12-C. Phased Development Plan

586. Based on the master plans and short-term development projects for Tanjung Priok and Bojonegara new port, the study team formulates phased development plans as shown in Figure 12-C-1 to Figure 12-C-2 considering cost effective process as well as easiness of construction work. The major points are as follows:

Tanjung Priok

$>$ Firstly, widening of the main channel and turning basin, development of an automobile terminal and improving the road situation in/around the port will be focused on to increase port capacity.
$>$ Gradually, re-development of the existing land-use will be implemented followed by the development of East-Ancol. When starting the development of East-Ancol, new access channel (one-way) will be developed from the existing main channel by cutting a part of the west breakwater in order to reduce the dredging cost and development cost of a new breakwater.
$>$ Development area in East-Ancol will be gradually expanded and the access channel for MTI terminal will be widened in accordance with the relocation of the military base.
$>$ In the long term, development will be focused on the east area, including the relocation of PMB berth to offshore together with consolidation of international container terminal, expansion of some special wharves, and opening of the east channel for one-way traffic.
$>$ East side development will be followed by development of a new area by reclamation. Consolidated dock yard, newly developed special wharves, and new Kalibaru port will be established here.

Bojonegara

$>$ Firstly, development of container terminal and multi purpose terminal will be carried out in the area sheltered by two small offshore islands.
$>$ Ro-Ro terminal and other special berths will be developed when needed.
$>$ In accordance with the increase of container demand, the container terminal will be gradually expanded along the coast line to the south-east direction together with the development of a breakwater.
$>$ In the long term, cargo berths will be developed making use of two small offshore islands.

Figure 12-C-1 Phased Development Plan (Tanjung Priok)
Figure 12-C-2 Phased Development Plan (Bojonegara)

12-D. Selection of Priority Projects for Feasibility Study

587. Based on the evaluation of the projects in 12-A as well as phased development concept, the study team selects the following projects for feasibility study putting priority on urgency and viability of the project. (\checkmark means the selected component)

Tanjung Priok

Project Component	FS Project	Proposed Year of Operation	Remarks
Widening the Main Channel and Turing Basin	\checkmark	$2006 \sim$	Priority project in order to increase the port capacity. Implemented by phased construction
Widening the channel and basin to the Nusantara area including MTI	-	2012	Need further examination through coordination among related parties such as military
Car Dedicated Terminal Development	\checkmark	2006	Priority project implemented immediately in order to accommodate the urgent need of automobile export/import in AFTA
Inter-island Container Handling Improvement	\checkmark	$2010 \sim$	Pier III reorganization is selected. (MTI expansion is pending because of the necessity of coordination with the related entities.)
Bulk Cargo Handling Improvement	-	$2010 \sim$	Need further examination through coordination among related parties
Passenger Terminal Relocation	\checkmark	2010	A new passenger terminal is developed in Ancol development area
Inland Yard Development	-	$2006 \sim$	Inland yard development needs further examination.
Land-use re-development in the urban area adjacent to the port	-	$2010 \sim$	Requires further examination through coordination among related parties
Ancol Development (New the Passenger Terminal, Multi Purpose Terminal and Access Road)	\checkmark	$2010 \sim$	Priority project in order to re-develop the current complicated land use.
Port Inner Road Improvement	\checkmark	$2006 \sim$	Should be implemented accompanied with the increase of port capacity.
Eastern Port Access Highway Development Linking with JORR	-	2008	Should be examined in the context of urban road network development. Responsible body will come from within the road sector.

Bojonegara

Project Component	FS Project	Proposed Year of Operation	Remarks
Container Terminal Development	\checkmark	$2010 \sim$	Should be operated by 2010. Some additional equipment will be deployed in 2011.
Multi Purpose Terminal Development	\checkmark	2008	Should be operated by 2008
Ro-Ro Terminal Development	-	2012	Requires further examination
Breakwater, Channel and Basin Development	\checkmark	$2008 \sim$	Implemented by phased construction
Port Access Road Development	-	2008	Should be completed by 2008. Responsible body will come from within the road sector.

$\checkmark:$ selected component

CHAPTER-13. MANAGERIAL AND OPERATIONAL IMPROVEMENT

13-A. Administrative Status of the Focus Ports

13-A-1 National Port System

588. Recent Decree of the Minister of Communications has been issued regarding national port system. It defines and classifies national ports as shown in Table 13-A-1

Table 13-A-1 Concept of Port Classification

	Public Port	Special Port
Sea Port	- International Hub Port (Primary Trunk Port) - International Port (Secondary Trunk Port) - National Port (Tertiary Trunk Port) - Regional Port (Primary Feeder Port) - Local Port (Secondary Feeder Port)	- National /International Special Port - Regional Special Port - Local Special Port
Lake \& River Port	- Serving Inter Provincial Transport Serving Inter Municipality Transport within the Province Serving Transport within the Municipality	
Ferry Port	Trans Province /Inter State Ferry Port - Trans Municipality Ferry Port - Trans Ferry Port within Municipality	

589. In this decree, definition of national port system and obligation of the Minister as to carry out the promotion of port affairs encompassing the aspects of regulation, supervision and control over the activities of development, utilization and improvement of port to realize the system of national port affairs.
590. It states that the activities of regulation shall include the activities of policy making in the field of port affairs. The activities of supervision shall include a. monitoring and evaluation over the activities of port construction, operations and development; and b. corrective actions against the performance of the activities of port construction, operations and development. The activities of control shall include a. issue of directions and instructions in performing the port construction, operations and development; and b. giving guidance and information to the public on the rights and obligations of the community of users of services of port affairs.
591. It also states the objectives of above system as; it shall be a basis in the construction, utilization, development and operation plans of port all over Indonesia to build a port infrastructure network integratedly, in accord and harmoniously in order to compete and not to mutually disturb which is dynamic in nature; to create the efficiency of sea transportation nationally; to realize the provisions of services of port affairs according to rate of demand; and to realize the reliable and highly capable organization of port in the framework of supporting the national and regional development.
592. However, it does not state any criteria in the framework of supporting the national and regional development. This may be caused by the lack of inter-coordination between national/regional development policy plan and port development plan or may be lack of concrete physical national development plan to be adjusted with port development policy.
593. It also does not state in anywhere about the basic rules of administration and management of port such as managerial scheme for ports in the hand of central government and for the ports in the hand of local government about aspects other than delegation of management of local port and regional port in chapter VI of the said decree.
594. In the administration of the port affairs, funding scheme for the port development and financial management rule including port pricing and investment recovery is one of the most important issues as well as regal status of port management body.
595. There is no clear statement about port management body of the national ports in the said decree. It may be understood from other decree on IPCs that national ports shall be managed under corporate articles of IPCs as status quo and hence it may be understood that all the rights and obligations on ports of Tanjung Priok and Bojonegara are under IPCII including passenger terminal.

13-A-2 Status of the Focus Ports in the National Port Policy

596. Tanjung Priok/Bojonegara should be given the highest status in the national port development policy, not only in terms of status/hierarchy in the Decree of National Port System, i.e., International Hub Port securing transshipment of containers between domestic lines and international lines, but also in terms of national development since Tanjung Priok/Bojonegara are important to the nation's industrial and economic development.
597. International Hub Port is determined by paying attention to;

- the role as a international hub port serving the transshipment of national and international containers with the world class sea transportation service scale;
- the role as a mother port serving the national and international container transport of $2,500,000 \mathrm{TEUs}$ /year, or another equivalent transport.
- the role as a national and international container transport transshipment port with a service ranging from 3,000,000-3,500,000TEUs/year, or another equivalent transport;
- its location which is close to the international shipping lane at about 500 miles;
- the minimum depth of port of -12 mLWS ;
- the ownership of container terminal/dock with a minimum length of 350 m , 4 cranes and a container yard of 15 ha in extent;
- the distance from another hub international port of $500-1,000$ miles.

598. Considering the current performance on container cargo handling both in Tanjung Priok and Tanjung Perak, there is/will be no international container transshipment with more than $3,000,000 \mathrm{TEUs}$ /year usually performed by the international container hub port such as Singapore, Hong Kong and Colombo. Therefore the International Hub Port in the said decree should be regarded as hub port functioning transshipment of containers between domestic lines and international lines.
599. Apart from the current decree on system of national port affairs, It should be noted that investment priority criteria on port as well as criteria on the intense of involvement of national government in the administration and management of port in coordination with related national organizations such as custom offices, quarantine offices and responsible organizations for commerce and industry are more important to achieve the objectives mentioned in the said decree.
600. In the development of Tanjung Priok and Bojonegara, it is important to coordinate the industrial development of Central and West Java with the port development both from the view points of promoting foreign investment on the industrial development and easing the serious traffic jams in Jakarta including port.
601. Therefore the focus port of Tanjung Priok/Bojonegara should be given highest status in the national port development policy, not only in the meaning of status/hierarchy in the said decree but also in the meaning of national development considering the roles of Tg . Priok/Bojonegara which should play in the field of promotion of industrial development and economic sustainability of the nation.
602. The intensive involvement of national government, especially of Ministry of Communication, Ministry of Industry and Ministry of Finance (Customs Office) is a must to promote the development of the port.

13-B. MANAGEMENT AND OPERATION SCHEME FOR INTERNATIONAL CONTAINER TERMINAL

13-B-1 Recent Trends of Container Terminal Operation

1) World-wide Trend

603. In the past twenty years, $\mathrm{R} \& D$ efforts for automation and labor-saving in the field of container terminal operation have been remarkable, regardless terminal location, whether it is in advanced countries or advancing countries. Within a few years from now, we are to be surprised at the changes of both hardware and software of container terminals. As a matter of fact, China is aggressively promoting $R \& D$ activities for rationalization of terminal hardware to strengthen competing power of terminal.
604. Another example of the trend is a big dispute between ILWU (International Longshoremen and Warehouse Union) and PMA (Pacific Maritime Association : shipping lines and terminal operators) in November/December of last year which will be recorded in history. The main subject of dispute was an introduction of automation and labor-saving scheme and devices into terminal operation. The all US west coast ports from Seattle to San Diego were paralyzed for more than five weeks and finally caused Presidential intervention for 80 days cooling off period by Taft-Hartley Act. The dispute was finalized when a mutual agreement was reached to the effect that Union agree to PMA 's long term plan to introduce automation and labor-saving scheme on condition that PMA will pay substantial compensation to Union. The US West coast dock-workers declared on January 23, overwhelming support for a six-year contract with PMA.
605. The modernization of container terminal operation towards automation and labor-saving has been a strong wish for many years by all member companies of PMA. Now that an understanding is reached, many terminal operators in the west coast will start competing in automation and labor-saving program. In Europe, automation and labor-saving efforts have a longer history than in the US. In Japan, a heated competition for terminal automation was once
observed in 1980s but subdued in 1990s. But sooner or later , the trend will spread to every corner of container terminal industry

2) Contents of R\&D of Automation and Labor-saving Devices

606. R\&D efforts are observed in a various aspects of container terminal operation. The following are the topics of $\mathrm{R} \& D$ worth noticing:

a) Gantry Cranes

607. Improvement of gantry cranes is remarkable. It is in the final course of full automation of operation. Trolley speed, hoist speed, sway-stop devices, pattern recognition of container, container spotting speed, all these abilities of new cranes are more than surprising. Crane producers in the world are sending their newer products to the market every year. As results, a load to a crane operator for daily operation has dramatically reduced and it will not be a long time before number of gantry crane operator per shift per crane will become one in labor agreement with union. Currently, in most container terminals, except PSA, an agreed number of crane operator per shift per crane is two.
608. The meaning of the number of crane operator is not negligible. Nowadays, competition between terminal operators are fought through the number of handling containers per berth. Many cranes are deployed for one vessel operation. Thus a number of per shift per crane operator is crucial. For example, to handle 1,000 containers in 10 hours is a minimum requirement for world standard terminal. Assuming three gantry cranes are deployed for 10 hours (one shift and three hours), the number of crane operators needed are 12 men in case two operators are agreed with union, while 6 men in case of one operator.

b) RTG and other yard operation equipment

609. Automation of RTG is remarkable. regardless it is tire-mounted or rail mounted, an automated transfer from one location to another is now a reality. All crane manufacturers are at the final stage in realizing an automated operation of vertical movement. In some of the new terminal such as PSA and ECT, semi-automated RTG have been introduced. Divers onboard such RTG are not needed to drive for transferring, they just hoist/hang-down containers when RTG arrive at the computer designated spot. Again, the load to RTG operator is remarkably reduced.
610. On the other hand, study for automation or labor-saving of yard handling machine other than RTG, such as straddle carrier, top lifter, side loader and folk lift has not been advanced. Main reason for the poor result is that those machines are auxiliary and benefit of automation and labor-saving is limited. These handling equipment is used mainly for yard marshalling and has a possibility of becoming a week part of container terminal in the near future.

c) Automation of gates

611. Automated reading device of container number has been a long hoped dream of shipping lines, as well as terminal operators and all concerned companies in the container transportation industry. Various kinds of such devices have been introduced in many terminals and now used in daily operation. At almost all of advanced terminals, it is difficult to find gates of conventional type. They are not needed anymore and gone. Checking bridge is still there in some cases, but it will also fading away because video camera eyes are getting more keen than human eyes. Weighing scale is also automated thus all necessary information can be collected without man-power. In the very near future, only some security guards will be needed to watch
automated devices to function. Gate function will be incorporated in administration office function. The impact of this change will not be small.

d) Elimination of Tally-man, Checker

612. Tallying and container (cargo) checking are remains of conventional ship days. They are just like boiler men onboard electric locomotives. As a matter of fact, it is almost difficult to find out any damage on container from deck or any place under gantry crane, when containers are traversing in fairly fast speed. It is also non-sense to count numbers of containers, because a yard-operation-computer knows every detail of loading and unloading containers and when miss-operation, it will dispatch an alarm to all concerned without delay. If their functions are not re-defined and given new responsibility, there will be no need for terminal operator to include them in a manning scale of terminal operation.
613. At present, a terminal operation contract between an operator and a user generally has the operator's responsibility clause which contains tallying and checking as its responsibility. The responsibility of proving defects of operator, however, lies on user, thus, the stipulation of the part is meaningless and not used in usual cases. Many shipping lines are taking defensive measures as is in a self-insurance system. There is no cargo tracer nor answer back system for a tracer, a new cargo claim rules are being made among shipping world to meet the change in the containerization.

e) Automation of yard tractor with chassis

614. Automation of yard tractor is not independent from automation of gantry cranes or RTGs. They are studied as one set of automation. Sea-side or ship-side terminal operation consists of the following basic part of operation for discharging:

- Discharging from ship (by gantry crane)
- Putting container on chassis (by gantry crane)
- Transferring to a designated point in yard (by yard tractor)
- Hoisting container from chassis and hang-down container (RTG) (for loading operation, the sequence is contrary.)

615. In the above operation, it is no use just a gantry or RTG are automated, a circle movement of yard tractor with chassis is needed to be automated as a whole. Because all necessary information is controlled by a yard computer, the three elements, namely gantry crane, RTG and yard chassis are its slaves and need to follow a single order. In this sense, it is more difficult to automate each three element separately. Container terminal could be regarded as an automated warehouse and will be improved quickly towards such direction. In ECT of Rotterdam and PSA, R\&G efforts are still going on and the world won't be surprised if more automated container emerge.

f) Centralization of Monitoring of Temperature Controlled Containers

616. In many current container terminals, monitoring operation is being made open field in conventional manual system. Because a number of containers of this type is quickly increasing, this manual monitoring is getting harder and becoming burden to operation staff. Rationalization of monitoring is quickly developing and in many terminals, centralization of monitoring are being introduced. As results, a number of engineers for the job has drastically decreased.

3) Evaluation of Investment for Automation and Labor-saving

617. It is widely observed and received that the trend of automation and labor-saving is a non resistible in container terminal industry. Next question is whether it pays and why. Without having a clear answer to these questions, it will be dangerous to plan a container terminal following today' common sense of terminal planning especially setting up a manning scale for a new terminal.
618. Generally, an investment to automation or labor saving plan is evaluated by a number of labors reduced. As a standard in Japanese industry field, a saving of one labor in any process of production is said to be around Yen 50 million per year. This might be smaller than an actual savings because there are some opinion the figure should be more. Container terminal like a petrochemical plant is an equipment control factory. Basically it is very simple and does not need any complicated operation. It therefore fits an automated operation and once introduced, its economical merit is big. In the industry, it is said the merit of saving one labor justify Yen 100 million per year. Who calculate the amount still needs debate, but it is understandable that a heavy competition is expected among many terminals and only and final key for survival is a cost of operation.
619. Investment in machine equipment has a tendency that an initial cost is smaller than maintenance cost. The same tendency is more prominent in investment in human resources. Investment in facilities are repaid for a certain period, say 8,10 years according to repayment period rules and do not remain in books for a long time exceeding the regal period. On the other hand, office clerks or labors, once employed, they are to remain 10, 20 years or longer. It is difficult, however, to calculate the risk of this kind, but it must be bare in mind when new project is planned. It is advisable to count minimum Yen 100 million of economical effect when deciding investment amount for container terminal automation or labor saving system.

13-B-2 Managerial and Operational Improvement for JICT \& Koja Container Terminal

620. Containers are currently handled at three different terminals by three different operators, JICT, TPK Koja and conventional terminal operators including MTI. Container yards are located in and out the port because of the scarce yard space in the terminals. Hence, inefficient movement of containers and vessels together with troublesome custom clearance procedure cause complaints by the users.
621. JICT is operated under the concession scheme by the Joint stock company formed by IPCII and private companies and Koja is operated under joint operation system of IPCII and the private companies while container handling at the conventional terminal is operated by private companies including PT. MTI subsidized company of IPCII.
622. Terminal prices are fixed at higher level compared with other terminals by IPCII even though each terminal has a different operator and different productivity levels. Depending on the organization structure and assets owned by these different operators, operation cost may be quite different by operator. Price should be set in a competitive manner according to the operational skill and cost.
623. These three terminals are not linked systematically as to information and data interchange not only for the operation but also for customs clearance. Hence inefficient movement of containers seems to occur among different terminals.
624. The followings are some suggestions for managerial and operational improvement for JICT \& Koja container terminal.

1) Overcoming Excessive Manning Scale

a) JICT

625. JICT Employees : 1,113 workers including 51 senior managers/managers (as of the end of November 2002)
626. All laborers are guaranteed employees by the concession agreement between JICT and PC II, and also by the contract between JICT and the labor union. About 10 employees are retiring every year in line with the retirement stipulations agreed upon between the company and the union. JICT recruited about 40 new employees this March for the first time since the privatization of the terminal in 1999. The above figure is the latest as of the end October 2002. Approximately 70% (780 persons) of the 1,113 employees are working in operation. The number of workers per shift and per berth can be simply calculated as follows :

- 780 men $\div 3$ shifts $=260$ workers per shift
- 260 men $\div 7$ berths 37 workers per berth
- Non permanent (extra) Employees : about 300 men

627. In addition to JICT employed laborers, there is an extra labor force totaling about 300 persons to cope with the fluctuation in container volumes. On average, 30 men are temporarily employed each day for one shift and paid about RP 25,000 to 30,000 per head. Extra laborers are mainly truck drivers and yard/on board laborers. It is worth noting that these extra laborers are doing the same jobs as the permanent laborers. At other ports in the world, extra laborers are generally unskilled and deployed for simple manual works. The above calculated figure of 37 men per berth, therefore, needs to be amended to around 45 to 50 men per berth according to the terminal operational condition. Assuming that an average of two gantries are deployed to handle a standard size container ship, the number of laborers per gantry is around 23 to 25 .
628. These extra workers are hired through an agent called " Contract Co-operate ", PT. Koperagi Pegawai Maritim (KOPEMAR) at an order from each department head.

b) Koja

629. Koja Employees: 512 men including 1 General Manager, 4 Deputy GM, 14 Managers Total 19 Management. Non Management 493 men (as of the end of November, 2002)
630. Under the same assumption with JICT, Koja's per berth manning scale is calculated as follows:

- 493 men x $70 \%=345$ men
- 345 men $\div 3$ shifts 115 men per shift
- 115 men $\div 2$ berths $\quad 58$ men per berth

631. For Koja, it is not so needed as JICT to hire an extra labor force. Assuming that an average of two gantries are assigned to handle a standard size container vessel, the number of labors per shift per crane is around 29 to 30 .

c) Comparison with World Standard

632. The table below shows some manning scales of one standard gang per crane in Tokyo, Yokohama, Hong Kong and Singapore. It is not easy to compare manning scale of different ports but it is possible to grasp prevailing tendencies.

Table 13-B-1 Manning Scale of at Selected ports (per shift per crane)

Tokyo (K)	Tokyo (MOL)	Yokohama (K)	Hong Kong (CSX)	Singapore	
Gantry	2 Drivers	2 Drivers	2 Drivers	1.50 Driver	1 Driver
RTGs	1.25 Drivers	1.30 Drivers	1.30 Drivers	1.30 Drivers	1.30 Drivers
Tractor	3 Drivers				
Lashing	$6-8$ men	$6-8$ men	$6-8$ men	$6-8$ men	$5-7$ men
Boss	1 man	1 man	1 man	1	-
Total	around 15 men	around 16 men	around 16 men	around 15 men	around 13 men

Source: JICA Study Team
633. World trends can be summarized as follows:

- Gantry Crane: 2 drivers/1 unit
- RTG: 1.5 RTG/1 Gantry
- Tractor Head:3 units (3 drivers per Gantry) is standard, but 4-5 units are deployed when needed to expedite operation. An increase in operation efficiency of about 15% is expected by adding 2 units, 10% by 1 unit.
- Lasher: 6 men for a smaller ship (2 Gantries can not be fully deployed.)
- 8 men for a larger ship (2 or more Gantries can be deployed.)

634. In some advanced ports, R\&D on automated operation of container equipment such as gantry crane, RTG is being promoted. New innovations will eventually further decrease the manning scale.
635. For both JICT and Koja, the standard size of one gang per gantry crane per shift is almost double that of the world standard. The difference gets larger as the number of gantry cranes deployed increases.

	World Standard	JICT/Koja
One Gantry:	15 men	30 men
Two Gantries:	30 men	60 men
Three Gantries:	45 men	90 men

636. As long as labor costs in Indonesia are far less than the international standard, this situation might be tolerable. But from the long term managerial view point, it is important to rationalize the present blistered manning scale.

2)

Tariff Reduction

637. Under the severe competition, container terminals in the same region may drastically reduce container handling charges to gain an advantage. For example, Tanjun Pelepas (PTP) enjoyed a surge in its container volume when it cut its handling charge by 30%.
638. JICT and Koja are currently enjoying what can be called a monopoly in the Jakarta metropolitan region. Under present terminal market situation, it is hard for JICT/Koja to find any reason to reduce terminal tariff rates. However, it is not merely a matter of the west Java economy, but of the whole country. Indonesia is facing fierce competition in attracting foreign investors in manufacturing industry such as automobiles and motor cycles with countries such as Vietnam, the Philippines and Thailand.
639. High terminal charge structure at JICT/Koja is an obstacle to trade development of Indonesia as shippers and consignees are unable to increase from more active import/export activities. Table 13-B-2 shows terminal charge level in some Asian ports including JICT/Koja.

Table 13-B-2 Terminal Charge Comparison (rate for 40')

Port	Tokyo	Kaohsiung	Busan	Hongkong	Singapore	L.Chabang	Haiphon	JICT
Kind of Terminal	Dedicated	Dedicated	Commer- sial	Commer- sial	Commer- sial	Semi- Dedicated	Commer- cial	Comer- cial
Terminal Charge \$	208	79	98	401	107	130	80	153^{*}
Japanese ¥	26,000	9,900	12,300	50,200	13,400	16,250	10,000	19,130
Purchasing Power Parity	1.0	0.9	0.9	1.1	1.0	0.6	0.5	0.4

Source: JICA Study Team, Japan Maritime Research Institute (JAMRI)
Remarks: * JICT tariff plus 10 \% for various additional charges. Purchasing Power Parity is calculated using parities for salary of office workers, meal charges and taxi fare.
640. According to the Table, JICT charge for a 40 footer is nominally the third highest among eight ports, and the highest after the purchasing power parity calculation. Every possible means should be taken to reduce JICT/Koja tariff strengthen the competitive power in the South EAST Asian region.
641. To realize a tariff reduction, priority should be given to reducing costs. Current JICT and Koja seem to be overstaffed in comparison with other terminals with similar throughput. This situation was caused by the transition agreement involving Pelindo-II employees at the establishment of JICT and Koja. To avoid a possible labor dispute and loss of jobs for the former Pelindo-II employees, Pelindo-II might have been forced to take such measures of secondment. As result, all laborers and staffs are guaranteed employees and it is said to be legally difficult to fire them. For reference, about 10 employees are retiring every year in line with the retirement clause agreed between the company and the union. JICT recruited about 40 new staffs in March, 2002 for the first time since the privatization of the terminal in 1999.

3) Reducing Redundant Labor

642. The purpose of privatization is to reduce the government's financial burden and to increase productivity through the introduction of market-oriented rational management. In any country, privatization of a state owned company is always accompanied with issues on overstaffing.
643. In the privatization of Japanese National Railway which had more than 200,000 employees, Japanese Government took measures to absorb more than 20,000 redundant laborers in two ways: early voluntary retirement with retirement bonus and re-employment by other government organizations and agencies.
644. It will then be necessary to adopt a screening process to identify unproductive or unqualified laborers.
645. Interviews revealed a high level of dissatisfaction with JICT and Koja, among shipping lines and shippers/consignees. Main points raised by shipping lines and shippers/consignees are listed below.

Item	Dissatisfied Party	Complaint
Equipment maintenance	Shipping lines/Agents	Due to mal-function of gantry crane, schedule is delayed
Gantry production	Shipping lines/Agents	Low production of GC Increases the amount of time a ship is at port
Pilferage in yard	Shipping lines/agents Shippers/Consignees	Rampant pilferage occurs High charge level Shipping lines/Agents Shippers/Consignees
Ship's waiting time	Compared with other major terminals, too high and raised one-sidedly	
Mis-operation	Shipping lines/Agents	More than two hours waiting not rare

a) Maintenance:

646. Gantry cranes, especially super-Panamax often break down and ships have to sail out leaving dedicated containers which are sent to Singapore to connect the same ship or other mother ship to the final destination. Users of JICT request that more efforts in the area of preventive maintenance be made.

b) Pilferage in yard

647. Containers in the custody of a terminal operator are believed safe. This is commonly understood in the world container terminal industry. Unfortunately, containers in JICT yard are not safe. Seals are often cut and goods inside containers are stolen. In many cases, a padlock is used after such pilferage. And this rampant theft has become notorious throughout the world. To defend their own cargo, shipping lines are hiring their own security guards by their account. This is quite rare in the industry. Judging from the fact that only high price cargoes are stolen, thieves must be receiving inside information.

c) High charge level

648. Actual charge level quoted in US Dollar is felt to be the highest in the world. From the long term view point, it is not wise to uphold this high charge level. Instead, the level should be lowered to a reasonable level to encourage international and domestic trade in containers. Both JICT and Koja could reduce handling charges by rationalizing main cost items.

d) Ships' waiting time

649. Although shipping lines know the window system introduced by JICT and Koja, they complain about long waiting times. Some ships are kept waiting more than two hours outside the terminals.

e) Mis-operation

650. Computer system for the yard operation is still at the infantry stage. In the summer of 2002, error input resulted in mis-operation. Many containers were loaded according to the mis-instruction and had to be unloaded again just before the ship's sailing.
651. With the exception of ship's waiting time, all of the above items are rooted in same problem: namely, lack of proper staff training. The rest are caused by the software and an excess
labor. It is understood through interviews that JICT has dispatched about 250 employees to Hong Kong for training. To this point, the input of this training has yet to be seen in every day operation. The training curriculum should be reviewed but more important than that is adopting an effective screening process for qualified laborers. It is proposed that a dedicated in-house committee be formed to decide the optimum manning scale. To achieve this, an appropriate set of guidelines is also required.

OB System
652. In both JICT and KOJA, the average dwelling time is comparatively short, i.e., 4.6 days and 5.2 days respectively. This benchmark itself shows that terminal operation condition is not bad. However, it must be noted that the seemingly healthy condition of the terminals is supported by the so called OB system. In this system, the terminal operators under an agreement among concerned parties, are allowed to ask importers to shift import containers sitting in the yard beyond 10 days to an inland depot (usually called a " Dry Port ") which is operated by a private company and licensed by customs.
653. By an agreement among the concerned organizations (Customs, Terminal Operators, Dry Port Operators), the consignees are to be charged by Dry Port Operators RP 400,000 per TEU (although the actual charge is said to be RP $1,500,000$ per TEU). Consignees are heavily complaining about this un-transparent charge level and some of them are asking JICT/KOJA to pay back the balance of RP $1,500,000$ and RP 400,000 to them. To this request from consignees, JICT is reportedly responding by offering 42 hectare for long staying containers. If the in-yard space is dedicated to the long sitting containers exceeding 10 days and actually used, Dry Port Operators will lose their business.
654. OB system is still being discussed among the concerned organizations and companies. The subject is very closely connected to container handling capacity at JICT and KOJA and it is worth watching closely. From the view point of a terminal cost comparison, the Dry Port charge is not negligible. RP $1,500,000$ is about US $\$ 160$ per TEU and 240 per 40^{\prime}. If this amount is added to the normal terminal charge currently being quoted by JICT and Koja, the total amount is possible to reach US\$ 393 (US\$ 153 plus 240) which is nearly the same as the rate at Hong Kong.
655. OB System, if it is applied, would result in substantial damage to consignees of import containers. Normally, imported containers are delivered through a gate of a container terminal once only. In the OB System, however, containers are shifted from JICT to a bonded depot and then are delivered to the final destination. This operation flow means each container is handled two times for delivery, once by JICT, and for the second time by a Dry Port operator. This two bound system is meaningless and can be avoided by a rationalization of traffic and customs' documentation.

Figure 13-B-1 OB System Flowchart

13-C. Managerial and Operational Improvement for Conventional Terminal in Tanjung Priok

656. As to the conventional cargo handling, 14 operators are operating exclusively with designated berths. Berth productivity in terms of throughput per unit length of quaywall and berth occupancy rate seems extremely high while waiting time of vessels is very long. These figure seems to show the inefficiency of terminal operation from ship operators viewpoint and incurs higher cost to users.
657. In order to manage and operate the conventional terminal more efficiently, a future management and operation system is examined as follows within the framework of the Master Plan.
658. Generally, conventional terminal should be operated by smaller numbers of operators who has sufficient skilled personnel and equipment to provide good service to port users. However, the conventional terminal operation at Tanjung Priok port is conducted by PT. MTI, 14 terminal operators and other stevedoring companies without such overall control as shown in Figure 13-C-1.

Figure 13-C-1 Utilization of Land by Contract at Conventional Terminal Area
659. From the theoretical point of view, excessive number of operators decreases the scale merit in terms of number of available berths for common carriers, causing unnecessary waiting for carriers.
660. To pursue the scale of merit, operators should be grouped into smaller numbers to operate a reasonable number of berths jointly. Therefore, reformation of the current operation structure is required.
661. Reformation of the terminal operators should be carried out paying attention to the following points.

- The new terminal operators will be culled from PT. MTI and 14 terminal operators including other stevedoring companies by the open-tender of IPCII. And at the same time, it is necessary for high-ranking and competent personnel to be appointed from the new terminal operators to organize a terminal operators' cooperative society.
- The new terminal operators should have incentives for efficient management with a system in which the more efficient management is done, i.e., cost reduction, business improvement and so on, the more profits increase.

662. Table 13-C-1 shows the evaluation of terminal operators. Six terminal operators are conducting management and operation in a sound manner.

Table 13-C-1 Evaluation of Terminal Operators

Operator	Evaluation Items				General Evaluation
	Operation	Maintenance	Finance	Administration	\triangle
Terminal Operator: A	\bigcirc	\triangle	\triangle	\triangle	\triangle
Terminal Operator: B	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Terminal Operator: C	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Terminal Operator: D	\bigcirc	\triangle	\triangle	\triangle	\bigcirc
Terminal Operator: E	\bigcirc	\triangle	\triangle	\triangle	\triangle
Terminal Operator: F	\bigcirc	\triangle	\triangle	\triangle	\triangle
Terminal Operator: G	\triangle	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Terminal Operator: H	\triangle	\bigcirc	\bigcirc	\triangle	\triangle
Terminal Operator: I	\triangle	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Terminal Operator: J	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Terminal Operator: K	\triangle	\bigcirc	\triangle	\bigcirc	\triangle
Terminal Operator: L	\bigcirc	\triangle	\triangle	\bigcirc	\triangle
Terminal Operator: N	\bigcirc	\triangle	\triangle	\bigcirc	\triangle
Terminal Operator: P	\bigcirc	\triangle	\bigcirc	\bigcirc	\bigcirc

Notes; very good: © , good: \bigcirc, poor: \triangle
Source: This table summarized by the Study Team from Report of Evaluation of Terminal Operator,
663. Therefore, it would be recommended that the management and operation of conventional terminal should be conducted by several operators centering on the above operators with sound conditions as well as PT.MTI and should be controlled independently by IPCII. It is also advisable to adopt a measure promoting some competition among these units.
664. Concerning the new development area in the Master Plan, management and operation of these areas should be carried out and shared by the new terminal operators.

13-D. SCheme of Port Development, Operation and Management

13-D-1 Breakwater and Access Channel

665. Fundamental port infrastructure such as breakwaters and access channels are to be developed by the central government, and their development cost will be borne by her, since they require a huge cost and generate very little profit by their operation. In addition, the beneficiaries are widely distributed and difficult to specify.
666. However, when it is suitable for them to be managed together with inner channels and basins, they are transferred to the port management body (Pelindo-II in case of Tanjung Priok) for their management/operation.

13-D-2 Inner Channel and Basin

667. Development and management/operation of inner channel and basin in a port area will be basically the responsibility of the port management body and their cost will be borne by her.

13-D-3 Terminal

668. Terminal infrastructure including quay, front turning basin, land reclamation will be developed by the port management body and operated by the private sector, if the operation of the terminal is sufficiently profitable. The cost will be covered by future collection from an operator of the terminal, which should develop superstructure such as pavement, handling
equipment and other terminal facilities, depending on profit levels as well as the trend of demand. However, in case that a terminal will be newly developed and the project risk will be considered to be high due to the uncertainty of cargo demand, or there is an urgent need viewing from the national benefit, or a terminal is not likely to be profitable, it should be examined whether the Central Government will bear the initial development cost of infrastructure.

13-D-4 Port Inner Road and Port Access Road

669. Development and management/operation of port inner road will be the responsibility of the port management body and their cost will be borne by her since the major beneficiaries are port users.
670. On the other hand, the development and management / operation of port access road located outside of the port area will be the responsibility of the central government (DGH, Kimpraswil) since the major beneficiaries will be public transport users. (Specific beneficiaries cannot be identified.)

Table 13-D-1 Scheme of Port Development, Operation and Management

	Development	Management/ Operation	Remarks		
Breakwater, Access Channel	CG	CG/IPC-2*1			
Inner Channel and Basin	IPC-2	IPC-2			
Terminal (Profitable)			Container terminal etc.		
	Infrastructure	IPC-2/CG*2	Private	Quay wall, front basin etc.	Handling equipment, pavement
:---					
etc.					

*1: When an integrated management by IPC-2 needed
*2 : In case that project risk will be considered to be high, it should be examined whether the CG will bear the cost.
*3 : CG or Local Government

13-E. Private Participation for Management and Operation of the Port

671. The Port of Tg. Priok introduced private participation for port operation under a different scheme according to the Government Privatization Policy. For the Bojonegara development, Government tried to introduce concession with the joint stock company formed by IPCII and several private companies under a partial BOT scheme.
672. In introducing the concession scheme, it is necessary to adopt an open tender system to secure fairness and transparency. As far as hearing from concerned staffs of the Government and IPCII, past process of decision to select private companies currently participating operation of JICT and Koja as well as Bojonegara, no evidence of tendering process could not be found by the study team.
673. As a result, a specific company is participating every container terminal at Tg. Priok and Bojonegara according to the brochure issued by the company. This situation seems to be an obstacle to fair and competitive operation of terminals.

13-E-1 General Concept of Private Participation

674. In general, there are several purposes to promote private participation. It is very important to clarify the purposes in order to promote private sector involvement not only in port services but also in port development. Those purposes are summarized as follows.

- To increase capacity of port facilities
- To relive the governmental sector from high investment burden
- To introduce higher standards efficiency through fair competition
- To provide high quality of service with cheaper price to user
- To transfer technology and know-how
- To facilitate fast-track implementation

675. However, there are not only the merits. More careful attention should be paid to negative aspects as below:

- Unlimited private participation tends to ignore the public interests including environmental consideration.
- Competition sometimes results in monopolization by strong private sector, which leads to inefficient operation and high-cost of service.
- Excessive competition often leads to lower service level and discriminatory treatment.

676. In this sense, moderate and appropriate control through planning and laws \& regulation by government is strongly required. On the other hand, when competitive theory works well, too much involvement by the government often discourages the private sector from participating in projects. Therefore, it is necessary for the government to balance both requirements.
677. The central government and/or Pelindo-II should optimize the above private participation merits through the following action:

- To create a competitive environment in which the private sector will be able to compete with each other
- To distinguish between working fields suitable and unsuitable for private participation

678. A typical private participation system is PFI (Private Finance Initiative) which was first introduced by the United Kingdom in November 1992. throughout the 1980s, there were many discussions in UK concerning an ideal nature of public investment. After a series of studies and discussions, the following principles regarding public investment and private sector participation emerged.
679. For reference, the basic types of PFI (Private Finance Initiative) Scheme with main responsibility sharing system by private and public sector are shown in Table 13-E-1.

Table 13-E-1 Basic Types of PFI Scheme

Basic Types	Type- Names	Responsibility Sharing by Public/Private Sectors					Risky Sector
		Planning	$\begin{gathered} \text { Con- } \\ \text { struction } \end{gathered}$	Ownership	Administration	Operation	
PCPO (Public Const./ Private Operation)	Operation Trust	Public	Public	Public	Public	Private	Investment Recovery (PB)
	Admin. Trust-I	Public	Public	Public	Private	Private	Inv./Admin.. .Risk (both)
	Admin. Trust-II	Public	Public Private	Public Private	Private	Private	Inv./Admin. Risk (both)
	Admin. Trust-III	Public Private	Public Private	Public Private	Private	Private	Inv./Admin Risk (both)
	Public Donation	Public	Public	Private	Private	Private	Admen. Risk (PR)
	Public Transfer	Public	Public	Private	Private	Private	Inv./Admin. Risk (PR)
PPPI (Public Plan/Private Invest)	Equivalent Exchange	Public Private	Private	Public Private	Private	Private	Public<Private Investment
	Land Trust-I	Public	Private	Public	Private	Private	Investment Recovery (PB)
	Land Trust-II	Public Private	Private	Private	Private	Private	Investment Recovery (both)
	Land Lease	Public Private	Private	Private	Private	Private	Administration Risk (both)
PCPO (Private Const./Pub. Operation)	BTO-I	Public	Private	Public	Public Private	Public Private	Investment Recovery (PB)
	BTO + Donation-I	Public Private	Private	Public	Private	Private	Inv./Admin. Risk (PR)
	BTO+ Dona.-II	Public Private	Private	Public	Private	Private	Inv./Admin. Risk (PR)
	Bowdon +Land	Public Private	Private	Public	Private	Private	Inv./Admin. Risk (both)
	BTO-II	Public Private	Private	Private	Private	Private	Inv./Admin. Risk (PR)

Source: JICA Study Team

13-E-2 Possible Project for Private Participation

680. Based on the "Basic Scheme of Development, Operation and Management of Port Facilities" described un the previous section, possible projects for private participation are as follows among the proposed projects in the Master Plan:

1) Tanjung Priok

Automobile Terminal

681. One of the possible projects for private participation at Tanjung Priok is an automobile terminal development. Rapid increase of handling volume of automobile products will be expected in the near future under the free trade agreement in AFTA. According to the demand and depending on handling charge, there is a possibility for the private sector to operate a car terminal.

Multipurpose Terminal

682. Generally speaking, multi purpose terminal including conventional cargo terminal seems difficult to make a profit. IPC-II should develops necessary infrastructure and leases to private operator.

Passenger Terminal

683. Revenues from passenger terminal buildings such as lease fee from tenants can be expected. The development of a passenger terminal building, which handles a large number of passengers, can be promoted on private sector project bases with initiative and encouragement of IPC-II.

2) Bojonegara

Container Terminal

684. Possible project for private participation at Bojonegara Priok is container terminal development. Handling volume of international containers will be expected to increase rapidly dealing with the overflow containers from Tanjung Priok. According to the demand, there is a strong possibility for the private sector to operate a container terminal based on concession.

13-F. INSTITUTIONAL IMPROVEMENT

13-F-1 Reinforcement of Port Promoting Function of IPCII

685. To promote use of the port, it is essential to establish a more useful and attractive port in terms of both facilities and management and operation for users such as shipping lines, shipping agents, forwarders, shippers consignees, etc. For that purpose, it is necessary to have a real time, broad, systematic grasp of the users' needs and to reflect their needs in the practical development and management of the port. The port should be marketed positively, providing users with pertinent information.

13-F-2 Introduction of Measures for Activation of the Organization

686. For activation of the organization, not only its reformation but also an awareness on the part the of its personnel concerning the need for rational and efficient management is important. For this purpose, many private companies adopt a Quality Control (QC) circle and a proposal activity by personnel. A QC circle is an activity for improvement involving each individual employee. Normally, it is carried out by a group within a single division or section. Members of the group identify problems concerning quality, safety, efficiency etc. and voluntarily try to solve the problems with everyone's cooperation. It is also carried out by a project team extending through several divisions concerned.

13-F-3 Improvement of Statistics System

687. Present port statistics are insufficient to formulate a future investment plan and effective management of port facilities. For instance, the cargo volumes are not sufficiently grasped commodity-wise especially in terms of container cargoes, and are not classified by origin and destination. IPCII does not prepare commodity-wise cargo volume by each berth and by specialized private terminals. Improvement of statistical system is essential for formulating a proper investment plan and effective management. Therefore, it is recommended to improve the statistics system by studying required information to be submitted from port users at the time of application for port utilization in line with the improvement of the information system.

13-F-4 Utilization of EDI

688. EDI Indonesia is an affiliated organization of IPCII, however, the study team could not obtain any information from EDI Indonesia on port activities to analyze the real berth performance. It seems that the level of knowledge and experience of IPCII staff pertaining to EDI is not sufficient to develop and operate EDI by themselves. Therefore IPCII should consider another option. EDI service provider can offer complete service such as consulting service related to EDI, introduction and starting EDI, supplying medium resources, operating service, etc. Therefore, it is recommended that IPCII and related bodies utilize an EDI service provider.

13-F-5 Integration of Customs Offices

689. The port related government offices seem to be arbitrarily located in the port area. In particular, there are three Customs Offices at respective administrative areas; therefore shipping agents and consignees have to submit documents to different offices for customs clearance in the same port. To streamline procedures, it is necessary to prepare an integrated customs office
at one location, and the customs clearance should be implemented in accordance with international standards.

13-F-6 Strengthening Cargo Handling Supervisor

690. To increase the efficiency of the cargo handling operation, training for supervisors is required. Possible training methods are recommended as follows:

- To invite a cargo planner now working for a shipping agent to a seminar for cargo supervisors.
- To delegate an IPCII supervisor to a terminal operator as an assistant trainee of the terminal operator planner. The trainee will acquire information on local circumstances and conditions as well as develop valuable connections.
- To invite an experienced captain or chief officer from a shipping company as a chief instructor of cargo supervisors.

691. It is also necessary to make a cargo supervisor's manual, and the cargo handling operation should be implemented according to the provisions of the manual.

13-F-7 Improvement of the Training System

692. IPCII has made much of personnel development and the Port Training Center (PTC) implements all of IPCII training programs which cover various fields of port management. In order to cope with the new management and operation system proposed in the Master Plan, it is recommended that PTC develop and supplement its training courses accordingly.

13-G. Port Working Area and Port Interest Area

13-G-1 Background

693. Borders of Working Area and Interest Area of Tanjung Priok Port are described in Joint Agreement of Internal Affairs Minister and Communication Minister Number : 16 Year 1972 and Number : SK. 146/0/1972 date: June 1, 1972. However, due to validity of Law Number : 22 Year 2001 regarding Regional Autonomy and Law Number : 25 Year 2001 regarding Financial Proportion between Central and Regional Government, and Government Regulation Number : 69 Year 2001 regarding Port Affairs, borders of Working Area and Interest Area should be adjusted.
694. Port Interest Area is the water area surrounding the Port Working Area (water area) needs to secure navigation safety. Formerly, DLKR and DLKP was established not for water area but only for land area. Consequently, area of DLKR and DLKP in some ports are the same. It is necessary to review the rage of DLKR and DLKP by the new Port Regulation (G.R. Number 69.2001) due to decentralization at this time and set a proper range. The function of Port Working Area and port Interest Area are stipulated as below.

Table 13-G-1 Function of Port Working Area and Port Interest Area

Function	Port Working Area (DLKR)	Port Interest Area (DLKP)
Objectives of the Area	Land working area used for the activity of major facility and supporting facility Land Major Facility 1) Wharf 2) Warehouse 3) Stacking yard 4) Passenger terminal 5) Container terminal 6) Ro-Ro terminal 7) Reception facility 8) Bunker facility 9) Fire fighting facility 10) Warehouse facility for danger and toxic/goods 11) Facility of equipment maintenance and repairing and navigation aid Supporting Facility 1) Office for the port user 2) Public facility 3) Waste reception facility 4) Tourism, port and telecommunication facility 5) Hotel and restaurant 6) Area for port development commerce/trade Water Working Area used for the activity of channels and water facilities 1) Access channel for ships 2) Anchorage area 3) Port basin for mooring and ship maneuvering 4) Water for transshipment 5) Water for ships which carry dangerous goods 6) Water for the quarantine activity 7) Channel waters for intra port connection 8) Pilot waters 9) Waters for government ships	1) Ship/access channel to from the port 2) Emergency needs 3) Long-term port development 4) Ship's movement in the anchorage 5) Placement of abandoned ships 6) Sea trial 7) Compulsory pilotage water 8) Ship yard and ship repair
Obligation of the government	1) To provide government activity 2) To provide area service activity 3) To provide port supporting activity	1) To provide navigational aids 2) To guarantee security and order 3) To provide and maintain shipping channel 4) To protect the environment

13-G-2 Tanjung Priok

695. Port working area in the water area and land area of public port directly used for port activity. Port interest area is the water area surrounding the port working area and it is used for guaranteeing ship safety. The port working area and interest area determined based on the port
master plan. Port working area consists of the land area that is used for main facilities and supporting facilities, and water area used for an access channel, berthing area, transshipment area, port basin for mooring and ship maneuvering, pilotage activity and ships repair. Port interest area consists of waters out of the port working area and it is used for an access channel to and from port, emergency needs, long term development, trial run, pilotage activity, facility for development and maintenance of ship. Study team proposed as follow based on actual traffic record that number of vessel who will use buoy:

- $\mathrm{N}=\mathrm{V} \times \mu 1 \times \mu 2 \times \mathrm{T} \div 365 \div 24 \div \mathrm{E}$

N : Number of vessel who will use buoy
V : Calling vessel in 2025
$\mu 1$: Extra ratio
$\mu 2$: Buoy utilization ratio
T : Buoy utilization time (hour)
E: Buoy occupancy ratio

- $\mathrm{N}=24,734 \times 1.28 \times 6 \% \times 132.4 \div 365 \div 24 \div 60 \%=48$
- \quad Area $=$ Number of Vessel $\times \pi \times$ R2
$\mathrm{R}=\mathrm{L}+6 \mathrm{D}+30$
L: LOA (m)
D : Water Depth (m)

696. Study team assumed as Table 13-G-2.

Table 13-G-2 Number of Vessel

Vessel Size	LOA(m)	R(m)	Number of Vessel
LOA 100-200	200	320	17
LOA 200-250	250	370	31
Total			48

697. Port Interest Area is considered emergency area, ship trial run activity and development, maintenance, and so on. Study team proposed port area is shown as Figure 13-G-1.

13-G-3 Bojonegara

698. Study team assumed based on Tanjung Priok actual traffic record that number of vessel who will use buoy.

- $\mathrm{N}=2,992 \times 1.28 \times 6 \% \times 132.4 \div 365 \div 24 \div 60 \%=6$

699. Study team assumed as follow.

Table 13-G-3 Number of Vessel

Vessel Size	LOA(m)	R(m)	Number of Vessel
LOA 200-280	280	400	6

700. Port Interest Area is considered emergency area, ship trial run activity and development, maintenance, and so on. Study team proposed port area is shown as Figure 13-G-2.

Figure 13-G-1 Port Working and Interest Area

Appendix A

Caluculation Result of Capacity and Number of Ship Calls Tanjung Priok
International Container ('000TEU)

		Ship Calls			
2001			Demand	Capacity	Allowance
Demand	Capacity				
Without Nav. Imp.		2,056			
Improved Navigation		2,927	871		3,048
2012	3,631	3,644	1,587		3,679
2025	3,776	3,807	13	3,645	3,658

Inter-island Container ('000TEU)

	Demand	Capacity	Allowance	Demand	Capacity
2001	199				
Without Nav. Imp.		710	511		2,516
Improved Navigation		939	740		3,302
2012	715	1,287	572	2,292	4,125
2025	1,545	2,073	527	4,952	6,643

GC ('000ton)

	Demand	Capacity	Allowance	Demand	Capacity
2001	9,421				
Without Nav. Imp.		9,894	473		5,121
Improved Navigation		12,603	3,182		6,523
2012	11,971	14,121	2,149	6,176	7,285
2025	15,025	18,779	3,755	7,248	9,059

Bag ('000ton)
Bag ('000ton)

	Ship Calls				
	Demand	Capacity	Allowance	Demand	Capacity
2001	3,769				
Without Nav. Imp.		4,047	278		1,776
Improved Navigation		5,155	1,386		2,263
2012	4,274	5,431	1,157	2,112	2,684
2025	5,365	6,482	1,117	2,633	3,181

GC + Bag ('000ton)

	Ship Calls				
2001	Demand	Capacity	Allowance	Demand	Capacity
Without Nav. Imp.	13,190				
Improved Navigation		13,940	750		6,897
2012	16,246	17,758	4,568		8,786
2025	20,389	25,262	3,306	8,288	9,969

Dry Bulk (Public) ('000ton)

	Demand	Capacity	Allowance	Demand	Capacity
2001	4,482				
Without Nav. Imp.		7,126	2,644		1,579
Improved Navigation		9,077	4,596		2,012
2012	6,563	11,315	4,752	1,837	3,168
2025	10,720	12,414	1,694	2,903	3,362

Dry Bulk (Special) ('000ton)

	Demand	Capacity	Allowance	Demand	
	Capacity				
2001	2,786				
Without Nav. Imp.		3,515	729		156
Improved Navigation		4,477	1,691		199
2012	4,441	4,477	37	198	199
2025	9,409	7,753	$-1,656$	372	307

Liquid Bulk (Public) ('000ton)

	Demand	Capacity	Allowance	Ship Calls	
2001	1,490				
Without Nav. Imp.		2,435	945		1,320
Improved Navigation		3,102	1,612		1,682
2012	2,386	3,011	625	1,313	1,657
2025	3,480	3,852	372	1,933	2,140

Liquid Bulk (Special) ('000ton)

	Demand	Capacity	Allowance	Ship Calls	
2001	8,604				
Without Nav. Imp.		10,080	1,476		982
Improved Navigation		12,840	4,236		1,251
2012	9,258	12,840	3,582	902	1,251
2025	10,566	12,840	2,274	1,030	1,251

Total

	Demand	Capacity	Allowance	Demand	Capacity
2001					
Without Nav. Imp.				16,500	
Improved Navigation				20,911	
2012			18,475	24,027	
2025			24,887	29,790	

A-3
Conventional Wharves Capacity (in 2012)

Conventional Wharves Capacity (in 2012)

	CT:Beth-wise CT:Bethwise					cr:Berth-wise Ex.Pass Ex.JICT2		Ancol-1 ${ }^{\text {ct:Berth-wise }}$ Berth-wise			Berth-wise Berth-wise Berth-wiseBOG SAR/B DKP								
	Kali Japat	114	207	214/300	TBB			Total	Public	Special									
Operation Ratio	95\%	95\%	95\%	95\%	95\%	95\%	95\%				95\%	95\%	95\%	95\%	95\%	95\%			
Number of Berths	6	2		2		2	2	4		4	1	2	2	77	68	9			
Length of Berth (m)	300	376		300	195	300		790		100	175	187	276	9,708	8,970	738			
Actual Depth (m)	-4m	-10m	-4m	-12m	-12m	-7m	-8.6m	-10~12m	-10~12m	-6~10m	-6m	-10m	9 m						
Target Maximum Ship Size (GC)	4,999	14,999	4,999	30,000	30,000	4,999	9,999	30,000	30,000 na		a	a							
Annual Operation Hours (hrs)	8,322	8,322	8,322	8,322	8,322	8,322	8,322	8,322	8,322	8,322	8,322	8,322	8,322						
BOR (Berth Occupancy Ratio) - Berth Length-wise/Berth-wise	60\%	45\%	20\%	60\%	55\%	45\%	50\%	50\%	50\%	90\%	60\%	80\%	30\%						
Berthing Share by Cargo Type	100\%	100\%		100\%	100\%	100\%		100\%		100\%	100\%	100\%	100\%						
$\underset{\text { (General) }}{\text { (Contaner }}$				100\%	100\%														
(Bag)						20\%		20\%											
(Dry B.)	60\%	100\%									100\%	100\%							
(Liquid B.)	40\%									100\%			100\%						
Annual Number of Ship Calls	1,177	621		984	231	718		1,162		812	92	107	440	20,370	18,919	1,451			
(Container)				984	231									4,125	4,125				
(General)						602		952						7,285	7,285				
(Bag)						116		210						2,684	2,684				
(Dry B.)	642	621									92	107		3,367	3,168	199			
(Liquid B.)	535									812			440	2,908	1,657	1,251			
Total (excluding CT)	1,177	621				718		1,162		812	92	107	440	16,244	14,793	1,451			
~ 4999	1,177	373		787	185	718		787		325	5	16	220	16,881	16,315	565			
~9999		124		197	46			222		41	23	5	176	2,235	1,991	245			
~ 14999		124						58		122	32	5	22	612	430	181			
~ 19999								48		41	32	5		169	91	78			
~ 30000								48		284		75	22	473	91	381			
Annual Throughput (ton, TEU)																			
(Container: TEU)				307,027	72,205									1,287,137	1,287,137				
(General)						${ }^{962,974}$		2,657,123						14,120,667	14,120,667				
						185,527		614,379						5,431,147	5,431,147				
(Dry B.)	1,155,569	,091,821									1,202,373	3,275,066		15,792,738	11,315,299	4,477,439			
Total (excluding container: ton)	2,118,543	,091,821				1,148,501		3,271,502		11,569,610			$1,270,277$ $1,270,277$	15,850,949 $51,195,501$	$3,011,062$ $33,878,175$	$12,839,887$ $17,317,326$			

Conventional Wharves Capacity (in 2025)

											cт:Berthwise	ct:Berthwise	ct:Bethwise			т:Bethnwise	
	001-003	004-004U	New Nusa	005-007	100-102	103-105	108-110	111-113	115-200	201-203	208-209	210-211	212-213	301-302	303-305	MTI	WJ
Operation Ratio	95\%	95\%	95\%	95\%	95\%	95\%	95\%	95\%	95\%	95\%	95\%	95\%	95\%	95\%	95\%	95\%	95\%
Number of Berths	3	4	4	2	4	3	3	4	2	3	3	2	2	2	3	5	
Length of Berth (m)	423	455	500	330	442	454	321	442	257	495	439	293	285	320	483	1,150	
Actual Depth (m)	-6m	-6m	-6m	-7m	-7~10m	-7m	-7m	-7~9m	-10m	-9m	-9m	-9m	-12m	-12m	-12m	-8m	-4m
Target Maximum Ship Size (GC)	4,999	4,999	4,999	4,999	14,999	4,999	4,999	9,999	14,999	9,999	9,999	9,999	9,999	30,000	30,000	9,999	4,999
Annual Operation Hours (hrs)	8,322	8,322	8,322	8,322	8,322	8,322	8,322	8,322	8,322	8,322	8,322	8,322	8,322	8,322	8,322	8,322	8,322
BOR (Berth Occupancy Ratio) - Berth Length-wise/Berth-wise	40\%	40\%	45\%	45\%	45\%	45\%	45\%	45\%	50\%	45\%	45\%	55\%	55\%	45\%	45\%	60\%	60\%
Berthing Share by Cargo Type	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
(General)	80\%	80\%	80\%	80\%		80\%	50\%	50\%		30\%				80\%	80\%		
(Bag)	20\%	20\%	20\%	20\%		20\%	50\%	50\%		30\%				20\%	20\%		
(Dry B.)					100\%				100\%	40\%							100\%
Annual Number of Ship Calls $\begin{array}{r}\text { (} \\ \text { (Container) } \\ \text { (General) } \\ \text { (Bag) }\end{array}$	964	1,037	1,281	846	730	1,164	849	868	472	982	631	463	463	437	660	2,460	
											631	463	463			2,460	
	754	811	1,003	662		911	402	470		316				347	524		
	209	225	278	184		253	447	398		267				90	136		
					730				472	399							
	964	1,037	1,281	846	730	1,164	849	868	472	982				437	660		
~ 4999	964	1.037	1,281	846	438	1,164	849	691	283	763	505	370	370	298	450	1,968	
~9999					146			177	94	219	126	93	93	83	125	492	
~ 14999					146				94					22	33		
~ 19999														17	26		
~ 30000														17	26		
Annual Throughput (ton, TEU)																	
(Container: TEU)											196,923	144,410	144,410			767,568	
(General)	1,206,928	1,298,232	1,604,957	1,059,272		1,457,301	643,989	928,065		623,610				968,673	1,462,090		
	334,962	360,302	445,429	293,983		404,449	714,913	971,142		652,555				263,955	398,407		
(Dry B.) (Liquid B.)					3,634,534				2,348,103	1,285,648							
Total (excluding container: ton)	1,541,890	1,658,534	2,050,386	1,353,255	3,634,534	1,861,750	,358,902	899,207	2,348,103	2,561,813				1,232,628	1,860,498		

Conventional Wharves Capacity (in 2025)

\qquad

N

パ® N

Container Handling Capacity \& BOR (Berth-wise) - Bojonegara -
International Container

Container Handling Capacity \＆BOR（Berth－wise）－Bojonegara－
Inter－island Container

			ํํํํํํ		
			Bibib		
			「奀す		
		Woinciommerso			
		प্ণী			
					－
		प্ণী	${ }^{\text {¢ }}$		
			㡵：		－9\％oge
			®®®		－\％
			\％${ }_{\text {® }}$		
					－
		ロo incoum			
			砍ず気		－9\％
				Bigeig io	
		以్ర	둥ำ		
		ツ్ర－	¢®®0		

