3.2 Groundwater Resources

3.2.1 Hydrogeological Characteristics

- (1) Field Reconnaissance and Existing Well Investigation
 - 1) Field Reconnaissance

Field reconnaissance with some interview survey was carried out mainly at the 10 villages that had been selected already by the every 11 Townships as the target villages of this Study. These villages are facing larger difficulties for accessing to drinking water in the Township.

The contents of the field reconnaissance were as follows.

- Topographical, geological and hydrogeological characteristics of each Township and the villages.

- Domestic water source, existing tube well and its conditions, water supply conditions, requested drilling site, accessibility by drilling rig, etc. in the village and its vicinities.

- Selection of the site of geophysical survey to be performed in the Phase II study.

Results of the field reconnaissance were presented in 3-A Survey Results of Hydrogeology in the Central Dry Zone of Vol. III Supporting report.

2) Existing Well Investigation

Questionnaire survey for existing wells was carried out together with the field reconnaissance described above.

As WRUD is preparing a well database on WRUD-constructed wells, it was referred as much as possible. Furthermore, a questionnaire survey was conducted in order to grasp the situation of all main wells, which are operated other than the WRUD's management in the Study Area. The wells less than about 3-5 m deep, those were mostly dug wells, were neglected in the survey. Items of location, construction year, water level, pump type installed, a pumping rate, casing program, aquifer depth, etc. were checked.

Information of the existing wells collected through the questionnaire survey was input into the database being built up by the Study Team. Furthermore, 10 to 15 of the existing wells in every Township were selected as the monitoring wells to check water level and water quality. Selection of the monitoring wells was performed considering following conditions.

- Water level can be measured
- Screen positions are known
- If it is not known, to be estimated from the well depth
- Average pumping time in a day is within 12 hours
- Locations cover evenly whole Township area
- Water samples can be taken

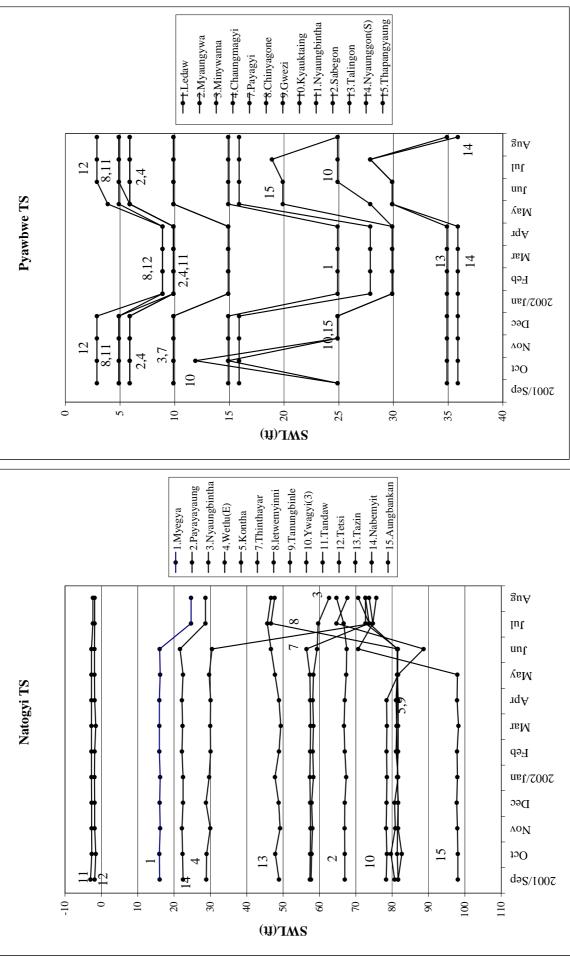
The measuring work was instructed by the Study Team to the DDA's counterparts at the beginning of the Phase II study then the counterparts continued it by themselves once a month. The Study Team has lent the instruments for the work.

Furthermore, water quality tests of the monitoring wells in laboratory were performed at least once during the Phase II study.

Location map and list of the existing wells are presented in "6. Formulation of Well Database". List and observation records of the monitoring wells are presented in 3-B of Vol. III Supporting report, and results of water quality test in laboratory are presented in 3-C of Vol. III Supporting report, respectively.

Unfortunately, in spite of the tight instruction by the Study Team, some observation records obtained are doubtful to some extent. The causes of doubt are assumed as follows.

- () Error of measurement method or operation error of equipment
- () Error of reading of equipment indicator or error of writing down
- (a) Static water level (SWL)


Static water level among the observation records was studied to know the fluctuation through a year (see Fig. 3.2.1.1(1/4)-(4/4)). The only data that could be obtained through a year were used to study.

The fluctuation of static water level shows some cases indicating the error of the observation. However, it can be said as a whole that the difference of water level between the dry season and rainy season is very small (less than 5(five) feet).

-++2.Latpanbya(S) -++3. Yinmagone -++1. Taung Oo -++0.Aima (S) →7. Indaw ₿n¥ լոլ Kyaukpadaung TS unſ VaN $13,15^{4}$ Apr 'naM ЧэЯ 002/Jan Dec лоN 7 100 10-qə2 20 1000 40 80 120 ----9.Yondaw ywama ---6.Tanaunggon ----------------3.Chongyi(E) -2.Kyaungo → 7.Welaung --1.Saikyan guA լոլ սոլ Taungtha TS Vay 2,4,5,6 лqА 'naM qәд 005/Jan Dec лоN 1210 11,15 X 10O 3.14 dəS/1002 (11) 2002 2007 200 250 350 100 150 0 50 300 400

Fig.3.2.1.1 Fluctuation of Static Water Level of Monitoting Wells in the Cetral Dry Zone (1/4)

-++3.Lalingan(W) -+1.Sinka guA Int unſ Chauk TS VaN лqА 13 2 'naM ЧэЯ 2002/Jan Dec лоN joO dəS/1002 100 150 -250 -300 0 50 350 400 ---9.Kyaungbyukan 6.Zibingon -5.Magyisu -7.Thityon ● 4.Kokke ● 10.Saka ← 11.Nata → 1.Kanni SuA IW լոլ unſ **Myingyan TS** VaN зqА Nar Бeb 002/Jan Dec лоN 10 4 10O d92/1002 9 æ (IJ)[°]ĨMS 40 0 1020 5060

Fig.3.2.1.1 Fluctuation of Static Water Level of Monitoting Wells in the Cetral Dry Zone (3/4)

-++3. Pakanøvi(Hosnital •12.Myegedaung • 1. Thitkyidaw • 6.Kyetsugyin -2.Wedgadaw -+4.Kokekosu --3.Auko(E) **→**7.Myebyu -++0.Kanthit •8.Ywange -+1.Tando ●5.Mauale SuA Int սոլ Yesagyo TS YaM ıqA Nar ЧэЧ 002/Jan Dec $\overline{\mathbf{c}}$ лоN 10 Þ 10Oct δ dəS/1002 3 2 30 -0 10 40 50 110 20 80 90 100120 guA Iul unſ YeM **Pakkoku TS** ıqA 'naM qэД 002/Jan Dec лоN tοO ŧ dəS/1002 φ h (ff)JW2 6 6 8 8 8 8 8 0 10 80 20 30 70 60 6

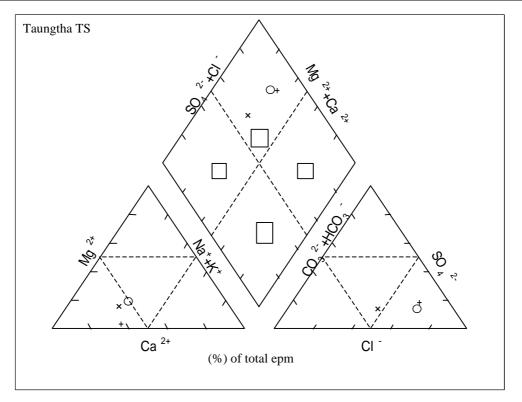
Fig.3.2.1.1 Fluctuation of Static Water Level of Monitoting Wells in the Cetral Dry Zone (4/4)

(b) Water quality

Results of water quality tests in laboratory were presented in 3-D of Vol. III Supporting. Trilinear diagrams (or Piper diagrams) of every 11 Townships were made and presented in Fig. 3.2.1.2(1/9)-(5/9).

In the trilinear diagram, area () is called "Carbonate hardness, () is "Carbonate alkali, () is "Noncarbonate hardness, and () is "Noncarbonate alkali, respectively. It is said empirically that river water and shallow groundwater are plotted in the area (), fresh confined water is in the area (), and water containing high dissolved salts such as seawater , fossil saltwater, hot spring, mine water, etc. are in the area () or ().

In all townships excluding Chauk Township, water from the monitoring wells plotted in the area () or () of the diagram. That means that groundwater in the Central Dry Zone has much quantity of dissolved salts as general and is affected strongly by the chemical composition or mineralogy of the host rocks during long residence time in the aquifer.


On the other hand, almost all water in Chauk Township are plotted in the area (). That means that almost all groundwater in Chauk Township are normal fresh confined water. However, it is note that only samples of Chauk Township were tested in the different laboratory, and hydrogeological conditions of Chauk Township do not seem to be so different from ones of other Townships (Samples of Chauk were tasted in MOGE: Myanmar Oil and Gas Enterprise, and the others were in WRUD). WQ of test well in Chauk is the same group.

Furthermore, it is necessary to note that in almost all project area, groundwater shows high EC (high TDS)(1,500 μ S/cm EC 1,000 mg/lit TDS: NDWQS standard) and even if the low EC area, iron (Fe) contents are over the NDWQS standard (1.5 mg/lit).

Myangywn TS Fig.3.2.1.2 Trilinear Diagram of Monitoring Wells (1/11)

Mandalay Division Taungtha Township

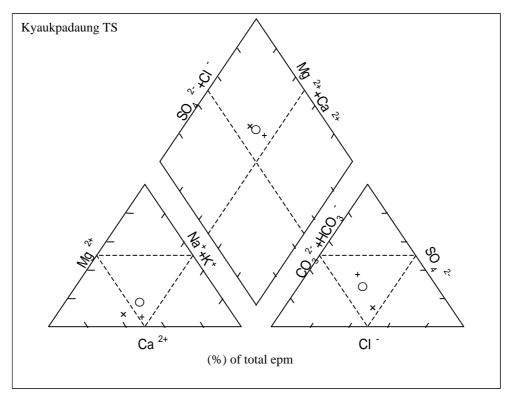
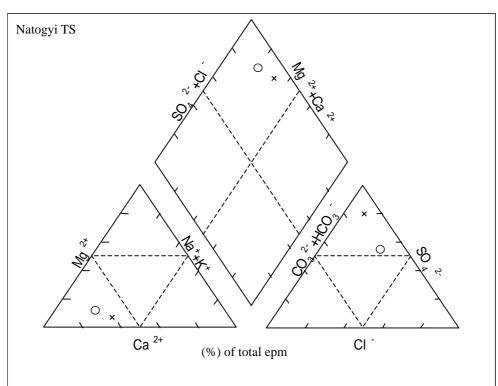
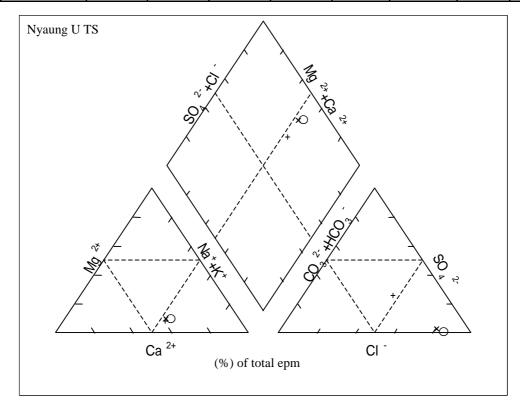

	ha Township								(epm)
No	Village Name	Sample No	Mark	Mg ²⁺	Ca ²⁺	$Na^+ + K^+$	CO ₃ ²⁻ +HCO ₃ ⁻	Cl -	SO4 ²⁻
1	Saikyan	1-4	0	2.13	4.36	2.75	1.39	6.20	1.62
2	Kyaungo	2-4		1.18	4.52	2.47	1.44	5.25	15.24
3	Chongyi (E)	3-4		8.69	35.76	2.99	4.62	27.35	10.77
4	Thazi	4-4		1.61	5.36	3.90	1.84	5.72	3.30
5	Twinbye	5-4		3.91	4.88	3.34	2.10	6.77	3.38
6	Tanaunggon	6-4		2.99	5.44	3.56	2.03	5.78	4.35
7	Welaung	7-4		3.93	10.00	6.07	4.62	7.61	5.07
8	Hlebwegon	8-4		2.59	12.28	2.51	3.26	10.07	4.05
9	Yondaw ywama	9-4		3.49	10.72	2.38	1.34	14.18	2.65
10	Kyauksayakon	10-4		1.14	4.76	2.80	1.25	5.19	2.54
11	Magyigyo	11-4		2.95	8.56	4.18	3.41	6.60	5.78
12	Kyaukchaw	12-4		23.12	29.84	6.34	5.05	22.25	17.67
13	Payahla	13-4		17.99	27.32	4.69	5.70	27.50	14.29
14	Pettaw	14-4	+	0.94	7.16	4.32	1.31	8.38	2.79
15	Thanbo	15-4	×	0.95	2.52	1.25	1.41	1.86	0.72

	Fig.3.2.1.2 Trilinear	Diagram	of Monitoring	Wells (2	2/11)
--	-----------------------	---------	---------------	----------	-------

Mandalay Division Kyaukpadaung Township


Kyaukj	padaung Townshi	ір							(epm)
No	Village Name	Sample No	Mark	Mg ²⁺	Ca ²⁺	Na ⁺ +K ⁺	CO ₃ ²⁻ +HCO ₃ ⁻	Cl ⁻	SO4 ²⁻
1	Saik Htain	1-1	0	0.91	1.76	1.63	1.44	1.33	1.31
2	Lekyee (N)	2-1		1.50	3.80	2.47	1.61	2.71	3.22
3	Thanbo	3-1		0.55	3.52	1.01	0.82	1.55	1.88
4	Hnit Kyat Chwe	4-1		0.36	2.12	4.51	2.29	2.06	2.56
5	Indai (W)	5-1		0.59	2.68	1.10	0.89	1.72	0.66
6	Indai (E)	6-1		0.58	2.72	0.92	0.98	1.83	1.10
7	Indaw	7-1		1.18	2.48	0.96	1.08	1.52	1.94
8	Sebaukan	8-1		1.14	1.76	0.90	0.85	2.03	0.93
9	Bingwe	9-1		0.63	2.88	0.83	1.28	2.20	0.58
10	Aima (S)	10-1		1.62	2.96	1.16	3.02	2.26	1.85
11	Taung Oo	11-1		0.99	2.60	2.85	1.34	1.80	1.37
12	Lat Pan Bya (S)	12-1		1.14	2.40	0.89	0.69	1.89	1.76
13	Kanhnitsint	13-1		1.34	2.68	1.23	2.33	1.80	1.02
14	Yinmagone	14-1	+	1.41	5.32	5.60	2.92	2.51	3.78
15	Yargyidaw	15-1	×	0.67	2.68	1.68	1.48	1.80	0.72

Natogy	i Township								(epm)
No	Village Name	Sample No	Mark	Mg ²⁺	Ca ²⁺	Na ⁺ +K ⁺	CO ₃ ²⁻ +HCO ₃ ⁻	Cl ⁻	SO ₄ ²⁻
1	Myaychar	1-1	0	0.91	3.68	1.16	1.18	3.67	6.90
2	Payayayaung	2-1							
3	Nyaungpintha	3-1		2.40	5.80	2.83	2.95	4.48	39.03
4	Wetlu(E)	4-1		1.54	1.60	2.06	1.64	3.10	11.69
5	Kontha	5-1		2.32	6.80	3.00	2.36	7.64	38.43
6	Phalangon	6-1		2.80	2.28	1.89	1.08	4.26	21.29
7	Thinthayar	7-1							
8	Letwe Myinni	8-1		2.53	2.96	3.57	1.61	6.40	19.19
9	Htanaungpinle	9-1		2.12	5.16	3.31	2.00	5.08	36.93
10	Ywagyi	10-1		6.39	9.64	6.50	4.52	13.25	48.49
11	Tadaw	11-1		1.38	4.04	4.42	2.33	4.40	31.31
12	Tetsi	12-1		2.16	6.44	3.85	1.90	8.12	28.91
13	Htanzin	13-1		1.03	3.16	1.51	1.41	3.16	7.80
14	Nabemyit	14-1	+						
15	Aungpangon	15-1	×	0.95	4.60	2.55	1.80	3.58	28.00


Fig.3.2.1.2 Trilinear Diagram of Monitoring Wells (3/11)

Mandalay Division

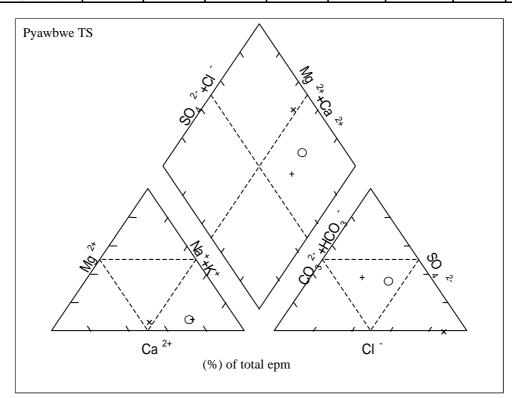

	alay Division g U Township								(epm)
No	Village Name	Sample No	Mark	Mg ²⁺	Ca ²⁺	Na ⁺ +K ⁺	CO ₃ ²⁻ +HCO ₃ ⁻	Cl ⁻	SO ₄ ²⁻
1	Khet Lan Kan	1-1	0	1.11	2.56	4.35	1.67	14.10	0.84
2	Tha Nut Pin	2-1		0.59	1.88	2.39	1.25	3.05	0.55
3	Ta Ma Kha	3-1	+	0.59	1.60	2.47	1.11	2.31	1.49
4	Ngathayauk	4-1		1.07	2.52	3.91	1.21	10.91	0.81
	Hospital								
5	Tae Ma	5-1		0.67	1.40	2.14	1.02	2.28	1.34
6	Thank Sin Kye	6-1		3.38	4.30	9.00	2.07	79.52	3.52
7	Kon Tan Gyi	7-1		1.22	2.92	12.53	1.51	70.56	0.93
8	Nyaung Toe	8-1		3.30	3.42	9.42	2.13	10.74	2.06
9	Let wae	9-1		4.50	3.04	17.48	1.84	85.45	3.42
10	Pyun	10-1		1.03	2.48	3.51	1.28	4.54	1.40
11	Nut Pa Lin	11-1		1.26	2.64	4.64	1.80	11.65	0.96
12	Kone Ywa	12-1		0.95	2.28	3.95	1.44	3.95	1.76
13	Sinluaing	13-1	×	0.95	2.24	3.35	1.15	7.50	0.72
14	Taungzin	14-1		0.63	2.16	2.20	1.21	2.37	1.52
	Hospital								
15	Kutaw	15-1		0.99	2.00	2.90	1.38	7.47	0.75

Fig.3.2.1.2 Trilinear Diagram of Monitoring Wells (4/11)

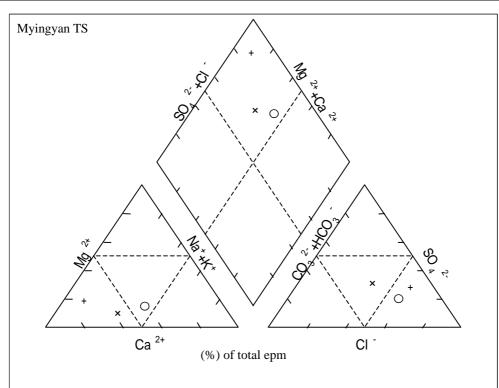
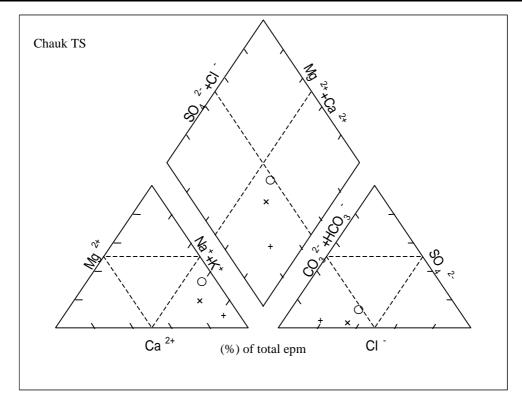

yawo	we Township		1	1		T	1		(epm
No	Village Name	Sample No	Mark	Mg ²⁺	Ca ²⁺	$Na^+ + K^+$	CO3 ²⁻ +HCO3 ⁻	Cl ⁻	SO4 2-
1	Ledaw	1-8		1.14	2.76	6.38	1.54	17.03	0.87
2	Myaungywa	2-8		1.18	2.00	5.26	2.33	2.93	2.98
3	Minywama	3-8		3.87	3.48	8.29	1.41	23.58	2.94
4	Chaunmagyi	4-8		2.01	2.32	1.98	1.62	2.34	2.36
5	Shawbyugon	5-8	0	0.75	1.32	4.12	1.21	2.57	2.44
6	Hta Naung Pin	6-8		0.95	1.72	6.08	2.03	5.10	1.76
	Wine								
7	Payagyi	7-8		1.14	3.64	2.45	3.08	2.96	1.20
8	Chinyagone	8-8		2.41	1.60	1.43	1.21	2.09	1.83
9	Gwezi	9-8		0.71	3.48	4.49	2.43	3.61	2.62
10	Kyauktaing	10-8		0.79	2.24	6.01	2.00	6.54	0.60
11	Nyaungbintha	11-8		0.28	2.28	6.32	2.00	6.06	0.83
12	Sabegon	12-8		2.64	3.16	3.26	2.03	3.75	3.26
13	Talingon	13-8	×	1.03	4.00	4.39	1.61	16.61	0.78
14	Nyaunggon (S)	14-8		1.38	3.66	2.87	3.25	2.43	2.40
15	Thanpangyaung	15-8	+	0.99	1.36	5.33	2.36	2.06	3.25

Fig.3.2.1.2 Trilinear Diagram of Monitoring Wells (5/11)

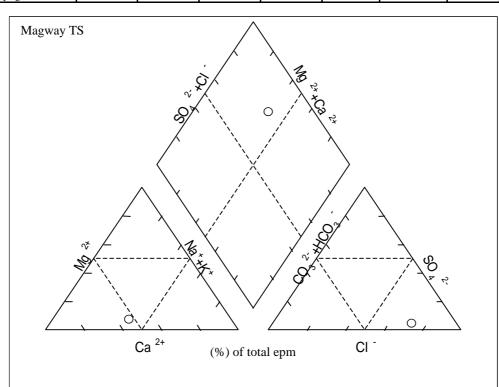
Myingy	an Township								(epm)
No	Village Name	Sample No	Mark	Mg ²⁺	Ca ²⁺	Na ⁺ +K ⁺	CO ₃ ²⁻ +HCO ₃ ⁻	Cl ⁻	SO ₄ ²⁻
1	Kanni	1-1		4.47	9.37	9.09	2.13	22.73	2.42
2	Ywatha	2-1		2.88	3.04	4.89	2.36	4.71	3.75
3	Petyin	3-1		1.26	3.12	4.91	2.16	6.29	0.96
4	Kokke	4-1	+	18.38	53.20	8.83	3.08	25.38	13.96
5	Magyisu	5-1	0	2.05	4.12	4.66	2.03	6.20	2.60
6	Zibingon	6-1		1.69	5.72	4.03	2.20	6.18	3.16
7	Thityon	7-1		2.09	4.24	5.24	3.05	4.48	4.09
8	Taywinbo	8-1		2.75	7.48	4.28	2.52	7.61	4.38
9	Kyaungbyukan	9-1		3.35	6.96	9.10	2.62	12.15	4.83
10	SaKa	10-1		1.37	5.04	3.51	1.44	5.36	3.14
11	Nata	11-1		1.62	8.07	9.10	4.13	10.10	4.64
12	Ywazi (N)	12-1		1.81	6.76	5.04	2.49	6.85	4.29
13	Ywazi (S)	13-1		1.85	5.36	8.86	3.02	8.12	4.94
14	Kuywa	14-1		1.96	5.48	8.86	2.59	7.73	6.08
15	Tak	15-1	×	2.52	9.40	5.50	4.65	6.54	6.24

Fig.3.2.1.2 Trilinear Diagram of Monitoring Wells (6/11)



Mandalay Division Myingyan Township

Chauk	Township								(epm)
No	Village Name	Sample No	Mark	Mg ²⁺	Ca ²⁺	Na ⁺ +K ⁺	CO ₃ ²⁻ +HCO ₃ ⁻	Cl ⁻	SO4 ²⁻
1	Sinka	1-4	0	4.08	0.48	6.47	5.36	3.81	1.85
2	Kyini	14-5	×	2.48	1.20	6.52	5.92	3.38	0.89
3	Kannigyi								
4	Teingan	9-4		3.84	0.96	4.20	4.96	2.26	1.78
5	Ywathit	11-4		0.64	0.32	8.10	7.04	1.13	0.89
6	Magyizauk	6-4		8.39	3.76	21.27	2.08	25.10	6.24
7	Sale	12-4		3.84	0.96	2.74	6.23	1.13	0.17
8	Wayakon	5-4		10.55	3.04	16.67	1.48	24.25	4.52
9	Gwegyo	3-4		2.56	1.43	6.60	6.96	2.54	1.10
10	Kupyu	10-4		0.64	1.28	4.80	3.88	2.26	0.58
11	Nyaungzin	13-4		2.48	0.96	3.90	4.13	1.97	1.23
12	Gwebin	8-4		4.00	0.80	8.01	4.92	6.20	1.68
13	Lalingan (w)	7-4		0.96	0.40	7.75	6.40	2.54	0.17
14	Shwebaukkan	2-4		1.60	0.40	12.00	8.20	3.67	2.12
15	Awzadaw	14-4	+	2.24	0.64	13.92	11.80	3.38	1.61
16	Magyigone	4-4		2.64	0.40	10.87	10.24	2.82	0.84


Fig.3.2.1.2 Trilinear Diagram of Monitoring Wells (7/11)

Magway Division

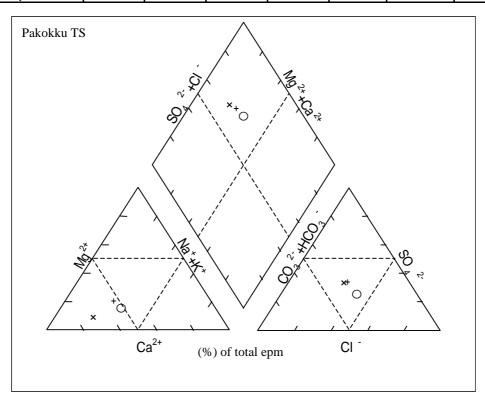

0	ay Division 1y Township								(epm)
No	Village Name	Sample No	Mark	Mg ²⁺	Ca ²⁺	Na ⁺ +K ⁺	CO3 ²⁻ +HCO3 ⁻	Cl ⁻	SO4 2-
1	Nankatkyun	1-1	0	0.79	3.36	2.57	1.34	4.82	0.60
2	Nyaungbinywa	2-1		0.87	3.88	1.46	0.98	4.37	0.66
3	Daungthe	3-1		0.67	2.08	0.85	1.23	1.95	0.51
4	Kyagan	4-1		1.11	4.40	0.93	2.72	1.89	1.84
5	Kyitsonbwe	5-1		1.74	3.40	2.47	2.75	1.95	3.44
6	Gaungdaw-U	6-1		3.04	3.80	2.39	4.33	2.62	2.31
7	Seikya	7-1							
8	Auzagon	8-1		1.30	2.12	3.29	1.57	4.12	1.03
9	Thityagauk	9-1		0.94	6.20	1.18	3.25	2.96	2.17
10	Alebo	10-1		1.46	2.24	3.85	2.20	2.14	3.19
11	Myingon	11-1		1.86	2.04	3.90	1.25	4.54	0.35
12	Migyaungye	12-1							
13	Samagyi	13-1		1.57	3.16	1.45	2.98	1.83	1.41
14	Popagon	14-1							
15	Myingin	15-1		2.00	5.04	1.58	1.64	5.44	1.52

Fig.3.2.1.2 Trilinear Diagram of Monitoring Wells (8/11)

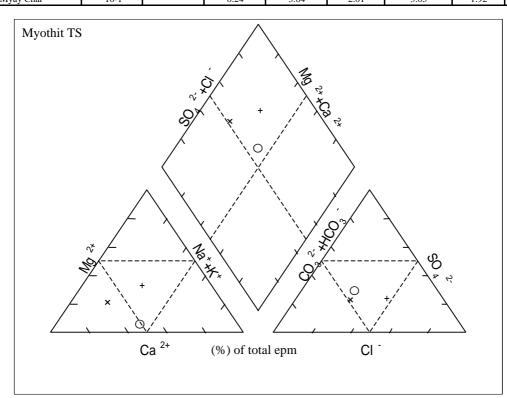

0	ay Division ku Township								(epm)
No	Village Name	Sample No	Mark	Mg ²⁺	Ca ²⁺	Na ⁺ +K ⁺	CO ₃ ²⁻ +HCO ₃ ⁻	Cl ⁻	SO ₄ ²⁻
1	Anauk Kone	1-1	0	1.58	3.88	2.59	2.29	3.13	2.24
2	Kanma	2-1		5.18	17.36	1.82	0.92	24.84	3.93
3	Anauk Kone	3-1		1.11	3.56	2.89	1.28	3.58	2.92
4	Sabe	4-1		1.54	3.04	1.31	0.95	1.44	1.17
5	Makykgan	5-1		1.58	4.56	3.18	1.44	3.78	1.82
6	Myitche(S)	6-1		1.85	6.04	2.84	3.21	3.67	3.48
7	Kaing-3	7-1		1.50	4.20	0.86	1.41	2.45	1.76
8	Inpin	8-1		0.63	3.40	0.60	1.31	1.49	1.73
9	Chutkan	9-1		2.00	6.16	3.18	3.02	4.79	3.58
10	Myin Gyaing	10-1		0.51	2.72	0.62	0.98	1.66	0.39
11	Myokhinthar	11-1		0.79	1.96	3.17	1.28	3.38	0.60
12	Kyiywar	12-1		2.20	6.56	7.36	3.28	26.20	0.62
13	Patai Chane	13-1		1.73	5.16	4.82	4.10	4.94	3.39
14	Magyipinpu	14-1	+	2.17	4.20	2.32	2.85	3.19	3.73
15	Be Gyi-1	15-1	×	1.37	6.96	2.09	2.75	2.48	3.12

Fig.3.2.1.2 Trilinear Diagram of Monitoring Wells (9/11)

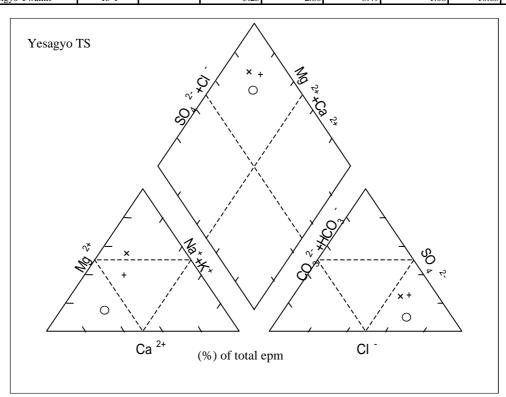

0	ay Division it Township								(epm)
No	Village Name	Sample No	Mark	Mg ²⁺	Ca ²⁺	Na ⁺ +K ⁺	CO ₃ ²⁻ +HCO ₃ ⁻	Cl -	SO4 2-
1	Thamye	1-1	0	0.71	3.44	3.07	2.88	1.95	2.41
2	Leadaingzin	2-1		1.86	2.16	2.18	2.39	2.28	1.45
3	Gwaydaw	3-1		1.70	3.12	1.42	1.34	3.24	1.71
4	Natywa	4-1		2.88	1.72	0.94	1.38	2.00	2.19
5	Aungmyinthar	5-1		1.54	3.60	1.47	2.88	1.72	2.02
6	Pogyi	6-1		1.86	2.64	1.53	2.66	1.97	1.41
7	Myinsu	7-1		0.20	3.44	0.89	1.51	2.06	0.98
8	Yondaw	8-1		3.63	2.08	2.31	1.97	3.36	2.76
9	Wagyiaing	9-1		1.89	3.20	2.36	2.59	2.90	1.96
10	Ngwele	10-1		1.18	3.36	1.21	1.80	2.31	1.65
11	Twinle	11-1		2.17	3.88	1.18	1.38	4.23	1.65
12	Shwebanbin	12-1		7.67	15.04	3.12	1.11	25.44	5.82
13	Myegyo(E)	13-1							
14	Taloukbin	14-1	+	3.00	2.48	2.49	1.88	3.78	2.28
15	Ywayhit	15-1	×	1.62	3.48	1.11	2.82	1.72	1.77
16	Myay Char	16-1		0.24	3.84	2.01	3.05	1.92	1.22

Fig.3.2.1.2 Trilinear Diagram of Monitoring Wells (10/11)

0	vay Division 70 Township								(epm
No	Village Name	Sample No	Mark	Mg ²⁺	Ca ²⁺	$Na^+ + K^+$	CO ₃ ² +HCO ₃ ⁻	Cl -	SO4 2-
1	Thitkyidaw	1-1		1.14	4.08	3.67	1.67	4.09	2.9
2	Wetgadaw	2-1		0.79	4.80	3.71	2.26	4.23	2.6
3	Auko(E)	3-1							
4	Kokekosu	4-1		1.69	6.00	2.47	2.88	4.88	2.4
5	Mauale	5-1		1.38	4.04	3.84	3.41	2.88	3.0
6	Kyetsugyin	6-1	0	0.95	3.04	1.12	1.02	3.30	0.7
7	Myebyu	7-1	×	3.95	1.80	0.86	1.05	3.64	1.9
8	Ywange	8-1	+	5.29	4.24	2.55	1.28	7.90	4.0
9	Nyaungzauk	9-1		0.79	3.28	0.58	0.39	2.71	0.6
10	Kanthit	10-1		5.24	6.51	5.76	1.48	26.59	3.9
11	Tando	11-1							
12	Myegedaung	12-1							
13	Pakangyi	13-1		0.91	3.80	4.59	1.87	11.34	0.6
	(Hospital)								
14	Sitha	14-1		6.16	3.32	9.04	2.59	29.47	4.6
15	Sigyo Ywathit	15-1		5.25	2.80	3.49	1.08	10.63	3.9

Fig.3.2.1.2 Trilinear Diagram of Monitoring Wells (11/11)

(2) Geophysical Survey

1) Objective of Geophysical Survey

The objective of geophysical survey was to clarify the distribution of the aquifer and to assume the potential of groundwater development in the Study Area.

This survey was performed to search for resistivity structure in 110 villages (10 villages in every 11 Townships in Mandalay and Magway Divisions), which had been selected by DDA from the viewpoint of high difficult to obtain the domestic use water. As a survey method, Vertical Electrical Sounding was carried out at 2 points, which were named V1 and V2, in each target village. The point V1 was an assumed drilling site proposed by villagers and the survey team selected the point V2 from a geological point of view.

Based on the results of hydrogeological survey and the above Vertical Electrical Sounding, Horizontal Electrical Profiling was carried out at 2 to 5 target villages chosen in order to grasp the aquifer condition or the existence of fissure water in the comparatively shallow layer in each Township.

Schlumberger method was applied for the configuration of Vertical Electrical Sounding and Horizontal Electrical Profiling as well. The depth of Vertical Electrical Sounding was up to 300 meters in principle because the proposed well depths were assumed between 200 meters and 300 meters. The depth for Horizontal Electrical Profiling was about 50m.

The work volumes of the geophysical survey and principal specification are as shown in Table 3.2.1.1.

Method	Configuration	Survey	Line	Number of village	Total number of	
		depth	length	(village/Township)	survey points or	
					survey lines	
Vertical Electrical.	Schlumberger	300m	-	10 villages	220 points	
Sounding				× 11 Townships		
Horizontal	Schlumberger	50m	300m	2-5 villages	31 lines	
Electrical Profiling	or VLF			× 11 Townships		

 Table 3.2.1.1
 Work Volume of Geophysical Survey

2) Schlumberger Method

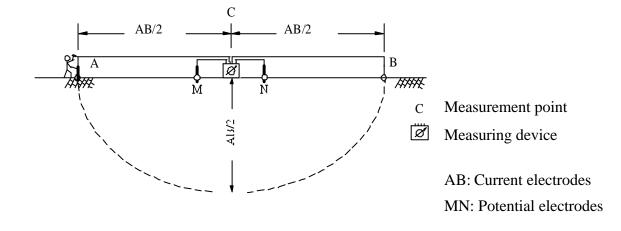


Fig. 3.2.1.3 shows the electrode configuration of Schlumberger method.

Fig. 3.2.1.3 The Electrode Configuration of Schlumberger

The measuring device should be placed at the center(C) between M and N, which function as potential electrode. Current electrodes A and B, should be installed in the line symmetry at interval AB/2. When an electric current (I) runs between A and B, the potential value (V) occurs between M and N. Therefore an apparent resistivity is given by the following formula.

$$_{a} = \frac{\left(\frac{\overline{AB}}{2}\right)^{2} \left(\frac{\overline{MN}}{2}\right)^{2}}{\overline{MN}} \times \frac{\Delta V}{I}$$

$$a : Apparent resistivity V : Potential Value I : Current Value I$$

In measuring of an apparent resistivity, a shorter interval between A and B reflects a shallower underground structure and on other hand a longer interval between A and B reflects a deeper structure. Therefore, the length between A and B should be expended step by step up to the proposed depth. Plotting of these apparent resistivity values forms Vertical Electrical Sounding Curve. The length between A and B should generally be from 5 to 20 times as larger as the same between M and N so as to avoid noises of measurement. This time, about 20 times was adopted for the relation of the above two lengths. The length of AB/2 was begun at about 3 meters then extended up to 300 meters in principle. However, in cases of Nyang-U and Chauk Townships, a distance of 500 meters was applied.

Horizontal Electrical Profiling was carried out to prospect for disorders of geological stratum

by measuring the apparent resistivity changes of the same depth along the survey line. In order to detect the change of resistivity structure up to 50 meters subterranean, intervals of AB/2=50m and MN/2=10m were applied and the apparent resistivities were measured by moving the whole circuit system along the survey line.

3) Analysis of Vertical Electrical Sounding

The measured values of the sounding are plotted in a logarithm-logarithm graph to draw a Vertical Electrical Sounding Curve. The vertical axis of the graph shows an apparent resistivity value and the horizontal axis shows a distance (AB/2).

The underground resistivity structure of the surveyed point is assumed by comparing the above Vertical Electrical Sounding Curve to the Standard Curve, which has been prepared as a series of resistivity models corresponds practically to the variety of the particular rock.

Through comparison as mentioned above, the most similar resistivity model shall be selected as an initial model for the analysis. Then this model shall be developed to the final model by computation using RESIX software, which is widely applied in the 1st dimensional analysis of Vertical Electrical Sounding method. The RESIX is an automatic inversion program software in order to determine the final resistivity model by approximating the theoretical curve of the initial model to the actually surveyed curve through the least-squares method.

4) Result of survey

There is a high correlation between the type of rock and the value of resistivity. It is generally accepted that rocks formed in the more ancient times generally show the higher value and sedimentary rocks show lower value than volcanic rocks. Moreover, sedimentary rocks of marine original show lower value than sedimentary rocks of terrestrial original. These correlations are shown in Table 3.2.1.2.

	Table 3.2.1.2 Resistivity Range of Rocks					
Geologic age	Marine sand,	Terrestrial sand,clay	Volcanic rocks (basalt, ryolite,	Granite, gabbro, etc.	Limestone, dolomite,	
Geologie üge	shale,	stone, arkose	tuffs)	gubbi 0, etc.	anhydrite,salt	
	graywacke					
Quaternary, Tertiary	1-10	15-50	10-200	500-2,000	50-5,000	
Mesozoic	5-20	25-100	20-500	500-2,000	10-10,000	
Carboniferous	10-40	50-300	50-1,000	1,000-5,000	200-100,000	
Pre-Carboniferous	40-200	100-500	100-2,000	1,000-5000	10,000-100,000	
Paleozoic						
Precambrian	100-2,000	300-5,000	200-5,000	5,000-20,000	10,000-100,000	

Table 3 2 1 2 Desistivity Dange of Decks

Source: G. R. Keller, in "Handbook of Physical Constants," rev. ed., Geol. Soc. Am. Mem. 97. 1966.

From the hydrogeological point of view, the Quaternary deposit and the Irrawaddy Formation are generally assumed to be the promising formations for developing of fresh groundwater. On the other hand the Pegu Group has a very low possibility of aquifer existence.

According to the experience of WRUD (Water Resources Utilization Department under the Ministry of Agriculture and Irrigation), good aquifer in the Central Dry Zone is generally assumed at 20-40 ohm-m in electrical resistivity value.

Each layer analyzed in this Study was categorized into the following ranges in accordance with resistivity value detected:

 5	10) 15	2	0 40	80	(•m)
UL	VL	L	М	Н	VH	UH

The most promising aquifer is expected to be in the range of H. As the range goes from M to L, a water quality risk like saline or bitterness should become higher gradually. The ranges of VL and UL correspond to clayey layer or aquifer with high saline water. On the other hand as the range goes from VH to UH, groundwater volume to be developed should become less and less. Accordingly the possibility of groundwater development in each survey points is classified into the following three ranks.

А	Range H detected thick and High possibility of existence of aquifer		
В	Resistivity layers of 20 ohm-m (Range M) or less are predominant and Low		
	possibility of existence of aquifer		
С	Resistivity layers of 10 ohm-m (Range VL) or less are predominant and Very		
	low possibility of existence of aquifer		

The underground resistivity structure of in each Township is shown in a series of figures from Fig.3.2.1.4 to Fig.3.2.1.14 and in Table 3.2.1.3, and the horizontal electrical profiling is also shown in a series of figures from Fig.3.2.1.15 to Fig. 3.2.1.25.

In addition, the result of one-dimensional analysis, the Vertical Electrical Sounding Curve of the final model and practice value of each point is presented in 3-A of Vol. III Supporting Report, and the result of Horizontal Electrical Profilings is in 3-B of Vol. III Supporting Report. The geophysical overviews including the geological structures for each Township are summarized as follows:

(a) Taungtha Township (see Fig. 3.2.1.4)

Three villages (No.2 Kanthonesint, No.3 Tabaukkon and No.6 Twinbye), which are located in the western part of the Township, were evaluated at the rank A Because these villages are located in the distribution area of the Irrawaddy formation, which is normally recognized to have a good aquifer. In the central part of the Township, two villages (No.5 Dahatan, No.7 Kyaukpon) are located on the Irrawaddy formation. However, its resistivity structures show the range M or lower. In the eastern part of the Township, five villages were situated on the Pegu Group. Its resistivity structures were classified into the range VL or lower. Therefore the survey points in the central and the eastern of the Township were evaluated at the rank B or C, which means low possibility of existence of aquifer. In the southeastern part of the Township, since No.10 Sizongon were detected at the range M or H in the resistivity structure, a possibility of existence of aquifer was expected. However, depending on reexamining the geological condition, it was confirmed that this village was located on the Pegu Group and some neighboring villages were also detected at the range VL or UL. Then, the reason why such high ranges of resistivity were detected in No. 10 Sizongon was assumed that there might be a high possibility of existence of massive sandstone layer. Therefore No.10 Sizongon was concluded to have a poor possibility for development of groundwater.

The horizontal electrical profiling was carried out in three villages in the western part of the

Township (see Fig.3.2.1.15). The profiles were shown a small change in the apparent resistivity value within a range of 50m in depth. Their resistivity structures were evaluated at the range H or VH. Accordingly it was assumed that an aquifer would continue with simple structure in these areas.

(b) Kyaukpadaung Township (see Fig. 3.2.1.5)

Most of the survey points in the Township were evaluated at the rank A except No.10 Lwinpinkone village, which is located in the southern part of this Township. In the villages of No.1 Gweydaukkone, No.4 Htantawgyi, and No.5 Kanbauk, the two survey points in these villages were evaluated at the rank A in possibility of groundwater development. Since the Irrawaddy Formation is widely distributed from the central to the northern parts of the Township, it can be said that this Township generally has a high possibility of existence of aquifer. Out of the 10 study villages, No.10 Lwinpinkone village is only located on the Pegu Group, so the resistivity structures was classified into the range M or lower.

The horizontal electrical profiling was carried out in four villages in the central part of the Township (see Fig. 3.2.1.16). As the profiles of No.3 Tangakan village and No7 Sagyaw village show some declined points in apparent resistivity value, it was assumed that the presence of discontinuity of geological structure such as faults. On the other hand the profiles of No.4 Htantawgyi and No.6 Sudat villages show a small change of the apparent resistivity value. Their resistivity structures were evaluated the rangs from H to UH. Accordingly it was assumed that an aquifer would continue simply in these areas.

(c) Natogyi Township (see Fig.3.2.1.7)

Most of the survey points in the Township were evaluated at the rank B or C. In the central part of this Township, the resistivity structures of No.3 Morgan W. were evaluated at the range H, even if it locates on the Pegu Group. However, depending on reexamining the geological condition, it was confirmed that this village was located on the Pegu Group and some neighboring villages were also detected at the range L or VL. Then, the reason why such high ranges of resistivity were detected in No. 3 Morgan W was assumed that there might be a high possibility of existence of massive sandstone layer and poor groundwater. Therefore No.3 Morgan W was concluded to have a poor possibility for development of groundwater.

Among the survey villages No.1 Pegyet, No.4 Thangwa are located on the Irrawaddy formation, however, the range L or lower were predominant in the resistivity structure. Therefore the both villages were evaluated at the rank B in possibility of groundwater development. In case of No.1 Pegyet, while the range H was detected around 160m or more

in depth, it was evaluated at the rank B, assuming the test well to be constructed shall have a 200m depth.

The horizontal electrical profiling was carried out in two villages in the eastern part of this Township (see Fig. 3.2.1.17). The profiles show a small change of the apparent resistivity value and the resistivity rank VL. Therefore it was assumed that a clayey layer or a layer with saline water aquifer should be predominant in this area and the possibility of the groundwater development was not so high within a range of 50m in depth.

(d) Nyang-U Township (see Fig. 3.2.1.17)

According to the survey result, the rank A is predominant widely in the parts from the center to the east of this Township. Five surveyed villages, No.1, Kantharyar, No.2 Kuywa, No.3 Phalankan, No.4 Setsetyo, and No.8 Myetkhataw were evaluated at the rank A. On the other hand, the rank B is predominant in the western part of the Township. These survey results coincide with a geological observation that the Irrawaddy Formation is distributed from the central to the eastern parts of the Township and the Pegu Group is distributed in the western part.

The existing well data show that groundwater levels should exist about 200 meters in depth in the southeast part of the Township. A resistivity boundary also appeared around 200m in depth of each resistivity columnar of No.3 Phalankan, No.4 Setsetyo, No.8 Myetkhataw and No.9 Ywalu villages. Therefore it was assumed that the depth of the resistivity boundary should coincided with the existence of the groundwater level. Although these survey points were classified at the range H within depth from 0m to 100m, groundwater volume in the aquifer was estimated to be rather small, judging from the existing well data. Therefore it was proposed that the depth of the test well to be constructed in this study should be about 300m in case these villages would be selected.

The horizontal electrical profiling was carried out in five villages in the central and eastern part of this Township (see Fig. 3.2.1.18). The profile of No.2 Kuywa shows a small change of the apparent resistivity value, it suggest that the presence of discontinuity of geological structure. The resistivity structure was ranged at VH or UH within 50m in depth. Although the water volume to be developed in this area was not sure, a high possibility of groundwater development was expected by drilling wells with a depth of 300m. The profiles in other four points show a poor change in the apparent resistivity value and the resistivity rank VH or UH. It was expected that the possibility of the groundwater development would be rather high in this Township.

(e) Pyawbwe Township (see Fig.3.2.1.8)

From the hydrogeological point of view, the Quaternary sediments are distributed in the eastern part of the Township, The Irrawaddy Formation and the Pegu Group are distributed in the central part and the western part.

The result of the survey, in three villages such as No.3 Yebyu, No.4 Paukaingyo and No.6 Thabok, which are located in the eastern part of this Township, the resistivity structures were evaluated at the ranges from M to UH. Especially in No.4 and No.6 villages the possibility of aquifer was evaluated at the rank A. The reason of occurrence of high resistivity in the eastern part of the Townships was assumed that the ground surface was covered with the Quaternary sediments very thinly. And the high resistivity might reflect that the most of the underground basement should be predominant of granite or crystalline schist. Therefore, a target of groundwater development in the eastern part was assumed the fissure water among the hard rocks.

The villages located in the central and the western part where the Irrawaddy Formation is more predominant than the eastern part, however, the possibility of aquifer were evaluated at the range B or C.

The horizontal electrical profiling was carried out in two villages, which are located on the Irrawaddy Formation in the central part of this Township (see Fig. 3.2.1.19). The profiles show a small change in the apparent resistivity value around the range VL. Therefore it was assumed that a clayey layer or a layer with saline water aquifer should be predominant in this area.

(f) Myingyang Township (see Fig.3.2.1.9)

Most of the survey points in this Township were evaluated at the rank B or C in possibility of development of groundwater. However, No.1 Chinmyikyin village and No.9 Gwebinyo villages were evaluated at the rank A because there was a layer classified into the resistivity range H around 100-160m in depth in No.1 Chinmyikyin and also a layer with the range VH around 100 - 220m in depth in No.9 Gwebinyo.

From the point of geological characteristics in this Township, The Pegu Group is distributed in the northern part and the southeastern part, the Irrawaddy Formation is distributed in the central part, and the Quaternary sediments and the Irrawaddy Formation are distributed in the southern part. Although No.8 Saka is supposed to be situated on the Quaternary sediments, which can be generally expected to have a good aquifer, the rank B was evaluated because a layer with the resistivity classification VL was detected from the ground level until more than 200m in depth. Accordingly this Township was evaluated at a lower rank in possibility of

groundwater development.

The horizontal electrical profiling was carried out in No.1 and No.2 villages in the northern part of this Township (see Fig. 3.2.1.20). The profiles in No.1 village show lots of changes of the apparent resistivity value up to 50m in depth. This suggests that the presence of discontinuity of geological structure. The profiles of No.2 village show a very small change of the apparent resistivity value. The classification of resistivity was the range VL, therefore it is assumed that a clayey layer or a layer with saline water aquifer should be predominant in this village.

(g) Chauk Township (see Fig. 3.2.1.10)

Most of the survey points in this Township were classified into the range VH or UH. From the point of geological characteristics in this Township, The Irrawaddy Formation is distributed in the northern part and the central part, The Quaternary sediments and the Irrawaddy Formation are distributed in the southern part. The Pegu Group is distributed in a small area in the northern part of the Township. Three villages (No.3 Sangan, No.5 Kywedatywama and No.9 Yela), which are located in the eastern part of this Township, were classified into the rank A, since a layer with the resistivity range H was detected.

The horizontal electrical profiling was carried out in two villages in the eastern part of this Township (see Fig. 3.2.1.21). The profiles of No.8 village show changes of apparent resistivity value. This suggests that the presence of discontinuity of the geological structure. The classification of resistivity was the ranges from VH to UH and it was assumed that a dry layer should continue until 50m in depth. The profiles of No.3 village show a few changes of apparent resistivity value. Therefore it is assumed that the simple geological structure would continue in this area.

(h) Magwey Township (see Fig. 3.2.1.11)

The survey points in the northwestern part of this Township were classified into the resistivity range H to UH, and the same in the southeast part were classified into the range H to VL. From the point of geological characteristics in this Township, The Irrawaddy Formation is distributed in almost the whole Township, except the southern and the eastern part where the Pegu Group is distributed and, No.2, No.3 and No.8 village are located on it. According to the existing well data, there is an anticline extending northwest to southeast through the east distribution area of the Pegu Group. Judging from the existing well data, it is assumed that the difference of resistivity structure in the northwestern part and the southeast part might reflect the existence of the in deep.

The horizontal electrical profiling was carried out in No.1 village in the northwestern part and No.8 village in the southeastern part of this Township (see Fig. 3.2.1.21). Although the high apparent resistivity value was measured at No.8, judging from the both measured values, it was assumed that the data should be affected by noises therefore the change of apparent resistivity should be very few in the both villages. As the classification of resistivity was evaluated at the range from VH to UH, it was assumed that a dry layer should continue in these areas.

(i) Pakokku Township (see Fig. 3.2.1.12)

Most of the survey points in this Township were classified into the resistivity ranges from M to VH. Two villages (No.2 Magyithonepin, and No.4 Anaukponekan) were classified at the rank A. From the point of geological characteristics in this Township, the Irrawaddy Formation is distributed in the central wide area and the Pegu Group is in the comparatively small area near both at west and east ends. Therefore the existence of a good aquifer is expected. According to the existing well data, the groundwater level is in 50-100m in depth and becomes shallow to the Ayearwaddy River.

The horizontal electrical profiling was carried out at four villages located in the central part of this Township (see Fig. 3.2.1.23). The profiles of No.3 village and No.4 village show a very small change in the apparent resistivity value. The classification of resistivity was evaluated at the range from H to UH, therefore it was assumed that a layer with aquifer would continue simply in this area. In No.5 village the apparent resistivity value was detected to fall gradually from the northern to the southern parts, however, it was judged that the phenomenon should appear by the influence of existence of layers with the resistivity ranges UL and L in the shallow underground at the survey point V1, which is located in the south of the village. Therefore it was assumed that there is no change of geological structure in this village. In No.7 village the profile shows a small change of the apparent resistivity value. As the classification of resistivity was evaluated at the range L, it was assumed that a clayey layer or an aquifer with salt water should continue.

(j) Myothit Township (see Fig.3.2.1.13)

Most of the survey points in this Township were classified into the resistivity range from M to VH. Three villages (No.1 Thamya, No.2 Ledaingzin N & S and No.6 Myinsu) were evaluated at the rank A. From the point of geological characteristics in this Township, the Irrawaddy Formation is distributed over the whole area, and the Quarterly sediments covers on the Irrawaddy Formation in No.7 village. Depending on the existing well data, the groundwater

level of No.1 village, which is located in the northern part, was estimated at 120m in depth, and the same of No.4, and No.5, which are located in the central part, were at 55-75m. And the same of No.9 village in the southern part was at 25m as well.

The horizontal electrical profiling was carried out at two villages in the central part (No.4, No.6) (see Fig. 3.2.1.24). From the hydrogeological point of view, the existence of fault was suspected near No.4 village, however, a remarkablly unusual belt was not detected through the VLF-EM electromagnetic method survey which was carried out by the Study team. As the profiles of No.6 village show comparatively large changes of the apparent resistivity value, whose resistivity classifications were at the range VH, the presence of discontinuity of geological structure was assumed.

(k) Yesagyo Township (see Fig.3.2.1.14)

Most of the survey points were classified at the resistivity range L, which means a low possibility of existence of good aquifer in this Township. Excerpt in No.8 village the resistivity range was classified into the range H around 25m - 85m in depth, and in No.6 village the resistivity range VH was detected around 30m - 210m in depth. From the point of geological characteristics in this Township, The Irrawaddy Formation is distributed in the northern part, the Pegu Group is distributed in the central and the southern part, and the Irrawaddy Formation is distributed at the southern end, where No.10 village is located. The possibility of the groundwater development in this Township was evaluated at the rank B and C as a whole.

The horizontal electrical profiling was carried out in three villages in the northern part of this Township where the Irrawaddy Formation is predominant (see Fig.3.2.1.25). The profiles of these villages show a small change of the apparent resistivity value. As the classification of resistivity was evaluated at the range L to VL, it is assumed that a clayey layer or an aquifer of salt water should continue.

5) Conclusion

The villages, which were evaluated at the high possibility of the groundwater development in each Township, were shown in Table 3.2.1.4.

Since it was assumed that two villages shall be selected in each Township as the site of test well to be constructed during this study, the village evaluated at the rank B were extracted in the Townships, whose possibility of groundwater development was evaluated at the lower rank.

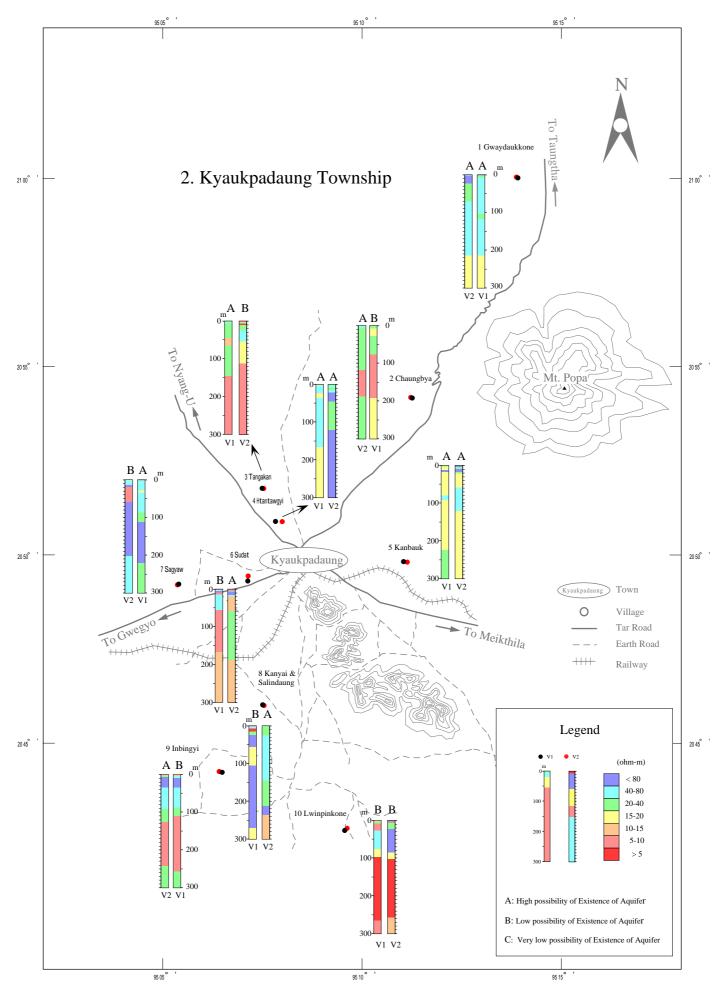
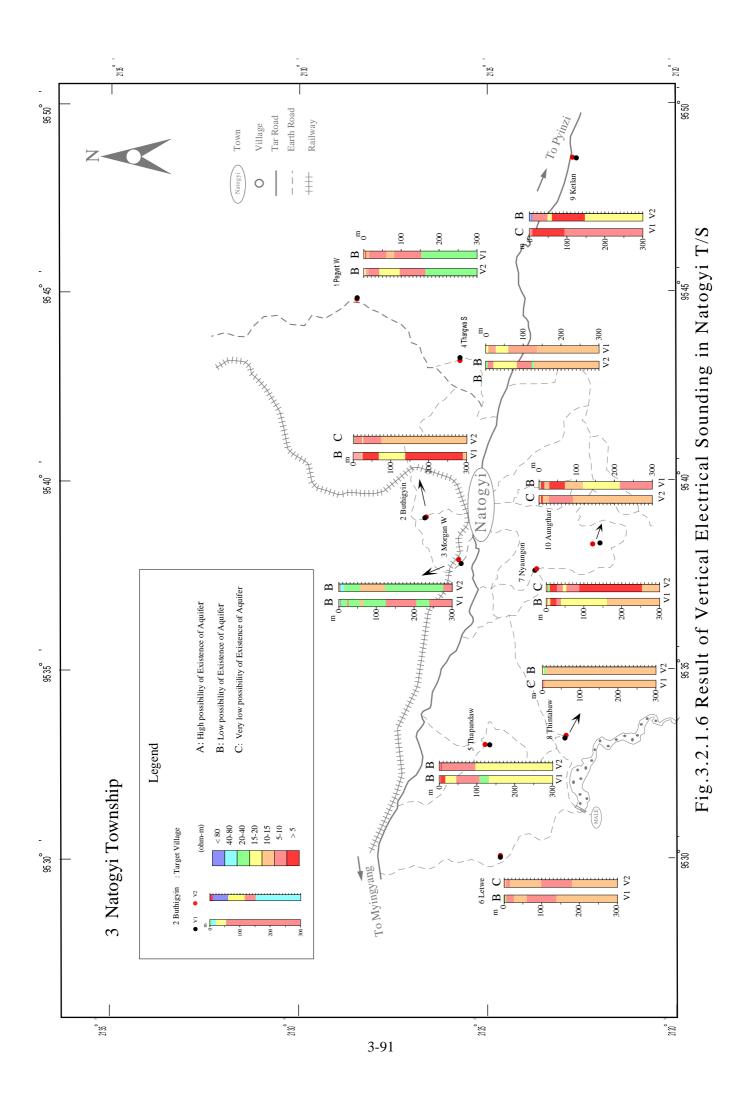
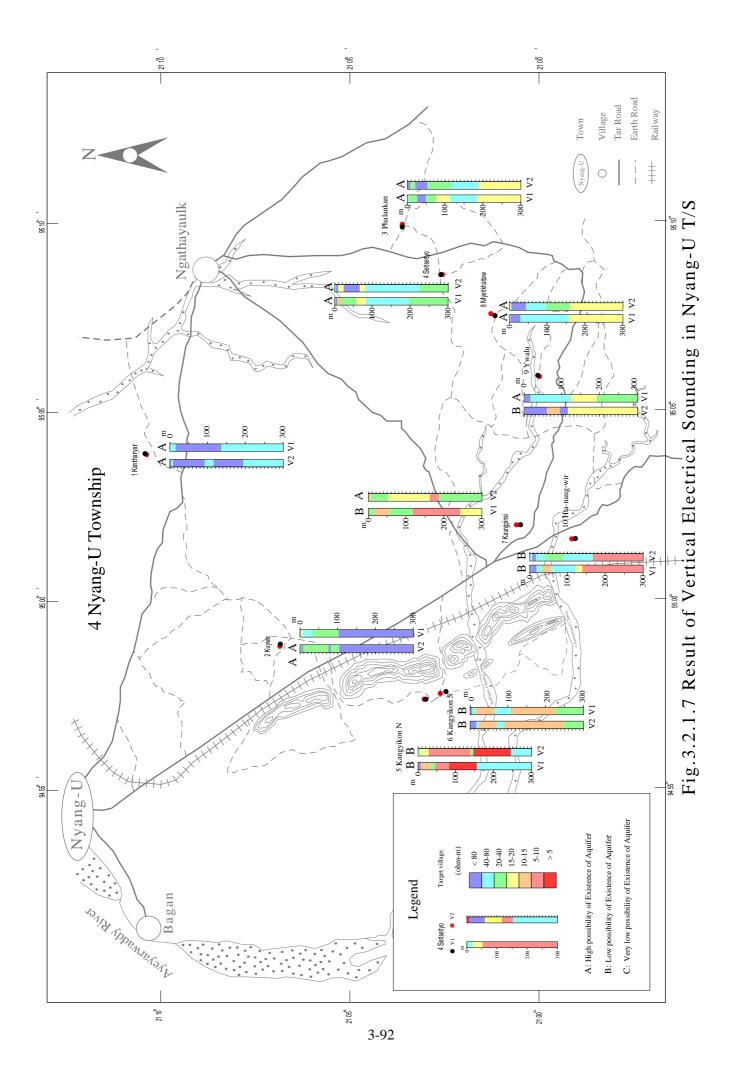
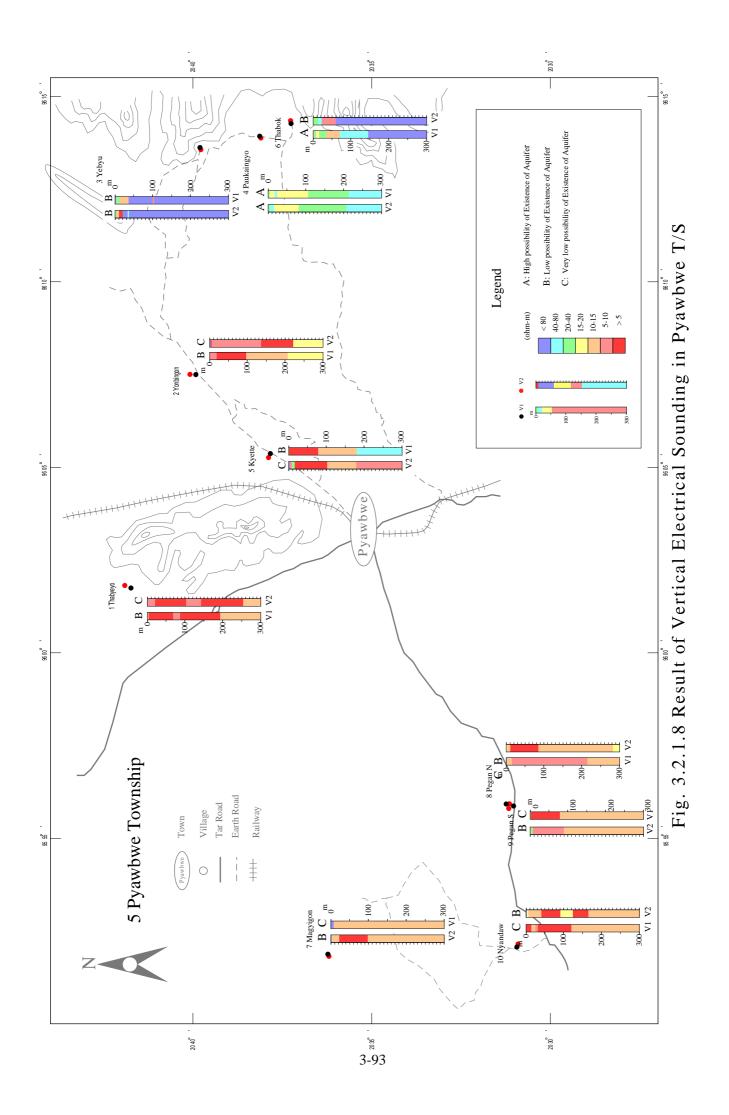





Fig. 3.2.1.5 Result of Vertical Electrical Sounding in Kyaukpadaung T/S

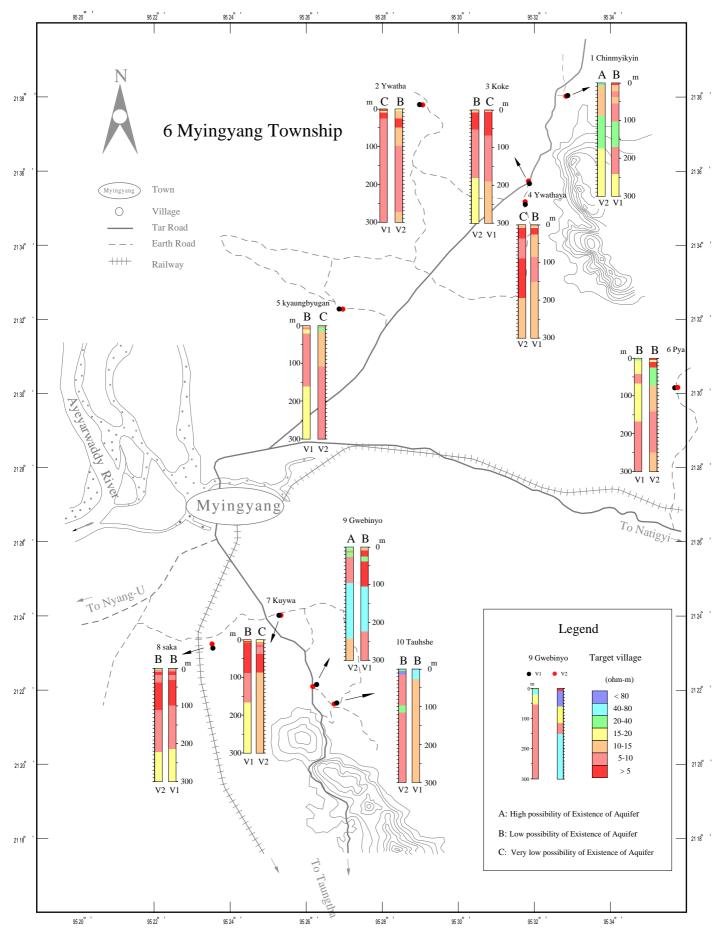


Fig. 3.2.1.9 Result of Vertical Electrical Sounding in Myingyang T/S

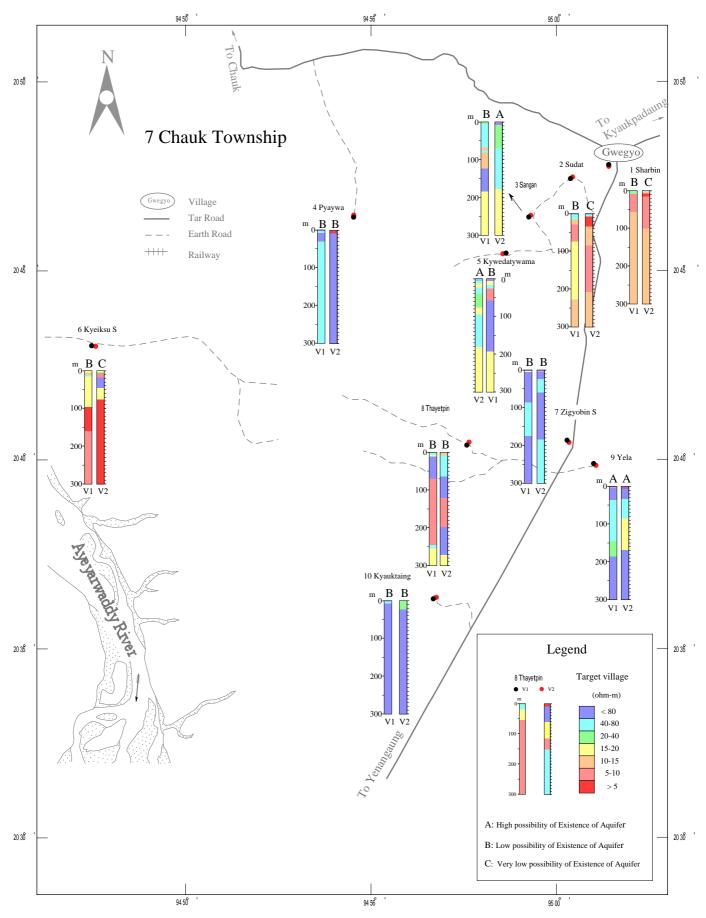


Fig.3.2.1.10 Result of Vertical Electrical Sounding in Chauk T/S

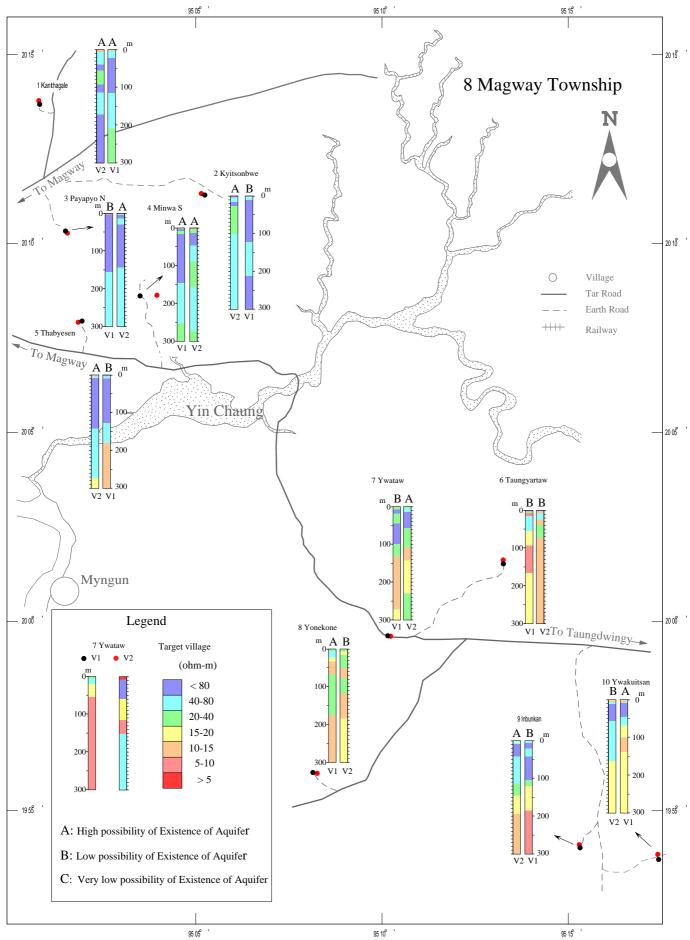
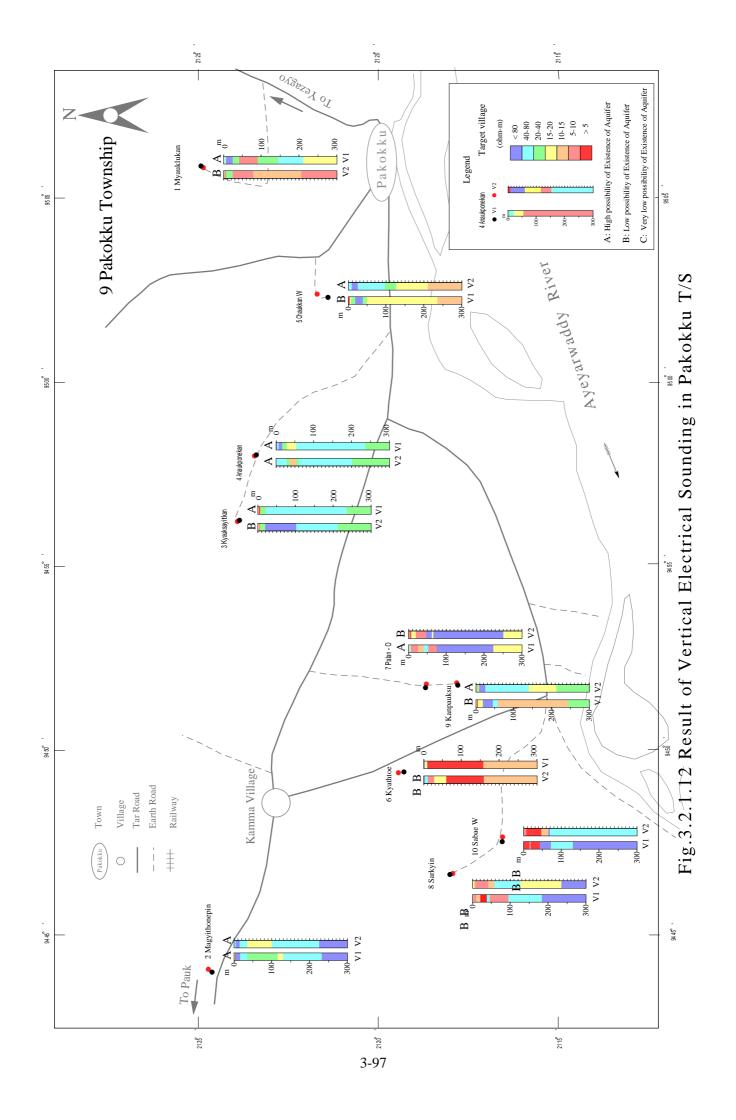



Fig. 3.2.1.11 Result of Vertical Electrical Sounding in Magway T/S

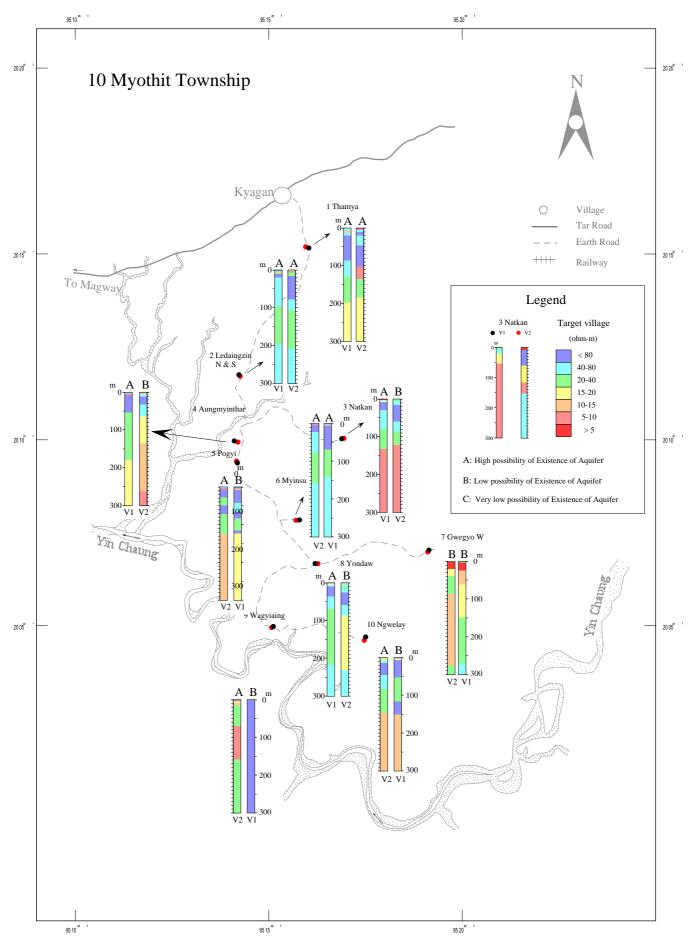
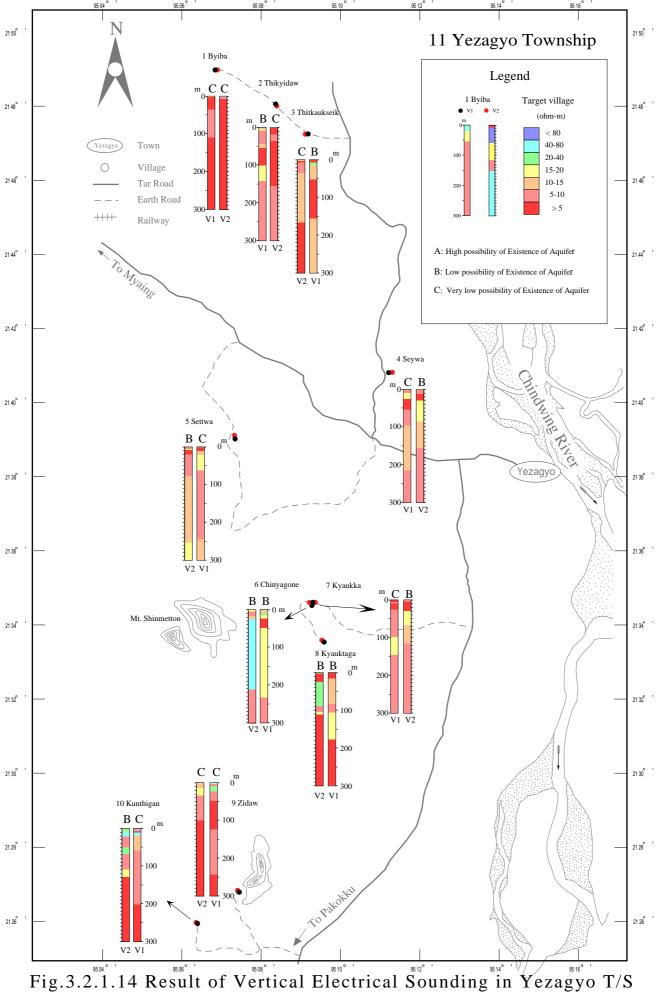
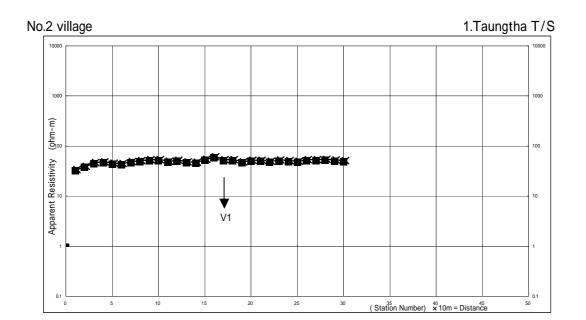
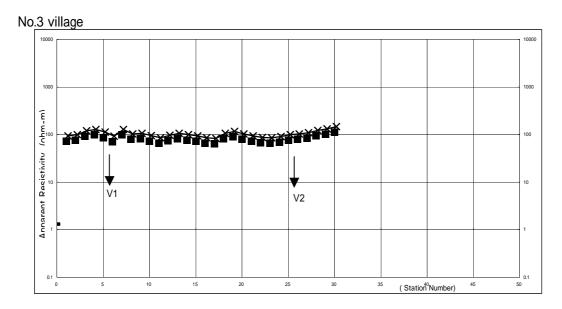
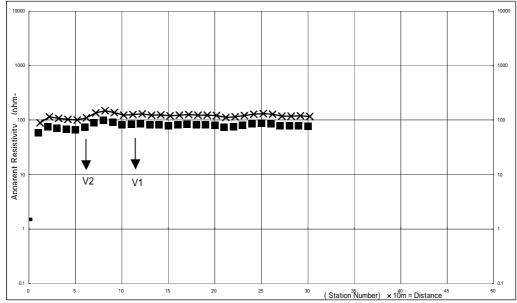
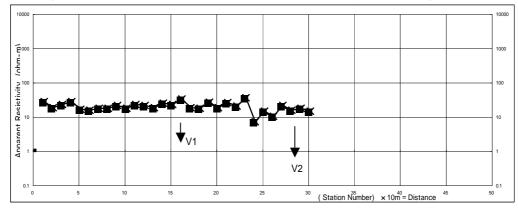
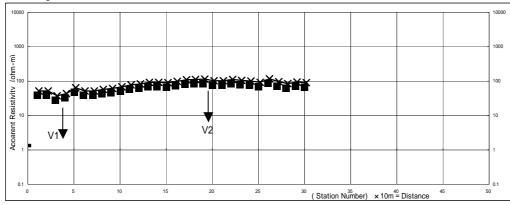
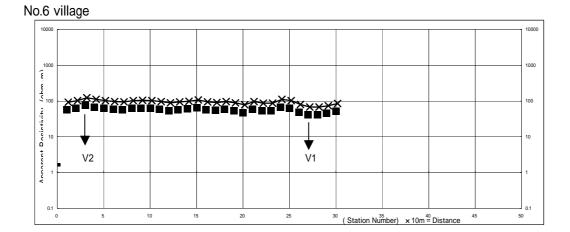
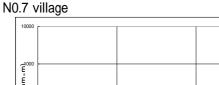





Fig.3.2.1.13 Result of Vertical Electrical Sounding in Myothit T/S


Fig. 3.2.2.15 Result of Horizontal Electrical Profiling in Taungtha T/S

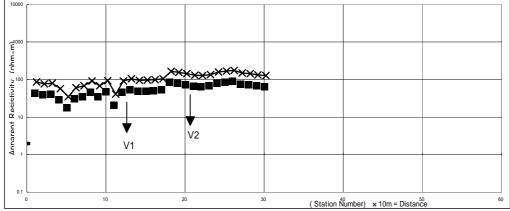
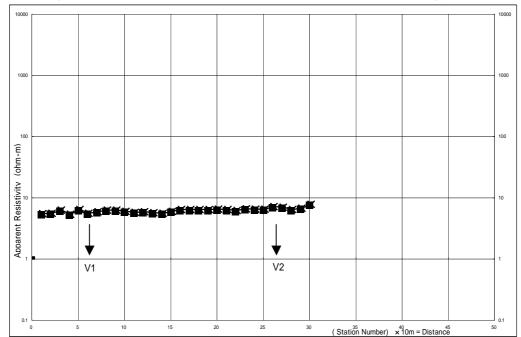
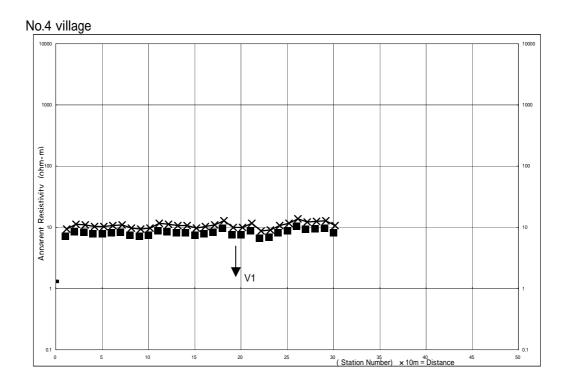
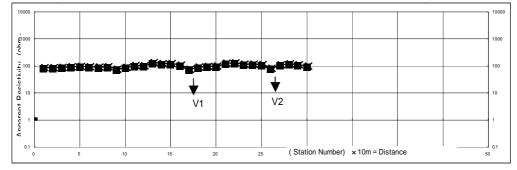
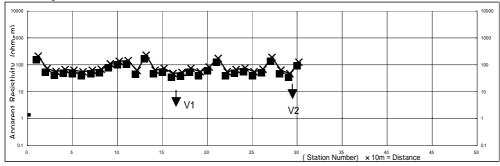
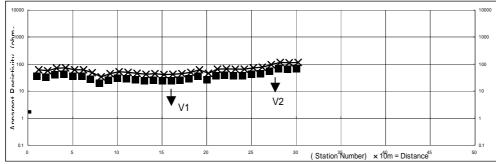
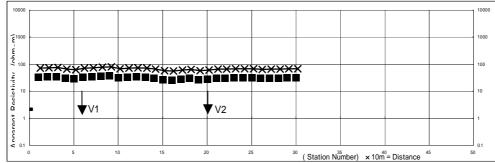




Fig. 3.2.1.16 Result of Horizontal Electrical Profiling in Kyaukpadaung T/S






4. NyangU T/S



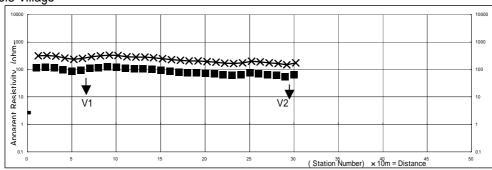
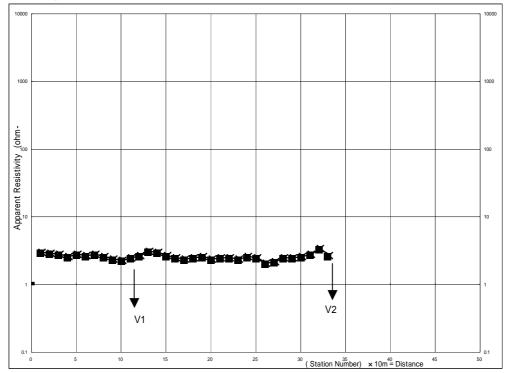
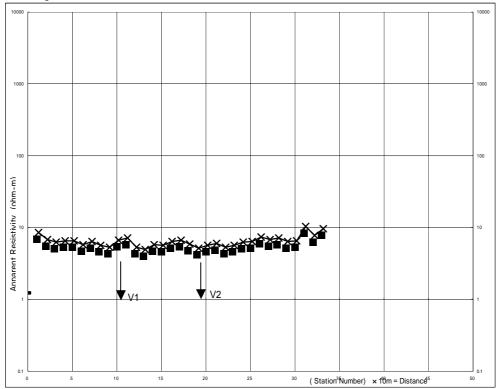
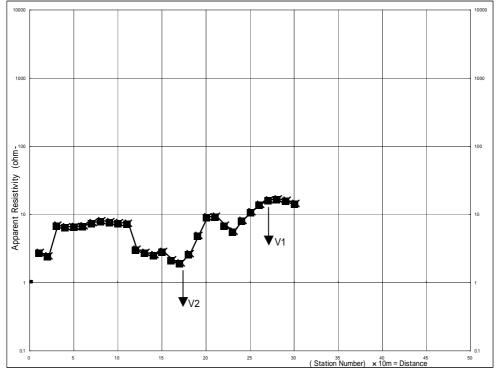
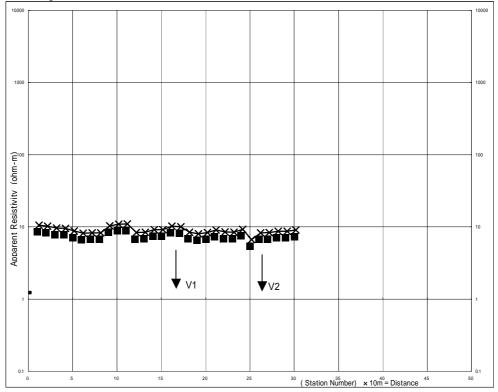
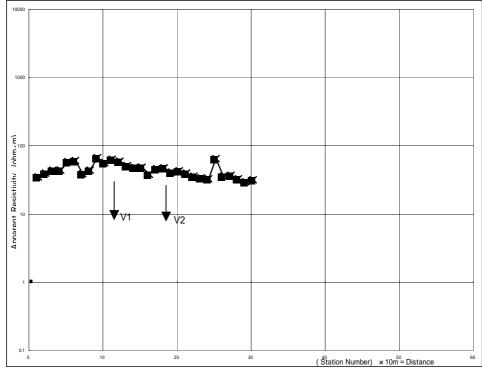
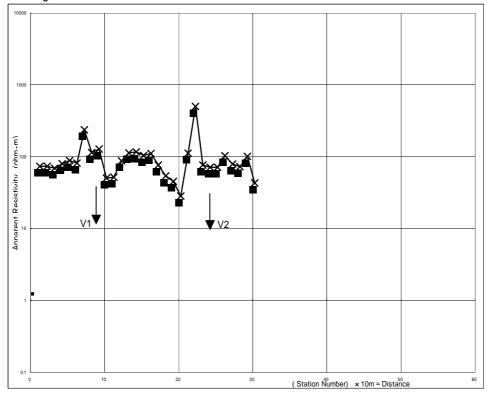





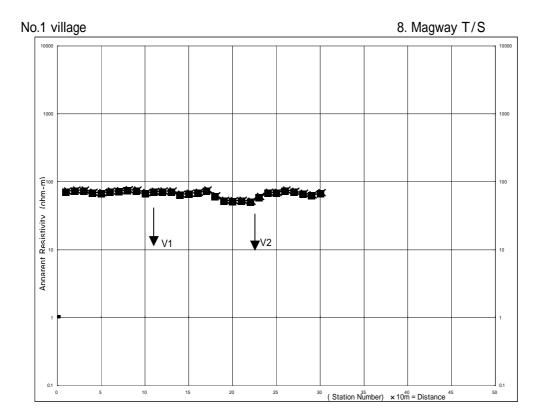
Fig. 3.2.1.18 Result of Horizontal Electrical Profiling in NyangU T/S




No.2 village



No.2 village



No.8 village

Fig. 3.2.1.21 Result of Horizontal Electrical Profiling in Chauk T/S

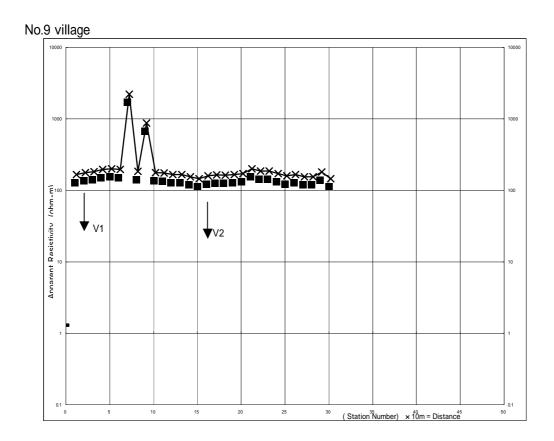
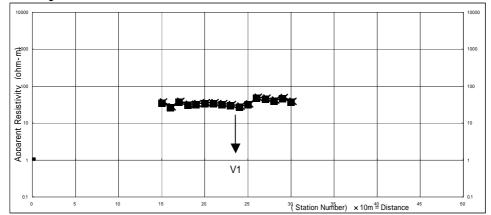
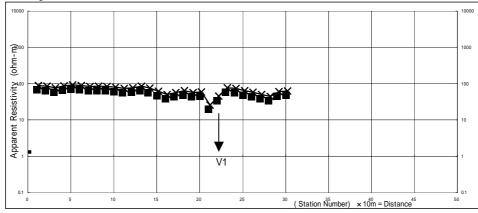
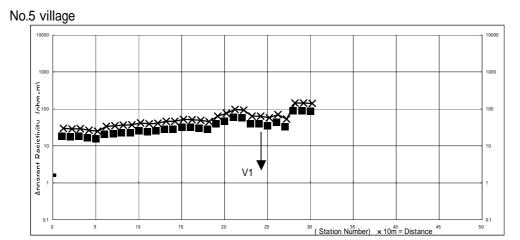
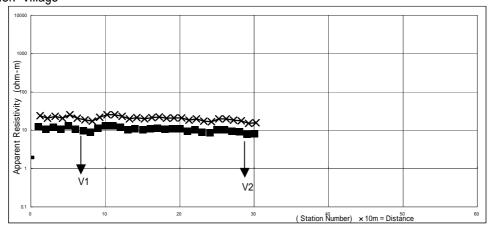
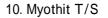
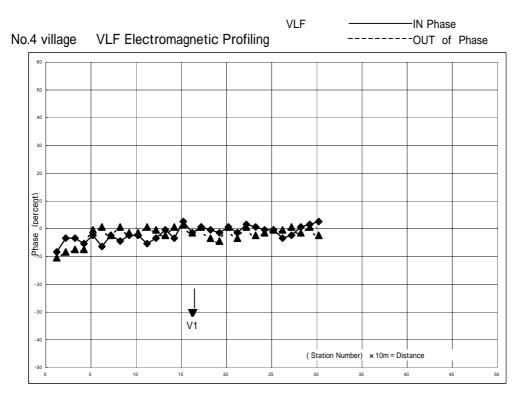
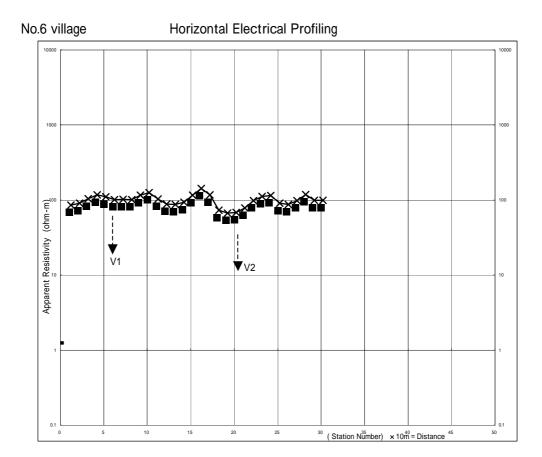
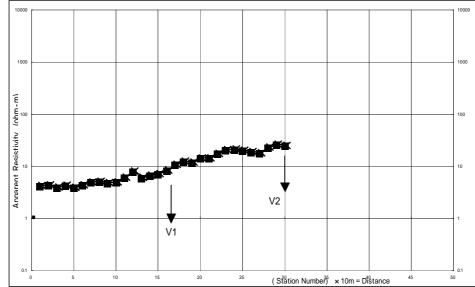





Fig. 3.2.1.22 Result of Horizontal Electrical Profiling in Magway T/S


Fig. 3.2.1.23 Result of Horizontal Electrical Profiling in Pakokku T/S

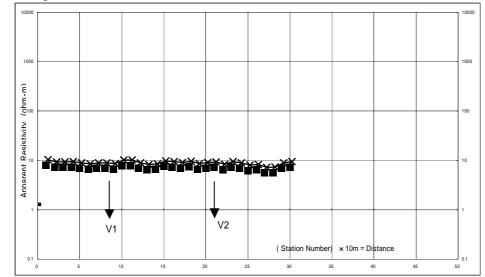


Fig. 3.2.1.24 Result of Horizontal Electrical Profiling in Myothit T/S

No.4 village

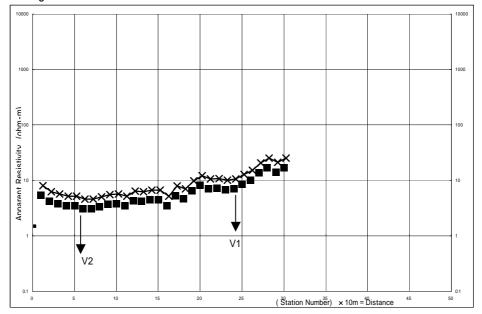


Fig. 3.2.1.25 Result of Horizontal Electrical Profiling in Yezagyo T/S

6	1		\ <i>\</i> ;				- •		Floyetion	(_, _)	Fai	timata	d Aquifa	-
T/S	(Code	Tract	age Name	٥	titude	0	ngitude	Elevation	Result			d Aquife	
F	C1	1 V1			21	18.508	95	30.508	(m) 183		D (m)	(m)	D (m)	(m)
			Magyi-	Pegin-	21		90			<u> </u>	2-6	11	Low resis	
			pinte	gyaw	04	18.554 15.340	05	30.143	180	C	>68	10	Saline v	1
		2 V1	Zagyan	Kantho-	21		95	16.534	204	A	19-56	21	>56	21
		2 V2		nesint		15.350		16.814	202	A	1-10	25	>95	25
		3 V1	Zagyan	Tabau-	21	15.151	95	14.454	231	Α	25-142	72	>142	45
		3 V2	zagyan	kkon		15.178		14.573	228	Α	81-148	30	>148	73
		4 V1	Aungtha	Aungtha	21	14.186	95	30.051	223	В	83-170	17		
S		4 V2	Aunytha	Aurigina		14.105		30.104	218	В	25-111	16		
T/S		5 V1	Thaputs	Dahatan	21	12.401	95	21.624	165	В	17-63	14.5	>107	18
		5 V2	u	Dahatan		12.440		21.540	158	В	57-171	18		
gth		6 V1	Chauk-		21	12.048	95	17.075	178	Ā	48-82	57	>103	37
Taungtha		6 V2	gwa	Twinbye		12.117		17.074	244	A	29-57	42	107-224	38
Та		7 V1	Thaputs	Kyaukpo	21	11.794	95	23.224	154	B	11-22	15	>148	14
		7 V2	u	n	21	11.792	00	23.069	167	Č	8-99	16	2140	14
		8 V1		11	21	11.727	95	25.815	155	C C			resistyvity	·
		8 V2	Simigan	Thazi	21	11.658	30	25.826	130	 C	ve		water	
			Denneun	Maguiga	04		05				. 040	1		
		9 V1	Panpaun		21	10.034	95	29.228	207	C	>210	13	Low resis	, ,
		9 V2	g	n		10.103		29.225	215	<u>C</u>	49-98	13	Saline v	1
		10 V1		Sizongo	21	9.808	95	28.710	199	В	9-20	30	>60, 128	
		10 V2	0	n		9.906		28.661	191	В	12-32	30	>95, 194	14, 23
·							1			-		1		
	C2	1 V1	Gwayda	Gwayda	21	0.537	95	13.411	75	А	All layer	15-59	(104-117	29)
		1 V2	u-kkone	u-kkone		0.545		13.379	76	А	All layer	19-56	(23-71	28)
		2 V1	Dawa	Chaung-	20	54.721	95	10.623	176	В	28-74	22-37	>193	18
		2 V2	Popa	bya		54.727		10.600	378	Ā	3-117	21-35	>189	35
		3 V1	Tanga-	Tanga-	20	52.329	95	6.619	422	A	3-43	25	65-145	24
			kan	kan		52.321		6.692	414	B	11-24	21	55-112	19
6		4 V1	Null	Htantaw	20	51.542	95	7.079	413	A	All layer	15-50	00 112	10
T/S		4 V2			20	51.526	55	7.191	413	A	0-22	32-51	47-120	24
				-gyi	20	50.401	95	10.408	379		>18m All			24
Kyawkpadaung		5 V1 5 V2	Kanbauk	Kanbauk	20		90			<u> </u>		•		
da			Oins da i		00	50.347	05	10.492	346	<u>A</u>	>17m All			
pa		6 V1	Simdai-	Sudat	20	49.868	95	6.280	384	B	14-54	78	>166	13
٨		6 V2	kan			50.004	~ -	6.286	395	A	15-19	43	59-188	32
ya		7 V1	Simdai-	Sagyaw	20	49.780	95	4.511	377	Α	All layer	16-130		
\mathbf{x}		7 V2	kan			49.771		4.513	361	В	2-12	43	>201	60
		8 V1	Sonywa	Kanyai &	20	46.590	95	6.631	318	В	55-104	16	>270	16
		8 V2		Salindau		46.575		6.703	336	А	1-24	30	143-212	30
		9 V1	Twinphy	Inbingyi	20	44.782	95	5.762	290	А	35-88	51	88-111	32
		9 V2	u	indingyi		44.809		5.682	288	В	34-91	66	91-126	25
		10 V1	Kyauk-	Lwinpin-	20	43.268	95	8.835	275	В	26-76	50	76-99	20
			sayitkan			43.265		8.900	277	B	4-22	24	83-102	20
														·
	C3	1 V1	Domini	Pegyet-	21	28.710	95	45.161	241	В	60-80	14	>151	22
		1 V2	Pegyet	W		28.722		45.133	241	B	41-98	15	>164	22
		2 V1	Thaminb		21	27.038	95	39.008	241	B	20-24	14	67-138	17
		2 V2	е	n		26.974		39.036	240	C	23-24	16	0. 100	
		3 V1		Mogan	21	26.049	95	37.811	208	B	5-56	22-26	63-125	23
		3 V1	Mogan	W	<u> </u>	26.123	55	37.908	197	B	13-57	22-20	122-276	23
		4 V1	Than-	Than-	21	26.038	95	43.252	205					
					۲٦		ອວ			B	0-6	19	27-60	17
S		4 V2	gwa	gwa Thonon	04	26.038	~-	43.171	246	B	1-5	32	20-83	16
Natogyi T/S		5 V1	Gwegon	Thapan-	21	22.428	95	32.000	220	В	16-47	16	108-130	30
'≥		5 V2		daw		25.274	<u> </u>	33.955	220	B	>96	17		
tog		6 V1	Letwe	Letwe	21	25.001	95	30.308	170	B	23-60	14		
Vai		6 V2				25.005		30.642	176	В	14-99	15		
~			Nyaun-	Nyaun-	21	24.063	95	37.580	210	В	39-160	16		
		7 V2	gon	gon		24.046		37.631	219	С	45-52	16		
		8 V1	Pyaya-	Thinta-	21	23.304	95	33.176	189	Č	>5	11	Low resis	styvity
		8 V2	chaung	baw		23.282	-	33.263	193	B	>28	13	Saline v	
		9 V1	-		21	23.030	95	48.552	203	Č	Low resis			
		9 V2	Ketlan	Ketlan		23.115		48.568	210	B	47-60	19	Saline v	vater
		10 V1			21	22.577	95	38.307	248	B	117-213	19		
		10 V1	Yongon	Aungthar	<u> </u>	22.377	55	38.356	240	<u> </u>	10-26		Coline	ator
1			I			22.392		00.000	210	U	10-20	12	Saline wa	1101

 Table 3.2.1.3 Geophysical survey result (1/4)

Code Tract Name o i o i (m) Result D (m) C41 1V2 tharyar tharyar 10.409 95 3.921 205 A >136 1 V2 tharyar tharyar 10.363 3.887 215 A 92116 2 V1 tharyar tharyar 10.363 3.887 215 A 9341 2 V1 balan 6.828 58.814 231 A 8.4102 3 V1 Phalan Phalan 21 2.978 94 57.417 210 B 2.47 A	<u> </u>				Vill						Flowertion		L Lot	imata	d Aquifor	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-/S	(Cod	е				,		igitude	Elevation	Result		1	d Aquifer	
1 V2 tharyar 10.363 3.887 215 A 92-115 2 V1 Kuywa 21 6.821 94 58.884 224 A 34-102 3 V1 Phalan- Phalan- 21 4.078 95 9.268 3831 A Allaye 3 V1 Psalan- Setse- 21 2.946 95 8.029 426 A -17.111 5 V2 Letwae Kangyi- 21 2.978 94 57.412 210 B 3.2-47 5 V2 Letwae Kangyi- 21 2.978 94 57.417 219 A 6-27 6 V2 Letwae Kangyi- 21 1.515 95 1.329 330 B 53-115 7 V1 Taung- Kaung- 11.51 95 1.329 330 B 53-115 8 V1 Setse- Myetkha <td>Г</td> <td>C1</td> <td>1</td> <td>\/1</td> <td></td> <td></td> <td></td> <td>10 400</td> <td></td> <td>3 0 2 1</td> <td></td> <td>٨</td> <td></td> <td>(m)</td> <td>D (m)</td> <td>(m)</td>	Г	C1	1	\/1				10 400		3 0 2 1		٨		(m)	D (m)	(m)
2 V1 Kuywa Kuywa 21 6.821 94 58.848 224 A 34-102 3 V2 kan Phalan- Phalan- 21 4.078 95 9.268 383 A All laye 4 V1 Setse- 12 2.946 95 8.029 426 A 31-41 4 V2 tyo Setse- 12 2.946 95 8.029 426 A 31-41 5 V1 Letwae Kangyi- 21 2.976 94 57.412 210 B 32-47 6 V1 Letwae Kangyi- 21 2.12.97 94 57.412 210 B 57.61 322 B 65-107 6 V2 Letwae Kangyi- 21 1.233 1.323 301 B 53-115 7 V2 Zin pinsi 1.233 1.323 301 B 50-107 </td <td></td> <td>64</td> <td></td> <td></td> <td></td> <td></td> <td>21</td> <td></td> <td>90</td> <td></td> <td></td> <td></td> <td></td> <td>47</td> <td>. 40.4</td> <td>F4</td>		64					21		90					47	. 40.4	F 4
2 V2 Ruywa Ruywa 6.828 58.814 231 A 8.77 3 V1 Phalan- Phalan- 21 4.078 95 9.268 383 A All layer 3 V1 Setse- 21 2.946 95 8.029 426 A >.871 MI 4 V1 Setse- 21 2.946 95 8.029 426 A >.871 MI 5 V2 Letwae Kangyi- 21 2.978 94 57.412 210 B 3.247 6 V1 Letwae Kangyi- 21 2.462 94 57.619 232 B 65.171 6 V2 Lutwae Kangy- 21 1.151 95 7.500 487 A 29.154 7 V1 Taung- Kangy- 21 1.233 3.33 1.323 321 A 7.500 7 V1 Taung-					maryar	ınaryar	04		04					42	>194	51
2 2 2 0 0 0 0 0 0 0 0 1					Kuywa	Kuywa	21		94					25	00.407	
3 V2 kan 4.076 9.328 381 A Allaye 0 4 V1 Setse- 21 2.946 95 8.029 426 A >577411 0 4 V1 Setse- 21 2.946 95 8.029 426 A >57412 210 B 32-47 0 5 V1 Letwae Kangyi- 21 2.462 94 57.417 219 A 6-507 0 6 V2 Letwae Kangyi- 21 2.462 94 57.619 232 B 65-107 7 V2 zin Kaugy- pinsi 1.233 1.323 321 A 7-50 8 V1 Setse- Myetkha 21 1.230 95 7.501 487 A 80-123 9 V1 - Ywalu 20 95.762 4.453 A 80-123 80-123 80-123 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>0.4</td> <td></td> <td>0-</td> <td></td> <td></td> <td></td> <td></td> <td>40</td> <td>80-105</td> <td>20</td>						-	0.4		0-					40	80-105	20
C 1 V1 Setse- tyo 21 2.946 95 8.029 4.26 A >17.411 5 V2 Letwae Kangyi- tyo 21 2.917 8.049 4.30 A >8.41 la 5 V2 Letwae Kangyi- tyo 21 2.917 8.049 4.30 A >6.21 6 V1 Letwae Kangyi- tyo 21 2.462 94 57.619 232 B 65-167 6 V1 Letwae Kangyi- tyo 21 1.233 1.323 330 B 53-115 7 V1 Taug- pinsi L233 1.323 330 B 53-115 8 V2 tyo -taw 1.320 95 7.500 4.67 A 29-144 A 80 \$1187 B \$1187 B \$1187 B \$1187 B \$1189 \$166 335 B 1184 B \$1167 B							21		95					18-10		18)
6 4 V2 tyo 2.917 8.049 430 A > 8.41 la 6 V1 Letwae Kangyi- 21 2.978 94 57.412 210 B 32-47 6 V1 Letwae Kangyi- 21 2.978 94 57.619 232 B 65-107 7 V2 Letwae Kangyi- 21 1.151 95 1.329 330 B 53-115 7 V2 zin pinsi 1.233 1.323 321 A 7-50 8 V1 Setse- Myetkha 21 1.230 95 7.621 445 A 80-123 9 V1 v2 vaul 20 59.762 445 A 80-123 9 V2 vaul 20 41.555 96 1.870 1.87 B >193 10 V2 peyo 20 39.737 96 1.530 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>~-</td> <td></td> <td></td> <td><u>A</u></td> <td></td> <td></td> <td></td> <td>18)</td>									~-			<u>A</u>				18)
S V1 Letwae Kangyi-kon N 21 2.978 94 57.412 210 B 32-47 S V2 Letwae Kangyi-kon N 3.022 57.417 219 A 6-27 6 V2 Letwae Kangy- 21 2.462 94 57.619 232 B 65.107 7 V1 Taung- Kaung- 21 1.151 95 1.329 330 B 53-115 8 V1 Setse- Myetkha 21 1.233 1.323 321 A 7-50 9 V2 tyo -taw 1.340 7.661 95 5.762 445 A 80-123 10 V1 Zedae Hta- 1.340 7.661 95 5.762 445 A 80-123 10 V2 geyo geyo 39.766 95 5.761 439 8-121 10 V2 byeyo 20 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>21</td> <td></td> <td>95</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(>198</td> <td>32)</td>							21		95						(>198	32)
5 V2 Cervage kon N 3.022 57.417 219 A 6-27 6 V1 Letwae kon S 2.604 57.583 240 B 70-89 7 V1 Taung- pinsi Latwae Kangyi- pinsi 21 1.233 1.329 330 B 53-116 8 V1 Setse- Myetha Myetha 21 1.230 95 7.590 487 A 29-154 9 V1 Setse- Myetha Myetha 21 1.230 95 7.590 487 A 29-154 9 V2 val 3.400 7.641 488 A Allaye 9 V2 val 59.766 95 5.762 445 A 80-121 10 V2 zedae Hta- naungwin 20 59.125 1.668 335 B 41-89 2 V2 byeyo Valsi Allarzet 22.242 C <t< td=""><td>S</td><td></td><td></td><td></td><td>tyo</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>(>170</td><td>34)</td></t<>	S				tyo									1	(>170	34)
Solution Solution	F				Letwae		21		94					31	>157	63
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	- U				Lotwac						219		6-27	39	>245	46
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ng.						21		94			В	65-107	48	>226	28
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ya		6										70-89	45	>248	28
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ż		7		Taung-	Kaung-	21	1.151	95			В	53-115	26	>245	19
8 V1 Setse- tyo Myetkha -taw 21 1.230 95 7.590 487 A 29-154 9 V2 value -taw 1.340 7.641 488 A Allayer 9 V2 ywalu 20 59.766 95 5.762 445 A 80-123 9 V2 Zedae Hta- noungwin 20 59.726 5.731 434 B >116 10 V2 Zedae Hta- naungwin 59.125 1.668 335 B 41-89 2 V1 Dsanwa Yonbin- gon 20 39.938 7.530 176 C >221 3 V1 Faungta Yebyu 20 39.737 96 13.620 227 B 100-100 3 V2 n -gyo 38.150 96 13.824 224 A All ayer 4 V1 Faungta Paukain 20 37.757			7	V2		pinsi		1.233		1.323	321	А	7-50	26-30	50-165	17
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			8	V1	Setse-	Myetkha	21	1.230	95	7.590	487		29-154	58	>157	17
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			8	V2	tvo	-		1.340					All layer	18-81	(97-159	29)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			9				20		95				80-123	46	>193	32
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						y walu	-			5,731		B		15		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						Hta-	20		95	1 673				43	121-141	17
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Zedae		20		00					21	89-167	53
1 V2 byeyo 41.727 1.942 244 C >>256 2 V1 Osanwa gon 39.937 96 7.532 169 B >208 3 V1 Faungta gon 39.998 7.530 176 C >221 3 V2 n Yebyu 20 39.716 13.620 227 B 100-105 3 V2 n -gyo 38.150 96 13.824 224 A All layer 4 V2 n -gyo 38.150 96 5.434 184 B 77-189 5 V2 Kyette Kyette 20 37.757 96 14.157 165 A 16-34 6 V1 Kongtha Thabok 20 37.757 96 14.157 165 A 16-34 6 V2 n n 363.17 52.179 274 C 7-137			10	٧Z		naangwin		00.120		1.000	000		41 05	21	03-107	55
1 V2 byeyo 41.727 1.942 244 C >>256 2 V1 Osanwa gon 39.937 96 7.532 169 B >208 3 V1 Faungta gon 39.998 7.530 176 C >221 3 V2 n Yebyu 20 39.716 13.620 227 B 100-105 3 V2 n -gyo 38.150 96 13.824 224 A All layer 4 V2 n -gyo 38.150 96 5.434 184 B 77-189 5 V2 Kyette Kyette 20 37.757 96 14.157 165 A 16-34 6 V1 Kongtha Thabok 20 37.757 96 14.157 165 A 16-34 6 V2 n n 363.17 52.179 274 C 7-137		C5	1	V1	Tha-	Tha-	20	<i>4</i> 1 555	96	1 870	187	B	<u>\103</u>	13	low resist	traditre
2 V1 Osanwa gon Yonbin- gon 20 39.837 96 7.532 169 B >208 3 V1 Faungta Yebyu 20 39.737 96 13.620 227 B 100-100 3 V2 n Yebyu 20 39.737 96 13.620 227 B 100-100 3 V2 n -gyo 38.150 96 13.824 224 A All layel 4 V2 n -gyo 38.124 13.787 213 A All layel 5 V1 Kyettle Kyettle 20 37.757 96 14.157 165 A 16-34 6 V2 n n 36.317 52.179 274 C 7-137 7 V2 n n 36.317 52.134 262 B >88 8 V1 Sabaego Pegan N 20 31.536		05					20		30					11	Salinew	ater
2 V2 Osahwa n gon 39.998 7.530 176 C >221 3 V1 Faungta n Yebyu n 20 39.737 96 13.620 227 B 100-105 4 V1 Faungta 4 Paukain 20 39.737 96 13.620 227 B 100-105 4 V1 Faungta 4 Paukain 20 38.150 96 13.824 224 A Allayer 5 V1 Kyette Co 38.124 13.787 213 A Allayer 5 V2 Kyette String 96 5.434 184 B 77.187 6 V1 Kongtha Thabok 20 37.757 96 14.157 165 A 16-34 6 V2 Magyigo 20 31.624 95 56.148 301 C >216 8 V1 Sabaego 9 Pegan S 20					русуо		20		06						Calification	
3 V1 Faungta n Yebyu 20 39.737 96 13.620 227 B 100-105 3 V2 n Yebyu 39.716 13.577 244 B 20-38 4 V1 Faungta Paukain 20 38.150 96 13.824 224 A Alliayer 4 V2 n -gyo 38.124 13.787 213 A Alliayer 5 V1 Kyette 20 37.874 96 5.434 184 B 77.189 6 V1 Kongtha Thabok 20 37.757 96 14.157 165 A 16-34 6 V2 Kongtha Thabok 20 36.317 52.134 262 B >88 58 7 V2 n 31.536 56.148 301 C >216 8 V1 Sabaego Pegan S 20 31.447 95 56.148 </td <td></td> <td></td> <td></td> <td></td> <td>Osanwa</td> <td></td> <td>20</td> <td></td> <td>90</td> <td></td> <td></td> <td></td> <td></td> <td>16</td> <td></td> <td></td>					Osanwa		20		90					16		
3 V2 n Yebyu 39.716 13.577 244 B 20-38 4 V1 Faungta Paukain 20 38.150 96 13.824 224 A All layer 4 V2 n -gyo 38.124 13.787 213 A All layer 5 V1 Kyette Kyette 20 37.787 96 5.434 184 B 77.189 6 V2 Kongtha Thabok 20 37.757 96 14.157 165 A 16-34 6 V2 n n 36.317 52.179 274 C 7-137 7 V2 n n 36.317 52.134 262 B >98 8 V1 Sabaego Pegan N 20 31.624 95 56.111 251 C >80 9 V2 n 31.566 56.077 263 B >90 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>gon</td> <td>00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>17</td> <td></td> <td></td>						gon	00							17		
S V2 I S9.716 IS377 244 B 20-38 4 V1 Faungta Paukain 20 38.150 96 13.824 224 A All layer 5 V1 Kyette -gyo 38.124 13.787 213 A All layer 5 V2 Kyette Co 37.874 96 5.434 184 B 77-189 6 V1 Kongtha Thabok 20 37.757 96 14.157 165 A 16-34 6 V2 n 1 Magyigo 20 37.757 96 14.157 165 A 16-34 6 V2 n 36.317 52.134 262 B >88 7 V2 n 1 36.317 52.134 262 B >89 8 V1 Sabaego Pegan N 20 31.447 95 56.111 251 C<						Yebyu	20		96	13.620		B		10	Igneous ro	ck
V 4 V2 n -gyo 38.124 13.787 213 A All layet 5 V1 Kyette Kyette 20 37.874 96 5.434 184 B 77.189 6 V1 Kongtha Thabok 20 37.757 96 14.157 165 A 16.34 6 V2 Kongtha Thabok 20 37.757 96 14.157 165 A 16.34 6 V2 n n 36.317 52.134 262 B >98 7 V2 n n 36.317 52.134 262 B >98 8 V1 Sabaego Pegan N 20 31.624 95 56.111 251 C >80 216 31.566 56.077 263 B >90 124 10 V1 Sabaego Nyandaw 20 31.345 95 31.946 182														170	area?	
S V1 Kyette Kyette Kyette 20 37.874 96 5.434 184 B 77.189 5 V2 Kongtha Thabok 20 37.757 96 14.157 165 A 162.48 6 V2 Kongtha Thabok 20 37.757 96 14.157 165 A 16-34 6 V2 Kongtha Thabok 20 37.757 96 14.157 165 A 16-34 6 V2 N Magyigo 20 36.317 52.134 262 B >98 8 V1 Sabaego Pegan N 20 31.624 95 56.148 301 C >216 9 V1 Sabaego Pegan S 20 31.447 95 56.111 251 C >80 10 V1 Sabaego Nyandaw 20 31.345 95 52.367 287 C >12					Faungta	Paukain	20		96					16-49	(80-207	21)
5 V2 Ryette 37.923 5.343 160 C 102-180 6 V1 Kongtha Thabok 20 37.757 96 14.157 165 A 16-34 6 V2 Kongtha Thabok 20 37.757 96 14.157 165 A 16-34 6 V2 n n 36.317 52.179 274 C 7-137 7 V2 n n 36.317 52.134 262 B >98 8 V1 Sabaego Pegan N 20 31.626 56.156 244 B 135-281 9 V2 n Pegan S 31.566 56.077 263 B >90 10 V2 n Nyandaw 20 31.345 95 52.367 287 C >121 10 V2 n Ywatha 21 37.853 95 28.588 131 C <td>S</td> <td></td> <td></td> <td></td> <td>n</td> <td>-gyo</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>All layer</td> <td>17-60</td> <td>(105-215</td> <td>27)</td>	S				n	-gyo							All layer	17-60	(105-215	27)
S V2 V V 37.923 5.343 160 C 102-180 6 V1 Kongtha Thabok 20 37.757 96 14.157 165 A 16-34 6 V2 Kongtha Thabok 37.234 14.219 165 B >58 7 V2 n 36.317 52.179 274 C 7-137 7 V2 n 36.317 52.134 262 B >98 8 V1 Sabaego Pegan N 20 31.624 95 56.148 301 C >216 9 V1 Sabaego Pegan S 20 31.447 95 56.111 251 C >80 10 V2 n Pegan S 20 31.345 95 52.367 287 C >121 10 V2 n Nyandaw 21 38.381 31.891 180 A 38-173	T/		5	V1	Kvotto	Kvotto	20		96			В	77-189	14	>180	50
A 6 V1 Kongtha Thabok 20 37.757 96 14.157 165 A 16-34 6 V2 Magyigo Magyigo Magyigo 20 37.757 96 14.157 165 A 16-34 7 V1 Magyigo Magyigo 20 36.317 52.179 274 C 7-137 8 V1 Sabaego Pegan N 20 31.624 95 56.148 301 C >216 8 V2 n Pegan N 20 31.626 56.156 244 B 135-28* 9 V1 Sabaego Pegan S 20 31.447 95 56.111 251 C >80 10 V1 Sabaego Pegan S 20 31.345 95 52.367 287 C >121 10 V2 n Nyandaw 21 38.381 31.891 180 A 88-173	ve		5	V2	ryelle	Nyelle		37.923		5.343	160	С	102-180	12	low resist	yvity
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	/d/		6		l/ a a ath a	Theheld	20		96		165		16-34	35	70-148	71
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	av				Kongtha	Thabok						B		1190	Igeneous	rock?
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	P				Magyigo	Magyigo	20		95					13		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									00					14	Saline wa	ater?
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-				20		95					12		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					-	Pegan N	20		30					12		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							20		05					13		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						Pegan S	20		90							
Image: Negative 31.329 52.446 294 B 90-124 Image: Negative 10 V2 n N N 31.329 52.446 294 B 90-124 Image: Negative N N 1 V2 Pyawt Chinmyi -kyin 38.381 31.946 182 B 102-170 Image: Negative Ywatha Ywatha 21 37.853 95 28.588 131 C 5-9 Image: Negative Ywatha Ywatha 21 37.845 28.664 138 B 2-23 Image: Negative Koke 21 35.884 95 31.020 155 C 2-5 Image: Negative Koke 21 35.418 95 31.029 150 B 3-9 Image: Negative Ywathay 21 35.418 95 31.029 150 B 3-9 Image: Negative N N N N N N N N				VZ			00		05		203			13		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				V1		Nyandaw	20		95					11		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			10	v2	[]			31.329	1	52.446	294	В	90-124	20	>166	14
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		00		1/4			<u>01</u>	00.000	~-	04.040	100					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		C6		V1	Pvawt		21		95					21	>241	15
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						-kyin			_					34	>173	16
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			2	V1	Ywatha	Ywatha	21		95					19	low resis	tivity
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			2	V2	waiia	iwatila						В	2-23	10	49-97	12
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			3	V1	Koko	koko	21	35.884	95			С	2-5	15	low resis	tivity
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			3	V2	NUKE	RUKE								15		
9 4 V2 RORE a 35.491 31.016 152 B 2-7 5 V1 Taywinb Kyaung- 21 32.225 95 26.417 92 B 10-21 5 V2 o byugan 32.226 26.509 99 C 4-11 6 V1 Pya Pya 21 30.351 95 35.247 186 B 6-42 6 V2 Pya Pya 21 30.361 35.325 185 B 4-10					Kalis	Ywathav	21		95			B		15	>150	14
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ś			V2	коке									14	>194	12
Structure 5 V2 o byugan 32.226 26.509 99 C 4-11 6 V1 Pya Pya 21 30.351 95 35.247 186 B 6-42 6 V2 Pya Pya 30.361 35.325 185 B 4-10	Ľ				Tavwinb		21		95					15	>159	19
Solution 6 V1 Pya Pya 21 30.351 95 35.247 186 B 6-42 0 V2 Pya Pya 30.361 35.325 185 B 4-10	gr				-			32 226				<u> </u>		43	low resis	
B O VI Pya Pya 30.361 35.325 185 B 4-10	yaı						21		95					43	68-166	18
- - - - - - - - - -	ng			V1 \/2	Руа	Руа	<u> </u>		J			<u>ם</u>		17	23-71	25
≥ 7 V1 Kinguo Kinguo 21 24.312 95 24.775 109 B >167	1yi						21		05						23-11	20
	2				Kuywa	Kuywa	21		90					18	rogiotivity	
					-	-	04		~-					· ·	resistivity	
8 V1 Saka Saka 21 23.473 95 23.036 99 B >214			8	V1	Saka	Saka	21		95					16		
0 VZ 23.301 23.010 73 B >221							. .		<u> </u>			Ř		16		
9 V1 Gwebiny Gwebiny 21 22.499 95 25.775 164 B 25-39					-	Gwebiny	21		95					40	104-224	53
9 V2 o o 22.464 25.662 160 A 14-32														26	96-242	59
10 V1 Gwebiny Taung- 21 22.002 95 26.300 179 B 1-26					Gwebiny	Taung-	21	22.002	95				1-26	53	>26	12
10 V2 o she 21.984 26.230 183 B 3-14					-	•						В		88	97-116	30

Table 3.2.1.3 Geophysical survey result (2/4)

S				Vill	age		titude		ngitude	Elevation		Est	imste	d Aquifer	
T/S	(Cod	е	Tract	Name	0	,	0	,	(m)	Result	D (m)	(m)	D (m)	(m)
Ľ.	C7	1	V1			20	47.803	95	1.051	307	В	1-9	27	>56	12
	Ο.	1	V2	Gwegyo	Sharbin		47.727		1.110	310	Č	1-6	13	>101	12
		2	V1	Thitto-		20	47.450	95	0.111	76	B	4-15	23-51	72-229	20
		2	V2	gan	Sudat		47.492		0.160	75	Č	2-8	43-70	33-83	14
		3	V1	Thittoga	•	20	46.432	94	58.805	280	B	4-68	48	>185	17
		3		n	Sangan		46.479		58.813	278	Ā	7-70	27	70-178	50
		4		Thalon-	_	20	46.318	94	54.168	191	B	2-8	52	>30	57
		4	V2	thwe	Pyaywa		46.370		54.183	192	B	65-71	92	>153	100
/S		5	V1		Kyweda-	20	45.732	94	58.310	253	B	6-16	16	>193	16
F		5	V2	Kywedat	tywama		45.639		58.253	248	Ā	39-77	26	>180	16
Chauk T/S		6	V1	Cundition	Kyeiksu	20	42.943	94	47.464	198	В	12-15	15	37-95	17
Ϋ́		6	V2	Suyitkan	S		42.935		47.556	176	С	3-6	30	46-74	16
-		7	V1	Swebau-	Zigyobin	20	40.525	94	59.810	417	В	85-173	80	183-266	88
		7	V2	kkan	S		40.508		59.964	403	В	24-59	61	>184	58
		8	V1	Wetthe-	Thayet-	20	40.345	94	57.364	370	В	6-11	20	>253	17
		8	V2	san	pin		40.451		57.401	414	В	7-63	46	>272	17
		9	V1	Swebau-	Yela	20	39.934	95	0.510	373	А	36-146	77	146-188	38
		9	V2	kkan			39.910		0.571	372	А	33-84	75	84-168	18
				Thanbo	Kyauk-	20	36.304	94	56.472	304	В	>7	370	high resis	tivity
		10	V2	Thanbo	taing		36.337		56.564	287	В	0.4-21	29		
	C8	1	V1	Kantha-	Kantha-	20	13.697	95	0.797	187	A	115-210	74	>210	29
		1	V2	gyi	gale		13.794		0.671	185	A	56-92	34	114-172	46
		2	V1	Kyitson-	-	20	11.291	95	5.162	234	B	121-211	45		
		2	V2	bwe	bwe		11.323	0.5	5.062	236	<u> </u>	102-255	43		
		3	V1	Payapyo	Payapyo	20	10.325	95	1.470	193	B	>156	50		
		3	V2		Ν	00	10.281	05	1.548	200	A	14-29	73	>142	61
		4		Thabye-	Minwa S	20	9.118	95	3.458	197	<u>A</u>	147-253	59	>253	33
T/S		4	V2	sen		20	9.130	05	3.911	197	<u>A</u>	90-156	24	156-272	64
Ē		5 5	V1 V2	Thabye-	Thabyes	20	7.961	95	1.924	159 117	<u> </u>	127-181	41	>181	14.8
Magway		5 6		sen	en N Taun-	20	7.931	95	1.817 13.550	141	A B	141-272	45	>271	19
gv		6	V1 V2	Leya	gyartaw	20	1.622	90	13.058	141	B	17-55 37-72	47 34	55-92 >72	16 14
M		7	V2 V1	Papaesa		19	59.589	95	10.160	200	B	18-43	34 27	100-131	27
		7	V1 V2	n apaesa	Ywataw	19	59.586	30	10.216	179		55-108	30	142-230	19
		8	V2 V1		Yonekon	19	55.998	95	8.022	128	A	21-32	17	69-176	27
		8	V2	Kunon	e	15	55.963	55	8.129	120	B	15-50	25	79-115	25
		9	V1		Inbin-	19	54.007	95	15.079	193	A	104-120	39	120-187	16
		g	V2	Alebo	kan	10	54.086		15.066		B	113-145	40	145-194	18
		10	V1		Ywakuit	19	53.809	95	17.368	202	A	46-69	40	69-100	18
		10	V2	Alebo	-san	10	53.841		17.356	195	B	57-161	60	>161	19
		. •			Juli		00.011			100		0. 101			
	C9	1	V1	Padaing	Myauklu	21	24.794	95	5.909	115	А	24-41	36	91-142	31
			V2	-chone	-kan		24.721		5.860	129	B	6-18	23	99-205	12
		2			Magyitho		24.615	94	44.563	258	Ā	35-113	38	113-130	17
		2	V2	-nepin	-nepin		24.548		44.458	257	A	33-100	16	100-225	57
		3	V1		Kyauksa		23.819		56.583	175	А	21-236	61	>236	32
		3	V2		yit-kan		23.839		56.575	181	В	102-212	66	>212	31
		4		Kyathto	Anaukpo		23.292		58.212	156	А	54-237	67	>237	25
S		4	V2	ixyatiitt	ne-kan		23.330	94	58.233	151	А	54-60	31	60-200	68
Τ		5	V1		Chaukka		21.432	95	2.437	120	В	38-49	22	49-237	19
Pakokku T/S			V2		n-W		21.701		2.522	117	А	24-98	58	98-126	31
Я		6	V1	Kyathto	Kyathtoe		19.433	94	49.889	131	В	3-8	17	>157	12
ak		6	V2	igaino	. yaunoe		19.580		49.880	129	B	29-60	16	>160	12
		7	V1	Palan-O	Palan-O		18.896		52.116	111	Α	40-51	43	74-226	98
		7	V2				18.888		52.192	115	B	49-61	79	66-250	93
		8		Sabae	Sarkyin		18.186		47.188	134	В	37-45	57	93-184	62
				20200	-		18.113		47.191	134	B	58-125	55	126-235	15
				Palan-O	Kanpau-		18.005		52.202	111	B	47-58	41	58-242	12
		9			ksu		18.027		52.358	114	<u>A</u>	24-138	56	138-212	18
		10	V1	Sabae	Sabae W	0.4	16.884	~ 1	48.088	122	B	72-130	55		
		10	V2			21	16.873	94	48.166	113	В	70-195	41		

 Table 3.2.1.3 Geophysical survey result (3/4)

S		0.04		Vill	age	La	titude	Lor	gitude	Elevation	Decult	Est	imste	d Aquifer	r
T/		Cod	le	Tract	Name	٥	,	٥	, ,	(m)	Result	D (m)	(m)	D (m)	(m)
	C10	1	V1	Ledaing-	Thamya	20	15.271	95	15.656	225	А	129-199	30	>199	18
		1	V2	zin	Папуа		15.301		15.560	233	А	133-183	27	>183	17
		2	V1	Ledaing-	Ledaing-	20	11.928	95	13.783	161	А	98-197	33	>197	45
		2	V2	zin	zin N&S		11.912		13.819	160	А	108-207	31	>207	46
		3	V1	Yebye	Natkan	20	10.216	95	16.495	163	А	80-132	25		
		3	V2	-	Ιναικαι		10.237		16.496	163	В	88-122	34		
		4	V1	Ledaing	Aung-	20	10.216	95	13.496	163	А	54-179	23		
S		4	V2	-zin	myinthar		10.036		13.903	163	В	32-63	56	63-133	19
T/;		5	V1	Ledaing-	Pogyi	20	9.579	95	13.740	161	А	83-115	20	>122	18
-		5	V2	zin	FUgyi		9.631		13.721	166	В	72-123	21		
oth		6	V1	Yondaw	Myinsu	20	8.063	95	15.379	191	А	69-141	23	>141	73
Myothit		6	V2	TUTUaw	,		8.056		15.290	186	А	76-158	30	>158	60
2		7	V1	Gwegyo	Gwegyo	20	7.276	95	19.793	137	В	149-270	23		
		7	V2	Gwegyu	- W		7.236		18.790	137	В	40-88	35		
		8	V1	Yondaw	Yondaw	20	6.924	95	15.806	149	А	70-217	22		
		8	V2	TUTUAW	TUTUAW		6.923		15.861	165	В	59-86	65	86-231	16
		9	V1	Wagyiain	Wagyiaing	20	5.246	95	14.685	117	В	>4	>4000		
		9	V2	wayyiaini	yvayylalliy		5.219		14.661	117	А	14-70	30	>159	21
			V1	Wagyiaing	Nawalay	20	4.958	95	17.130	137	В	52-117	21	>151	14
		10	V2	wayylalli	Jingwelay		4.881		17.091	142	А	46-81	69	81-146	26

 Table 3.2.1.3 Geophysical survey result (4/4)

	C1′	1 1 V1	Duiba	Duibo	21	49.009	95	6.145	99	С	Ve	ry low	resistyvity	
		1 V2	Pyiba	Byiba		49.003		6.232	100	С		Saline	water	
		2 V1	Thitkyi-	Thitkyi-		48.106		7.753	109	В	43-53	14	100-141	16
		2 V2	daw	daw		48.035		7.792	105	В	1-26	38		
		3 V1	Wetk-	Thitkau-		47.331		8.595	89	В	6-15	20	15-52	14.7
		3 V2	daw	kseik		47.322		8.524	92	С	36-168	11		
		4 V1	Zedaw	Seywa		40.954		10.706	96	В	9-24	15	95-215	13
S		4 V2	Zeuaw	Seywa		41.108		10.822	95	С	28-85	18	85-152	12
\vdash		5 V1	Salingon	Sattwa		39.259		6.759	124	С	22-62	17		
9		5 V2	Saingon	Saliwa		39.371		6.736	123	В	78-252	13	>252	19.5
Yezagyo		6 V1	Kyaukka	Chinya-		34.823		8.725	145	В	10-17	37	49-234	19
θZ		6 V2	Пуанкка	gone		34.931		8.667	143	В	51-212	74		
		7 V1	Kyaukka	kyaukka		34.921		8.725	142	С	99-147	16		
		7 V2	Пуаикка	куаикка		34.920		8.779	142	В	39-66	15.5		
		8 V1	Kyaukka	Kyauk-		33.899		9.038	109	В	107-176	15.1		
		8 V2	пуаикка	taga		33.956		8.997	104	В	25-88	22	105-112	19.8
		9 V1	Tange-	Zidaw		28.054		6.953	134	С	8-22	35		
		9 V2	daw	∠iua₩		28.076		6.923	126	С	12-35	15.6		
		10 V1	Tange-	Kunthi-		26.452		5.709	168	С	19-59	11		
		10 V2	daw	gan	21	26.473	95	5.704	148	В	51-68	30	109-129	19.6

Township	No.	Village	Rank evaluated	Remark
1	2	Kanthonesint	A, A	Difficult accessibility
Taungtha	3	Tabaukkon	A, A	
	6	Twinbye	A, A	
2 Kyawkpadaung	1	Gwaydauk-kone	A, A	
	4	Htantaw-gyi	A, A	
	5	Kanbauk	A, A	
3	1	Pegyet W	B, B	
Natogyi	3	Mogan W	B, B	Pegu Group area
4	1	Kanthar-yar	A, A	
Nyang-U	2	Kuywa	A, A	
	3	Phalankan	A, A	
	4	Setsetyo	A, A	
	8	Myetkha-taw	A, A	
5	4	Paukaingyo	A, A	Difficult accessibility
Pyawbwe	6	Thabok	A, B	Difficult accessibility
6	1	Chinmyi-kyin	A, B	Pegu Group area
Myingyang	6	Руа	B, B	
	9	Gwebinyo	A, B	Pegu Group area
7	3	Sangan	A, B	
Chauk	5	Kywedatywama	A, B	
	9	Yea	A, A	
8	1	Kanthagale	A, A	
Magway	4	Minwa S	A, A	
9	2	Magyitonepin	A, A	
Pakokku	4	Anaukponekan	A, A	
10	1	Thamya	A, A	
Myothit	2	Ledaingzin N & S	A, A	
	6	Myinsu	A, A	
11	4	Seywa	B, C	
Yesagyo	6	Chinyagone	B, B	Pegu Group area
	8	Kyauktaga	B, B	Pegu Group area

3.2.2 Test Well Construction

(1) Site Selection

Procedure of site selection for the test wells has been described already in "2.3.2 Selection of 22 Tube Well Construction Site"

Twenty-two tube wells (two wells per Township) with total drilling depth of 4,640 m were planned as presented on Table 3.2.2.1.

(2) Drilling

Drilling work of the test wells, pumping tests, and water quality tests in laboratory were carried out at the sites selected through the procedure described above.

Drilling work were conducted by a newly procured drilling machine and the 3 (three) existing drilling machines, which have been provided by DDA and repaired in Phase I Study. The existing 3(three) machines had been also procured through a grant aid project of the Government of Japan in 1983. List of the drilling machines used in this Project is as follows,

No.	Model	Year	Remarks
1	TDR-300	1983	Existing
2	TDR-300	1983	Existing
3	TDR-300	1983	Existing
4	TOP-500	2001	Newly Procured

Immediately after drilling work completed, electrical logging, gamma logging and spontaneous potential logging were carried out in order to determine the suitable installation positions of screen.

List of the test wells is presented on Table 3.2.2.1. Standard casing program of the test well is shown in Fig.3.2.2.1 and geological log of every test well together with other logging data are shown in 3-F "Well Log" of Vol. III, Supporting Report.

Finally, 23 tube wells with total depth of 4,945 m were drilled.

At Aungthar in Natogyi Township, two shallow tube wells were drilled to check comparatively shallow aquifer (depth of 60 to 70 m) and at Thayetpin in Chauk Township, a very deep tube well (depth of 412 m) was drilled to check deep aquifer.

ne
Zo
Dry
Central
The
Wells in
List of Test
Table 3.2.2.1

	-														
	Division	Tounchin	$V_i \Pi_{0,\infty} T_{0,\infty}$	Villeco	Drilling Depth (m)	spth (m)	Ground	Road	Machine	Static Water	Depth of	Screen Depth	Pump	Pumping Test	Woton Oriolity
	INI	dmsmor	VIIIage IIaci	VIIIAGE	Planned	Actual	(m) ¹⁾	Repairing	Type	Level (m)	Bottom (m)	(Total Length) (m)	$\mathrm{Sc}^{2)}$	$T^{3)}$	w arei Quality
-	5	Toursetter	Zagyan	Kanthonesint	200	200	203	L	TDR-300A	130.60	199.00	154.97 - 193.45 (38.48)	4.0+		High iron content
2	(1)) I aunguna	Zagyan	Tabaukkon	200	200	230	L	TDR-300A	149.00	198.00	152.50 - 194.50 (42.00)	0.4	8.59 x 10-5	High iron content
3		Gwaydaukkone	Gwaydaukkone		200	205	376	L	TDR-300B	159.00	202.50	105.19 - 180.30 (47.36)	2.7	5.66 x 10-5	5.66 x 10-5 High iron content
4	ý) Nyaur-pauaung	Simdaikaun	Sudat	200	194	390	L	TDR-300B	121.00	193.00	136.50 - 188.50 (30.00)	1.6	1.73 x 10-4	1.73 x 10-4 High TDS and iron content
5			Pegyet	Pegyet W	250	300	241	L	TOP-500	24.00	300.00	230.50 - 294.50 (47.50)	0.4	1.89 x 10-4	High iron content
6-1	<u>(3)</u>) Nathogi	Yongon	Aungthar-1	70	72	233	<u> </u>	TDR-300C	15.00	70.00	35.22 - 64.50 (23.78)	0.01	1.06 x 10-5	High TDS and iron content
6- 10 10 10 10 10 10 10 10 10 10 10 10 10	labnal		Yongon	Aungthar-2	60	60	233	L	TDR-300C	21.00	62.23	27.45 - 56.68 (23.68)	0.01	9.32 x 10-6	High TDS, TH, Mg, Cl, 9.32 x 10-6 SO4 and iron content
		Number 11	Letwar	Kangyikon(N)	300	310	215	L	TOP-500						
∞	ţ		Zedae	Htanaungwin	150	168	342	F	TDR-300C	00.66	168.00	64.98 - 156.90 (47.52)	0.4	7.14 x 10-4	High Ca, iron and TH content
6	2		Thabyeyo	Thabyeyo	200	201	216	L	TDR-300B	24.00	199.00	137.8 - 193.45 (44.55)	0.005		High iron content
10	<u>c</u>)	EYAWDWE	Osanwe	Yonbingon	200	201	173		TDR-300B	Artesian	199.50	134.90 - 194.00 (53.50)	4.4+		Chemically potable
11		Minimum	Koke	Koke	200	204	155	L	TDR-300C	14.00	00.061	51.58 - 187.90 (47.52)	0.2	1.33 x 10-4	High TDS and iron content
12	(0)) Myungyan	Saka	Saka	250	303	87	L	TOP-500	46.00	303.00	250.32 - 297.45 (41.58)	1.3	1.76 x 10-3	High TDS, TH and iron content
13	Ć	Chart	Thittogan	Sangan	250	302	279	L	TOP-500	180.00	300.00	223.00 - 294.50 (48.00)	1.5	2.39 x 10-4	2.39 x 10-4 High iron content
14	()		Wetthesan	Thayetpin	300	412	392	L	TOP-500	166.00	412.00	365.00 - 406.50 (36.00)	0.2	6.75 x 10-5	
15	(8)	Magmay	Kanthagyi	Kanthagale	200	201	186	L	TDR-300A	107.00	200.00	130.67 - 194.45 (47.13)	5.3	1.05 x 10-3	Chemically potable
16	o)		Kyitsonbwe	Kyitsonbwe	200	200	235	L	TDR-300A	163.00	200.00	88.84 - 188.90 (44.61)	0.5	1.99 x 10-4	Slightly high iron content
17) Smay	Dakokku	Magyithonepin	Magyithonepin	210	201	258	L	TDR-300B	194.00	200.00	132.25 - 194.45 (45.55)	0.04		
<u>~</u>) F anonnu	Kyathto	Anaukponekan	200	201	169	L	TOP-500	96.00	200.00	133.25 - 194.45 (44.10)	0.3	6.23 x 10-5	6.23 x 10-5 High iron content
19	J17	(10) Munthit	Ledaingzin	Thamyu	200	204	229	L	TDR-300C	122.00	203.00	141.80 - 197.50 (44.64)	1.1	3.53 x 10-4	3.53 x 10-4 Slightly high iron content
20	11)		Ledaingzin	Ledaingzin N & S	200	204	161	L	TDR-300C	69.60	203.00	119.60 - 197.45 (44.79)	2.6	2.24 x 10-4	2.24 x 10-4 High iron content
21	117	(11) Vacanto	Thitkyidaw	Thitkyidaw	200	201	107	Ľ	TDR-300C	15.70	200.00	122.15 - 188.90 (44.55)	2.0	2.49 x 10-4	High TDS and iron content
22		1) 1 CS48 J O	Zedaw	Seywa	200	201	96	L	TDR-300A	25.10	200.00	112.15 - 194.45 (54.58)	40.4		Slightly high TDS and high iron content
				Total	4,640	4,945									
1):by GPS		2)Sc::Specific Capacity (lit/sec/m) at the continuous test	(lit/sec/m) at the co		3)T:Transmissivity (m ² /sec)	sivity (m ² / ₂	(c)	l							

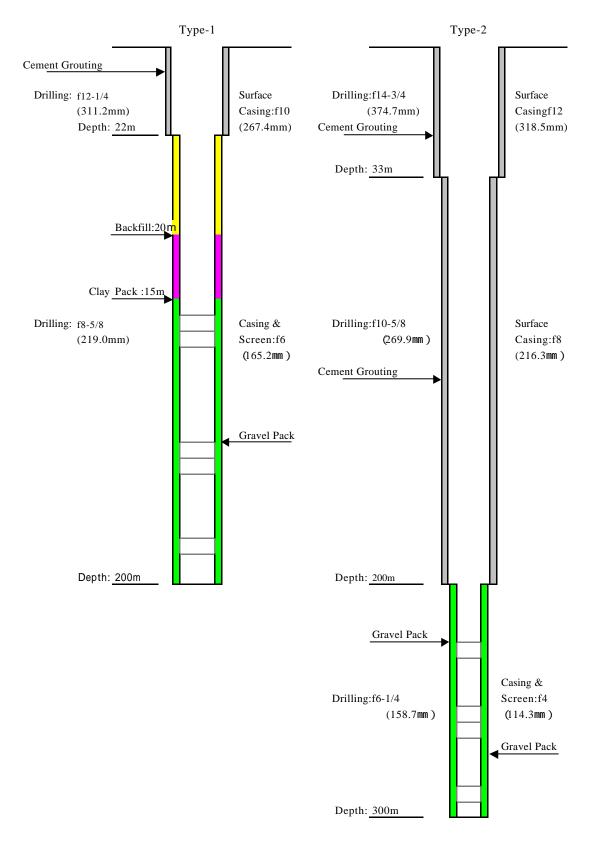


Fig. 3.2.2.1 Standard Design of the Test Well

At Kangyinkon(N) in Nyaung U Township, casings had been installed until 200 m deep, however, for the deeper until 310m deep, bottom of the well, casings and screens have not been installed because the aquifer could not be confirmed.

At Sangan in Chauk, the loss of circulation drilling mud had occurred at around the depth of 106 m and 158 m and the cement grouting was carried out to protect the loss of circulation mud. At the depth of 192 m, drill bit and stabilizer were jammed by the collapsed earth and sand from the cement grouting places described above. As it was very hard to recover the jammed drill bit and stabilizer, another new well was drilled at near the original place.

The progress of the drilling of the test wells is shown in Fig. 3.2.2.2.

(3) Pumping Test

Pumping tests were carried out at the drilled test wells except for some wells. Only continuous pumping test was carried out because of the prepared pump capacity.

Results of the pumping tests are presented on Table 3.2.2.2. Calculations of hydrogeological constant (Transmissivity) by Theis method and pumping test sheets were presented in 3-G "Pumping Test Sheet" of Vol. III, Supporting Report.

At Kangyinkon (N) in Nyaung U Township, pumping test could not be performed due to no water. At Kanthonesient in Taugthar Township, Yonbingon in Pyawbwe and Seywa in Yesagyo, calculations of hydrogeological constant were impossible due to no or too little drawdown with full capacity of the prepared pump. At Thabyeyo in Pyawbwe Township and Magyithonepin in Pakkoku, continuous pumping test could not be performed due to too much draw-down or too low (deep) water level.

(4) Water Quality Test

Water samples were collected at the final stage of the continuous pumping tests and water quality tests in laboratory were performed to the same samples.

Proposed National Drinking Water Quality Standards of Myanmar is presented in Table 3.2.2.3. Results of the water quality tests are shown in Table 3.2.2.4(1-2/2) and Table3.2.2.5.

At almost all test well sites, groundwater shows high TDS and/or high iron (Fe) like the monitoring wells. Furthermore, groundwater of the all test wells are plotted in the area () of the trilinear diagram (see "3.2.1 Hydrogeological Characteristics) as shown in Fig.3.2.2.3.

			Drilling depth (m)	oth (m)		Machine					2002				20	2003	Aquifer
Township NO	NO Village Tract	Village	Planned	Actual	Road repairing	type	5	6	2	8	6	10	11	12	1	2	Condition
Taimeta	1 Zagyan	Kanthonesint	200	203	F	TOP - 300A					(Ju. 17 ~ Aug. 30)						Good
2000	2 Zagyan	Tabaukkon	200	200	F	TOP - 300A			(Jun. 16~Jul. 16)	16~Jul. 16)							Good
Kyauk -	3 Gwaydaukkoi	Gwaydaukkone Gwaydaukkone	200	205	F	TOP-300B				****	•••••• (Aug. 17 ~ Sep. 4)	4)					Good
padaung	4 Simdaikaun	Sudat	200	194	F	TOP-300B			***	(Jul.18 ~ Aug. 16)	Aug. 16)						Good
	5 Pegyet	Pegyet W	250	300	L L	TOP - 500					(Jul. 23 ~ Aug. 29)						Good
Natogi	6 - 1 Yongon	Aungthar	60	60	F	TOP-300C			(Jul. 6 ~ Jul. 22)	6 ~ Jul. 22)							Good
	6-2 Yongon	Aungthar	60	72	F	TOP-300C				(Jul. 23 ~ Aug. 11)	ş. 11)						Good
	7 Letwar	Kangyikon(N)	300	310	F	TOP - 500			(Jun. 13 ~ Jul. 22)	. 13 ~ Jul. 22)							Not found
inyaung o	8 Zedae	Hta-naung-win	150	168	F	TOP-300C			(Jun. 13 ~ Jul. 5)	5)	(Sep. 4 ~	(Sep. 4 ~ Sep. 15)					Good
ondered	9 Thabyeyo	Thabyeyo	200	201	F	TOP - 300B										(Dec. 18 ~ Jan. 29)	Good
Lyawuwe	10 Osanwe	Yonbingon	200	201	F	TOP-300B						(Sep. 10 ~ Oct. 8)	Oct. 8)				Good
Mainman	11 Koke	Koke	200	204	L L	TOP-300C					(Aug. 12~Sep. 16)	2 ~ Sep. 16)					Good
wymgyan	12 Saka	Saka	250	303	F	TOP - 500					IIIIIII (Aug. 30 ~ Sep. 15))∼Sep. 15)					Good
Chauk Chauk	13 Thittogan	Sangan	250	302	+	T0P-500								Decured IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ed (Sep. 20 ~ Feb.	.3) ● ah.4 ~ Jan.25)	Good
	14 Wetthesan	Thayetpin	300	414	F	TOP - 500									(Jan. 5 ~ Feb. 10)		Good
Verwer	15 Kanthagyi	Kanthagale	200	201	-	TOP - 300A							(Sep. 20 ~ Oct. 20)				Good
had had	16 Kyitsonbwe	Kyitsonbwe	200	200	F	TOP-300A							(Oct.	(Oct. 21 ~ Nov. 20)			Good
Datada	17 Magyithonepi	17 Magyithonepin Magyithonepin	210	203	-	TOP - 300B							•••••••• (Oct. 12 ·	(Oct. 12 ~ Nov. 16)			Small yield
	18 Kyathto	Anaukponekan	200	201	F	TOP-300B							***	(Nov. 20 ~ Dec. 20)	ι. 20 ~ Dec. 20)		Good
Mvothit	19 Ledaingzin	Thamya	200	204	F	TOP - 300C						(Sep. 20 ~ Oct. 19)	20 ~ Oct. 19)				Good
	20 Ledaingzin	Ledaingzin N & S	200	204	F	TOP-300C							(Oct. 20 ~ Nov. 12)	Jov. 12)			Good
Vecanio	21 Thitkyidaw	Thi thy idaw	200	201	F	TOP - 300C								(Nov. 1	(Nov. 13 ~ Dec. 15)		Good
0,6000	22 Zedaw	Seywa	200	201	F	TOP-300A								(Nov. 2	(Nov. 21 ~ Dec. 13)		Good
Mandary City	23		200	180	Ľ	RC-1500					20000	(Sep. 12 ~ Sep.30)					
	Total Length		4,830	5,132													
Inspection or	f ma terialsquip	Inspection of m.a. terial squipment and setting up					(5/21	'21 ~ 5/28)									
Pumping test	at a															(Sep ~ Feb. 25)	
Machine ins	Machine inspection/Repair Plan	Ĩ													0		
Tube well p	Tube well pump installation work	ırk															

Fig. 3.2.2.2 Progress of Drilling Work in The Central Dry Zone

					ד מחוב טיביביב		.			and the sect Surdium t						
Ŋ	Divi	Division	Townshin	Village Tract	Village	Drilling Depth (m)	Pumping	Static Water	Dynamic Water	Drawdown	Specific Canacity	Transmissivity	Temper-	Hd	Remarks
				Anni Agnii I	29111	Planned	Actual		Level (m)	Level(m)	(m)	(l/sec/m)	(m2/sec)	ature()		
1		0	Taumotha	Zagyan	Kanthonesint	200	200	240	130.60	130.6	0.00	4.0+		34.6	7.85	No drawdown (pump capacity)
2				Zagyan	Tabaukkon	200	200	171.4	149.00	157	8.00	0.4	8.59 x 10-5	36	7.5	
3		0	Kyauk-	Gwaydaukkone	Gwaydaukkone Gwaydaukkone	200	205	160	159.00	160	1.00	2.7	5.66 x 10-5	25	6.7	
4		Ì		Simdaikaun	Sudat	200	194	183	121.00	123	2.00	1.6	1.73 x 10-4	35.2	7.34	
5				Pegyet	Pegyet W	250	300	571	24.00	46	22.00	0.4	1.89 x 10-4	36.8	7.01	
6-1		<u>()</u>) Natogyi	Yongon	Aungthar-1	70	72	24	15.00	56	41.00	0.01	1.06 x 10-5	29.7	8.42	
6-2		abna		Yongon	Aungthar-2	60	60	20	21.00	50	29.00	0.01	9.32 x 10-6	26.2	7.6	
٢	/ 1	S	Nvanno II	Letwar	Kangyikon(N)	300	310							ı	I	No water
∞		<u>È</u>		Zedae	Htanaungwin	150	168	240	00.66	110	11.00	0.4	7.14 x 10-4	32.8	7.22	
6		Ű,		Thabyeyo	Thabyeyo	200	201	15	24.00	72	48.00	0.005				No continuous test (too much drawdown)
음 -121		(c)) Fyawowe	Osanwe	Yonbingon	200	201	262	Artesian	Artesian	0.00	4.4+		28	7.55	No drawdown (pump capacity)
11		(9)	Mvinøvan	Koke	Koke	200	204	400	14.00	56	42.00	0.2	1.33 x 10-4	30	7.95	
12))		Saka	Saka	250	303	620	46.00	54	8.00	1.3	1.76 x 10-3	25	7.11	
13		(2)) Chauk	Thittogan	Sangan	250	302	90	180.00	181	1.00	1.5	2.39 x 10-4	30	7.7	
14		È		Wetthesan	Thayetpin	300	412	106	166.00	176.50	10.50	0.2	6.75 x 10-5	30	7.15	
15		(8)	Magwav	Kanthagyi	Kanthagale	200	201	270	107.00	107.85	0.85	5.3	1.05 x 10-3	29.3	7.78	
16				Kyitsonbwe	Kyitsonbwe	200	200	48.7	163.00	164.8	1.80	0.5	1.99 x 10-4	30.2	9.02	
17		e Smay) Pakokku	Magyithonepin Magyithonepin	Magyithonepin	210	201	5	194.00	196	2.00	0.04		ı	·	No continuous test (too low (deep) water level)
18				Kyathto	Anaukponekan	200	201	270	96.00	110.02	14.02	0.3	6.23 x 10-5	26	7.6	
19		(10	(10) Mvothit	Ledaingzin	Thamyu	200	204	135	122.00	124	2.00	1.1	3.53 x 10-4	29.6	7.98	
20				Ledaingzin	Ledaingzin N & S	200	204	450	69.60	72.5	2.90	2.6	2.24 x 10-4	30.4	7.65	
21		11		Thitkyidaw	Thitkyidaw	200	201	799.9	15.70	22.4	6.70	2.0	2.49 x 10-4	28	7.8	
22			1 1 200570	Zedaw	Seywa	200	201	727.2	25.10	25.4	0.30	40.4		39.3	8.15	Too little drawdown (pump capacity)
					Total	4,640	4,945									

f Test Wells
Tests of
umping T
of P
Results
Table 3.2.2.2

Table 3.2.2.3 Proposed National Drinking Water Quality Standards (NDWQS)

Microbiology

Type of Water and Source	Faecal Coliforms	Coliform Organisms (no./100ml)	Remarks
Treated Piped Water	0	0	
Untreated Piped Water	0	0	
Water Distribution System	0	0	
Unpiped Water Supplies	0	10	
Bottled Drinking Water	0	0	
Emergency Water Supplie	0	3	Chlorinated Supplies

Inorganic Substances

Constituents		Remarks
Arsenic(As)*	0.05 mg/l	
Cadmium(Cd)*	0.005 mg/l	*Tests for these substances will not be included in
Chromium(Cr)*	0.05 mg/l	routine examination, except on special request
Cyanide(CN)*	0.05 mg/l	
Flouride(Fl)*	1.5 mg/l	In lieu of sufficient national rcords available at
Lead(Pb)*	0.05 mg/l	present, proposed standards for these parameters are
Mercury(Hg)*	0.001 mg/l	adopted from the WHO-Guidelines for drinking
Nitrate(as N)	10.0 mg/l	water,1894. These values will be subject to revision
Nitrite(as N)		whenever found necessary
Selenium(Se)*	0.01 mg/l	

Aesthentic Quality

Constituents		Remarks
Aluminium(Al)	0.2 mg/l	*Test for this substance will not be
Chloride(Cl)	200-600 mg/l	performed for routine test except
Colour(TCU)	5.50 Pt-Co	on special request
Copper(Cu)*	1.0 mg/l	
Hardness(as CaCO3)	500 mg/l	
Iron(Fe)	0.5-1.5 mg/l	
Manganese(Mn)	0.3 mg/l	
pН	6.5-9.2	
Sodium(Na)	200 mg/l	
Sulphate(SO4)	400 mg/l	
Taste & Odour	inoffensive mg/l	
TDS	1000 mg/l	
Turbidity(NTU)	20 mg/l	
Zinc(Zn)	5-15 mg/l	
Calcium(Ca)	75-200 mg/l	
Magnesium(Mg)	30-150 mg/l	
EC	1500 µS/cm	

Source; "Water Resources, Water Quality Standard and Groundwater Management in Myanmar"

Water Resources Utilization Department MOA & I

*	Q	+	0	0	+	5	9		.	.+	·C	5	ø	+	~	Q	<u> </u>		,	~	~	9	9	· · · ·
TA*	106	74) 100	250	64	0 152	1 216		84	94	96	192	168	84	82	106	90		96	5 82	98	126	186	1
*HT	450	332	3.10	446	276	1550	484		598	158	140	480	550	428	178	358	282		126	276	182	306	170	2 500
Hq	7.66	7.72	6.67	7.66	7.67	6.66	6.76	t.	6.76	7.76	6.66	6.77	7.76	6.76	6.76	6.66	6.67		7.76	6.77	6.76	6.77	6.77	6.5-9.2
EC										1220	750	2400		1120	906	006	T		910	625	585	4400	1790	1500
TDS	730	650	455	1650	710	3900	2600	c t	0/7	790	480	1550	1980	720	585	585	545		590	400	380	2800	1100	1000
Sedin- ments																								
Smell	Nil	Nil	Nil	Nil	Nil	Nil	Nil	ļ	Ŋ	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil		Nil	Nil	Nil	Nil	Nil	
Col-																								
Appea- rance	Clear	Clear	Clear	Clear	Clear	Turbid	Slightly Turbid	ē	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear		Clear	Clear	Clear	Clear	Clear	
Remarks	High Iron content	High Iron content	High Iron content	High Total Dissolved Solids and High Iron content	High Iron content	High Total Dissolved Solids, Total Hardness, Magnesium, Iron, Chlorride and Sulphate content	High Total Dissolved Solids and High Iron content	High Iron, Calcium and Total	Hardness content	High Iron content	Chemically Potable	High Tota Dissolved Solids and Iron content	High Total Dissolved Solids, Total Hardness and Iron	High Iron content	High Iron content	Chemically Potable	Slightly High Iron content		High Iron content	Slightly High Iron content	High Iron content	High Total Dissolved Solids and Iron content	Slightly High Total Dissolved Solids and High Iron content	
CO ₃ ²⁻	ŊD	ŊŊ	ŊŊ	ŊŊ	ND	ND	ND	ļ	ŊŊ	ŊŊ	QN	ND	ND	ND	ND	ND	ND		N.D	ND	ND	ND	ND	
HCO3 -	106	74	100	250	64	152	216	Ċ	84	94	96	192	168	84	82	106	90		96	82	98	126	186	
$\mathrm{SO_4}^{2\text{-}}$	207.64	84.96	98.96	224.60	166.60	875.16	186.04		141.04	34.56	43.20	183.16	184.60	67.32	25.92	105.88	124.48		86.16	67.68	46.08	118.08	81.68	400
CI .	135	194	74	231	193	891	323		239	183	66	298	382	297	148	161	162		105	48	97	518	188	200-600
Fe $^{2+}$	2.00	2.00	2.00	2.00	3.00	6.00	5.00		3.50	3.00	1.00	2.50	2.50	2.50	3.00	1.00	1.50		3.00	1.55	4.00	2.00	2.50	0.5-1.5
\mathbf{K}^{+}	5.26	6.57	6.25	13.15	4.41	9.86	10.26	(1 1	7.50	12.50	5.68	11.00	10.29	5.88	6.00	5.00	7.50		6.47	4.12	4.41	10.22	5.68	
${\rm Mg}^{2+}$	35.88	38.32	16.32	28.20	22.20	291.72	28.68	0	13.68	11.52	14.40	27.72	28.20	22.44	8.64	21.96	8.16		18.72	22.56	15.36	39.36	10.56	30-150
Ca^{2+}	120.25	85.77	96.99	131.46	73.42	133.86	145.89		216.43	44.08	32.06	145.89	173.14	133.86	56.91	106.61	99.39		19.23	72.94	47.29	56.91	50.50	75-200
Na^+	68	59	56	123	86	185	167	ę	63	91	77	146	139	51	46	59	51		81	36	46	191	122	200
Analycis Date	27-12-02	27-12-02	14-10-02	06-12-02	28-10-02	12-12-02	27-12-02		14-10-02	13-02-03	13-02-03	03-03-03	23-10-02	20-03-03	2006/4/3	03-03-03	03-03-03		20-03-03	20-03-03	20-03-03	10-02-03	13-02-03	Proposed NDWQS*
ampled Date				-								-				-	-							- 2
Sample Sampled Analycis No Date Date					ļ				\uparrow							ļ								
	sint	'n	kon			1	5	(N) u	win		u					~	ve	nepin	ıekan		u N	*		
Village Name	Kanthonesint	Tabaukkon	Gwedaukkon	Sudat	Pegyet W	Aungthar 1	Aungthar 2	Kangyikon (N)	Htanaungwin	Thabyeyo	Yonbingon	Koke	Saka	Sangan	Thayetpin	Kathagale	Kyitsonbwe	Magyithonepin	Anaukponekan	Thamya	Ledaingzin N	Thikyidaw	Seywa	
No	1	2	1	2	1	5	3		2	1	2	-	2	-	2	1	2	1	2	1	2	1	2	
Township	Taungtha		Kyaukpadaung		Natogyi			Nyaung U		Pyawbwe		Myingyan		Chauk		Magway		Pakkoku		Myothit		Yesagyo		
Division	Madalay													Magway										

Table 3.2.2.4.(1/2) Results of Water Quality Test of the Test Wells in the Central Dry Zone (WRUD)

Note(*); Proposed NDWQS: Proposed National Drinking Warter Quality Standard Source: "Water Resources, Water Quality Standard and Groundwater Management in Myanmar, WRUD, MOA&I TH: Total Hardness, TA: Tatal Alkalinity

Table 3.2.2.4 (2/2) Results of Water Quality Test of the Test Wells in the Central Dry Zone (MSTRD)

							Ċ	-					;	140	t	╞	-			F	H	_	-	:	
Division	Township	No	Village Name	Sample No	Sample Sampled No Date	Analycis Date	Orgar Coliform	Organisms form E.Coli.	TS^*	DS*	PH*	A	N (Ammonia)	CN	Zu	As	Cu	C02 1	Pb N (Nitrate)	ate) Mn	n BOD	con	DO*	Sediment	Turbidity
Mandalay	Taungtha	1	Kanthonesint				1	Nil	810.00	805.00	18.00	4.00	N.D	N.D	0.02	N.D	N.D	N.D	0.0 D.09	0.N	0	N.D	5.00	5.00	N.D
		2	Tabaukkon				Nil	Nil	578.00	578.00	24.00	0.30	N.D	N.D	0.20	N.D	N.D N	N.D N	N.D 0.02	2 N.D	-	1.84	5.80	N.D	N.D
	Kyaukpadaung	1	Gwedaukkon				Nil	Nil	569.00	569.00	4.00	N.D	N.D	N.D	2.20	N.D	N.D	Nil	N.D 0.15	5 N.D	0 1.40	N.D	6.20	N.D	N.D
		2	Sudat				Nil	Nil	2180.00	2180.00	15.00	0.70	N.D	N.D	0.50	N.D	N.D	N.D N	N.D 0.09	9 0.50	- 0	5.50	4.00	N.D	N.D
	Natogyi	1	Pegyet W				Nil	IIN	800.00	800.00	4.00	0.50	N.D	N.D	N.D	N.D	N.D N	N.D N	N.D 0.002	02 N.D	-	3.60	6.60	N.D	N.D
		2	Aungthar 1				Nil	Nil	14456.00	13580.00	2364.00	5.40	N.D	N.D	3.00	N.D	N.D	N.D	N.D 0.002	3.00	- 0	7.36	6.80	876.00	80.00
		3	Aungthar 2				Nil	Nil	4085.00	3295.00	12.00	2.80	N.D	N.D	1.50	N.D	N.D	N.D N	N.D 0.02	2 N.D	-	3.68	5.00	790.00	40.00
	Nyaung U	1	Kangyikon (N)																						
		2	Htanaungwin				Nil	Nil	1374.00	1346.00	324.00	N.D	N.D	N.D	0.30	N.D	N.D	Nil N	N.D N.D	0.10	0 1.20	N.D	6.00	28.00	N.D
	Pyawbwe	1	Thabyeyo				Nil	IIN	2569.00	2200.00	132.00	9.40	ı	N.D	N.D	N.D (0.05 N	N.D N	U.N U.N	O.N O	-	10.40	6.60	369.00	80.00
		2	Yonbingon				Nil	Nil	550.00	550.00	4.00	0.20	1	N.D	N.D	N.D	N.D N	N.D N	N.D N.D	O.N	-	N.D	6.40	N.D	N.D
	Myingyan	1	Koke				Nil	IIN	942.00	937.00	40.00	1.10	I	N.D	N.D	N.D	N.D	N.D N	N.D 0.16	6 N.D	-	4.06	6.00	5.00	N.D
		2	Saka				Nil	Nil	2857.00	2672.00	173.00	N.D	N.D	N.D	N.D	N.D	N.D	Nil N	N.D N.D	O.N.O	0 2.00	N.D	6.00	185.00	N.D
Magway	Chauk	1	Sangan				Nil	Nil	800.00	800.00	234.00	06.0		N.D	N.D	N.D	N.D	N.D	N.D 0.02	2 N.D	· •	N.D	6.40	5.00	N.D
		2	Thayetpin				40	Nil	630.00	576.00	14.00	1.90	N.D	N.D	N.D	N.D	N.D	N	N.D N.D	O.N O	-	N.D	5.40	62.00	15.00
	Magway	1	Kathagale				Nil	Nil																	
		2	Kyitsonbwe				Nil	Nil	500.00	500.00	98.00	0.70		N.D	N.D	N.D	N.D	N.D	N.D 0.08	8 N.D	-	4.06	6.20	N.D	N.D
	Pakkoku	1	Magyithonepin																						
		2	Anaukponekan				Nil	Nil	778.00	625.00	60.00	1.30		N.D	1.50	N.D	N.D	N.D	N.D 0.02	2 N.D	-	N.D	5.00	153.00	10.00
	Myothit	1	Thamyu				Nil	Nil	475.00	475.00	31.00	0.20		N.D	0.20	N.D	N.D	N.D	N.D 0.03	3 0.01	-	N.D	5.80	N.D	N.D
		2	Ledaingzin N				Nil	Nil	400.00	400.00	22.00	0.20		N.D	N.D	N.D	N.D	N.D	N.D N.D	O.N.O	-	N.D	6.20	3.50	N.D
	Yesagyo	1	Thikyidaw				Nil	Nil	3480.00	3475.00	16.00	2.20	ı	N.D	N.D	N.D	ND	N.D	N.D 0.01	1 N.D	· 0	N.D	6.20	5.00	N.D
		2	Seywa				Nil	Nil	1328.00	1325.00	19.00	0.40		N.D	0.10	N.D	N.D	N.D	N.D 0.002	02 N.D	-	4.16	6.60	3.50	N.D
				•		Proposed	10*1	0*1	ı	1000*2	500*3	,	0.5*4	0.05	5-15	0.05	1.0	0	0.05 10.0	0 0.3		ı	,	I	I
NT-4-741. #1.	TT-TAKE	-	*J TTC *J.		*4. NT4-1	T DL -T	-1 0 -1: 4-	De. D1	-F:1-0 F1-	TIL D.						1									

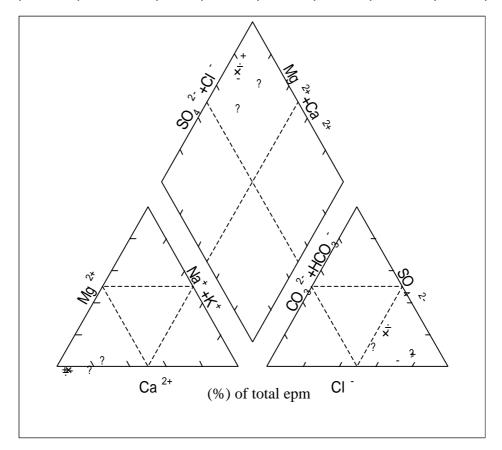

Note(*); *1: Unpiped Water Supply, *2: as TDS, *3: as CaCO3, *4: Nitrite, TS: Total Solids, DS: Dissolved Solids, PH: Permanent Hardness, DO: Dissolved Oxygen

Table 3.2.5.5 Results of Water Quality Analysis of Test Wells (epm)

-	E	, N	Village	βM	${\rm Mg}^{2+}$	Ca	2+	Na^+	+	\mathbf{K}^{+}	+	CO_{3}^{2-}	2-	HCO ₃)3 ⁻	C		SO_4	2-
10181010	TOWIISIIID	INO	Name	(mg/l)	(epm)	(mg/l)	(epm)	(mg/l)	(epm)	(mg/l)	(epm)	(mg/l)	(epm)	(mg/l)	(epm)	(mg/l)	(epm)	(mg/l)	(epm)
Madalay	Taungtha	1	Kanthonesint	35.88	2.95	120.25	54.10	68	2.96	5.26	0.13	0.00	0	106	1.74	135	3.81	207.64	4.32
		2	Tabaukkon	38.32	3.15	85.77	38.59	59	2.57	6.57	0.17	0.00	0	74	1.21	194	5.47	84.96	1.77
	Kyaukpadaung	1	Gwedaukkon	16.32	1.34	96.99	43.64	56	2.44	6.25	0.16	0.00	0	100	1.64	74	2.09	98.96	2.06
		2	Sudat	28.20	2.32	131.46	59.14	123	5.35	13.15	0.34	0.00	0	250	4.10	231	6.51	224.60	4.68
	Nathogyi	1	Pegyet W	22.20	1.83	73.42	33.03	86	3.74	4.41	0.11	0.00	0	64	1.05	193	5.44	166.60	3.47
		2	Aungthar 1	291.72	23.99	133.86	60.22	185	8.05	9.86	0.25	0.00	0	152	2.49	891	25.13	875.16	18.22
		3	Aungthar 2	28.68	2.36	145.89	65.64	167	7.26	10.26	0.26	0.00	0	216	3.54	323	9.11	186.04	3.87
	Nyaung U	1	Kangyikon (N)																
		2	Htanaungwin	13.68	1.13	216.43	97.37	63	2.74	7.50	0.19	0.00	0	84	1.38	239	6.74	141.04	2.94
	Pyawbwe	1	Thabyeyo	11.52	0.95	44.08	19.83	91	3.96	12.50	0.32	0.00	0	94	1.54	183	5.16	34.56	0.72
		2	Yonbingon	14.40	1.18	32.06	14.42	77	3.35	5.68	0.15	0.00	0	96	1.57	66	2.79	43.20	0.90
	Myingyan	1	Koke	27.72	2.28	145.89	65.64	146	6.35	11.00	0.28	0.00	0	192	3.15	298	8.40	183.16	3.81
		2	Saka	28.20	2.32	173.14	77.90	139	6.05	10.29	0.26	0.00	0	168	2.75	382	10.77	184.60	3.84
Magway	Chauk	1	Sangan	22.44	1.85	133.86	60.22	51	2.22	5.88	0.15	0.00	0	84	1.38	297	8.38	67.32	1.40
		2	Thayetpin	8.64	0.71	56.91	25.60	46	2.00	6.00	0.15	0.00	0	82	1.34	148	4.17	25.92	0.54
	Magway	1	Kathagale	21.96	1.81	106.61	47.96	59	2.57	5.00	0.13	0.00	0	106	1.74	161	4.54	105.88	2.20
		2	Kyitsonbwe	8.16	0.67	99.39	44.72	51	2.22	7.50	0.19	0.00	0	90	1.48	162	4.57	124.48	2.59
	Pakkoku	1	Magyithonepin																
		2	Anaukponekan	18.72	1.54	19.23	8.65	81	3.52	6.47	0.17	0.00	0	96	1.57	105	2.96	86.16	1.79
	Myothit	1	Thamya	22.56	1.86	72.94	32.82	36	1.57	4.12	0.11	0.00	0	82	1.34	48	1.35	67.68	1.41
		2	Ledaingzin N	15.36	1.26	47.29	21.28	46	2.00	4.41	0.11	0.00	0	98	1.61	97	2.74	46.08	0.96
	Yesagyo	1	Thikyidaw	39.36	3.24	56.91	25.60	191	8.31	10.22	0.26	0.00	0	126	2.07	518	14.61	118.08	2.46
		2	Seywa	10.56	0.87	50.50	22.72	122	5.31	5.68	0.15	0.00	0	186	3.05	188	5.30	81.68	1.70

										(epm)
Division	Township	No	Village Name	Mark	Mg ²⁺	Ca ²⁺	$Na^+ + K^+$	CO ₃ ²⁻ +HCO ₃	Cl ⁻	SO ₄ ²⁻
Madalay	Taungtha	1	Kanthonesint		2.95	54.10	3.09	1.74	3.81	4.32
		2	Tabaukkon		3.15	38.59	2.73	1.21	5.47	1.77
	Kyaukpadaur	1	Gwedaukkon		1.34	43.64	2.60	1.64	2.09	2.06
		2	Sudat		2.32	59.14	5.69	4.10	6.51	4.68
	Nathogyi	1	Pegyet W		1.83	33.03	3.85	1.05	5.44	3.47
		2	Aungthar 1		23.99	60.22	8.30	2.49	25.13	18.22
		3	Aungthar 2		2.36	65.64	7.53	3.54	9.11	3.87
	Nyaung U	1	Kangyikon (N)							
		2	Htanaungwin		1.13	97.37	2.93	1.38	6.74	2.94
	Pyawbwe	1	Thabyeyo		0.95	19.83	4.28	1.54	5.16	0.72
		2	Yonbingon		1.18	14.42	3.49	1.57	2.79	0.90
	Myingyan	1	Koke		2.28	65.64	6.63	3.15	8.40	3.81
		2	Saka		2.32	77.90	6.31	2.75	10.77	3.84
Magway	Chauk	1	Sangan	+	1.85	60.22	2.37	1.38	8.38	1.40
		2	Thayetpin	-	0.71	25.60	2.15	1.34	4.17	0.54
	Magway	1	Kathagale	×	1.81	47.96	2.69	1.74	4.54	2.20
		2	Kyitsonbwe	÷	0.67	44.72	2.41	1.48	4.57	2.59
	Pakkoku	1	Magyithonepin	*						
	-	2	Anaukponekan		1.54	8.65	3.69	1.57	2.96	1.79
	Myothit	1	Thamya		1.86	32.82	1.67	1.34	1.35	1.41
		2	Ledaingzin N		1.26	21.28	2.11	1.61	2.74	0.96
	Yesagyo	1	Thikyidaw	?	3.24	25.60	8.57	2.07	14.61	2.46
		2	Seywa	?	0.87	22.72	5.45	3.05	5.30	1.70

Fig. 3.2.2.3 Trilinear Diagram of Test Wells

This means that groundwater of the test wells, also have much quantity of dissolved solids and are affected strongly by the chemical composition or mineralogy of the host rocks during long residence time in the aquifer.

(5) Installation of Pumps in Test Wells

Pump installation work have been done for two months from May 2003 under supervision of an engineer of the Study Team. Since these test wells had been intended to use as production wells, JICA procured 21 sets of helical rotor pumps and delivered them to the Study Area. Two sets of airlift pumping system, which consists of an air compressor, an engine and pipes, were procured locally and provided for the two shallow wells at Aungthar village in Natogyi Township. Results of installation of pumps for the test wells is shown in Table 3.2.2.6. Among the 21 deep wells, three wells were not used as production wells due to the following reasons.

At Kangyikon N village, Nyaung-U Township, aquifer could not be confirmed up to 300 m deep in the ground. At Magyithonepin village, Pakokku Township, the test well had a yield of only 5 l/min, which was too little to use. At Thayetpin village, Chauk Township, a static water level was 315 m deep, which was beyond specified heads of the procured pumps. At Yonbingon village, Pyawbwe Township pump was not necessary because the well was an artesian well. Therefore four sets of well pumps were no need to be installed for the above three unsuccessful wells and an artesian well. The pump installation work including the progress, equipment used in each well, test operation and training to the villagers etc. is reported in 3-K of Vol. III, Supporting Report.

Consequently, 17 sets of well pumps were installed totally except the above three unsuccessful test wells and an artesian well. DDA has constructed a set of reservoir, pump house, and pipe between the pump and the reservoir for each tube well on its own responsibility. The specifications of uninstalled four well pumps are as follows,

Table 3.	2.2.7 Specificat	don for wen run	ips to be blored i		s warehouse
Head(m)	Discharge	Well Diameter	Length of Riser	No.	Engine (kW)
	(gal/hr)	(mm)	Pipe (m)		_
220	3,000	>120	220	1	15.5
170	1,500	>100	170	1	7.3
120	1,000	>120	120	1	3.0
100	1,000	>100	100	1	3.0

 Table 3.2.2.7
 Specification for Well Pumps to be Stored in DDA's Warehouse

The two unsuccessful tube wells in Magyithonepin and Thayetpin villages will be used as monitoring wells to trace water level and water quality in future.

			I aute	0.7.7.0		SIIT 10 SIII	rallaulu	II OI L M	INT SOL	Results of HIStaliauoli of Fullps for Test Wells				
			Population	ation	Water I	Water Demand	Pumping T	Pumping Test Result Water Level	/ater Level	Pump to be installed	o be ins	talled		
					Total	Required	Static	Dynamic			I	Installation	Ground Tank	
			Year	Year	Demand	Pump Rate	Water	Water	Discharge	Discharge 1	Head	Depth	proposed	
	Village Tract	Village	2001	2010	(gal/day)	(gal/hr)	Level	Level	(gals/hr)	(gals/hr)	(m)	-	Capacity (gallon)	
Tannatha	Zagyan	Kanthonesint	1,332	1,564	23,460	2,932	-130.6	130.6	3,165	3,000	220	150	8,000	
1 auriguia	Zagyan	Tabaukkon	410	481	7,221	903	-149.0	157. 0	2,255	1,800	200	-170	5,000	
Kumpenduev	Gwaydaukkone	Gwaydaukkone	1,560	1,832	27,476	3,434	-159.0	160.0	2,110	2,000	170	-170	5,000	
NyauNpauaung	Simdaikan	Sudat	500	587	8,806	1,101	-121.0	123.0	2,413	2,000	170	-180	5,000	
	Pegyet	Pegyet W	1,261	1,481	22,209	2,776	-24.0	46.0	7,530	5,000	170	-100	8,000	
Natogyi	Vongon	Aunothar					-21.0	50.0	264					Two sets of Air
	IIOSIIO I	mingunt	902	1,059	15,886	1,986	-15.0	56.0	343	1			2,000	copressor were supplied.
Nivened 11	Letwae	Kangyikon N	700	822	12,329	1,541			I	Not availabl	e due to	o unidentidic	Not available due to unidentidication of aquifer.	
U aniig O	Zedae	Htanaungwin	750	881	13,209	1,651	99.0	110.0	3,165	2,000	170	-130	5,000	
Duamhuia	Thabyeyo	Thabyeyo	500	587	8,806	1,101	-24.0	-72.0	198	1,000	120	-130	3,000	
1 Jawowe	Osanwa	Yonbingon	350	411	6,164	771			I	Artesian well	_			
Muinavan	Koke	koke	2,500	2,935	44,031	5,504	-14.0	-56.0	7,029	5,000	170	-100	15,000	
ung)ung) au	Saka	Saka	1,001	1,175	17,630	2,204	-46.0	54.0	8,176	3,000	220	-100	6,000	
	Thittogan	Sangan	700	822	12,329	1,541	-178.0	-181.0	1,055	1,500	270	-210	4,000	
Chauk	Wetthesan	Thavetpin								Installation of Pump was not available due t the deep groundwater level, which is beyond	of Pump andwate	o was not av r level, which	Installation of Pump was not available due to the deep groundwater level, which is beyond	
		1 - 6	1,150	1,350	20,254	2,532	-315.0	-315.0	1,600	specified heads of the procured pumps	ds of th	e procured p	oumps.	
Magmay	Kanthagyi	Kanthagale	1,146	1,346	20,184	2,523	-107.0	-108.0	3,560	2,000	170	-155	7,000	
ty tag way	Kyitsonbwe	Kyitsonbwe	5,000	5,871	88,063	11,008	-163.0	-164.8	642	1,000	220	-175	3,000	
Pakokku	Magyithonepin	Magyithonepin	350	411	6,164	771	-194.0	196.0	66	Not available due to very small yield	e due to	very small	yield.	
	Kyathto	Anaukponekan	950	1,115	16,732	2,091	-96.0	110.0	3,560	2,000	170	-153	6,000	
1t. :	Ledaingzin	Thamya	2,500	2,935	44,031	5,504	-122.0	-124.1	1,780	2,000	170	-165	6,000	
IIIIJOUIII	Ledaingzin	Ledaingzin N&S	3,000	3,523	52,838	6,605	-69.6	-72.5	5,934	3,000	170	-155	8,000	
Vesaovo	Thitkyidaw	Thitkyidaw	3,000	3,523	52,838	6,605	-15.7	22.4	10,549	5,000	170	-100	12,000	
1 cougg o	Zedaw	Seywa	1,075	1,262	18,933	2,367	-25.1	25.4	9,587	2,000	170	-100	6,000	

However, the one in Thayetpin village can be utilized as the production well if a pump with an enough capacity is procured. The above four sets of well pumps unused this time can be installed for the wells to be drilled in the "10 Year Project" in the Central Dry Zone in future.

(6) Geological features and difficulties in drilling works in the Central Dry Zone

According to result of the test boring, the geological formation of the Central Dry Zone in Myanmar is composed of three layers with sandy rock and shale rock of the Tertiary period as follows:

- a) Surface layer, generally from 0m to 40m in depth, is sandstone and mudstone which are easy to collapse. However, this layer may continue up to depths of 60m to 70m at some places.
- b) Second layer is composed of sandy rock and shale which themselves are soft and easier to collapse, further there are many opened cracks caused by faults. In drilling work it is supposed that drilling mud flows out into the cracks.
- c) Third layer is also composed of sandy rock and shale, however this layer is more stable and a uniform layer than the second layer and composes an aquifer.

Therefore, groundwater exists as the fissure water in the cracks of the third layer.

1) Surface layer (from 0m to 70m in depth)

The surface layer is drilled by standard mud (Specific gravity: 1.16, viscosity rate: 50 seconds). During the drilling work, sandy rock does not collapse with mud circulation in the hole, if mud circulation is stopped at the time of bit exchange or casing insertion, it will become easy to collapse.

Moreover, it can easily lead to accidents of jamming at the time of raising rods or casings. With the present drilling equipment, the counter measures against collapse are raising the specific gravity and viscosity rate of mud to protect the wall or lowering a safety casing to the required depth to stop collapse forcibly.

When collapse does not stop at depths below the bottom of the inserted casing, a dredging is repeated by dense mud, or cementation is done to protect the hole. In this case, it is better to performed in 24 hours shift operation.

The object of cementation for this layer is to protect wall. Cementation is done using cement mortar and sand mixed in a proportion decided according to the condition of the collapse. For the cementation, generally, mortar is placed from bottom of hole by a

pump; however, in this project the pump was not procured, and mortar had to be placed from mouth of hole.

Therefore, mortar got mixed with mud in the hole and formed to a gel. As a result, hardening of cement took time and waiting time increased. Moreover, since cement mortar adhered to intermediate wall, the necessary volume of mortar for cementation did not reach to the bottom. For this reason, cementation was repeated over several times. If there was another pump for cementation or power mud, the collapse and lost circulation could have been arrested more quickly.

Second layer of sandstone and shale layer (Lost circulation bed from 70m to 240m in depth)

There are two types of lost circulation, one is complete loss and another is partial loss. The complete lost circulation occurs at once flashing out from the crack. In Kanthonesint village of Taungtha Township, cuttings accumulated in a hole at 146m in depth and the stabilizer was jammed by cuttings remained inside of the hole. The opportune timing of raising the rod was lost; leading to an accident, and its retrieval took 2 days.

If the position of lost circulation bed was known by geophysical exploration, suitable measure could have been selected. At present stage, it cannot but has to depend on the skill of operator.

The number of occurrences of lost circulation depends on hole, however it was 2 or 3 times per hole minimum. In the Sangan village of Chauk Township, all of layers were lost circulation beds from surface to 200m in depth.

Lost circulation part of the hole was grouted with cement milk from the bottom of the hole through a 2 inch pipe to pour into the crack. If cementation is done by injecting the cement milk to the depth of lost circulation using a pump, it is effective. Moreover, when the lost circulation volume was more than 2001/min, leaves and sawdust were mixed to mud as a substitute for raising viscosity.

3) Third layer of sandstone and shale layer (Aquifers from 240m to 420m in depth)

After passed the second layer, it was a stable stratum of sandstone and shale, and since the aquifer was thin, it was very difficult to confirm the position of aquifer during digging.

To find the exact position of aquifer, well logging needs to be grasped. After confirmed the aquifers, water jetting and airlift were continuously performed for cleaning of the hole. And since it was inadequate, the ground water level had changed. When cleaning was not

performed completely into the cracks and the cuttings or mud was not fully removed water paths closed and as a result change of water level took place inside the hole. When washing cracks for fissure water, the swapping method is necessary to eliminate cuttings and mud.

4) Lost Circulation Occurred in the Field

During the test well drilling in the field, lost circulations were occurred almost in the drilling sites. The main appearances of the lost circulation are described as follows;

i) In Kanthonesint village, sand strata lie from 0m to 65m in depth. For stopping the collapse, the safety casing was installed to 30m in depth. However, the casing could not enter deeper; therefore, counter measure was changed to cementation. The cementation carried out repeatedly and wall had been secured. Drilling between 0m to 65m took 23 days. In the meantime, cementation was carried out 12 times using 200 nos of 40kg bags of cement.

From 65m in depth, it enters the sandstone layer. Since it was very soft, digging was performed with the mud raising its concentration. But lost circulation happened near 127m in depth, all rods were lifted, and cementation was performed.

The scale of cracks and the maximum lost circulation volume from cracks could not be confirmed. Therefore, at first, cementation was tried by 1200kg of mortar cement mixed with 20kg salt. After allowing 24 hours for mortar hardening, the effect of the cementation was checked using a rod. Cement had flowed out from the cracks and it was judged that cementation was not effective. Then, cementation was carried out for a second time using 2400kg of mortar cement mixed with 40kg of salt. After confirming hardened surface of cementation near 123m in depth, the digging was resumed for cutting cement.

After passing through 127m, lost circulations happened 3 times at 130m, 162m and 174m. When lost circulation occurred, the rod was raised immediately to avoid its jamming. Also for each lost circulation, cementation was performed and digging was ended at 200m in depth.

Since cementation was continuously performed many times for stopping the lost circulation. There was apprehension where the hole could be used as a product well. However, from the result of well logging, the existence of aquifers was confirmed, and

finally the amount of pumping of 280 l/min was secured.

- ii) In the Saka village, from 0m to 46m in depth is sand strata. Here, safety casing was inserted to 20m and the rest was excavated by cementation method. To pass this layer, it took 16 days and cementations were performed 7 times and using 3720kg of cement.
- iii) In a Gwaydaukkone village, cementation was carried out at 138m, 196m for lost circulation.
- iv) In the Sudat village, the lost circulation happened at 139m, 165m and 176m in depth.For stopping the lost circulation, cementation and prevention material was used.
- v) In the Sungan Village, for drilling from 20m to 198m in depth, cementation and using prevention material were repeated as the counter measure for lost circulation. As lost circulation bed was thick and lost circulation could not be stopped completely. However digging was continued under lost circulation. Then a stabilizer was blocked by collapse in the hole as the accident. It took four months to recovery rods except the bit and bit-sub.

In the point detached 20m from the first well, new well was drilled in 24 hours shift operation. The cementation was not adapted. As the counter measure against lost circulation, the clay which could be taken in near the drilling site was used for substitutive prevention material for lost circulation.

- vi) In the Kanthagle village, lost circulations happened at 143m and 155m in depth, the lost circulation was stopped by prevention material.
- vii) In the Kyitsonbwe village, lost circulations happened at 126m, 138m and 165m in depth, the lost circulation was stopped by cementation and prevention material.
- viii) In the Anaukponekan village, lost circulation happened at 125m, 146m and 188m in depth, lost circulations was stopped by cementation.
- ix) In the Laydaingzin village, lost circulation happened at 100.5m, 118m and 128m in depth, lost circulation was stopped by the prevention material.
- x) In the Thabyeyo village, lost circulation happened at 144m and 168m in depth, it was stopped by cementation.