12-7-14 | ABB            | HPL145/25A1    | 145             | 14                            | 2,500              | 40                                 | ${ m SF}_6$                        | 1992                   |
| 17  | Acajutla       | 13-7-01 | ABB            | HPL145/25A1    | 145             | 1.4                           | 2,500              | 40                                 | $SF_{\delta}$                      | 1992                   |
| 18  | Acajutla       | 13-7-02 | ABB            | HPL145/25A1    | 145             | 1.4                           | 2,500              | 40                                 | SF <sub>6</sub>                    | 1992                   |
| 19  | Acajutla       | 13-7-03 | ABB            | HPL145/25A1    | 145             | 1.4                           | 2,500              | 40                                 | $\mathrm{SF}_{6}$                  | 1992                   |
| 20  | Acaiutla       | 13-7-04 | ABB            | HPL145/25A1    | 145             | 1.4                           | 2,500              | 40                                 | ${ m SF}_6$                        | 1992                   |
| 21  | Acajutla       | 13-7-05 | ABB            | HPL145/25A1    | 145             | 1.4                           | 2,500              | 40                                 | $\mathrm{SF}_{b}$                  | 1992                   |
| 22  | Acaiutla       | 13-7-91 | ASEA           | HLR-123/2501E  | 123             | 1.8                           | 2,500              | 30                                 | Oil                                | 1979                   |
| 23  | Ahuachapán     | 16-7-01 | MAGRINI Office | OCERFP145      | 115             | 3,0                           | 1,200              | 25                                 | Oil                                | 1974                   |
| 42  | Ahuachapán     | 16-7-02 | MAGRINI Office | OCERFP145      | 115             | 3.0                           | 1,200              | 25                                 | Oil                                | 1974                   |
| 25  | Ahuachapán     | 16-7-03 | ASEA           | HLR-123/25 01E | 123             | 1.8                           | 2,500              | 40                                 | lίΟ                                | 1979                   |
| 26  | Ahuachapán     | 16-7-04 | ASEA           | HLR-123/25 01E | 123             | 1.8                           | 2,500              | 40                                 | IiO                                | 1979                   |
| 27  | Ahuachapán     | 16-7-05 | MAGRINI Office | OCERFP145      | 115             | 3.0                           | 1,200              | 25                                 | Oil                                | 1974                   |
| 28  | Ahuachapán     | 16-7-07 | BBC            | ELFSL2-1       | 123             | 1.8                           | 2,000              | 25                                 | $\mathrm{SF}_6$                    | 1985                   |
| 29  | Ahuachapán     | 16-7-08 | BBC            | ELFSL2-1       | 123             | 1.8                           | 2,000              | 25                                 | $\mathrm{SF}_6$                    | 1985                   |
|     |                |         |                |                |                 |                               |                    |                                    |                                    |                        |

Table 10.6 Specifications of Circuit Breakers in Transmission System (2/5)

| Š  |                  |         |                | _              |                 |                               |                    |                                 |                                    |                        |
|----|------------------|---------|----------------|----------------|-----------------|-------------------------------|--------------------|---------------------------------|------------------------------------|------------------------|
|    | Substation       | Code    | Manufacturer   | Model-Type     | Voltage<br>[kV] | Rated Opening<br>Time [cycle] | Rated Current [kA] | Rated Interrupting Current [kA] | Methods of Current<br>Interruption | Year of<br>Manufacture |
| 8  | Ahuachapán       | 16-7-91 | MAGRINI Office | OCERFP145      | 115             | 3.0                           | 1,200              | 25                              | lio                                | 1974                   |
| 31 | Ahuachapán       | 16-7-92 | ASEA           | HLR-123/250 1E | 123             | 18                            | 2,500              | 40                              | ιίΟ                                | 1979                   |
| 32 | Ahuachapán       | 16-8-01 | BBC            | ELFSL4-2       | 245             | 2.0                           | 2,000              | 31.5                            | SF                                 | 1985                   |
| 33 | Ahuachapán       | 16-8-01 | BBC            | ELFSL4-2       | 245             | 2.0                           | 2,000              | 31.5                            | $SF_{\epsilon}$                    | 1985                   |
| 34 | Ahuachapán       | 16-8-03 | BBC            | ELFSL4-2       | 245             | 2.0                           | 2,000              | 31.5                            | SF                                 | 1985                   |
| 35 | Cerrón Grande    | 17-7-03 | ASEA           | HLD 145/1250 B | 115             | 3.0                           | 1,250              | 27.5                            | lıO                                | 1975                   |
| 36 | Cerrón Grande    | 17-7-11 | ASEA           | HLD 145/1250 B | 115             | 3.0                           | 1,250              | 27.5                            | liO                                | 1975                   |
| 37 | Cerrón Grande    | 17-7-12 | ASEA           | HLD 145/1250 B | 115             | 3.0                           | 1,250              | 27.5                            | lio                                | 1975                   |
| 38 | Cerrón Grande    | 17-7-13 | ASEA           | HLD 145/1250 B | 115             | 3.0                           | 1,250              | 27.5                            | lio                                | 1975                   |
| 39 | Cerrón Grande    | 17-7-21 | ASEA           | HLD 145/1250 B | 115             | 3.0                           | 1,250              | 27.5                            | 110                                | 1975                   |
| 40 | Cerrón Grande    | 17-7-22 | ASEA           | HLD 145/1250 B | 115             | 3.0                           | 1,250              | 27.5                            | liO                                | 1975                   |
| 41 | Cerrón Grande    | 17-7-23 | ASEA           | HLD 145/1250 B | 115             | 3.0                           | 1,250              | 27.5                            | lio                                | 1975                   |
| 42 | Cerrón Grande    | 17-7-32 | ABB            | LTB145D1/B     | 145             | 1.8                           | 3,150              | 40                              | SF                                 | 1995                   |
| 43 | Cerrón Grande    | 17-7-33 | ABB            | LTB145D1/B     | 145             | 1.8                           | 3,150              | 40                              | SF,                                | 1995                   |
| 44 | Cerrón Grande    | 17-7-42 | ASEA           | HLD 145/1250 B | 511             | 3.0                           | 1,250              | 27.5                            | Oil                                | 1975                   |
| 45 | Cerrón Grande    | 17-7-43 | ASEA           | HLD 145/1250 B | 115             | 3.0                           | 1,250              | 27.5                            | liO                                | 1975                   |
| 46 | 15 de Septiembre | 18-7-01 | ABB            | LTB145D1/B     | 145             | 1.8                           | 3,150              | 40                              | SFe                                | 1995                   |
| 47 | 15 de Septiembre | 18-7-02 | ASEA           | LTB145D1/B     | 145             | 1.8                           | 3,150              | 40                              | SF                                 | 1995                   |
| 48 | 15 de Septiembre | 18-7-11 | ABB            | LTB145D1/B     | 145             | 1.8                           | 3,150              | 40                              | SF6                                | 1995                   |
| 49 | 15 de Septiembre | 18-7-12 | ABB            | LTB145D1/B     | 145             | 1.8                           | 3,150              | 40                              | SF                                 | 1995                   |
| 20 | 15 de Septiembre | 18-7-13 | ASEA           | HLR123/2501E1  | 123             | 1.8                           | 2,500              | 356                             | li0                                | 1980                   |
| 51 | 15 de Septiembre | 18-7-21 | ALSTHOM        | S1-121-F34031  | 121             | 6.1                           | 2,000              | 40                              | SF                                 | 1998                   |
| 52 | 15 de Septiembre | 18-7-22 | ALSTHOM        | S1-121-F34031  | 121             | 1.9                           | 2,000              | 40                              | SF                                 | 1998                   |
| 53 | 15 de Septiembre | 18-7-23 | ASEA           | HLR123/2501E1  | 123             | 1.8                           | 2,500              | 35.6                            | liO                                | 1980                   |
| 54 | 15 de Septiembre | 18-7-31 | DBE            | 121PA40-20B    | 121             | 1.9                           | 2,000              | 40                              | SF                                 | 1987                   |
| 55 | 15 de Septiembre | 18-7-32 | ASEA           | HLR123/2501E1  | 123             | 1.8                           | 2,500              | 35.6                            | liO                                | 1980                   |
| 26 | 15 de Septiembre | 18-7-33 | ASEA           | HLR123/2501E1  | 123             | 1.8                           | 2,500              | 356                             | liO                                | 1980                   |
| 57 | Soyapango        | 30-7-01 | BBC            | 121PA40-20B    | 121             | 1.9                           | 2,000              | 40                              | SF <sub>6</sub>                    | 1987                   |
| 28 | Soyapango        | 30-7-02 | BBC            | 121PA40-20B    | 121             | 1.9                           | 2,000              | 40                              | SF6                                | 1987                   |

| <u>10</u> |
|-----------|
| <b>0</b>  |
| em        |
| yst       |
| Ś         |
| ion       |
| iss       |
| Sm        |
| ue.       |
| Ä         |
| ij        |
| ted       |
| raj       |
| pe        |
| S         |
| šer       |
| eal       |
| Br        |
| uit       |
| re        |
| of Ci     |
| of        |
| Suc       |
| ation     |
| lice      |
| eci       |
| Spec      |
|           |
| 9.0       |
| e 1       |
| Table     |
|           |

|     |                   | Table 10.0 | toto operations of |                 | TONI DO L       | is command of                 |                    | Company of the compan |                                   |                        |
|-----|-------------------|------------|--------------------|-----------------|-----------------|-------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------|
| No. | Substation        | Code       | Manufacturer       | Model-Type      | Voltage<br>[kV] | Rated Opening<br>Time [cycle] | Rated Current [kA] | Rated Interrupting Current [kA]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Method of Current<br>Interruption | Year of<br>Manufacture |
| 59  | Soyapango         | 30-7-03    | ABB                | LTB 145D1/B     | 145             | 1.8                           | 3,150              | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SF <sub>6</sub>                   | 1995                   |
| 09  | Soyapango         | 30-7-04    | BBC                | 121PA40-20B     | 121             | 1.9                           | 2,000              | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $SF_{\delta}$                     | 1987                   |
| 61  | Soyapango         | 30-7-05    | BBC                | 121PA40-20B     | 121             | 1.9                           | 2,000              | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $SF_6$                            | 1987                   |
| 62  | Soyapango         | 30-7-06    | SIEMENS            | TCP-121-40-2000 | 121             | 19                            | 2,000              | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SF <sub>6</sub>                   | 1987                   |
| 63  | San Rafael Cedros | 32-7-01    | ABB                | LTB145D1/B      | 145             | 1.8                           | 3,150              | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $SF_6$                            | 1995                   |
| 49  | +                 | 32-7-02    | ABB                | LTB145D1/B      | 145             | 1.8                           | 3,150              | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SF6                               | 1995                   |
| 65  | San Rafael Cedros | 32-7-03    | ASEA               | HLD 145/1250 B  | 138             | 3.0                           | 1,250              | 27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Oil                               |                        |
| 99  | San Rafael Cedros | 32-7-04    | ABB                | LTB145D1/B      | 145             | 1.8                           | 3,150              | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SF6                               | 1995                   |
| 19  | San Rafael Cedros | 32-7-05    | McCraw Edison      | ALP-54          | 121             | 1.5                           | 1,200              | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Oıl                               | 1986                   |
| 89  | San Rafael Cedros | 32-7-06    | McCraw Edison      | ALP-54          | 121             | 1.5                           | 1,200              | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Oil                               | 1986                   |
| 69  | ┿                 | 32-7-07    | General Electric   | FK-121-40000-8  | 121             | 5.0                           | 1,600              | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Oıl                               | 1983                   |
| 92  | ┿—                | 34-7-01    | ALSTHOM            | S1-121-F34031   | 121             | 1.9                           | 2,000              | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ${ m SF}_6$                       | 1998                   |
| 71  | San Miguel        | 34-7-02    | ASEA               | HLD145/1250C    | 123             | 3.0                           | 1,250              | 27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Oıl                               | 1978                   |
| 72  | San Miguel        | 34-7-03    | ASEA               | HLR123/2501E    | 123             | 1.8                           | 2,500              | 36.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Oil                               | 1980                   |
| 73  | ┿-                | 34-7-04    | ABB                | LTB145D1/B      | 145             | 18                            | 3,150              | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $SF_{\delta}$                     | 1995                   |
| 74  | <del>-</del>      | 35-7-01    | ABB                | LTB145D1/B      | 145             | 1.8                           | 3,150              | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $SF_6$                            | 1995                   |
| 75  | +-                | 35-7-02    | ABB                | LTB145D1/B      | 145             | 1.8                           | 3,150              | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\mathrm{SF}_{6}$                 | 1995                   |
| 76  |                   | 35-7-03    | ABB                | LTB145D1/B      | 145             | 18                            | 3,150              | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $SF_{\delta}$                     | 1995                   |
| 11  | +-                | 35-7-04    | ABB                | LTB145D1/B      | 145             | 1.8                           | 3,150              | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SF <sub>6</sub>                   | 1995                   |
| 78  | +                 | 36-7-01    | BBC                | 121 PA 40-20B   | 121             | 1.9                           | 2,000              | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $SF_6$                            | 1987                   |
| 79  | -                 | 36-7-02    | BBC                | 121 PA 40-20B   | 121             | 1.9                           | 2,000              | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\mathrm{SF}_{\delta}$            | 1987                   |
| 80  | +-                | 36-7-03    | BBC                | 121 PA 40-20B   | 121             | 19                            | 2,000              | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $SF_6$                            | 1986                   |
| 81  | -                 | 36-7-04    | BBC                | 121 PA 40-20B   | 121             | 1.9                           | 2,000              | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\mathrm{SF}_{\delta}$            | 1987                   |
| 82  | +                 | 37-7-01    | ISODEL             | HPF311L         | 123             | 19                            | 1,250              | 3,500MVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oil                               |                        |
| 83  | ╌                 | 37-7-02    | ISODEL             | HPF311L         | 123             | 1.9                           | 1,250              | 3,500MVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oil                               |                        |
| 84  | Nejapa            | 37-7-03    | ISODEL             | HPF311L         | 123             | 1.9                           | 1,250              | 3,500MVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oil                               |                        |
| 85  | <del></del>       | 37-7-11    | ASEA               | HLD145/1250B    | 115             | 3.0                           | 1,250              | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Oil                               | 1974                   |
| 98  | +                 | 37-7-12    | ASEA               | HLD145/1250B    | 115             | 3.0                           | 1,250              | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Oil                               | 1974                   |
| 87  | +                 | 37-7-13    | ABB                | LTB145D1/B      | 145             | 1.8                           | 3,150              | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\mathrm{SF}_{6}$                 | 1995                   |
|     |                   |            |                    |                 |                 |                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                 |                        |

Table 10.6 Specifications of Circuit Breakers in Transmission System (4/5)

|            | Cubateton       | )<br>(1) | Mannfastered | Model The       | Voltage | Rated Opening | Rated Current | Rated Interrupting | Methods of Current | Year of     |
|------------|-----------------|----------|--------------|-----------------|---------|---------------|---------------|--------------------|--------------------|-------------|
| 0 <u>V</u> | Substation      | Code     | Manutacturer | Model-1ype      | [KV]    | Time [cycle]  | [kA]          | Current [kA]       | Interruption       | Manufacture |
| 88         | Nejapa          | 37-7-21  | BBC          | 121PA40-20B     | 121     | 19            | 2,000         | 40                 | SF <sub>6</sub>    | 1996        |
| 1 68       | Nejapa          | 37-7-22  | ASEA         | HLD 145/1250 B  | 115     | 3.0           | 1,250         | 40                 | liO                | 1974        |
| 90         | Nejapa          | 37-7-23  | ASEA         | HLD 145/1250 B  | 115     | 3.0           | 1,250         | 40                 | Oil                | 1974        |
| 91         | Nejapa          | 37-7-31  | ASEA         | HLD 145/1250 B  | 115     | 3.0           | 1,250         | 40                 | liO                | 1974        |
| 92         | Nejapa          | 37-7-32  | ASEA         | HLD 145/1250 B  | 115     | 3.0           | 1,250         | 40                 | lio                | 1974        |
| 93         | Nejapa          | 37-7-33  | ASEA         | HLD 145/1250 B  | 115     | 3.0           | 1,250         | 40                 | liO                | 1974        |
| 94         | Nejapa          | 37-7-41  | ABB          | LTB145D1/B      | 145     | 1.8           | 3,150         | 40                 | SF <sub>6</sub>    | 1995        |
| 95         | Nejapa          | 37-7-42  | ABB          | 121 PM40-20     | 121     | 1.8           | 2,000         | 40                 | SF <sub>6</sub>    | 1994        |
| 96         | Nejapa          | 37-7-43  | ABB          | 121 PM40-20     | 121     | 1.8           | 2,000         | 40                 | SF6                | 1994        |
| )   16     | Opico           | 38-7-01  | ABB          | LTB145D1/B      | 145     | 18            | 3,150         | 40                 | SF <sub>6</sub>    | 1995        |
| 86         | Opico           | 38-7-02  | ABB          | LTB145D1/B      | 145     | 1.8           | 3,150         | 40                 | SF                 | 1995        |
| 66         | Opico           | 38-7-03  | ISODEL       | HPF311L         | 123     | 1.9           | 1,250         | 3,500MVA           | liO                |             |
| 100        | Tecoluca        | 39-7-01  | ABB          | LTB145D1/B      | 145     | 1.8           | 3,150         | 40                 | SF <sub>6</sub>    | 1995        |
| 101        | Tecoluca        | 39-7-02  | ABB          | LTB145D1/B      | 145     | 1.8           | 3,150         | 40                 | $\mathrm{SF}_{6}$  | 1995        |
| 102        | Tecoluca        | 39-7-31  | ABB          | LTB145D1/B      | 145     | 18            | 3,150         | 40                 | SF <sub>c</sub>    | 1995        |
| 103        | Tecoluca        | 39-7-32  | ABB          | LTB145D1/B      | 145     | 1.8           | 3,150         | 40                 | SF <sub>6</sub>    | 1995        |
| 104        | Tecoluca        | 39-7-33  | ABB          | LTB145D1/B      | 145     | 1.8           | 3,150         | 40                 | SF                 | 1995        |
| 105        | Sonsonate       | 41-7-01  | ABB          | LTB145D1/B      | 145     | 1.8           | 3,150         | 40                 | SF                 | 1995        |
| 106        | Sonsonate       | 41-7-02  | ABB          | LTB145D1/B      | 145     | 18            | 3,150         | 40                 | SF <sub>6</sub>    | 1995        |
| 107        | Sonsonate       | 41-7-11  | ABB          | LTB145D1/B      | 145     | 1.8           | 3,150         | 40                 | SF6                | 1995        |
| 108        | Sonsonate       | 41-7-12  | ABB          | LTB145D1/B      | 145     | 1.8           | 3,150         | 40                 | SF6                | 1995        |
| 109        | Sonsonate       | 41-7-31  | ASEA         | HLD 145/1250 C  | 123     | 3.0           | 1,250         | 25                 | liO                | 1978        |
| 110        | Sonsonate       | 41-7-32  | ASEA         | HLD 145/1250 C  | 123     | 3,0           | 1,250         | 25                 | 0i1                | 1978        |
| 111        | Sonsonate       | 41-7-33  | ASESA        | HLD 145/1250 C  | 123     | 3.0           | 1,250         | 25                 | IIO                | 1978        |
| 112        | Nuevo Cuscatlán | 42-7-11  | SIEMENS      | SPS-121-40-2000 | 121     | 2.0           | 2,000         | 40                 | SF <sub>6</sub>    | 1993        |
| 113        | Nuevo Cuscatlán | 42-7-12  | SIEMENS      | SPS-121-40-2000 | 121     | 2.0           | 2,000         | 40                 | SF <sub>6</sub>    | 1993        |
| 114        | Nuevo Cuscatlán | 42-7-13  | SIEMENS      | SPS-121-40-2000 | 121     | 2.0           | 2,000         | 40                 | SF <sub>6</sub>    | 1993        |
|            | Nuevo Cuscatlán | 42-7-21  | ASEA         | HLD 145/1250 C  | 123     | 3.0           | 1,250         | 25                 | liO                | 1978        |
| 116        | Nuevo Cuscatlán | 42-7-22  | ASEA         | HLD 145/1250 C  | 123     | 3.0           | 1,250         | 25                 | lio                | 1978        |

Table 10.6 Specifications of Circuit Breakers in Transmission System (5/5)

|     |                 |         | table 10.0 Spe | Specializations of Circuit Dicarcts in transmission System (5/5) | Cuit Di         | Canvis III 110                | Company of         | (c/c) mass                      |                                    |                        |
|-----|-----------------|---------|----------------|------------------------------------------------------------------|-----------------|-------------------------------|--------------------|---------------------------------|------------------------------------|------------------------|
| Š.  | Substation      | Code    | Manufacturer   | Model-Type                                                       | Voltage<br>[kV] | Rated Opening<br>Time [cycle] | Rated Current [kA] | Rated Interrupting Current [kA] | Methods of Current<br>Interruption | Year of<br>Manufacture |
| 117 | Nuevo Cuscatlán | 42-7-23 | ASEA           | HLR123/1250C                                                     | 123             | 1.8                           | 1,250              | 25                              | lıo                                | 1980                   |
| 118 | Nuevo Cuscatlán | 42-7-31 | ASEA           | HLR123/1250C                                                     | 123             | 1.8                           | 1,250              | 25                              | Oil                                | 1978                   |
| 119 | Nuevo Cuscatlán | 42-7-32 | SIEMENS        | SPS-121-40-2000                                                  | 121             | 2.0                           | 2,000              | 40                              | SF                                 | 1993                   |
| 120 | Nuevo Cuscatlán | 42-7-41 | ABB            | HPL145/2500                                                      | 145             | 1.4                           | 2,500              | 40                              | SF,                                | 1992                   |
| 121 |                 | 42-7-42 | ABB            | HPL145/2500                                                      | 145             | 1.4                           | 2,500              | 40                              | SF                                 | 1992                   |
| 122 | San Martín      | 43-7-21 | ASEA           | HLR123/2501E1                                                    | 123             | 1.8                           | 2,500              | 40                              | liO                                | 1980                   |
| 123 | San Martín      | 43-7-22 | ASEA           | HLR123/2501E1                                                    | 123             | 1.8                           | 2,500              | 40                              | liO                                | 1980                   |
| 124 | San Martín      | 43-7-23 | ASEA           | HLR123/2501E1                                                    | 123             | 1.8                           | 2,500              | 40                              | Oil                                | 1980                   |
| 125 | San Martín      | 43-7-31 | ASEA           | HLR123/2501E1                                                    | 123             | 1.8                           | 2,500              | 40                              | Oıl                                | 1980                   |
| 126 | San Martín      | 43-7-32 | ASEA           | HLR123/2501E1                                                    | 123             | 1.8                           | 2,500              | 40                              | Oıl                                | 1980                   |
| 127 | San Martín      | 43-7-33 | ASEA           | HLR123/2501E1                                                    | 123             | 1.8                           | 2,500              | 40                              | Oil                                | 1980                   |
| 128 |                 | 43-7-41 | Mc Craw Edison | ALP-54                                                           | 121             | 1.5                           | 1,200              | 40                              | Oil                                | 1986                   |
| 129 | San Martín      | 43-7-42 | Mc Craw Edison | ALP-54                                                           | 121             | 1.5                           | 1,200              | 40                              | Oil                                | 1986                   |
| 130 | San Martín      | 43-7-43 | Mc Craw Edison | ALP-54                                                           | 121             | 1.5                           | 1,200              | 40                              | Oil                                | 1986                   |
| 131 | +               | 43-7-52 | ASEA           | HPL123/25A1                                                      | 121             | 1.4                           | 2,000              | 40                              | SF <sub>6</sub>                    | 1988                   |
| 132 | <del></del>     | 43-7-53 | ASEA           | HPL123/25A1                                                      | 121             | 14                            | 2,000              | 40                              | SF6                                | 1988                   |
| 133 | San Bartolo     | 45-7-01 | ABB            | 121PM40-20                                                       | 121             | 1.8                           | 2,000              | 40                              | SF <sub>6</sub>                    | 1993                   |
| 134 | -               | 45-7-02 | ABB            | 121PM40-20                                                       | 121             | 1.8                           | 2,000              | 40                              | SF                                 | 1993                   |
| 135 | 1               | 46-7-01 | ABB            | LTB145D1/B                                                       | 145             | 1.8                           | 3,150              | 40                              | $SF_6$                             | 1995                   |
| 136 |                 | 46-7-02 | ABB            | LTB145D1/B                                                       | 145             | 1.8                           | 3,150              | 40                              | $SF_{\epsilon}$                    | 1995                   |
| 137 | -1              | 46-7-12 | ABB            | LTB145D1/B                                                       | 145             | 18                            | 3,150              | 40                              | SF6                                | 1995                   |
| 138 |                 | 46-7-13 | ABB            | LTB145D1/B                                                       | 145             | 1.8                           | 3,150              | 40                              | SF <sub>6</sub>                    | 1995                   |
| 139 |                 | 46-7-31 | ABB            | LTB145D1/B                                                       | 145             | 18                            | 3,150              | 40                              | SF <sub>6</sub>                    | 1995                   |
| 140 | Santo Tomás     | 46-7-32 | ABB            | LTB145D1/B                                                       | 145             | 1.8                           | 3,150              | 40                              | SFs                                | 1995                   |
| 141 | Santo Tomás     | 46-7-33 | ABB            | LTB145D1/B                                                       | 145             | 1.8                           | 3,150              | 40                              | SF                                 | 1995                   |
|     |                 |         |                |                                                                  |                 |                               |                    |                                 |                                    |                        |