4.5 Power System Analysis

4.5.1 Purpose

A 370 MW combined cycle generating facility, which is scheduled to begin operation in 2008, is to be added to the Tashkent Thermal Power Plant. The purpose of the power system analysis is carrying out the calculation in order to examine the influence due to the introduction of this facility under normal condition and emergency condition. The power system analysis will be examined issues such as power flow, short-circuit current, stability, and frequency fluctuation.

4.5.2 Examined Case

Ideally, the power system of year 2008 would be simulated for the calculations, but accurate data is not available with regard to demand forecast, generation development plan, and power transmission system development plan for future years. Therefore, the analysis will be carried out based on the actual year 2002 data for the power system to which the new 370MW generator of the Tashkent Thermal Power Plant will be connected.

The calculations are carried out about the two cases that are the summer peak and winter peak representing the different aspects of the power flow.

4.5.3 Simulated System

Because the electrical power system in Uzbekistan retains the transmission system that was constructed during the time of the former Soviet Union, there are international connection lines between Uzbekistan and four other countries (Kazakhstan, Kyrgyzstan, Tajikistan and Turkmenistan). The five countries including Uzbekistan make up the Central Asia Power System. The trunk transmission lines of the Central Asia Power System are 500 kV and 220 kV lines. For the purposes of these calculations, almost all of the 500 kV and 220 kV transmission lines and substations of the system were simulated except some radial power system. Major power plants with capacities of 600 MW or more were simulated accurately unit by unit. Namely, the simulated 8 power plants are as follows.

Uzbekistan	Syrdariya	3000 MW	Thermal power plant
•	Novo Angren	2100 MW	Thermal power plant

	Tashkent	1860 MW	Thermal power plant
٠.	Navoi	1250 MW	Thermal power plant
	Charvac	620 MW	Hydro power plant
Kyrgyzstan	Toktogul	1200 MW	Hydro power plant
	Kurpsai	800 MW	Hydro power plant
Tajikistan	Nurek	3000 MW	Hydro power plant

The 500 kV bus of the Almaty substation in Kazakhstan was taken as the slack bus. (Figure 4.5-1)

4.5.4 Calculation Software

Calculations were carried out by using "CRIEPI's Power System Analysis Tools" developed by the Central Research Institute of the Electric Power Industry (CRIEPI) in Japan. This software is currently used by all the electric power companies in Japan. SJSC "Uzbekenergo" is using the calculation software named "Mustang" which was made in former Soviet Union.

4.5.5 Winter Peak Calculation Results

(1) Power Flow

The results of the power flow calculation after the new 370 MW generator is connected to the Tashkent Thermal Power Plant are shown in Figure 4.5-2.

The power flow through each transmission line is as shown in Table 4.5-1. For all the transmission lines, the calculated flow was within the allowable current capacity.

The power flow calculations when one circuit of 500kV transmission line is tripped were also carried out and the result is as shown in Table 4.5-1. For all the 500 kV transmission lines and most 220kV transmission lines, the calculated flow was within the allowable current capacity.

(2) Voltage

For the purposes of maintaining the proper voltage, the static condensers with required capacity were inserted into the several substations.

The voltage values for the 500 kV and 220 kV buses at each substation were as shown in Figure 4.5-2 and Table 4.5-2. The 500kV bus voltage of each substations was within the

range of 535 kV (107.1 %) and 500 kV (100.0 %). And the 220 kV bus voltage of each substations was within the range of 229 kV (104.0 %) and 201 KV (91.4 %). In all cases, the voltage was found to fall within the target range of ± 10 %.

(3) Short-circuit Current

The 3-phase short-circuit current values for the 500 kV and 220 kV buses for each substation were as shown in Table 4.5-3. The maximum short-circuit current was 13.1 kA for a 500 kV bus and 27.5 kA for a 220 kV bus. In all cases, the current was within the rated current capacity for the equipment of 40 kA.

The influence of introduction of 370 MW combined cycle power plant on the network system was +0.4 kA for a 500kV bus and +2.8 kA for a 220kV bus of Tashkent Thermal Power Plant. However, in these calculations, only principal power plants were simulated, so the values were slightly lower than the actual short-circuit current values.

According to NDC (National Dispatch Center) calculations, the present 3-phase short-circuit current value of Tashkent Thermal Power Plant 220kV bus is close to 40kA and according to the kind of faults it may be over 40kA. Therefore when the power system development plan is decided, the more exact short-circuit current calculation should be carried out about 2008year stage when the new 370 MW generator is put into operation. And if necessary, either of the countermeasures should be taken. Since it seems that it is sufficiently possible to replace 220kV circuit breakers from designing to installation for two years, it will be possible to carry out it after the detailed study by SJSC "Uzbekenergo".

- a. One more 500/220kV transformer is constructed and 220kV bus bar is operated separately.
- b. Next replaced generators are connected to 500kV bus directly.
- c. As the next replaced generator's step-up transformers, high impedance ones are adopted.
- d. All 220kV circuit breakers are replaced to the rated current capacity 50kA or 63kA.

(4) Static Stability

Static stability calculations were carried out for the purpose of assessing whether or not stability can be maintained in the power system when a slight disturbance such as a circuit-breaker opening occurs somewhere in the system. The result of this calculation, which is provided in Figure 4.5-3, indicates that the system is stable.

(5) Dynamic Stability

Dynamic stability calculations were performed assuming the case that a 2LG-O(Line Ground fault - Open) fault occurred at the nearest point of the 370 MW generator of the Tashkent Thermal Power Plant.

Failure sequence:

500kV Transmission line, Transformer:

Circuit breaker opens 120 ms after the failure occurs.

220kV Transmission line:

Circuit breaker opens 200 ms after the failure occurs.

Case 1: 500kV Tashkent GRES - Shimkent

Case 2: 500kV Tashkent GRES - TashkentSS

Case 3: 220kV Tashkent GRES - Uksak

Case 4: Tashkent GRES 500/220 kV main transformer

The results of the calculations for each case are as shown in Figures 4.5-4, 4.5-5, 4.5-6, and 4.5-7. The fluctuation in the phase angle of the power plant is converged, so power system stability is stable.

(6) Frequency Fluctuation

The unit with the largest capacity in the Central Asia Power System is the 800 MW generator at the Tarimaljan Power Plant (expected to begin operation in 2003). The frequency drop was calculated for the case when the Tarimaljan 800 MW generator dropped out of the system, and the frequency rise was calculated in the cases of 5 % and 10 % load reductions of the whole system. The results of the calculations are shown in Figures 4.5-8, 4.5-9, and 4.5-10. The frequency drop of the case of the Tarimaljan 800 MW generator dropped out is 0.1Hz, the frequency rise of the case of 5% load reduction is 0.05Hz and the frequency rise of the case of 10% load reduction is 0.1Hz. The range of permitted frequency is 48.5Hz - 51.5Hz in the electric power companies of Japan, so this frequency fluctuation values are within the range.

The standard gas turbine of a certain manufacturer for commercial use is designed so as to be able to continuously operate under load within the range of the network frequency of 47.5 Hz to 51.5 Hz. Such allowable range is specified to avoid that the natural frequencies of rotating blades of the turbine and compressor will be resonant with the harmonics of the rotating speed.

Therefore, if the network frequency exceeds the said range, the generator breaker shall be forced to open or the gas turbine shall be forced to trip with the time delayed frequency relay. In case of the gas turbine mentioned above, the time delayed frequency relays have such functions as shown below:

a. Under Frequency Relay

 $47.0 \text{ Hz} < F \le 47.5 \text{ Hz}$ The generator breaker opens after 15 seconds.

F = 47.0 Hz The gas turbine trips after 0.1 second.

F < 47.0 Hz The gas turbine immediately trips.

b. Over Frequency Relay

F = 51.5 Hz The gas turbine trips after 0.1 second.

F > 51.5 Hz The gas turbine immediately trips.

The allowable range where the gas turbine can be continuously operated under load is changeable depending upon the design concept of the gas turbine manufacturer. So that we will recommend that SJSC "Uzbekenergo" should discuss with the EPC contractor as to how to pre-set the frequency relays.

4.5.6 Summer Peak Calculation Results

(1) Power Flow

The results of the power flow calculation after the new 370 MW generator is connected to the Tashkent Thermal Power Plant are shown in Figure 4.5-11.

The power flow through each transmission line is as shown in Table 4.5-1. For all the transmission lines, the calculated flow was within the allowable current capacity.

(2) Voltage

For the purposes of maintaining the proper voltage, the static condensers with required capacity were inserted into the several substations.

The voltage values for the 500 kV and 220 kV buses at each substation were as shown in Figure 4.5-11 and Table 4.5-2. The 500kV bus voltage of each substations was within the range of 543 kV (108.7 %) and 500 kV (100.0 %). And the 220 kV bus voltage of each substations was within the range of 241 kV (109.6 %) and 210 KV (95.5 %). In all cases, the voltage was found to fall within the target range of ± 10 %.

(3) Short-circuit Current

Same as winter peak calculation result.

(4) Static Stability

Static stability calculations were carried out for the purpose of assessing whether or not stability can be maintained in the power system when a slight disturbance such as a circuit-breaker opening occurs somewhere in the system. The results of these calculations, which are provided in Figure 4.5-12, indicate that the system is stable.

(5) Dynamic Stability

Dynamic stability calculations were performed assuming the case that a 2LG-O fault occurred at the nearest point of the 370 MW generator of the Tashkent Thermal Power Plant.

Failure sequence:

500kV Transmission line, Transformer:

Circuit breaker opens 120 ms after the failure occurs.

220kV Transmission line:

Circuit breaker opens 200 ms after the failure occurs.

Case 1: 500kV Tashkent GRES - Shimkent

Case 2: 500kV Tashkent GRES - TashkentSS

Case 3: 220kV Tashkent GRES - Uksak

Case 4: Tashkent GRES 500/220 kV main transformer

The results of the calculations for each case are as shown in Figures 4.5-13, 4.5-14, 4.5-15, and 4.5-16. The fluctuation in the phase angle of the power plant is converged, so power system stability is stable.

(6) Frequency Fluctuation

Same as winter peak calculation result.

4.5.7 Conclusion and Observations

(1) Conclusion

The analysis revealed that there will be no problems of power flow, voltage, short-circuit current, stability and frequency fluctuation caused by connecting the new 370 MW

generator of the Tashkent Thermal Power Plant to the existing power system.

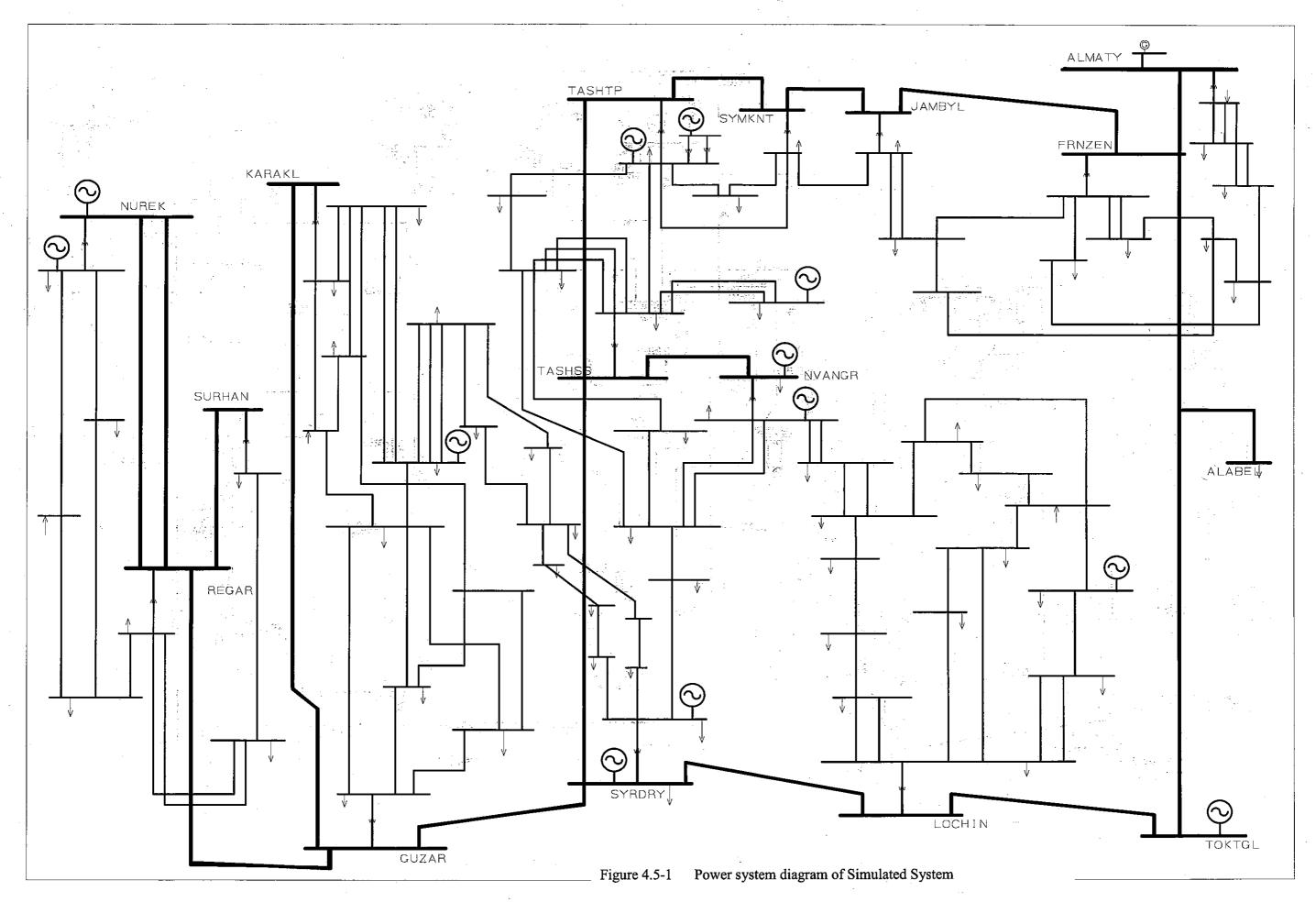
This analysis study was carried out using the data in 2002 not 2008 when the new C/C will be putting into operation. For the exact power system development plan, it is necessary to carry out the analysis study at the stage of 2008 and of future year. Therefore it is necessary to clarify the problem of power system regarding power flow, voltage, short-circuit current, stability and frequency fluctuation based on more precise analysis study taking into account demand forecast, power generation development plan and power transmission development plan by SJSC "Uzbekenergo". It seems that SJSC "Uzbekenergo" holds the technical skill of power system analysis. NDC is mainly carrying out power system analysis in Uzbekistan system and UDC is mainly carrying out in whole Central Asia system.

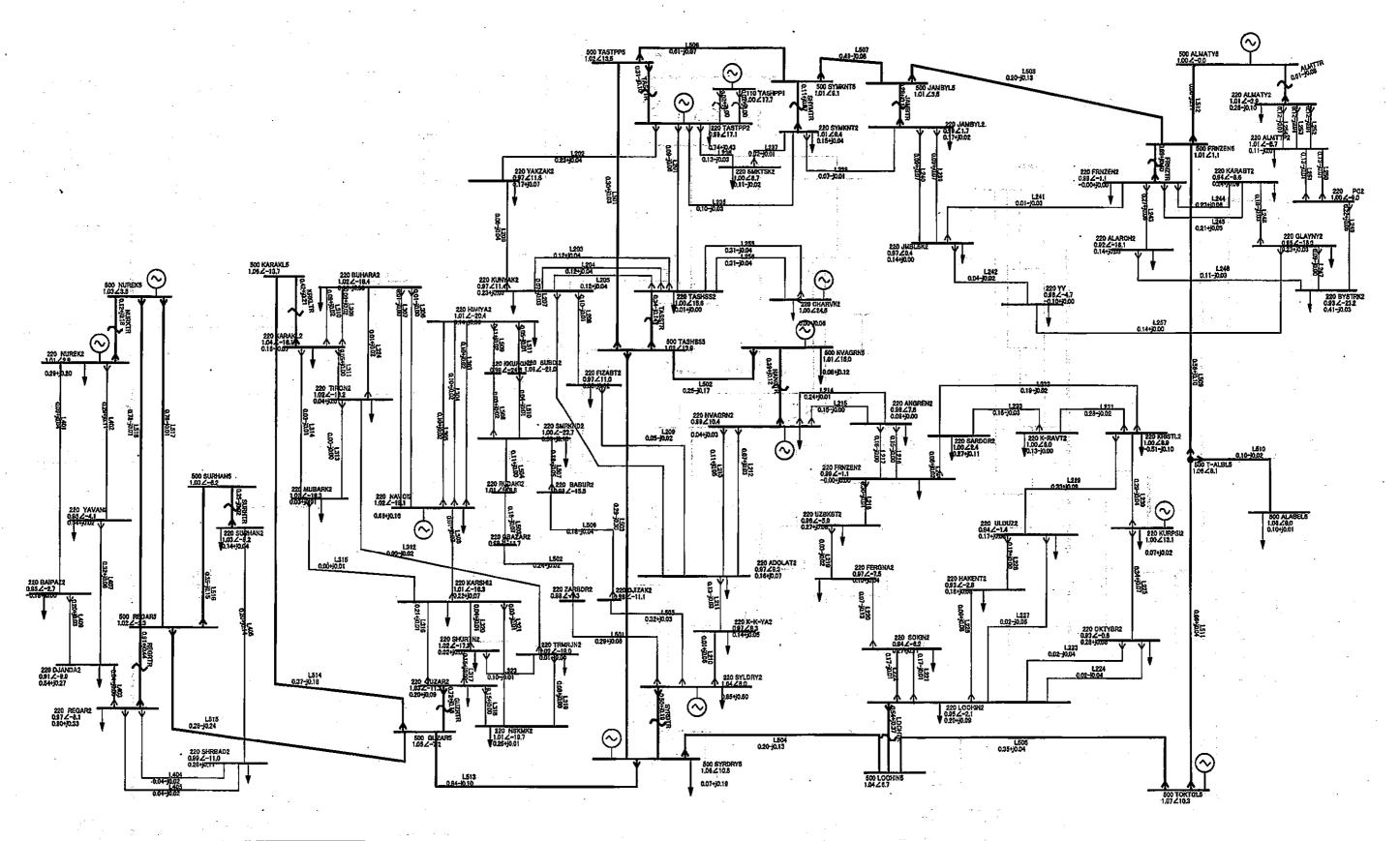
(2) Observations

However, an examination of the system as a whole revealed a problem of dynamic stability. The power flow is heavy from the east side to the west side of the power system, making the system a very weak one in terms of system stability. In particular, the dynamic stability would become unstable if the faults were to occur on the 500 kV transmission lines between Tashkent and Syrdarinskaya, between Syrdarinskaya and Guzar, or from Frunzenskaya to Toktogulskaya to Lochin. Therefore the dynamic stability calculations were performed assuming the case that 3LG-O fault of these each 500kV transmission lines occurred.

* Tashkent - Syrdarinskaya

Unstable at 3LG-O (Figure 4.5-20)


Stable at 1LG-O-C (Figure 4.5-21)


When the 800 MW generator of the Tarimaljan Power Plant will be connected to the system, the westward power flow will be alleviated, and the level of dynamic stability will become stable (Figure 4.5-22).

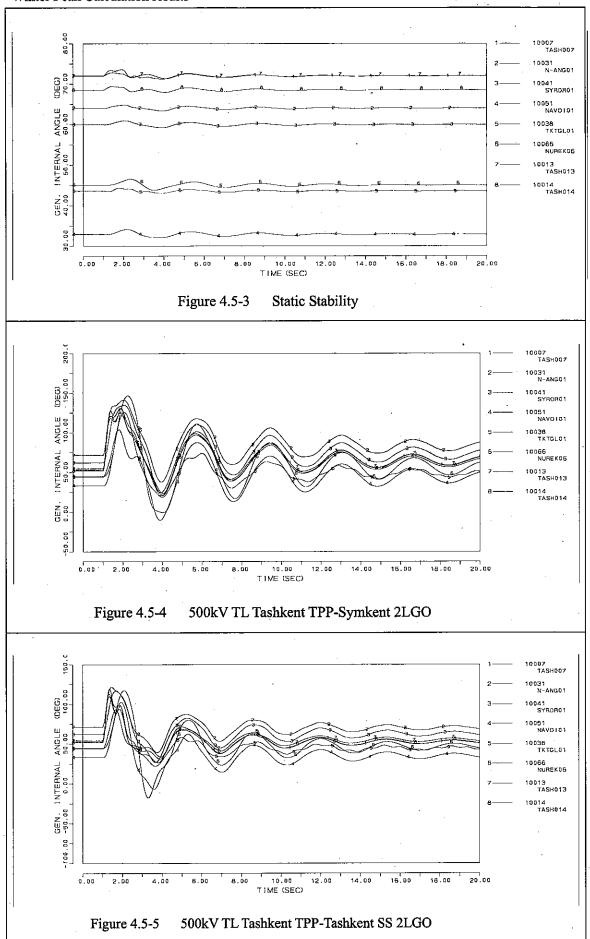
* Syrdarinskaya - Guzar

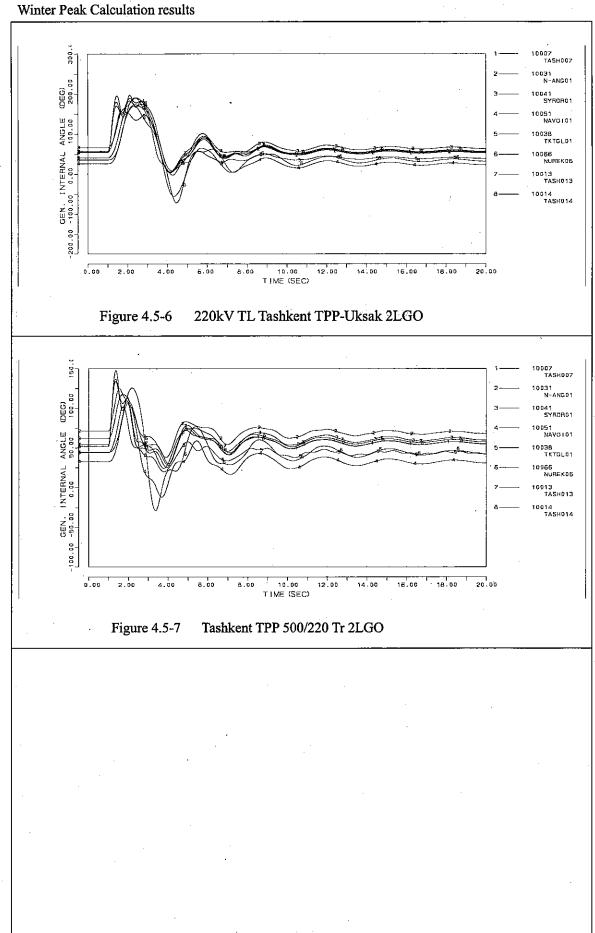
When the 800 MW generator of the Tarimaljan Power Plant joins the system, the westward power flow will be alleviated, but the level of dynamic stability will be still unstable (Figure 4.5-23). It will be necessary to install the power system stabilizer to divide the system into east part and west part and the both system to be stable or the new 500kV transmission line from Syrdarinskaya to Guzar to keep the system stable when the transmission line is an accident.

* Frunzenskaya - Toktogulskaya - Lochin. Stable at 3LG-O (Figure 4.5-24, 4.5-25)

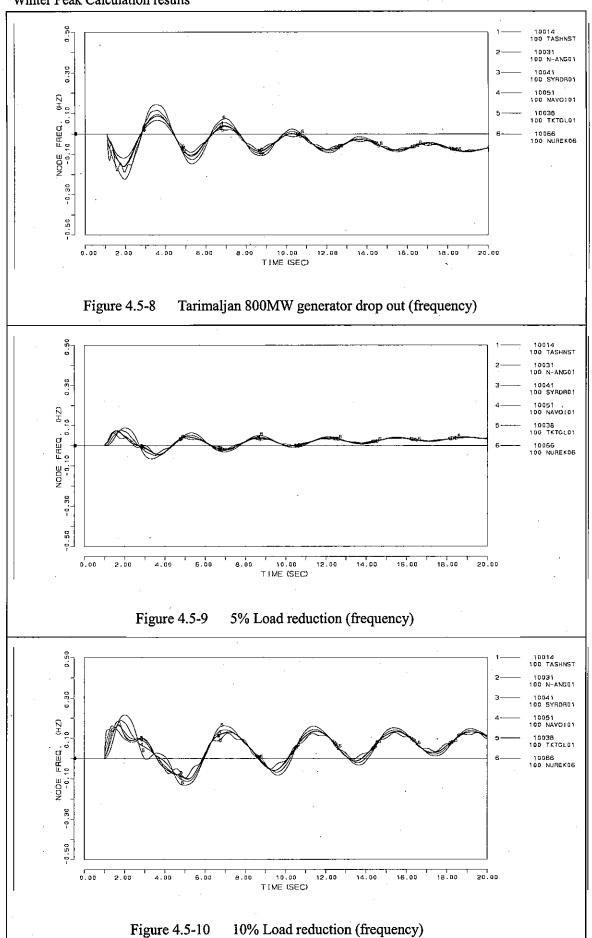
注: 母線電圧および線路潮流は p.u.値 (ベース電圧 500kV, 220kV ベース容量 1000MVA)

Figure 4.5-2 Power Flow Diagram of Winter Peak Demand


Table 4.5-1 Power Flow Calculation Result (power flow of each TL)

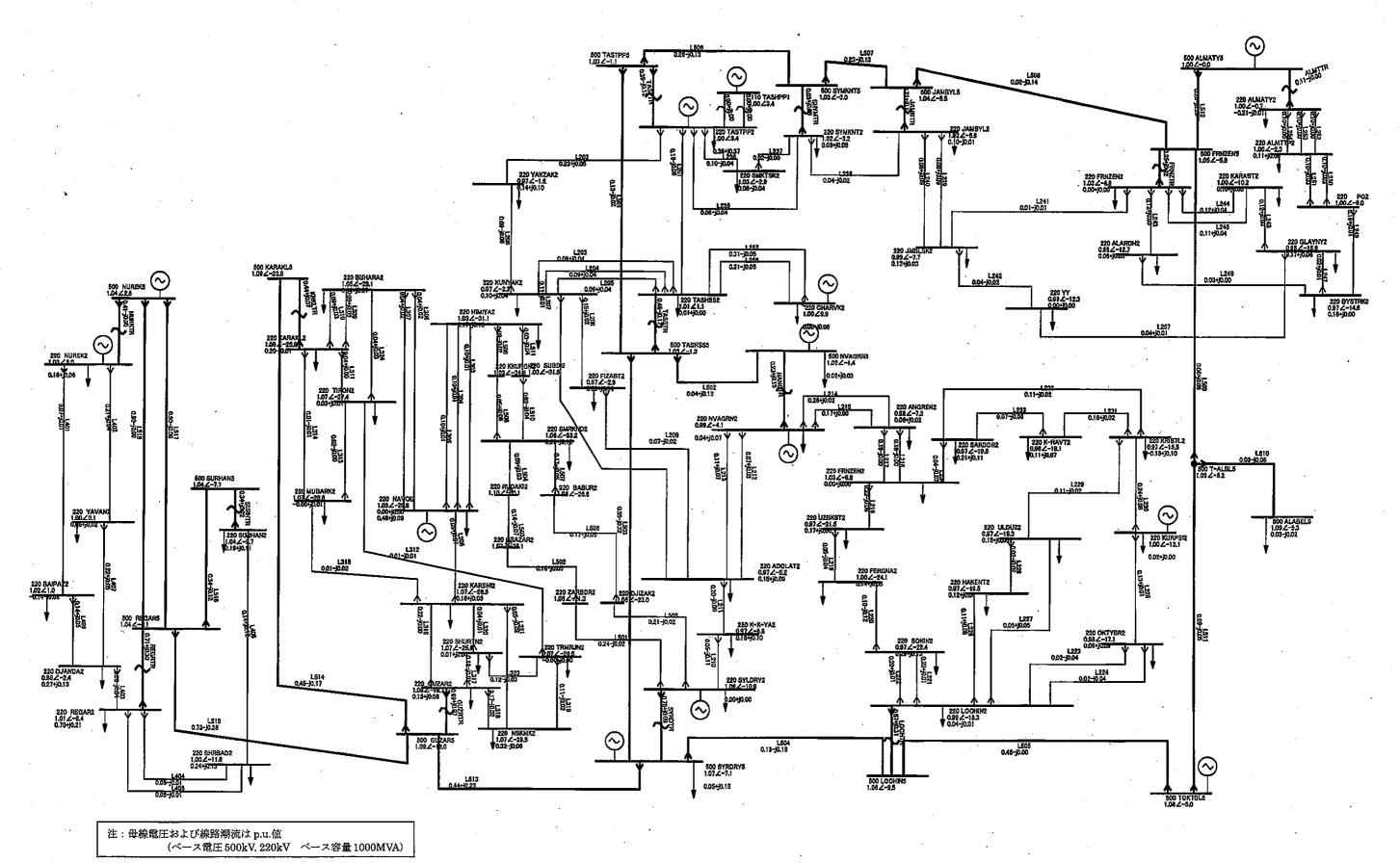
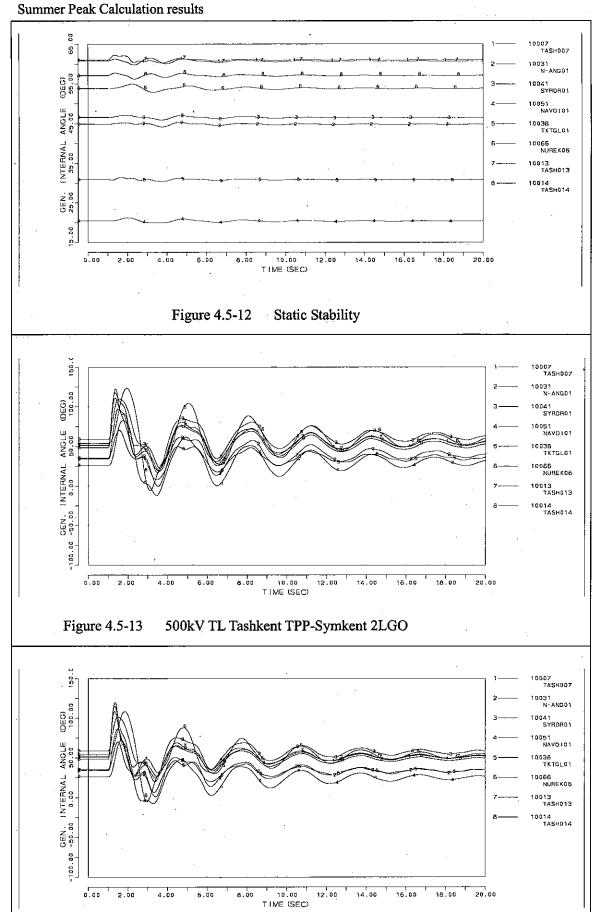

from		to	voltage	т	cap	acity FACIL	_ITIES	no rn condition(s		norm condition(TashTP TashSS	TashSS - NvAngr	TashSS Syrdry	1 ci Syrdry Lochin	rouit tri Lochin - Toktel	oped of 5 TashTP Symknt	OOkV T/ Symknt - Jambyl	Jambyl - Frnzen	Frnzen - Toktel	Guzar - Karaki i	Rega
TASTPP5	-	TASHSS5	kV 500	Α.	MVA	Α	MVA	MVA 133	% 7.7%	MVA 301	% 17.4%	MVA	MVA 246	MVA 429	MVA 418	MVA 29	MVA 142	MVA 112	MVA	MVA 938	MVA 263	MV/
TASHSS5	-	NVAGRN5 SYRDRY5	500 500	2475	2143	2000	1732	185 639	10.7% 36.9%	308 423	17.8% 24.4%	287 460		155	274	259 616	243 584	250 605	274	545 329	297 417	3
SYRDRY5 LOCHINS	-	LOCHIN5 TOKTGL5	500 500	2070	1793	2000	1732	209 470	12.1% 27.1%	266 395	15.4% 22.8%	307 341	254	216	- 582	555	425	454 229	345	497	234	2
TASTPP5		SÝMKNT5	500	2475	2143	2000	1732	291	16.8%	611	35.2%	511	380 585	499 712	716	301	241	333	491	1267	430 577	5
SYMKNT5 JAMBYL5	Ē	JAMBYL5 FRNZEN5	500 500	2000	1732	2000	1732	262 143	15.1% 8.3%	497 244	28.7% 14.1%	437 197	479 224	601 356	605 348	183 183	255 166	207		1105 778	463 215	2:
FRNZENS T-ALBLS	-	T-ALBL5 ALABEL5	500 500		1732	2000	1732	270 57	15.6% - 3.3%	594 99	34.3% 5.7%	653 99	607 100	505 99	479 99	91 O 99	99				564 99	5i
T-ALBL5 FRNZEN5	-	TOKTGL5 ALMATY5	500 500					100	5.7% 22.7%	659 180	38.1% 10.4%	729 170	677 186	537 156	522 155	1009 160	918 175	967 212	800 184		625 180	6
SYRDRY5 GUZAR5		GUZAR5 KARAKL5	500 500					493 493	28.4% 27.9%	846 413	48,9% 23,9%	846 413	845 413	843	848 414	847 414	846 414	846 414	846	856	799 -	8
GUZAR5 REGAR5	Ξ	REGAR5 SURHAN5	500 500	2475	2143	2000	1732	783 361	45.2% 20.8%	368 381	21.2% 22.0%	368 381	369 381	373 382	364 381	358 381	366 381	365 381		438 390	318 373	3
REGAR5	\equiv	NUREK5	500	2475	2143	2000	1732	904	52.2%	778	44.9%	778	778	778	778	778	778	778	778	790	784	-
REGAR5 TASTPP2	\blacksquare	NUREKS TASHSS2	500 220	925	352	1000	381	904 169	52.2% 48.0%	778 111	44.9% 31.4%	778 90	778 115	778 88	778 98	778 134	53	778 123	117	118	111	15 1
TASTPP2 TASHSS2		YAKZAK2 KUNYAK2	220 220	945 945	360	1000	381 381	232 104	64.5% 28.9%	297 123	65.7% 34.0%	172 133	<u>191</u> 92	259 138	238 126	263 131	206 133	254 128		190 113	240 124	2
TASHSS2 TASHSS2	-	KUNYAK2 KUNYAK2	220 220	945 945			381 381	1 04 1 04	28.9% 28.9%	123	34.0% 34.0%	133 133	92	138 138	126 126	131 131	133 133	128 128		113 113	124 124	1
KUNYAK2 KUNYAK2	-	YAKZAK2 ADOLAT2	220 220	945 825	360	1000	381 381	105 110	29.0% 35.0%	68 79	19.0% 25.2%	36 60	29 19	80 119	65 83	87 104	44	81	75	-56	70 82	
KUNYAK2 ADOLAT2	Ξ	FIZABT2 FIZABT2	220 220	825 690	314	1000	381 316	155	49.2% 26.5%	99 52	31.3% 19.8%	85 39	37 19	127 B1	102 54	118	99	113 66	105	65	1.01	
SYLDRY2	Ē	K-K-YA2	220	825	314	990	377	123	39.0%	73	23.1%	72	97	151	80	69 82	77	BO	76	76	54 65	
K-K-YA2 NVAGRN2	Ē	ADOLAT2 ADOLAT2	220 220	945 945	360	1000	381 381	205 76	56.9% 21.2%	. 134 71	37.3% 19.8%	1 31 81	188	257 89	104 58	159 62	148 74	156 67	70		147 75	1
NVAGRN2 NVAGRN2		ADOLAT2 ANGREN2	220 220		360	1000	381 381	132 276	36.6% 76.7%	124 244	34.3% 67.7%	1 39 251	245 272	154 277	100 292	106 304	129 277	116 284	262	155	130 242	1 2
NVAGRN2 ANGREN2	Ė	ANGREN2 OBHYAT2	220 220	945 825		1000 990	381 377	166 184	46.2% 58.5%	147 148	40.8% 47.2%	151 154	164 170	167 174	176 185	183 194	167 174	171 179	158	94 83	146 147	· 1
ANGREN2 DBHYAT2	F	OBHYAT2 UZBKST2	220 220	825	314	990	377 381	194 230	61.8% 63.8%	157 299	49.9% 83.0%	163 305	180	183	195 334	205 344	184 324	189 329	171	87 231	155 298	1 2
UZBKST2 FERGNA2	Ε	FERGNA2 SOKIN2	220 220		360	1000	381 381	63 156	17.4% 43.2%	37 152	10.4% 42.3%	42 148	59 132	62 128	65 125	70 118	60	65 128	50	71 218	36 152	1
SOKIN2	É	LOCHIN2	220	945	360	1000	381	200	55.7%	175	48.5%	·172	164	163	157	154	162	160	168	215	175	1
OCHIN2	Ē	LOCHIN2 OKTYBR2	220 220	945 945	360		381	200 39	55.7% 10.9%	175 43	48.5% 12.1%	172 44	164 46	163 47	157 38	154 33	162 45	160 45	44	215 78	175 42	1
LOCHIN2 OKTYBR2	=	OKTYBR2 KURPSI2	220 220	945 945	360		0	39 128	10.9% 35.5%	43 344	12.1 % 95.4%	44 346	46 353	47 354	367	33 382	45 355	45 358	350		42 344	3
LOCHIN2 LOCHIN2	-	HAKENT2 ULDUZ2	220 220	945 945			381 381	135 78	37.6% 21.6%	101 52	27.9% 14.4%	100 53	99 57	. 99 58	89 49	B0	97 56	96 57	98		1 00 51	1
HAKENT2 JLDUZ2	=	ULDUZ2 KRISTL2	220	925 825	352	1000	361	25 115	7.0% 36.6%	124 340	35.3% 108.2%	126 344	131 354	132 356	134 370	136 383	132 357	133	128	111	124 340	1
KRISTL2 KRISTL2	-	KURPSI2 K-RAVT2	220 220	945	360		381	257 176	71.3% 46.2%	292	81.2% 73.9%	290 279	283 270	281 267	276 263	277 259	281	279 265	286	367	292	2
CRISTL2 CRISTL2 C-RAVT2	Ξ	SARDOR2	220	825	314	1000	381	· 107	34.2%	186	59.3%	184	175	173	169	166	268 174	171	180	320 222	282 187	1
DBHYAT2	Ē	SARDOR2 SARDOR2	220 220	825	31.4	990	631 377	44	16.5%	149 68	28.4%	146	137 59	135 59	129 52	126 50		132 55	61	190 129	150 _ 69	1
ASTPP2		SYMKNT2 SMKTSK2	220 220	945	360		0	86 108	23.9% 29.9%	107 137	29.7% 38.0%	123 154	110 140	112 143	114 145	82 109	271 314	94 124	125	166 200	104 134	1
SYMKNT2 SYMKNT2	-	SMKTSK2 JAMBYL2	220 220	945 945			00	20 44	5.6% 12.3%	22 76	6.0% 21.0%	37 70	26 74	25 89	28 89	15 36	184 63	7 265		1 01 1 50	19 71	
JAMBYL2 JAMBYL2	-	JMBLSK2 JMBLSK2	220 220	945 945	360		0	116 116	32.3% 32.3%	115 115	32.0% 32.0%	112	115 115	117 117	119	104	100	98	144	151 151	113	1
JMBLSK2 JMBLSK2	=	FRNZEN2 YY	220	945 945	360		0	32 43	8.9% 12.0%	29 46	8.0% 12.9%	27 44	28 46	34 49	33 49	25 35	28 36	31	64	60 75	28 45	
YY FRNZEN2	_	GLAYNY2 ALARCH2	220 220 220	945 945	360		0	46 122	12.8%	144 274	39.9% 76.1%	141 274	143 274	147 273	147 272	131 274	132 272	133 272	. 167	169	141 270	1 2
FRNZEN2	Ē	KARABT2	220	945	360		ō	122	33.9%	234	64.9%	235	234	233	232	237	236	237	227	282 229	232	2
FRNZEN2 ALARCH2	Ē	KARABT2 BYSTRK2	220 220	945 945	360		0	37	31.4% 10.2%	217 114	60,1 % 31.8%	217 114	217 115	215 113	215 113	219 114	219 112	219 111	108	212 122	215 111	
BYSTRK2 BLAYNY2	<u>-</u>	GLAYNY2 KARABT2	220 220	945 945			0	29 121	8.2% 33.6%	88 187	24.4% 51.9%	86 188	98. 187	. 183	87 183	91 192		78 186		118	83 184	1
BYSTRK2 PG2	1	PC2 ALMTTP2	220 220	945 945			00		42.3% 28.4%	227 127	63.1 % 35.2%	229 127	226 127	232 128	231 128	235 131	245 134	251 135	235 128	184 116	235 131	2
PG2 ALMATY2	-	ALMTTP2 ALMTTP2	220 220	945 945			0	102	28.4% 28.9%	127 122	35.2% 33.9%	127 123	127 122	128 123	128 123	131 125	134 127	135 128	128	116 114	131 125	1
ALMATY2 ALMATY2	-	ALMTTP2 ALMTTP2	220	945	360		01	104	28.9% 28.9%	122	33.9% 33.9%	123	122	123 123	123	125 125	127	128 128	123	114	125	1:
FASHSS2	E	CHARVK2	220	945	360		0	314	87.1%	311	86.5%	312	313	309	311	311	311	310	311	325	125 311	3
ASHSS2 SYLDRY2	Ē	CHARVK2 ZARBDR2	220 220	945 690	263	828	316	314 240	87.1 % 91.2 %	293	86.5% 111.4%	293	313 293	309 294	311 293	311 294	311 293	310 293	293	325 287	311 370	2
ZARBDR2 DBAZAR2	Ē	CBAZAR2 RUDAKI2	220 220	690 690	263	828	316 316	171 153	64.9% 58.1%	245 180	93.0% 68.4%	245 180	245 180	246 181	244 180	245 180	245 180	245 180	180	242 177	291 214	1
RUDAKI2 SYLDRY2	F	SMRKND2 DJIZAK2	220 220	690 825		828 990	316 377	95 214	36.0% 68.0%	115 318	43.7% 101.1%	115 318	115 319	116 319	115 318	115 319	115 318	115 318	115	112 311	156 407	1
OJIZAK2 BABUR2	 -	BABUR2 SMRKND2	220 220	825 825	31.4	990	377 381	176 175	56.1% 55.8%	188	59.9% 59.6%	188 187	189 188	189 188	188 187	189 188	188	189 188	188	184	237 239	1
MRKND2 KKURGN2	=	KKURGN2 HIMIYA2	220 220	945 945	360	600	229 381	82 96	35.7% 26.6%	40	17.7% 31.1%	40 112	40 112	41	39 113	38	40 112	40 112	40	49 113	81 109	1
MRKND2	E	SUBDI2	220	945	360	1000	.381	47	13.0%	42	11.6%	42	41	41	42	42	_ 42	42	42	48	63	
SUBDI2 -IMIYA2	-	NAVOI2	220 220	945 945	360	1000	381 381	53 1.00	14.9% 27.6%	103	13.7% 28.6%	49 103	49 103	102	103	49 103	49 103	103 103	103	56 103	54 98	1
IMIYA2 IMIYA2	-	NAVOI2 NAVOI2	220 220	945 945	360	1000	381 381	100 100	27.6% 27.6%	103 103	28.6% 28.6%	103 103	103 103	102 102	103 103	103 103	1.03 1.03	103 103	103	103	98 98	1
VAVOI2 VAVOI2	<u>-</u>	BUHARA2 BUHARA2	220 220	945 945	360	600	229 229	48 48	20.8% 20.8%	14	6.1 % 6.1 %	14 14	13 13	13 13	14	15 15	14 14	14 14		28 28	82 82	
VAVOI2 KARAKL2	<u>-</u>	KARSHI2 BUHARA2	220 220	825 825		990 990	377 377	54 100	17.3% 31.8%	18	5.8% 20.9%	18 91	18 91	16 91	191	20 90	19 91	19 91		93 97	109 15	
KARAKL2	=	BUHARA2 TIRON2	220	825 825	314	990	377 377	100	31.8% 14.6%	91 54	28.9% 17.1%	91 54	91 54	91 54	91 54	90 54		91 54	91 54	97 54	15 48	
TIRON2	П	TRMRJN2 MUBARK2	220	61 O	232	732 828	279 316	19 23	8.1% 8.8%	18	7.7%	18	18 7	18 7	18	18 8	18		18	15	91 72	
(ARAKL2		MUBARK2	220	825	314	990	377	22	6.9%	32	10.2%	32	32	32	32	32	32	32	32	32	55	
ARSHI2 JUZAR2	Ē	MUBARK2 KARSHI2	220 220	945 945	360	990 945	377 360	221	5.3% 61.3%	207	7.1 % 57.6%	22 207	22 207	22 207	29 207	23 207	23 207	23 207	207	16 211	147 355	2
SUZAR2 SUZAR2	E	SHURTN2 NSKMK2	220 220	945 825	360 314	1000	0 381	178 171	49.4% 54.4%	165 148	45.7% 47.1%	165 148	164 148	164 148	165 148	164 148	164 148	164 148	164 148	167 150	275 215	1
ISKMK2 (ARSHI2		TRMRJN2 SHURTN2	220 220				377 0		34.7% 12.2%	80 43	25.4% 11.8%	80 43	80 43	80 43	80 43	80 42		BO	80	79	49 79	
(ARSHI2 (ARSHI2	_	NSKMK2 TRMRJN2	220 220	825	314		381	54	17.2% 5.6%	32 15	10.2%	32 15	32 15	32 15	32 15	32 15	32 15	32	32		14	
RMRJN2	-	SHURTN2	220	945	360		0	127	35.1%	102	28.2%	102	102	101	102	102	102	102	102	103	168	1
UHARA2 NUREK2	-	TIRON2 BAIPAZ2	220 220	945	360		0		16.6%	26 101	9.3% 27.9%	26 100	26 100	27 100	101	1.01	26 101	26 101	101	43 97	78 104	1
NUREK2 REGAR2	E	YAVAN2 DJANDA2	220 _220	945	360		. 0	95	59.6% 26.5%	308 68	85.5% 19.0%	308 69	308 69	308 69	308 68	309 68	308 68	308 68		299 77	31 B	3
REGAR2 REGAR2	_	SHRBAD2 SHRBAD2	220 _220			_	0		13.7% 13.8%	46 46	12.8% 12.9%	46 46	46 46	46 46	46 46	46 46	46 46			47 48	45 45	
SURHAN2		SHRBAD2 YAVAN2	220 220		360		0		52.5% 62.3%	245 321	68.1 % 69.2%	245 321	245 321	245 321	245 322	245 322	245 321	245 321		247 317	243 326	3
JANDA2	-			10			ŏ															

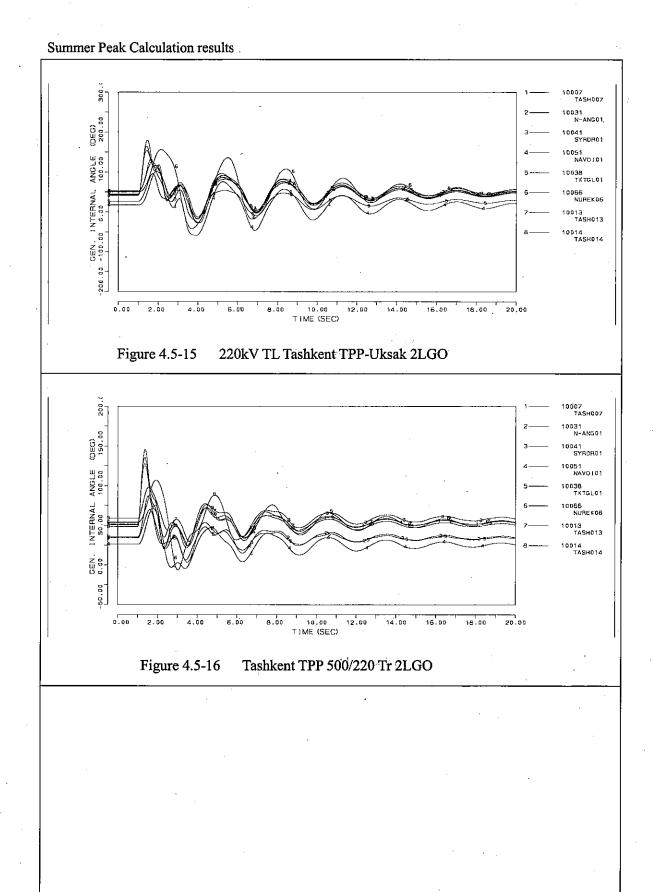
		node voltage (normal condition)						
base_V	NAME	sum (kV)	mer (%)	(kV)	ter (%)			
	TASTPP5	513.34	102.7%	507.90	1 01 .6%			
	TASHSS5	513.34	102,7%	508.69	101.7%			
	NVAGRN5	507.66	101.5%	503.98	1 00.8%			
	SYRDRY5	534,89	107.0%	529.03	1 05.8%			
	LOCHIN5	531.66	106.3%	520.58	1 04.1 % 1 01 .4%			
	SYMKNT5 JAMBYL5	517.20 519.94	103.4% 104.0%	507.22 505.42	101.4%			
	FRNZEN5	522.98	104.6%	506.58	1 01 .3%			
	T-ALBL5	542.53	108,5%	531,79	106.4%			
500	ALABEL5	543.01	108.6%	531.76	106.4%			
	TOKTGL5	542.24	1 08.4%	535.43	107.1%			
	ALMATY5	500.12	100.0%	500.10	100.0%			
	GUZAR5 KARAKL5	542.84 543.38	108.6% 108.7%	524.28 528.33	1 04.9% 1 05.7%			
	REGAR5	518.07	103.6%	508,56	101.7%			
	SURHAN5	519.67	103.9%	51 4.03	102.8%			
	NUREK5	519.76	104.0%	513.97	102.8%			
	TASTPP2	219.82	99.9%	218.54	99.3%			
	TASHSS2	222.12	101.0%	220.87	100.4%			
	KUNYAK2	214.32	97.4%	213.24	96.9%			
	YAKZAK2 NVAGRN2	21 3.1 5 21 6.82	96.9% 98.6%	212.46 216.88	96.6% 98.6%			
	ANGREN2	21 4.87	97.7%	215.59	98.0%			
	OBHYAT2	211.27	96.0%	212.04	96.4%			
220	UZBKST2	213.80	97.2%	210.48	95.7%			
	FERGNA2	219.19	99.6%	213.23	96.9%			
$\overline{}$	SOKIN2	213.41	97.0%	206.32	93.8%			
	LOCHIN2 OKTYBR2	21 8.67 21 4.55	99.4% 97.5%	209.61 205.16	95.3 <u>%</u> 93.3%			
	HAKENT2	213.80	97.5%	203.10	93.1%			
	ULDUZ2	213.19	96.9%	205.74	93.5%			
$\overline{}$	KRISTL2	213.08	96.9%	220.46	100.2%			
	K-RAVT2	210.73			99.8%			
	SARDOR2	213.22	96.9%	219.56	99.8%			
	KURPSI2	219.58		220.49	100.2%			
	SYLDRY2 K-K-YA2	234.01 21 2.83	106:4% 96.7%	229.09 214.35	104.1% 97.4%			
	ADOLAT2	213.80			97.4%			
	FIZABT2	213.53			96.8%			
	SYMKNT2	225.48			100.7%			
	SMKTSK2	225.57	102.5%		1 00.5%			
	JAMBYL2	224.82	102.2%		99.4%			
	JMBLSK2	218.82	99.5%		97.0%			
	FRNZEN2 ALMATY2	226.43 220.18			99.2% 1 01.2%			
	ALARCH2	216.31	98.3%		91.8%			
	BYSTRK2	213.64	97.1%		93.3%			
220	PC2	220.01	100.0%	220.56	100.3%			
	ALMTTP2	219.01	99.6%		100.8%			
	GLAYNY2	21 0.01	95.5%		94.8%			
	KARABT2 CHARVK2	219.14 220.33			94.3% 99.9%			
220		218.36						
	SMRKND2	234.20			99.7%			
	HIMIYA2	225.83			100.7%			
	NAVOI2	227.26			101.7%			
	KARAKL2	237.70						
	BUHARA2	231.98			101.6%			
	TIRON2 GUZAR2	234.79 237.79			1 02.4% 1 03.4%			
	KARSHI2	234.85			101.2%			
	NSKMK2	236.44			100.9%			
220	TRMRJN2	236.27	107.4%	223.60	101.6%			
	SHURTN2	236.48	107.5%		101.9%			
	MUBARK2	235.95	107.3%		102.3%			
	ZARBDR2	232.08			98.5% 98.1%			
	CBAZAR2 RUDAKI2	234.64 241.06		+	98.1 % 1 01.3%			
	DJIZAK2	230.46	\					
	BABUR2	231.39	105.2%		98.4%			
	KKURGN2	226.30						
	SUBDI2	227.45		 				
	NUREK2	227.23						
	REGAR2	221.68		1	97.4%			
	SURHAN2 SHRBAD2	228.25 219.86		•				
	O TROAUZ		1					
	D, IANIDA?	215.70	MR1%	7(1) 114				
220	DJANDA2 YAVAN2	215.79 220.95						

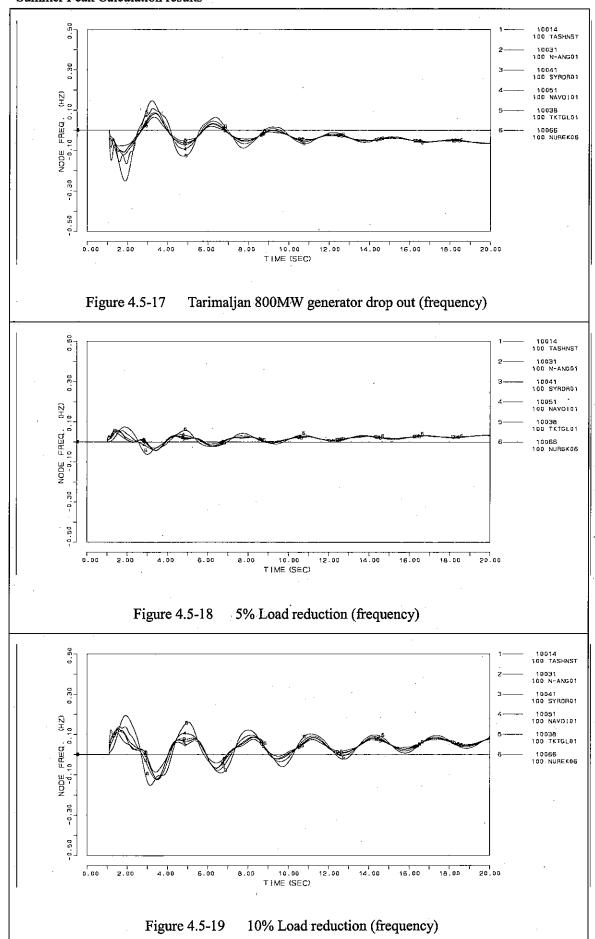

Table 4.5-3 Short Circuit Current Calculation Result

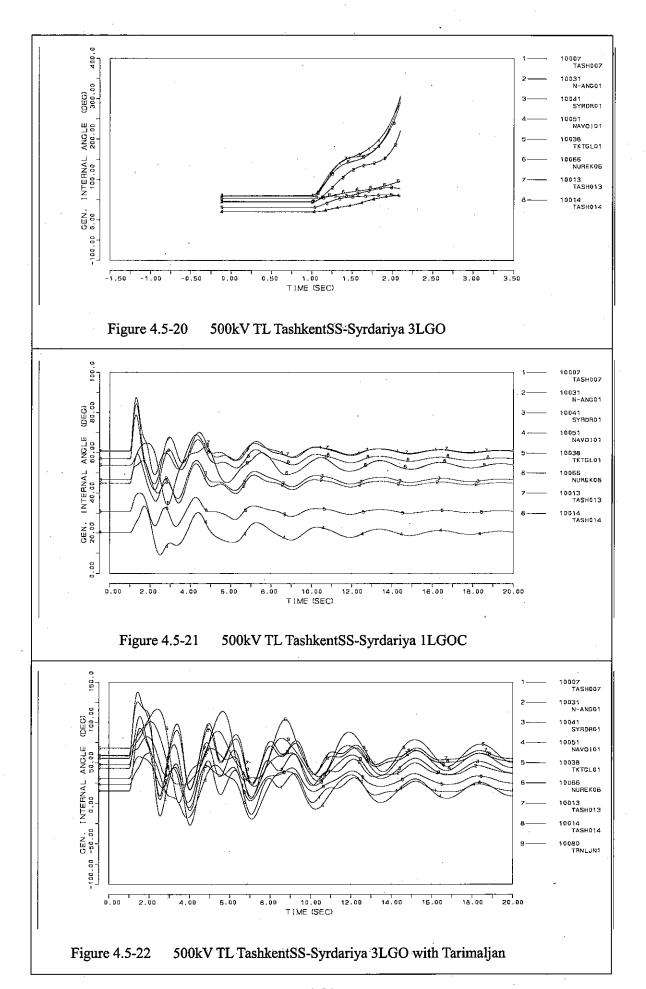
	BASE	breaking	FAULT C	<u> </u>	FAULT CA	
h (a a a ==	Voltage (kV)	capacity (kA)	without CC	with CC	without CC	
<u>NAME</u> ALMATY5	500	40	(KA)	(KA)	(MVA)	(MVA)
ALMATYS TASTPP5	500	40	40.0 10.9	40.0 11.3	34,623 9,422	34,629 9,771
TASHSS5	500	40	11.8	12.2	10,243	10,599
NVAGRN5	500	40	8.9	9.0	7,677	7,831
SYRDRY5	500	40	13.1	13.1	11,308	11,38
LOCHIN5	500	40	5.7.	5.8		4,98
SYMKNT5	500	40	7.1	7.2	6,141	6,26
JAMBYL5	500	40	5.7	5.7	4,924	4,96
FRNZEN5	500	40	7.1	7.2	6,178	6,20
T-ALBL5	500	40	5.7	5.7	4,964	4,97
ALABEL5	500	40	4.8	4.9	4,196	4,20
TOKTGL5	500	40	6.2	6.2	5,358	5,36
GUZAR5	500	40	5.5	5.5	4,748	4,75
KARAKL5_	500	40	3.1	3.1	2,717	2,71
REGAR5	500	40	6.4	6.4	5,538	5,53
SURHAN5 NUREK5	500 500	40	3.3	3.3	2,892	2,89
		40	7.8	7.8	6,735	6,73
TASTPP2 TASHSS2	220 220	40 40	24.7 21.7	27.5 22.4	9,400	10,46
KUNYAK2	220	40	14.2	14,5	8,253 5,206	8,55
YAKZAK2	220	40	11.6	11.9	5,396	5,52
NVAGRN2	220	40	17.1	17.3	4,434 6,505	4,54 6,57
ANGREN2	220	40	10.8	10.8	4,098	4,12
OBHYAT2	220	40	6.1	6.1	2,328	2,33
UZBKST2	220	40	4.6	4.6	1,742	1,74
FERGNA2	220	40	4.7	4.7	1,784	1,78
BOKIN2	220	40	6.0	6.0	2,278	2,28
LOCHIN2	220	40	8.3	8.3	3,175	3,18
OKTYBR2	220	40	5.3	5.3	2,025	2,02
HAKENT2	220	40	6.1	6.1	2,326	2,32
ULDUZ2	220	40	6.2	6.2	2,378	2,38
KRISTL2	220	40	6.3	6.3	2,399	2,40
K-RAVT2	220	40	4.8	4.8	1,837	1,83
BARDOR2	220	40	4.9	4.9	1,853	1,85
KURPSI2	220	40	7.1	7.1	2,702	2,70
SYLDRY2	220	40	24.3	24.4	9,261	9,29
K-K-YA2	220	40	9.9	10.0	3,767	3,79
ADOLAT2	220	40	1 4.3	14.4	5,436	5,50
FIZABT2	220	40	11.3	11.5	4,295	4,37
SYMKNT2	220	40	11.8	12.0	4,483	4,56
SMKTSK2	220	40	6.9	7.0	2,615	2,65
JAMBYL2	220	40	9.4	9.5	3,589	3,61
JMBLSK2	220	40	7.0	7.0	2,651	2,66
FRNZEN2 ALMATY2	220 220	40 40	12.7 19.8	12.8 19.8	4,857	4,87
ALARCH2	220	40	3.5	3.5	7,527 1,350	7,52
BYSTRK2	220	40	4.1	4.1	1,550	1 <u>,35</u> 1 <u>,5</u> 5
PC2	220	40	6.9	6.9	2,634	2,63
ALMTTP2	220	40	12.4	12.4	4,735	4,73
GLAYNY2	220	40	3.8	3.8	1,447	1,44
KARABT2	220	40	6.0	6.0	2,286	2,28
CHARVK2	220	40	11.5	11.6	4,398	4,43
YY	220	40	2.1	2.1	810	81
SMRKND2	220	40	4.5	4.5	1,729	1,72
HIMIYA2	220	40	8.7	8.7	3,298	3,29
NAVOI2	220	40	10.9	10.9	4,141	4,14
KARAKL2	220	40	7.0	7.0	2,672	2,67
BUHARA2	220	40	7.1	7.1	2,698	2,69
TIRON2	220	40	5.6	5.6	2,147	2,14
GUZAR2	220	40	9.1	9.1	3,479	3,48
KARSHI2	220	40	6.4	6.4	2,447	2,44
VSKMK2	220	40	4.7	4.8	1,810	1,81
FRMRJN2	220	40	5.6	5.6	2,116	2,11
SHURTN2	220	40	5.6	5.6	2,125	2,12
MUBARK2	220	40	4.6	4.6	1,764	1,76
ZARBDR2	220	40	3.7	3.7	1,403	1,40
DBAZAR2	220	40	3.0	3.0	1,156	<u> </u>
RUDAKI2	220	40	3.0	3.0	1,139	1,14
DJIZAK2	220	40	3.5	3.5	1,338	1,33
BABUR2	220	40	3.4	3.4	1,278	1,27
KKURGN2	220	40	4.1	4.1	1,549	1,54
SUBDI2	220	40	5.6	5.6	2,135 5.491	<u>2,13</u>
NUREK2 REGAR2	220	. 40	14.4	14.4	5,481	5,48 2.75
	220	40	9.9	9.9	3,757	3,75
SURHAN2	220	40	6.4	6.4 5.4	2,437	2,43
SHRBAD2 DJANDA2	220 220	40 40	5.4 5.3	5.4 · 5.3	2,053	2,05
YAVAN2	220	40	6.2	6.2	2,037 2,360	2,03 2,36
17 TV 7711 N.C.	220	40	5.3	5.3	2,360	2,30 2,00

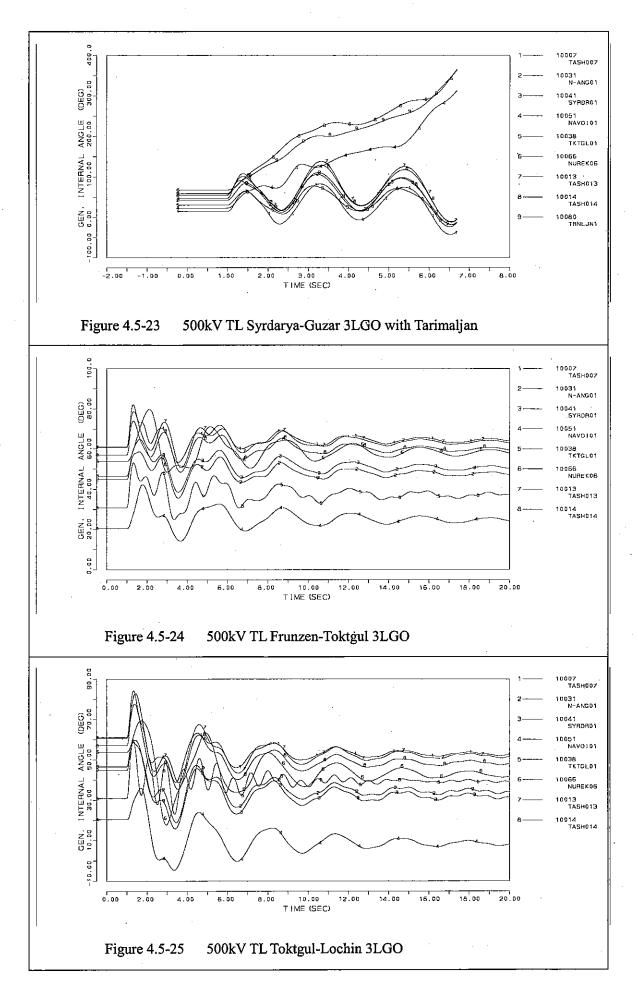
Winter Peak Calculation results


Figure 4.5-11 Power Flow Diagram of Summer Peak Demand




4-51


Figure 4.5-14

500kV TL Tashkent TPP-TashkentSS 2LGO

CHAPTER 5 IMPROVEMENT PLAN FOR TASHKENT THERMAL POWER PLANT (DC "TASHTPP")

THE DETAILED DESIGN STUDY FOR

MODERNIZATION OF TASHKENT THERMAL POWER PLANT

IN THE REPUBLIC OF UZBEKISTAN

FINAL REPORT

CONTENTS

	Page No.
CHAPTER 5 IMPROVEMENT PLAN FOR THE TASHKENT THI	
POWER PLANT (DC "TASHTPP")	5-1
5.1 Current Equipment Maintenance and Problem Areas at the Tashker	it
Thermal Power Plant (DC "TASHTPP")	5-1
5.1.1 Outline	
5.1.2 Boiler Equipment	5-4
5.1.3 Turbine Equipment	
5.1.4 Electrical Equipment	5-10
5.1.5 Control Equipment	5-11
5.1.6 Other Equipment	5-12
5.1.7 Evaluation of Current Conditions	5-16
5.2 Proposal for Maintaining and Managing the Existing Plant	5-27
5.2.1 Selection of Facilities for Maintenance	5-27
5.2.2 Results of Repairs and Improvements	5-31
5.2.3 Maintenance and Repair Plan	5-37
5.2.4 Financial Analysis of Maintenance Plan	5-42
5.3 Tashkent Thermal Power Plant (DC "TASHTPP") Financial Situatio	n
and Problems	5-47
5.3.1 Production (Generation) Contribution of DC "TASHTPP"	5-47
5.3.2 Financial Analysis of Production (Generation) at DC "TASHTPP"	5-55
5.3.3 Issues and Suggestions under Financial Analysis	
5.4 Operation Management Plan for Existing Power Plant	5-64
5.4.1 Proposal for Organizational Review	5-64
5.4.2 Equipment Operation Management	5-72
5.4.3 Safety and Hygiene	5-76
5.5 Financial and Economical Analysis of the New Power Plant	5-79
5.5.1 Cost Estimation of the New Power Plant for construction and operation	5_79

5.5.2 Financial Analysis of the New Power Plant	5-82
5.5.3 Economical Analysis of the New Power Plant	5-95
5.5.4 Generation Cost at the New Power Plant	5-104
5.5.5 Issues and Suggestions from Financial and Economical Analysis	5-117
5.6 Operation and Maintenance of New Combined Cycle Plant	5-120
5.6.1 Organizational Systems for Operation and Maintenance	5-120
5.6.2 Operation and Maintenance of Combined Cycle Power Plant	5-120

LIST OF TABLE

No.	Title of Tables	age
Table 5.1-1	Tashkent Thermal Power Plant Main Facilities	5-1
Table 5.1-2	Number and Proportion of Sufferers per 1,000 at DC "TASHTPP"	5-6
Table 5.2-2	Unit Generation Costs and Breakdown	5-27
Table 5.2-3	2005 Periodic Maintenance Costs	5-40
Table 5.2-4	2007 Periodic Maintenance Costs	5-40
Table 5.2-5	2009 Periodic Maintenance Costs	5-41
Table 5.2-5	Annual Fuel Cost Saving against Thermal Efficiency Improvement per Uni	t
		5-43
Table 5.3-1	Generation at Thermal Power Plants in Uzbekistan	5-47
Table 5.3-2	Electricity Generation in Uzbekistan	5-48
Table 5.3-3	Annual Generation by Thermal Power Plants in Uzbekistan (Unit: GWh)	5-49
Table 5.3-4	Monthly Generation at DC "TASHTPP" in 2002	5-50
Table 5.3-5	Average Rainfall at Tashkent in mm	5-5 1
Table 5.3-6	Electricity Trade of Uzbekistan with Neighboring Asian Countries in 2002.	5-52
Table 5.3-7	Fuel Consumption of the Generating Units at DC "TASHTPP" in 2002	5-53
Table 5.3-8	Generation Cost at DC "TASHTPP" in Recent Three Years	5-55
Table 5.3-9	Generation Cost at DC "TASHTPP" in 2002	5-57
Table 5.3-10	Generation Cost at DC "TASHTPP" in 2002	5-57
Table 5.3-11	Fuel Prices in Uzbekistan in 2002	5-59
Table 5.3-12	Uzbekistani Electricity Tariff including VAT in 2002	5-60
Table 5.3-13	Generation, Import, Demand and System Loss in Past 10 Years Unit:GWh	15-61
Table 5.5-1	Main Performance of the New Power Plant	
Table 5.5-2	Construction Cost Estimate	5-80
Table 5.5-3	Plant Construction Payment Assumption	
Table 5.5-4	Operation Mode Assumptions in Financial Analysis	5-84
Table 5.5-5	Electricity and Heat Energy Tariff in Uzbekistan applicable on and after Ap	ril 1,
	2003	5-85
Table 5.5-6	Operation and Maintenance Cost Summary	5-89
Table 5.5-7	Calculation of Financial Rate of Return	5-92
Table 5.5-8	Calculation of Revenue to make Zero FIRR due to Revenue Decrease	5-93
Table 5.5-9	Calculation of Revenue to make Zero FIRR due to Higher O&M Cost	5-94
Table 5.5-10	World Natural Gas Reserve and Gas Production Top 20 Countries	5-96
Table 5.5-11	Calculation of Economic Rate of Return for Generation Value at Sum 35.1/	kWh
	5-	-102
Table 5.5-12	Calculation of Economic Rate of Return for Generation Value at	Sum
	21.04/kWh	-103

Table 5.6-1	Gas Turbine Management and Inspection	5-126
Table 5.6-2	Gas Turbine Daily Inspection Items	5-127
Table 5.6-3	Periodic Inspection Of Gas Turbine Equipment	5-129
Table 5.6-4	Categories of Deterioration Due to Aging	5-136
Table 5.6-5	Sample Maintenance and Management Procedure for Generator	5-140

LIST OF PICTURES

<u>No.</u>	Title of Figures Page
Picture 5.1-1	Existing Tashkent Thermal Power Plant5-2
Picture 5.1-2	View of Boiler from Turbine Side5-5
Picture 5.1-3	Condenser Vacuum Ejector
Picture 5.1-4	Turbine Cover
Picture 5.1-5	Outdoor Work Being Performed on a Turbine Casing5-10
Picture 5.1-6	External Appearance of Generator5-11
Picture 5.1-7	Operating Room5-12
Picture 5.1-8	Fuel Gas Receiving Equipment5-13
Picture 5.1-9	Pipe Missing Insulation5-14
Picture 5.1-10	Simulation Equipment5-14
Picture 5.1-11	Inside the Turbine Auxiliaries Building5-15
Picture 5.1-12	Stairs and Walkway Handrails5-16
Picture 5.1-13	Steam Leaking from Turbine Area
Picture 5.1-14	Cracks in Unit 6 Boiler Ceiling5-21
Picture 5.1-15	Top of Unit 6 Boiler Drum5-21
Picture 5.1-16	Inside Unit 1 Boiler
Picture 5.1-17	Inside Unit 1 Air Heater5-22
Picture 5.1-18	Unit 1 Exhaust Duct5-23
Picture 5.1-19	Unit 1 Medium Pressure Turbine, Final Group of Moving Blades5-24
Picture 5.1-20	Unit 6 Air Heater Bearing Lubricant Pump5-24
Picture 5.1-21	Unit 6 Central Control Room Indicating and Recording Instruments 5-25
Picture 5.1-22	Cables Near Unit 6 Burner5-25
Picture 5.1-23	Regulator Panel
Picture 5.1-24	Local Instrument Panel/Detection Pipes

LIST OF FIGURES

No	Title of Figures	Page
Figure 5.1-1	Outline of General Tashkent Thermal Power Plant	5-3
Figure 5.1-2	Causes of Unit Shutdowns by Facility	5-4
Figure 5.1-3	Number of Shutdowns by Unit	5-4
Figure 5.1-4	Boiler Equipment Causes of Unit Shutdowns	5-5
Figure 5.1-5	Turbine Efficiency over Time	5-8
Figure 5.1-6	Condenser Vacuum Level over Time	5-8
Figure 5.1-7	Unit Operating Hours	5-16
Figure 5.1-8	Equipment Availability Based on Operating Hours	5-17
Figure 5.1-9	Equipment Capacity Factor Based on Generated Power Output	5-17
Figure 5.1-10	House Consumption over Time	5-18
Figure 5.2-1	Unit Generation Costs over Time	5-28
Figure 5.2 - 2	Proportionate Breakdown of Unit Generating Costs	5-28
Figure 5.2-3	Medium Term Maintenance and Repair Schedule (2000 - 2010)	5-37
Figure 5.2-4	2003 Maintenance and Repair Schedule	5-38
Figure 5.3-1	Recent 10 years Generation by Thermal Power Plants in Uzbekistan	5-49
Figure 5.3-2	Uzbekistan Electricity Demand in 2001 vs. DC "TASHTPP" Net Gene	eration in
	2002	5-51
Figure 5.3-3	Indexed Generation in 2002 at DC "TASHTPP" as Jan 2002 = 100	5-58
Figure 5.3-4	Indexed Generation in 2002 at DC "TASHTPP" as Jan 2002 = 100	5-58
Figure 5.3-5	Adjusted Index of Monthly Generation Cost in 2002 at DC "TASHTPP	" 5-59
Figure 5.4-1	Tashkent Thermal Power Plant Organization Chart	5-65
Figure 5.4-2	Operation Department Organization Chart	5-66
Figure 5.4-3	Mechanical Maintenance Department Organization Chart	5-66
Figure 5.4-4	Electrical Workshop Organization Chart	5-67
Figure 5.4-5	Proposed Organization Chart of DC "TASHTPP"	5 - 71
Figure 5.4-6	Sample Heat Balance Chart.	5-74
Figure 5.5-1	Weighted Average Electricity Tariff in Uzbekistan	5-87
Figure 5.5-2	Indexed Price Tariff of Electricity and Gas in Uzbekistan	5-88
Figure 5.5-3	Recent Sum Official Exchange Rate	5-89
Figure 5.5-4	Sum Exchange Rates, April 30, 1995 – January 1, 2000 (Source IMF)	5-90
Figure 5.5 - 5	Henry Hub Natural Gas Price US\$/mmbtu.	5-96
Figure 5.5-6	US Natural Gas Wellhead Price US\$/thousand cft	5-97
Figure 5.5-7	OPEC Basket Prices of crude oil US\$/bbl	5-97
Figure 5.5-8	Foreign Exchange Inflows through the Banking System in Uzbekistan	5-98