### (5) Alternative T-3

1) Intake and Treatment Plant

1st Stage (Construction of New Thangone Water Treatment Plant, see Figure 7)

- Intake Facilities: Construction of new intake facilities in the Nam Ngum River

- Treatment Plant: Construction of 40,000 m3/day

2nd Stage (Expansion of Thangone Water Treatment Plant, see Figure 9)

- Intake Facilities: Use of existing intake structure, addition of pumps

- Treatment Plant: Expansion of 60,000 m3/day



A new treatment plant with a capacity of 40,000 m3/day at Thangone for the 1st Stage and capacity expansion of 60,000 m3/day at same Thangone Treatment Plant for the 2nd Stage are considered for this alternative, T-3. Process of each treatment is planned to be the same as at the existing Chinaimo Treatment Plant. During the construction of the new Thangone Treatment Plant in the 1st Stage, new intake facilities will be required not only for the 1st Stage of 40,000 m3/day and also for the 2nd Stage of 60,000 m3/day. The plan of the treatment facilities and a flow diagram for the construction of 40,000 m3/day for the 1st Stage are the same as Alternative T-2 as shown on Figures 25 and 26 respectively. Plan of treatment facilities for the expansion of 60,000 m3/day for 2nd Stage is the same as Alternative C-1 as shown in Figures 13.

Figures 29 shows the flow diagram for the capacity of 100,000 m3/day after the expansion of 60,000 m3/day at the Thangone Treatment Plant for the 2nd Stage. Detailed specifications of the treatment facilities for alternative T-3 are attached to Annex 14.

### 2) Pipelines

### 1st Stage

- Clear Water Transmission Pipelines: Installation of 10.6 km of pipelines

- Distribution Centre: Construction of a new distribution centre with a capacity of 40,000 m3/day

- Distribution Trunk Mains: Installation of 22.7 km of pipelines

### 2nd Stage

- Clear Water Transmission: Installation of 10.6 km of pipelines
- Distribution Centre: Expansion of the distribution centre for 60,000 m3/day
- Booster Pumping Stations: Improvement of the Km6 and Km12 BP stations
- Distribution Trunk Mains: Installation of 87.9 km of pipelines

For both of the 1st and 2nd Stages, clear water will be transmitted from the new Thangone Treatment Plant to a distribution centre and then distributed to consumers. The distribution centre is proposed to be constructed in the Dongdok area near the junction of the National Roads No.10 and No.13 in the northern part of the city.

For this alternative, improvement of the Km6 BP Station in the 1st Stage will not be required because the water supply to northern area of the City can be covered directly from the new distribution centre. However, in the 2nd Stage, improvement of the Km6 BP Station will be required for supply to the downtown from the distribution centre. Improvement of the Km12 BP Station in the 2nd Stage will be necessary mainly for water supply to new industrial area in the eastern part of the City.

Figure 30 shows the clear water transmission pipelines and distribution trunk mains required in Alternative T-3 and these required pipelines are obtained from a hydraulic network analysis of this alternative. The required pipeline length by pipeline diameters by stages, are summarized on Figure 28.





# Figure 30 Clear Water Transmission and Distribution Trunk Mains Required for Alternative T-3



### 3) Costs (Construction, O/M)

Based on the results of facility planning for alternative T-3, preliminarily cost estimates have been conducted for the alternative comparison. The results of the cost estimates are as shown in Table 8 in US Dollars.

|                                          |        | (x      | 1,000 US\$) |
|------------------------------------------|--------|---------|-------------|
| Alternative T-3                          | Total  | Foreign | Local       |
| 1. Construction Cost                     | 67,127 | 47,556  | 19,571      |
| 1.1 Treatment Plants                     | 22,367 | 14,666  | 7,701       |
| Construction of Thangone T.P. (1st Stage | 9,552  | 6,182   | 3,370       |
| Construction of Thangone T.P. (2nd Stage | 12,815 | 8,484   | 4,331       |
| 1.1 Treatment Plants                     | 22,367 | 14,666  | 7,701       |
| For the 1st Stage                        | 6,456  | 5,203   | 1,253       |
| For the 2nd Stage                        | 7,521  | 6,198   | 1,323       |
| 1.1 Treatment Plants                     | 22,367 | 14,666  | 7,701       |
| For the 1st Stage                        | 3,506  | 2,364   | 1,142       |
| For the 2nd Stage                        | 4,376  | 2,984   | 1,392       |
| 1.1 Treatment Plants                     | 22,367 | 14,666  | 7,701       |
| For the 1st Stage                        | -      | -       | -           |
| For the 2nd Stage                        | 677    | 546     | 131         |
| 1.5 Distribution Trunk Mains             | 22,224 | 15,595  | 6,629       |
| For the 1st Stage                        | 5,876  | 4,268   | 1,608       |
| For the 2nd Stage                        | 16,348 | 11,327  | 5,021       |
| 2. Operation and Maintenance Cost        | 7,159  | 818     | 6,341       |
| 2.1 Electricity                          | 6,109  |         | 6,109       |
| Thangone T.P. (1st Stage)                | 1,780  | -       | 1,780       |
| Thangone T.P. (2nd Stage)                | 966    | -       | 966         |
| Distribution Center                      | 2,398  | -       | 2,398       |
| Booster Pump Station                     | 965    | -       | 965         |
| 2.2 Chemical Cost                        | 818    | 818     |             |
| Thangone T.P. (1st Stage)                | 505    | 505     | -           |
| Alum                                     | 248    | 248     | -           |
| Chlorine                                 | 257    | 257     | -           |
| Thangone T.P. (2nd Stage)                | 313    | 313     | -           |
| Alum                                     | 154    | 154     | -           |
| Chlorine                                 | 159    | 159     | -           |
| 2.3 Salary                               | 232    |         | 232         |
| Treatment Plant                          | 232    | -       | 232         |
| Thangone T.P. (1st Stage)                | 216    | -       | 216         |
| Thangone T.P. (2nd Stage)                | 16     | -       | 16          |
| Total Costs                              | 74,286 | 48,374  | 25,912      |

 Table 8
 Preliminary Cost Estimates for Alternative T-3

### 7 Comprehensive Comparison

### (1) Technical Aspects (Construction, O/M)

As mentioned in Table 1 "Preliminary Comparison and Evaluation of Alternatives", significant factors to exclude certain alternatives from the preliminary alternative comparison were not found.

### 1) Intake Facilities

In case of the 40,000 m3/day expansion of the existing Chinaimo Treatment Plant during the 1st Stage, alternatives C-1 and C-2, additional intake structures will not be required because the existing intake facility was designed and constructed for a capacity of 120,000 m3/day. This advantage, is reflected in the cost comparison.

### 2) Quality of Raw Water

The quality of raw water from the Nam Ngum River is much better than from the Mekong River because the lower turbidity from the Nam Ngum requires less use of coagulants. Proposed treatment plants for alternative T-2 in both the 1st Stage and 2nd Stage, will be constructed at Thangone and take raw water from the Nam Ngum River. On the other hand alternative C-2 would expand the existing two treatment plants on the Mekong River. This advantage is, however, is reflected in the cost comparison.

### 3) Conformity to Other Projects

The AFD Project for pipeline installation works are on-going and will be completed in 2004. The service area will be expanded by this project, but no water supply will be secured, especially in the Nongteng and Phonegtong areas. For supplying water to these areas, expansion of the existing Kaolieo Treatment Plant in the 1st Stage, Alternative K-1, has advantages.

### 4) Human Resources

If a new treatment plant is constructed in the 1st Stage, a new organisation for the new plant should be established with about 35 staff including engineers and skilled operators. Employment and training of these staff members should be treated as a priority. Therefore, Alternatives T-2 and T-3 have disadvantage comparing with other alternatives. This advantage is, however, is reflected in the cost comparison.

### 5) Land Space Availability

If the new treatment plant is constructed in the 1st Stage, new land space of about 2 ha for the new plant should be provided within a few years. Land space for alternatives C-1, C-2 and K-1 are available within the existing plant premises. Therefore, alternatives T-2 and T-3 have

disadvantages compared with the other alternatives.

### 6) Suspension of Water Supply

During the rehabilitation of the existing Kaolieo Treatment Plant in the 1st Stage, the plant should periodically stop its operations and water supply services should be suspended. In the case of alternative K-1, after completion of the 40,000 m3/day expansion, the existing Kaolieo Treatment Plant can interrupt its operations, making the rehabilitation work much easier.

### (2) Preliminary Cost Estimates for Planned Facilities for Each Alternative

Based on the result of facility planning for each alternative, preliminary cost estimates for each alternative are summarized on Table 9 in US\$ and are also shown in Japanese Yen, converted from the US\$ amount. The exchange rate used in these calculations is based on the Japanese Yen to US\$ as 119 yen to the Dollar, as of April 30, 2003. The Figures 31 to 33 shows the cost comparison for the 1st Stage, 2nd Stage and the combined total of the two stages.

|                                    |         |         |         | (X      | 1,000 US\$) |
|------------------------------------|---------|---------|---------|---------|-------------|
| Construction Cost                  | C-1     | C-2     | K-1     | T-2     | T-3         |
| 1st Stage                          |         |         |         |         |             |
| Treatment Plants                   | 8,782   | 8,782   | 9,624   | 9,552   | 9,552       |
| Clear Water Transmission Pipelines | 1,234   | 1,678   | 1,234   | 6,456   | 6,456       |
| Distribution Center                | 0       | 0       | 0       | 3,506   | 3,506       |
| Booster Pump Station               | 737     | 737     | 737     | 0       | 0           |
| Distribution Trunk Mains           | 7,977   | 8,681   | 6,394   | 5,228   | 5,876       |
| Sub-total                          | 18,730  | 19,878  | 17,989  | 24,742  | 25,390      |
|                                    | (741)   | (1,889) | 0       | (6,753) | (7,401)     |
| 2nd Stage                          |         |         |         |         |             |
| Treatment Plants                   | 13,427  | 13,427  | 13,427  | 13,427  | 12,815      |
| Clear Water Transmission Pipelines | 7,521   | 7,038   | 7,521   | 7,038   | 7,521       |
| Distribution Center                | 4,376   | 4,376   | 4,376   | 4,376   | 4,376       |
| Booster Pump Station               | 366     | 874     | 366     | 366     | 677         |
| Distribution Trunk Mains           | 12,094  | 14,196  | 11,156  | 9,933   | 16,348      |
| Sub-total                          | 37,784  | 39,911  | 36,846  | 35,140  | 41,737      |
|                                    | (2,644) | (4,771) | (1,706) | 0       | (6,597)     |
| Total                              | 56,514  | 59,789  | 54,835  | 59,882  | 67,127      |
|                                    | (1.679) | (4,954) | 0       | (5,047) | (12,292)    |

### Table 9 Preliminary Cost Estimates for Each Alternative

### In Japanese Yen

In US\$

|                                    |           |           |           | (              | (x 1,000 yen) |
|------------------------------------|-----------|-----------|-----------|----------------|---------------|
| Construction Cost                  | C-1       | C-2       | K-1       | T-2            | T-3           |
| 1st Stage                          |           |           |           |                |               |
| Treatment Plants                   | 1,045,058 | 1,045,058 | 1,145,256 | 1,136,688      | 1,136,688     |
| Clear Water Transmission Pipelines | 146,846   | 199,682   | 146,846   | 768,264        | 768,264       |
| Distribution Center                | 0         | 0         | 0         | 417,214        | 417,214       |
| Booster Pump Station               | 87,703    | 87,703    | 87,703    | 0              | 0             |
| Distribution Trunk Mains           | 949,263   | 1,033,039 | 760,886   | 622,132        | 699,244       |
| Sub-total                          | 2,228,870 | 2,365,482 | 2,140,691 | 2,944,298      | 3,021,410     |
|                                    | (88,179)  | (224,791) | 0         | (803,607)      | (880,719)     |
| 2nd Stage                          |           |           |           |                |               |
| Treatment Plants                   | 1,597,813 | 1,597,813 | 1,597,813 | 1,597,813      | 1,524,985     |
| Clear Water Transmission Pipelines | 894,999   | 837,522   | 894,999   | 837,522        | 894,999       |
| Distribution Center                | 520,744   | 520,744   | 520,744   | 520,744        | 520,744       |
| Booster Pump Station               | 43,554    | 104,006   | 43,554    | 43,554         | 80,563        |
| Distribution Trunk Mains           | 1,439,186 | 1,689,324 | 1,327,564 | 1,182,027      | 1,945,412     |
| Sub-total                          | 4,496,296 | 4,749,409 | 4,384,674 | 4,181,660      | 4,966,703     |
|                                    | (314,636) | (567,749) | (203,014) | 0              | (785,043)     |
| Total                              | 6,725,166 | 7,114,891 | 6,525,365 | 7,125,958      | 7,988,113     |
|                                    | (199,801) | (589,526) | 0         | (600,593)      | (1,462,748)   |
|                                    |           |           | 119 у     | en/\$ as of Ar | oril 30 2003  |

Note: Figures shown in brackets are a deviation from the alternative which shows the minimum cost. It should be noted that construction costs shown in the above table are costs only for alternative comparison. Common costs for all alternatives such as rehabilitation of the Kaolieo Treatment Plant, improvement of the Chinaimo Treatment Plant (including expansion of reservoir, additional distribution pumps, and installation of transmission pipelines), small diameter distribution pipelines, house connections, contingencies, and administration costs are excluded from the construction costs for alternative comparison. Therefore, construction costs shown above do not represent Total Project Costs.



## Figure 31 Preliminary Cost Estimates for Each Alternative : 1<sup>st</sup> Stage





Figure 33 Preliminary Cost Estimates for Each Alternative : Two Stage Total

It should be noted that the construction costs shown in the above table and figures are costs only for the comparison of alternatives. Common costs for all alternatives such as rehabilitation of the Kaolieo Treatment Plant, improvement of the Chinaimo Treatment Plant (including expansion of reservoir, additional distribution pumps, and installation of transmission pipelines), small diameter distribution pipelines, house connections, contingencies, and administration costs are excluded from the construction costs for alternative comparison. Therefore, construction costs shown above **do not represent Total Project Costs**.

### (3) Economic Evaluation

There are five alternatives for the comparative study, as discussed in the engineering discussion. In this section, these alternatives are analysed from an economic point of view. Then the best alternative is selected through a process of economic evaluation. The benefits of the respective alternatives are considered to be equal. Thus, a method of "minimum cost comparison" is considered the way to select the best alternative, instead of a general comparison of benefits and cost. As shown in Figure 34 below, the best alternative is selected from the minimum cost comparison from among all the alternatives. The costs are evaluated in economic terms. Economic costs and financial costs are discussed in detail in Section 4.11. The project costs are originally estimated based on market prices, so they have to be converted to economic prices applying conversion factors. In addition, operation and maintenance (O&M) costs are also converted to economic costs in the same procedure. Table 10 shows the conversion of economic costs for each alternative. These costs are allocated in an annual disbursement in conformity with the implementation schedule.



0.90

|          |                                     |                    |                 |                  |                            |                        |                    |               | ,               |                                |
|----------|-------------------------------------|--------------------|-----------------|------------------|----------------------------|------------------------|--------------------|---------------|-----------------|--------------------------------|
| Total    | 6,407 1,208                         | 5,199 5,88         | 1,208           | 4,679            | 6,732 1                    | ,297 5,435             | 6,189              | 1,297         | 4,892           |                                |
| Note: It | should be noted that construction c | osts shown in the  | above tables ar | e costs only for | alternative comparison.    | Common costs for       | all alternatives   | such as the r | ehabilitation o | f the Kaolieo Treatment Plant, |
| improve  | ment of the Chinaimo Treatment      | Plant (including   | expansion of    | reservoir, addit | tional distribution pump   | s, and installation of | of transmission    | pipelines),   | small diameter  | r distribution pipeline, house |
| connecti | ons, contingencies, and administrat | ion costs are excl | uded from the c | onstruction cost | ts for alternative compari | son. Therefore, cons   | struction costs sl | hown above    | do not represer | nt Total Project Costs.        |
|          |                                     |                    |                 |                  |                            |                        |                    |               |                 |                                |
|          |                                     |                    |                 |                  |                            |                        |                    |               |                 |                                |

### Table 10(1/3) **Conversion of Economic Costs** CF:

### 0.90

CF:

|       | C-1<br>Construction<br>Financial |         | E      | conomic |         |        |
|-------|----------------------------------|---------|--------|---------|---------|--------|
|       | Total                            | Foreign | Local  | Total   | Foreign | Local  |
| 2004  | 0                                | 0       | 0      | 0       | 0       | 0      |
| 2005  | 1,873                            | 1,300   | 573    | 1,816   | 1,300   | 516    |
| 2006  | 9,364                            | 6,498   | 2,866  | 9,077   | 6,498   | 2,579  |
| 2007  | 7,493                            | 5,200   | 2,293  | 7,264   | 5,200   | 2,064  |
| 2008  | 0                                | 0       | 0      | 0       | 0       | 0      |
| 2009  | 0                                | 0       | 0      | 0       | 0       | 0      |
| 2010  | 7,558                            | 5,261   | 2,297  | 7,328   | 5,261   | 2,067  |
| 2011  | 18,891                           | 13,149  | 5,742  | 18,317  | 13,149  | 5,168  |
| 2012  | 11,335                           | 7,889   | 3,446  | 10,990  | 7,889   | 3,101  |
| 2013  | 0                                | 0       | 0      | 0       | 0       | 0      |
| 2014  | 0                                | 0       | 0      | 0       | 0       | 0      |
| 2015  | 0                                | 0       | 0      | 0       | 0       | 0      |
| Total | 56,514                           | 39,297  | 17,217 | 54,792  | 39,297  | 15,495 |

| munetui |         | E      | conomic |         |        |
|---------|---------|--------|---------|---------|--------|
| Total   | Foreign | Local  | Total   | Foreign | Loca   |
| 0       | 0       | 0      | 0       | 0       | 0      |
| 1,988   | 1,410   | 578    | 1,930   | 1,410   | 520    |
| 9,938   | 7,048   | 2,890  | 9,649   | 7,048   | 2,601  |
| 7,952   | 5,640   | 2,312  | 7,721   | 5,640   | 2,081  |
| 0       | 0       | 0      | 0       | 0       | 0      |
| 0       | 0       | 0      | 0       | 0       | 0      |
| 7,984   | 5,545   | 2,439  | 7,740   | 5,545   | 2,195  |
| 19,955  | 13,859  | 6,096  | 19,345  | 13,859  | 5,486  |
| 11,972  | 8,315   | 3,657  | 11,606  | 8,315   | 3,291  |
| 0       | 0       | 0      | 0       | 0       | . (    |
| 0       | 0       | 0      | 0       | 0       | 0      |
| 0       | 0       | 0      | 0       | 0       | 0      |
| 59,789  | 41.817  | 17,972 | 57.992  | 41.817  | 16.175 |

|       | O&M       |         |       |         |         |       | O&M       |         |       |         |         |       |
|-------|-----------|---------|-------|---------|---------|-------|-----------|---------|-------|---------|---------|-------|
|       | Financial |         | Ec    | conomic |         |       | Financial |         | Ec    | conomic |         |       |
|       | Total     | Foreign | Local | Total   | Foreign | Local | Total     | Foreign | Local | Total   | Foreign | Local |
| 2004  | 53        | 0       | 53    | 48      | 0       | 48    | 53        | 0       | 53    | 48      | 0       | 48    |
| 2005  | 53        | 0       | 53    | 48      | 0       | 48    | 53        | 0       | 53    | 48      | 0       | 48    |
| 2006  | 53        | 0       | 53    | 48      | 0       | 48    | 53        | 0       | 53    | 48      | 0       | 48    |
| 2007  | 461       | 99      | 362   | 425     | 99      | 326   | 461       | 99      | 362   | 425     | 99      | 326   |
| 2008  | 477       | 104     | 373   | 440     | 104     | 336   | 477       | 104     | 373   | 440     | 104     | 336   |
| 2009  | 491       | 108     | 383   | 453     | 108     | 345   | 491       | 108     | 383   | 453     | 108     | 345   |
| 2010  | 489       | 107     | 382   | 451     | 107     | 344   | 489       | 107     | 382   | 451     | 107     | 344   |
| 2011  | 489       | 107     | 382   | 451     | 107     | 344   | 489       | 107     | 382   | 451     | 107     | 344   |
| 2012  | 946       | 160     | 786   | 867     | 160     | 707   | 1,029     | 181     | 848   | 944     | 181     | 763   |
| 2013  | 930       | 168     | 762   | 854     | 168     | 686   | 1,011     | 189     | 822   | 929     | 189     | 740   |
| 2014  | 965       | 174     | 791   | 886     | 174     | 712   | 1,046     | 197     | 849   | 961     | 197     | 764   |
| 2015  | 1,000     | 181     | 819   | 918     | 181     | 737   | 1,080     | 205     | 875   | 993     | 205     | 788   |
| Total | 6,407     | 1,208   | 5,199 | 5,887   | 1,208   | 4,679 | 6,732     | 1,297   | 5,435 | 6,189   | 1,297   | 4,892 |

| 0          | 0       | 0      | 0       | 0       | 0      | 0                | 0       | 0      | 0       |
|------------|---------|--------|---------|---------|--------|------------------|---------|--------|---------|
| 54,835     | 37,497  | 17,338 | 53,101  | 37,497  | 15,604 | 59,882           | 41,493  | 18,389 | 58,043  |
| M<br>ncial |         | E      | conomic |         |        | O&M<br>Financial |         | E      | conomic |
| Total      | Foreign | Local  | Total   | Foreign | Local  | Total            | Foreign | Local  | Total   |
| 53         | 0       | 53     | 48      | 0       | 48     | 53               | 0       | 53     | 48      |
| 53         | 0       | 53     | 48      | 0       | 48     | 53               | 0       | 53     | 48      |
| 53         | 0       | 53     | 48      | 0       | 48     | 53               | 0       | 53     | 48      |
| 433        | 99      | 334    | 400     | 99      | 301    | 498              | 55      | 443    | 454     |
| 448        | 104     | 344    | 414     | 104     | 310    | 519              | 59      | 460    | 473     |
| 461        | 108     | 353    | 426     | 108     | 318    | 538              | 61      | 477    | 490     |
| 459        | 107     | 352    | 424     | 107     | 317    | 534              | 61      | 473    | 487     |
| 459        | 107     | 352    | 424     | 107     | 317    | 534              | 61      | 473    | 487     |
| 922        | 160     | 762    | 846     | 160     | 686    | 999              | 143     | 856    | 913     |
| 905        | 168     | 737    | 831     | 168     | 663    | 985              | 149     | 836    | 901     |
| 938        | 174     | 764    | 862     | 174     | 688    | 1,024            | 156     | 868    | 937     |
| 973        | 181     | 792    | 894     | 181     | 713    | 1,062            | 162     | 900    | 972     |
| 6.157      | 1.208   | 4.949  | 5.662   | 1.208   | 4,454  | 6.852            | 907     | 5.945  | 6.258   |

### Table 10(2/3) **Conversion of Economic Costs**

K-1

0&M Financial

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

Total

0.90

T-2

Construction Financial

Total

2,472

12,372

9,898

7,029

17,569

10,542

0

0

0

0

0

Foreign

1.743

8,722

6.978

4,811

12,024

7,215

0

0

0

0

0

CF:

0.90

Local

0

0

0

0

0

Ω

656

3,285

2,628

1,996

4.991

2,994

16.550

Local

48

48

48

399

414

429

426

426

770

752

781

810

5,351

CF:

Foreign

1,743

8,722

6,978

4,811

12.024

7,215

41.493

Foreign

0

0

0

55

59

61

61

61

143

149

156

162

907

0

0

0

0

0

0

Economic

Total

2,399

12,007

9,606

6,807

17,015

10,209

0

0

0

0

0

Local

0

0

0

0

0

729

3,650

2,920

2,218

5.545

3,327

|       | Construction<br>Financial | l       | E      | conomic |         |        |
|-------|---------------------------|---------|--------|---------|---------|--------|
|       | Total                     | Foreign | Local  | Total   | Foreign | Local  |
| 2004  | 0                         | 0       | 0      | 0       | 0       | 0      |
| 2005  | 1,799                     | 1,205   | 594    | 1,740   | 1,205   | 535    |
| 2006  | 8,993                     | 6,023   | 2,970  | 8,696   | 6,023   | 2,673  |
| 2007  | 7,197                     | 4,820   | 2,377  | 6,959   | 4,820   | 2,139  |
| 2008  | 0                         | 0       | 0      | 0       | 0       | 0      |
| 2009  | 0                         | 0       | 0      | 0       | 0       | 0      |
| 2010  | 7,370                     | 5,091   | 2,279  | 7,142   | 5,091   | 2,051  |
| 2011  | 18,422                    | 12,724  | 5,698  | 17,852  | 12,724  | 5,128  |
| 2012  | 11,054                    | 7,634   | 3,420  | 10,712  | 7,634   | 3,078  |
| 2013  | 0                         | 0       | 0      | 0       | 0       | 0      |
| 2014  | 0                         | 0       | 0      | 0       | 0       | 0      |
| 2015  | 0                         | 0       | 0      | 0       | 0       | 0      |
| Total | 54.835                    | 37.497  | 17.338 | 53,101  | 37.497  | 15.604 |

Note: It should be noted that construction costs shown in the above tables are costs only for alternative comparison. Common costs for all alternatives such as the rehabilitation of the Kaolieo Treatment Plant, improvement of the Chinaimo Treatment Plant (including expansion of reservoir, additional distribution pumps, and installation of transmission pipelines), small diameter distribution pipeline, house connections, contingencies, and administration costs are excluded from the construction costs for alternative comparison. Therefore, construction costs shown above do not represent Total Project Costs.

| Table 10(3/3) | <b>Conversion of Economic Costs</b> |  |
|---------------|-------------------------------------|--|
|               | CF:                                 |  |

T-3

| 0.90 |
|------|
|      |

Construction

|       | Financial |         | E      | conomic |         |        |
|-------|-----------|---------|--------|---------|---------|--------|
|       | Total     | Foreign | Local  | Total   | Foreign | Local  |
| 2004  | 0         | 0       | 0      | 0       | 0       | 0      |
| 2005  | 2,538     | 1,801   | 737    | 2,464   | 1,801   | 663    |
| 2006  | 12,696    | 9,009   | 3,687  | 12,327  | 9,009   | 3,318  |
| 2007  | 10,156    | 7,207   | 2,949  | 9,861   | 7,207   | 2,654  |
| 2008  | 0         | 0       | 0      | 0       | 0       | 0      |
| 2009  | 0         | 0       | 0      | 0       | 0       | 0      |
| 2010  | 8,347     | 5,908   | 2,439  | 8,103   | 5,908   | 2,195  |
| 2011  | 20,870    | 14,770  | 6,100  | 20,260  | 14,770  | 5,490  |
| 2012  | 12,520    | 8,861   | 3,659  | 12,154  | 8,861   | 3,293  |
| 2013  | 0         | 0       | 0      | 0       | 0       | 0      |
| 2014  | 0         | 0       | 0      | 0       | 0       | 0      |
| 2015  | 0         | 0       | 0      | 0       | 0       | 0      |
| Total | 67,127    | 47,556  | 19,571 | 65,170  | 47,556  | 17,614 |

0&M

| Financial |       |         | E     |       |         |       |
|-----------|-------|---------|-------|-------|---------|-------|
|           | Total | Foreign | Local | Total | Foreign | Local |
| 2004      | 53    | 0       | 53    | 48    | 0       | 48    |
| 2005      | 53    | 0       | 53    | 48    | 0       | 48    |
| 2006      | 53    | 0       | 53    | 48    | 0       | 48    |
| 2007      | 498   | 55      | 443   | 454   | 55      | 399   |
| 2008      | 519   | 59      | 460   | 473   | 59      | 414   |
| 2009      | 538   | 61      | 477   | 490   | 61      | 429   |
| 2010      | 534   | 61      | 473   | 487   | 61      | 426   |
| 2011      | 534   | 61      | 473   | 487   | 61      | 426   |
| 2012      | 1,075 | 122     | 953   | 980   | 122     | 858   |
| 2013      | 1,062 | 128     | 934   | 969   | 128     | 841   |
| 2014      | 1,101 | 133     | 968   | 1,004 | 133     | 871   |
| 2015      | 1,139 | 138     | 1,001 | 1,039 | 138     | 901   |
| Total     | 7,159 | 818     | 6,341 | 6,525 | 818     | 5,707 |

Note: It should be noted that construction costs shown in the above tables are costs only for alternative comparison. Common costs for all alternatives such as the rehabilitation of Kaolieo Treatment Plant, improvement of the Chinaimo Treatment Plant (including expansion of reservoir, additional distribution pumps, and installation of transmission pipelines), small diameter distribution pipeline, house connections, contingencies, and administration costs are excluded from the construction costs for alternative comparison. Therefore, construction costs shown above do not represent Total Project Costs.

The present values of the respective alternatives are tabulated in Section .6. The present value is calculated applying the discount rate of 12% and the evaluation period of 30 years after the completion of the projects as shown on Table 12. These calculations are summarised in Table 11 and Figure 35. Accordingly, the alternative, K-1 is selected as the best project among the five alternatives, from an economic point of view.

| Table 11    |                                  | Present Values of Alternatives |       |
|-------------|----------------------------------|--------------------------------|-------|
|             | Alternative                      | Present Value                  | Index |
| Alternative | (US\$ Million in Economic Terms) | (K-1 = 100)                    |       |
| 1.          | C-1                              | 31.4                           | 103   |
| 2.          | C-2                              | 33.3                           | 110   |
| 3.          | K-1                              | 30.4                           | 100   |
| 4.          | T-2                              | 34.7                           | 114   |
| 5.          | T-3                              | 37.9                           | 125   |





| Altern | ative: C-1 | PV:          | US\$31,426 N    | <b>fillion</b> | Alterna | ative: C-2 | PV:          | US\$33,285 I   | Million | Altern | ative: K-1 | PV:          | US\$30,382 N   | lillion |
|--------|------------|--------------|-----------------|----------------|---------|------------|--------------|----------------|---------|--------|------------|--------------|----------------|---------|
|        | Year       | С            | lost (US\$1000) |                |         | Year       | С            | ost (US\$1000) |         |        | Year       | C            | ost (US\$1000) |         |
|        |            | Construction | O&M             | Total          |         |            | Construction | O&M            | Total   |        |            | Construction | O&M            | Total   |
| 1      | 2004       | 0            | 48              | 48             | 1       | 2004       | 0            | 48             | 48      | 1      | 2004       | 0            | 48             | 48      |
| 2      | 2005       | 1,816        | 48              | 1,863          | 2       | 2005       | 1,930        | 48             | 1,978   | 2      | 2005       | 1,740        | 48             | 1,787   |
| 3      | 2006       | 9,077        | 48              | 9,125          | 3       | 2006       | 9,649        | 48             | 9,697   | 3      | 2006       | 8,696        | 48             | 8,744   |
| 4      | 2007       | 7,264        | 425             | 7,689          | 4       | 2007       | 7,721        | 425            | 8,146   | 4      | 2007       | 6,959        | 400            | 7,359   |
| 5      | 2008       | 0            | 440             | 440            | 5       | 2008       | 0            | 440            | 440     | 5      | 2008       | 0            | 414            | 414     |
| 6      | 2009       | 0            | 453             | 453            | 6       | 2009       | 0            | 453            | 453     | 6      | 2009       | 0            | 426            | 426     |
| 7      | 2010       | 7,328        | 451             | 7,779          | 7       | 2010       | 7,740        | 451            | 8,191   | 7      | 2010       | 7,142        | 424            | 7,566   |
| 8      | 2011       | 18,317       | 451             | 18,768         | 8       | 2011       | 19,345       | 451            | 19,796  | 8      | 2011       | 17,852       | 424            | 18,276  |
| 9      | 2012       | 10,990       | 867             | 11,858         | 9       | 2012       | 11,606       | 944            | 12,551  | 9      | 2012       | 10,712       | 846            | 11,558  |
| 10     | 2013       | 0            | 854             | 854            | 10      | 2013       | 0            | 929            | 929     | 10     | 2013       | 0            | 831            | 831     |
| 11     | 2014       | 0            | 886             | 886            | 11      | 2014       | 0            | 961            | 961     | 11     | 2014       | 0            | 862            | 862     |
| 12     | 2015       | 0            | 918             | 918            | 12      | 2015       | 0            | 993            | 993     | 12     | 2015       | 0            | 894            | 894     |
| 13     | 2016       |              | 918             | 918            | 13      | 2016       |              | 993            | 993     | 13     | 2016       |              | 894            | 894     |
| :      | :          |              | :               | :              | :       | :          |              | :              | :       | :      | :          |              | :              | :       |
| :      | :          |              | :               | :              | :       | :          |              | :              | :       | :      | :          |              | :              | :       |
| 41     | 2044       |              | 918             | 918            | 41      | 2044       |              | 993            | 993     | 41     | 2044       |              | 894            | 894     |
| 42     | 2045       |              | 918             | 918            | 42      | 2045       |              | 993            | 993     | 42     | 2045       |              | 894            | 894     |

### Table 12 Present Values of Preliminary Alternatives

| Alter | native: T-2 | PV:          | US\$34,681 M   | illion | Altern | ative: T-3 | PV:          | US\$37,942 N   | fillion |
|-------|-------------|--------------|----------------|--------|--------|------------|--------------|----------------|---------|
|       | Year        | C            | ost (US\$1000) |        |        | Year       | С            | ost (US\$1000) |         |
|       |             | Construction | O&M            | Total  |        |            | Construction | O&M            | Total   |
| 1     | 2004        | 0            | 48             | 48     | 1      | 2004       | 0            | 48             | 48      |
| 2     | 2005        | 2,399        | 48             | 2,447  | 2      | 2005       | 2,464        | 48             | 2,512   |
| 3     | 2006        | 12,007       | 48             | 12,055 | 3      | 2006       | 12,327       | 48             | 12,375  |
| 4     | 2007        | 9,606        | 454            | 10,060 | 4      | 2007       | 9,861        | 454            | 10,315  |
| 5     | 2008        | 0            | 473            | 473    | 5      | 2008       | 0            | 473            | 473     |
| 6     | 2009        | 0            | 490            | 490    | 6      | 2009       | 0            | 490            | 490     |
| 7     | 2010        | 6,807        | 487            | 7,294  | 7      | 2010       | 8,103        | 487            | 8,590   |
| 8     | 2011        | 17,015       | 487            | 17,501 | 8      | 2011       | 20,260       | 487            | 20,747  |
| 9     | 2012        | 10,209       | 913            | 11,123 | 9      | 2012       | 12,154       | 980            | 13,134  |
| 10    | 2013        | 0            | 901            | 901    | 10     | 2013       | 0            | 969            | 969     |
| 11    | 2014        | 0            | 937            | 937    | 11     | 2014       | 0            | 1,004          | 1,004   |
| 12    | 2015        | 0            | 972            | 972    | 12     | 2015       | 0            | 1,039          | 1,039   |
| 13    | 2016        |              | 972            | 972    | 13     | 2016       |              | 1,039          | 1,039   |
| :     | :           |              | :              | :      | :      | :          |              |                |         |
| :     | :           |              | :              | :      | :      | :          |              | :              | :       |
| 41    | 2044        |              | 972            | 972    | 41     | 2044       |              | 1,039          | 1,039   |
| 42    | 2045        |              | 972            | 972    | 42     | 2045       |              | 1,039          | 1,039   |

### (4) Influence by the Delay of Distribution System Improvement

In addition to the comparative study of alternatives, influence which will be caused by the delay of distribution system improvement has been analyzed focusing on the 1<sup>st</sup> Stage Projects. Before the commencement of the Study, the study demarcation was agreed among the Lao PDR side, AFD, and JICA. According to the agreement, JICA would solely establish a master plan. Then the feasibility studies would be conducted by the JICA on intake, water treatment plant, and transmission facilities, and on the other hand the AFD would conduct feasibility study on distribution system. Since there is no financial commitment made by any donor at the moment, there is a possibility of time lag of completion of implementation. In case, implementation of the distribution system improvement was delayed, incremental treated water could not be distributed effectively.

In order to minimize such bad influence which will be caused by the time lag of the implementations, the required distribution mains to distribute water from the proposed treatment plant and from transmission mains were identified as counter measures for each alternative. The required distribution mains will not be the same as the distribution mains which were planned at the alternative study, because the required distribution mains for this analysis are only for the 1<sup>st</sup> Stage and diameter of pipes were decided without consideration of the development under the 2<sup>nd</sup> Stage. The alternatives examined here were, therefore, only three alternatives, Alternatives C: expansion of the existing Chinaimo WTP, Alternative K: expansion of the existing Kaolieo WTP, and Alternative T which will be newly constructed at Thangone area.

Costs required for the required distribution mains which will be required to accommodate incremental production capacity are added to the construction costs and total costs are compared as shown on Figure 36. As the results of the analysis, Alternative K is evaluated as the plan which would be the least influenced by the delay of the implementation of the distribution system improvement. Details of the analysis are described in Annex 20.

### (5) Selection of the Best Alternative by the Least Cost Method

As described in the previous section, the least cost alternative and the lowest influenced alternative is alternative K-1. Alternative K-1 is therefore selected as the best alternative plan. It is therefore recommended to implement water supply system development by the best option, alternative K-1.

| Figure 36 Results of 1      | the Analysis  |               |               |
|-----------------------------|---------------|---------------|---------------|
| x 1,000 US\$                | Alternative C | Alternative K | Alternative T |
| Treatment Plant             | 8,782         | 9,624         | 10,461        |
| Transmission Pipelines      | 1,234         | 1,234         | 10,144        |
| Improvement of Chinaimo WTP | 2,433         | 2,433         | 0             |
| Booster Pumping Station     | 737           | 737           | 0             |
| Required Distribution Mains | 6,829         | 4,936         | 1,792         |
| Total                       | 20,014        | 18,964        | 22,397        |



### 8 Detailed Features of the Best Alternative

### (1) Features of the Best Alternative

1) Treatment Facilities

----

1st Stage (Expansion of the existing Kaolieo Water Treatment Plant)

- Intake Facilities: Construction of new intake facilities in the Mekong River

- Treatment Plant: Capacity expansion of 40,000 m3/day

2nd Stage (Construction of the new Thangone Water Treatment Plant)

- Intake Facilities: Construction of new intake facilities in the Nam Ngum River

- Treatment Plant: Construction facilities capable of producing 60,000 m3/day

Treatment and processing is planned to be the same as those at the existing Chinaimo Treatment Plant. Detailed features of the treatment facilities are shown in Table 13.

| First Sta                             | ige                           | Expansion of 40,000 m3/day                                                                  | Second S                                                       | Construction of 60,000 m3/day |                                                                                             |  |
|---------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------|--|
| Planned Corr                          | ponents of Expansion of Ka    | olieo Treatment Plant                                                                       | Planned Components of Construction of Thangene Treatment Plant |                               |                                                                                             |  |
| Intake Facility                       | Intake Structure              | Construction of New Intake                                                                  | Intake Facility                                                | Intake Structure              | Construction of New Intake                                                                  |  |
| Intake I denity                       | Intake Pump                   | 15.3 m3/min ×65 kW×3 Units                                                                  | Intake I acinty                                                | Intake Pump                   | 15.3 m3/min ×140 kW×4 Units                                                                 |  |
| Raw Water Transmission Pipe           |                               | D700 mm×L40 m, Ultrasonic Flow<br>Meter                                                     | Raw Water Transmission Pipe                                    |                               | D900 mm×L530 m, Ultrasonic Flow<br>Meter                                                    |  |
| Receiving Well & Mixing Well          | Receiving Well!               | 1 Basin, D.T.=2.3 min.                                                                      | Receiving Well & Mixing Well                                   | Receiving Well                | 1 Basin (1 Basin), D.T.=2.4 min.                                                            |  |
| Receiving wen a mixing wen            | Mixing Well                   | 1 Basin, D.T.=1.0 min.                                                                      | (Same Size for Direct Filtration)                              | Mixing Well                   | 1 Basin (1 Basin), D.T.=1.0 min.                                                            |  |
|                                       | Flocculation Basin            | Up and Down Flow Baffle Channel<br>2 Units/Basin×2 Basins, D.T.=28.3 min.                   |                                                                | Flocculation Basin            | Up and Down Flow Baffle Channel<br>2 Units/Basin×3 Basins, D.T.=27.1 min.                   |  |
| Flocculation & Sedimentation<br>Basin | Sedimentation Basin           | Horizontal Flow /w Launder Trough, 2<br>Basins<br>D.T.=2.40 hr, Ave.Velocity=0.36<br>m/min. | Flocculation & Sedimentation<br>Basin                          | Sedimentation Basin           | Horizontal Flow /w Launder Trough, 3<br>Basins<br>D.T.=2.00 hr, Ave.Velocity=0.37<br>m/min. |  |
| ,                                     | Filter Basin                  | A=78.0 m2×4 Basins, V=141 m/d                                                               |                                                                | Filter Basin                  | A=78.1 m2×6 Basins, V=141 m/d                                                               |  |
| Filtration Facility                   | Filter Washing Equipment      | B.W.P.: 47.0m3/min×70kW×2 Units<br>A.B.P.: 94.6m3/min×90kW×2 Units                          | Filtration Facility                                            | Filter Washing Equipment      | B.W.P.: 47.0m3/min×70kW×2 Units<br>A.B.P.: 94.6m3/min×90kW×2 Units                          |  |
| Filtered Water Measurement &          | Measurement Chamber           | 1 Basin, D.T.=1.8 min.                                                                      | Filtered Water Measurement &                                   | Measurement Chamber           | 1 Basin, D.T.=1.8 min.                                                                      |  |
| Chlorine Mixing Chamber               | Mixing Chamber                | 1 Basin, D.T.=0.7 min.                                                                      | Chlorine Mixing Chamber                                        | Mixing Chamber                | 1 Basin, D.T.=0.7 min.                                                                      |  |
| Class Water Reservoir                 | Clear Water Reservoir         | V=10,000 m3                                                                                 | Clear Water Peservoir                                          | Clear Water Reservoir         | V=5,000 m3                                                                                  |  |
| Clear Water Reservoir                 | Piping                        | D700mm, D600mm                                                                              | Clear water Reservoir                                          | Piping                        | D900mm                                                                                      |  |
| Distribution Pumping Facility         | Distribution Pump<br>Building | A=250 m2                                                                                    | Transmission Pumping Facility                                  | Transmission Pump<br>Building | A=320 m2                                                                                    |  |
|                                       | Distribution Pump             | 12.1 m3/min ×67m×195 kW×4 Units                                                             |                                                                | Transmission Pump             | 10.5 m3/min ×42.5m×110 kW×5 Units                                                           |  |
| Chomical Feeding Facility             | Chemical Feeding<br>Equipment | Installation of Equipment and Solution<br>Tank                                              | Chomical Feeding Facility                                      | Chemical Feeding<br>Equipment | Installation of Equipment and Solution<br>Tank                                              |  |
| Chemicar recurs racinty               | Chemical Building             | In preparation for Administration<br>Building                                               | Chemicar recurs racinty                                        | Chemical Building             | In preparation for Administration<br>Building                                               |  |
|                                       | Power Receiving Facility      | Power Receiving and Transformer Equip.                                                      | 1                                                              | Power Receiving Facility      | Power Receiving and Transformer Equip.                                                      |  |
|                                       | Power Supply Facility         | Power Supply Equipment                                                                      | 1                                                              | Power Supply Facility         | Power Supply Equipment                                                                      |  |
| Electrical Equipment Facility         | Emergency Generator           | Generator Cap. for 1/3of Dis. Pump Cap.                                                     | Electrical Equipment Facility                                  | Emergency Generator           | Generator Cap. for 1/3 of Tran. Pump Cap.                                                   |  |
|                                       | Instrumentation<br>Equipment  | Monitoring, Supervising and Controlling                                                     |                                                                | Instrumentation<br>Equipment  | Monitoring, Supervising and Controlling                                                     |  |
| Administration Building               |                               | A=300m2×2F                                                                                  | Administration Building                                        |                               | A=300m2×2F,                                                                                 |  |
| Laboratory                            |                               | In preparation for Administration<br>Building                                               | Laboratory                                                     |                               | In preparation for Administration<br>Building                                               |  |
| Landscaping and Others                |                               | Including demolition & relocation of<br>existing housings                                   | Landscaping and Others                                         |                               |                                                                                             |  |

### Table 13 Detailed Features of Treatment Plant for the Best Alternative

### 2) Pipelines

### <u>1st Stage</u>

- Clear Water Transmission Pipelines: Installation of 2.2 km of pipelines, see Table 17

- Booster Pumping Stations: Improvement of the Km6 BP station, see Table 14
- Distribution Trunk Mains: Installation of 24.2 km of pipelines, see Table 17

### 2nd Stage

- Clear Water Transmission: Installation of 10.6 km of pipelines, see Table 18

- Distribution Centre: Construction of a new distribution centre capable of 60,000 m3/day, see Table
- 15

- Booster Pumping Stations: Improvement of Km12 BP station, see Table 16

- Distribution Trunk Mains: Installation of 73.6 km of pipelines, see Table 18

 Table 14
 Improvement of Km6 Booster Pumping Station in the 1st Stage

| Planned Components of Facility |                          |                                                  |  |  |  |
|--------------------------------|--------------------------|--------------------------------------------------|--|--|--|
|                                | Pump House               | A=45 m2                                          |  |  |  |
| Booster Pumping Facility       | Transmission Pump        | 4.8 m3/min. x 50 m x 57 kW x 2 Units             |  |  |  |
|                                | Distribution Pump        | 6.0 m3/min. x 50 m x 72 kW x 3 Units             |  |  |  |
|                                | Power Receiving Facility | Power Receiving and Transformer Equipment        |  |  |  |
|                                | Power Supply Facility    | Power Supply Equipment                           |  |  |  |
| Electrical Equipment           | Emorgonou Concreter      | Generator Capacity for 1/3 of Trans. & Dis. Pump |  |  |  |
| Facility                       | Emergency Generator      | Capacity                                         |  |  |  |
|                                | Instrumentation          | Monitoring Supervising and Controlling           |  |  |  |
|                                | Equipment                | Monitoring, Supervising and Controlling          |  |  |  |
| Landscaping and Others         |                          | Including demolition of the existing housing     |  |  |  |

|                        |                                | ······                                               |  |  |  |  |  |  |
|------------------------|--------------------------------|------------------------------------------------------|--|--|--|--|--|--|
|                        | Planned Components of Facility |                                                      |  |  |  |  |  |  |
| Clear Water Peservoir  | Clear Water Reservoir          | V=10,000 m3                                          |  |  |  |  |  |  |
| Clear water Reservoir  | Piping                         | D900mm                                               |  |  |  |  |  |  |
| Distribution Pumping   | Distribution Pump<br>Building  | A=320 m2                                             |  |  |  |  |  |  |
| Facility               | Distribution Pump              | 13.5 m3/min ×67m×217 kW×5 Units                      |  |  |  |  |  |  |
|                        | Power Receiving Facility       | Power Receiving and Transformer Equipment            |  |  |  |  |  |  |
| Electrical Equipment   | Power Supply Facility          | Power Supply Equipment                               |  |  |  |  |  |  |
| Electrical Equipment   | Emergency Generator            | Generator Cap. for 1/3 of Distribution Pump Capacity |  |  |  |  |  |  |
| raciiity               | Instrumentation<br>Equipment   | Monitoring, Supervising and Controlling              |  |  |  |  |  |  |
| Landscaping and Others |                                |                                                      |  |  |  |  |  |  |

# Table 15Construction of Distribution Centre in the 2nd Stage

## Table 16Improvement of Km12 Booster Pumping Station in the 1st Stage

| Planned Components of Facility |                          |                                                 |  |  |  |
|--------------------------------|--------------------------|-------------------------------------------------|--|--|--|
| Booster Dumping Facility       | Pump House               | A=25 m2                                         |  |  |  |
| Booster I uniping Pacinty      | Distribution Pump        | 3.3 m3/min. x 60 m x 48 kW x 3 Units            |  |  |  |
|                                | Power Receiving Facility | Power Receiving and Transformer Equipment       |  |  |  |
|                                | Power Supply Facility    | Power Supply Equipment                          |  |  |  |
| Electrical Equipment           | Energy Constant          | Generator Capacity for 1/3 of Distribution Pump |  |  |  |
| Facility                       | Emergency Generator      | Capacity                                        |  |  |  |
|                                | Instrumentation          |                                                 |  |  |  |
|                                | Equipment                | Monitoring, Supervising and Controlling         |  |  |  |
| Landscaping and Others         |                          | Including demolition of the existing housing    |  |  |  |

|       | Distribution | Transmission | Total  |
|-------|--------------|--------------|--------|
| Dia   | Length       | Length       | Length |
| mm    | m            | m            | m      |
| 150   | 2,840        | 0            | 2,840  |
| 200   | 0            | 0            | 0      |
| 250   | 9,450        | 0            | 9,450  |
| 300   | 1,380        | 0            | 1,380  |
| 350   | 320          | 0            | 320    |
| 400   | 0            | 0            | 0      |
| 450   | 4,890        | 2,220        | 7,110  |
| 500   | 0            | 0            | 0      |
| 600   | 4,660        | 0            | 4,660  |
| 700   | 680          | 575          | 1,255  |
| 800   | 0            | 0            | 0      |
| 900   | 0            | 0            | 0      |
| Total | 24,220       | 2,795        | 27,015 |

Table 17Pipeline Length by Diameters in the 1st Stage

| age |
|-----|
|     |

|       | Distribution | Transmission | Total  |
|-------|--------------|--------------|--------|
| Dia   | Length       | Length       | Length |
| mm    | m            | m            | m      |
| 150   | 13,260       | 0            | 13,260 |
| 200   | 18,160       | 0            | 18,160 |
| 250   | 16,770       | 0            | 16,770 |
| 300   | 14,270       | 0            | 14,270 |
| 350   | 5,880        | 0            | 5,880  |
| 400   | 1,790        | 0            | 1,790  |
| 450   | 0            | 0            | 0      |
| 500   | 0            | 0            | 0      |
| 600   | 650          | 0            | 650    |
| 700   | 2,860        | 10,580       | 13,440 |
| 800   | 0            | 0            | 0      |
| 900   | 0            | 0            | 0      |
| Total | 73,640       | 10,580       | 84,220 |

### (2) Evaluation of the Selected Best Alternative

Selected alternative K-1, as the best alternative has the following advantages.

- The premises of the Kaolieo Treatment Plant can accommodate plant expansion in the 1<sup>st</sup> Stage without any additional land acquisition.
- After the 1<sup>st</sup> Stage of expansion of 40,000 m3/day, the capacity of the Kaolieo Treatment Plant will become 60,000 m3/day and the balance of production of the two existing treatment plants, Kaolieo at 60,000 m3/day and Chinaimo at 80,000 m3/day, will be adequate since the central Vientiane area is located between the two existing treatment plants.
- Water supply will be secured to the expanding service area, where pipe installation work is already in progress, financed by the AFD, in the northern part of the Kaolieo Treatment Plant in the 1<sup>st</sup> Stage
- After completion of the 40,000 m3/day expansion under the 1<sup>st</sup> Stage, rehabilitation of the existing plant will become much easier since the existing plant can stop its operations for rehabilitation.
- A sufficient raw water source is secured for the future.
- A minimum of additional staff for treatment plant operation will be required for the 1<sup>st</sup> Stage.
- Necessary arrangements for land acquisition for the 2<sup>nd</sup> Stage Thangone Treatment Plant will proceed during the 1<sup>st</sup> Stage. As the planned location of the new Thangone Treatment Plant is in the Irrigation College premises, the Ministry of Agriculture and Forest and will need time to find and procure more land in Thangone area.
- Recruiting and training staff for the new Thangone Treatment Plant will proceed during the 1<sup>st</sup> Stage.
- Chemical costs will be saved upon completion of new Thangone Treatment Plant in the 2<sup>nd</sup> Stage
- A dual-source water supply system will be established upon completion of the new Thangone Treatment Plant in the 2<sup>nd</sup> Stage