Annex H6.2.5 Economic and Financial Analysis of Drainage Improvement Project in Palembang

(1) Introduction

Preliminary economic evaluation has been conducted for the drainage improvement projects in two drainage systems, Bendung and Buah Systems, which have the most serious drainage issues in Palembang City. The objective of the economic evaluation is to analyze the feasibility of the proposed measures from the viewpoint of national economy. The Projects are analyzed by quantitative method by cost-benefit analysis deriving such indices as EIRR, B/C ratio, and NPV, which are commonly used for economic analyses of the same types of development projects.

(2) Results of Economic Analysis

Results of economic analysis indicated that the project for Bendung System has rather low economic efficiency with EIRR of 11%. However, the project for Buah System has good economic efficiency with EIRR of 19.3%, which is by far higher than the opportunity cost of capital in Indonesia (12%), while implementation of both the projects also indicated sufficient economic efficiency with EIRR of 12.6%. As a flood mitigation project to improve water environment in urban areas, the projects can be justified from the economic viewpoint. The cash flow of the analysis is shown in **Attachment H8** and the results are summarized in **Table AH1**.

Project	EIRR (%)	B/C ratio	NPV (Rp. million)
1. Bendung system	11.0	0.91	-1,389
2. Buah system	19.3	1.69	2,451
3. Both Bendung & Buah systems	12.6	1.06	1,062

 Table AH1
 Results of Economic Analysis

(3) Basic Conditions for Economic Analysis

The economic analyses of the projects are examined based on the following basic conditions:

a) Price Level and Exchange Rate

The analyses are made at the price level of September 2002 and applied foreign exchange rates are one U.S. dollar equivalent to Rp.9,035 and 100 Japanese Yen equivalent to Rp.7,405.

b) Project Life

The project life depends on the insurability of the facilities. The project life of 50 years after construction of all the facilities is assumed for the economic analysis. The residual value of the facilities at the end of project life was neglected since it does not give significant effect for the results of the analyses.

c) Discount Rate

A discount rate of 12% is applied. The rate has been adopted for economic analyses of similar projects in Indonesia.

d) Standard Conversion Factor (SCF)

The standard conversion factor (SCF) of 0.90 is applied to adjust the effects of trade distortion and the local costs for non-traded goods and services. The process to estimate SCF is presented in **Attachment H1**.

e) Transfer Payment

From the viewpoint of national economy, the transfer payment such as taxes, duty, subsidy and interest is merely a domestic monetary movement without direct productivity. Therefore, it is excluded from the costs of goods and services in the economic analysis.

f) Economic Project Cost

The economic project costs are estimated from the financial project cost adjusting by SCF after deducting the direct transfer payment.

g) Operation and Maintenance Cost

For the civil construction works such as river facilities, 0.5% of construction cost is assumed as operation and maintenance cost of the facilities.

(4) Flood Condition in Palembang City

According to "Program Jangka Menengah Sektor Drainase (Middle-term Drainage Sector Program), Project Preparation of Palembang Urban Development Program II, ADB Loan 1383 INO", there are 59 locations which suffer frequent inundation. The major causes of the inundation are heavy rainfalls when water level of the Musi River is high due to high tide, low-lying geography, and insufficient drainage capacity. The city consists of 19 drainage systems. The flood prone locations and flood conditions by drainage system are presented in **Attachment H2** and **H3**.

As seen in **Attachment H2**, though depth of inundation is not very deep, frequency of inundation is quite often. According to people in the areas, inundation occurs several times a year. As a result, living environment in the inundation areas, especially sanitary condition, is very poor. The children in the area suffer skin diseases, stomachache, and flu frequently after inundation.

Before, people used to build wooden stilt houses in such areas. However, since the price of wood has risen remarkably these years, people tend to build common

semi-permanent and permanent houses and these houses suffer from frequent inundation.

After review of all the 19 drainage systems by site reconnaissance and hearing from KIMPRASWIL Kota Palembang, it became evident that drainage improvement works and construction of new retention ponds have been implemented little by little and the flood conditions of several locations have already been improved. Land uses of suburb areas remain agricultural lands, fallow lands, or swampy areas, facility measures are not always necessary. Based on these circumstances, taking into consideration of present and future land uses, facility measures, rehabilitation of trunk drainage channels, and non-facility measures including community drainage management are proposed by the Study Team as summarized in **Attachment H4**.

As shown in **Attachment H4**, Bendung (No.6) and Buah (No.8) systems need urgent facility measures in order to mitigate habitual inundation and improve living environment. Economic evaluation is conducted for the facility measures for these two drainage systems.

(5) Estimation of Flood Damages

Benefit of flood control project is estimated from difference of flood damages between those with and without project conditions. In other words, it is flood damage reduction benefit. For estimation of the benefit, thus, it is the first step to identify and to quantify potential flood damages in the flood prone areas under without-project condition. Methodology for estimation of the probable flood damage is discussed in the following sections.

a) Damages to General Assets

(i) Houses

Major land use of the two drainage systems is settlement and services & trade areas. Almost all the areas are built-up areas. Due to low lying topography and insufficient drainage capacity, the locations suffer from frequent inundation after a few hours of intensive rainfall.

There are lots of shops and traders in the area and most of them are shop-houses (rumah-toko or ruko). As a result of interview with shop owners, merchandise damage is not significant since they usually use shelves or elevated showcases to store their merchandise. Therefore, only damages to houses and household goods are taken into consideration. Damages to business (decrease of income) are considered in estimation of indirect damages.

Types of houses are generally classified into three types, i.e. permanent house made by brick masonry walls, semi permanent

house with brick masonry and wooden walls, and simple house with wood or bamboo walls. The values of houses are estimated as shown in **Table AH2**.

		1					1
Type of	Average	Unit const.	Value of	Depre-	Present value	Compo-	Ave. value
house	floor area	cost per m2	new house	ciation	of house	sition	of house
	(m2)	(Rp.1,000)	(Rp. million)	Rate	(Rp. million)		(Rp. million)
Permanent &	E.C.	0.57	52.6	500/	26.9	450/	
semi permanent	50	957	53.6	50%	26.8	45%	13.8
Simple house	42	150	6.3	50%	3.2	55%	

 Table AH2
 Estimation of Average Value of House.

Average floor area is estimated by weighted average floor area of houses in Palembang based on statistical data of "Penduduk Sumatera Selatan, Hasil Survei Penduduk Antara Sensus 1995". Since there is no statistical data on floor area by type of house, the same size is assumed for both permanent and semi permanent houses. The size of "simple house" is assumed based on information through site reconnaissance.

Information on standard unit construction cost of house is obtained from Housing Division in Department of Urban Development (Dinas PU Cipta Karya) of the province. Depreciation rate of residence is assumed 0.5 considering period of use. The composition of the types of houses is also taken from "Penduduk Sumatera Selatan, Hasil Survei Penduduk Antara Sensus 1995".

It can be imagine that quality of the houses will be upgraded according to economic development of the area in the future. Therefore, the unit value of house is assumed to increase according to growth of per capita GDP estimated in the socioeconomic framework of this Study (2.5% p.a. for Palembang).

• The number of houses in the flood prone areas is estimated from average housing density in the sub-districts (kelurahans) located in the respective drainage system as shown in **Table AH3**.

Drainage	Total area of sub-districts	No. of household	Average housing
system	in drainage system (ha)	in 2001 (household)	density (house/ha)
Bendung	1,272	23,505	19
Buah	1,795	20,586	12

Note: Total areas of sub-districts in the drainage systems are different from areas of drainage systems.

• In the area, there still are some unused land or swampy areas. Actually, housing development is seen at many places in the areas. It is sure that the areas will be densely

populated built-up areas in the future. Therefore, the future density of houses is estimated according to the population projection made in the socioeconomic framework plan of this Study. The future housing density is estimated as shown in **Table AH4**:

Drainage	Housing den	Average annual	
system	2002	2020	growth
Bendung	19	26	1.75%
Buah	12	16	1.75%

 Table AH4
 Future Housing Density in Drainage Systems

(ii) Household Goods

The households located in the flood prone area have various kinds of household goods such as bedding, cupboard, table and chairs, cooking stove, carpets, radio-cassette player, clothes, and food stock. Many of them also have color TVs. The study team estimated the value of the household goods, which are most commonly owned by households in Palembang as shown in **Table AH5**.

Household Price (new condition) Depreciation Present value goods (Rp.) rate (Rp.) Cupboard (wooded) 850,000 0.5 425,000 Bed (2 units) 725,000 0.5 362,500 Table & chair 600,000 300,000 0.5 Kerosene stove 75,000 37,500 0.5 Radio-cassette player 263,000 0.5 131,500 Television 1,050,000 0.5 525,000 Other (clothes, foods) 500,000 2.281.500 rounded 2,280,000 Total

 Table AH5
 Value of Household Equipment

The household goods are selected by the study team based on information during site reconnaissance. The household goods were estimated from the market price depreciating by 50% considering period of use.

Future value of the household goods is also assumed to increase according to growth of per capita GDP estimated in the socioeconomic framework of this Study (2.5% p.a.).

(iii) Estimation of Flood Damages to General Assets

Flood Condition

The flood simulation analysis for Palembang City has been conducted by the Study Team as described in **Chapter 6** of

Supporting Report Sector G. Average inundation depth and area have been estimated by magnitude of flooding as summarized below:

	Inundation					
System	depth (m)	2-year	3-year	5-year	10-year	15-year
Bendung	0 <d<0.5< td=""><td>56</td><td>58</td><td>63</td><td>70</td><td>79</td></d<0.5<>	56	58	63	70	79
	0.5= <d<1.0< td=""><td>3</td><td>3</td><td>3</td><td>3</td><td>3</td></d<1.0<>	3	3	3	3	3
	Total	59	61	66	73	82
Buah	0 <d<0.5< td=""><td>37</td><td>38</td><td>42</td><td>46</td><td>52</td></d<0.5<>	37	38	42	46	52
	0.5= <d<1.0< td=""><td>_</td><td>-</td><td>-</td><td>-</td><td>_</td></d<1.0<>	_	-	-	-	_
	Total	37	38	42	46	52

Table AH6Probable Inundation Area by Magnitude of Flooding (ha)

Damage Rate

For estimation of probable flood damages to general assets (houses and household goods), standard flood damage rates developed by Ministry of Land, Infrastructure and Transport, Japan is applied since no such damage rate is available in Indonesia.

	Inundation Depth above Floor Level						
	Less than	Less than 0.5-0.99m 1.0-1.99m 2.0-2.99m More than					
	0.5m				3.0m		
1. Building	0.092	0.119	0.266	0.380	0.834		
2. Household goods	0.145	0.326	0.508	0.928	0.991		

Table AH7Damage Rate

Source: Manual for Economic Study on Flood Control, Ministry of Land, Infrastructure, and Transport, Japan, May 2000

Estimation of Probable Flood Damage

Flood damages to general assets are estimated from the damageable property in inundated area multiplied by the damage rate corresponding to inundation condition under various magnitudes of flood events. According to the actual situation of houses through site reconnaissance, it is assumed that the floor level of the houses in the flood prone area is approximately 20 cm elevated from ground level. Therefore, shallow inundation area (up to 0.2 m) has been excluded from the inundation area since flood damage to general assets will not be significant in that area. The adjusted inundation area is presented blow:

System	Inundation depth (m)	2-year	3-year	5-year	10-year	15-year
Bendung	0.2 <d<0.7< td=""><td>39</td><td>40</td><td>48</td><td>53</td><td>72</td></d<0.7<>	39	40	48	53	72
	0.7= <d<1.2< td=""><td>3</td><td>3</td><td>3</td><td>3</td><td>3</td></d<1.2<>	3	3	3	3	3
	Total	42	43	51	56	75
Buah	0.2 <d<0.7< td=""><td>27</td><td>27</td><td>41</td><td>44</td><td>48</td></d<0.7<>	27	27	41	44	48
	0.7= <d<1.2< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></d<1.2<>	-	-	-	-	-
	Total	27	27	41	44	48

Table AH8Adjusted Inundation Area by Magnitude of Flooding (ha)

The flood damages under present (2002) and future conditions (2020) by magnitude of flood are estimated as shown in **Attachment H5** and summarized in **Table AH9**.

Drainage system	Prese	nt condition (2002)	Future	e condition (2	2020)
/flood condition	House	Hh goods	Total	House	Hh goods	Total
Bendung						
2-year	1,034	287	1,322	411	107	1,322
3-year	1,059	294	1,352	411	107	1,352
5-year	1,251	344	1,595	625	163	1,595
10-year	1,372	375	1,747	670	175	1,747
15-year	1,830	495	2,325	731	190	2,325
Buah						
2-year	2,205	614	2,819	854	223	1,077
3-year	2,257	627	2,884	854	223	1,077
5-year	2,668	735	3,403	1,298	339	1,636
10-year	2,925	802	3,727	1,393	363	1,756
15-year	3,902	1.057	4,959	1.519	396	1.916

 Table AH9
 Probable Flood Damage by Magnitude of Flood (Rp. million)

Note: Hh goods: household goods

Flood damage - probability curve under without project condition is presented in **Attachment H6**.

Annual mean flood damage is estimated as accumulation of flood damage segments derived from various magnitude of probable flood damage multiplied by the corresponding probability of occurrence, from non-damageable flood up to design probable flood. The annual mean flood damage against both present assets and projected future assets in the year 2020 has been calculated based on the probable flood damage discussed above as shown in **Attachment H7**. Since the proposed measures aim to mitigate flood damages up to 15-year probable flood, the estimated annual mean flood damage is the expected flood reduction benefit of general assets with implementation of the proposed measures. The expected flood reduction benefit of **Table AH10**.

 Table AH10
 Flood Reduction Benefit for General Assets (Rp. million)

	2002	2020
Bendung	985	2,100
Buah	414	860

b) Damages to Infrastructure

Major flood damages to infrastructure are damages to national, provincial, and city roads.

Trunk roads such as national and provincial roads are maintained by Provincial Road Department (Dinas PU Bina Marga). Maintenance costs consist of the following three kinds: 1) regular maintenance, 2) rehabilitation, and 3) betterment. Out of these, inundation of roads increases the rehabilitation cost. There is no accurate statistical data on relation between inundation and rehabilitation cost of roads. However, according to the department, generally rehabilitation of road is necessary every 5 years if there is no inundation, but in inundation area, rehabilitation is needed every 2 to 3 years. Unit rehabilitation cost of major roads is approximately Rp.500 million/km.

On the other hand, the city roads are maintained by Department of Road, KIMPRASWIL Kota Palembang. According to the department, unit rehabilitation cost is approximately Rp.500 million/km and 20 to 30 km of city roads are rehabilitated annually.

Based on the information above, it is assumed that rehabilitation cost of the roads in inundation section can be saved 50% by drainage improvement works. It means that the rehabilitation cost of Rp.50,000,000/km/year can be saved by improvement of drainage condition.

Length of road inundation section and reduction of road maintenance cost by drainage improvement have been estimated based on the map showing inundation area discussed above. Expected reduction of road maintenance cost is shown in **Table AH11**.

	Road Inur	dation Lengt	Reduction of road	
Drainage System	Trunk road	City road	Total	maintenance cost
				(Rp. million)
Bendung	2,400	2,700	5,100	255
Buah	2,250	2,700	4,950	248
Total	4,650	5,400	10,050	503

 Table AH11
 Expected Reduction of Road Maintenance Cost

c) Indirect Damages

The indirect flood damages are the net economic losses to the nation due to interruption of economic activities in the affected areas. In this study the following indirect damages are taken into consideration:

• Economic loss due to work absence of the flood affected people who have to take care of their home during and after inundation.

- Economic loss due to time loss caused by traffic jam in inundation areas.
- Loss of medical cost for the children suffer from flu, stomachache, and/or skin diseases due to unsanitary condition during and after inundation.

(i) Economic Loss due to Work Absence of Flood Affected People

According to people live in flood prone areas, they have to stay at home and take care of their home and properties during flood. After flood, they have to clean their houses and household goods submerged. During these periods, they cannot go for work and cannot do any productive activities. Therefore, these activities are considered as economic loss of the society. The loss is estimated from decrease of regional income on assumption that working population in the flood affected area has to stop productive work for two days due to flood. Based on the socioeconomic framework in the target year 2020, future economic loss is also estimated applying population projection and future per capita GDP. Average family size and ratio of working population are assumed to be the same as present condition. Process of estimation is shown in **Table AH12**.

	Bendung		Bu	ah
	2002	2020	2002	2020
Houses in flood prone areas	1,064	1,456	768	1,024
Average family size	4.2	4.2	4.3	4.3
Total population in flood prone areas	4,469	6,115	3,302	4,403
Ratio of working population	31%	31%	31%	31%
Total working population	1,385	1,896	1,024	1,365
GDP per working person per day (Rp.)	50,000	77,983	50,000	77,983
Loss due to 2 days absence (Rp.million)	139	296	102	213

Table AH12Economic Loss due to Work Absence

(ii) Economic Loss due to Traffic Jam Caused by Inundation

During flood, traffic of major roads in the city is paralyzed. Heavy traffic jams are seen in many places in the city and they usually last for half a day to one day. There is no accurate information on traffic jam due to inundation but it is sure that the paralyses of the traffic have given negative impact to the economic activities of the region. Therefore, the economic loss is estimated on assumption that half of daily traffic of major road runs into traffic jam and has to spend two more hours to reach destinations. It means that the people caught by traffic jam loose two hours of productive activities. Here, the loss due to increase of vehicle operation cost is not considered since it is generally by far smaller than loss of travel time cost. Since there is no data on number of passengers per vehicle, one person per vehicle is assumed. Average annual mean traffic of major roads is obtained from Provincial Road Department (Dinas PU Bina Marga). Based on the socioeconomic framework in the target year 2020, future economic loss is also estimated applying population projection and future per capita GDP. Results of estimation are presented in **Table AH13**.

	Bendung		Bu	ah	
	2002	2020	2002	2020	
Average annual daily traffic (AADT)					
- Jl. Jenderal Sudirman	4,000	7,964	-	-	
- Jl. Veteran	3,600	7,168	-	-	
- Jl. Basuki Rachmad	24,200	48,183	-	-	
- Jl. Yos Sudarso	-	-	750	1,493	
Total of AADT	31,800	63,315	750	1,493	
Half of total traffic	15,900	31,658	375	747	
GDP per working person per two hours (Rp.)	14,000	20,351	14,000	20,351	
Loss due to traffic jams (Rp.million)	223	644	5	15	

 Table AH13
 Loss due to Traffic Jam cause by Inundation

(iii) Detriment to Health

One of the most serious issues, which were stated by the people live in flood prone area, is that children suffer skin disease, stomachache and/or flu due to unsanitary living condition caused by frequent inundation. According to a statistical data, more than 100,000 people had medical treatment due to waterborne and water-related diseases in Palembang in 1986.

When medical treatment is necessary, people usually go to public health center (PUSKUSMAS), which is subsidized by the government. People have to pay approximately Rp.2,000 or even some people are exempted from medical cost including medicine. The actual cost of the medical treatment and medicine is several times higher than this.

	Bendung 2002 2020		Buah		
			2002	2020	
Houses in flood prone areas	1,064	1,456	768	1,024	
Average family size	4.2	4.2	4.3	4.3	
Total population in flood prone areas	4,469	6,115	3,302	4,403	
Ratio of population under 9 years old	20%	20%	20%	20%	
Total population under 9 years old	894	1,223	660	881	
Assumed medical cost including medicine (Rp.)	20,000	20,000	20,000	20,000	
Loss of medical cost due to flood (Rp.m)	18	24	13	18	

 Table AH14
 Estimation of Loss of Medical Cost due to Flood

The loss of medical cost for detriment to health caused by flood is estimated based on the following assumptions:

• Children under 9 years in inundation area have medical treatment once a year due to skin disease, flu, and/or stomachache caused by inundation,

- Ratio of population under 9 years old is taken from the actual ratio of age-group distribution in Palembang from the results of the Population Census 2000, and
- Medical cost of Rp.20,000 is assumed including medicine cost.

Based on the socioeconomic framework in the target year 2020, future loss of medical cost is also estimated applying population projection. Average family size and ratio of population under 9 years old are assumed the same as present condition.

(6) **Benefit of the Projects**

After implementation of the proposed projects, flood damages of the two drainage systems will be mitigated and the population in the drainage systems will directly benefit from the project:

- Bendung System:	100,000 people (in 2002)	166,000 people (in 2020)
- Buah System:	90,000 people (in 2002)	150,000 people (in 2020)
Total:	190,000 people (in 2002)	311,000 people (in 2020)

Other than inhabitants in the areas, many people will directly and indirectly benefit from projects by securing road traffic, communication, public services and various types of economic activities.

The tangible project benefits are summarized in Table AH15.

Table AH15	Summary of Flood Reduction Benefit (Rp. million/year)
------------	---

Reduction of Damage	Bendung		Buah	
	2002	2020	2002	2020
1. General Assets (houses & household goods)	985	2,100	414	860
2. Infrastructure	255	255	248	248
3. Indirect Damage	380	964	120	246
Flood Reduction Benefit	1,620	3,319	782	1,354

Other than the tangible benefits discussed above, implementation of the projects bring about the following benefits:

- To prevent paralyses of capital city's function in social, economical, and political activities,
- To save the cost of emergency measures taken by central and/or rural government for flood fighting and assisting affected people,
- To prevent termination of public services such as transportation, communication, electricity, and water supplies,
- To avoid inconvenience of citizens' life,
- To ease people's mental stress due to habitual inundation,

- To stabilize people's livelihood,
- To improve living environment and to decrease danger of infectious diseases, and
- To create new job opportunity during construction

The benefits listed above are very valuable, they are nevertheless virtually impossible to value satisfactory in monetary terms.

(7) Economic Project Cost

The economic project cost has been estimated from the financial project cost adjusting by SCF (0.9) after deducting the direct transfer payment. The financial and economic costs of the projects are shown in **Table AH16**.

Cost Item	Bendun	g System	Buah System		
	Financial	Economic	Financial	Economic	
1. Construction Cost	19,609	17,648	4,470	4,023	
2. Land Acquisition Cost	0	0	0	0	
3. Administration Cost	980	882	224	202	
4. Engineering Cost	2,941	2,647	671	604	
5. Physical Contingency	2,353	2,118	537	483	
Total	25,883	23,295	5,902	5,312	

 Table AH16 Financial and Economic Project Costs (Rp.million)

Annual project costs are estimated as shown in **Table AH17** based on a proposed implementation schedule.

Cost Item	Total	Year				
	(Rp. million)	2004	2005	2006	2007	
Bendung System						
1. Construction Cost	17,648	0	5,883	5,883	5,882	
2. Land Acquisition Cost	0	0	0	0	0	
3. Administration Cost	882	45	279	279	279	
4. Engineering Cost	2,647	1,060	529	529	529	
5. Physical Contingency	2,118	111	669	669	669	
Total	23,295	1,216	7,360	7,360	7,359	
Buah System						
1. Construction Cost	4,023	0	1,341	1,341	1,341	
2. Land Acquisition Cost	0	0	0	0	0	
3. Administration Cost	202	10	64	64	64	
4. Engineering Cost	604	241	121	121	121	
5. Physical Contingency	483	24	153	153	153	
Total	5,312	275	1,679	1,679	1,679	

 Table AH17 Annual Project Costs (Economic Price, Rp.million)

(8) Cost-Benefit Analysis

Based on the benefits and costs discussed above, economic viability of the projects are examined by cost-benefit analysis. The analysis is conducted by the discounted cash flow analysis. The cash flow of the projects is presented in **Attachment H8**. The benefit of the projects are assumed to accrue after a completion of a partial works since the drainage capacity can be increased according to progress of channel improvement works such as excavation of

channels and construction of drainage sluices. The benefit of the project is assumed to increase gradually after completion of the project up to the year 2020 as estimated in **Table AH15**. The results of the economic analysis are summarized in **Subsection (2)** of this **Annex H5.2.5**.

(9) Necessity of Garbage and Sediment Removal from Micro-drainage

Even after implementation of the projects, inundation may occur from time to time due to clogging of micro-drainage. In order to enjoy the maximum benefit of the project, it is indispensable to remove garbage and sediment from the micro-drainage with residents participation. Such activities with residents participation also have effect to give incentive for people to keep the rivers clean.

(10) Financial Evaluation of Drainage Improvement Project of Palembang

(A) Introduction

From the financial point of view, a flood mitigation project is different from other public works projects. Benefit of the project is mitigation of loss and no direct business income accrues from the project. Therefore, this section deals with whether or not the project costs can be allocated from public finance.

(B) Financial Project Cost

Financial project cost is estimated on the following basic conditions:

- Administration cost is 5% of the construction cost,
- Engineering service cost is 10% of the construction cost
- Physical contingency is 10% of sum of construction cost, administration cost, and engineering service cost, and

Annual disbursement schedule (financial cost) is shown in Table AH18.

Cost Item	Total	Year			
	(Rp. million)	2004	2005	2006	2007
Bendung System					
1. Construction Cost	19,609	0	6,536	6,536	6,537
2. Land Acquisition Cost	0	0	0	0	0
3. Administration Cost	980	50	310	310	310
4. Engineering Cost	2,941	1,177	588	588	588
5. Physical Contingency	2,353	123	743	743	744
Total	25,883	1,350	8,177	8,177	8,179
Buah System					
1. Construction Cost	4,470	0	1,490	1,490	1,490
2. Land Acquisition Cost	0	0	0	0	0
3. Administration Cost	224	11	71	71	71
4. Engineering Cost	671	269	134	134	134
5. Physical Contingency	537	27	170	170	170
Total	5,902	307	1,865	1,865	1,865
Grand Total	31,785	1,657	10,042	10,042	10,044

Table AH18 Annual Disbursemen	t Schedule	(Financial)	Cost. 2002	Constant Price)
Tuble Third Thindar Disbar Semen	t Demeuule	(I mancial		Constant i fice)

(C) Financial Evaluation

Development expenditure of Palembang Municipality was Rp.100 billion in 2002. The annual required funds for implementation of the projects are Rp.10,050 million or approx. 10% of the development expenditure of the Municipality. It is almost four times larger than regular expenditure of the Municipality for water resources sector (Rp.2.7 billion in 2002). There will be the following schemes to allocate necessary fund for implementation of the projects:

- Financial arrangement of the development budget of the municipality,
- Grant aid scheme, and
- Soft loan

Land acquisition or resettlement of households generally becomes a heavy burden on local government finance. In this project, since it needs no land acquisition or resettlement, if one of the above-mentioned schemes is applicable, implementation of the projects will be financially possible.

Attachment H1	Calculation of Standard Conversion Factor
---------------	--

	Tota	al Import Va	alue	Total Import	Total Exp	ort Value	Total Export
	Value (c.i.f.)	Exchange	Equivalent	Tax	Value (f.o.b.)	Equivalent	Taxes
		rate					
	(US\$ million)		(Rp. billion)	(Rp. billion)	(US\$ million)	(Rp. billion)	(Rp. billion)
1997	41,680	2,909	121,247	3,322.0	53,443	155,466	100
(2001 price)			275,230	7,541		352,907	227
1998	27,337	10,014	273,752	5,495.0	48,848	489,160	943
(2001 price)			384,347	7,715		686,780	1,324
1999	24,003	7,855	188,546	2,950.0	48,665	382,267	2595
(2001 price)			213,057	3,334		431,961	2,932
2000	33,515	8,422	282,262	4,976.0	62,124	523,208	923
(2001 price)			319,238	5,628		591,749	1,044
2001	30,962	10,261	317,702	9,975.0	56,321	577,909	397
Average of 5 years	6,192		301,915	6,838	11,264	528,261	1,185
(2001 price)							
Standard Carriers	on Fostor -		301,915 + 528	261	- 0.00		

Standard Conversion Factor = = 0.99Standard Conversion Factor = (301,915 + 6,838) + (528,261 - 1,185)Standard Conversion Factor Considering VAT:

Note: Data on import and export value and taxes on import and export are based on data obtained from Statistical Yearbook of Indonesia 2000 and 2001

= 0.90

Attachment H2 Major Inundation Locations in Palembang City (Several Times a Year) (1/2)

				Condition of Inund		dation
No	Inundation Locations by Drainage System	Kecamatan	Kelurahan	Area	Duration	Denth
110.	Inunuation Elocations by Dramage System	Kccamatan	Kelui anan	(ha)	(hour)	(m)
02	Casing System			1 50	(nour)	(111)
02	Around Terminal Alang-alang Lebar	Sukarami	Alang-alang Lebar	1.50	4	0.25
		Sukarann	Thang along Lobal	1.50		0.25
03	Lambidaro System			7.00		
0.5	Settlement area between II Musi II and II Hulubalang	Ilir Barat I	Bukit Lama	7.00		
	and a part of Hilir Sungai I ambidaro	IIII Darat I	Dukit Laina	4 50	6	0.30
	Around II Musi II	Ilir Barat I	Bukit Lama	2 50	4	0.30
		IIII Darat I	Dukit Laina	2.50		0.20
04	Boang System			8.50		
•••	Around Sungai Kedukan Bukit	Ilir Barat II	35/36 Ilir	5 50	4	0.15
	Around II Ki Gede Ing Suro	Ilir Barat II	32 Ilir	3.00	2	0.20
			0 2 IIII	2.00	_	0.20
05	Sekanak System			16.75		
00	Around II Letnan Yasin	Ilir Timur I	20 Ilir III	1.00	2	0.20
	Around Sekanak Primary Canal a part of Hulu/the area	Ilir Barat I	Bukit Lama	1.00	_	0.20
	of Kancil Putih	III Durat I	Built Built	2.00	6	0.50
	Along Sahang Secondary Canal	Ilir Barat I	Lorok Pakio	4 00	3	0.30
	Around Hilir Part of Pakio Secondary Canal	Ilir Barat I	Lorok Pakio	6.00	4	0.30
	Around II Puncak Sekuning	Ilir Barat I	Lorok Pakio	1.60	3	0.20
	Around JI Sumpah Pemuda	Ilir Barat I	Lorok Pakio	0.35	1	0.15
	Around part of Hilir Sungai Sekanak	Ilir Barat II	27/28 Ilir	1.80	4	0.15
	Thousa part of Thin Sungar Sexanak	IIII Darat II	27/20 111	1.00		0.20
06	Bendung System			14.62		
	Around II Basuki Rachmat/Simpang Polda	Kemuning	Ario Kemuning	1.50	9	0.40
	Around JI Kol H Burlian Simpang JI AKBP H Umar	Kemuning	Ario Kemuning	1.00	-	0.10
	In front of KOREM Office	,	i ino monitaning	0.37	2	0.20
	Around II Veteran/Mitsubishi Dealer	Ilir Timur I	20 Ilir D I	1.50	6	0.50
	Around Bendung Primary Canal-Tengah part/Il Rawa	Ilir Timur I	20 Ilir D I/20 Ilir D III	1.00		0100
	Bendung			4.50	9	0.50
	Around JI Seduduk Putih Secondary Canal-Hilir Part	Ilir Timur II	8 Ilir	3.50	4	0.50
	Around II Letda Rozak	Ilir Timur II	5 Ilir	2.00	2	0.30
	Around JI Kol H Burlian Simpang II Kamil	Kemuning	Ario Kemuning	1.25	6	0.25
	i nound thi fion fit Burnan, binipang thi fianni	Termuning	i ino monuning			
08	Buah System			6.30		
	Around JI. Tos Sudaraso, near PDAM	Ilir Timur II	3 Ilir	0.45	1	0.20
	Around Jl. Ratu Sianom	Ilir Timur II	1 Ilir	0.30	1.5	0.15
	Around Tali Gawe Primary Canal-Hulu Part	Ilir Timur II	1 Ilir	0.75	2	0.40
	Around Rengas Primary Canal-Hulu Part	Ilir Timur II	1 Ilir	0.80	2	0.30
	Around Buah Secondary Canal-hilir Part	Ilir Timur II	Sei. Buah and 1 Ilir	2.50	6	0.50
	Around Jl. Simapng Tiga Patal PUSRI/ Settlement of	Kalidoni	Kalidoni			
	PHDM II			1.50	2	0.20
09	Juaro System			13.50		
	Around Jl. Harapan I	Kalidoni	Sei. Layur	5.00	12	0.30
	Around Juaro Primary/Secondary Canal	Kalidoni	Sei. Selayur	8.50	12	0.50
10	Batang System			0.80		
	Around Jl. Madya until Jl. Sukamulya	Kalidoni	Sei. Selincah	0.20	4	0.20
	Around Jl. Mata Merah, around SD 53 (elementary	Kalidoni	Sei. Selincah			
	school # 53)			0.60	4	0.30
12	Borang System			8.60		
	Around Jl. K H Burlian, Jl. Perindustrian II/In front of	Sukarami	Sukarami			
	DAMRI			0.10	6	0.20
	Around Jl. Suka Mulya	Sako	Suka Mulya	0.15	12	0.15
	Around Jl. Jepang, near to PDAM Borang	Sako	Sako	1.50	1.5	0.15
	Around settlement of Multiwahana	Sako	Sako/Lebong Gajah	1.50	4	0.15
	Around Jl. Lematang	Sako	Lebong Gajah	0.35	3	0.15
	Settlemet of Sako Kenten	Sako	Sako	3.50	6	0.15
	Around Jl. Kenten Laut, in front of Kompleks Kenten	Sako	Sukamaju			
	Indah			1.50	4	0.15
1						

Attachment H2 Major Inundation Locations in Palembang City (Several Times a Year) (2/2)

		Condition o		tion of Inun	dation	
No.	Inundation Locations by Drainage System	Kecamatan	Kelurahan	Area	Duration	Depth
				(ha)	(hour)	(m)
14	Sriguna System			11.00		
	Around STM, Lorong Pegagan	Seberang Ulu II	16 Ulu	0.80	4	0.20
	Around Jl. DI Panjaitan RT 15, 49, 45, 34	Plaju	Plaju Ilir	2.25	4	0.15
	Around Simapng Tiga Jl. Kapten Abdullah	Plaju	Plaju Ilir/Plaju Darat	0.60	6	0.15
	Around Jl D I Panjaitan with Jl Pintu Besi	Plaju	Plaju Ilir	1.85	3	0.15
	Around Jl Palapa	Plaju	Plaju Ulu	0.15	3	0.15
	Around Jl. Sudirja	Seberang Ulu II	Sentosa	0.85	4	0.20
	Around Lorong Asli	Seberang Ulu II	16 Ulu	2.50	6	0.20
	Around Primary Canal-part of Tengah	Seberang Ulu II	16 Ulu	2.00	3	0.20
15	Aur System			9.50		
	Around Jl. Mahameru	Seberang Ulu II	16 Ulu	1.50	6	0.20
	Around Jl. A Yani until Simpang Tiga Jl K H Azhari	Seberang Ulu II	16 Ulu	3.00	4	0.15
	Around Jl. Jaya Indah RT 21A	Seberang Ulu II	14 Ulu	2.00	4	0.20
	Around Aur Secondary Canal Jl Siantan	Seberang Ulu II	14 Ulu	1.50	3	0.15
	Around Aur Primary Canal-Part of Tengah	Seberang Ulu I	9/10 Ulu	1.50	2	0.20
16	Kedukan System			3.90		
	Around Jl. Majapahit RT 13 near to Kompleks SD	Seberang Ulu I	Tuan Kentang			
	Negeri (state elementary School)			1.60	5	0.20
	Around the meeting between Jl. Pangeran ratu and Jl	Seberang Ulu I	5 Ulu			
	Bungaran			0.85	12	0.25
	Around Sungai Kademangan RT 37, 38, 39, 42	Seberang Ulu I	7 Ulu	0.70	4	0.20
	Around Sungai Semajid RT. 06, 08, 09	Seberang Ulu I	3/4 Ulu	0.75	4	0.20
17	Jaka Baring System			9.50		
	Around Jl Sri Raya	Plaju	Plaju Ulu	1.15	4	0.15
	Around Jl Darulhama	Plaju	Plaju Ulu	6.50	6	0.15
	Around Jl. Darulhama and Lorong Perguruan	Plaju	Plaju Ulu/Talang Bubuk	1.85	4	0.10
18	Kertapati System			15.00		
	Around Jl. Dipo, the continuing of Secondary Canal Jl.	Kertapati	Kertapati			
	Ki Merogan, Sungai Kencong			10.00	6	0.20
	Around Jl. Abikusno Cokrosuyoso	Kertapati	Kertapati	2.50	6	0.20
	Around Jl. Karya Jaya and Terminal Terpadu	Kertapati	Karya Jaya	2.50	6	0.20
	TOTAL			126.47		

Note: Nuber of households in the flood prone areas are estimated at 70 households/ha on the following assumptions:

1) Settlement area accounts for 70% of land and roads, drainage canals, and other lands account for 30%.

2) Average size of land per household is $100m^2$.

Attachment H4

I4 Flood Condition and Proposed Measures in Palembang City (1/3)

ΗA	
24	

No.	. Drainage Present Land Use		Future Land Use based on	Flood Condition	Proposed Measures
	System		Palembang M/P		
1.	Gandus	AgricultureSettlementServices & tradeFallow	 Recreation Agriculture Industry with low emission Services & trade Settlement 	No significant flood affect reported except some local inundation.	 Community drainage management Trunk drainage channels rehabilitation Non facility measures
2.	Gasin	 Agriculture Settlement Services & trade Fallow 	 Agriculture Industry with low emission Settlement Services & trade 	No significant flood affect reported except some local inundation.	 Community drainage management Trunk drainage channels rehabilitation Non facility measures
3.	Lambidaro	 Agriculture Settlement Services & trade Fallow 	SettlementIndustry with low emissionServices & trade	No significant flood affect reported except some local inundation.	 Community drainage management Trunk drainage channels rehabilitation Non facility measures
4.	Boang	- Settlement - Services & trade - Swamp	SettlementServices & tradeCulture & heritage	No significant flood affect reported except some local inundation.	 Community drainage management Trunk drainage channels rehabilitation Non facility measures
5.	Sekanak	- Governmental offices - Services & trade - Settlement	 Governmental offices Services & trade Settlement 	No significant flood affect reported except some local inundation. There is a plan to construct one retention pond (1 ha).	 Community drainage management Trunk drainage channels rehabilitation Non facility measures
6.	Bendung	 Settlement Service & trade Government offices Sports facilities 	SettlementService & tradeGovernment officesSports facilities	Relatively large flood affect reported including traffic interruption for national and provincial main roads.	 Improvement of drainage canals Community drainage management Trunk drainage channels rehabilitation Non facility measures
7.	Kidul	- Settlement - Services & trade	- Settlement - Services & trade	No significant flood affect reported except some local inundation.	 Community drainage management Trunk drainage channels rehabilitation Non facility measures

Attachment H4 Flood Condition and Proposed Measures in Palembang City (2/3)

No.	Drainage	Present Land Use	Future Land Use based on	Flood Condition	Prop	posed Measures
	System		Palembang M/P			
8.	Buah	- Settlement	- Settlement	Houses and major city roads	Improveme	nt of drainage canals
		- Services & trade	- Services & trade	are suffered from frequent	Community	v drainage management
		- Fertilizer factory	- Industry with high emission	inundation around fertilizer	Trunk	drainage channels
		- Swamp		factory.	rehabilitatio	on
					Non facility	measures
9.	Juaro	- Settlement	- Industry with high emission	No significant flood affect	Community	v drainage management
		- Services & trade	- Settlement	reported except some local	Trunk	drainage channels
		- Fertilizer factory		inundation.	rehabilitatio	on
		- Swamp			Non facility	measures
10.	Batang	- Settlement	- Industry with high emission	No significant flood affect	Community	drainage management
		- Services & trade	- Settlement	reported except some local	Trunk	drainage channels
		- Swamp		inundation.	rehabilitatio	on
					Non facility	measures
11.	Selincah	- Settlement	- Industry with high emission	No significant flood affect	Community	v drainage management
		- Services & trade	- Services and trade	reported except some local	Trunk	drainage channels
		- Swamp		inundation.	rehabilitatio	on
					Non facility	/ measures
12.	Borang	- Settlement	- Settlement	After construction of drainage	Community	v drainage management
		- Agriculture	- Industry with low emission	canal by army, flood affect is	Trunk	drainage channels
		- Services & trade		effectively mitigated.	rehabilitatio	on
				There is a plan to construct	Non facility	measures
				two retention ponds.		
13.	SP. Nyiur	- Bush	- Industry with high emission	No significant flood affect	Community	v drainage management
		- Agriculture	- Industry with low emission	reported except some local	Trunk	drainage channels
		- Settlement	- Agriculture	inundation.	rehabilitatio	on
					Non facility	measures
14.	Sriguna	- Settlement	- Settlement	Due to frequent inundation,	Community	drainage management
		- Services & trade	- Services & trade	living condition, especially	Trunk	drainage channels
		- Oil & gas industry	- Oil & gas industry	sanitary condition, is poor.	rehabilitatio	on
				However, cause of flood is due	Non facility	measures
				to malfunction of micro-		
				drainage.		

Attachment H4

4 Flood Condition and Proposed Measures in Palembang City (3/3)

No.	Drainage System	Present Land Use	Future Land Use based on Palembang M/P	Flood Condition	Proposed Measures
15.	Aur	- Settlement - Services & trade	- Settlement - Services & trade	Due to lack of secondary canal, city roads are frequently inundated. There is a plan to construct the secondary canal.	 Community drainage management Trunk drainage channel rehabilitation Non facility measures
16.	Kedukan	- Settlement - Agriculture	- Settlement - Services & trade	No significant flood affect reported except some local inundation.	 Community drainage management Trunk drainage channel rehabilitation Non facility measures
17.	Jaka Baring	 Settlement Agriculture Swamp Trade and services 	 Settlement Urban forest Agriculture Trade and services 	No significant flood affect reported except some local inundation.	 Community drainage management Trunk drainage channel rehabilitation Non facility measures
18.	Kertapati	- Settlement - Agriculture	 Services & trade Settlement Industry with low emission 	No significant flood affect reported except some local inundation.	 Community drainage management Trunk drainage channel rehabilitation Non facility measures
19.	Keramasan	- Agriculture - Bush - Swamp - Settlement	AgricultureIndustry with high emissionSettlement	No significant flood affect reported except some local inundation.	 Community drainage management Trunk drainage channel rehabilitation Non facility measures

Note: Present land use: based on BAPPEDA 1:50,000 Land Use 2000

Future land use: based on Rencana Tata Ruang Wilaya Kota Palembang Tahun 1999 - 2009, Pemerinta Kota Palembang Non-facility measures includes such measures as:

- Land use regulation (15m from riverbank in Palembang City),

- Implementation of local government regulation that force the developers to conserve swamp area and to control runoff increase,

- Removal of garbage and sediment from drainage canals by public participation,

- Encouragement of stilt houses in flood prone areas,

- Public advertisements not to dispose garbage into the river, etc.

Drainage System/	Inundation	Area of		Houses		Hou	sehold G	oods	Total
Flood Condition	depth	Inundation	Unit value	Q'ty	Damage	Unit value	Q'ty	Damage	
	(m)	(ha)	(Rp. m)	(house)	(Rp. m)	(Rp. m)	(house)	(Rp. m)	(Rp. m)
I. Present Condition (2002)	, <u> </u>						```		
1. Bendung System									
	0<0.5	39	13.8	741	941	2.28	741	245	1,186
2-vear	0.5<1.0	3	13.8	57	94	2.28	57	42	136
	Total	42		798	1,034		798	287	1,322
	0<0.5	40	13.8	760	965	2.28	760	251	1,216
3-year	0.5<1.0	3	13.8	57	94	2.28	57	42	136
-	Total	43		817	1,059		817	294	1,352
	0<0.5	48	13.8	912	1,158	2.28	912	302	1,459
5-year	0.5<1.0	3	13.8	57	94	2.28	57	42	136
-	Total	51		969	1,251		969	344	1,595
	0<0.5	53	13.8	1,007	1,278	2.28	1,007	333	1,611
10-year	0.5<1.0	3	13.8	57	94	2.28	57	42	136
·	Total	56		1,064	1,372		1,064	375	1,747
	0<0.5	72	13.8	1,368	1,737	2.28	1,368	452	2,189
15-year	0.5<1.0	3	13.8	57	94	2.28	57	42	136
	Total	75		1,425	1,830		1,425	495	2,325
2. Buah System									
2-year	0<0.5	27	13.8	324	411	2.28	324	107	518
3-year	0<0.5	27	13.8	324	411	2.28	324	107	518
5-year	0<0.5	41	13.8	492	625	2.28	492	163	787
10-year	0<0.5	44	13.8	528	670	2.28	528	175	845
15-year	0<0.5	48	13.8	576	731	2.28	576	190	922
II. Future Condition (2020))								
1. Bendung System									
	0<0.5	39	21.5	1,014	2,006	3.56	1,014	523	2,529
2-year	0.5<1.0	3	21.5	78	200	3.56	78	91	290
	Total	42		1,092	2,205		1,092	614	2,819
	0<0.5	40	21.5	1,040	2,057	3.56	1,040	537	2,594
3-year	0.5<1.0	3	21.5	78	200	3.56	78	91	290
	Total	43		1,118	2,257		1,118	627	2,884
	0<0.5	48	21.5	1,248	2,469	3.56	1,248	644	3,113
5-year	0.5<1.0	3	21.5	78	200	3.56	78	91	290
	Total	51		1,326	2,668		1,326	735	3,403
	0<0.5	53	21.5	1,378	2,726	3.56	1,378	711	3,437
10-year	0.5<1.0	3	21.5	78	200	3.56	78	91	290
	Total	56		1,456	2,925		1,456	802	3,727
	0<0.5	72	21.5	1,872	3,703	3.56	1,872	966	4,669
15-year	0.5<1.0	3	21.5	78	200	3.56	78	91	290
	Total	75	L	1,950	3,902		1,950	1,057	4,959
2. Buah System			L						
2-year	0<0.5	27	21.5	432	854	3.56	432	223	1,077
3-year	0<0.5	27	21.5	432	854	3.56	432	223	1,077
5-year	0<0.5	41	21.5	656	1,298	3.56	656	339	1,636
10-year	0<0.5	44	21.5	704	1,393	3.56	704	363	1,756
15-year	0<0.5	48	21.5	768	1.519	3.56	768	396	1.916

Attachment H5 Estimation of Flood Damage to General Assets (House and Household Goods)

Attachment H7 Calculation of Annual Mean Flood Damages (Without Project Condition)

I. Present Condition (as of 2002) 1. Bendung System

I. Denu	lung System							
Return	Exceedance	Difference of	Damage (R	p. million)	Annual Damage (Rp.million)			
period		exceedance	Amount	Mean	Segment	Cumulative		
-	1.00							
2	0.50	0.50	1,322	661	331	331		
3	0.33	0.17	1,352	1,337	223	553		
5	0.20	0.13	1,595	1,474	196	750		
10	0.10	0.10	1,747	1,671	167	917		
15	0.07	0.03	2,325	2,036	68	985		

2. Buah System

Return	Exceedance	Difference of	Damage (R	p. million)	Annual Damage (Rp.million)			
period		exceedance	Amount	Mean	Segment	Cumulative		
-	1.00							
2	0.50	0.50	518	259	130	130		
3	0.33	0.17	518	518	86	216		
5	0.20	0.13	787	653	87	303		
10	0.10	0.10	845	816	82	384		
15	0.07	0.03	922	884	29	414		

II. Future Condition (as of 2020)

1. Bendung System

Return	Exceedance	Difference of	Damage (R	Rp. million)	Annual Damage (Rp.million)			
period		exceedance	Amount	Mean	Segment	Cumulative		
-	1.00							
2	0.50	0.50	2,819	1,410	705	705		
3	0.33	0.17	2,884	2,852	475	1,180		
5	0.20	0.13	3,403	3,144	419	1,599		
10	0.10	0.10	3,727	3,565	357	1,956		
15	0.07	0.03	4,959	4,343	145	2,100		

2. Buah System

Return	Exceedance	Difference of	Damage (R	p. million)	Annual Damage (Rp.million)			
period		exceedance	Amount	Mean	Segment	Cumulative		
-	1.00							
2	0.50	0.50	1,077	539	269	269		
3	0.33	0.17	1,077	1,077	180	449		
5	0.20	0.13	1,636	1,357	181	630		
10	0.10	0.10	1,756	1,696	170	799		
15	0.07	0.03	1,916	1,836	61	860		

Attachment H8 Cost-Benefit Analysis (1/3)

							Cost					Net
Yeear	Year	Benefit			Inves	tment	0		O/M	Replace-	Total	Cash
in			Direct	Resettle-	Engring	Adminis-	Phisical	Sub-total		ment	Cost	Flow
order			constr.	ment	service	tration	conti.					
0	2002	-	-	-	-	-	-	-	-	-	-	-
1	2003	-	-	-	-	-	-	-	-	-	-	-
2	2004	-	-	-	1,060	45	111	1,216	-	-	1,216	-1,216
3	2005	-	5.883	-	529	279	669	7.360	-	-	7,360	-7.360
4	2006	729	5 883	-	529	279	669	7 360	29	-	7 389	-6 661
5	2000	1.003	5 882		520	279	660	7 3 50	44		7,403	6 3 1 0
5	2007	2,195	5,882	-	529	219	009	1,559	44	-	7,403	-0,510
0	2008	2,160	-	-	-	-	-	-	00	-	00	2,098
/	2009	2,281	-	-	-	-	-	-	88	-	88	2,192
8	2010	2,375	-	-	-	-	-	-	88	-	88	2,287
9	2011	2,470	-	-	-	-	-	-	88	-	88	2,381
10	2012	2,564	-	-	-	-	-	-	88	-	88	2,476
11	2013	2,658	-	-	-	-	-	-	88	-	88	2,570
12	2014	2.753	-	-	-	-	-	-	88	-	88	2.664
13	2015	2.847	-	-	-	-	-	-	88	-	88	2,759
14	2015	2,017							88		88	2,757
14	2010	2,941	-	-	-	-	-	-	00	-	00	2,035
15	2017	3,030	-	-	-	-	-	-	88	-	88	2,948
16	2018	3,130	-	-	-	-	-	-	88	-	88	3,042
17	2019	3,225	-	-	-	-	-	-	88	-	88	3,136
18	2020	3,319	-	-	-	-	-	-	88	-	88	3,231
19	2021	3,319	-	-	-	-	-	-	88	-	88	3,231
20	2022	3,319	-	-	-	-	-	-	88	-	88	3,231
21	2023	3.319	-	-	-	-	-	-	88	-	88	3.231
22	2024	3 319	_	-	_	-	_	-	88	-	88	3 231
22	2021	2 210							00		00	2 221
23	2025	2,210	-	-	-	-	-	-	00	-	00	2,221
24	2020	5,519	-	-	-	-	-	-	00	-	00	5,251
25	2027	3,319	-	-	-	-	-	-	88	-	88	3,231
26	2028	3,319	-	-	-	-	-	-	88	-	88	3,231
27	2029	3,319	-	-	-	-	-	-	88	-	88	3,231
28	2030	3,319	-	-	-	-	-	-	88	-	88	3,231
29	2031	3,319	-	-	-	-	-	-	88	-	88	3,231
30	2032	3,319	-	-	-	-	-	-	88	-	88	3,231
31	2033	3,319	-	-	-	-	-	-	88	-	88	3,231
32	2034	3,319	-	-	-	-	-	-	88	-	88	3.231
33	2035	3 3 1 9	_	-	_	-	_	-	88	-	88	3 231
34	2035	3 310	_	_	_	_	_	_	88	_	88	3 231
25	2030	2 210	-	_	_	-	_	_	00	-	00	2 221
55	2037	5,519	-	-	-	-	-	-	00	-	00	5,251
36	2038	3,319	-	-	-	-	-	-	88	-	88	3,231
37	2039	3,319	-	-	-	-	-	-	88	-	88	3,231
38	2040	3,319	-	-	-	-	-	-	88	-	88	3,231
39	2041	3,319	-	-	-	-	-	-	88	-	88	3,231
40	2042	3,319	-	-	-	-	-	-	88	-	88	3,231
41	2043	3,319	-	-	-	-	-	-	88	-	88	3,231
42	2044	3.319	-	-	-	-	-	-	88	-	88	3.231
43	2045	3 310	_	_	_	-	_	_	88	_	88	3 231
4.5	2045	3 210	-	-	-	-	-	-	00 QQ	-	00 00	3 221
44	2040	2,319	-	-	-	-	-	-	00	-	00	2,231
45	2047	3,319	-	-	-	-	-	-	88	-	88	3,231
46	2048	3,319	-	-	-	-	-	-	88	-	88	3,231
47	2049	3,319	-	-	-	-	-	-	88	-	88	3,231
48	2050	3,319	-	-	-	-	-	-	88	-	88	3,231
49	2051	3,319	-	-	-	-	-	-	88	-	88	3,231
50	2052	3,319	-	-	-	-	-	-	88	-	88	3,231
51	2053	3,319	-	-	-	-	-	-	88	-	88	3,231
52	2054	3 319	-	-	-	-	-	-	88	_	88	3 231
53	2054	3 310		_	_	_	_	_	99 99		88	3 221
55	2055	2 210	-	-	-	-	-	-	00	-	00	2 221
54	2056	3,319	-	-	-	-	-	-	88	-	88	3,231
55	2057	5,319	-	-	-	-	-	-	88	-	88	3,231
EIRR=	:	11.0%	,									
B/C =		0.91	(at a disco	ount rate o	ot 12%)							
NPV=		-1.389	(at a disco	ount rate o	of 12%)							

Drainage Improvement: Bendung System

Unit: Rp. million

Attachment H8 Cost-Benefit Analysis (2/3)

			Cost						Net			
Yeear	Year	Benefit			Inves	tment			O/M	Replace-	Total	Cash
in			Direct	Resettle-	Engring	Adminis-	Phisical	Sub-total		ment	Cost	Flow
order			constr.	ment	service	tration	conti.					
0	2002	-	-	-	-	-	-	-	-	-	-	-
1	2003	-	-	-	-	-	-	-	-	-	-	-
2	2004	-	-	-	241	10	24	275	-	-	275	-275
3	2005	-	1.341	-	121	64	153	1.679	-	-	1.679	-1.679
4	2006	324	1 3/1	_	121	6/	153	1 679	7	_	1,686	-1.361
5	2000	196	1,341		121	64	152	1,670	10		1,000	1,001
5	2007	480	1,541	-	121	04	155	1,079	10	-	1,089	-1,205
0	2008	9/3	-	-	-	-	-	-	20	-	20	955
7	2009	1,004	-	-	-	-	-	-	20	-	20	984
8	2010	1,036	-	-	-	-	-	-	20	-	20	1,016
9	2011	1,068	-	-	-	-	-	-	20	-	20	1,048
10	2012	1,100	-	-	-	-	-	-	20	-	20	1,080
11	2013	1,132	-	-	-	-	-	-	20	-	20	1,111
12	2014	1,163	-	-	-	-	-	-	20	-	20	1,143
13	2015	1,195	-	-	-	-	-	-	20	-	20	1,175
14	2016	1 227	_	_	_		_	_	20	_	20	1 207
15	2010	1 250							20		20	1,207
15	2017	1,239	-	-	-	-	-	-	20	-	20	1,239
10	2018	1,290	-	-	-	-	-	-	20	-	20	1,270
17	2019	1,322	-	-	-	-	-	-	20	-	20	1,302
18	2020	1,354	-	-	-	-	-	-	20	-	20	1,334
19	2021	1,354	-	-	-	-	-	-	20	-	20	1,334
20	2022	1,354	-	-	-	-	-	-	20	-	20	1,334
21	2023	1,354	-	-	-	-	-	-	20	-	20	1,334
22	2024	1,354	-	-	-	-	-	-	20	-	20	1,334
23	2025	1.354	-	-	-	-	-	-	20	-	20	1,334
24	2026	1 354	_	_	_		_	_	20	_	20	1 334
25	2020	1,354	_	_	_	_	_	_	20	_	20	1 334
25	2027	1,354	_	_	_	-	-	_	20	-	20	1,334
20	2028	1,354	-	-	-	-	-	-	20	-	20	1,334
27	2029	1,354	-	-	-	-	-	-	20	-	20	1,334
28	2030	1,354	-	-	-	-	-	-	20	-	20	1,334
29	2031	1,354	-	-	-	-	-	-	20	-	20	1,334
30	2032	1,354	-	-	-	-	-	-	20	-	20	1,334
31	2033	1,354	-	-	-	-	-	-	20	-	20	1,334
32	2034	1,354	-	-	-	-	-	-	20	-	20	1,334
33	2035	1,354	-	-	-	-	-	-	20	-	20	1,334
34	2036	1,354	-	-	-	-	-	-	20	-	20	1,334
35	2037	1,354	-	-	-	-	-	-	20	-	20	1,334
36	2038	1,354	-	-	-	-	-	-	20	-	20	1,334
37	2039	1.354	-	-	-	-	-	-	20	-	20	1.334
38	2040	1 354	_	_	_	-	_	_	20	-	20	1 334
30	2040	1,354							20		20	1,334
40	2041	1 254	-	-	-	-	-	-	20	-	20	1 224
40	2042	1,554	-	-	-	-	-	-	20	-	20	1,534
41	2043	1,354	-	-	-	-	-	-	20	-	20	1,554
42	2044	1,354	-	-	-	-	-	-	20	-	20	1,334
43	2045	1,354	-	-	-	-	-	-	20	-	20	1,334
44	2046	1,354	-	-	-	-	-	-	20	-	20	1,334
45	2047	1,354	-	-	-	-	-	-	20	-	20	1,334
46	2048	1,354	-	-	-	-	-	-	20	-	20	1,334
47	2049	1,354	-	-	-	-	-	-	20	-	20	1,334
48	2050	1.354	-	-	-	-	-	-	20	-	20	1.334
49	2051	1.354	_	-	_	-	-	_	20	_	20	1 334
50	2051	1 35/							20		20	1 33/
50	2052	1 254	-	-	-	-	-	-	20	-	20	1 224
51	2035	1,334	-	-	-	-	-	-	20	-	20	1,334
52	2054	1,354	-	-	-	-	-	-	20	-	20	1,554
53	2055	1,354	-	-	-	-	-	-	20	-	20	1,334
54	2056	1,354	-	-	-	-	-	-	20	-	20	1,334
55	2057	1,354	-	-	-	-	-	-	20	-	20	1,334
EIRR=	=	19.3%										
B/C =		1.69	(at a disco	ount rate o	of 12%)							
NPV=		2,451	(at a disco	ount rate o	of 12%)							

Drainage Improvement: Buah System

Unit: Rp. million

HA - 31

Attachment H8	Cost-Benefit Analysis (3/3)
---------------	-----------------------------

Dran	lage II	nproven	iciit. Do	in Denu	ung et i	Juan By	stem				Omt. Np	
			Cost					Net				
Yeear	Year	Benefit		r	Inves	tment		1	O/M	Replace-	Total	Cash
in			Direct	Resettle-	Engring	Adminis-	Phisical	Sub-total		ment	Cost	Flow
order			constr.	ment	service	tration	conti.					
0	2002	-	-	-	-	-	-	-	-	-	-	-
1	2003	-	-	-	-	-	-	-	-	-	-	-
2	2004	_	-	-	1.301	55	135	1.491	-	-	1.491	-1.491
2	2001		7 224		650	242	8100	0.020			0.020	0.020
5	2005	-	7,224	-	050	545	022	9,039	-	-	9,039	-9,039
4	2006	1,053	7,224	-	650	343	822	9,039	36	-	9,075	-8,022
5	2007	1,580	7,223	-	650	343	822	9,038	54	-	9,092	-7,513
6	2008	3,159	-	-	-	-	-	-	108	-	108	3,051
7	2009	3.285	-	-	-	-	-	-	108	-	108	3.177
8	2010	3 4 1 1		_	_				108	_	108	3 303
0	2010	2 5 2 9							100		100	2 420
9	2011	5,556	-	-	-	-	-	-	108	-	108	5,429
10	2012	3,664	-	-	-	-	-	-	108	-	108	3,555
11	2013	3,790	-	-	-	-	-	-	108	-	108	3,681
12	2014	3,916	-	-	-	-	-	-	108	-	108	3,808
13	2015	4,042	-	-	-	-	-	-	108	-	108	3,934
14	2016	4 168		_	_				108	_	108	4 060
14	2010	4 205	-	-	-	-	-	-	100	-	100	4,000 1 102
15	2017	4,295	-	-	-	-	-	-	108	-	108	4,180
16	2018	4,421	-	-	-	-	-	-	108	-	108	4,312
17	2019	4,547	-	-	-	-	-	-	108	-	108	4,438
18	2020	4,673	-	-	-	-	-	-	108	-	108	4,565
19	2021	4.673	-	-	-	-	-	-	108	-	108	4.565
20	2022	4 673	_	_	_	_	_	_	108	_	108	4 565
20	2022	4,073	-	-	-	-	-	-	100	-	100	4,505
21	2023	4,673	-	-	-	-	-	-	108	-	108	4,565
22	2024	4,673	-	-	-	-	-	-	108	-	108	4,565
23	2025	4,673	-	-	-	-	-	-	108	-	108	4,565
24	2026	4,673	-	-	-	-	-	-	108	-	108	4,565
25	2027	4.673	-	-	-	-	-	-	108	-	108	4.565
26	2028	4 673		_	_	_	_	_	108	_	108	4 565
20	2020	4,073							100		100	4,505
27	2029	4,075	-	-	-	-	-	-	108	-	108	4,505
28	2030	4,673	-	-	-	-	-	-	108	-	108	4,565
29	2031	4,673	-	-	-	-	-	-	108	-	108	4,565
30	2032	4,673	-	-	-	-	-	-	108	-	108	4,565
31	2033	4,673	-	-	-	-	-	-	108	-	108	4,565
32	2034	4.673	-	-	-	-	-	-	108	-	108	4.565
33	2025	4 673							108		108	1 565
33	2035	4,073	-	-	-	-	-	-	108	-	100	4,505
34	2036	4,6/3	-	-	-	-	-	-	108	-	108	4,565
35	2037	4,673	-	-	-	-	-	-	108	-	108	4,565
36	2038	4,673	-	-	-	-	-	-	108	-	108	4,565
37	2039	4,673	-	-	-	-	-	-	108	-	108	4,565
38	2040	4,673	-	-	-	-	-	-	108	-	108	4.565
30	2041	4 673							108		108	1 565
10	2041	1,073	-	-	-	-	-	-	100	-	100	
40	2042	4,0/3	-	-	-	-	-	-	108	-	108	4,365
41	2043	4,673	-	-	-	-	-	-	108	-	108	4,565
42	2044	4,673	-	-	-	-	-	-	108	-	108	4,565
43	2045	4,673	-	-	-	-	-	-	108	-	108	4,565
44	2046	4.673	-	-	-	-	-	-	108	-	108	4.565
15	2047	4 673	-	_	_	_	_	_	108	_	108	4 565
43	2047	1,073	-	-	-	-	-	-	100	-	100	
46	2048	4,0/3	-	-	-	-	-	-	108	-	108	4,365
47	2049	4,673	-	-	-	-	-	-	108	-	108	4,565
48	2050	4,673	-	-	-	-	-	-	108	-	108	4,565
49	2051	4,673	-	-	-	-	-	-	108	-	108	4,565
50	2052	4.673	-	-	-	-	-	-	108	-	108	4.565
51	2053	4 673	_	-	_	-	-	-	108	-	108	4 565
51	2055	4,073	-	-	-	-	-	-	100	-	100	4 5 6 5
52	2054	4,6/3	-	-	-	-	-	-	108	-	108	4,565
53	2055	4,673	-	-	-	-	-	-	108	-	108	4,565
54	2056	4,673	-	-	-	-	-	-	108	-	108	4,565
55	2057	4,673	-	-	-	-	-	-	108	-	108	4,565
EIRR=	-	12.6%										
B/C =		1.06	(at a disco	ount rate o	of 12%)							
NPV-		1.062	(at a disco	nint rote o	f 12%)							
TAT A =		1,002	yai a uisco	Juni rate 0	1 1 4 /0)							

Drainage Improvement: Both Bendung & Buah System

Unit: Rp. million

HA - 32