2. Natural Condition at Bojonegara

2.1 Natural Condition Survey by Study Team

2.1.1 1:10,000 Scale Digital Topographic Mapping

The existing topographic map covering the entire area of Bojonegara, a candidate construction site of a new port, is the 1:25,000 scale topographic map produced by BAKOSURTANAL early in the 1990's.

However, the aerial photos used in producing this topographic map were taken early in the 1980's, and the information represented in this topographic map was about 20 years old. Therefore, it is assumed that large secular changes appear in the present conditions.

In formulating the plan of new port development at Bojonegara, it is necessary to accurately investigate the actual conditions for construction of an access road from the existing arterial road to port facilities and those of the hinterland.

To this end, the 1:10,000 scale digital photogrammetric mapping in the range from the planned new port site at Bojonegara to the node point to connect to an arterial road was implemented.

Figure 2-1-1 "1:10,000 Scale Digital Topographic Mapping Area, Bojonegara" shows the 1:10,000 scale digital topographic mapping area by photogrammetric method. The specifications of the digital photogrammetric mapping are as follows:

1:10,000
Approximately 3,200 ha
WGS-84
Universal Transverse Mercator (U.T.M.)
Zone No. 48
Lowest Low Water Level
TTG 307
(Existing benchmark established by BAKOSURTANAL)
Elevation = Elevation from MSL + $0.6 \text{ m} (Z_0)$
= 6.248 m + 0.6 m = 6.848 m
1:15,000 Scale aerial photos were taken in August 2002 for
this photogrammetric mapping.
1 m
AutoCAD format

The horizontal coordinates and elevation of the ground control points that were established to control the horizontal positions and elevation for photogrammetric mapping are shown in Table 2-1-1 "Horizontal Coordinates and Elevation of Control Points for Photogrammetric Mapping".

PM ID	Horizontal	Coordinates	Elevation (m)
DIVI ID	X (m)	Y (m)	
BM.1	620,152.653	9,347,472.196	2.508
BM.2	619,220.039	9,347,178.248	35.872
BM.3	622,726.899	9,344,205.970	2.294
BM.4	620,679.966	9,343,792.630	30.981
BM.5	620,589.192	9,338,548.694	1.565
BM.6	620,876.138	9,332,094.858	7.998
BM.7	619,570.905	9,333,033.430	8.388

Table 2-1-1 "Horizontal Coordinates and Elevation of Control Points for Photogrammetric Mapping"	-1 "Horizontal Coordinates and Elevation of Control Poi	ints for Photogrammetric Mapping"
--	---	-----------------------------------

Note: Spheroid: WGS-84, Projection: U.T.M. Zone No. 48

Reference point for elevation: TTG 307, Elevation = Elevation from MSL + 0.6 m = 6.248 + 0.6 m = 6.848 m

The topographic maps/sounding maps in which the results of sounding survey are added to the 1:10,000 scale topographic maps are shown in Appendix-2 and Appendix-3.

Datum of elevation: LLWL

Figure 2-1-1 "1:10,000 Scale Digital Topographic Mapping Area, Bojonegara"

2.1.2 Sounding Survey

a) Existing Sounding Data

IPC-2 had executed a sounding survey at Bojonegara in September 2000 and prepared a 1:2,000 scale sounding map covering the proposed port area and access channel area.

The area covered by this existing sounding map prepared by IPC-2 is shown in Figure 2-1-2 "Existing Sounding Map, Bojonegara".

The JICA Study Team has executed a sounding survey at Bojonegara by sub-contracting the Indonesian consulting company in August 2002 and a 1:1,000 scale sounding map was prepared.

These two sounding data were used for the estimation of seabed variation at Bojonegara.

b) Sounding Survey

The sounding survey at Bojonegara Area was carried out to acquire basic information and data necessary for investigating the actual conditions of the front water area of Bojonegara Area in which is the planned site of new port development and for formulating the plans of offshore facilities and navigational channels.

The range of sounding survey is shown in Figure 2-1-3 "Topographic and Sounding Survey Area, Bojonegara". The specifications of sounding survey are described below.

1) Sounding survey area	Approximately 1.7 km × 2.6 km (442 ha)
2) Sounding line direction	Perpendicular to coastal line
3) Sounding line interval	25 m
4) Positioning method	GPS
5) Sounding method	Deeper than -2 m: echo sounder
	less than -2 m: staff or lead
6) Scale of sounding map prepared	1:1,000
7) Spheroid	WGS-84
8) Map projection	Universal Transverse Mercator (U.T.M.)
	Zone No. 48
9) Datum level	Lowest Low Water Level
10) Reference point for elevation	BP-20 (benchmark established by IPC-20)
	Elevation = 1.283 m
11) Format style of digital data	AutoCAD format
	The final sounding map was combined with the 1:1,000 scale
	topographic map produced separately to make up a single map.

The topographic/sounding map produced is shown in Appendix 4. In this topographic/sounding map, the water depth and elevation points were thinned out from the original data and the scale was changed in order to reduce it for later use in reports.

Figure 2-1-4 "Tide Gauge for Sounding Survey, Bojonegara

Figure 2-1-2 "Existing Sounding Map, Bojonegara"

Figure 2-1-3 "Topographic and Sounding Survey Area, Bojonegara"

2.1.3 Topographic Survey

The topographic survey of Bojonegara Area was made for acquiring the basic information and materials necessary for investigating the actual conditions of the shore area of Bojonegara Area in which the planned site of new port development is located and for the design of port facilities.

Figure 2-1-3 "Topographic and Sounding Survey Area, Bojonegara" shows the location of 1:1,000 scale topographic mapping area by ground survey method.

The specifications of topographic survey are described below.

1) Topographic mapping area	Approximately 1.2 km × 0.8 km (340 ha)
2) Scale of topographic mapping	1:1,000
3) Spheroid	WGS-84
4) Map projection	Universal Transverse Mercator (U.T.M.)
Zone	No. 48
5) Datum level	Lowest Low Water Level
6) Reference point for elevation	BP-20 (benchmark established by IPC-20)
Eleva	ation = 1.283 m
7) Survey method	Ground survey method
8) Contour line interval	1 m
9) Format style of digital data	AutoCAD format
	The topographic map was combined with the
	sounding map produced separately to make up a
	single map.

Two bench marks were installed through the ground survey at site for topographic mapping and their horizontal coordinates and elevation are shown in Table 2-1-2 "Horizontal Coordinates and Elevation of Control Points for Topographic Mapping".

Table 2-1-2 "Horizontal Coordinates and Elevation of Control Points for Te	'opographic Mapping"
--	----------------------

BM ID X (Horizontal Coordinates		Elevation (m)
		X (m)	Y (m)	
PCI. 2		6200,307.751	9,347,216.454	1.706
	PCI. 3	620,773.089	9,346,609.886	3.350
Note:	Spheroid: V	WGS-84, Projection: U.T	M. Zone No. 48	

:: Spheroid: WGS-84, Projection: U.T.M. Zone No. 48 Datum of elevation: LLWL

Reference point for elevation: BP.20, Elevation = 1.283 m

The topographic/sounding map produced is shown in Appendix 4. In this topographic/sounding map, the water depth and elevation points were thinned out from the original data in order to reduce it for later use in reports.

Figure 2-1-5 "Topographic Survey, Bojonegara"

Soil Investigation and Soil Laboratory Test 2.1.4 **Existing Boring Data** a)

IPC-2 had conducted a soil investigation of 66 boreholes at the Bojonegara port development area since 1995. The locations of existing boreholes at Bojonegara are shown in Figure 2-1-6 "Location of Existing Boring Points, Bojonegara".

Some of the boring logs indicate the presence of hard rock, gravel, igneous bedrock with a N-value of more than 50 from the depth of -8 m to -20 m below LLWL in the whole project site of Bojonegara.

The depth of bedrock at each borehole is shown in Table 2-1-3 "Elevation of Bedrock by the Existing Boring Data, Bojonegara". The rocks are indicated in the name of Breccia, Basalt and Andesite in the previous soil investigation.

Figure 2-1-7 "Geological Profile (B-B' Section) at Proposed Project Site, Bojonegara", Figure 2-1-8 "Geological Profile (C-C' Section) at Proposed Project Site, Bojonegara", Figure 2-1-9 "Geological Profile (D-D' Section) at Proposed Project Site, Bojonegara" show the geological profiles at project site produced based on the existing boring data.

Soil Investigation and Soil Laboratory Test b)

The soil survey by boring was made to investigate the actual soil conditions onshore and offshore at the planned site of new port development in Bojonegara. The soil survey is outlined below.

1) Number of boring	Offshore boring:	3 locations
	Onshore boring 1 lo	ocation
2) Boring length	Total 55 m	
3) Standard penetration test	1.5 m interval, total 37 tin	nes
4) Undisturbed sampling	6 samples	
5) Soil laboratory test	Grain size analysis	34 samples
•	Specific gravity test	34 samples
	Moisture content test	34 samples
	Liquid/Plastic limit test	34 samples
	Density test	34 samples
	Unconfined compression	test 6 samples
	Consolidation test	6 samples

The locations of boring points are shown in Figure 2-1-10 "Location of Soil Boring, Bojonegara". The horizontal coordinates, water depth and boring depth of each boring point are shown below.

Boring No.	Poring No. Coor	dinates	Elevation	Boring depth	SDT
Doring No.	X (m)	Y (m)	H (m)	bornig depui	511
OSB-1	620,451.5	9,347,411.3	+0.1	10 m	7 times
OSB-2	620,558.1	9,347,519.2	-2.8	15 m	10 times
OSB-3	621,670.4	9,346,438.9	-3.1	15 m	10 times
OSB-4	621,193.2	9,347,517.1	-0.3	15 m	10 times
Nata Election reference is LLWI					

Table 2-1-4 "Horizontal Coordinates and Elevation, and Boring Depth, Bojonegara"

Note: Elevation reference is LLWL.

The geological profile produced based on the results of boring is shown in Figure 2-1-11 "Geological Profile (A-A' Section), Bojonegara".

The boring log of each bore hole is shown in Figure 2-1-12 "Drilling Log (No. OSB-1), Bojonegara", Figure 2-1-13 "Drilling Log (No. OSB-2), Bojonegara", Figure 2-1-14 "Drilling Log (No. OSB-3), Bojonegara" and Figure 2-1-15 "Drilling Log (No. OSB-4), Bojonegara".

The soil conditions based on the results of boring at Bojonegara are outlined below (Table 2-1-5 "Outline of Soil Condition at Boring No. OSB-1, Bojonegara", Table 2-1-6 "Outline of Soil Condition at Boring No. OSB-2, Bojonegara", Table 2-1-7 "Outline of Soil Condition at Boring No. OSB-3, Bojonegara" and Table 2-1-8 "Outline of Soil Condition at Boring No OSB-4, Bojonegara").

Table 2-1-5 "Outline of Soil Condition at Boring No. OSB-1, Bojonegara"					
Elevation from LWS	N-Value	Characteristic			
+0.1 ~ -4.9 m	5.0 m	Sandy clay	2	Soft	
-4.9 ~ -8.9 m	4.0 m	Sandy clay	25 ~ >60	Medium to hard	
-8.9 ~ -9.2 m	0.3 m	Bed rock (Andesite)	>60	Hard	

Table 2-1-6 "Outline of Soil Condition at Boring No. OSB-2, Bojonegara"

Elevation from LWS	Layer Thickness	Description of Soil	N-Value	Characteristic
-3.1 ~ -6.1 m	3.0 m	Sandy clay	1 ~ 2	Soft
-6.1 ~ -9.6 m	3.5 m	Gravelly clay	>60	Hard
-9.6 ~ -18.1 m	8.5 m	Bed rock (Andesite)	>60	Hard

Table 2-1-7 "Outline of Soil Condition at Boring No. OSB-3, Bojonegara"

Elevation from LWS	Layer Thickness	Description of Soil	N-Value	Characteristic
-3.1 ~ -9.1 m	6.0 m	Sandy clay & shell fragment	1	Soft
-9.1 ~ -18.1 m	9.0 m	Gravelly clay	13 ~ >60	Medium to hard

Table 2-1-8 "Outline of Soil Condition at Boring No. OSB-4, Bojonegara"

Elevation from LWS	Layer Thickness	Description of Soil	N-Value	Characteristic
+0.3 ~ -4.2 m	4.5 m	Sandy clay & shell fragment	4 ~ 6	Soft
-4.2 ~ -8.2 m	4.0 m	Gravelly clay, shell fragment	13 ~ >60	Medium to hard
-8.2 ~ -14.7 m	6.5 m	Gravelly clay	13 ~ >60	Medium to hard

The following soil conditions can be analyzed from the above results of boring:

1) The soil conditions can be divided into three layers in boring depth.

- 2) The first layer consists of a sandy clay layer in the depth range from the seabed to nearly -10 m, eventually contains shell fragments. This sandy clay layer is very soft and the N-value is in a range from 1 to 4.
- 3) The second layer is a gravelly clay layer in the depth range from -3 m to -15 m and eventually contains shell fragments. The N-value of this layer varies in a range from 4 to 60.
- 4) The third layer is a bedrock layer of andesite in the depth around -9 m and this layer is so hard that it can be used as a bearing layer having the N-value of more than 60.

The results of soil laboratory test are shown in Table 2-1-9 "Summary of Soil Laboratory Test at Boring No. OSB-1, Bojonegara", Table 2-1-10 "Summary of Soil Laboratory Test at Boring No. OSB-2, Bojonegara", Table 2-1-11 "Summary of Soil Laboratory Test at Boring No. OSB-3, Bojonegara" and Table 2-1-12 "Summary of Soil Laboratory Test at Boring No. OSB-4, Bojonegara".

No	Boring	Coord	inates	Depth of Bedrock	Description of Bedrock						
INO.	No.	N (m)	E (m)	(m)	Description of Bedrock						
1	A 1	9,347,614	620,576	-7.75	Very dense dark brown breccia						
2	A 2	9,347,410	620.685	-11.25	Very dense dark brown breccia						
3	A 3*	9.347.480	621.694	-11.60	Very dense dark brown breccia						
4	Δ 4*	9 347 190	621,686	-12.75	Very dense dark brown breecia						
	A 4 A 5*	9 347 690	621,000	8.00	Danse to very dense brown to dark weathered braccia						
5	A C*	9,347,090	(21,720	-8.00	Madium dance dade brown braceie						
0	A 0*	9,347,085	621,810	-12.00	Medium dense dark brown Dreccia						
/	A /*	9,347,540	621,855	-8.75	Weathered breccia, brown to dark drown						
8	A 8	9,347,317	620,625	-11.50	Weathered breccia, dark brown						
9	A 9*	9,347,540	621,855	-11.75	Dense dark brown breccia						
10	A 10*	9,347,540	621,855	-8.20	Dense to very dense brown to dark weathered breccia						
11	A 11	9,346,925	620,980	-13.00	Very dense dark brown breccia						
12	A 12	9,347,354	621,068	-14.25	Very dense dark brown breccia						
13	A 13	9,347,000	621,200	-14.40	Dense to very dense brown to dark weathered breccia						
14	A 14	9,347,050	621,518	-15.90	Very dense dark brown breccia						
15	A 15	9,346,800	621,624	-16.50	Very dense dark brown breccia						
16	B 1	9.346.996	621.658	-25.94	Very dense, grav volcanic rock						
17	B 2	9 347 246	621,591	-27.33	Very dense, gray volcanic rock						
18	B 3	9 347 216	621,371	-14.91	Very dense, gray volcanic rock						
10	D 3 D 4	9,347,210	620,827	-14.91	Very dense, fight brown volcanic rock						
19	D4	9,347,739	620,837	-12.47	Very dense, gray motified brown volcame rock						
20	B 5	9,347,519	620,545	-9.17	Very dense, dark gray volcanic rock						
21	B 0	9,347,574	620,463	-10.53	very dense, brown breccia						
22	В7	9,347,091	620,735	-13.93	Very dense, gray mottled brown volcanic rock						
23	B 8	9,346,505	621,690	-21.52	Very dense, grayish brown volcanic rock						
24	B 9	9,346,720	621,400	-15.52	Very dense, gray mottled brown volcanic rock						
25	B 10	9,347,604	621,214	-20.12	Very dense, brown volcanic rock						
26	GA 1	9,347,113	620,434	-7.39	Light gray and dark brown weathered tuff						
27	GA 2	9,346,964	620,636	-9.49	Light gray and dark brown weathered tuff						
28	GA 3	9,346,742	620,780	-8.27	Grey and brown breccia tuff						
29	GA 4	9,346,730	621.010		Boring was stopped at -19.15.						
30	GA 5	9.347.377	620.608	-11.56	Light grav and dark brown weathered tuff						
31	GA 6	9 347 292	620,922		Boring was stonned at -16.58						
32	GA 7	9 347 126	621,182		Boring was stopped at 10.50.						
22	GA 8	0.246.078	621,102		Boring was stopped at -15.70.						
24		9,340,978	621,377		Boring was stopped at -10.71.						
25	CA 10	9,347,242	(20,521		Boring was stopped at -10.70.						
35	GA 10	9,347,246	620,521		Boring was stopped at -15.06.						
36	GAII	9,347,516	620,876	-7.30	Grey and brown weathered tuff						
37	GA 12	9,347,196	620,725		Boring was stopped at -11.96.						
38	GA 13	9,347,078	620,893		Boring was stopped at -14.04.						
39	GA 14	9,346,939	621,087		Boring was stopped at -15.04.						
40	GA 15	9,346,708	621,287		Boring was stopped at -13.64.						
41	GA 15A	9,346,776	621,306	-14.08	Basalt						
42	GA 16	9,346,619	621,526	-15.77	Basalt						
43	GA 17	9,346,919	621.401		Boring was stopped at -16.29.						
44	GA 18	9,347.675	620.593	-10.07	Basalt						
45	GA 19	9.347 881	620,680		Boring was stopped at -7.71						
46	GA 20	9 347 724	620,000		Boring was stopped at -6.66						
40	GA 21	9 3/7 /24	621.062		Boring was stopped at -10.92						
47	GA 22	0 247 544	621,002	2.16	Doring was stopped at -10.72.						
40	GA 22	7,347,300	620,261	-2.10	Dasalt						
49	GA 23	9,347,336	620,266	-2.50	basant basant						
50	GA 24	9,347,242	620,366	-6.56	Basait						
51	GA 25	9,347,159	620,237	-4.75	Basalt						
52	GA 26	9,346,501	621,063	-5.84	Basalt						
53	GA 27	9,346,377	621,338	-8.87	Basalt						
54	GA 28	9,346,985	621,331		Boring was stopped at -17.12.						
55	GA 29	9,346,819	621,771		Boring was stopped at -19.24.						
56	GA 32	9,346,187	621,591	+11.54	Basalt, top of mountain						
57	K 1	9,347,280	620,629	-16.47	Grey and yellow volcanic rock						
58	K 2	9,347.144	620.812	-12.95	Brown volcanic rock						
59	К 3	9.347.013	620.988	-17 44	Brown volcanic rock						
60	K 4	9.346 904	621 135	-21 72	Black volcanic rock						
61	K 5	0 3/7 125	620,460	-21.72 8 77	Cravich brown valconia rock						
60	KJ V C	7,347,123 0,247,010	620,409	-0.//	Drayish brown volcanic rock						
02	K 0 K 7	9,547,019	620,044	-9.05	Drownish gray voicanic rock						
03	K /	9,347,004	620,399		Boring as stopped at -12.81.						
64	K 8	9,346,900	620,568	-4.95	Light gray volcanic rock						
65	K 9	9,346,790	620,734		Boring was stopped at -9.05.						
66	K 10	9,346,920	620,819	-14.71	Purplish white volcanic rock						

Table 2-1-3 "Elevation of Bedrock by the Existing Boring Data, Bojonegara"

Source: Laporan survey mekanika tanah, PPST - Universitas Indonesia

Note: *: Horizontal coordinates do not coincide with the location of boring points shown on the attached map.

Figure 2-1-6 "Location of Existing Boring Point_s, Bojonegara" B-50

Figure 2-1-7 "Geological Profile (B - B' Section) at Proposed Project Site, Bojonegara"

Figure 2-1-8 "Geological Profile (C - C' Section) at Proposed Project Site, Bojonegara" B-52

Figure 2-1-9 "Geological Profile (D - D' Scction) at Proposed Project Site, Bojonegara" B-53

Figure 2-1-10 "Location of Soil Boring, Bojonegara" B-54

Figure 2-1-11 "Geological Profile (A - A' Section), Bojonegara" B-55

DRILLING LOG

THE STUDY ON DEVELOPMENT OF THE GREATER JAKARTA METROPOLITAN PORTS IN THE REPUBLIC OF INDONESIA

Project Location Number GWL Ele	of bor hole evation	:	JICA Bojonegara OSB - 1 - m	Coordinat Sheet Nu Day/date	e x y mber	: : 9 : 1 : (2/0	620,45 9,347,41 07-3/07)	1.5 1.3 2002	Drilling Machine Bor Master Description by Check by	: ZT-100 : Casna : Mulyadi : Donny Z
Elevation from LWS (m)	Depth from ground level (m)	Bor Profile	Description of Strata		Nur N1	nber of B N2	N3	Sum of blow	S P T- N Graphic	Remarks
- 5.10	+ 5.00 -									
- 4.10	+ 4.00 -									
- 3.10	+ 3.00 -									
- 2.10	+ 2.00 -									
- 1.10	+ 1.00 -									
- 0.10	0.00		Sea bed		-					
0.90	- 1.00 -									UDS-1 · (1.00-1.50) m
1.90	- 2.00 -		Fine sandy clay, brown, soft		0 / 15	0 / 15	0 / 15	0 / 30		<u>SPT-1 : (1,50-1,95) m</u>
2.90	- 3.00 -	N	r no sundy oldy, brown, solt		0 / 15	0 / 15	0 / 15	0 / 30		SPT-2 (3.00-3.45) m
3.90	- 4.00 -				0 / 10	0 / 10	0 / 10	0,00		
4.90	- 5.00 -	8			1 / 15	1 / 15	1 / 15	2 / 30		SPT-3 : (4,50-4,95) m
5.90	- 6.00 -	X			6 / 15	10 / 15	15 / 15	25 / 30		SPT-4 (6.00-6.45) m
6.90	- 7.00 -		Sandy clay, grey, medium to hard		0 / 10		10 / 10	20,00		
7.90	- 8.00 -	5			60 / 10			> 60 / 10	60	<u>SPT-5 : (7,50-7,60) m</u>
-8.90	- 9.00 -	8	Andesit Rock. grev.hard		60 / 5			> 60 / 5	60	<u>SPT-6 : (8,50-8,55) m</u>
-9.90	- 10.00	X	Sandy clay, grey, hard		60 / 15			> 60 / 15		SPT-7 : (9,50-9,65) m
-10.90	- 11.00 -									
11.90	- 12.00 -									
12.90	- 13.00 -									
-13.90	- 14.00 -									
14.90	- 15.00 -									
15.90	- 16.00 -									
16.90	- 17.00 -									
-17.90	- 18.00 -									
18.90	- 19.00 -									
19.90	- 20.00									
-20.90	- 21.00									
-21.90	- 22.00									
22.90 -	- 23.00									
23.90 -	- 24.00 -									
24.90 -	- 25.00 -									
25.90 -	- 26.00 -									
26.90 -	- 27.00 -									
27.90 -	- 28.00 -									
28.90 -	- 29.00 -									
29.90	- 30.00 -									
30.90	- 31.00 -									
31.90	- 32.00 -							<u> </u>		
		\square	SPT Test		Clay	/		Sand	S	hell fragment
		\boxtimes	UDS Sample		Silt			Grave	el A	ndesit rock

Figure 2-1-12 "Drilling Log (No. OSB-1), Bojonegara"

DRILLING LOG THE STUDY ON DEVELOPMENT OF THE GREATER JAKARTA METROPOLITAN PORTS IN THE REPUBLIC OF INDONESIA

Project Location Number GWL Ele	n of bor hole evation	:	JICA Bojonegara OSB - 2 - m	Coordinat Sheet Nu Day/date	e x y mber	: : 9 : 1 : (4/0	620,55 9,347,51 07-10/07	8.1 9.2 7) 2002	Drilling Machine Bor Master Description by Check by	: ZT-100 : Casna : Mulyadi : Donny Z
Elevation from LWS (m)	Depth from ground level (m)	Bor Profile	Description of Strata		Nur N1	nber of B N2	N3	Sum of blow	SPT-N Graphic	Remarks
- 2.20	+ 5.00 -									
- 1.20	+ 4.00 -									
- 0.20	+ 3.00 -									
0.80	+ 2.00 -									
1.80	+ 1.00 -									
2.80	0.00 -		Sea bed							
3.80	- 1.00 -	X								UDS-1 · (1 00-1 50) m
4.80	- 2.00 -		Fine sandy clay , grey, soft		0 / 15	0 / 15	1 / 15	1 / 30		SPT-1 : (1,50-1,95) m
5.80	- 3.00 -	X			0 / 15	1 / 15	1 / 15	2/30	2	SPT-2 (3.00-3.45) m
6.80	- 4.00 -				0 / 10	1 / 10	1 / 10	2 / 00		
7.80	- 5.00 -	3	Gravelly clay & bed rock, brown, hard		60 / 15			> 60 / 15		SPT-3 : (4.50-4.65) m
8.80	- 6.00 -	X			60 / 2			> 60 / 2	60	SPT-4 : (6.00-6.02) m
9.80	- 7.00 -									
-10.80	- 8.00 -	5			60 / 3			> 60 / 3		SPT-5 : (7,50-7,53) m
11.80 -	- 9.00 -	S			60 / 2			> 60 / 2	60	SPT-6 : (9,00-9,02) m
12.80	- 10.00 -	X	Bedrock(andesit rock), grev, hard		60 / 2			> 60 / 2	60	SPT-7 : (10.50-10.52) m
13.80 - 14.80	- 11.00 - - 12.00 -				60 / 2			> 60 / 2	60	CDT 9
- 15.80	- 13.00 -	_6			00/2			> 00 / 2		SP1-6 . (12,00-12,02) III
16.80	- 14.00 -	S.			60 / 2			> 60 / 2	60	SPT-9 : (13,50-13,52) m
17.80	- 15.00 -	72			60 / 3			> 60 / 3	60	SPT-10 : (15.00-15.03) m
18.80 -	- 16.00 -									
19.80 -	- 17.00 -									
20.80 -	- 18.00 -									
21.80	- 19.00 -									
22.80 -	- 20.00 -									
23.80	- 21.00 -									
24.80	- 22.00 -									
25.80	- 23.00									
-20.80	- 24.00									
21.80	- 20.00									
-20.80	20.00									
20.00	- 28.00									
31 80	- 29.00									
32 80	- 30 00									
33.80	- 31.00 -									
34.80	- 32.00 -									
	•	\square	SPT Test		Clay	/		Sand	s	hell fragment
		\boxtimes	UDS Sample		Silt			Grave		ndesit rock

Figure 2-1-13 "Drilling Log (No. OSB-2), Bojonegara"

DRILLING LOG THE STUDY ON DEVELOPMENT OF THE GREATER JAKARTA METROPOLITAN PORTS IN THE REPUBLIC OF INDONESIA

Project Location Number GWL Ele	n of bor hole evation	:	JICA Coordina Bojonegara OSB - 3 Sheet Nu - m Day/date	te x y mber	: : (12	621,67 9,346,43 2/07-13/0	0.4 8.9 07) 2002	Drilling Machine Bor Master Description by Check by	: ZT-100 : Casna : Mulyadi : Donny Z
Elevation from LWS (m)	Depth from ground	Bor Profile	Description of Strata	Nur N1	mber of E N2	Blow N3	Sum of blow	S P T- N Graphic	Remarks
1.90	+ 5.00								
- 0.90	+ 4 00 -								
0.10	+ 3.00								
1.10	+ 2.00 -								
2.10	+ 1.00 -								
3.10	0.00 -		Sea bed						
4.10	- 1 00 -								
5.10	- 2 00 -	× ×		0 / 15	0 / 15	0 / 15	0 / 30		UDS-1 : (1,00-1,50) m SPT-1 : (1,50-1,95) m
6.10	- 3 00 -								
7.10	- 4 00 -	2	Coarse sandy clay & shell fragment, grey, soft	0 / 15	0 / 15	0 / 15	0 / 30		SPT-2 : (3,00-3,45) m
8.10	- 5.00	8		0 / 15	0 / 15	0 / 15	0 / 30		SPT-3 : (4,50-4,95) m
9.10	- 6.00 -	×			A	5 / 45	0 / 00		UDS-2 : (5,50-6,00) m
10.10	- 7.00 -	X	Gravelly clay, light brown, soft to medium	4 / 15	4 / 15	5 / 15	9/30		SP1-4 : (6,00-6,45) m
11.10	- 8.00 -	5		8 / 15	12 / 15	15 / 15	27 / 30	27	SPT-5 : (7,50-7,95) m
- 12.10	- 9.00 -	~		4 / 45	E 1 4E	0 / 15	12 / 20		
- 13.10	- 10.00 -	<u> </u>		4 / 15	5 / 15	8 / 15	13 / 30		SP1-6 : (9,00-9,45) m
- 14.10	- 11.00 -	X	Croughly along light brown modium to stiff	8 / 15	13 / 15	21 / 15	34 / 30		SPT-7 : (10,50-11,95) m
- 15.10	- 12.00 -	2	Graveny Clay, light brown, medium to sun	35 / 15	11 / 15	16 / 15	> 60 / 30	60	SDT 8 · (12.00.12.45) m
- 16.10	- 13.00 -	6		357 15	44 / 13	10 / 15	- 00 / 30		SF1-6 . (12,00-12,43) III
- 17.10	- 14.00 -	S.		60 / 10			> 60 / 10	60	SPT-9 : (13,50-13,60) m
- 18.10	- 15.00 -	10	Bed rock (andesit rock 10 cm)	60 / 2			> 60 / 2	60	SPT-10 · (15.00-15.02) m
19.10	- 16.00 -		Deu lock (alluesit lock to chi)	00 / 2			> 00 / 2		361-10 . (13,00-13,02) 11
20.10	- 17.00 -								
21.10	- 18.00 -								
22.10	- 19.00 -								
23.10	- 20.00 -								
24.10	- 21.00 -								
25.10	- 22.00 -								
26.10	- 23.00 -								
27.10	- 24.00 -								
-28.10	- 25.00 -								
-29.10	- 26.00 -								
30.10	- 27.00 -								
31.10	- 28.00								
32.10	- 29.00 -								
33.10	- 30.00 -								
34.10	- 31.00 -								
35.10	- 32.00 -								
		\square	SPT Test	Cla	у		Sand	s	chell fragment
	SPT Test UDS Sample			Silt			Grave	el A	ndesit rock

Figure 2-1-14 "Drilling Log (No. OSB-3), Bojonegara"

DRILLING LOG THE STUDY ON DEVELOPMENT OF THE GREATER JAKARTA METROPOLITAN PORTS IN THE REPUBLIC OF INDONESIA

Project Location Number GWL Ele	n of bor hole evation	:	JICA Coord Bojonegara OSB - 4 Sheet - m Day/d	linate x y Number ate	: : (1 : (14	621,193 9,347,51 9/07-16/0	3.2 7.1 7) 2002	Drilling Machine Bor Master Description by Check by	: ZT-100 : Casna : Mulyadi : Donny Z
Elevation from LWS (m)	Depth from ground level (m)	Bor Profile	Description of Strata	Nur N1	nber of E N2	N3	Sum of blow	SPT-N Graphic	Remarks
- 5.30	+ 5.00 -								
- 4.30	+ 4.00 -								
- 3.30	+ 3.00 -								
- 2.30	+ 2.00 -								
- 1.30	+ 1.00 -								
- 0.30	0.00		Sea bed						
0.70 -	- 1.00 -	X		1 / 15	2 / 15	2 / 15	4 / 30		SPT-1 : (1,00-1,45) m
1.70	- 2.00 -		Coarse sand & shell fragment, grev, soft						
2.70 -	- 3.00 -	<u>×</u>		2 / 15	3 / 15	3 / 15	6 / 30		<u>SP1-2 : (2,50-2,95) m</u>
3.70 -	- 4.00 -	8		1 / 15	2 / 15	2 / 15	4 / 30		SPT-3 : (4.00-4,45) m
4.70 -	- 5.00 -	Z		2 / 15	1 / 15	6 / 15	10 / 30	70	SDT 4 · (5 50 6 05) m
5.70 -	- 6.00 -	f V	Gravelly clay & shell fragment, grey, soft	2 / 15	4 / 13	0 / 13	10 / 30		UDS-1 : (6.50-7.00) m
6.70	- 7.00 -			1 / 15	2 / 15	2 / 15	4 / 30		<u>SPT-5 : (7,00-7,45) m</u>
7.70 -	- 8.00 -	6		35 / 15	43 / 15	17 / 15	60 / 30		SPT-6 (8 50-8 85) m
8.70	- 9.00 -			00 / 10	10 / 10				
9.70	- 10.00 -	X		10 / 15	14 / 15	17 / 15	31 / 30		SPT-7 : (10,00-10,45) m
11.70	- 12.00 -	8	Gravelly clav, ligth grev, stiff	11 / 15	10 / 15	13 / 15	23 / 30		SPT-8 : (11,50-11,95) m
12.70	- 13.00 -								
13.70	- 14.00	∑≫.		5 / 15	7 / 15	11 / 15	18 / 30		SPT-9 : (13,00-13,45) m
14.70	- 15.00 -	72		6 / 15	13 / 15	11 / 15	24 / 30	24	SPT-10 : (14,50-14,95) m
- 15.70	- 16.00 -								
- 16.70	- 17.00 -								
- 17.70	- 18.00 -								
18.70	- 19.00 -								
- 19.70	- 20.00 -								
20.70	- 21.00 -								
21.70	- 22.00 -								
-22.70	- 23.00 -								
23.70 -	- 24.00								
24.70 -	- 25.00 -								
25.70 -	- 26.00 -								
26.70 -	- 27.00 -								
27.70	- 28.00 -								
28.70	- 29.00								
29.70	- 30.00 -								
-30.70	- 31.00								
-31.70	- JZ.UU		SPT Test	Clay	,		Sand		hell fragment
		\square	UDS Sample	silf			Grave		ndesitrock
		М	000 Sample	SIII			Grave	P P	IIIUUJIL IUUN

Figure 2-1-15 "Drilling Log (No. OSB-4), Bojonegara"

: Bojonegara	: OSB-1
Location	Boring Number

	C	dtoo D		Atterberg Limits		Der	sity	Water	Specific	Grain	i Size Analysis	(%)	Consc	olidation	Jnconfined
No.	Number	nepul		Liquid Limit	Plast. Index	Dry	Wet	Content	Gravity	Clay-Silt	Sand	Gravel	റ്റ	S	nb
	IACILINA	(m)	Soli Ciassification	(%)	(%)	(gr/cm ³)	(gr/cm ³)	(%)		(%)	(%)	(%)		cm ² /sec	(kg/cm ²)
	UDS. 1	1.00 ~ 1.50	СН	49.37	89.90	0.735	1.395	89.68	2.4501	68.18	26.80	5.02	0.879	7.67E-04	0.092
2	SPT. 1	$1.50 \sim 1.95$	СН	48.89	124.56	0.732	1.426	94.75	2.4352	66.90	28.38	4.72			
3	SPT.2	3,00 ~ 3,45	СН	48.41	65.09	0.922	1.571	70.38	2.6431	69.54	21.52	8.94			
4	SPT. 3	4,50 ~ 4,95	СН	34.38	42.37	1.085	1.674	54.35	2.6702	46.70	22.26	31.04			
S	SPT. 4	6,00 ~ 6,45	ΗM	32.73	26.45	2.160	1.682	48.13	2.6521	4.72	5.02	68.96	2.16	7.72E+00	
9	SPT. 5	9.00 ~ 9.30	GW		ΝΡ	2.118	2.191	3.44	2.7472	0.03	0.25	99.72			
7	SPT.6	9.50 ~ 9.65	CL	35.73	12.38	1.481	1.889	27.57	2.7205	58.43	30.87	10.70	,		
	Aver	age	CH	35.65	51.54	1.32	1.69	55.47	2.62	44.93	19.30	32.73	1.52	3.86	0.05

Table 2-1-10 "Summary of Soil Laboratory Test at Boring No. OSB-2, Bojonegara"

Location : Bojonegara Boring Number : OSB-2

Born	g inumber	7-900 :													
				Atterberg Limits		Den	sity	Water	Specific	Grain	Size Analysis	(%)	Consc	lidation U	nconfined
No.	Number		Coil Olocofico	Liquid Limit	Plast. Index	Dry	Wet	Content	Gravity	Clay-Silt	Sand	Gravel	ပိ	° C	nb
	Number	(m)	SOIL CLASSIFICATION	(%)	(%)	(gr/cm ³)	(gr/cm ³)	(%)		(%)	(%)	(%)		cm ² /sec	(kg/cm ²)
-	UDS. 1	1.00 ~ 1.50	СН	114.94	89.90	0.602	1.342	123.10	2.474	74.56	23.28	2.16	0.954	8.25E-04	0.036
2	SPT. 1	$1.50 \sim 1.95$	sc		124.56	1.063	1.655	55.74	2.6968	26.08	64.74	9.18			
с С	SPT.2	3.00 ~ 3.45	sc		62.09	1.203	1.737	44.43	2.7021	21.38	39.10	39.52			
4	SPT. 3	4.00 ~ 4.20	sc		42.37	1.595	1.983	24.36	2.7254	13.96	15.91	70.13			
5	SPT. 4	4.50 ~ 4.60	GW		26.45	1.983	2.102	6.02	2.705	0.35	1.42	98.23			
	Ave	rage	SC	114.94	69.67	1.29	1.76	50.73	2.66	27.27	28.89	43.84	0.95	0.00	0.04

Table 2-1-9 "Summary of Soil Laboratory Test at Boring No. OSB-1, Bojonegara"

, Bojonegara"
OSB-3
Test at Boring No.
of Soil Laboraotry
"Summary
Table 2-1-11

Location : Bojonegara Boring Number : OSB-3

		-teo		Atterberg Limits		Den	sity	Water	Specific	Grain	I Size Analysis	(%)	Conso	lidation	Inconfined
N Z	ample	nepul	Coil Classification	Liquid Limit	Plast. Index	Dry	Wet	Content	Gravity	Clay-Silt	Sand	Gravel	റ്റ	S	nb
2	ianiinei	(m)		(%)	(%)	(gr/cm ³)	(gr/cm ³)	(%)		(%)	(%)	(%)		cm ² /sec	(kg/cm ²)
ר ד	IDS. 1	1.00 ~ 1.50	СН	64.02	39.22	0.825	1.503	82.21	2.605	61.46	36.34	2.20	0.882	1.08E-03	0.051
2	3PT. 1	$1.50 \sim 1.95$	SM		ЧN	1.176	1.727	46.90	2.7032	28.90	63.38	7.72			
e e	3PT. 2	3.00 ~ 3.45	ΗM	83.95	50.80	0.945	1.584	67.66	2.6314	59.06	39.44	1.50			
4	3PT. 3	$4.50 \sim 4.95$	СН	80.29	48.80	0.849	1.517	78.68	2.5742	62.58	36.02	1.40			
2 2	IDS. 2	$5.50 \sim 6.00$	СН	93.21	72.38	0.779	1.463	87.81	2.5604	70.88	26.96	2.16	0.663	1.59E-03	0.08
9	SPT. 4	6.00 ~ 6.45	ΗM	62.57	29.11	1.013	1.625	60.44	2.6203	60.74	37.88	1.38			
2 2	3PT. 5	7.50 ~ 7.95	ΗM	55.81	20.21	1.081	1.669	54.38	2.6444	65.18	34.58	0.24			
8	3PT. 6	9.00 ~ 9.45	СН	76.31	48.87	0.947	1.586	67.51	2.6345	89.78	10.22	0.00			
6	3PT. 7	$10.50 \sim 10.95$	СН	75.53	49.44	1.109	1.689	52.31	2.6612	80.18	19.82	0.00			
10 5	SPT. 8	12.00 ~ 12.20	GC	-	ΝΡ	1.375	1.857	35.08	2.6702	11.18	30.46	58.36			
	Avera	ge	CH	73.96	44.85	1.01	1.62	63.30	2.63	58.99	33.51	7.50	0.77	0.00	0.07

Table 2-1-12 "Summary of Soil Laboraotry Test at Boring No. OSB-4, Bojonegara"

Location : Bojonegara Boring Number : OSB-4

confined	nb	(kg/cm ²)					0.063							3	1.53
dation Un	S	sm ² /sec					3.03E-03							5.95E-03	0.0045
Consolic	റ്റ	0					1.093							0.302	0.70
(%)	Gravel	(%)	35.29	38.42	57.51	62.93	12.46	39.90	58.82	18.76	5.58	00.0	1.00	7.34	28.17
Size Analysis	Sand	(%)	47.93	46.00	34.40	17.36	6.52	13.18	13.74	13.38	1.80	0.68	2.52	2.58	16.67
Grain	Clay-Silt	(%)	16.78	15.58	8.09	19.71	81.02	46.92	27.44	67.86	92.62	99.32	96.48	90.08	55.16
Specific	Gravity		2.6808	2.6962	2.713	2.6711	2.4613	2.5323	2.7297	2.7214	2.6753	2.6772	2.6714	2.6723	2.66
Water	Content	(%)	34.06	47.30	32.93	44.56	89.68	78.11	10.03	25.63	30.65	31.51	35.02	30.15	40.80
sity	Wet	(gr/cm ³)	1.862	1.727	1.894	1.743	1.421	1.512	2.189	1.98	1.849	1.861	1.839	1.89	1.81
Den	Dry	(gr/cm ³)	1.389	1.172	1.425	1.206	0.749	0.849	1.989	1.576	1.415	1.415	1.362	1.452	1.33
	Plast. Index	(%)	ΝΡ	ЧN	ЧN	ЧN	103.38	66.69	ЧN	44.52	53.66	72.40	85.95	75.79	63.21
tterberg Limits	Liquid Limit	(%)					130.94	105.83		79.12	78.51	96.42	110.81	100.42	100.29
A	Coll Classification		sc	sc	sc	sc	СН	HM - HO	SM	ΗM	СН	СН	СН	СН	CH
Donth	nepril	(m)	1.00 ~ 1.45	2.50 ~ 2.95	4.00 ~ 4.45	$5.50 \sim 5.95$	$6.50 \sim 7.00$	7.00 ~ 7.45	8.50 ~ 8.70	10.00 ~ 10.45	11.50 ~ 11.95	13.00 ~ 13.45	14.50 ~ 14.95	$15.00 \sim 15.40$	age
- 	Number	INUILIDE	SPT. 1	SPT. 2	SPT. 3	SPT. 4	UDS. 1	SPT. 5	SPT. 6	SPT. 7	SPT. 8	SPT. 9	SPT. 10	UDS. 2	Avera
	No		-	2	ო	4	5	9	7	∞	6	9	1	12	

2.1.5 Seismic Reflection Survey

a) Outline of Seismic Profiling Survey

The boring survey of a total of 66 holes had been made by IPC-2 at the planned site of the new port development at Bojonegara.

The analysis of the results of this existing boring survey made clear that relatively hard bedrock consisting of igneous rocks exist at depths of -10 m to -15 m (from the lowest low water) at the planned site of the new port development (anchorage and navigational channel).

It is thus necessary to consider the following points for planning the layout of the new port facilities at Bojonegara:

- 1) To plan the access channel and anchorage so that the bedrock boring quantity is minimized.
- 2) To examine the appropriate structure and construction method to meet the bedrock conditions in designing the port facilities.
- 3) To examine the appropriate bedrock excavating method (particularly, necessity of excavating by blasting)

It is thus necessary to acquire two types of information on the bedrock as follows:

- 1) Detailed depth contour map of bedrock (dimensional information on bedrock)
- 2) Lippability of excavating the bedrock (strength of the rock)

As the dimensional information on the bedrock, the bedrock depth contour map was produced based on the existing boring data, but this bedrock depth contour map was prepared based only on the point information that was acquired from the results of existing boring data.

It is therefore necessary to acquire the depths of the bedrock as the line or plane information in order to draw an accurate bedrock depth contour map of the bedrock.

Thus, seismic reflection survey was implemented in the target sea area as additional natural condition survey in order to identify the depth distribution of the bedrock and create a detailed bedrock depth contour map of the bedrock.

The outline of the seismic reflection survey is described below. The area of the seismic reflection survey is shown in Figure 2-1-16, "Seismic Reflection Survey Area, Bojonegara".

1)	Seismic reflection survey area	Approx. 2.0 km by 0.75 km (150 ha)	
2)	Survey line direction	Perpendicular to the coastline or east-west direction	
3)	Survey line interval	Approx. 50 m	
4)	Positioning method	GPS observation	
5)	Equipment	Klein System 2000	
6)	Scale of map	1:1,000 and 1:5,000	
7)	Ellipsoid	WGS 84	
8)	Projection	Universal Transverse Mercator (U.T.M.)	
	-	Zone No. 48	
9)	Datum level	Lowest low water level	
10)	Reference point for elevation	BP-20 (Benchmark installed by IPC 2)	
	-	Elevation value = 1.283 m	
11)	Format style of digital data	AutoCAD format	

b) Analysis of Seismic Reflection Survey Data and Creation of Bedrock Contour Map

The depth of the sea can be measured by counting the time required for a sound wave transmitted at the sea surface to come back after being reflected by the seabed and multiplying it by the sound wave velocity (about 1,500m/sec in sea water).

Although, in this case, only a reflected wave from the seabed needs to be acquired to achieve the objective, a high resolution is required.

A systematized implementation of this method is an echo sounder.

Seismic reflection survey has physically the same principle as echo sounding. However, seismic reflection survey, intended to observe reflection also from geological layers beneath the seabed, uses sound waves with a lower frequency and larger oscillation energy than echo sounding.

In general, seismic reflection survey, using electrical or mechanical energy, receives and records sound waves generated through an underwater sound source by reflecting on the acoustical discontinuity surface on the ocean floor or seabed and coming back as feeble acoustic signals.

Seismic reflection survey records are analyzed by tracing the continuity of reflected waves. This is based on the idea that reflected waves correspond to geological layer interfaces.

During the tracing the continuity of reflected waves, sometime, there comes a point when the reflected waves become so weak that we can no longer trace the continuity. This phenomenon reflects a lateral change in properties as well as reflection strength corresponding to a change in faces.

Geological layers are generally stacked with a hierarchical relationship. The constituents and properties of the layers change at the interfaces of the layers. Seismic reflection survey is fundamentally based on such property changes in the depth direction. Geological layers, large or small, have their own unique properties and constitute a ratio of acoustic impedances at the interfaces.

As described above, seismic reflection survey bases its analysis on the differences of properties between geological layers. The nature of each of the geological layers can only be determined after the result of acoustic exploration is compared with the boring materials.

Therefore, the data recorded on the recording sheets of seismic reflection survey for the survey lines was analyzed, and the existing and new boring materials for locations close to the survey lines were used as reference to interpret the geological layers.

Figure 2-1-17, "Original Seismic Reflection Survey Data and Interpreted Sub-bottom Profile" shows the recording sheet, boring log data, and interpretation result for a typical survey line.

After the interpretation of recording sheets of seismic reflection survey for all the survey lines was completed, the result was two-dimensionally expanded to create a 1:1,000 and 1:5,000 scale bedrock depth contour map.

Through the analysis result, the geological layers of the port development area at Bojonegara can be roughly classified into the four types shown in the table below.

Depth	Geological layer	Characteristic		
▲ Shallow	Alluvium	Soft layer		
	1 1114 (14111	Relatively stiff layer		
	Igneous rock	Significantly weathered layer		
Deep	igneous rook	Moderately weathered layer		

Table 2-1-13 "Soil Situation of Planned Site of Port Development at Bojonegara through Analysis of Seismic Reflection Survey"

The soft layer in the alluvium mainly consists of clay but sometimes of sand. This layer is assumed to be soil that accumulated on the seabed recently.

The alluvium extends over the entire port development area at Bojonegara with a significantly varying thickness depending on the location.

The relatively stiff layer in the alluvium consists mainly of clay or sand. This layer is also assumed to be sediments in the lower part of soil that accumulated on the seabed recently. This layer is scattered about the port development area at Bojonegara.

The bedrock that exists up to the planned dredging depth (-15 m from the lowest low water) is assumed to

be mainly significantly weathered tuff breccia. This tuff breccia consists mainly of andestite gravel.

Figure 2-1-18 "Bedrock Contour Line Map, Bojonegara" shows the area of bedrock existing above -15 m (LLWS), which is considered as dredging depth, and area with moderately weathered rock exposed on the rock surface in the sea bottom of Bojonegara.

Appendix-5 is the topographic/bedrock depth contour map which was prepared by the combination of 1:10,000 scale digital topographic maps and results of seismic reflection survey.

Figure 2-1-19 "Tow Fish for Seismic Reflection Survey, Bojonegara"

Figure 2-1-20 "Equipment for Seismic Reflection Survey, Bojonegara"

Figure 2-1-16 "Seismic Reflection Survey Area, Bojonegara"

Original Sub-bottom Profiling Survey Data

Observation point number

Figure 2-1-18 "Bedrock Contour Line Map, Bojonegara"

B-67

2.1.6 Primary Wave Logging

a) Outline of P-Wave Logging

To identify the possibility of excavating the bedrock, it is necessary to estimate the strength of rocks. In general, the primary wave velocity is used as information for judging the possibility of excavating the bedrock (strength of the bedrock).

Since no such survey was conducted on the existing boring data, it is necessary to implement primary wave logging using boring holes to measure the primary wave velocity of the bedrock.

Under such circumstances, the rock boring was conducted and the primary wave logging using boring holes was carried out as the additional natural condition survey.

The outline of the primary wave logging is described below.

1)	Number of boring locations	Three, offshore boring		
2)	Extension of boring	70 m in total		
3)	Standard penetration test	1.5 m intervals, 20 times in total		
4)	Acquired undisturbed samples	4 samples		
5)	Longitudinal wave velocity logging	3 holes (every 2 m, 27 times in total)		
6)	Soil laboratory test	Uniaxial compression test	4 samples	
		Load test	9 samples	
		Rupture test	11 samples	

The locations of boring points are shown in Figure 2-1-21, "Location of Rock Boring, Bojonegara". The horizontal coordinates, water depth, and boring depth of each boring point are shown in Table 2-1-14 "Horizontal Coordinates, Elevation, and Boring Depth of Rock Boring Points Required for Primary Wave Velocity Logging, Bojonegara".

Table 2-1-14 "Ho	orizontal Coor	ordinates,	Elevation,	and Boring	; Depth	of Rock	Boring	Points	Required	for
	Primary Way	ve Velocit	y Logging.	Bojonegar	a"					

Doint number	(Coordinate value (m)	Boring depth	Standard	
Folint number	Х	Y	Н	Doring depth	penetration test
BH-1	620,806.707	9,347,114.637	-6.49	30 m	8 times
BH-2	620,685.975	9,347,526.459	-7.12	20 m	4 times
BH-3	621,509.407	9,346,907.319	-7.50	20 m	8 times

Note: The height reference is the lowest low water.

The drilling logs of the boring holes are shown in Figure 2-1-22, "Drilling Log (No. BH-1)", Figure 2-1-25, "Drilling Log (No. BH-2)", and Figure 2-1-27, "Drilling Log (No. BH-3)".

Figure 2-1-29 "Offshore boring, Bojonegara"

The photos of obtained core samples area shown in Figure 2-1-23 "Boring Core of Rock Boring at BH-1, Bojonegara", Figure 2-1-24 "Boring Core of Rock Boring at BH-1, Bojonegara", Figure 2-1-26 "Boring Core of Rock Boring at BH-2, Bojonegara" and Figure 2-1-28 "Boring Core of Rock Boring at BH-3, Bojonegara".

The outline of the boring results is shown in Table 2-1-15 "Outline of Rock Boring Results, Bojonegara

(No. BH-1)", Table 2-1-16 "Outline of Rock Boring Results, Bojonegara (No. BH-2)" and Table 2-1-17 "Outline of Rock Boring Results, Bojonegara (No. BH-3)".

Tuote 2 1 10 Outline of Robing Results, Bojonegara (100 Bir 1)						
Depth (LWS)	Layer thickness	Outline of soil type	N-value	Characteristic		
-6.49 to -7.19 m	0.7 m	Sand	1	Loose		
-7.19 to -11.59 m	4.4 m	Silty clay	1 to 4	Soft		
-11.59 to -13.99 m	2.4 m	Silty clay	25	Very stiff		
-13.99 to -37.49 m	23.5 m	Breccia	> 50	Very dense		

Table 2-1-15 "Outline of Rock Boring Results, Bojonegara (No. BH-1)"

Depth (LWS)	Layer thickness	Outline of soil type	N-value	Characteristic
-7.11 to -8.22 m	1.1 m	Sand with shell fragment	12	Loose
-8.22 to -10.22 m	2.0 m	Silty clay or clayey silt	> 50	Stiff
-10.22 to -13.22 m	3.0 m	Sandy silt	> 50	Hard
-13.22 to -27.12 m	13.9 m	Breccia	> 60	Very dense

Table 2-1-17 "Outline of Rock Boring Res	sults, Bojonegara (No. BH-3)"
--	-------------------------------

Depth (LWS)	Layer thickness	Outline of soil type	N-value	Characteristic
-7.50 to -8.15 m	0.65 m	Silty sand	0	Very loose
-8.15 to -19.5 m	11.35 m	Sandy silt or Clayey silt	0 to 11	Soft to stiff
-19.5 to -21.25 m	1.75 m	Sandy silt	50	Very stiff
-21.25 to -27.50 m	6.25 m	Breccia	> 50	Hard

Laboratory tests were carried out for rock samples to obtain compression and tensile strength characteristic of the rock formation. The original program of laboratory tests consisting of unconfined compression tests to determine compressive strengths and Brazilian tests to indirectly determine tensile strengths.

However, as majority of core samples were short and were unable to meet the required ratio of length to diameter for the unconfined compression tests, point load tests were assigned to short core samples to indirectly obtain the compressive strengths.

There were 4 unconfined compression tests, 9 points load tests and 11 Brazilian tests conducted on rock core samples in the present study. The core samples were collected from all the sound portion of the cores having the length of larger than 5 cm.

It should be pointed out that almost all the core samples having the length larger than 5 cm were obtained below -15m LLWS (the proposed dredging level) because the rock mass above -15m LLWS confirmed in all the 3 boreholes was highly to completely weathered.

The summary of results of laboratory test is shown in Table 2-1-18 "Strength Characteristics of Rock Core Samples, Bojonegara".

b) Core sampling ratio, maximum core length, and RQD

The indexes used to determine the quality of bedrock in boring are core sampling ratio, maximum core length, and rock quality designation (RQD).

A core sampling ratio refers to the ratio of a sampled core length to the driving length equivalent to the length of a sampler core barrel. The higher the core sampling ratio, the better the bedrock status. However, a core sampling ratio largely depends on the boring technology.

The higher the maximum core length, the better the bedrock status. Normally, the maximum core length per meter is indicated because consideration must be given to organization and storage of cores in core boxes.

An RQD, an index that shows whether bedrock is good, represents the percentage of the 10 cm total core length to one-meter driving length. In general, the relationship between an RQD and a rock quality level are as shown below. In general, a low RQD value means that the bedrock is fragile and destructible.

Tuble 2 T Ty Relationship between RQD and Roek Quality Lever				
RQD (%)	Rock quality level			
0 to 25	Very bad			
25 to 50	Bad			
50 to 75	Fair			
75 to 90	Good			
90 to 100	Very good			

Table 2-1-19 "Relationship between RQD and Rock Quality Level"

Table 2-1-20 "RQDs of Rock Samples, Bojonegara" shows RQDs listed in the existing boring data and RQDs obtained during rock boring in this Study.

From this table, it is presumed that the bedrock quality level is very bad because almost all the RQDs up to the planned dredging depth of -15 m (LLWS) are 0% and the average value is about 13%, which is lower than 25%.

Most of the sampled cores are about 5 cm long and there were very few cores longer than 10 cm. Therefore, we can conclude that the bedrock in the planned site of port development at Bojonegara up to the planned dredging depth of -15 m has a very bad level and will easily be destroyed.

Based on these results and the following rock mass classification criteria for boring core appraisal shown in Table 2-1-21 "Rock Mass Classification by the CRIEPI" and Table 2-1-22 "Physical Property and CRIEPI Classification", the bedrock in the planned site of port development at Bojonegara up to the planned dredging depth of -15 m is classified approximately into CL to D class (soft rock).

c) Analysis of Primary Wave Logging Data

The method of survey for continuously measuring the physical properties of bedrock using boring holes is called logging. In this sense, logging is included in the scope of site test. Primary wave logging is a method for checking the bedrock status by giving an artificial vibration using bore holes and observing how it travels. In offshore geological survey, primary waves are used because no appropriate device that generates secondary waves on the seabed is yet available.

Primary wave logging is a method of continuously measuring the sound wave velocity and wave form of sound waves that travel between the generators and receivers of sound waves installed as built-in devices in a logging sonde at certain intervals. This method is intended to measure the velocity of sound waves (primary wave in this Study) in the target rock layer.

The test was carried out by inserting inflatable geophone at the intended testing depths. A shock wave was generated by hammering the casing pipe that was installed up to the surface of the rock formation. Reference geophones were also installed in the casing pipe for the correction of the wave propagation along the casing pipe. The hammering was done several times to obtain the best signal recorded by the geophone.

The result of primary wave logging survey in the boreholes is shown in Figure 2-1-14, "Result of P-wave Logging Survey, Bojonegara" and Table 2-1-29 "Summary of P-wave Logging Survey Results, Bojonegara".

Borehole	Depth	Elevation	P-wave Velocity	Deals/Seil Tyme
No.	(m)	(m from LLWS)	(km/sec)	Rock/Son Type
BH-1	12.0 to 18.0	-18.5 to -24.5	2.5 - 3.3	Highly fractured breccia
	18.0 to 30.0	-24.5 to -36.5	2.9 - 3.8	Highly fractured breccia
BH-2	6.5 to 9.0	-13.6 to -16.1	1.8	Highly to completely weathered breccia
	9.0 to 15.0	-16.1 to -22.1	2.4 - 3.3	Highly fractured breccia
	15.0 to 20.0	-22.1 to -27.1	3.4	Highly fractured breccia

Table 2-1-23 "Summary of P-Wave Logging Survey, Bojonegara"

BH-3	10.0 to 13.0	-17.5 to -20.5	1.0 - 1.2	Stiff silty clay and sandy silt
	13.0 to 16.0	-20.5 to -23.5	1.6 - 2.0	Highly to completely weathered breccia
	16.0 to 19.0	-23.5 to -26.5	2.3 - 5.0	Highly to completely weathered breccia
				•

Source: Results of natural condition survey by JICA Study Team

This figure shows that the primary wave velocity in the bedrock is approximately 1.8 m/sec up to the planned dredging depth of -15 meters (LLWS) and 2.4 to 3.3 m/sec in the range of -15 to -20 m (LLWS).

Whereas an elastic wave velocity in metal, etc. is roughly constant, an elastic wave velocity in rocks has varying values even though the rocks are classified into one rock type. In general, an elastic wave velocity has the following tendencies:

- 1) In general, the older the rock, the higher the primary wave velocity.
- 2) A primary wave that travels in a weathered rock or bedrock has a lower velocity than in a fresh rock. The more weathered the rock or bedrock, the significantly lower the velocity.
- 3) A primary wave in a sedimentary rock tends to have a higher velocity at a greater depth. However, a velocity measured at a distance less than a few meters has significantly wide variations.
- 4) In general, the higher the porosity of a rock, the lower the velocity of an primary wave.

A primary wave in a rock, depending on various conditions as described above, cannot be easily determined. However, it can be concluded that an elastic wave has a low velocity in a soft rock and a high velocity in a hard rock.

The primary wave velocities in rocks in Japan and their distribution are shown in Figure 2-1-30, "Distribution of Primary Wave Velocities in Rocks in Japan". This figure shows that the velocities in andesite are distributed approximately between 1 and 5 km/sec.

The primary wave velocity of 1.8 m/sec for the bedrock up to the planned dredging depth of -15 m (LLWS), which has been identified through the primary wave velocity logging in the Study, is found to be a low velocity among the velocity distribution by rocks.

Figure2-1-32 "Geophone to be Lowered into Borehole, Bojonegara"

Figure 2-1-31 "Hammering Casing Pipe to Generate Source Wave, Bojonegara"

d) Reppability and Classification of Rock Quality for Dredging

Apart from the case of manual excavation, bedrock excavation is most commonly classified into machine excavation and blasting, each of which further corresponds to the target bedrocks of hard rock, soft rock, and earth and sand.

Normally, the bedrock primary wave velocities frequently classify bedrock excavation because it is common to use only one parameter for bedrock classification as a representative one instead of using a

combination of many parameters.

For excavation types in this case, note that excavation types and geological types are different as shown in Figure 2-1-33 "Rippability Guide Value".

In this classification, the boundary at which ripping from earth and sand is required is set at an elastic wave velocity of 450 m/sec and the ripping limit at 1,500 to 2,000 m/sec (varying depending on the model), which then corresponds to the four types of earth and sand and soft rock and middle to hard rock.

As a result of primary wave logging in the planned port site at Bojonegara, the primary wave velocity up to the planned dredging depth of -15 m is approximately 1.8 m/sec. In this classification, the bedrock was found to be soft or middle to hard rock, on which machine excavation is possible.

The Rock Quality Designation (RQD) and the joint spacing are generally the important information for workability other than the strengths of the rock masses as shown in Figure 2-1-34, Figure 2-1-35 and Figure 2-1-36. The figures that the rock mass with RQD values smaller than 20 % and with close joint spacing of smaller than 50 mm are generally rippable without blasting.

The unconfined compressive strengths of the core samples obtained from BH-1 to BH-3 are plotted in Figure 2-1-34, Figure 2-1-35 and Figure 2-1-36 together with the RQD values and joint spacing observed during the investigation. The elevations of the core samples are also plotted in the figures.

As shown in the figures, the highly to completely weathered rocks above –22 m LLWS are generally rippable without blasting. Occasionally, chiseling or drilling to loosen the rock masses may be required if there are large size andesite fragments.

The information of the present 3 boreholes may not present the condition of the entire site area. The nature of rock above -15 m (LLWS) from the borehole information in the previous soil report was thus summarized in Table 2-1-34. The table indicates that the expected thickness of the rock excavation at the site varies from 0.5 to 7.5 m. The RQD values obtained from the present 3 boreholes and the previous boreholes of B-series, GA-series and K-series are generally less than 20 %.

Based on Figure 2-1-34, ripping of such soft is possible. Nevertheless, as the remark with andesite intercalation was often given in the A-series boreholes, dredging with difficulty may be expected if large andesite fragments are encountered. Dredging difficulty may also be faced in minor areas where moderately weathered rocks are expected on the bedrock surface as indicated in Figure 2-1-18. Chiseling or pre-boring to loosen the rock before dredging may be necessary.

Underwater excavation is generally conducted as machine excavation using a ship or workbench (ship). These machines have a limited scope of application depending on the target bedrock.

Dredging of a navigational channel is the most common case of underwater excavation. The machines used for this purpose are listed below.

- 1) Grapple dredge
- 2) Dipper dredge
- 3) Bucket dredge
- 4) Plain suction dredge
- 5) Self-propelled hopper dredge
- 6) Cutterhead pipeline dredge

In addition to these machines, there are drilling barges and rock breaking barges, which crushes a bedrock by dropping crushing rods.

When a workboat used for dredging is selected, such items as the type and amount of soil, hydrographic conditions, disposal method, work periods, and capabilities of the workboat must be considered. Among these items, the soil type has a significant influence.

A bedrock or hard soil with an N-value of 30 or more needs to be crushed through blasting or by using a

rock breaking barge before dredging. In general, the soil types and compatible boat types are as shown in Table 2-1-25 "Soil Types and Compatible Dredging Ship Types".

Excavation using a dipper dredge or rock breaking barge is assumed to be possible for the bedrock in the planned port site at Bojonegara up to the dredging depth of -15 m (LLWS), which is classified into a soft or middle to hard rock.

Figure 2-1-21 "Location of Rock Boring, Bojonegara" B-74

					F	IG		DRILLI	IG		L()(ч <u>л</u>	P=	<u>Rer</u> Standar	nark d Pener	<u>s</u> stion Tes			
Proje	ct No		1406		- Pr	oject Soil in F Proposed Bojo	westigation a pequinal Sea F	& Marine Survey <u>Type o</u> Part	f Drill	ing	Rotary (Corieg	i)	iC= Weo Han	Coring (thering: dness: i	i - 5 (v	very fres ary hord	h lo stro to soft)	ingly web	thered)
Hole	Numb	er E	K≁1 (PAG	E 1 of 1)				Date	2 - 10	0ct. 200	2			inte Clas	rvol of s sification	crocks: 1 n 5y CRI	- 5 (>: PI. A, B	500mm (, C∺, CM	o <10mm i, CL, D	.)
Water 1	Table is	s 6.5m	above :	Sea Bed	Ele	vation	EL6.	49 m. Driller	Wrtren	(Saleh/Ro	dios)	•								
	E	-	r m		_		nsity ncy	marks	Sam	pling			Sta &	nda: Core	rd F Recov	'enet ery (C	ratio 'R)	n Te	st	
in m	on ir	in m	ess i		f Soi		e De Isiste	ના પિલ		e	ben be	Bi	ows F	'er		N		Valu	ie	 50
cale	leval	epth	hickn	egenc	ype c	olour	elativ r Con	enera	Dept in n	Samp No.	N - Vali ows/30	E	9	E			<u>, , , ,</u>	<u></u>	+0	
0			+		-		0 22	<u> </u>			æ Criep:	₫ ₩	≦ H	Ŭ i		ул 🥁 20	40	60	80	100%
1	-739	0.70	0.70	<u> </u>	Sond	Greenish Gray	(Very Loose)	Sand is fine grained. Contains a lot of sea shell fragments had a few core's											Ţ	-
				<u>7</u>	Sandy Clay	Greenish Groy	Very Solf	High clay content, low	1.50	5							(<u> </u>			
~							21	grained. Contains a lot of sec shell fragments. Clay content	2.00	P-11	1/58	1/50						+		
3	-12.79	3.30	2.60					increases with depth	- 14 - 1 - 1						ן -⊢ ו			+	·	
4	- ?1.59	4.10	0.30		Silty Cloy	Dark Gray to Brownish Gray	Soft	High clay content. High plasticity. Contains a little corol fragments. Mottled with	3.65 3.95	P-2 .	4	1	1	2	<u>.</u>					
5					Sifty Clay	Brownish Dark Grey	Very Still	velowish brown. High clay content High to										ļ		-
6								medium plasticity. Motied with yellowish brown. Contains a tew	5.65 5.95	P-38	25	7	8	10						-
7	-13.99	6.50	2.40	× જીઝજર્જ	Breccia	Light Brown	Very Dense	Decasionally contains weakly to readerately cemented Breacia	3.33								:	$\left \right\rangle$]
				50 70 70 7 10 90 70 7		to Light Green	,	Highly to completely weathered.	7.65		en	27	,,					+	1	j
-				['0''''''''' ['0'''''''''		Yellowish		Occasionally contains some coarse grovels from original rock.	7.95	<u> </u>	00		5J	· +		CO BLO	(5 <u>/30cm</u>	=		 -
9				2020		Brown to Light Green														
<u>10</u>									9.65 9.95	P-5	55	10	21	24		55 BLOV	S/30cm			
11									11.00	C-1	CL-D	45	4-5	4-5 0).07 (\ }} (}}			Aliminini Alimininini Aliminini Aliminini Aliminini Aliminini Aliminini Aliminini Aliminini Aliminini Aliminini Aliminini Aliminini Aliminini Al	ennun	100.0%
12									11.50 11.75	C-2	CL-D	4-5	4-5	4-5 0 4/5	.0% 	50°8104	S/25cm		hunn	100.0%
13 -				8088 8088		at s at s			13.00	C-3	CL-D	4-5	4-5	4-5 0	1.0%					900.07
14				2000 2000					13.50 13.61	C-4 P-7	CL-D 50/11	4-5 50/11	4-5	4-5 0	1.0% 1.0% 1.0%	50-BLOV	Sym	annan annan	annarth annarth	0.07
<u></u>				9999 9999		Brownish	Dense to	Highly fractured around	14.00	<u> </u>	CH-CL	4-5	4-5 3-4	<u>4-5 v</u> 3-4 0	1429-1419 1.07	*********		20.05		-
15						Dark Gray	very Dense	16-16.30m; 16.00-16.80m; 17-17.30m; 18-18.30m;	15 00	C-6 C-7	CM-CL	4-5	3-4	3-7 0	n unun 1871-1911	uunna uunna	uuuuu uuuuuu		10.0z	
<u>16</u>								19-19.40m; 20-20.50m; 21-21.40m; 22-22.80m; 23-23.60m; 24-24.60m;	16.00 16.00	C-8	CM-CL (50/10 +	4-5 50	3-4	3-4 0	20. 20.	50-81-04	5/10000	0.0%	<u></u>	
17								25-25.80m; 26-26.60m; 27-27.50m; 28.70-29m; 29.90-30m; 28.70-29m;	17.00	9	CM CH_CM	4	3	3 0	.07 ())))))))))))))))))))))))))))))))))))	enenen Enenen	1999 1999 1999	611441146 611441146	0.0%	-
18				99999 99999				brown clayey silt and fine grovel cround GL-15-15-60m; 15.90-16	17.50 18.00	C-10 C-11	CH	3	2-3	2-3 0	.0% 11101110 .0%	nninnn Nininnin	nunun 1999-1999	numun tumun	10.03 10.03	00.07
19				888 888				16.40-16.60m; 18.20-18.70m; 19.80-20m. With some brownish	10.00	C-12	см-сг	4-5	3-4	3-4 0	.0%					00.0%
20				222				GL-21.60-21.90m. Dip of crocks 45-60 degree.	19.00	C~13	CM-CL	4-5	3-4	3-4 0	.02 .01111111111111111111111111111111111	nnnna	ummm 	unnud mand	0.0%	-
								Ine matrix consists or brownish grey sitly sand and clayey sitt with ancesite	20.00	C-15	CM-CL	4-5	3-4	3-4 0	1 111111 07 1111111	ninnin Mininin	ginning ginning		0.0%	
- 12			21.00 21.30	and a second	Core Lost		- 	nugmenta.	21.00	C=10		4-5	3-4	3-4 0. 3-4	07	annanna.	innen ne	0.0%	0.02	
22			22.00 22.40	Solon Solo	Core Lost		- 		22.00		0 m CC	- J			1111111 07	*****		0.07	<u> </u>	
23			23.00	828	Core Lost				23.00	1-13 (11) (11)	UH-UM	J-4	<u>ه-د</u> ا	J4		unun	199999		<u> </u>	
24			24.00	10000 10000	Core Lost				24.00	C-19	сн-сж	3-4	3-4	3-4 0.	.UX (1111111)	*******	innen in	- 20102 		
25			24.30 25.00	XXXX		201 201 201			25.00	C-20	СН-СМ	3-4	3-4	3-4 0.	.0% 1241192214	in an	Witerra	\$0.0%		
26			25.50	222	Core Last		· .			C-21	CH-CM	3-4	3-4	34 Q.	0%		\$0.07	_		
27			26.00 26.40	2000	Core Losi				26.00 -	C-22	Сн	2-3	2-3	2-3		5.0%	intilen og	0.0%		
			27.00 27.30		Core Lost				27.00 27.50	C-23	СН-СМ	3-4	3-4 .	3-4 0	1999 07 11999 105	nanan ananan	annanna 2.0%		in an	
28				5000° 6000°					28.00	C-24	UB-CM .)-4)_1	ડ−4 ?_ર	2-4 ₽.	U%		19.07	119991199		100.0%
29				ૹ૾ૹ૾ૹ૾ ૾ૣ૾ૹૢ૾ૹ૾					29.00 -	· 23							+0.04 	llinn		
30	- 37.49	30.00	23.50	3997974 1979974					50.00 F	C=25	.n-UM .	. 4-د ا	J-4 .	o−4 (). 	0% 22272209			70.8 () 	<i>™</i> ⊢ − −	-
31 ~	-				−€ND C	ORICING-														
						P	T. PC	NDASI KISOCO	on r	AYA								Pa	age.	

Figure 2-1-22 "Drilling Log (No. BH-1), Bojonegara" B-75

Sandy clay (from 0.7 m depth, -7.19 m from LLWS)

Silty clay (from 3.3 m depth, -12.79 m from LLWS)

Silty clay (from 4.1 m depth, -11.59 m from LLWS)

Breccia (from 6.5 m depth, -13.99 m from LLWS)

Core Box of Borehole BH-1 (0 - 20m)

Core Box of Borehole BH-1 (20 - 30m)

Б.						IG		DRILLI	G		<u>L</u> ()(_; 	2=	<u>Re</u> Stondo	<u>mark</u> vd Penetr	<u>S</u> ction Tes	1		
Proje	<u>ct No.</u> Numb	ii er B	406 	- 1 a(1)	$- \frac{Pr}{-2}$	oject Sod In i Proposed Bojor	vestigation 8 egoro Sea P	<u>k Morma Suavey</u> <u>Type o</u> Iori Date	f Drill	ling Mar 20	Rotary 60	(Coring)	We Ha	cthening roness: ervol: of	1 ~ 5 1 - 5 (v crocks: 1	very fres ery hard - 5 (2)	h lo stro lo soft) 100rom li	ngiy weat a <10mm	hered))
Water '	Table is	8.30m	above	Sea Bed	Ele	vation	EL7.1	2 m. Driller	Wrima	(Scieh/Ro	dios)			Cic	ssificatio	on by CR)	EPI: A, B	, CH, CM	CL, D	
	E		E a				nsity ncy	marks	Sam	pling			Sta &	nda Corc	rd I Reco	Penet very ((ratio ম)	n Te:	st	
m E	tion it	in m	ness 1	- ч	of Soi	5-	ve Dei insiste	'al Rei	£ 6	ple .	lue 30em	Ble Eac	ows F h :0	er cm		N 10	20	Valu 30	ie 40 (50
Scale	Ľle va	Depth	Thick	legen	Type	Colou	Relati or Co	Gene	Dep in I	Sam No	N-Va Blows/:	10cm	10cm	10cm		💥 RQ	D	CR	·	<u></u>
		-		5	Sand .	Greenish Gray	(Loose)	Sand is fine to medium grouned			(REP)	W	H			20	40	60	80 1	100%
	-8.22	1.10	110	0 	Silly Clay	Dark Greenist	SUR	Contains a lot of sea shell tragments. With trace of slay fail bottom portion										+		
2	-912	2 00	0.9C	, , , , , ,	Clayey Sit	Gray Greenish Gray	(\$110)	High picsticity Contains some (sed shell fragments and Mightiv weathered acrol	1.65 1.95	P-1.3	:2	4	4	4		•		+	L	
3	10 22	5.10	1.10	x x =	Sandy Silt	Pinkish Gray	Hard	Ragments. With black organic matters.										<u> </u>	Ļ	
_4								yellowish brown. Gravel is fine	3.65 3.81	- P-2 ;;	50/16	30	20/6	<u> </u>		50 BLO	S/16cm	-=		
5								high Gay content, Weakly to moderately cemented. Occasionally with a few of time to medium cravels.	5,65									+		
_6	-13.22	6.10	3.00	1 x 10,000	Breccia	Grayish	Very Dense	Porphyritic texture. The matrix	5.8) 6.10 (8.50	C-1-s	50/16 CM-CL	13 4-5	37/6 4~5	3-4	innin (50 BLC 5.0%	5/16cm	 	80.0%	
7				90°0°0° 20°0°0°		Purple to Greenish Gray		consits of brownish grey silly sand and gravelly clayey silt with andesite fragments.	7.50	C-2	01-0 50/5	4-5 50/5	4~5	4~5	0. 03 —	50 BLO	5/5cm			100.07
8				5000 50000		Brownish Gray to Light Gray		Dip of cracks 45-70 degree. Occasionally highly to completely weathered. Highly fractured cracked Clim 7.5 to 8.5m	7 55 8 00	C-3 %	0.	4-5	4-5	4-5	0.0%	Nerri Addier	40.0%]
9				2020 2020 2020			an an An An An An	9.0-9.5m; 12-11.6m; 12-12.5m; 12.6-12.7m; 13-13.5m; 14-14.6m; 16-16.5m; 16.6-16.7m; 17-17.8m;	9.00	C-4 :	CM-CL	4	3-4	. <u>5</u> -4	0.0% 0.0%	***			80.0%	
<u>10</u>				(******* *****************************	· · ·			19—19.7m. With a lot of brownish silty sand and gravelly clayey silt around GL=6.5=7.5m;30.7=11m.	10.00	<u> </u>	CM-CL	4-5	3-4	3-4	- 12-13-14 0-0%		en e			100.0%
11				27 77 72 27 77 72 27 77 72				11.6-12m; 12.8-13m;13.7-13.8m; 14.9-15m; 15.4-15.8m;18-19m. The crocks are straigh and croceiteally infiliant with	17.00	C-6	CL-0	4-5	4-5	3-4		an anan	in an	ennennen		
12				******* ******				clay/mineral powder.	12 00	<u> </u>	CM-CL	4-5	4-5	3-4	0.02		9 111111 11	91 <i>:-1111</i>		100.0%-
13			13.00 13.50	90 90 90° 90 90° 90° 90°	Core Lost				13.00	C-8/2	CM-CL	4-5	4-5	3-4	0.0%		11 1111111 1	60.0%		
14			14.00 14.50	জিলিলাগ অন্ত হা	Core Lost				14.00	C-9	CM-CL	4-5	4-5	3-4	nanan 0.07		an an an	60.0%		
15				10 D B B B B B B B B B B B B B B B B B B B					15.00	<u>C-10 %</u>	CM-CL	4-5	4-5	3-4	0.0%	xananti	en en en el	r 177.079		
<u>16</u>				තිනින් තුනුන්දු	- - - -				36.00	<u>C-313</u>	CL-D	4~5	4-5	3-4		*******	11 11/111 11	ennunn)	80.08	
17				10 10 10 10 10 10 10 10 10					17 00	C-12	CL-D	4-5	4-5	3-4			internation de	אנגעייענאא 70.1		
18									18.00	C-13	CM-CL	4~5	4-5	3-4		, 	11444444 1	me HHH		
19	0710			222 222 222					19.00	C-14	CL-C	4-5 }	4-5	3-4	++++++++++ 0.0%	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 13/1911/ 14	91411991 1		
20	-27.52	20.00	13.90	જેને જેને જેને	END O	F ORILLING-			20.00	C-15 🕅	ÇM-CL	4-5	4-5	J-4			1999-7997	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	laeraerree	
22																				
23														Ì						⊦ ⊢
24						**** 1 4 4 4 4								ľ	·					
25														ŀ		<u> </u>				
26														ľ						
27														ŀ						
28														ŀ						
29											ĺ			ŀ						
30														-						
31														-						
			<u> </u>					PT. PONDASI KIS	SOCON	RA'	YA	,	· · · ·					P	aσe	

Figure 2-1-25 "Drilling Log (No. BH-2), Bojonegara" B-78

						H	IG		DRIL	LIN	IG		<u>L</u> ()(ار بر		 I	Rema	rks			
	<u>Proje</u>	<u>ct No.</u>		406		$- \frac{Pr}{0}$	oject Sol b (Proposed Bojo	nvestigation negara Sea	& Marine Survey Part	<u>Type o</u>	f Drill	ing	Rolary I	(Coring)			0 : 0 P - 5	oring Tandard F	Penetratio	a Test		
	Water	Table	er di	H-3 (PAGE	1 07 }	– . – m. Ele	vation		1 m.	<u>Date</u> Driller	<u></u>	19 Oct. 20 (Saleh/He	102 mu)				R - R W . W	ock Mass leathering	Classific Grade	ation		
				a			1		<u>s</u>		Sam	nling				nda	rd H	Penet	ratio	n Te	st	
	E	in n	æ	n i s		Soil		Densit	Remai		oum	l l			& (Core	Reco	very ((CR)	**)		
	le in	vation	th in	ckness	end	jo a	Inc	ative Consis	leral		epth 1 m.	mple No.	Value \$/30cm	Blo Each	wis P 10	er cm		10 10	20 20	Valu 30	1e 40	50
	Sca	Ele	Dep	Thic	Les	Typ	Cole	Rela	Gen		0 3	å	N- Blows	10cm	lûcm	10cm		🎆 RQ	D	nes CR		
Ā		-2.75	0.65	0.65		Silly Sand	Gray to Dark Gray	Very Loose	Sand is fine to coar Poorly cemented.	se groined.								20	40	60	80	100%
						Sandy Silt	Gray	Very Soft	With shell and coral Fine to coarse size.	fragments. Low	1.50	L								<u> </u>		
	2				500		 		plasticity. Mottled wi whitish dots.	in Alternation	2.00	P-13	0/50	0/50		-	ELF P	EN <u>E</u> T <u>RATI</u> O	<u>DN_BY_HA</u>	MMER		
	3				D.						350						- — —			+		
	4				x x 11 x x 39						4.00	P-2 \$	0/50	0/50		-	<u>elf pi</u>	NET <u>RATIO</u>	N <u>8Y</u> HA	<u>NIMER _</u>		
	5				19 X 19 19 X 19			1997) 1 1			5.50						 					
	6							· · · ·			6.00	P-3	1/50	1/50			•					
	7	-9.60	7.50	<i>6.85</i>	x x ::: x ::: x :::												-+- 		:	 		
	8				x x x x	Clayey Silt	Bark Gray	Medium Stiff	With shell and coral Fine to coarse size. Occasionally trace of	fragments organic	- 7.65 - 7.95	P-4 🕄	5	2	2	2	•	ļ				
	9				\$ *				silt (block) mottled w whilish dots.	ath'							-					
	10	- 12.10	10.00	2.50	××-	Sity Clay	Yellowish Gray	Stiff	Notiled with brown, 1	With shell	9.65 9.95	<u>2-5 8</u>	5	2	2	2	•	<u> </u>		:		
	11				5 4 V			• •	and coral tragments. plasticity	High	11.15	2-6 8	11	3	4	4		:				
	12	-14,10	32.00	2.00	××××	Sandy Sill	Yeliowish Groy	Very Stiff	Moitle with brown, Hi	gh sloy	17.40				1							
	<u>13</u>				XXX				content		12.65 12.95	₽-7®	48	.11	17	20		 -				
	14	-15.85	13.75	1.75	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Breccia	Brownist: Groy	Hard	Highly to completely. With silf and sand as	wesihered molifiz.	13.95									er (some for the dest		
	15				****** *****				With some grovels, or andesite and coral for Weakly cemented, 17.	obble of agments D To	15.50	C-1	01-0 50.00	4	-4.	5-4 (0.0%	50 BLOW	5/10cm			100.07
	<u>16</u>				2200 5000 7000				17.06m.	et an et	15.60	<u> </u>	ардин Си-С	4	-4	- <u>-</u>).07				80.07	
	17				2223 2223						16.50	C-3	CM-CL	4-5 3	-4	3-4	11111111).0% ::::::::::::::::::::::::::::::::::::	39/1031-11 1011111-11	1 44014914 1944014914	nnann Munnun	ennenne ennenne	100.0%
	18				9999 99999 99999	-					18.00 -	<u>C-4</u>	CM-CL	4-5 3	-4	3-4).0% ////////		numun		ennenne	100.0%
	19				222 222						19.00	<u>c-5</u>	CM-CL	4-5 3	-4	3-4).07 N UMM N		ununun	numu		100.0%
	20	-22.10	20.00	6.25	90907 90907		5.0011110				20.00	C-6	CL-D	4-5 3	-4	5-4	1.0% ייינגייגניי	20022792	nanana	aranaan		100.0%
	21					-14U U	- UNICLING-		م میں میں المحمد کی		 . }					F						
	22 -															_						
	23															-						
	24															-						
	25															-						-
	26					-					· .					-			+	· ,		
	27													A	-	-			+	·		
	28															ŀ						
ĺ	29															-				_ _		
	30								ť	a a se						-						
L	31							<u> </u>														
								Ne I	PT. PONDA	SI KIS	OCON	RAY	ΎΑ							Pa	age.	

Figure 2-1-27 "Drilling Log (No. BH-3), Bojonegara" B-80

Sandy silt (from 0.65 m depth, -2.75 m from LLWS) 0 - 5 m

Sandy silt (from 2.0 m depth, -9.12 m from LLWS)

Clayey silt (from 7.5 m depth, -9.60 m from LLWS) 5 - 10 m

Silty clay (from 10.0 m depth, -14.10 m from LLWS)

Sandy silt ((from 12.00 m, -14.10 m from LLWS) 10 ~ 15 m

Breccia (from 13.75 m, -15.85 m from LLWS)

15 - 20 m

Borehole	Depth	Elevation	True of toot	Strength ((MN/m2)	Domody
No.	(m)	(m from LWS)	Type of lest	Compressive	Tensile	Nellialk
BH-1	12.13 to 12.19	-18.62 to -18.68	PL Test	105.19		
	14.80 to 14.85	-12.29 to -21.34	PL Test	46.37		
	17.65 to 17.75	-24.14 to -24.24	UC Test	44.12		Shear along joint plane
	17.85 to 17.90	-24.34 to -24.39	BR Test		7.58	
	19.50 to 19.0	-25.99 to -26.09	BR Test		5.18	
	20.78 to 20.86	-27.27 to -27.35	BR Test		5.21	
	20.86 to 20.91	-27.35 to -27.40	BR Test		3.61	
	23.88 to 23.94	-30.37 to -30.43	BR Test		3.04	
	23.94 to 24.00	-30.43 to -30.49	BR Test		4.04	
	26.65 to 26.80	-33.14 to -33.29	UC Test	119.38		
	27.50 to 27.65	-33.99 to -34.14	BR Test		2.91	
	28.25 to 28.40	-34.74 to -34.89	UC Test	139.17		
	28.50 to 28.70	-34.99 to -35.19	UC Test	112.76		
	29.65 to 29.72	-36.14 to -36.21	BR Test		3.97	
	29.72 to 29.80	-36.21 to -36.29	BR Test		9.98	
BH-2	6.13 to 6.24	-13.25 to -13.36	PL Test	43.4		
	8.55 to 8.58	-15.67 to -15.70	PL Test	57.07		
	11.40 to 11.45	-18.52 to -18.57	PL Test	96.03		
	12.50 to 12.55	-19.62 to -19.67	PL Test	60.02		
	14.50 to 14.58	-21.62 to -21.70	PL Test	48.26		
	15.25 to 15.33	-22.37 to -22.45	BR Test		7.44	
	16.45 to 16.50	-23.57 to -23.62	BR Test		2.77	
BH-3	14.00 to 14.23	-21.50 to -21.73	PL Test	3.69		
	17.10 to 17.15	-24.60 to -24.65	PL Test	29.9		

a"
negar
ojo
Ã
uples.
San
Ore
\mathbf{O}
tock
14
of
tics
isi
er
ct
ra
Ja
Ū
ų
ađ
Ľ,
Ĕ
Š
∞ ∞
÷
÷
ų
e
[d]
Γ_{a}
•

Unconfined Compression Test Point Load Test razilian Test

UC Test : PL Test : BR Test :

Note:

00000	verage						0.0	0.0	0.0	8.7	12.5	33.6	15.0	5.3	15.6	2.6	0.0	1.1	13.8	8.6	10.0	13.6	10.7	6.7	17.3	0.0	2.4	0.0	0.0	18.3	5.0	22.3	
e , v	r r																															. 4	
Sample	numbe.						-	-	1	3	9	5	4	3	5	5	6	10	10	6	L	5	7	L	9	4	5	5	5	3	ŝ	ŝ	c
T_{otol}	1 0141						0.0	0.0	0.0	26.0	75.0	168.0	60.0	16.0	78.0	13.0	0.0	11.0	138.0	77.0	70.0	68.0	75.0	47.0	104.0	0.0	12.0	0.0	0.0	55.0	15.0	67.0	0
Data	BH-3																						0.0	0.0	0.0	0.0	0.0	0.0					
soring	BH-2														15.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
New E	BH-1																	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	K-10																0.0	0.0															
	K-8						0.0	0.0	0.0	0.0	0.0																						
	K-6										0.0	0.0																					
	K-5										0.0																						
	K-4																						27.5	23.0									
	K-3																		0.0	0.0													
	K-2																0.0	0.0	0.0	0.0													
	K-1																	0.0	0.0	0.0	0.0												
	GA-11									0.0																							
	GA-5												0.0	0.0	0.0																		
g Data	GA-3									26.0	75.0	0.66																					
Borin	GA-2											69.0																					
xisting	GA-1										0.0	0.0	0.0																				
ш	B-10																					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
	B-9																	0.0	0.0	0.0	50.0												
	B-8																						26.5	24.0	66.5								
	B-7															0.0	0.0	0.0	30.0	23.0	0.0	0.0											
	B-6												60.0	16.0	63.0	13.0	0.0	11.0	40.0														
	B-5										0.0	0.0	0.0	0.0	0.0	0.0	0.0																
	B-4														0.0	0.0	0.0	0.0	13.0	0.0	0.0												
	B-3									<u> </u>			<u> </u>		<u> </u>		0.0	0.0	55.0	54.0	20.0	68.0	21.0	0.0	37.5		<u> </u>		<u> </u>				
	B-2																												0.0	55.0	15.0	67.0	
	B-1																										12.0	0.0	0.0	0.0	0.0	0.0	00
Boring	Elevation	0-1 m	1-2 m	2-3 m	3-4 m	4-5 m	5-6 m	6-7 m	7-8 m	8-9 m	9-10 m	10-11 m	11-12 m	12-13 m	13-14 m	14-15 m	15-16 m	16-17 m	17-18 m	18-19 m	19-20 m	20-21 m	21-22 m	22-23 m	23-24 m	24-25 m	25-26 m	26-27 m	27-28 m	28-29 m	29-30 m	30-31 m	21 27 m
																																	L

=
ara
leg
joi
$\mathbf{B}_{\mathbf{O}}$
es,
plq
an
k S
00
fR
s 0
Ð
Ř
0
1-2
4
ure
03 Ti
н

	Rock quality	Very poor	Poor	Fair	Good	Excellent
0.0	RQD	0 - 25	25 - 50	50 - 75	75 - 90	90 - 100

Note: Bore holes at B-6, GA-2 and GA-3 are onshore boring. shows more than 50 % of RQD.

Rock grade	Description
A	The rock mass is very fresh and the rock forming minerals and grains undergo neither weathering or alteration. Joints are extremely tight and their surfaces have no visible sign of weathering. Sound by hammer blow is clear.
В	The rock mass is solid. There is no opening joint and crack (even of 1mm). But, rock forming minerals and grains undergo a little weathering and alteration in partially. Sound by hammer blow is clear.
С	The rock mass is relatively solid. The rock forming minerals and grains undergo weathering except for quartz. The rock is contaminated by limonite etc. The cohesion of joints and cracks is slightly decreased and rock blocks are separated by fine hammer blow along joints. Clay minerals remain on the separation surface. Sound by hammer blow is a little dim.
СМ	The rock mass is somewhat soft. The rock forming minerals and grains are somewhat softened by weathering, except for quartz. The cohesion of joints and cracks is somewhat decreased and rock blocks are separated by ordinary hammer blow along the joints. Clay minerals remain in the separation surface. Sound by hammer blow is somewhat dim.
CL	The rock mass is soil, The rock forming minerals and grains are softened by weathering. The cohesion of joints and crack is decreased and rock blocks are separated by hammer blow along the joints. Clay materials remain on the separation surface. Sound by hammer blow is dim.
D	The rock mass is remarkably soil. The rock forming minerals and grains are softened by weathering. The cohesion of joints and crack is almost absent. The rock mass collapses by light hammer blow. Clay materials remain on the separation surface. Sound by hammer is remarkably dim.

Table 2-1-21 "Rock Mass Classification by the CRIEPI"

Rock	Deformability	Modulus of Elasticity	Cohesion	Internal Friction	Seismic Velocity
Grade	(kg/cm2)	(kg/cm2)	(kg/cm2)	Angle (")	(km/sec)
A - B	over 50,000	over 80,000	over 40	65 - 55	over 3.7
CH	50,000 - 20,000	80,000 - 40,000	40 - 20	55 - 40	3.7 - 3.0
СМ	20,000 - 5,000	40,000 - 15,000	20 - 10	45 - 30	3.0 - 1.5
CL - D	less than 5,000	less than 15,000	less than 10	38 - 15	less than 1.5

Table 2-1-22 "Physical Property and CRIEPI Classification"

Figure 2-1-29 "Results of P-Wave Logging Survey, Bojonegara"

Rock	Frequency	-	1	Primary	Wave Veloci	ty (km/sec) 4	5	6
Clastia Poalr	40							
Clastic Rock	40							
Tertiary Period	20							
			[i			
	40							
Mesozoic Era	20						 	
				· · · · · · · · · · · · · · · · · · ·				
	40	_						
Paleozoic Era	20	_						
		I į]			
Igneous Rock	40							
Andesite	20	_						
		_						
	40	_						
Porphyrite	20	-					·	
	40	-					<u> </u>	
	20	_						
Granite				5				
Metamorphic Rock	40	_						
	20	-		1				
				(

So	0		Dredgina	g Ship T	уре		Note
Classification	Condition		2				
	Soft	1		1			N = 10 or less
-	Midium	G					N = 10 ~ 20
Soil -	Hard		······································	P			N = 20 ~ 30
1	Very hard	ŧ	‡ D		¢		N = 30 or more
Soil with	Soft	G	!				N = Approx. 30 or less
Gravel	Hard		Đ	_1	1		N = Approx. 30 or more
	Soft				с	В	Available by Dipper Ship
Rock	Hard		.				Not available by Dipper Ship

Table 2-1-25 "Soil Type and Compatible Dredging Ship"

Figure 2-1-35 "Workability of Rock (after Franklin et al., 1971)

Figure 2-1-34 "Workability of Rock (after Muir Wood, 1972)

Figure 2-1-36 "Strength Diagram for Jointed Rock Masses (after Bieniawski, 1974)"

Borehole	Seabed	Rock surface	Dredging Thickness		Dredg	ing in Volcanic R	cock up to -15mLWS
No.	Elevation	Elevation	in Alluvial Soil.	Thickness	ROD	SPT	Nature of Rock
	(mLWS)	(mLWS)	(m)	(m)	(%)	N-Value	According to the Soil report
BH-1	-6.49	-13.99	7.50	1.01	0	60	Clay, silt, sand with andesite fragments
BH-2	-7.12	-13.22	6.10	1.78	0 - 15	Rebound	Clay, silt, sand with andesite fragments
BH-3	-7.50	-21.25	13.75	No rock	-	-	-
A1	-6.75	-7.75	1.00	7.25	Not known	Rebound	Clayey silt with andesite fragments*
A2	-6.25	-11.25	5.00	3.75	Not known	Rebound	Clayey silt with andesite fragments*
A3	-7.10	-11.60	4.50	3.40	Not known	Rebound	Clayey silt with andesite fragments*
A4	-5.75	-13.75	8.00	1.25	Not known	44	Clayey silt with andesite fragments
A5	-3.00	-8.00	5.00	7.00	Not known	Rebound	Clayey silt with andesite fragments*
A6	-1.50	-14.50	13.00	0.50	Not known	28	Clayey silt with andesite fragments
A7	-1.75	-8.75	7.00	6.25	Not known	30 - 50	Clayey silt with andesite fragments
A8	-3.50	-13.00	9.50	2.00	Not known	25 - Rebound	Clayev silt with andesite fragments*
A9	-3.75	-11.75	8.00	3.25	Not known	40 - 50	Clayev silt with andesite fragments*
A10	-6.20	-11.20	5.00	3.80	Not known	40 - Rebound	Clayev silt with andesite fragments*
A11	-3.00	-15.00	12.00	No rock	Not known	27	Clayev silt with andesite fragments*
A12	-0.25	-14.25	14.00	0.75	Not known	Rebound	Clayey silt with andesite fragments
A13	-6.90	-14.40	7.50	0.60	Not known	30	Clayey silt with andesite fragments
A14	-7.40	-15.90	8.50	No rock	-	-	-
A15	-8.00	-18.00	10.00	No rock	-	-	-
B1	-8.94	-25.94	17.00	No rock	-	_	-
B2	-10.33	-27.33	17.00	No rock	-	-	_
B3	-4.32	-14.92	10.60	No rock	-	-	_
B4	-0.67	-12.47	11.80	2.53	0	50 - Rebound	Very dense volcanic rock
B5	-0.02	-9.17	9.15	5.83	0	-	Very dense volcanic rock
B6	-0.03	-10.53	10.50	4.47	15 - 60	Rebound	Very dense volcanic rock
B7	-0.43	-13.93	13 50	1.07	0	50	Very dense volcanic rock
B8	-5.02	-21 52	16.50	No rock	-	-	-
B9	-4.52	-15.52	11.00	No rock	_	-	-
B10	-1.02	-20.12	19.10	No rock	-	_	-
GA4	1.85	-	16.85	No rock	-	-	-
GA5	-4.07	-11.57	7.50	3.43	0	-	Highly to slightly weathered basalt
GA6	-6.26	-16.58	10.32	No rock	-	-	-
GA7	-5.27	-15.77	10.50	No rock	-	-	-
GA8	-6.27	_	8.73	No rock	_	_	-
GA9	-6.27	_	8.73	No rock	-	-	-
GA10	1.39	_	16.39	No rock	-	-	-
GA12	-1.47	_	>13.53	?	?	-	-
GA13	-2.54	-	12.46	No rock	-	-	-
GA14	-3.54	_	11.46	No rock	-	-	-
GA15	-3.14	_	11.86	No rock	_	_	-
GA15A	-3.08	-14.08	11.00	0.92	0	50	Highly weathered Basalt
GA16	-5.37	-15.77	10.40	No rock	0	50	Highly weathered Basalt
GA17	-5.30	-	9.70	No rock	_	-	-
GA18	-5.58	-10.16	4.58	4.85	Not known	-	Fractured basalt
GA28	-5.13	-	9.88	No rock	-	-	_
GA29	-7.30	-	7.70	No rock	-	-	-
K1	1.02	-16.48	17.50	No rock	-	_	-
K2	-2.46	-12.96	10.50	2.05	0	_	Very dense volcanic rock
K3	-3.95	-17.45	13.50	No rock	-	-	-
K4	-4.12	-21.72	17.60	No rock	-	_	-
K10	1.08	-14.72	15.80	No rock	-	-	-
Summary			1.00 to 19 m	0.5 to 7.5m	Generally < 20	25 to Rebound	

Table 2-1-24 "Anticipated Materials to be Dredged up to -15 m (LLWS)"

Note: * Intercalation with andesite sheeting or layer

2.2 Topography

The candidate site of Bojonegara for the development of a complementary port of Tanjung Priok Port is located north of the Town of Bojonegara and belongs to Desa Pulosoampel, Kecamatan Pulosoampel, Kabupaten Serang, Banten Province.

The site is close to deep water on the west coast of Banten Bay and adjacent to Sunda Strait. It is situated at about 16 km north of the City of Cilegon and 100 km west of Jakarta.

The land use in the area is generally industrial. There are small heavy industries adjacent to the development site and a major Suralaya power station is located at about 10 km west of the site.

The general topography of the area consists of a narrow band of low-laying coastal flats and steeply rising foothills to the west and south.

The coastal flats are currently cultivated with a mixture of paddy field farming and dry crops such as corn and occasional grove of banana plants.

Some areas adjacent to the shoreline are not cultivated and have either a cover of low scrubby bushed or are bare mud flats. The shoreline is covered by dead coral reef and appears stable without erosion and/or accretion.

At approximately 500 m offshore, there are two small and low islands that cover areas of 400 m \times 150 m and 250 m \times 100 m, respectively. These islands have a cover of low scrubby bush.

Figure 2-2-1 "Project Site, Bojonegara"

Figure 2-2-2 "Project Site, Bojonegara"

Figure 2-2-3 "Project Site, Bojonegra"

2.3 Seabed Depth Condition

The depth contour lines that represent the depths of seabed at Bojonegara run nearly in parallel with the coastline, but the slope of the seabed is not regular.

Figure 2-3-1 "Longitudinal Water Depth Profile (A-A' Section), Bojonegara" and Figure 2-3-2 "Longitudinal Water Depth Profile (B-B' Section), Bojonegara" show the cross-sectional diagrams of the seabed terrain that were prepared from the results of sounding survey.

Figure 2-3-3 "Location of Longitudinal Water Depth Profile at Bojonegara" shows the location of the profile of seabed terrain.

These profiles show the characteristics of the seabed terrain at Bojonegara as mentioned below.

Seabed Terrain around Pulau Kali

- 1) The seabed slopes on the east side of the coastline at Bojonegara and on the west side of Pulau Kali are relatively steep and the water depth is found at -5m at a distance of about 100 m from the coastline.
- 2) The seabed on the east side of Pulau Kali is abruptly deep and the water depth at the distance of about 100 m from the coastline on the east side of Pulau Kali is so deep at -15m.
- 3) The slope of the seabed that is deeper than that area is very gentle, and the water depth at the distance of about 1900 m from the coastline of Bojonegara is -20m.

Seabed Terrain on the south side of Pulau Kali

- 1) The slope in the vicinity of the coastline of Bojonegara is relatively steep and the water depth at the distance of about 50 m from the coastline is about -5 m.
- 2) The slope of seabed over the distances of about 50 m to 750 m from the coastline is relatively gentle and the depth is from -5 m to -9 m.
- 3) At the distances of about 750 m to 1100 m from the coastline, the slope of seabed is lightly steep and the depth varies from -9 m to -15 m.
- 4) At the distance of more than 1100 m from the coastline, the slope of seabed is relatively gentle again and the water depth at the distance of about 1700 m from the coastline is -20 m.

2.4 Climate

As there is no meteorological observatory station in the vicinity of Bojonegara, no climatic data could be acquired, but it is presumed that the climate in this area does not change from that found in Jakarta City.

2.5 Tide

According to the tidal data published by Dinas Hidro-Oseanografi, the nearest point from Bojonegara is Suralaya.

IPC 2 made the tidal observation at Bojonegara in 1993 and obtained the harmonic constant. The tidal data are shown in Table 2-5-1 "Tide and the Principal Harmonic Components at Suralaya" and Table 2-5-2 "Tide and the Principal Harmonic Components at Bojonegara".

				- I			r · · ·	,		
Components	M ₂	S_2	N_2	K ₂	K ₁	O ₁	P_1	M_4	MS_4	Z_0
Amplitude (cm)	12	10	2	3	12	6	1	1	1	60

Source: Tide Tables 2002, Dinas Hidro-Oseanografi

Ratio of principal harmonic constants

 $(K_1 + O_1) / (M_2 + S_2) = 0.82$ Mixed, dominant semidiurnal type

Components	M ₂	S_2	N_2	K ₂	K ₁	O ₁	P ₁	M_4	MS_4	Z ₀
Amplitude (cm)	21.1	11.1	3.9	3.0	9.4	3.7	5	0.7	0.4	58.3

Source: IPC-2 report for Pelabuhan Ciwadan and Pelabuhan Umum Bojonegara, December 1993, PT. Sarana

Ratio of principal harmonic constants

 $(K_1 + O_1) / (M_2 + S_2) = 0.41$ Mixed, dominant semidiurnal type

The relation between tidal range, bench mark which was used for 1:10,000 scale digital topographic mapping, and sounding and topographic survey is indicated in Figure 2.5.1 "Relation between Vertical Reference Points for Natural Condition Survey and Tide, Bojonegara".

Nearly Highest High Water = (MS2 + S2 + K1 + O1) above MSL

= 12 + 10 + 12 + 6 = 40 cm above MSL

2.6 Wave

The wave frequency of offshore Bojonegara by the wave hindcast is mentioned in Table 2.6.1 "Wave Characteristics off-Bojonegara by Wave Hindcast (1997 - 2001).

The wave condition is generally calm in the western portion of Jawa Sea and the cumulative frequency of wave height of less than 0.5 m is about 87 %.

Westerly incident wave are most frequent in the table with about 11 % frequency due to the wind of northwest monsoon and transitional season. N ~ NNE ~ NE incident wave are also frequent accounting for about 14 % of the frequency.

Table 2-6-1 "Wave	Characteristics	off-Bojonegara	by Wave	Hindcast	(1997 -	2001)
		· · · · · · · · · · · · · · · · · · ·			` ·	/

Combined Frequenc	y of Wave	Height an	nd Period						(Uni	t: meter an	d second)
Period Height	0	2	3	4	5	6	7	8	8	Total	Cumu- lative
Calm										68.55	68.55
0 H < 0.25	5.36									5.36	73.92
0.25 H < 0.5	5.06	8.03								13.09	87.01
0.5 H < 0.75		5.15	2.15							7.30	94.31
0.74 H < 1.0		0.13	3.09	0.05						3.27	97.58
1.0 H < 1.25			1.07	0.32						1.39	98.97
1.25 H < 1.5			0.08	0.51	0.02					0.62	99.58
1.5 H < 1.75			0.00	0.19	0.03					0.22	99.80
1.75 H < 2.0			0.00	0.07	0.07					0.14	99.95
2.0 H < 2.5				0.04	0.01					0.05	100.00
2.5 H < 3.0											
3.0 H < 3.5											
3.5 H < 4.0											
4.0 H											
Total	10.42	13.31	6.39	1.18	0.13	0.00	0.00	0.00	0.00	100.00	
Combined Frequenc	y of Wave	Height an	d Direction	n						(Ur	nit: meter)
Period											Cumu-

Period Height	W	WNW	NW	NNW	Ν	NNE	NE	ENE	Е	Total	Cumu- lative
Calm										68.55	68.55
0 H < 0.25	2.15	0.33	0.31	0.39	0.54	0.54	0.46	0.28	0.37	5.36	73.92
0.25 H < 0.5	4.18	0.89	0.92	1.15	1.30	1.49	1.67	0.85	0.64	13.09	87.01
0.5 H < 0.75	2.52	0.40	0.46	0.52	0.43	0.72	1.11	0.81	0.33	7.30	94.31
0.74 H < 1.0	1.30	0.24	0.17	0.14	0.09	0.24	0.51	0.44	0.15	3.27	97.58
1.0 H < 1.25	0.42	0.20	0.07	0.05	0.02	0.10	0.24	0.20	0.08	1.39	98.97
1.25 H < 1.5	0.17	0.13	0.02	0.03	0.01	0.03	0.08	0.12	0.03	0.62	99.58
1.5 H < 1.75	0.05	0.04	0.01	0.01	0.01	0.01	0.04	0.05	0.01	0.22	99.80
1.75 H < 2.0	0.01	0.03	0.01	0.01	0.00	0.01	0.03	0.04	0.00	0.14	99.95
2.0 H < 2.5	0.02	0.00					0.00	0.02	0.00	0.05	100.00
2.5 H < 3.0											
3.0 H < 3.5											
3.5 H < 4.0											
4.0 H											
Total	10.82	2.25	1.97	2.28	2.41	3.14	4.14	2.80	1.62	100.00	

Combined Frequency	Combined Frequency of Wave Period and Direction (Unit: second)										t: second)
Period Height	W	WNW	NW	NNW	Ν	NNE	NE	ENE	Е	Total	Cumu- lative
Calm										68.55	68.55
0 H < 2.0	3.72	0.68	0.68	0.83	1.07	1.09	1.08	0.60	0.67	10.43	78.98
2.0 H < 3.0	4.16	0.84	0.91	1.10	1.12	1.47	1.96	1.17	0.59	13.31	92.29
3.0 H < 4.0	2.69	0.50	0.33	0.30	0.18	0.49	0.88	0.75	0.28	6.39	98.68
4.0 H < 5.0	0.24	0.24	0.05	0.05	0.02	0.08	0.21	0.22	0.08	1.19	99.87
5.0 H < 6.0				0.01	0.00	0.01	0.03	0.06	0.01	0.13	100
6.0 H < 7.0											
7.0 H < 8.0											
8.0 H < 9.0											
9.0 H											
Total	10.82	2.25	1.97	2.29	2.41	3.14	4.14	2.81	1.62	100.00	

2.7 Tidal Stream

The direction of tidal stream at offshore of the proposed site of Bojonegara is generally parallel to the coastal line with a maximum velocity of 0.5 m/sec during spring tide.

2.8 Maintenance Dredging

At present, Bojonegara has no port facilities. Therefore, no maintenance dredging has been executed up to now.

2.9 Estimation of Seabed Variation

The seabed variation was estimated from two types of sounding data. The mesh data of the water depth in 40 m steps was obtained using a sounding survey chart and the water depths at the same point in two different time points were compared to calculate the seabed variation.

However, the seabed variation was obtained as the average value of all the meshes of 200 square meter per mesh (a maximum of 25 water depth data sets) in order to clear the observation errors and the reading errors of the water depths.

The estimated seabed variation is shown in Figure 2-9-1 "Estimation of Yearly Seabed Variation at Bojonegara". From this result, the following points can be pointed out:

- 1) The seabed of the basins and navigational channel at the planned port site at Bojonegara rises for nearly 10 cm to 20 cm per year.
- 2) The rise of the seabed in the vicinity of Tg. Awuran is high compared with other areas. This is understandable from the fact that the sand bank extends in the west direction from Tg. Awuran.
- 3) According to the hearing results from the villagers near the project site, no significant change of coastal line has not been occurred during past several decade years at project site of Bojonegara.

