

PRESENTATION

✓ LES CRUES ET PAR CONSEQUENT LES INONDATIONS QU'ELLES

GENERENT SONT A L'ORIGINE UN PROBLEME HYDROLOGIQUE;

✓ LORS DE LEURS EVOLUTION DANS LES ZONES D'ACTIVITES

HUMAINES, ELLES SE TRANSFORMENT EN UN PROBLEME

TERRITORIAL ENGENDRANT DE GRANDES REPERCUSSIONS SOCIO-

ECONOMIQUES:

PRESENTATION

✓ <u>DES INONDATIONS EXCEPTIONNELLES</u> SONT SURVENUES CES

DERNIERES ANNEES A TRAVERS LE TERRITOIRE NATIONAL,

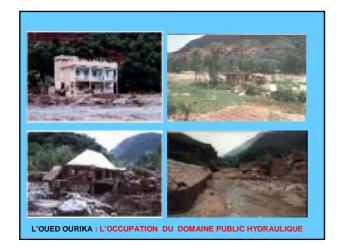
NOTAMMENT DANS LE BASSIN DU TENSIFT (95-99-01-);

✓ <u>LA PROTECTION CONTRE LES INONDATIONS</u> PREND DE PLUS EN PLUS DE PLACE DANS <u>LES PREOCCUPATIONS DE L'ENSEMBLE DES ACTEURS SOCIO - ADMINISTRATIFS</u> : POLITICIENS, CITOYENS SCIENTIFIQUES ET TECHNICIENS...,

A LES CAUSES DES INONDATIONS

LES INONDATIONS PRESENTENT
ESSENTIELLEMENT DEUX ASPECTS:

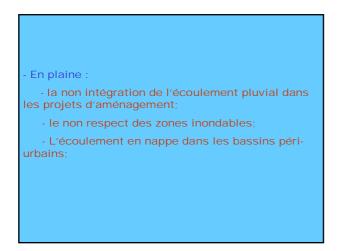
✓UN CARACTERE TRES VIOLENT ET ALEATOIRE: PHENOMENES
IMPREVISIBLES, RESSENTIS COMME INCONTROLABLES, RELEVANT
DE LA FORCE MAJEURE;

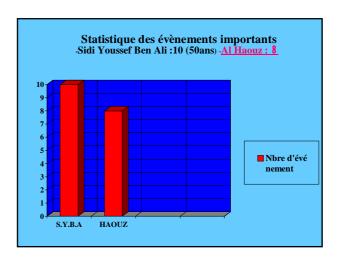

✓LA CULTURE FATALISTE DU RISQUE D'INONDATION CEDE LA PLACE DE PLUS EN PLUS A L'EXISTENCE DE RESPONSABILITES HUMAINES : >L'EXPLOSION DEMOGRAPHIQUE ENGENDRANT UN DEVELOPPEMENT D'UN URBANISME NON MAITRISE ;

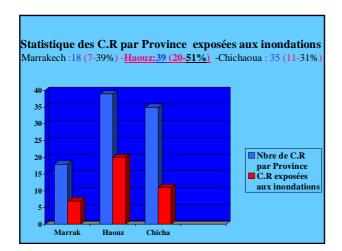
>L'OCCUPATION DU DOMAINE PUBLIC HYDRAULIQUE ET LA CONCENTRATION DES ACTIVITES EN BORDURE DES COURS D'EAU;

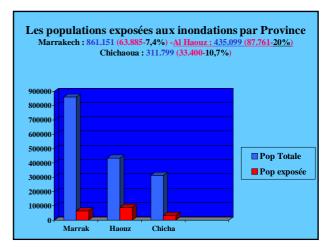
>LES DEPOTS DE DIFFERENTES NATURES DANS LES LITS DES OUEDS;

LA NON PRISE EN CONSIDERATION DE L'ECOULEMENT PLUVIAL DANS L'AMENAGEMENT DU TERRITOIRE ET LA FRAGILITE DES INFRASTRUCTURES REALISEES;

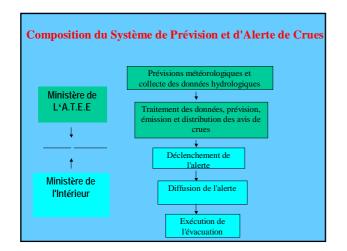


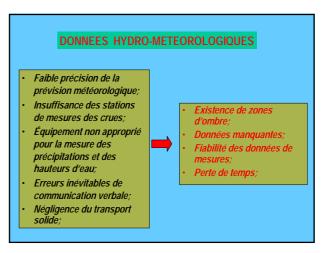


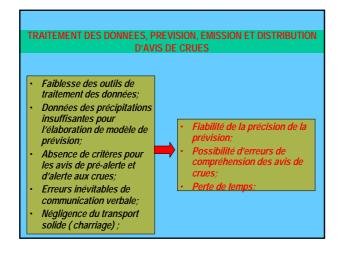


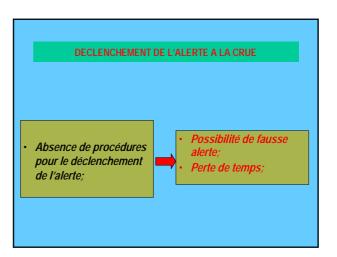

LES CAUSES DES INONDATIONS :

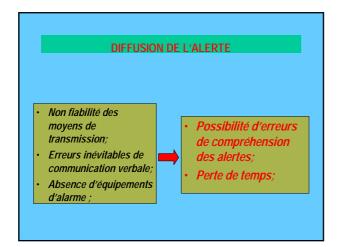
- En zones montagneuses : conjugaison de deux éléments:
- phénomènes hydro-pluviométriques extrêmes (orages,précipitations intempestives, crues violentes,...)
- caractères physiques et géologiques du milieu (fortes pentes, couvert végétale dégradé ou absent, terrains imperméables,...)

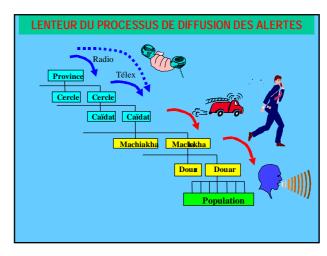


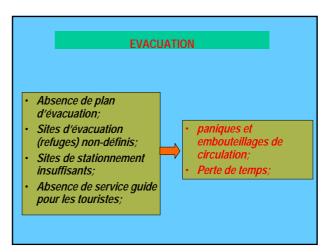

B√ LES OUTILS DE PREVISION


1-La prévision météorologique: *Bulletins de courte et moyenne échéance et des BMS; *Les outils: Réseau des stations synoptiques (40 stations); Réception d'images satellites (Météosat et Trios); Stations Radiosondages: Casa,Beni-Mellal, Dakhla, Agadir Radars météorologiques (Casa, Khouribga, Fès, Larache, Agadir); Modèles de prévision: Al BACHIR (spécifique au Maroc); ARPEGE (modèle de Météo-France); CEP (modèle du centre européen de prévision); AL MOUBARAK et AL MASSIFA: projet en cours;




Système de prévision et d'alerte de crues Cas du Bassin de l'Ourika (avant 1995): Schéma du système de prévision et d'alerte de crues; Insuffisances du système; Réseau d'observation hydro-météorologique; Traitement des données et prévision des crues et des apports solides; Déclenchement de l'alerte; Diffusion de l'alerte; Évacuation.





CV LES INONDATIONS ET LES EFFORTS DU MINISTERE POUR EN ATTENUER LES CONSEQUENCES les inondations : Quelles conséquences ?

✓ - Aspects positifs :

- Reconstitution des réserves en eau et amélioration de la qualité de l'eau;

✓ - Aspects négatifs :

- Dégâts humains et matériels;

- Perturbation de services (ONEP, Régies, ONE, ONPT, transport..)

- Dénaturation du milieu;

-.....

	du secteur			isoire des dés on du Tens		
Type de Route	Marrakech	Al Haouz	Safi	Essaouira	El Kelaa	TOTAL Tensift (DH)
Route Nationale	180.000,00	230.000,0	-	866.000,00	-	1.276.000,0 (45 %)
Route Régionale	126.000,00	300.000,0	217.000,00	86.000,00		729.500,0 (26 %)
Route Provinciale + CT	38.000,00	100.000,0	215.000,00	480.000,00	-	833.000,0 (29%)
TOTAL	344.000,0	630.000,0 22 %	32.000,0	1.432.000, 0	-	2.838.500,0 (100%)

Type De Route		Makech	Al Haouz	El Kelaa	Safi	Essaouira	Total Région Tensift
Koute							Tensit
RN +	Nbre de points de coupures	17	9	11	47	12	96
RR + RP	durée de coupure	1h / 48h	6h / 15j	2h/2mois	1j / 4mois	3j / 12j	1h / 4mois
+ CT	coût de rétabliss ement (x1000 DH)	14.305,0 (24,46%)	9.510,00 (16,26%)	575,50 (0,98%)	6.116,00 (10,5%)	27.688,00 (47,4%)	58.494,50 (100%)

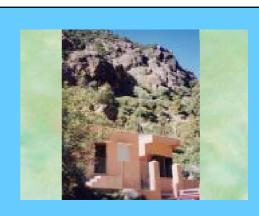
Les interventions du Ministère dans la vallée de l'Ourika englobent les volets : météorologique, hydraulique et routier

Mesures structurelles

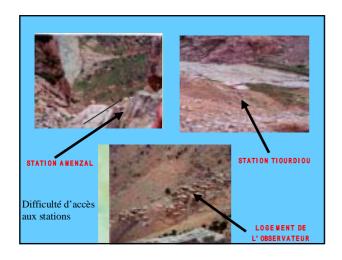
- Création de la Direction Provinciale de l'Équipement d'Al Haouz
- Aménagement de seuils pour l'amortissement des crues;
- Stabilisation des thalwegs et réalisation de murs de soutènement;
- Réalisation d'ouvrages d'art et d'assainissement routiers ;
- Aménagement d'une piste en crête ;
- Aménagement de parkings et de sites d'évacuation hors des zones inondables;

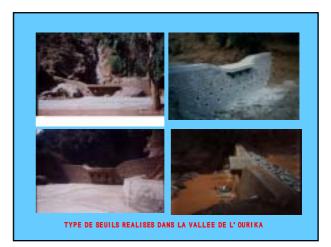
Les interventions du Ministère dans la vallée de l'Ourika englobent les volets : météorologique, hydraulique et routier:

Mesures non structurelles :


- Renforcement de la veille météorologique et hydrologique ;
- Mise en place d'un système d'annonce de crue et d'alerte ;
- Délimitation des zones submersibles en fonction des fréquences des crues :
- Élaboration d'un guide de gestion des phénomènes catastrophiques naturels;

Les efforts consentis par le Ministère pour atténuer les dégâts de crues :


- Études de protection :
 - Lancement des études de protection de plusieurs villes (Marrakech, Imin Tanout, Essaouira)
 - Lancement de l'étude du <u>Plan National de Protection</u> <u>Contre les Inondations</u>;


Les efforts consentis par le Ministère pour atténuer les dégâts de crues :

- ✓ La coopération internationale (bassin du Tensift):
 - Élaboration du SPAC et réalisation d'un projet pilote dans le bassin de l'Ourika (JICA);
 - Développement d'une approche pour la protection contre les inondations de l'oued Issyl (Université de Karlsruhe - GTZ);
 - Activités de délimitation des zones à risques en montagnes (Université d'Innsbrouk – Autriche).

Station Tazitount d'annonce de crues sur oued Ourika

DV APPROCHE METHODOLOGIQUE POUR LA GESTION DES INONDATIONS

la gestion des inondations suppose:

- un cadre institutionnel et réglementaire ;
- un réseau de mesures hydro-climatologique performant ;
- un système de prévention ;
- un plan d'alerte et de gestion de crise ;

1/ <u>LA LOI 10/95</u> : le renforcement de la décentralisation et de la déconcentration.

QUELLE PLACE POUR LES INONDATIONS?

IL Y A LIEU DE CLARIFIER LE CADRE INSTITUTIONNEL.

√<u>- Article 20</u>: Il y a lieu de définir les relations Agence –
Administration- Collectivités locales.

✓- <u>Article 102:</u> Il y a lieu de préciser les modalités de cofinancement des opérations de lutte contre les inondations dans les projets de partenariat avec les C.L.

2/ DEFINITION DE SYSTEME DE PREVENTION:

- ✓ les dispositifs de surveillance et d'alerte hydro-météorologique;
- ✓✓ la planification de l'occupation du sol et l'aménagement des zones à risques (maîtrise de l'urbanisme, gestion des eaux pluviales délimitation du DPH,...);
- ✓✓✓ Mise à disposition des ressources financières pour la réalisation d'ouvrages de protection et d'entretien du milieu (aménagement et entretien des cours d'eau, restauration des rives et des berges, préservation des zones d'épandage et de rétention, aménagement des bassins versants,...);

3/ ELABORATION DE PLAN D'ALERTE ET DE GESTION DE CRISE:

- ✓ Inventaire des zones à risques (base de données) ;
- ✓ ✓ Mise en oeuvre de procédures claires de gestion de crise (permanences , réception et émission des messages, diffusion de l'alerte, intervention sur le terrain) ;
- ✓ ✓ ✓ Alerte des populations et déclenchement du plan ORSEC;

4/ PROPOSITIONS POUR UNE GESTION DE CRISE CONSEQUENTE

1- PREVISION:

- DMN : Diffusion en temps opportun de la prévision;
 - Mise à disposition des usagers d'un répondeur automatique;
- •ABHT/PROVINCE/DPE:- Suivi de la situation météorologique et hydrologique;

2- PRE-ALERTE METEOROLOGIQUE (DMN)

•PROVINCE :- Suivi de la situation météorologique et hydrologique;

•ABHT

- :- Suivi de la situation et veille météorologique et hydrologique;
- Traitement en temps réel des données ;
- Concertation avec la DMN des évolutions ; - Émission d'avis de pré-alerte (Province, DPE) ;
- •DPE :- Mise en place du PC;

3- AVIS DE CRUE:

ABHT: - Émission d'avis de crue (Province, DPE);

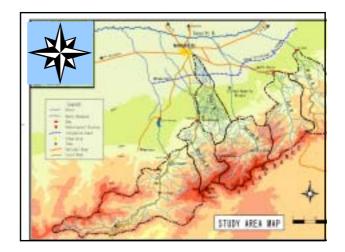
- Suivi de l'évolution ;

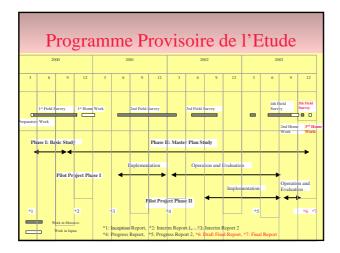
4- ALERTE:

- PROVINCE: Déclenchement et diffusion de l'alerte et de l'évacuation
 - Déclenchement du plan ORSEC;
- ABHT : Suivi de l'évolution et transmission de l'information ;
- DPE : Mobilisation, intervention sur le terrain et transmission de l'information ;

5- FIN DE LA CRUE

•ABHT:- Avis de fin de la crue (Province, DPE);


- Traitements des données collectées ;
- Rapport de suivi de l'événement pour le Ministère ;
- Enquête de terrain (topo, dégâts, photos) et rapport hydrologique
- •DPE: Intervention sur le terrain;
 - Transmission des données collectées ;
 - Rapport de conjoncture destiné aux autorités supérieures ;
 - Enquêtes conjointes avec l'ABHT;


6- RAPPORT D'EVALUATION DE L'EVENEMENT:

- suivi, interventions, dégâts, coûts des réparations, etc...;

Etude du Plan Directeur sur le Système de Prévision et d'Alerte aux Crues pour la Région de l'Atlas au Royaume du Maroc (Formulation du Plan Directeur)

Sub	system	Problems				
Hydrological	Observation	Network is poor in quality and quantity				
Observation and Information	Data Transmission	Manual and voice communication, etc.				
Collection	Collection	Accuracy is poor				
Data Analysis,	Data Analysis	Insufficient data analysis, etc.				
Forecasting, Distribution of		No forecasting (no simulation model), etc.				
Flood	Announcement	No criteria for announcement, etc.				
Information	Distribution	Inevitable verbal communication errors, etc.				
Issuance of Warn	ing	No criteria for issuance of warning, etc.				
Dissemination of Warning		Inevitable verbal communication errors, no alarm equipment, etc.				
Issuance of Warn	ing	No criteria for issuance of warning, etc.				
Evacuation	Facilities	Insufficient evacuation and parking spaces, etc.				
	Operation	No evacuation system, etc.				

Stratégie de base pour la formulation du Plan Directeur Directeur Identification de la nécessité et du rôle du SPAC pour faire face aux problèmes inhérents à chaque bassin. Assurance de la fiabilité du système pour la prise de mesures appropriées. Considération de la durabilité du système. Utilisation complète des résultats du Projet Pilote.

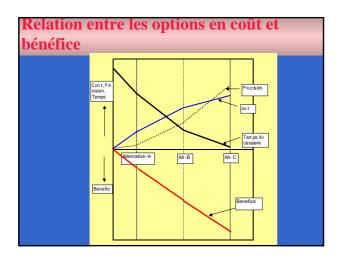
5.1.1 Conditions de base pour la formulation du l'avant-projet du Plan Directeur

- **☼ Concernant l'année cible d'achèvement de la** réalisation du Plan Directeur, l'année 2007 est prévue.
- La crue de 1995 est adoptée comme crue cible du Plan Directeur.
- Les conditions futures des bassin sont supposées se développer suivant le développement du PIB dans la région.

5.1.2 Sélection des zones cibles du SPAC

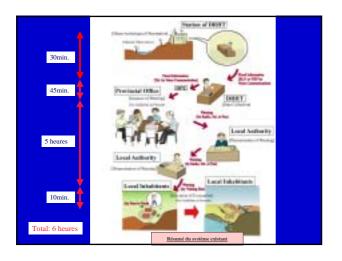
- Les zones à haut risque sont sélectionnées comme zones cibles.
- Le classement des zones à haut risque est basé sur le nombre des victimes des crues antérieures.

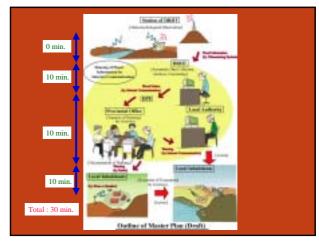
5.2 Amélioration du système dans le Plan Directeur

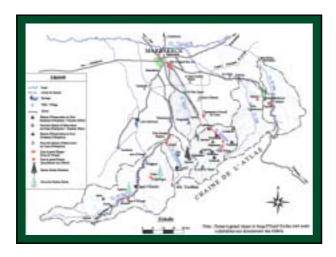

- Installation de nouvelles stations d'observation hydrologique (12 station pluviométriques et 5 stations de jaugeage des niveaux d'eau, faisant un total de 20 stations pluviométriques et 12 stations de jaugeage des niveaux d'eau)
- De Etablissement d'un réseau de transmission pour la collecte des données (adoption de l'option optimale)
- Traitement des données et la préparation et la diffusion des informations de crues
- Préparation d'un guide pour l'émission des alertes aux crues
- Émission des alertes aux crues à travers 17 Poste d'Alarme
- Préparation d'un quide nour l'évacuation

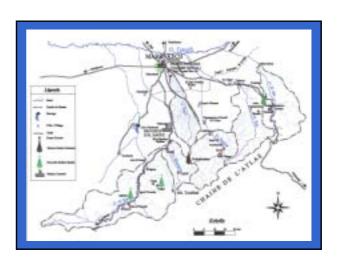
5.3 Etablissement des options

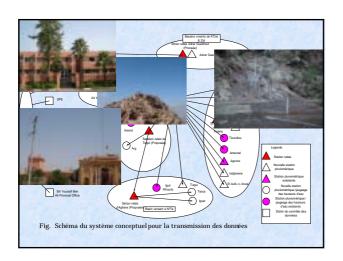
- Option-A: combinaison dans l'option-A basée sur l'exploitation manuelle du système.
- ***Option-B:** combinaison dans l'option-B basée sur un système semi-automatique.
- ****Option-C: combinaison dans l'option-C** basée sur un système automatique.

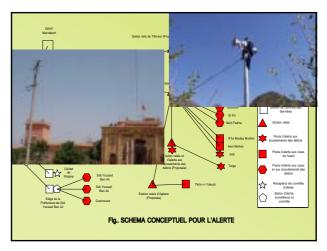

		Comparai	ison des opt	ions			
		Table 4-1 Con	nparision Table of the S	ystem			
	System		Option A	Option B	Option C		
Sub-system	Component	Item					
Meteo- hydrological	Meteo-hydrological Observation	Observation Equipment	Manual Observation	Automatic Observation	Automatic Observation		
Observation and Data Collection	Data Collection	Data Transmission Equipment	Radio Communication by voice	Radio Communication by voice	Radio Telemetry System		
	Data Processing	Data Management Equipment	Manual data processing	Computer Data Processing	Computer Data Procesing and Home Page service		
Data Analysis and Forecasting of Flood and Debris	Data Distribution Data Monitoring Equipment		Data distribution by telephone and Facsimile	Equipt with PC for data monitoring at agencies concerned	Equipt with PC for data monitoring at agencies concerned with Internet Service		
Flow	Data Transmission	Transmission Method	Telephone Line	Telephone Line	Own Radio network and Telephone Line as Back-t		
	Warning Command	Warning Control Equipment	Warning Control Equipment is not installed at Caidat.	Simple Warning Control Equipment is installed at each Caidat	Issuance Warning message Provincial Office director through Warning Contro Equipment		
Dissemination of Warning	Warning Dissemination Warning Post		Off-line Voice amplifier at each Warning Post	Off-line Voice amplifier at each Warning Post	On-line Voice amplifier a each Warning Post		
	Message Transmission	VHF Radiotelephone or Telephone Line	No transmission line is provided. Caidat goes to the Warning Post and broadcasts warning message	Between Caidat and Warning Post connects by Public Subscriber Telephone and VHF radiotelephone	Own VHF Radio Networ		

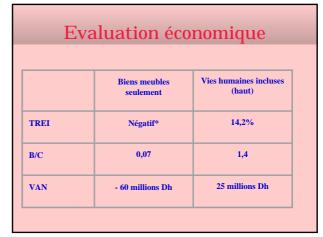

	Com	parais	on des o	ptions
Option	Coût (Million DH)	Précision	Temps nécessaire pour le fonctionnement total	Durabilité
A	5,7	Faible	1,5 to 6 heur	Bonne
В	34,3	Moyenne	50 min.	Moyenne
С	47,7	Haute	30 min.	Efforts nécessaires

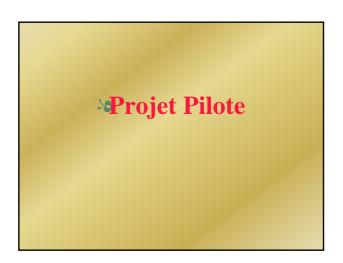



4.6 Sélection du Plan optimal


- L'introduction d'un système automatique suit la stratégie de la DGH.
- L'Option-A (système manuel) est inférieure à B et C en terme de temps nécessaire pour le fonctionnement du système.
- B (semi-automatique) et C (automatique), alors que la différence est grande en terme de temps et de précision.
- L'option-C a été sélectionnées comme plan optimal.







Résu	mé de l	'évalua	ation
Criteria	Consideration	Evaluation	Issues
Adequacy	Effectiveness	В	Measures against lightning should be considered
of Equipment	Sustainability	В	Maintenance works should be assured
Adequacy of Guidelines	Effectiveness	B in simulation drills	The guidelines of which effectiveness was confirmed tentatively in the simulation drills should be examined in actual floods.
	Sustainability	С	Strengthening of permanence system and provision of necessary equipment is indispensable. Training programs and simulation drills should be executed regularly
Adequacy of Total System	Effectiveness	В	-Effectiveness against flash flood debris flows of tributaries is insufficient There are still many problems that cannot be solved by FFWS alone
	Sustainability	В	Machinery to support the pilot FFWS is indispensable.

Modif	ication du P	lan Directeur				
	Elément	Modification				
Condition de base du P/D	Année cible d'achèvement	Réalisation à long terme considérée en option (5 ans et 10 ans)				
Modificatio n des sous- systèmes	Observation hydrologique et collecte des données	Modification du design du réseau radio du système de télémétrie.				
Diffusion des alertes aux crues.		Système semi-automatique introduit.				
Modification	du Plan d'E/M	Création d'un comité de coordination				
		Renforcement de la permanence				
		Nécessité des explication et de la formation				
		Nécessité de l'analyse interactive avec la DMN.				
		Importance des informations des autorités locales				
		Importance de l'évaluation et de l'amélioration				
		Importance de la participation des habitants et des touristes				
	ne approche compréhensive on des désastres	Approche compréhensive comprenant une variété de mesures structurelles et non-structurelles				

2	amme de ré		_	=	_	_	2008		009		_	_	_	_	_	
	Major Work Item	2005	20	06	200	37	2008	8 2	:009	20	10	201	11	201	12	2013
nent	Administrative Arrangement for Tendering of F/S and D/D															
ole.	Feasibility Study		-			Т	Т	Т	Т						Т	Т
-year Implement	Administrative Arrangement for Acquisition of Radio Frequencies	-				T	T	T							T	T
5-ye	Detailed Design		\vdash			Т	Т	Т	Т						Т	Т
=	Financial Arrangement		-	5		Т	Т	T	Т		П			\neg	7	Т
Altemative	Administrative Arrangement for Tendering for Procurement of Equipment			-	-		T	T							1	
Item	Manufacturing and Shipment of Equipment				=	-	=									
<	Civil Construction Work					F	=									- 1
	Installation of Equipment		П	П		Т	F	=	Г	Г	П			\neg	7	7
	Training and Experimental Operation						Т		H							T
-year Impleme	Administrative Arrangement for Tendering of F/S and D/D	\blacksquare		П		1	1	F	1					=		1
E D	Feasibility Study						Т		+		П			4		Т
ar I	Administrative Arrangement for Acquisition of Radio Frequencies						I								-	
ž	Detailed Design		H١						-						4	- 1
10	Financial Arrangement		-			\Box		\Box		E .						
- 61	Administrative Arrangement for Tendering for Procurement of Equipment			-		I				-						4
Alternative-	Manufacturing and Shipment of Equipment					-	1	T	Т		H	=			T	-
A Ite	Civil Construction Work					_		ľ	T	Г		4	7	7	T	T
`	Installation of Equipment						=		T			-	-			T
	Training and Experimental Operation					\neg									_	7

	Elément de coût	Montant (1 000 Dh)				
A.	Coût de construction	60 516	(16 612)			
	(1)Coût des équipements	47 749	(12826)			
	(2)Coût d'installation et de commande	6 384	(2.072)			
	(3)Coût de travaux publics	4 386	$(1\ 178)$			
	(4)Coût de développement du logiciel	1 000	(269)			
	(5)Coût de la formation technique	1 000	(269)			
B.	Coût des services d'ingénierie	15 000	(4 029)			
C.	Contingence physiques (10% de (A+B))	7 552	(2 064)			
D.	Coût du projet (A+B+C)	83 068	(22 706)			
E.	Coût annule de maintenance	2 387	(641)			

Elément	•	on-1 n en 5 ans)	Alternative-2 (Réalisation en 10 ans)				
	Bien meubles seulement	Vies Humaines incluses	Bien meubles seulement	Vies Humaines incluses			
TREI	Négatif*	16,7%	Négatif*	19,7%			
B/C	0,08	1,6	0,08	1,7			
VAN	-50 millions Dh	31 millions Dh	-45 millions Dh	31 millions D			

Evaluation du projet

Considération financières

- Les charges annuelles supplémentaires pour l'E&M ne sont pas légères.
- L'implication et l'assistance des instances régionales et nationales est nécessaire. Le comité de coordination proposé est prévu devenir un promoteur du Pla Directeur.
- La DGH fourni les budgets pour la maintenance curative.

Considération de l'aspect social

 Pour les habitants, leur grande préoccupation a été prouvée lors du Prjet Pilote avec un participation volontaire de 30% des habitants.

Evaluation environnementale initiale

Aucun impact sérieux n'a été prévu.

Acceptabilité technique

 Les techniciens de l'ABHT sont devenus capable d'exploiter le système et on pourra dire que l'ABHT est presque prête à accepter le Plan Directeur.

Approche compréhensive aux désastres

Limites du SPAC

- Le SPAC n'est en fait qu'un moyen d'atténuer les risques de désastres et non pas un moyen de complètement éliminer les dégâts.
- La sécurité des gens ne peut être assurée s'ils ne prennent pas les mesures appropriées.
- Le système est composé de la machine comme de l'intervention humaine.
- Selon l'ampleur et les caractéristiques du désastre,il peuvent échouer même s'il fournissent le meilleur de leurs efforts.
- Les dégâts aux biens immeubles tels que les infrastructures, les construction e les produits agricoles sont inévitables avec seulement un SPAC comme mesure de protection.

Approche compréhensive aux désastres

Introduction de mesures structurelles

- Lutte contre les écoulements des débris: seuils de stabilisation, canalisation, ouvrage en poche de sable.
- Lutte contre l'érosion: Travaux de coteaux, travaux de reboisement, autres
- Lutte contre les crues : amélioration de drainage, barrage et retenues

Mesures non-structurelles

- Publication du carte d'aléas de crues
- Contrôle des torrents à potentiel d'écoulement de débris
- Introduction du contrôle de la circulation
- Introduction du contrôle de l'occupation des sols
- Fourniture d'aménagements touristiques

Conclusion et recommandations

Conclusion

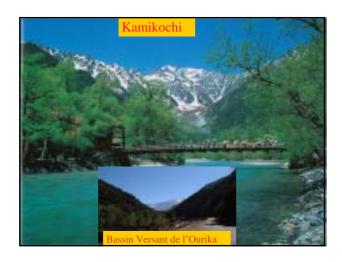
 En conclusion, le Plan Directeur est généralement économiquement viable en terme d'efficacité économique, de faisabilité financière, d'acceptabilité sociale et technique, et d'impact environnemental.

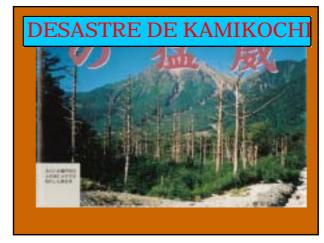
Recommandation

- Etablissement d'un comité de Coordination
- Exploitation durable du système du Projet Pilote
- Approche compréhensive aux désastres dans la région de l'Atlas

⁵Approche compréhensive

UN POINT FAIBLE DU BASSIN VERSANT DE L'OURIKA

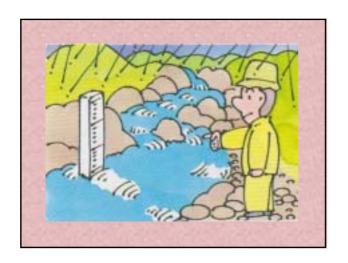

- Le bassin versant de l'Ourika est l'un des plus célèbres sites touristiques du Maroc.
- Beaucoup de touristes s'y rendent à
- En haute saison touristique, un grand nombre de voitures est stationné au long e l'oued.
- De ce fait, en cas d'alerte soudaine, les touristes risquent de s'affoler et de se diriger vers leurs voitures, mais ils se trouveraient dans l'impossibilité d'évacuer.
- Ainsi, on pourrait assister à de nouveaux désastres semblables à celui de 1995, même après l'établissement du SPAC.

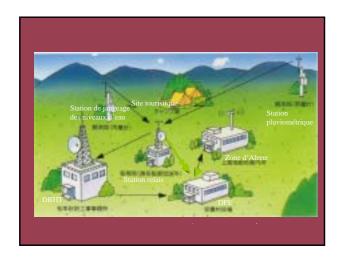


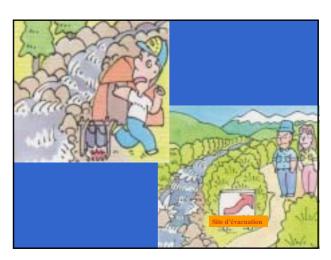
LE CONTROLE DE LA CIRCULATION
EST NECESSAIRE

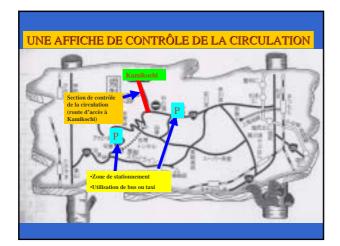
En référence à cette mesure, on peut citer l'exemple du Japon, la Suisse et l'Autriche

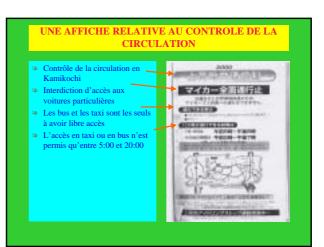
L'EXEMPLE DE KAMIKOCHI










INTRODUCTION DU CONTROLE DE LA CIRCULATION DEPUIS 1975

La principale raison en est la prévention des désastres, mais elle sert également à la préservation d'un environnement meilleur

LES PRINCIPAUX ELEMENTS DU CONTROLE DE LA CIRCULATION

- Interdiction de l'accès à Kamikochi pour les voitures particulières
- Les voitures particulières doivent stationner dans des espaces de stationnement désignés
- Les touristes utilisent des bus publics ou des taxis pour entrer à Kamikochi.

COMMENTAIRES SUR LE CONTROLE DE LA CIRCULATION A KAMIKOCHI

- Au début, les personnes concernées se sont fait des soucis quant à la réduction du nombre de touristes.
- Quelques-uns se sont opposé au contrôle de la circulation.
- En fin tout le monde a compris et s'est montré coopératif.
- Après 20 ans, ce système de stationnement et d'utilisation de s transports en commun est complètement établi.
- La bonne réputation de Kamikochi pour sa sécurité contre les désastres et son bon environnement a été mise en valeur.

Durabilité du SPAC

- Les gens n'oublient les désastres de crues qu'après longtemps. Mais de tels désastres se reproduisent fréquemment.
- Il est nécessaire de bien maintenir le SPAC pour pouvoir faire face aux désastres lors de leur occurrence.
- La coopération et la compréhension des gens et des responsables concernés sont nécessaires.
- Le projet Pilote a été achevé et l'exploitation ne fait que commencer.
- La durabilité du SPAC est importante.
- Nous apprécions votre supplément de coopération pour l'exploitation et la maintenance du Projet Pilote en attendant la réalisation du Plan Directeur.

