Приложение В-12

Конструктивный расчет – Цех иловой очистки

ОГЛАВЛЕНИЕ

1. ОБЩЕЕ ОПИСАНИЕ	, 		1
1.1 Назначение здания			1
1.2 Принципы проектиров	ания		1
1.3 Материал, допустимая	нагрузка		2
1.4 Таблица нагрузок	• •	,	2
1.5 Основной план и конст	грукция каркаса		4
2. Подготовка	The second secon		6
2.1 Жесткость элементов		,======================================	6
а. Жесткость ригеля		***************************************	6
b. Жесткость колонны		,	6
2.2 Момент крепленного в	конца(С), момент центр, ч	насти(Mo),сдвиг в конце (Qo)	7
2.3 Осевая нагрузка колог	ины		13
3. Расчет профиля ригеля и кол	онны.		18
3.1 Профиль ригеля	,	_	18
3.2 Профиль колонны			25
4. Балки и плиты			31
4.1 Подбалка С, Мо, Q	, 	_	31
4.2 Профиль подбалки			38
4.3 Плита			43
5. Фундамент и внешняя стена т	гехнического этажа		50
5.1 Фундамент			50
5.2 Внешняя стена технич	еского этажа		53

приложение

Анализ усилий каркаса на постоянные и временные нагрузки.

ПРИМЕЧАНИЯ К РАСЧЕТАМ

1. Общее описание

1.1 Назначение здания

- (a) Это 2-этажное здание с техническим этажом, ж/б конструкциии..
 2-й этаж поделен на 2 зоны, высота первой зоны 9 метров, высота второй зоны 4м.
 Высота 1 этажа равна 5.2, высота технического этажа 7м. Почва на площадке в основном жесткая.
- (b) Спецификация элементов конструкции и отделки.
 - b-1. Толщина бетонной плиты кровли равна 15 см. Верхняя сторона на 1/100 изготовлена из ж/б плиты.
 - b-2. Толщина бетонной плиты 2го и 1го этажа равна 18 см.
 - ь-3. Толщина внешней кирпичной стены равна 49 см.
 - b-4. Колонна, балка и ригель. Ж/б элемент с отделочной штукатуркой толщиной 2.5 см.
 - b-5. Фундамент: ж/б плита, 800 мм толщина.

1.2 Принципы проектирования

(а) Расчет конечной нагрузки в ограниченном состоянии.

Расчет профилей ригеля, колонны, подбалки и т.д. произведен на основании СНИП 2.03.01-84. Данная норма показывает правила по проектированию железобетонных конструкций.

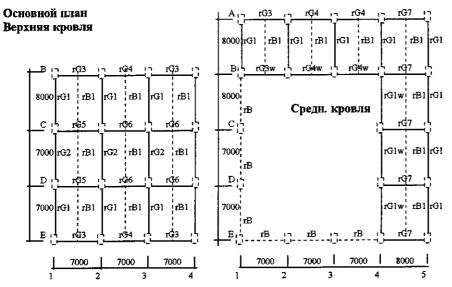
- (b) Данные расчеты учитывают постоянные и временные нагрузки. Снежные нагрузки (Sn.L) приняты 100 кгс/см2, но данные расчеты не применяют (Sn.L), так как временные нагрузки кровли в 100 кгс/см2 являются достаточными для (Sn.L). Ветровые нагрузки (W.L) проверены в ПРИЛОЖЕНИИ.
- (с.) Относительно усилий при землетрясении, их можно не считать, поскольку г. Астана находится НЕ В СЕЙСМООПАСНОЙ ЗОНЕ.
- (d) Анализ каркаса выполнен методом двухразмерного анализа, (метод распределения момента).

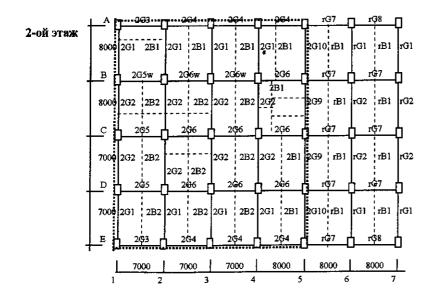
1. 3 Материал и допустимые нагрузки

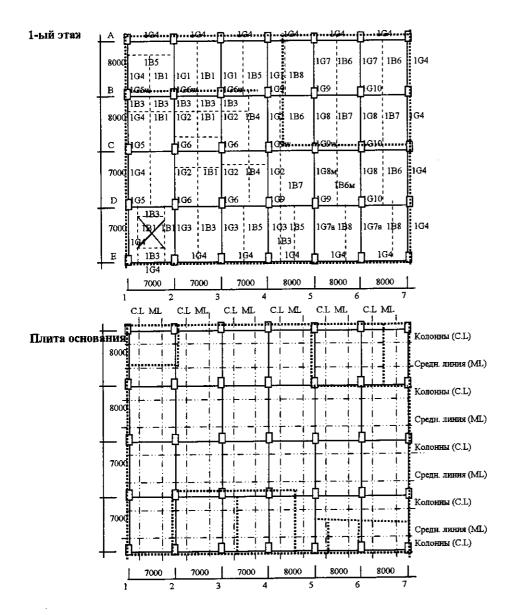
ТАБЛИЦА - 1 Допустимые нагрузі (Н/мм2)

		Дог	устимая і	нагрузка
Наименова	ние	Rb	Rbt	
Бетон	B30_	17	1.2	
		Дon	густимая н	нагрузка
Наименова	ние	Rs	Rsc	Rw
	Класс			
Арматура	A1	225	225	175
	Класс			
	A3	365	365	290

1. 4 Таблица нагрузок
ТАБЛИЦА - 2 Постоянные нагрузки Цех иловой очистки
КН/м2


				Kn/M2
Pacn.	наименование	толщина	W КН/м2	Итого
Кровля	Штукатурка Бетонная плита Потолок	5см 15см	1.00 3.60 0.25	4.85
	Плитка + доступ Бетонная плита Потолок	5см 18см	1.00 4.50 0.25	5.75
Э/щитовая	Плитка+Штукатур. Бетонная плита Потолок	30см 18см	6.00 4.50 0.25	10.75
Помещение о оборудованием	Выравнивающ, ги Бетонная плита Потолок	5см 18см	1.00 4.50 0.25	5.75
Офис	Плитка+Штукатур Бетонная плита Потолок	5см 18см	1.00 4.50 0.25	5.75
	Шлакобетон Бетонная плита	20см 80см	4.00 20.00	24.00
	Плитка+Штукатур Бетонная плита	5см 27см	1.00 6.75	7.75


ТАБЛИЦА - 3 Постоянная нагрузка Цех иловой очистки


Расп.	Нагрузка	Плита	Балка	Ригель	γf	Ригель*уf	
	Постоянная		4.85	4.85		5.34	
Кровля	Временная	1	1.00	1.00	1.2	1.20	
	Общая	5.85	5.85	5.85		6.54	
Э/щитовая	Постоянная	5.75	5.75	5.75	1.1	6.33	
Помещение	Временная	4.00	4.00	4.00	1.2	4.80	
мониторинга	Общая	9.75	9.75	9.75		11.13	
Э/щитовая	Постоянная	10.75	10.75	10.75	1.1		использовать как помещение
	Временная		4.00	4.00	1.2	4.80	оборудованнем с шлаком 300м
	Общая	14.75	14.75	14.75		16.63	16.63
Помещение с	Постоянная	5.75	5.75	5.75	1.1	6.33	
оборудованием	Временная	5.00	4.00	4.00	1.2		
1	Общая	10.75	9.75	9.75		11.13	12.33
	Постоянная	4.85	4.85	4.85	1.1	5.34	
Офис	Временная	3.00	2.50	2.00	1.2		
1	Общая	7.85	7.35	6.85		7.74	8.94
	Постоянная	5.75	5.75	5.75	1.1		
Склад	Временная	3.50	3.00	3.00	1.2		
	Общая	9.25	8.75	8.75		9.93	10.53
	Постоянная	24.00	24.00	24.00	1.1	_	
Тех.этаж	Временная	4.00	4.00	3.00	1.2		
Мех. оборуд	Общая	28.00	28.00	27.00		30.00	
	Постоянная	7.75	7.75	7.75	1.1	8.53	
Лестница	Временная	3.00	2.50	2.50	1.2		
	Общая	10.75	10.25	10.25		11.53	
Томещение	Постоянная	10.75	10.75	10.75	1.1]
7.2	Временная	7.00	7.20	7.20	1.2		
борудование	Общия	17.95	17.95	17.95		20.47	

1. 5 Основной план и конструкция каркаса

2. Подготовка ЦЕХ ИЛОВОЙ ОЧИСТКИ

2 - 1 Жесткость элементов

Таблица - 4 Жесткость ригеля (x 10° (x 10° (x 104(x 103 K/Ko B/b t/D Ригел В ь см4) см4) CM) см3) (CM) (см) (cm) (cm) 75 2.75 0.200 1.53 14.063 21.516 3.07 GI 40 15 7.00 110 R G2 40 180 15 4.50 0.200 1.82 14.063 25.594 7.00 3.66 3.66 40 75 3.00 0.200 1.57 14.063 22.078 8.00 2.76 2.76 G3 120 15 G4 40 75 200 15 5.00 0.200 1.89 14.063 26.578 8.00 3.32 3.32 40 110 15 2.75 0.200 1.53 14.063 21.516 7.00 3.07 3.07 1.82 14.063 25.594 15 4.50 0.200 2F 40 75 180 7.00 3.66 3.66 G2 40 75 120 15 3.00 0.200 1.57 14.063 22.078 8.00 2.76 2.76 G3 40 75 1.89 14.063 26.578 8.00 3.32 3.32 200 15 5.00 0.200 G4 7.00 Gl 40 110 15 2.75 0.200 1.53 14.063 21.516 3.07 3.07 1.82 14.063 25.594 1.57 14.063 22.078 0.200 40 75 15 2.75 7.00 3.66 3.66 110 G2 2.76 1F 40 75 15 0.200 8.00 2.76 G3 120 3.00 40 75 200 15 5.00 0.200 1.89 14.063 26.578 8.00 3.32 3.32 G4 150 1 0.01 0.013 1.00 64.000 64.000 7.00 9.14 9.14 FG1 80 1 1.00 64.000 64.000 8.00 8.00 8.00 B1F FG2 150 80 0.01 0.013 80 0.01 0.013 1.00 64.000 64.000 8.00 8.00 8.00 FG3 150 1

FG1,FG2,FG: применять только при анализе каркаса, рассматривать как фундамент при проекте проф

(b) Таблица - 5 Жесткость колонны

	Колон	<u>-</u>	·		I	I	K	k =
	на		ь	D	(x 10°	$(x 10^{2})$	$(x 10^{3})$. K/Ko
					см4)	см)	см3)	
	C1	x,y	60	60	10.8	9.00	1.200	1.20
2								
	C2	х,у	60	60	10.8	4.00	2.700	2.70
1	C3	x,y	60	60	10.8	5.00	2.160	2.16
		_						
	C1,C2	х,у	60	60	10.8	5.20	2.077	2.08
1		-		i				
								1
	Cl	х,у	80	80	34.13	6.50	5.251	5.25
BI	C2	х,у	80	80	34.13	6.50	5.251	5.25

2. 2 Момент крепленного конца ригеля(Co), центральный момент (Мо), сдвиг на конце (Q кровля-с

кровля-ь этаж

Изгибающий момент крепленного конца (Со)

Изгибающий момент среднего пролета (Мо)
Усилие при сдвиге (Q) на конце ригеля
Цех иловой очистки

	Усилие	\triangle	усил. плит	ы)(у	сил. плить		сил. ригель	Σ
rGl	Co	w 0.00	Co 0.00	w 0.00	Co 0.00	w/1 8.25	Co 33.69	33.69
шаг 7м	Мо	0,00	Mo 0.00	w 0.00	Mo 0.00	w/1 8.25	Mo 50.53	50.53
применимо к 4,5-каркасу		w 0.00	Q 0.00	w 0.00	Q 0.00	w/1 8.25	Q 28.88	28.88

Усилие плиты = 0.00 (KH/м2)

HIar = 7 (M) a= 1.75 (M) HIar 3= 343 a3= 5.359375

	Усилие	\triangle	усил. плит	ы)	(усил. пли		(усил. риге .+W49	Σ
Ì		w	Co	w	Co	w/1	Co	
rG1	Co	0.00	0.00	0.00	0.00	43.18	176.31	176.31
+стена 49с			Mo	w	Mo	w/1	Мо	
h=4.3m	Mo	0.00	0.00	0.00	0.00	43.18	264.46	264.46
		w	Q	w	Q	w/1	Q	
шаг 7м	Q	0.00	0.00	0.00	0.00	43.18	151.12	151.12

Усилие плиты = 0.00 (KH/м2)

IIIar 7 (M) a= 1.75 (M) IIIar 3= 343 a3= 5.359375

	Усилие		(усил. плит	.н)	(усил. пли		усил. ригели	Σ
	2-	w 0.00	Co 0.00	w 0.00	Co 0.00	w/1 8.25	Co 44.00	44.00
rG2 rG1	_Co	0.00	Mo	w	Mo	w/1	Mo	
Шаг 8м	Mo	0.00	0.00	0.00	0.00	8.25	66.00	66.00
применимо к 4,5-каркасу	Q	w 0.00	Q 0.00	w 0.00	Q 0.00	w/1 8.25	33.00	33.00

 Усилие плиты
 =
 0.00 (КН/м2)

 IIIar
 8 (м) a=
 1.75 (м)

 IIIar 3=
 512 a3=
 5.359375

	Усилие	77 (усил. плит	ы) /	(усил. пли	(усил. риге	Σ
					١ ٠		тена	
		w	Co	Čo/w	Co	w/1	Co	
rG3	Со	14.30	93,45		0.00	8.25	33.69	127.14
rG4			Mo	Mo/w	Mo	w/1	Mo	
	Мо	24.50	160.11		0.00	8.25	50.53	210.64
нет стены		w	Q	Q/w	Q	w/1	Q	
	Q	8.70	56.85		0.00	8.25	28.88	85.73

Усилие плиты = 6.54 (КН/м2) Шаг 7 (м)

	Усилие		(усил. плит	ы)	(усил. пли		(усил. риге стена	Σ
		w	Co	Co/w	Co	w/1	Co	
rG3	Co	14.30	93.45		0.00	43.18	176.31	269.76
rG4		 	Mo	Mo/w	Mo	w/1	Mo	
	Mo	24.50	160.11		0.00	43.18	264.46	424.57
+ стена 49 см		w	Q	Q/w	Q	w/1	Q	
	Ιo	8.70	56.85	_	0.00	43.18	151.12	207.97

Усилие плиты = 6.54 (КН/м2) IIIar 7 (м)

	Усилие		(усил. плит	ы)	(усил. плит 2	<u> </u>	(усил. риге + кран 36	
rG5	Co	Co/w 28.60	Co 186,90	Co/w	Co 0.00	w/1 8.25	Co 65.19	252.09
rG6		Mo/w	Мо	Mo/w	Мо	w/1	Мо	
	Мо	49.00 Q/w	320.22 Q	Q/w	0.00 Q	8.25 w/1	56.66 Q	376.87
	Q	17.40	113.71 Усилие	плиты =	0.00 6.54	8.25 (KH/м2)	46.88	160.58
			· - -	Шаг		(м) .+49см сте	ена	
	Усилие		(усил. плит	.PI)	(усил. пли		(усил. риге	Σ
rG7	Co	Co/w 36	Co 235.26	w 0,00	Co 0.00	w/1 8.25	Co 44.00	279.26
	Mo	Mo/w 66	Mo 431.31	w 0.00	Mo 0.00	w/1 8.25	Mo 66.00	497.31
	Q	Q/w 20	Q 130.70	w 0.00	Q 0.00	w/1 8.25	Q 33.00	163.70
			Усилие	плиты = Шаг	6.54 8	(КН/м2) (м) a=	4	(M)
•••	Усилие		(усил. плит	ы)	(усил. пли 2		(усил. риге	Σ
rG2*0.5	Co	w 0.00	Co 0.00	w 11.44	Co 55.79	w/1 43.18	Co 230.28	286.07
rG1*0.5	Mo	0.00	Mo 0.00	w 11.44	Mo 85.65	w/1 43.18	Mo 345.42	431.0
.+ стена 49сы	1	0.00	Q 0.00	w 11.44	Q 35.74	w/1 43.18	Q 172.71	208.45
	<u> </u>	0.00		плиты = Шаг	6.54 8	(КН/м2) (м) а=	1.75	
Эчистка и	гла			IIIar 3=	512	a3	5.359375	
	Усилие	Δ	(усил. плит	ы)	(усил. пли	₽ ↓	(усил. риге .+р 30КН	Σ
2G1a	Со	w 0.00	Co 0.00	w 38.94	Co 141.60	w/1 8.25	Co 89.69	231.29
	Мо	0.00	Mo 0.00	w 38.94	Mo 218.62	w/1 8.25	Mo 134.53	353.15
		1	\sim		$\overline{}$	-vr/1	\sim	

	Усилие		(усил. плит	н)	(усил. пли	₽↓↓	(усил. риге .+р 30КН	Σ
		w	Со	w	Co	w/1	Co	
2G1a	Co	0.00	0.00	38.94	141.60	8.25	89.69	231.29
			Mo	w	Mo	w/1	Mo	
	Mo	0.00	0.00	38.94	218.62	8.25	134.53	353.15
		w	Q	w	Q	w/1	Q	
	Q	0.00	0.00	38.94	102.21	8.25	64.88	167.09
Применя	ть данное з	начение	Усилие	плиты =	11.13	(KH/m2)	-	
для риге:	ля А-В,2 ка	ркас		Шаг		(m) a=	1.75	(м)
				Шаг 3=	343	a3=	5.359375	
	Усилие		(усил. плит	PI) (усил. плить •	P <mark>▼ ▼</mark> P	усил. ригели .+ Р 30КН	Σ
2G1		w	Co	w	Co	w/1	Co	
2G2			0.00	20 04	100.07	8.250	108.00	297.97
2 U Z	Co	0.00	0.00	38.94	189.97	0.230	109.00	271.71
202	Со	0.00	0.00 Mo	38.94 W	189.97 Mo	w/1	Mo	291.91
202	Co Mo	0.00						453.63
2G2 Нагрузка			Mo	w	Mo 291.63 Q	w/1	Mo 162.00 Q	453.63
Нагрузка		0.00	Mo 0.00	w 38.94	Mo 291.63 Q 121.68	w/1 8.250	Mo 162.00	453.63
	Мо	0.00 w	Mo 0.00 Q	w 38.94 w 38.94	Mo 291.63 Q 121.68 11.13	w/1 8.250 w/1	Mo 162.00 Q 69.00	453.63 190.68

Шаг 3= 512 a3 5.359375

	Усилие		(усил. плит	ы)	(усил. пли	p↓ ↓ p	(усил. pure .+ P 30KH	
						-/1		1
2G1w	Со	0.00	Co 0.00	w 38.94	Co 189.97	w/1 28.050	Co 149.60	339.57
	<u> </u>		Mo	w	Mo	w/1	Mo	
	Mo	0.00	0.00	38.94	291.63	28.050	224.40	516.03
Нагрузка		w	Q	W 29.04	Q 121.69	w/1 28.050	Q 112.20	233.88
установки	Q	0.00	0.00	38.94	121.68		112.20	200.00
			Усилие		11.13	(KH/м2)	1.76	(- a)
				Шаг Шаг 3=	512	(M) a= a3	1.75 5.359375	(M)
	Усилие	1 1	(усил. плит		(усил. пли		(усил. риге	Σ
	3 CHIME		Gonsii iiidii		7		стена	
		w	Co	Co/w	Co	w/1	Co	
2G3	Co	13.50	150.19		0.00	4.06	16.57	166.76
2G4			Mo	Mo/w	Мо	w/l	Mo	202.00
	Mo	25.00	278.13	Obs	0.00	4.06 w/1	24.86 Q	302.99
		8.50	Q 94.56	Q/w	Q 0.00	4.06	14.21	108.77
-	Q	8.50	Усилие п	титы =	11.13	(KH/m2)	11.22	100.77
				Шаг		(M)		
	Усилие	$\lambda\lambda$	(усил. плит	P∐	Іодъем.бло		(усил. риге	Σ
				+	.+ 30*1.2E			
		Co/w	Co	P	Co	w/1	Co	
2G5	Co	27.00	300.38	36.00	31.50	8.25	33.69	365.56
2G6		Mo/w	Mo	P	Mo 63.00	w/1 8.25	Mo 50.53	669.78
С-каркас	Mo	50.00 O/w	556.25 Q	36.00 P	Q	w/1	Q Q	003.76
Скаркас	Q	17.00	189.13	36.00	18.00	8.25	28.88	236.00
<u>.</u>		J.,	Усилие	плиты =	11.13	(КН/м2)		
				IIIar =	7	(M)		
	Усилие	1 1 1	(усил. плит	2	Тодъем.блог		(усил. риге	Σ
	J CHLINE		(yenni nimi	_ _	.+ 15*1.2кн		+ wall 18cm	_
		Co/w	Со	P	Co	w/1	Co	
2G5w	C _o	27.00	300.38	18.00	15.75	23.9316	97.72	413.85
2G6w		Mo/w	Mo	P	Мо	w/1	Mo	30.4.00
	Mo	50.00	556.25	18.00	31.50	23.9316 w/1	146.58	734.33
С-керкес		Q/w 17.00	Q 189.13	P 18.00	Q 9.00	w/1 23.9316	Q 83.76	281.89
	Q	17.00	Усилие		11.13	(KH/m2)	03.701	201.02
				Шаг		(M)		
				2				
	Усилие	$\lambda\lambda$	(усил. плит	ы) / (и	усил. плить		∕сил. ригели	Σ
офис					7		إحيا	
		w	Со	w	Co	w/i	Co	202.46
2G7	Co	36.00	278.46	0.00	0.00	8.25	44.00	322.46
2G8	,,	66.00	Mo 510 51	w 0.00	Mo 0.00	w/1 8.25	Mo 66.00	576.51
Dam	Mo	66.00 w	510.51 Q	w	Q 0.00	w/l	Q Q	510.51
Применить на кровле	Q	21.00	162.44	0.00	0.00	8.25	33.00	195.44
ve rhomic		1 21.00	Усилие		7.74	(KH/м2)		
		2.285714		Шаг		(M) a=	8	(м)
		2.230117			_	,		. /

	Усилие		(усил. плиз	гы) /	усил. плить	-	(усил. риге	Σ
1					Ž		+стена 49см	
2G9		w	Co	w	Co	w/1	Co	
2G10	Co	0.00	0.00	19.00	146.97	40.2666		361.72
	.	0.00	Mo 0.00	29.00	Mo 224.32	w/1 40.2666	Mo 322.13	546.45
5-каркас	Mo	w 0.00	Q.00	29.00 W	Q Q	40.2666 w/l	Q 322.13	340.43
1	Q	0.00	0.00	12.00	92.82	40.2666		253.89
		·	Усилие	плилы =	7.74	(КН/м2)		
		2.285714		Шаг		(м) a=		(M)
5 каркас	Усилие		(усил. плит	nы)	(усил. пли \		(усил. риге	Σ
D-E		w	Со	w	- Co	w/1	.+стена 4.9см Со	
2G10a	Co	0.00	0.00	35.32	124.04	40.2666		288.46
20102		w	Мо	w	Мо	w/1	Mo	
5-каркас	Mο	0.00	0.00	35.32	192.79	40.2666	322.13	514.92
		w	Q	w	Q	w/l	Q	220.22
	Q (II	0.00	0.00	35.32	88.30	40.2666 (КН/м2)	140.93	229.23
	(н. кровль	4+п. устано 2.285714	ЭВКИ // Z →	Усилие пли Шаг		(KIDMZ) (M) a=	. 2	(M)
		2.207/17		Шаг 3=	343	(M) a- a3		(474)
	Усилие	\wedge	(усил. плит		(усил. пли		(усил. риге	Σ
1					7			
1		w	Co	W 29.04	Co	w/1	Co	175.00
1G3	Co	0.00	0.00 Mo	38.94	141.60 Mo	8.25 w/l	33.69 Mo	175.29
D-конец E-ког	Мо	0.00	0.00	w 38.94	218.62	8.25	50.53	269.15
2,3,4 каркасы	1410	w	Q Q	W W	Q Q	w/1	Q	
	Q	0.00	0.00	38.94	102.21	8.25	28.88	131.09
,			Усилие		11.13	(KH/м2)		, ,
				Шаг		(M) a=	1.75 5.359375	(M)
	Усилие		(усил. плиты)	Шаг 3=	(усил. плиты	<u> </u>	(усил. ригеля)	Σ
) chine		усин плиты)		7 CONT. IDINIB.	<u> </u>	P 20 KH	_
	****	w	Co	w	Со	w/1	Co	
1G1	Co	0.00	0.00	38.94	189.97	8.25	86.67	276.63
1G2		0.00	Mo	W 20 04	Mo 291.63	w/l 8.25	Mo 132.67	424.29
2,3,4 каркасы	Mo	0.00 W	0.00 Q	38.94 w	Q Q	w/1	Q Q	424.23
2,3,4 Rapkaca	Q	0.00	0.00	38.94	121.68	8.25	58.00	179.68
			Усилие		11.13	(КН/м2)	<u> </u>	
				∭ar		(M) a=		(M)
				Шаг 3=	512	a3	5.359375	
	Усилие		(усил. плит	<u> </u>	усил. плить		(усил. риге	Σ
	усиние	\triangle	(your initial	ı"')		(Jones, pine	_
		w	Co	w	Co	w/1	Co	
1G1w	Co	0.00	0.00	40.34	196.80	29.634	158.05	354.84
1G2w		0.00	Mo	w 40.34	Mo 302.11	w/1 29.634	Mo 243.74	545.85
2 3 Avanvas-	Мо	0.00 W	0.00 Q	40.34 W	302.11 Q	29.634 w/1	Q Q	ده.دبور
2,3,4каркасы	Q	0.00	0.00	40.34	126.05	29.634	121.04	247.09
	Υ]		Усилие		11.53	(KH/m2)		
				∐ar		(M) a=		(M)
				Шаг 3=	512		5.359375	
	Усилие	$\wedge \wedge$	(усил. плит І	ы)	(усил. пли		усил. ригели	Σ
1G3		Co/w	Co	Co/w	Co	w/1	Co	
1G4	Co	14.30	159.09		0.00	8.25	33.69	192.78
		Mo/w	Мо	Mo/w	Мо	w/1	Mo	
	Mo	24.50	272.56		0.00	8.25	50.53	323.09
		Q/w	Q	Q/w	Q	w/1	Q	
Применять значение 2G4	Q	8.70	96.79		0.00	8.25	28.88	125.66
	٧	0.70	Усилие з	1111WILP =				
			A CADIME !	idinibi —	11.13	(КН/м2)		
				IIIar		(КП/M2) (м) a(м))=	

							··	
	Усилие		(усил. плиты)		(усил. плиты) У		(усил. ригеля)	Σ
		Co/w	Co	w	Co	w/l	Co	
1 G 5	Co	28.60	318.18	0.00	0.00	8.25	44.00	362.1
1 G 6		Mo/w	Mo	w	Mo	w/1	Мо	
	Мо	48.40	538.45	0.00	0.00	8.25	66.00	604.4
		Q/w	Q	w	Q	w/1	Q	
.,	Q	17.40	193.58	0.00	0.00	8.25	33.00	226.5
			Усилие	плипы =	-	(KH/м2)	1.75	
				IIIar IIIar 3=	343	(M) a=	1.75 5.359375	(M)
· T				шаг 5-	343	as	2.337373	
Иловая очист	жа Усилие	1 1 1	(усил. плит	ru) —	(усил. пли		(усил. риге	Σ
	усилис		(yonn man	"'/ <u>/</u>	7		Gonzii pin o	_
		Co/w	Co	Co/w	Co	w/1	Co	
1G9	Co	35.00	581.88		0.00	9.28	49.50	631.3
1G10		Mo/w	Mo	Mo/w	Mo	w/1	Mo	
	Mo	64.00	1064.00		0.00	9.28	74.25	1138.2
		Q/w	Q	Q/w	Q	w/1	Q	
	Q	20.00	332.50	<u> </u>	0.00	9.28	37.13	369.6
			Усилие			(KH/м2)		
	$b \times D = 45 \times 7$	75		∐ar	8	(M)		
	Усилие		(усил. плит	пы)	(усил. пли		(усил. риге	Σ
	Усилие				7		стена	Σ
167		<u>w</u>	Со	w	Co	w/1 0.93	стена Со	
1G7	У силие Со	w 0.00	Co 0.00	w 66,50	Co 315.88	0.93	стена Со 3.79	
1G7 1G8	Co	0.00	Co 0.00 Mo	w 66.50	Co 315.88 Mo	0.93 w/1	стена Со 3.79 Мо	319.6
		1 " !	Co 0.00 Mo 0.00	w 66,50	Co 315.88 Mo 487.67	0.93	Стена Со 3.79 Мо 5.68	319.6
1G8	Co Mo	0.00	Co 0.00 Mo	w 66.50 w 66.50	Co 315.88 Mo	0.93 w/1 0.93	стена Со 3.79 Мо	319.6 493.3
1G8 Изгиб А-конг	Co Mo	0,00 0,00 w 0.00	Co 0.00 Mo 0.00	w 66.50 w 66.50 w 66.50	Co 315.88 Mo 487.67 Q 199.50	0.93 w/1 0.93 w/1	Стена Со 3.79 Мо 5.68	319.6 493.3
1G8 Изгиб А-конг	Co Mo	0,00 0,00 w 0.00	Co 0.00 Mo 0.00 Q 0.00	w 66.50 w 66.50 w 66.50	Co 315.88 Mo 487.67 Q 199.50 16.63 8	0.93 w/1 0.93 w/1 0.93	Стена Со 3.79 Мо 5.68 Q 3.25	Σ 319.6 493.3 202.7 (M)
1G8 Изгиб А-конг	Co Mo	0,00 0,00 w 0.00	Co 0.00 Mo 0.00 Q 0.00	w 66.50 w 66.50 w 66.50	Co 315.88 Mo 487.67 Q 199.50 16.63 8 512	0.93 w/1 0.93 w/1 0.93 (KH/M2) (M) a= a3	Стена Со 3.79 Мо 5.68 Q 3.25	319.6 493.3 202.7 (M)
1G8 Изгиб А-конг	Co Mo	0,00 0,00 w 0.00	Co 0.00 Mo 0.00 Q 0.00	W 66.50 W 66.50 W 66.50 IDIMTE = IIIar IIIar 3=	Co 315.88 Mo 487.67 Q 199.50 16.63 8	0.93 w/1 0.93 w/1 0.93 (KH/M2) (M) a= a3	Стена Со 3.79 Мо 5.68 Q 3.25	319.6 493.3 202.7
1G8 Изгиб А-конг	Со Мо ц Q	0.00 0.00 W 0.00	Со 0.00 Мо 0.00 Q 0.00 Усилие	W 66.50 W 66.50 W 66.50 IDIUTЫ = IIIIar IIIIar 3= IIII 3= IIII 3= IIII X X X X X X X X	Со 315.88 Мо 487.67 Q 199.50 16.63 8 512 (усил. пли	0.93 w/1 0.93 w/1 0.93 (KH/M2) (M) a= a3	Стена Со 3.79 Мо 5.68 Q 3.25 2 8 (усил. риге	319.6 493.3 202.7 (M)
1G8 Изгиб А-конг С-конец D-ко	Со Мо	0.00 0.00 W 0.00	Со 0.00 Мо 0.00 Q 0.00 Усилие (усил. плит	W 66.50 W 66.50 W 66.50 IDIMTE = IIIar IIIar 3=	Co 315.88 Mo 487.67 Q 199.50 16.63 8 512	0.93 w/1 0.93 w/1 0.93 (KH/M2) (M) a= a3	Стена Со 3.79 Мо 5.68 Q 3.25	319.6 493.3 202.7 (M)
1G8 Изгиб А-конц С-конец D-ко	Со Мо ц Q	0.00 0.00 W 0.00	Со 0.00 Мо 0.00 Q 0.00 Усилие	W 66.50 W 66.50 W 66.50 IDIUTE = IIIIar IIIIar 3= TEI W W	Со 315.88 Мо 487.67 Q 199.50 16.63 8 512 (усил. пли	0.93 w/1 0.93 w/1 0.93 (KH/M2) (M) a= a3 w/1	Стена Со 3.79 Мо 5.68 Q 3.25 2 8 (усил. риге	319.6 493.3 202.7 (M)
1G8 Изгиб А-конг С-конец D-ко	Со Мо	0.00 0.00 W 0.00 0.00	Со 0.00 Мо 0.00 Q 0.00 Усилие (усил. плит	W 66.50 W 66.50 W 66.50 IDIUTE = III ar III ar 3 = TEL W 0.00	Со 315.88 Мо 487.67 Q 199.50 16.63 8 512 (усил. пли	0.93 w/1 0.93 w/1 0.93 (KH/M2) (M) a= a3 w/1 22.79	Стена Со 3.79 Мо 5.68 Q 3.25 2 8 (усил. риге	319.6 493.3 202.7 (M)
1G8 ZENG A-KOHI ZE-KOHEII D-KO 1G5W 1G6W	Со Мо Оправности от применения от применен	0.00 0.00 W 0.00 0.00 Co/w 28.60 Mo/w	Со 0.00 Мо 0.00 Q 0.00 Усилие Со 318.18	W 66.50 W 66.50 W 66.50 IDIUTE = IIIar IIIar 3= TEI W 0.00 W	Со 315.88 Мо 487.67 Q 199.50 16.63 8 512 (усил. пли Со 0.00	0.93 w/1 0.93 w/1 0.93 (KH/M2) (M) a= a3 w/1 22.79 w/1	Стена Со 3.79 Мо 5.68 Q 3.25 2 8 (усил. риге Со 121.53 Мо 182.29 Q	319.6 493.3 202.7 (M) Σ 439.7
1G8 Изгиб А-конц С-конец D-ко 1G5W 1G6W + стена 38сь	Со Мо Оправности от применения от применен	0.00 0.00 W 0.00 0.00 Co/w 28.60 Mo/w 48.40	Со 0.00 Мо 0.00 Q 0.00 Усилие Со 318.18 Мо 538.45	W 66.50 W 66.50 W 66.50 IDINTH = IIIar IIIar 3= W 0.00 W 0.00	Со 315.88 Mo 487.67 Q 199.50 16.63 8 512 (усил. пли Со 0.00 Mo 0.00 Q	0.93 w/1 0.93 w/1 0.93 (KH/M2) (M) a= a3 w/1 22.79 w/1 22.79 w/1 22.79	Стена Со 3.79 Мо 5.68 Q 3.25 2 8 (усил. риге Со 121.53 Мо 182.29	319.6 493.3 202.7 (M) Σ 439.7 720.7
1G8 Изгиб А-конц С-конец D-ко	Со Мо Оправнительной рассии образования о	0.00 0.00 W 0.00 Co/w 28.60 Mo/w 48.40 Q/w	Со 0.00 Мо 0.00 Q 0.00 Усилие (усил. плит Со 318.18 Мо 538.45 Q	W 66.50 W 66.50 IDINTS = IIIar IIIar IIIar IIIar W 0.00 W 0.00 W 0.00 IDINTS = IDINT	Со 315.88 Мо 487.67 Q 199.50 16.63 8 512 (усил. пли Со 0.00 Мо 0.00 Q 0.00	0.93 w/1 0.93 w/1 0.93 (KH/M2) (M) a= a3 w/1 22.79 w/1 22.79 w/1 22.79 (KH/M2)	Стена Со 3.79 Мо 5.68 Q 3.25 2 8 (усил. риге Со 121.53 Мо 182.29 Q 91.15	319.6 493.3 202.7 (M) Σ 439.7 720.7
1G8 Изгиб А-конц С-конец D-ко 1G5W 1G6W + стена 38сь В каркас	Со Мо Оправнительной рассии образования о	0.00 0.00 W 0.00 Co/w 28.60 Mo/w 48.40 Q/w	Со 0.00 Мо 0.00 Q 0.00 Усилие Со 318.18 Мо 538.45 Q 193.58	W 66.50 W 66.50 IDIATS = IIIar IIIar IIIar IIIar W 0.00 W 0.00 W 0.00 W 0.00 W 0.00	Со 315.88 Мо 487.67 Q 199.50 16.63 8 512 (усил. пли Со 0.00 Мо 0.00 Q 0.00	0.93 w/1 0.93 w/1 0.93 (KH/M2) (M) a= a3 w/1 22.79 w/1 22.79 w/1 22.79 (KH/M2) (M) a=	Стена Со 3.79 Мо 5.68 Q 3.25 2 8 (усил. риге Со 121.53 Мо 182.29 Q 91.15	319.6 493.3 202.7 (M) Σ 439.7 720.7

	Усилие	\triangle	(усил. плит	гы)	(усил. пли		(усил. риге	Σ
FG1	C ₀	w 478.49	Co 1221.14	Co/w	Co 0.00	w/1 0	Co 0.00	1221.14
rGi	a	470.47	Mo	Mo/w	Mo	w/1	Mo	1221,17
Для ссылки	Mo	478.49	1953.83	0/	0.00	0	0.00	1953.83
	Q	w 478.49	Q 837.35	Q/w	Q 0,00	w/1 0	Q 0.00	837.35
			Усилие		68.355	(KH/м2)		
	Ts.7	1 .	(110117 777	IIIar	7 (усил. пли	(M) a(M)= (усил. риге	Σ
	Усилие		(усил. плит	<u>ы)</u>	У (УСИЛ. ПЛИ			
Foo	G.	w 546.84	Co 1822.81	0.00	Co 0.00	w/1 0	Co 0.00	1822.81
FG2	Co	340.64	Mo	w	Mo	w/1	Mo	1022.01
Цля ссылки	Mo	546.84	2916.50	0.00	0.00	0	0.00	2916.50
		w 546.84	Q 1093.69	0.00	Q 0.00	w/1 0	Q 0.00	1093.69
] Q	240.04		плиты =	68.355	_	0.00	1073.07
				IIIar	8	(M) a=		(M)
Иповая опист	ra (c necom vci	вновки 0.72 т/к	<i>(</i> 2)	Шаг 3=	512	a.3	8	
ELOPEA OTHER	Усилие	$\overline{\lambda}\lambda$		ін) /	(усил. пли		(усил. риге	Σ
		Co/w	Co	Co/w	Co	w/1	Co	
1G9w	Co	39.85	662.46	Co/w	0.00	28,29	150.88	813.34
		Mo/w	Mo	Mo/w	Mo	w/1	Mo	
	Мо	72.86	1211.36	0.5	0.00	28.29 w/1	226.31	1437.68
	Q	Q/w 22.77	Q 378.55	Q/w	Q 0.00	28.29	Q 113.16	491. 7 1
	<u> </u>		Усилие			(KH/м2)		
	$b \times D = 45 \times 7$	75 новое —	→ усып	Шаг те плиты =		(M) =36.5 (KT)	I/w2)	
		старое —		ie ininipi =				
Іловая очист	,	ановки 0.72 т/м					,	
	Усилие		(усил. плит	ы)(усил. плить 2		(усил. риге	Σ
		Co/w	Co	Co/w	Co	w/1	Co	
1 G 9м	Co	39.85	662.46	3.6.7	0.00	9.28 w/1	49.50 Mo	711.96
	Mo	Mo/w 72.86	Mo 1211.36	Mo/w	Mo 0.00	9,28	74.25	1285.61
	Mo	Q/w	Q	Q/w	Q	w/1	Q	
	Q	22.77	378.55		0.00	9.28	37.13	415.68
	. 5 45 77		Усилие	шиты = Шаг		(KH/m2) (m)		
	$b \times D = 45 \times 7$	э новое —		пат пе плиты =			(2)	
		старое —		е плиты =				
	Усилие		(усил. плит	ы) /	усил. плить		(усил. риге	Σ
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Co	w	Co	w/1	стена Со	
	Co	0.00	0.00	75.74	359.78	0.85	3.47	363.25
1G8 _M			Мо	w	Mo	w/1	Mo	W
	Мо	0.00	0.00	75.74	555.45	0.85	5.21	560.66
Ізгиб А-конц	Q	0.00	Q 0.00	w 75.74	Q 227.23	w/1 0.85	Q 2.98	230.21
	Электрощито			е плиты =	16.63	(KH/m2)	2.70	250.21
	-			∐ar		(M) a=		(M)
				IIIar 3=	512	а3	8	

2.3 Осевая нагрузка колонны и масса здания Цех иловой очистки

	Таблица-6 М	Ласса цеха	иловой оч		γf (D.L):	1.1	Плита: См. та	блицу 4
	Нагрузка	Един. м * γf	пифина/высота		Площадь или		Итого	S Wi
Этаж		(KH/m2)	(м) или ед.	(M)	(м2), (м)	(KH)	(KH)	(KH)
	Плита верх кровли		21.6	23.60	509.76	3331.28		
	Плита кровли М2	6.54	8	53.00	424.00	2770.84		
	Ригель 8м	8.25	10	8.00	80.00	660.00		
	Ригель 7м	8.25	17	7.00	119.00	981.75		
2-ой	Кол. 9м	9.90	9	5.00	45.00	445.50		
İ	Кол. 4м	9.90	16	9.00	144.00	1425.60		
1	Ригель М2 8м	8,25	14	8.00	112.00	924.00		
	Ригель М2 7м	8.25	8	7.00	56.00	462.00	İ	
1	Стена.1 9м	9.70	9	45.20	406.80	3946.77		
	Стена.2 5м	9.70	5	45.20	226.00	2192.65		Ì
	Стена.3 4м	9.70	4	76.00	304.00	2949.41		
	Стенав 1	7.52	4	46.20	184.80	1390.44		
	Стенав 2	7.52	3.5	46.00	161.00	1211.36		
	Стена в 3	2.38	3.5	38.00	133.00	316.01		
							23007.61	23007.61
	Верхняя плита 2э	6.54	16.3	31.60	515.08	3366.05		
	Оборудование гт	11.13	21.3	23.30	496.29	5521.23		
	Офис	6.85	8.3	21.30	176.79	1211.01		
	Спуж. помещ.	6.85	8	8.00	64.00	438.40		
	Другой этвж	8.75	8	23.00	184.00	1610.00		
1-ый	Ригель 8м	8.25	36	8.00	288.00	2376.00		
1-207	Ригель 7м	8.25	22	7.00	154.00	1270.50		
	Кол. 5.2м	9.90	35	5.20	182.00	1801.80		
на 2ой эт.→		180.00	3	1.30	3.90	702.00		
на 20й эт. →	Обоорудование 2		3	1.30	3.90	97.50		
на 20й эт. →	Обоорудование 2	30.00	3	1.30	3.90	117.00		
Ha 2011 31.	Стена.1 5.2м	9.70	5.2	154.40	802.88	7789.54		
1	Стенав 4.5м	7.52	4.5	119.00	535.50	4029.10		
	Стенав 4.5м	2.38	4.5	63.00	283.50	673.60		
1	Стенав ч.эм	2.50	7.5	05.00	203.50	075.00	31003.73	54011.34
<u> </u>	Плита э/щиговой 1эт.	16.63	21.5	16.30	350.45	5826.23		
	Оборудование по 1	11.13	21.3		449.43	4999.91		
	Оборудование rm 2	11.13	12.8	16.60	212.48	2363.84		
	Оборудование гт 4	11.13	1	79.25	79.25	881.66		
	Склад, туалет	8.75	ĺ	74.50	74.50	651.88		
	Э/щиговая	9.75	8.6	17.80	153.08	1492.53		
	Офис	6.85	8.6	7.00	60.20	412.37		
1	Другой этаж	8.75	1	61.57	61.57	538.74		
Тех. этаж	Ригель 8м	10.31	36	8.00	288.00	2970.00		
150. 3184	Ригель 7м	10.31	22	7.00	154.00	1588.13		
	Кол. 1 6.9м	17.60	35	5.20	182.00	3203.20		
İ	1001. 1 0.511							
	Оборудование 1	60.00	3	1.30	3.90	234.00		
1	Оборудование 2	20.00	3	1.30	3,90	78.00		
	Оборудование 3	10.00	12	1.30	15.60	156.00	j	
	Оборудование 4	5.50	2	1.30	2.60	14.30		
	Стена.1 5.15м	13.75	5.15	135.20	696.28	9573.85		
	Стена.2 5.15м	13.75	5.15	125.00	643.75	8851.56		
	Вода	44.00	1	374.00	374.00	16456.00		
	Оборудование 1	100.00	5	1.30	6.50	650.00		
	Ооорудование 1	100.00		1,00				
	Бетон основания	30.00	31.6	45.60	1440.96	43228.80		
	(реакция отменяет							
]	(KH)
							#######	158182.3
	Площадь о	снования	1440.96	(м2)		(Общая М=	158,182.32

Общая М= 158,182.32 стена

| 109.776 (КН/м2) | w1= 16456.00 (КН) | Расчетная нагрузка фундамента = 109.63 -11. | 68.355 (КН/м2) w1/(31.6*4:

11.42 (KH/м2)

Таблица-7 Масса цеха иловой очистки

	Нагрузка	Един. м	ширина/высота	Длина	Площадь или	Масса	Итого	S Wi
Этаж		(KH/m2)	(м) или ед.	(M)	(м2), (м)	(KH)	(KH)	(KH)
	Плита верх.кровли	6.54	8.00	7.00	56.00	365.96		
C1	Ригель 8м	7.50	1.00	8.00	8.00	60.00		
	Ригель 7м	7.50	1.00	7.00	7.00	52.50		
2-ой	Кол. 9м	9.90	1.00	9.00	9.00	89.10		
С-каркас, 2	Стена.1 9м	0.00	9.00	45.20	406.80	0.00		
	Стена.2 5м	0.00	5.00	45.20	226.00	0.00		
	Стена.3 4м	0.00	4.00	76.00	304.00	0.00		
	Подъемный блок	36.00	1.00	1.00	1.00	36.00	603.56	603,56
	плита 2 этажа	11.13	8.00	7.00	56.00	623.00		
					<u> </u>			
Cl	Ригель 8м	8.25	1.00	8.00	8.00	66.00		
	Ригель 7м	8.25	1.00	7.00	7.00	57.75		
1-ый	Кол. 5.2м	9.90	1.00	5.20	5.20	51.48		
С-каркас, 2	Оборудование	30.00	1.00	1.00	1.00	30.00		
							828.23	1431.79
	плита 1 этажа	11.13	8.00	7.00	56.00	623.00		
C1	Ригель 8м	8,25	2.00	8.00	16.00	132.00		
	Ригель 7м	8.25	2.00	7.00	14.00	115.50		
Тех, этаж	Кол. 7м	17.60	1.00	7.00	7.00	123,20		
				·				
С-каркас, 2	оборудование	12.00	5.00	1.00	5.00	60.00	1053.70	2485.49
Cl	плита основания	22.00	8.00	7.00	56.00	1232.00		
С-каркас, 2	оборудование	120.00	2.00	1.00	2.00	240.00		
							1472.00	3957.49
Pac	счетная нагруз	ка основан	ия = 2331.4	19/56 =	48.67	КН/м2	w/(8x7)=	70.669

(KHt/m2)

Таблица-8 Масса цеха иловой очистки

	Нагрузка	Един. м	ппирина/высота	Длина	Площадь или	Macca	Итого	S Wi
Этаж		(KH/m2)	(м) или ед.	(м)	(m2), (m)	(KH)	(KH)	(KH)
	Плита кровли Rb	6.54	4.00	3.50	14.00	91.49		
	Плита кровли Rb	6.54	3.50	12.00	42.00	274.47		
2C2	Ригель 8м	8.25	2.00	8.00	16.00	132.00		
	Ригель 7м	8.25	1.00	7.00	7.00	57.75		•
2-ой этаж	Подъемный блок	36.00	1.00	1.00	1.00	36.00		
В-каркас, 4	Стена.2 5м	9.70	5.00	7.50	37.50	363.83		
	Кол. 9м	17.60	1.00	9.00	9.00	158.40	1113.94	1113.94
							1	
1C2	Стена в 38см	7.52	4.00	20.00	80.00	601.92		
1-ый этаж	Плита 2 этажа	9.93	8.00	7.50	60.00	595.50		
В-каркас, 4	Оборудование	33.00	1.00	1.00	1.00	33.00		
	Ригель 8м	8.25	1.00	8.00	8.00	66.00		
	Ригель 7м	8.25	1.00	7.00	7.00	57.75		
	Кол. 5.2м	17.60	1.00	5.20	5.20	91.52	1445.69	2559.63
	- 00	7.52	4.50	13.00	58.50	440.15		
	Стена в 38см	J		7.50	60.00	595.50	<u> </u>	
BC2	плита 1 этажа	9.93	8.00	1.50	00.00	393.30		
Тех. этаж	Ригель 8м	8.25	1.50	8.00	12.00	99.00		
	Ригель 7м	8.25	0.50	7.00	3.50	28.88		
В-каркас, 4	Кол. 6.9м	1.76	1.00	6.90	6.90	12.14	1175.67	3735.30
•	Плита основания	30.00	8.00	7.50	60.00	1800.00		
Фундамент	Оборудование	120.00	1.00	1.00	1.00	120.00		
В-каркас, 2	1							
			l				1920.00	5655.30

 Расчетная нагрузка основания = 330.71/60 =
 64.25 KH/м2
 Реакция груги
 94.255

 Таблища-9 Масса цеха иловой очистки
 (КНт/м2)

	Нагрузка	Един. м	ппфина/высота	Length	Площадь или	Массв	Итого	S Wi
Этаж		(KH/m2)	(м) или ед.	(M)	(м2), (м)	(KH)	(KH)	(KH)
						000.10		
	кровля Rb	6.54	8.00	4.00	32.00	209.12		
2C3	Ригель 8м	8.25	1.50	8.00	12.00	99.00		
2-ой этаж	Кол. 4м	9.90	1.00	4.00	4.00	39.60		
В-каркас, 5							347.72	347.72
	Стенв.3 4м	9.70	4.00	9.00	36.00	349.27	5,2	2,,,,,
	Стена в 38см	7.52	4.00	8.00	32.00	240.77		
	Кровля 2 этажа	0.00	8.00	4.00	32.00	0.00		
		9.93	8.00	4.00	32.00	317.60		
1C3	Ригель 8м	8.25	2.00	8.00	16.00	132.00		ı
	Ригель 7ы	8.25	1.00	7.00	7.00	57.75		
1-ый этаж	Кол. 5.2м	9.90	1.00	5.20	5.20	51.48		
В-каркас, 5	Оборудование	0.00	1.00	1.00	1.00	0.00		
, ·							558.83	906.55
	Плита 1 этажа	16.63	8.00	8.00	64.00	1064.00		
ъС3	Ригель 8м	8.25	1.50	8.00	12.00	99.00	•	
	Ригель 7м	8.25	0.50	7.00	3.50	28.88	1	
Тех. этаж	Кол. 7м	17.60	1.00	7.00	7.00	123.20		
В-каркас, 5	Оборудование	0.00	0.00	0.00	0.00	0.00		
	Вода	5.00	4	4.00	16.00	80.00	1395.08	2301.63
Фундамент	Плита основания	30.00	8.00	8.00	64.00	1920.00		
В-каркас, 5	Стена 55см	15.13	6.50	8.00	52.00	786.50		
							2706.50	5008.13

Расчетная нагрузка основані 48.25 KH/м2 w/64(KH/м2)= 78.252

Таблица-10 Масса цеха иловой очистки

	Нагрузка	Един. м	ширина/высот	Длина	Площадь или	Массв	Итого	S Wi
Story		(KH/m2)	(м) или ед.	(M)	(m2), (m)	(KH)	(KH)	(KH)
	Кровля	6.54	8.00	8.00	64.00	418.24		
1C4	Ригель 8м	8.25	2.00	8.00	16.00	132.00		
1-ый этаж	Кол. 5.2м	9.90	1.00	5.20	5.20	51.48		
В-каркас, 6	Оборудование	0.00	0.00	0.00	0.00	0.00		
							601.72	601.72
	Плита 1 этажа	16.63	8.00	8,00	64.00	1064.00		
			l			00.00		
ьС4	Ригель 8м	8.25	1.50	8.00	12.00	99.00		
Тех. этаж	Кол. 7м	17.60	1.00	7.00	7.00	123.20		
В-каркас, б	<u></u>	42.00	400	0.00	32.00	1344.00		
	Вода	42.00	4.00	8.00	32.00	1344.00	2630.20	3231.92
		20.00	0.00	9.00	C4 00	1020.00	2030.20	3231.92
Фудамент	Плита основания	30.00	8.00	8.00	64.00	1920.00		
В-каркас, б	стена 55см	15.13	6.50	12.00	78.00	1179.75	2000 75	(221.67
	<u> </u>			<u> </u>	<u> </u>		3099.75	6331.67
Расче	тная нагрузка с	снования =	= (2711.2+1	072)/64 =	50.50	КН/м2	w/64(KH)=	98.932

	Таблица-11		а иловой о					
	Нагрузка	Един. м	ширина/высота	Длина	Площадь или	Macca	Итого	S Wi
Этаж	ļ	(KH/м2)	(M) or unit	(M)	(m2), (m)	(KH)	(KH)	(KH)
	Кровля	6.54	8.00	4.00	32.00	209.12		
1C5	Ригель 8м	8.25	1.50	8.00	12.00	99.00		
1-ый этвж	Кол. 5.2м	9.90	1.00	5.20	5.20	51.48		
В-каркас, 7							359.60	359.60
	Плита 1 этажа	16.63	8.00	4.00	32.00	532.00		
	Стенв 49см	9.70	8.00	4.30	34.40	333.75		
bC5	Ригель 8м	0.00	1.50	8.00	12.00	0.00	İ	İ
Тех. этаж	Кол. 7м	17.60	1.00	7.00	7.00	123.20	•	
В-каркас, 7	Вода	42.00	4.00	4.00	16.00	672.00	1660.95	2020.55
	77	30.00	4.00	8.00	32.00	960.00	1000.93	2020.33
Фундамент	Плита основания	15.13	6.50	16.00	104.00	1573.00		ĺ
В-каркас, 7	Стена 55см	13.13	0.50	10.00	112.30		2533.00	4553.55

Расчетная нагрузка основания - 180.7/32 112.30 KH/м2 w/32= 142.298 (КН/м2)

Таблица-12 Масса цеха иловой очистки

	Нагрузка	Един. м	ширина/высо:	Длина	Площадь или	Масса	Итого	S Wi
Этаж		(KH/m2)	(м) или ед.	(M)	(m2), (m)	(KH)	(KH)	(KH)
	Кровля	6.54	8.00	8.00	64.00	418.24		
1C6	Ригель 8м	8.25	2.00	8.00	16.00	132.00		
1st Story	Кол. 5.2м	9.90	1.00	5.20	5.20	51.48		÷
С-каркас, б	Оборудование	0.00	0.00	0.00	0.00	0.00		
							601.72	601.72
	Плита 1 этажа	16.63	8.00	8.00	64.00	1064.00		
bC6	Ригель 8м	7.53	1.50	8.00	12.00	90.36		
Тех.этвж	Кол. 7м	17.60	1.00	7,00	7.00	123.20		1
С-каркас, б	Стена 38см	7.52	4.40	8.00	35.20	264.84		
							1542.40	2144.12
Фундамент С-каркас, б	Плита основания	30.00	8.00	8.00	64.00	1920.00		
C-Rapido, U							1920.00	4064.12
	Расчетная на	грузка осно	вания=(402	25.72-1920	33.50	KH/m2	w/64(KH/m2)=	63.502

Таблица-13 Масса цеха иловой очистки

	Taomma-13	тиасса цел	а иловои о	Tricitati			ju -	
	Нагрузка	Един. м	ширинв/высо:	Длина	Площадь или	Macca	Итого	S Wi
Этаж		(KH/m2)	(м) или ед.	(M)	(m2), (m)	(KH)	(KH)	(KH)
	Кровля	6.54	7.00	3.50	24.50	160.11		
2C7	Ригель 7м	8.25	1.50	7.00	10.50	86.63		
2-ой этаж	Кол. 5.2м	9.90	1.00	5.20	5.20	51.48		
Е-каркас, 2	оборудование	0.00	0.00	0.00	0.00	0.00		
	:						298.21	298.21
	Плита 1 этажа	11.13	7.00	3.50	24.50	272.56		
	Стена 49см	9.70	8.30	7.00	58.10	563.69]	
1C7	Ригель 7м	8.25	1.50	7.00	10.50	86.63		ł
1 этаж	Кол. 9м	9.90	1.00	9.00	9.00	89.10		
Е-каркас, 2								
							1011.97	1310.19
	Плита 1 этажа	11.13	7.00	3.50	24.50	272.56		
	Стена 49см	9.70	4.40	4.30	18.92	183.56		
b1C6	Ригель 7м	8.25	1.50	7.00	10.50	86.63		
Тех.этаж	Кол. 5.2м	17.60	1.00	5.20	5.20	91.52		
Е-каркас, 2	j							
	Вода	60.00	4.00	4.00	16.00	960.00		
							1594.27	2904.46
Фундамент	Плита основания	30.00	7.00	3.50	24.50	735.00		
Е-каркас, 2	Стена 55см	15.13	6.50	10.50	68.25	1032.28		
							1767.28	4671.74

Расчетная нагрузка основания = (253.29-wall49)/24.5 = 88.05 KH/м2 w/24.5 = 190.683 включая воду (КН/м2)

3 Расчет профиля ригеля и колонны 3-1 Расчет профиля ригеля

верх. кровля

Rs=Rsc= 365 MΠa Rb= 17 MΠa Rbt= 1.2 MΠa D22 As 380 mm2

D.L.] М(КН.м) верх. 48.88 186.09 180.08 159.3 156.79 +] нижн. 211.19 67.63 L.L.] Q (т) 88.92 106.07 106.68 104.08 105.34] b x D (мм) 400 x 750 400 x 750 400 Размер] ho (мм) 700 700 700 700 700 700 700 z= Rb.b.ho² (x 10°) 3332 3332 арм (верх.)=М/z 0.0147 0.0558 0.0540 0.0478 0.0471 арм (нюжн.) 0.0634 0.0203	79.64 х 700 3332 0.0239	E конец 41.84 88.92 750 700
+] нижн. 211.19 67.63 L.L] Q (т) 88.92 106.07 106.68 104.08 105.34] b x D (мм) 400 x 750 400 x 750 400 Размер] ho (мм) 700 700 700 700 700 700 700 700 z= Rb.b.ho² (x 10°) 3332 3332 арм (верх.)=М/z 0.0147 0.0558 0.0540 0.0478 0.0471 арм (нюжн.) 0.0634 0.0203	x 700 3332	88.92 750 700
L.L] Q (т) 88.92 106.07 106.68 104.08 105.34] b x D (мм) 400 x 750 400 x 750 400 Размер] ho (мм) 700 700 700 700 700 700 700 z= Rb.b.ho² (x 10°) 3332 3332 арм (верх.)=М/z 0.0147 0.0558 0.0540 0.0478 0.0471 арм (нижн.) 0.0634 0.0203	x 700 3332	750 700
] b x D (мм) 400 x 750 400 x 750 400 Размер] ho (мм) 700 700 700 700 700 700 700 700 z= Rb.b.ho² (x 10°) 3332 3332 арм (верх.)=M/z 0.0147 0.0558 0.0540 0.0478 0.0471 арм (нюкн.) 0.0634 0.0203	700 3332	750 700
Размер] ho (мм) 700 700 700 700 700 700 700 z= Rb.b.ho² (х 10°) 3332 3332 арм (верх.)=М/z 0.0147 0.0558 0.0540 0.0478 0.0471 арм (нюкн.) 0.0634 0.0203	700 3332	700
z= Rb.b.ho ² (x 10°) 3332 3332 арм (верх.)=M/z 0.0147 0.0558 0.0540 0.0478 0.0471 арм (нюкн.) 0.0634 0.0203	3332	
арм (верх.)=M/z 0.0147 0.0558 0.0540 0.0478 0.0471 арм (нижн.) 0.0634 0.0203		0.0126
арм (нижн.) 0.0634 0.0203	0.0239	0.0126
	0.0239	
	0.0237	
$\alpha_r = 0.395$ > > > > >	>	>
Bepx. Mus=Rsc.A's.(ho-a')= 270.5 270.5 270.5 270.5		270.5
Hirkiii.Mus=Rsc.A's.(ho-a')= 270.5 270.5	270.5	
Bepx. Mu=Rs.As(ho-0.5ξho)= 278.5 > M ok 278.5 278.5 > M ok 278.5 278.5 > M	> Mok	278.5
Нижн. Mu=Rs.As(ho-0.5cho) 278.5 278.5	278.5	
верх. 0.407 0.407 0.407 0.407 0.407		0.407
Pt (%) нижн. 0.407 0.407	0.407	
верх. 1140 1140 1140 1140 1140		1140
Площ. (мм2) нижн. 1140 1140	1140	
Осн. верх. 3 3 3 3 3 3	3	3
стержни D22		
нижн. 3 3 3 3 3 3	3	3
Qbмин=ψb3.Rbt.b.ho 201.6 (KH) 201.6 (KH) 201.6 ((KH)	201.6
скоба D10-150 D10-150 D10-150 D10-150		D10-150
решение ok ok ok ok		ok

ψb3=	0.6	по Таблиц	e 21

Ригель	верх.	rG3 В-кар	кас	верх.	rG4 В-ка	окас	верх.	rG5 D-кај	ркас
Позиция	1 конец	средн.	2 конец	2 конец	средн.	3 конец	1 конец	средн.	2 конец
D.L] М(КН.м) верх.	55.47		146.19	152.39		134.73	110.05		211.33
+ ј нижн.]	109.81			111.42			216.18	
L.L] Q(T)	85.7		98.66	88.25		85.73	160.58		175.05
] b x D (cm)	400	х	750	400	x	750	400	х	750
Размер] ho (мм)	700	70 0	700	700	700	700	700	700	700
z= Rb.b.ho ² (x 10 ⁶)		3332			3332			3332	
арм. (верх.)=М/г	0.0166		0.0439	0.0457		0.0404	0.0330		0.0634
арм. (нижн.)		0.0330		ĺ	0.0334			0.0649	
$\alpha_r = 0.395$	>	>	>	>	>	>	>	>	>
верх. Mus=Rsc.A's.(ho-a')=	270.5	•	270.5	270.5		270.5	270.5		270.5
нижн. Mus=Rsc.A's.(ho-a')=		270.5			270.5			270.5	
верх. Mu=Rs.As(ho-0.5Eho)=	278.5	> M ok	278.5	278.5	> Mok	278.5	278.5	> Mok	365.7
нижн. Mu=Rs.As(ho-0.5ξho)	Į.	278.5			278.5			278.5	
верх.	0.407		0.407	0.407		0.407	0.407		0.543
Pt (%) нижн.		0.407		•	0.407			0.407	
верх.	1140		1140	1140		1140	1140		1520
площ. (мм2) нижн.		1140			1140			1140	
Осн. верх.	3	3	3	3	3	3	3	3	4
стержни D22									
. нжин	3	3	3	3	3	3	3		3
Qbмин=yb3.Rbt.b.ho(KH	201.6	(KH)	201.6	201.6	(KH)	201.6	201.6	(KH)	201.6
скоба	D10-150		D10-150	D10-150		D10-150	D10-150	(KH)	+D10-150
решение	ok		ok	ok		ok	ok		ok

ψb3= 0.6 по Табл. 2: СНиП 2.03.01-84

Расчет профиля ригеля верх. кровля и кровля M2 кровля M2

				кровдя імд		
Ригель	верх.	rG6 D-кај	ркас		rG7 D-ка	ркас
Позиция	2 конец	средн.	3 конец	4 конец	средн.	5 конец
D.L] М(тм) верх.	119.33		148.38	190.2		133.8
+] нижи.		243.02			323.71	
L.L] Q(T)	160.58		164.73	160.8		153.7
] b х D (см)	400	Х	750	400	х	750
Размер] ho (мм)	700	700	700	700	700	700
z= Rb.b.ho² (x 10°)		3332			3332	
арм. (верх.)=М/г	0.0358	· · · · · · · · · · · · · · · · · · ·	0.0445	0.0571		0.0402
арм. (нижн.)		0.0729			0.0972	
$\alpha_r = 0.395$	>	>	>	>	>	>
верх. Mus=Rsc.A's (ho-a')=	270.5		270.5	270.5		270.5
нижн. Mus=Rsc.A's (ho-a')	=	270.5			270.5	
верх. Mu=Rs.As(ho-0.5ξho)= 450.1	> M ok	450.1	531.6	> Mok	278.5
нижн. Mu=Rs.As(ho-0.5ξh	0)3	278.5			450.1	
верх	0.679		0.679	0.814		0.407
Pt (%) нижн.		0.407			0.679	
верх.	1900		1900	2280		1140
площ. (мм2) нижн	.	1140			1900	
Осн. верх.	5	3	5	6	3	3
D22					D22	
нижн.	3		3	3	5	3
Qbмин≕yb3.Rbt.b.ho=	201.6	(KH)	201.6	201.6	(KH)	201.6
(KH)	D10-150		D10-150	D10-150		D10-150
решение	ok		ok	ok		ok
urb3	- 0.6	по Таби 2	CHAPTON	2 01 94		

ψb3= 0.6 по Табл. 2: СНиП 2.03.01-84

Расчет профиля ригеля			ровля М2	применит			кас	<u> </u>	
Ригель		rG3w В-к			rG4w В-к		ļ	rG4w B-к	аркас
Позиция	1 конец	средн.	2 конец	2 конец	средн.	3 конец	3 конец	среди.	4 конец
D.L } M(тм) верх.	179.05		309.28	286.14		269.41	268.91		298.81
+] нижн.		180.48			146.68			140.59	
L.L] Q(1)	207.97		226.57	207.97		207.97	207.97		212.2
] b х D (см)	400	x	750	400	x	750	400	х	750
Размер] ho (мм)	700	700	700	700	700	700	700	700	700
$z=Rb.b.ho^2(x 10^\circ)$		3332			3332			3332	
арм. (верх.)=М/z	0.0537		0.0928	0.0859		0.0809	0.0807		0.0897
арм. (нижн.)		0.0542			0.0440			0.0422	
$\alpha_{r} = 0.395$	>	>	>	>	>	>	>	>	>
Bepx. Mus=Rsc.A's.(ho-a')=	270.5		270.5	270.5		270.5	270.5		270.5
Нижн. Mus=Rsc.A's.(ho-a')=	,	270.5			270.5			270.5	
Bepx. Mu=Rs.As(ho-0.5ξho)=	365.7	> M ok	531.6	531.6	> Mok	531.6	531.6	> M ok	531.6
Нижи. Mu=Rs.As(ho-0.5ξho)		278.5		ĺ	278.5			278.5	
верх.	0,543		0.814	0.814		0.814	0.814		0.814
Pt (%) нижн.		0.407			0.407		<u> </u>	0.407	
верх.	1520		2280	2280		2280	2280		2280
площ. (мм2) нижн.		1140		ļ	1140			1140	
осн. верх.	4	3	6	6	3	6	6	3	6
стержни D22									
нижи.	3	3	3	3	3	3	3	3	3
Qbмин=yb3.Rbt.b.ho=	201.6	(KH)	201.6	201.6	(KH)	201.6	201.6	(KH)	201.6
скоба	D10-150		D10-150	D10-150		D10-150	D10-150		D10-150
решение	ok		ok	ok		ok	ok		ok
<u> </u>	pw=	0.00377					•		

B.12-19

	гасчет п	рофиля ри	n.enm	дои этаж					
Ригель	2nd fl	2G1 2-кар	кас 8м		2G2 2-кар	кас 8м		2G1 2-кар	кас 7м
Позиция	В конец	средн.	С конец	С конец	средн.	D конец	D конец	средн.	Е конец
D.L] М(тм) верх.	312.29		301.53	305.05		299.81	291.42		120.60
+] нижн.		196.0			151.2			147.1	
L.L] Q(t)	190.68		201.65	190.68		190.68	191.49		167.09
]bxD(cm)	400	х	750	400	х	750	400	х	750
Размер] ho (мм)	700	700	700	700	700	700	700	700	700
$z=Rb.b.ho^2(x 10^\circ)$		3332			3332			3332	
арм. (верх.)=М/г	0.0937		0.0905	0.0916		0.0900	0.0875		0.0362
арм. (нижн.)		0.0588			0.0454			0.0441	
$\alpha_{\rm r} = 0.395$	>	>	>	>	>	>	>	>	>
Bepx. Mus=Rsc.A's.(ho-a')=	270.5		270.5	270.5		270.5	270.5		270.5
Нижн. Mus=Rsc.A's.(ho-a')=	•	270.465			270.465			270.465	
Bepx. Mu=Rs.As(ho-0.5xho)=	365.7	>M ok	610.3	610.3	> M ok	610,3	610.3	> Mok	278.5
Нижн. Mu=Rs.As(ho-0.5xho	1	365.7			278.5			278.5	
верх.	0.543		0.950	0.950		0.950	0.950		0.407
Pt (%) нижн.		0.543			0.407		1	0.407	
верх.	1520		2660	2660		2660	2660		1140
Площ. (мм2) нижн.		1520			1140			1140	
Осн. верх.	4	3	7	7	3	7	7	3	3
D22							1		
нижн.	3	4	3	3	3	3			
Qbмин=yb3.Rbt.b.ho=	201.6	(KH)	201.6	201.6	(KH)	201.6	201.6	(KH)	201.6
скоба	D12-150		D12-150	D12-150		D12-150	D12-150		D12-150
решение	ok		ok			ok			

	применить 20	35 D-каркас д	ля 2G3	применит	ть (2G6 D-к	аркас), дл	a 2G4		
Ригель		2G3 Е-кар	жас	2-ой этаж	2G4 Е-ка	ркас		2G5 D-ка	ркас
Позиция	1 конец	средн.	2 конец	2 конец	средн.	3 конец	1 конец	средн.	2 конец
D.L] М(ты) верх.	211.0		434.43	359.8		360.22	210.99		434.43
+] нижн.		347.28			309. 7 8			347.07	
L.L] Q(1)	263.9		295.8	236		236			267.92
] b x D (cm)	400	Х	750	400	x	750	400	X	750
Размер] ho (мм)	700	700	700	700	700	700	700	700	700
z= Rb.b.ho ⁴ (x 10°)		3332			3332			3332	
арм. (верх.)=М/г	0.0633		0.1304	0.1080		0.1081	0.0633		0.1304
арм. (нижн.)		0.1042			0.0930			0.1042	
$\alpha_{\rm r} = 0.395$	>	>	>	>	>	>	>	>	>
Bepx Mus=Rsc.A's.(ho-a')=	270.465		360.62	270.465		270.465	270.465		360.62
Нижн. Mus=Rsc.A's.(ho-a')=		270.465			270.465			270.465	
Bepx. Mu=Rs.As(ho-0.5xho)=	365.7	> Mok	610.3	610.3	> Mok	531.6	365.7	> M ok	610.3
Нижн. Mu=Rs.As(ho-0.5xho		365.7			278.5			365.7	
верх.	0.543		0.950	0.950		0.814	0.543		0.950
Pt (%) нижн.		0.543			0.407			0.543	
верх.	1520		2660	2660		2280	1520		2660
площ. (мм2) нижн.		1520			1140			1520	
Осн. верх.	4	3	7	7	3	6	4	3	7
D22									
нижн.	3	4	4	3		3	3		4
Qbмин=yb3.Rbt.b.ho=	201.6	(KH)	201.6		(KH)	201.6		(KH)	201.6
скоба	D12-150			D12-150		D12-150	D12-150		D12-150
решение	ok		ok	ok		ok	ok		ok

Расчет профиля ригеля

Ригель		2G6 D-ка	ркас		2G7 D-к	аркас		2G8 D-кај	жас
Позиция	2 конец	средн.	3 конец	4 конец	средн.	5 конец	6 конец	средн.	7 конец
D.L] M(m) верх.	359.8	,	360.22	349.27		357.42	426.27		174.58
+] нижн.		309.78			338.5			300.4	
L.L] Q(T)	236		236	217.2		216.23	247.69		216.23
]bxD(cm)	400	X	750	400	х	750	400	X	750
Размер] ho (мм)	700	700	700	700	700	700	700	700	700
z= Rb.b.ho² (x 10°)		3332			3332			3332	
арм. (верх.)=М/z	0.1080		0.1081	0.1048		0.1073	0.1279		0.0524
арм. (нижн.)		0.0930			0.1016			0.0902	
$\alpha_r = 0.395$	>	>	>	>	>	>	>	>	>
Bepx. Mus=Rsc.A's.(ho-a')=	270.5		270.5	270.5		270.5	270.5		270.5
Нижн. Mus=Rsc.A's.(ho-a')=	•	270.5			270.5			270.5	
Bepx. Mu=Rs.As(ho-0.5xho)=	610.3	> M ok	531.6	531.6	> Mok	531.6	610.3	> Mok	278.5
Нижи. Mu=Rs.As(ho-0.5xho	İ	365.7			365.7			531.6	
верх.	0.950		0.814	0.814		0.814	0.950		0.407
Pt (%) нижн.		0.543			0.543			0.814	
верх.	2660		2280	2280		2280	2660		1140
площ. (мм2) нижн.		1520			1520			2280	
Осн. верх.	7	3	6	6	3	6	7	3	3
стержни D22									
нижн.	3	4	3	3	4	3			
Qbмин=yb3.Rbt.b.ho=	201.6	(KH)	201.6	201.6	(KH)	201.6	201.6	(KH)	201.6
·. •	D12-150		D12-150	D12-150		D12-150	D12-150		D12-150
решение	ok		ok	ok		ok	ok		ok
·	•			•			4/(M/Q+1):	1.470058

2-ой этаж

Ригель	Z-0H 3130	2G9 5-кар	ркас		2G10 5-кв	ркас		2G10a	5каркас
Позиция	конец	средн.	конец	внеш.кон	средн.	внутр.кон	D конец	средн.	Е конец
D.L] М(тм) верх.	403.20		384.54	251.20		435,84	367.0		150.8
+] нижн.		180.77		1	169.22			252.55	
LL] Q(r)	268.00		265.77	265.77		288,85	255.2		228.2
]bxD(cm)	400	x	750	400	х	750	400	X	750
Размер] ho (мм)	700	700	700	700	700	700	700	700	700
$z = Rb.b.ho^{2}(x 10^{\circ})$		3332			3332			3332	
арм. (верх.)=М/г	0.1210		0.1154	0.0754		0.1308	0.1101		0.0453
арм. (нижн.)		0.0543			0.0508			0.0758	
$\alpha_r = 0.395$	>	>	>	>	>_	>	>	>	>
Bepx. Mus=Rsc.A's.(ho-a')=	360.6		360.6	270.5		360.6	360.6		270.5
Нижн. Mus=Rsc.A's.(ho-a')=	•	270.5			270.5			270.5	
Bepx. Mu=Rs.As(ho-0.5xho)=	610.3	> M ok	610.3	365.7	> M ok	610.3	610.3	> M ök	365.7
Нижн. Mu≃Rs.As(ho-0.5xho	4	365.7		l	365. <u>7</u>			365.7	
верх.	0.950		0.950	0.543		0.950	0.950		0.543
Pt (%) нижн.		0.543			0.543			0.543	
верх.	2660		2660	1520		2660	2660		1520
площ. (мм2) нижн.		1520			1520			1520	
Осн. верх.	7	3	7	4	3	7	7	3	4
D22	1								
нижн.	4	4	4	3	4		4		3
Qbмин=yb3.Rbt.b.ho=	201.6	(KH)	201.6	201.6	(KH)	201.6		(KH)	201.6
скоба	D12-150		D12-150	D12-150		D12-150	D12-150		D12-150
решение	ok		ok	ok		ok	ok .		ok
	4/(M/Q.d+	F1):	1.270	4/(M/Q.d+	1):	1.702	4/(M/Q.d+	F1):	1.309605
	•	•	1.304			1.267611			2.057775
							pw=	0.004233	
						D 40			

P-20

5-1 Расчет профиля ригеля 1-ый ЭТ

Ригель		1G1 2 кар	кас		lG1a 2 ка	ркас		1G2 2 кар	жас
Позиция	А конец	средн.	В конец	D конец	средн.	Е конец	конец	средн.	конец
D.L] М(тм) верх.	143.22		364.96	238.97		192.83	304.17		274.52
+] нижн.		170.2			208.39			134.95	
L.L] Q(T)	179.68		207.4	186.27		179.68	183.38		179.68
] b х D (см)	400	x	750	400	X	750	400	x	750
Размер] ho (мм)	700	700	700	700	700	700	700	700	700
z= Rb.b.ho² (x 10°)		3332			3332			3332	
арм. (верх.)=М/г	0.0430		0.1095	0.0717		0.0579	0.0913		0.0824
арм. (нижн.)		0.0511			0.0625			0.0405	
$\alpha_{\rm r} = 0.395$	>	>	>	>	>	>	>	>	>
Bepx. Mus=Rsc.A's.(ho-a')=	270.5		450.8	270.5		270.5	270.5		270.5
Нижн. Mus=Rsc.A's.(ho-a')=	:	270.5			270.5			270.5	
Bepx. Mu=Rs.As(ho-0.5xho	= 278.5	> M ok	610.3	531.6	> M ok	531.6	610.3	> Mok	610.3
Нижн. Mu=Rs.As(ho-0.5xh	o	365.7			365.7			365.7	
верх.	0.407		0.950	0.814		0.814	0.950		0.950
Pt (%) нижн.		0.543			0.543			0.543	
верх.	1140		2660	2280		2280	2660		2660
площ. (мм2) нижн.		1520			1520			1520	
осн. верх.	3	3	7	6	3	6	7	3	7
стержни D19									
нижн.	3	4	5	3	4	3	3	4	3
Qbмин=yb3.Rbt.b.ho=	201.6	(KH)	201.6	201.6	(KH)	201.6	201.6	(KH)	201.6
• •	D10-150	D10-150	D10-150	D10-150	D10-150	D10-150	D10-150	D10-150	D10-150
решение	ok		ok	ok		ok	ok		ok
	•			1.75214		2	1.504502		2

со стеной

Ригель		1G3	1G4		1G5 D-ка	ркас		1G6 D-ка	ркас
Позиция	конец	средн.	конец	1 конец	средн.	2 конец	2 конец	средн.	3 конец
D.L] М(тм) верх.	192.78		192.78	186.84		407.42	362.18		354.25
+] нижн.		130.31			307.32			246.24	
L.L] Q(T)	125.7		125.66	226.58		258.09	226.58		226.58
]bxD(cm)	400	x	750	400	x	750	400	x	750
Размер] ho (мм)	700	700	700	700	700	700	700	700	700
z= Rb.b.ho² (x 10°)		3332			3332			3332	
арм. (верх.)=М/г	0.0579		0.0579	0.0561		0.1223	0.1087		0.1063
арм. (нижн.)		0.0391			0.0922			0.0739	
$\alpha_r = 0.395$	>	>	>	>	>	>	>	>	>
Bepx. Mus=Rsc.A's.(ho-a')=	270.5		270.5	270.5		270.5	270.5		270.5
Нижн. Mus=Rsc.A's.(ho-a')=	•	270.5			270.5			270.5	
Bepx. Mu=Rs.As(ho-0.5xho)=	278.5	> Mok	278.5	365.7	> M ok	610.3	531.6	> Mok	531.6
Нижн. Mu=Rs.As(ho-0.5xho		278.5			450.1			365.7	
верх.	0.407		0.407	0.543		0.950	0.814		0.814
Pt (%) нижн.		0.407			0.679			0.543	
верх.	1140		1140	1520		2660	2280		2280
площ. (мм2) нижн.		1140			1900			1520	
осн. верх.	3	3	3	4	3	7	6	3	6
стержни D22									
нижн.	3	3	3	3	5	3	3	4	
Qbмин=yb3.Rbt.b.ho=	201.6	(KH)	201.6	201.6	(KH)	201.6		(KH)	201.6
скоба	D10-150	D10-150	D10-150	D12-150	D12-150	D12-150	D12-150	D12-150	D12-150
решение	ok		ok	ok		ok			ok
4/(m/Q.d+1)	1.253279		1.253279			1.228827			1.237041

Расчет	профиля	ригеля

Ригель		1G5w B-1	каркас		1G6w В-кар	Kac		1G7 5-ка	ркас
Позиция	1 конец	средн.	2 конец	2 конец	средн.	3 конец	А конец	средн.	В конец
D.L] М(тм) верх.	231.80		430.15	413.0		413.0	116.66		343.70
+] нижн.		449.65			351.07			245.57	
L.L] Q(T)	314.66		339.45	281.0		281.0	195.6	195.6	
] b х D (см)	450	X	750	450	x	750	400	x	750
Размер] ho (мм)	700	700	700	700	700	700	700	700	700
z= Rb.b.ho² (x 10°)		3748.5			3748.5			3748.5	
арм. (верх.)=М/г	0.0618		0.1148	0.1102		0.1102	0.0311		0.0917
арм. (нижн.)		0.1200			0.0937			0.0655	
$\alpha_r = 0.395$	>	>	>	>	>	>	>	>	>
Bepx. Mus=Rsc.A's.(ho-a')=	360.6		450.8	450.8		450.8	270.5		270.5
Нижн. Mus=Rsc.A's.(ho-a')=		270.5			270.5			270.5	
Bepx. Mu=Rs.As(ho-0.5xho)=	368.2	> Mok	618.0	618.0	> M ok	618.0	278.5	>M ok	531.6
Нижн. Mu=Rs.As(ho-0.5xho		537.3			537.3			450.1	
верх.	0.483		0.844	0.844		0.844	0.407		0.814
Pt (%) нижн.		0.724			0.724			0.679	
верх.	1520		2660	2660		2660	1140		2280
площ. (мм2) нижн.		2280			2280			1900	
осн. верх.	4	3	7	7	3	7	3	3	6
D22		D25			D25				
нижн.	4	6	5	5	6	5	3	5	3
Qbмин=yb3.Rbt.b.ho=	226.8	(KH)	226.8	226.8	(KH)	226.8	201.6	(KH)	201.6
Rws.Aws			58	58					
Qbмин.a	442.0	> Qok	322.8	292.7	> Qok	292.7	435.4	> Qok	255.7
скоба	D12-100	D12-150	D12-100	D12-100	D12-150	D12-100	D10-150	D10-150	D10-150
a=4/(M/Q.d+1) макс. =	1.949		1.423	1.290		1.290	2.160		1.269

Ригель		1G8 5-ка	ркас		1G9 В-ка	ркас		1G10 В-к	аркас
Позиция	В конец	средн.	С конец	5 конец	средн.	6 конец	б конец	средн.	7 конец
D.L] М(тм) верх.	315.87		319.40	621.76		640.81	644.2		427.1
+] нижн.		158.12			468.57	,		596.85	
L.L] Q(r)	195.60		195.60	357.60		357.60	384.7		357.6
] b x D (см)	400	х	750	450	x	800	450	X	800
Размер] ho (мм)	700	700	700	750	750	750	750	750	750
$z = Rb.b.ho^{2} (x 10^{6})$		3332			3332	:		3332	
арм. (верх.)=М/г	0.0948		0.0959	0.1866		0.1923	0.1933	*****	0.1282
арм. (нижн.)		0.0475			0.1406			0.1791	
$\alpha_r = 0.395$	>	>	>	>	>	>	>	>	>
Bepx. Mus=Rsc.A's.(ho-a')=	270.465		270.465	450.775		540.93	450.775		360.62
Нижн. Mus=Rsc.A's.(ho-a')=	•	270.465			270.465			360.62	
Bepx. Mu=Rs.As(ho-0.5xho)=	531.6	> M ok	531.6	666.6	> Mok	834.4	666.6	> Mok	396.0
Нижн. Mu=Rs.As(ho-0.5xho		365.7			488.7			666.6	
верх.	0.814		0.814	0.788		1.013	0.788		0.450
Pt (%) нижн.		0.543			0.563			0.788	
верх.	2280		2280	2660		3420	2660		1520
площ. (мм2) нижн.		1520			1900			2660	
осн. верх.	6	3	6	7	3	9	7	4	4
D22					D25			D25	
нижн.	3	4	3	5	5	6	5	7	4
Оьмин=уb3.Rbt.b.ho=	201.6	(KH)	201.6	243	(KH)	243	243	(KH)	243
a = 4/(M/O+1)	1.210		1.200	1.205		1.180	1.237		1.543
а.Qbмин=	243.8		242.0	292.9		286.8	300.7		374.9
D12 -150 : Rs.Asw	65.54		65.54	65.54	ok	65.54	65.54		65.54
общая Ог мощность		>O ok	307.5		>O ok	352.3	366.2	>Q ok	440.5
		D12-150		D12-100	D12-150	D12-100	D12-100	D12-150	D12-150

Ригель		1G7 5-кај	окас
Поэнция	D конец	средн.	Е конец
D.L] М(тм) верх.	373.81		143.38
+] нижн.		217.16	
LL] Q(T)	228.5	195.6	195.6
] b x D (cm)	400	x	750
Размер] ho (мм)	700	700	700
$z = Rb.b.ho^{2}(x 10^{6})$		3332	
арм. (верх.)=М/г	0.1122		0.0430
арм. (нижн.)		0.0652	
$\alpha_r = 0.395$	>	>	>
Bepx. Mus=Rsc.A's.(ho-a')=	270.465		270.465
Нижн. Mus=Rsc.A's.(ho-a')=		360.62	
Bepx. Mu=Rs.As(ho-0.5xho)=	686.2	> M ok	365.7
Нижн. Mu=Rs.As(ho-0.5xho		450.1	
верх.	1.086		0.543
Pt (%) нижн.		0.679	
верх.	3040		1520
площ. (мм2) нижн.		1900	
осн. верх.	8	4	4
D22			
нижн.	3	5	3
Qbмин=yb3.Rbt.b.ho=	201.6	(KH)	201.6
скоба	D12-150		D12-150
решение	ok	····	ok

Ригель с оборудование	м 7.2 КН/м	12		D22 n/z.	380	Rb(MIIa)=	· 17	lbt(MIIa)=	1.2
			1 этаж	D25 nur.	491	Rs(MIIa)=		Rsw(МПа	
Ригель		1G8м, 5	-каркас 8м		1G9w, (С-каркас 8м			-каркас 8м
Позиция	В конец (КІ	дсредн.	С конец	4 конец(КН	средн.	5 конец	4 конец(КН		5 конец
D.L] M sepx.	493.712		493.712	789.43		789.43	699.268		699.268
+] Минжи.	ŀ	266.2	1		615.0	2		561.68	i
L.L]									
Итого Q(КН)	222.0		222.0	478.0		478.0	402		402
] b.h (xm)	400	х	750	500	x	800	500	x	800
Размер] ho(мм	700	70	0 700	750	75	0 750	750	750	750
z= Rb.b.ho ² (x 10 ⁶)		333	2		4781.2	5		4781.25	
арм. (верх.)=:М/z	0.1482	,	0.1482	0.1651		0.1651	0.1463		0.1463
арм. (нижн.)		0.0799)		0.1286	i		0.1175	
$\alpha_r = 0.395$	>	>	>	>	>	>	>	>	>
Bepx. Mus=Rsc.A's.(ho-a')=	360.62		360.62	465.959		465.959	582,4488		582.4488
Нижн. Mus=Rsc.A's.(ho-a')=	•	360.62	2		465.95	9		349.4693	
Bepx. Mu=Rs.As(ho-0.5xho)=	610.3	> M ok	610.3	954.4	> M ok	954.4	848.3	> M ok	848,3
Нижн. Mu=Rs.As(ho-0.5xho		365.7	,	İ	738.5	i		624.8	
верх.	0.950		0.950	1.047		1.047	0.917	_	0.917
Pt (%) нижн.		0.543			0.786	ı		0.655	
верх.	2660		2660	3928		3928	3437		3437
площ. (мм2) нижн.		1520)]	2940	5		2455	
осн. верх.	7	4	1 7	8		4 8	7	3	7
стержни D22		D22			D25			D25	
нижн.	4	4	1 4	4		5 4			
Qbмин=yb3.Rbt.b.ho=	201.6	(KH)	201.6	270	(KH)	270	270	(KH)	270
a=4/(M/Q,d+1) макс. = 2	1.241		1.241	1,249		1.249	1.205		1.460
a.Qbмин	250.1		250.1	337.3		337.3	325.4		394.2
D12 -150 : fs.Asw	65.54		65.54	151.96	_	151.96			65.54
	D12-150	D12-150	D12-150	III D14-100	D12-150	□ D14-100	D12-100	D12-150	D12-150
рещение	ok		ok	ok		ok	ok		ok

3 - 2 Расчет профиля колонны

Колонна			20	1 С-карк	ac-2		1C1		
	Направление		X	Y	,	X		Y	
	Позиция	T	В	T	В	T	В	T	В
	N (KH)	603.5	7 603.57	603.57	603.56	1431.79	1431.79	1431.69	1431.79
LT	M(KH.m)	55.9	2 25.71	6.01	0	15.64	8.56	2.23	1.11
	Q(KH)		9.07		1.5		4.48		0.62
Размер	hхh(мм)	60	0 600	600	600	600	600	600	600
	lo (мм) высота кол	825	0 8250	3250	3250	4650	4650	4650	4650
	eo=M/Nn (мм)	92.65	42.60	9.96	0.00	10.92	5.98	1.56	0.78
	δe=(M/N)/h	0.13	5 0.07	0.02	0.00	0.02	0.01	0.00	0.00
δе, ми	н=0.5-0.01lo/h-0.01Rb	ļ	0.193		0.193		0.253		0.253
	M1I/M=Ni/N=	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	lo/h=		13.8		5.4		7.8		7.8
β=1	ψ 1=1+ β M1i/M=	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
ľ	Nor=	785	l 7851	50593	50593	21391	21391	21391	21391
	$\eta = 1/(1 - N/Ncr)$	1.083	3 1.083	1.012	1.012	1.072	1.072	1.072	1.072
	Rb.Ab (KH)=		#######		#######]	#######		#######
			>N ok		>N ok		>N ok		>N ok
	Общая пл. (мм2)		3048			1	3048		
	Мин.общий Аз %		0.85				0.85		
	Осн. арматура		4	Y			4		*
	устройство	D18	4	4 Y	X - X	D18, As=	0 0 0	4	x - x
	устронство		4	•		D10,72	د ت ت ت ت ت ∆		
	ψb3=0.6		(KH)		(KH)		(KH)		(KH)
Орчи			237.6		237.6		237.6		237.6
`	решение ok				ok	1	ok		ok
	Pw (%)		0.174			0.174			
	кольцо		D10 - @150				D10 - @150		

<u> </u>	Колонна		BIC1			Rb=	17	MΠа
	Направление	X		Y		Rbt=	1.2	МПа
	Позиция	T	В	T	В	Rs=Rsc=	365	МПа
	N (KH)	2485.49	2485.49	2485.49	2485.49	D22, As=	380	мм2
LT	M(KH.m)	21.61	85.1	8.49	2 6.1	D25, As=	491	мм2
	Q(KH)		15.2		4.94	D18, As=	254	мм2
Разме	hхh(мм)	800	800	800	800	Eb=	32,500	MΠa
	lo (мм) Высота кол.	6250	6250	6250	6250			
	eo=M/Nn (MM)	8.69	34.24	3.42	10.50	D10, As=	78.5	мм2
	δe=(M/N)/h	0.01	0.04	0.00	0.01	D12, As=	113.1	мм2
δе,ми	н=0.5-0.01lo/h-0.01Rb		0.252		0.252			
	M1l/M=Ni/N=	1.0	1.0	1.0				$(0.1+\delta e)+0.1]$
ļ	lo/h≕		7.8		7.8	Ψ	/1(lo/h)*	
β =1	ψ1=1+βM1i/M=	2.0	2.0	2.0	2.0			
	Ner=	37473	37473	37473	37473			
	$\eta = 1/(1-N/Ncr)$	1.071	1.071	1.071	1.071			
	Rb.Ab (KH)=	ļ	10588.7		10588.7			
		2	>N ok		>N ok			
	Общая пл. (мм2)		4560					
	Мин. общая пл. %		0.71					
	Осн. арматура		4					
				4	X-X			
•	устройство	D22	••••					
			4	мин 0.8%	x80x80			
	ψb3=0.6		(KH)		(KH)			
Qbми	и=ψb3.Rbt.b.ho=		432		432			
	решение	C	ok.		ok			
	Pw (%)		0.189					
	кольцо	LI	D12 - @15	0				

	Колонна		2C	2 В-карг	cac-4		1C2		
	Направление	X		Y		X		Y	
	Позиция	Т	В	T	В	T	В	T	В
	N (KH)		1113.94		1113.94		2559.63		2559.63
LT	M(KH.m)	55.29	4.78	68.75	6.74	16.56	50.6	16.99	8.23
	Q(T)		15.02		18.87		12.44		4.67
Разме	hхh(мм)	600	600	600	600	600	600	600	600
	lo (мм) Высота кол.	3250	3250	3250	3250	4650	4650	4650	4650
	eo=M/Nn (MM)	49.63	4.29	61.72	6.05	6.47	19.77	6.64	3.22
	δe=(M/N)/h	0.08	0.01	0.10	0.01	0.01	0.03	0.01	0.01
δе, ми	н=0.5-0.01lo/h-0.01Rb	<u> </u>	0.276		0.276		0.253		0.253
	MII/M=Ni/N=	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	lo/h=	1	5.4		5.4		7.8		7.8
β=1	ψ1=1+βM1i/M=	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
	Ner=	41731	41731	41731	41731	21391	21391	21391	21391
	$\eta = 1/(1-N/Ncr)$	1.027	1.027	1.027	1.027	1.136	1.136	1.136	1.136
	Rb.Ab (KH)=		5910.4		5910.4		5888.3		5888.3
		>	>N ok		>N ok		>N ok		>N ok
	Общая пл. (мм2)		3048				3048		
	Мин. общая пл. %		0.85				0.85		
	Осн. арматура		4	Y			4		
		4		4	X - X	4		4	X - X
	устройство			Y					
		D18	4			D18	4		
	ψb3=0.6		(KH)		(KH)		(KH)		(KH)
Qbмин=ψb3.Rbt.b.ho= 237.6				237.6				237.6	
	решение ок				ok		ok		ok
	Pw (%)		0.174			0.174			
	кольцо	<u> </u>	D10 - @15	50	ok		D10 - @1:	50	ok

	Колонна	T	B1C2			Rb=	
	Направление	X		Y	•	Rbt=	
	Позиция	T	В	T	В	Rs=Rsc=	
	N (KH)		3735.3		3735.3	D18, As=	
LT	M(KH.m)	15.25	35.1	20.79		D22, As=	
i	Q(KH)		7.19		20.13	D25, As=	
Разме	hxh(MM)	800	800	800	800	Eb≖	32
	lo (MM)	6250	6250	6250	6250	1	
	eo=M/N (mm)	4.08	9.40		35.79	1	
	δe=(M/N)/h	0.01	0.01			1	
de, ми	н=0.5-0.01lo/h-0.01Rb		0.252		0.252		
	M11/M=Ni/N=	1.0	1.0	1.0	1.0	1	
	lo/h=	7.8	7.8	7.8	7.8	[
β=1	ψl=1+βM1i/M=	2.0	2.0	2.0	2.0		
ľ	Ncr=	37473	37473	37473	37473	Ncr=0.533	Eb.A
1	$\eta = 1/(1-N/Ncr)$	1.111	1.111	1.111	1.111	ļ	ψl(l
	Rb.Ab (KH)=	10577.9	10577.9	10577.9	10577.9		
		ĺ	>N ok		>N ok		
	Общая пл. (мм2)		4560				
ĺ	Общая пл. %		0.71				
	Осн. арматура		4				
	• •	4	2000	4	X - X		
1	устройство	D22	8000				
	•		4	мин 0.8%	x80x80		
	ψb3=0.6		(KH)		(KH)		
Qbми	н=yb3.Rbt.b.ho=	Ì	432		432		
_	решение		ok		ok		
	Pw (%)						
	кольцо		D12 - @15	50	ok		

17 M∏a 17 МПа 1.2 МПа 365 МПа 254 мм2 380 мм2 491 мм2 32,500 МПа

 $A[0.11/(0.1+\delta e)+0.1]$

	Колонна		2C	3 В-карі	cac 5		1C3		
	Направление	X		Y	·	X		Y	
	кирисоП	T	В	T	В	T	В	T	В
	N(T)		347.72		347.72	i	1115.67		1115.67
LT	М(тм)	125.9	47.56	12.4	18.44	11.61	7.13	14.2	7.9
	Q(r)		43.4		7.71		3.47		4.09
Разме	hхh(мм)	600	600	600			600	600	600
	ю (мм) Высота кол.	3250	3250	3250		4650	4650	4650	4650
Г	eo=M/Nn (MM)	362.07	136.78	35.66	53.03	10.41	6.39	12.73	7.08
	δe=(M/N)/h	0.60	0.23	0.06	0.09	0.02	0.01	0.02	0.01
de,ми	н=0.5-0.01lo/h-0.01Rb		0.276		0.276	l	0.253		0.253
	M11/M=Ni/N=	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	lo/h=		5.4		5.4		7.8		7.8
β=1	$\psi 1 = 1 + \beta M 1 i / M =$	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
ľ	Ncr=	27245	41731	41731	41731	21391	21391	21391	21391
	$\eta = 1/(1-N/Ncr)$	1.013	1.008	1.008	1.008	1.055	1.055	1.055	1.055
	Rb.Ab (KH)=	5913.4	5914.3		5914.3		5904.8		5904.8
			N ok		>N ok		>N ok		>N ok
	Общая пл. (мм2)	ľ	3048				3048		
	Общая пл. %		0.85				0.85		
	Осн. арматура	i .	4	Y			4		
	D22	4	0 0	4	X - X	4		4	X - X
	устройство		0 # # 0	Y					
		D18	4			D18	4		
	ψb3=0.6		(KH)		(KH)	ı	(KH)		(KH)
Qbмı	ин=yb3.Rbt.b.ho=		237.6		237.6	}	237.6		237.6
	решение	c	k		ok	ok		ok	
	Pw (%)		0.174				0.174		
	колено	I	D10 - 150		ok		D10 - 150		ok

	Колонна]	B1C3			Rb=	17	МПа
	Направление	X		Y		Rbt=	1.2	МПа
	ПоэщинеоП	T	В	T	В	Rs=Rsc=	365	МПа
	N(t)		2472.35		2472.35	D18, As=	254	мм2
LT	М(тм)	5.69	11.6	19.93	133.7	D22, As=		мм2
	Q(T)		2.47		21.95	D25, As=	491	мм2
Разме	hхh(мм)	800	800	800	800	Eb=	32,500	MΠa
	lo (мм) Высога кол.	6250	6250	6250	6250]		
	eo=M/Nn (MM)	2.30	4.69	8.06	54.08			
	δe=(M/N)/h	0.00	0.01	0.01	0.07			
de,ми	H=0.5-0.01lo/h-0.01Rb		0.252		0.252	1		
	M1l/M=Ni/N=	1.0	1.0	1.0	1.0	Ì		
	lo/h=	i	7.8		7.8			
β=1	$\psi 1=1+\beta M1i/M=$	2.0	2.0	2.0	2.0			
1	Ncr=	37473	37473	37473	37473	Ncr=0.533	Eb.A[0.11	$/(0.1+\delta e)+0.1]$
	$\eta = 1/(1 - N/Ncr)$	1.071	1.071	1.071	1.071	7	ψ1(lo/h) ²	
	Rb.Ab (KH)=	İ	10588.8		10588.8			
ļ		;	N ok		>N ok			
	Общая пл. (мм2)		4560					
	Общая пл. %		0.71					
	Осн. арматура		4					
		4	8 4 4 5	4	X-X			
	устройство		\$000					
		D22	4	мин 0.8%	x80x80			
	ψb3=0.6		(KH)		(KH)			
Qbм	и=yb3.Rbt.b.ho=		432		432			
	решение		k		ok			
	Pw (%)		0.189					
	кольцо	Ι	D12 - 150		ok			

	Колонна		1C4	В-каркас	6		B1C4		
	Направление	X		Y		X		Y	
	Позиция	T	В	T	В	T	В	T	В
	Ν(τ)		601.72		601.72		3193.52		3193.52
LT	М(тм)	26.26	19.06	14.2	7.9	15.21	50.9	19.93	133.7
	Q(T)		8.39		4.09		9,44		21.95
Разме	hxh(мм)	600	600	600	600		800	800	800
	lo (мм) Высота кол.	4650	4650	4650	4650		4450	4450	4450
	eo=M/Nn (MM)	43.64	31.68	23.60	13.13	4.76	15.94	6.24	41.87
	δe=(M/N)/h	0.07	0.05	0.04	0.02	0.01	0.02	0.01	0.05
de, ми	н=0.5-0.011o/h-0.01Rb		0.253		0.253		0.274		0.274
	M1I/M=Ni/N=	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	lo/h=		7.8		7.8		5.6		5.6
β=1	ψ1=1+βM1i/M=	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
	Ncr=	21391	21391	21391	21391	70554	70554	70554	70554
1	$\eta = 1/(1-N/Ncr)$	1.029	1.029	1.029	1.029	1.047	1.047	1.047	1.047
1	Rb.Ab (KH)=	ļ	5910.1		5910.1		10595.1		10595.1
		;	>N ok		>N ok		>N ok		>N ok
	Общая пл. (мм2)		3048				4560		
	Мин. общая пл. %		0.85				0.71		
	Осн. арматура	ĺ	4				4		
	D22	4	0 0 0	4	X - X	4		4	X - X
	устройство						1000		
		D18	4			D22	4		
	ψb3=0.6		(KH)		(KH)		(KH)		(KH)
Qbмі	ин=yb3.Rbt.b.ho=		237.6		237.6		432		432
	решение		ok		ok		ok		ok
	Pw (%)		0.174			0.189			
L	кольцо	<u> </u>	D10 - 150		ok		D12 - 150		ok

	Колонна		1C5 В-ю	аркас 7]	B1C5		
	Направление	X		Y		X			
	Позиция	T	В	T	В	T	В	T	В
	N (T)		359.6		359.6		2001.35		2001.35
LT	М(тм)	174.58	244.08	14.2	7.9	86.79	619.6	19.93	133.7
	Q(r)	1	77.53		4.09		318.376	with wall 🛨	21.95
Разме	hхh(мм)	600	600	600	600	800	800	800	800
	lo (мм) Высота кол.	4650	4650	4650	4650	6250	6250	6250	6250
	eo≃M/N (мм)	485.48	678.75	39.49	21.97	43.37	309.59	9.96	66.80
$\overline{}$	δe=(M/N)/h	0.81	1.13	0.07	0.04	0.05	0.39	0.01	0.08
de,ми	н=0.5-0.011o/h-0.01Rb		0.253		0.253		0.252	l	0.252
	M11/M=Ni/N=	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1	lo/h=		7.8	•	7.8		7.8		7.8
β=1	ψ 1=1+ β M1 i /M=	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
	Ncr=	9829	9829	21391	21391	37473	29596	37473	37473
	$\eta=1/(1-N/Ncr)$	1.038	1.038	1.017	1.017	1.056	1.073	1.056	1.056
	Rb.Ab (KH)=		5908.3		5912.5		10588.3		10592.7
		>	>N ok		>N ok		>N ok		>N ok
	Общая пл. (мм2)		3048				5320		
	Мин. общая пл. %		0.85				0.83		
	Осн. арматура		4				4		ı Drwg.
	D22			4	X - X	7	7		X - X
Į.	устройство	l l	• • • •			нижн.	i	8 6	
		D18	4			D22	4	эрх. 12 D2	2
	ψb3=0.6		(KH)		(KH)		(KH)		(KH)
Qbми	н=yb3.Rbt.b.ho=		237.6		237.6		432		432
	рещение		ok		ok		ok		ok
	Pw (%)		0.174				0.189		
	кольцо	Ι	D10 - 150		ok		D12 - 100		ok

	Колонна		1C6	С-каркас	6		B1C6		
	Направление	X		Y		X		Y	
	Позиция	T	В	T	В	T	В	T	В
	N (T)		601.72		601.72		2105.72		2105.72
LT	M(tm)	26.26	14.17	5.64	6.98	35.75	133.7	17.62	20.2
	Q(T)	1	7.49		2.33	ļ	24.21		5.4
Разме	hхh (мм)	600	600	600	600	800	800	800	800
	lo (мм) Высота кол.	4650	4650	4650	4650	6250	6250	6250	6250
	eo=M/Nn (mm)	43.64	23.55	9.37	11.60	16.98	63.49	8.37	9.59
	δe=(M/N)/h	0.07	0.04	0.02	0.02	0.02	0.08	0.01	0.01
de,ми	H=0.5-0.01lo/h-0.01Rb		0.253		0.253		0.252		0.252
	M1I/M=Ni/N=	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	lo/h=		7.8		7.8		7.8		7.8
β=1	ψ1=1+βM1i/M=	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
ľ	Nor=	38250	21391	21391	21391	37473	37473	37473	37473
	$\eta = 1/(1-N/Ncr)$	1.016	1.029	1.029	1.029	1.060	1.060	1.060	1.060
	Rb.Ab (KH)=		5910.1		5910.1		10591.8		10591.8
ļ		;	>N ok	;	>N ok	;	>N ok		>N ok
	Общая пл. (мм2)		3048				4560		
	Мин. общая пл. %		0.85				0.71		
	Осн. арматура		4				4		
		4	0 0 0 0	4	X - X	4	0000	4	X-X
	устройство	i					8000		
		D18	4			D22	4		
	ψb3=0.6		(KH)		(KH)		(KH)		(KH)
Qbми	н=yb3.Rbt.b.ho=		237.6		237.6		432		432
<u> </u>	решение	(ok		ok	•	ok		ok
	Pw (%)		0.174				0.189		
	кольцо]]	D10 - 150	(ok –]	D12 - 150		ok

	Колонна		B1C6			Ссылка	1			
	Направление	X		Y	,	1				
	Позиция	T	В	T	В	Согласно	стандарт	у Япон	ии	
	N (t)		2105.72		2105.72	1				
LT	М(тм)	35.75	133.7	17.62	20.2	N < N1=	0.4bD.Fc	6912	KH	I
	Q(T)		24.21		5.4					
Размо	hхh(мм)	800	800	800	800] Mu=0.8a	t. o y.D + 0.	.5N.D [1-N/(b.)	D.Fc)]
	lo (мм) Высота кол	6250	6250	6250	6250]. =	1080,13	КН.м		
	eo≂M/Nn (мм)	16.98	63.49	8.37	9.59					
	δe=(M/N)/h	0.02	0.08	0.01	0.01		No's Bar=	•	4D2	22
de, ми	n=0.5-0.01lo/h-0.01Rb		0.252		0.252		N=	2105	5.72 кн	
	M1I/M=Ni/N=	1.0	1.0	1.0	1.0]				
ĺ	lo/h=		7.8		7.8	Rb=	17	ΜΠa		
β=1	$\psi 1=1+\beta M1i/M=$	2.0	2.0	2.0	2.0	Rbt=	1.2	МПа		
1	Ner=	37473	37473	37473	37473	Rs=Rsc=	365	МΠа		
1 .	$\eta = 1/(1-N/Ncr)$	1.060	1.060	1.060	1.060	D22, As=	380	мм2		
	Rb.Ab (KH)=	ł	10591.8		10591.8	D25, As=	491	мм2		
		<u> </u>	>N ok		>N ok					
	Общая пл. (мм2)		4560			Eb=	32,500	МПа		
	Мин. общая пл. %		0.71							
	Осн. арматура		4							
1		4		4	X - X					
1	устройство		3000							
L		D22	4							
	ψb3=0,6	i	(KH)		(KH)					
Qbми	и=yb3.Rbt.b.ho=		432		432					
[решение		ok		ok					
	Pw (%)		0.189							
	кольцо	I	D12 - 150		ok					

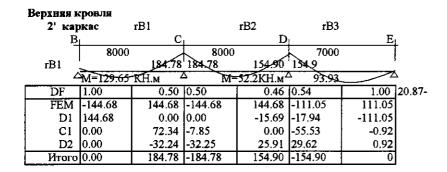
	Колонна		2C				1C7		
	Направление	X		Y		X		Y	
	позиция	T	В	T	В	T	В	T	В
	N (t)		298.21		298.21	,	1310.19		1310.19
LT	М(тм)	55.92	25.71	41.84	47.2	15.64	8.56	73.4	17.48
	Q(τ)		20.41		22.26		6.05		22.72
Размер	h x h (мм)	600	600	600	600		600	600	600
	lo (мм) Высота кол.	3250	3250	3250			4650		
	eo=M/Nn (MM)	187.52	86.21	140.30	158.28	11.94	6.53	56.02	13.34
	δe=(M/N)/h	0.31	0.14	0.23	0.26	0.02	0.01	0.09	0.02
de, ми	H=0.5-0.01lo/h-0.01Rb		0.276		0.276		0.253		0.253
1	M1l/M=Ni/N=	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	lo/h=		5.4		5.4	ļ	7.8		7.8
	ψ1=1+βM1i/M=	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
	Ncr=	38964	41731	41731	41731	21391	21391	21391	21391
	$\eta=1/(1-N/Ncr)$	1.008	1.007	1.007	1.007	1.065	1.065	1.065	1.065
	Rb.Ab (KH)=	5914.4	5914.5		5914.5		5902.7		5902.7
			>N ok		>N ok		>N ok		>N ok
	Общая пл. (мм2)	ł	3048				3048		
	Мин. общая пл. %		0.85			İ	0.85		
	Осн. арматура		4	Y	•		4		•
	D22	4 [0 00	4	X - X	4	0 0	4	X - X
	устройство			Y			0 0 0		
		D19	4			D19	4		į
	ψb3=0.6		(KH)		(KH)		(KH)		(KH)
Qbми	н=yb3.Rbt.b.ho=		237.6		237.6		237.6		237.6
	решение		ok.		ok		ok		ok
	Pw (%)		0.174				0.174		
	кольцо	I	010 - 150		ok		D10 - 150		ok

						ı		
	Колонна		B1C7			Rb=		МПа
	Направление	X		Ÿ		Rbt=		МПа
	Позиция	T	В	T	В	Rs=Rsc=	365	МПа
]	Ν(τ)		2904.46		2904.46	D22, As=	380	мм2
LT	М(тм)	21.61	85.1	175.35	508.9	D25, As=	491	мм2
	Q(T)		15.24		97.75			
Разме	hxh(мм)	800	800	800	800	Eb=	32,500	МПа
	lo (мм) Высота кол.	6250	6250	6250	6250			
	eo=M/Nn (MM)	7.44	29.30	60,37	175.21			
	δe=(M/N)/h	0.01	0.04	80.0	0.22			
de, ми	n=0.5-0.011o/h-0.01Rb		0.252		0.252			
	M11/M=Ni/N=	1.0	1.0	1.0	1.0			
	lo/h=		7.8		7.8			
β=1	ψ 1=1+ β M1i/M=	2.0	2.0	2.0	2.0			
	Ncr=	37473	37473	37473	37473			
	$\eta = 1/(1-N/Ncr)$	1.084	1.084	1.084	1.084			
	Rb.Ab (KH)=		10585.1		#######			
		>	Nok		>N ok			
	Общая пл. (мм2)		4560					
	Мин. общая пл. %		0.71			Ner=0.533]	Eb.A[0.11	/(0.1+δe)+0.1]
	Осн. арматура		4				ψ1(lo/h) ²	
	D22	4 [4	x-x		Ψ 1(10,11)	
	устройство	· .		7	11 - 11			
	устронство	D25	<u> </u>					
	ψb3=0.6	D23	(KH)		(KH)			
Оһми	₩=уb3.Rbt.b.ho=		432		432			
-	решение	. 0	k		ok 432			
	Pw (%)		0.189					
,	кольцо	Γ	12 - 150		ok			

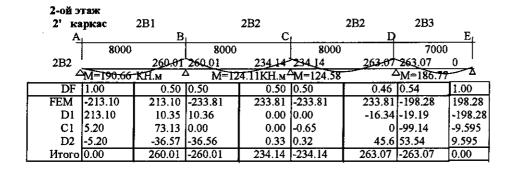
4. Подбалка и плита

4-1. Подбалка Со, Мо, Q

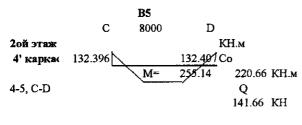
	Ter						1	·
Зерх.кровл	Нагрузка и		нагр. плиті	j)(нагр. плиті \		агр. ригели Р=35КН	Σ
5.		w	Со	w	Со	w/1	Co	
rB1	Co	0.00	0.00	17.00	111.18	5.63	33.50	144.68
rB2 bxD 30x7	N/a	0.00	Mo	w 2000	Mo	w/1	Mo	222.04
охы зох / 7х8м	Mo_		0.00	26.00	170.04	5.63	52.00	222.04
/ XOM	Q	0.00	Q 0.00	11.00	Q 71.94	w/1 5.63	Q 26.00	97.94
	<u> </u>	0.00		плиты =		(KH/м2)	20.00	97.94
			naip.	L =		(K11/M2) (M)	lx=3.5м	λ=2.29
	нагрузка		(нагр. пли	ты) /(і	нагр. плить		іагр. ригел	
верх. кровл	R	🛆			7 -	<u></u>	P=35KH	
		w	Co	w	Co	w/1	Co	
rB3	Co	0.00	0.00	13.00	85.02	5.63	26.03	111.05
			Мо	w	Mo	w/1	Мо	
bxD 30x7	Мо	0.00	0.00	20.00	130.80	5.63	40.58	171.38
7х7м		w	Q	w	Q	w/1	Q	
	L Q	0.00	0.00	9.00	58.86	5.63	23.19	82.05
			нагрузк	а плиты =		(КН/м2) ly		
				L =	7	(M)	lx=3.5м	λ=2
		,	rB4				, 1	
		ед	иный шаг	<u> </u>	0.6C=	83.508		
				<u> </u>	Mo-0.35C=			
Кровля офис	нагрузка		(нагр. пли	IPI) (F	ыгр. плиты Х		агр.ригеля	Σ
2FL+4м			- C-		- -	- /1	<u> </u>	
rB4	l co l	0.00	Co 0.00	w 17.00	Co	w/1 5.25	Co 28.00	120 10
104		0.00	Mo	17.00 W	111.18 M o	w/1	Mo	139.18
bxD 30x7	Mo	0.00	0.00	26.00	170.04	5.25	42.00	212.04
7х8м	1,10	w	Q	w	Q	w/1	Q Q	212.04
	Q	0.00	0.00	11.00	71.94	5.25	21.00	92.94
				а плиты =		(KH/м2) ly		
			••			` , ,	lx=3.5м	λ=2.29
Кровля офис	нагрузка	\wedge	(нагр. пли	гы) / (н	агр. плить		агр. ригеля	Σ
2FL+4M		\triangle			٠			
4' каркас		w	Co	w	Co	w/1	Со	
rB5	Co	0.00	0.00	19.20	125.57	5.25	28.00	153.57
			Мо	w	Мо	w/1	Мо	
bxD 30x7	Mo	0.00	0.00	30.00	196.20	5.25	42.00	238.20
8х8м		w	Q	w	Q	w/l	Q	
	Q [0.00	0.00	12.00	78.48	5.25	21.00	99.48
			Нагрузк	а плиты =	6.54	(КН/м2) ly	8	• •
			(=2.0
7,000	нагрузка	\triangle	(нагр. плит І	ъ)н	агр. плить		агр. ригеля	Σ
7мх8м		w	Co	Co/w	Co	w/1	Co	
2B1	Co	0.00	0.00	17.00	141.78	0.53	4.58	146.36
201		w 0.00	Mo	Mo/w	Mo	w/1	Mo	170.30
bxD 30x70	Мо	0.00	0.00	26.00	216.84	0.53	6.20	223.04
офис	1410	w	Q	Q/w	Q Q	w/l	Q Q	223.07
-4110	Q	0.00	0.00	11.00	91.74	0.53	3.10	94.84
		V.VV		я плиты =		(KH/м2) ly	3.10	/T.UT
			0					λ=2.29
			3 .	-J	3	(4)		20.00


0.715

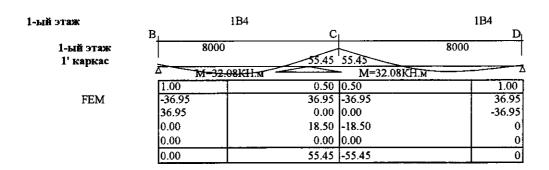
				<u> </u>	0.715			
	нагрузка		(нагр. пли	ты)	(нагр. пли		(нагр. риг	
7мх8м				L	-		кирп. стен	a
4D4	_	w	Co	Co/w	Co	w/1	Co	105 10
2B1	Co	0.00	0.00	9.00	89.37	5.25 w/1	15.75	105.12
bxD 30x70) No.	w	Mo	Mo/w	Mo		Mo	162.65
охіл зох /о склал	Mo	0.00 w	0.00	0/w	139.02 Q	5.25 w/1	23.63	102.03
склад 6м		0.00	Q 0.00	7.40	73.48	5.25	Q 16.75	90.23
UM	<u>Q</u>	0.00	 			(KH/m2) ly		90.23
				kaллиты – ly =		(M)	lx=3.5м	1=1.71
		P-26	U	ly	U	(M)	IX. J.JM	1 1.71
	нагрузка	1-20	(нагр. пли	TEI)	(нагр. пли		(нагр. риг	S
PS,DS	nai pyska	$\Delta\Delta\Delta$	(nai p. inin	i " /	\(\frac{1101}{2}\)		w=4*0.2	
1 5,05		w	Co	Co/w	Co	w/1	Co	
2B1	Co	13.80	137.03	0,00	0.00	14.27	76.08	213.11
		w	Mo	Mo/w	Mo	w/1	Мо	
bxD 30x70	Mo	20.80	206.54	0.00	0.00	14.27	114.12	320.66
		w	Q	Q/w	Q	w/1	Q	
	0	8.30	82.42	0.00	0.00	14.27	57.06	139.48
	<u> </u>	ать Склад		са плиты =		(KH/m2) ly		-
				шаг		(M)	lx=2.667м	1=2.06
						` '		
	нагрузка		(нагр. пли	ты) /	(нагр. пли	PL	(нагр. риг	S
2' каркас	1 ''	$\Delta\Delta$	` .	'Z'	7. ,		P=35 KH	
-		w	Co	Co/w	Со	w/1	Co	
2B2	Co .	0.00	0.00	17.00	168.81	5.63	65.00	233.81
		w	Мо	Mo/w	Mo	w /1	Mo	
bxD 30x75	Мо	0.00	0.00	26.00	258.18	5.63	115.00	373.18
		w	Q	Q/w	Q	w /1	Q	
	Q	0.00	0.00	11.00	109.23	5.63	40.00	149.23
			нагрузн	са плиты =		(КH/м2) ly		
				L=		(M)	lx=3.5м	l=2.29
4' каркас			Co	Co/w	Co	w/1	Co	
D-E	Со (.тм)	0.00	0.00	8.50	84.41	0.00	0.00	84.41
2B5a	 	w	Mo	Mo/w	Mo	w/1	Mo	
	Мо (.тм)	0.00	0.00	13.50	134.06	0.00	0.00	134.06
bxD 30x75		w	Q	Q/w	Q	w/1	Q	57.70
8м х 7м	Q(t)	0.00	0.00	5.70	56.60	0.00	0.00	56.60
использовать зна	чения 4-5,С-D	с жб стеной	нагрузн	са плиты =	9.93	(KH/м2) ly		-1 /
21	[, <u>.</u>	/	\		Di		=1.4 S
2' каркас D-Е	нагрузка	AA	(нагр. пли	ты) ұ	ытр. плиты	P]	агр. ригеля Р=35 КН	D
D-E	-	w	Co	Co/w	Co	w/1	Co	
2B3	Co	0.00	0.00	13.00	144.69	5.63	53.59	198.28
200		w	Mo	Mo/w	Mo	w/1	Mo	170.20
bxD 30x75	Мо	0.00	0.00	20.00	222.60	5.63	95.70	318.30
UAL JUAN	2020	w	Q	Q/w	Q Q	w/1	Q	D 10.00
7м х7м	Q	0.00	0.00	9.20	102.40	5.63	37.19	139.58
7.74 167 14		0.00		са плиты =		(КН/м2) ly		
				L=		(M)	lx=3.5м	1=2.0
4' каркас	нагрузка		(нагр. пли		агр. плитн		агр. ригел	S
C-D	15	$\triangle\!\Delta$	` '	<u> </u>	, ,			
_		w	Co	Co/w	Co	w/1	Co	
2B5	Со	0.00	0.00	19.20	190.66	5.63	30.00	220.66
ľ		w	Мо	Mo/w	Мо	w/1	Мо	
bxD 30x75	Mo	0.00	0.00	29.00	287.97	5.63	45.00	332.97
- 1			Q	Q/w	Q	w/l	Q	***
	I	w	Ų i					
8м х8м	Q	0.00	0.00	12.00	119.16	5.63	22.50	141.66
8м х8м	Q		õ.00]	-	119.16	5.63 (KH/m2) ly		141.66
8м х8м	Q		0.00 нагрузк	12.00	119.16 9.93	(KH/m2) ly	22.50 8	141.66 -2.0


	Co,Mo,Q							
1' каркас	нагрузка		(нагр. пли	ты)	нагр. плиті		агр. ригели	S
AB 2B5	Co	w 9.20	Co 91.36	Co/w 0.00	Co 0.00	w/1 6.62	Co 27.02	118.38
bxD 30x75	Мо	w 16.00	Mo 158.88	Mo/w 0.00	M o 0.00	w/1 6.62	Mo 40.54	199.42
	Q	w 6.20	Q 61.57	Q/w 0,00	Q 0.00	w/1 6.62	Q 23.16	84.73
				са плиты = lv=	9.93	(КН/м2) ly (м)		
B-C, 1-3	нагрузка	$\overline{\Lambda}$	(нагр. пли		(нагр. пли	P	(нагр. риго Р=35 КН	l=1.43 S
4 D.4		w	Co	Co/w	Co	w/l	Co	•
2B4	Со	0.00 w	0.00 Mo	0.00 Mo/w	0.00 Mo	5.63 w/1	21.05 Mo	21.0
bxD 30x75	Mo	0.00 W	0.00 Q	0.00 Q/w	0.00 Q	5.63 w/1	39.24 Q	39.24
	Q	0.00	0.00	0.00	0.00	5.63	10.34	10.34
			нагрузн	саплиты = шаг =		(КН/м2) ly (м)	: lx=3.5м	i=2.29
кровля 1 этаж+5.2	нагрузка	Δ	(нагр. пли	ты)(нагр. плить 2		агр. ригеля	,
2B6	Со	w 0.00	Co 0.00	w 19.00	Co 188.67	w/1 5.63	Co 30,00	218.67
2B7			Мо	w	Мо	w/1	Мо	
bxD 30x75 8x8м	Mo	0.00 w	0.00 Q	29.00 w	287.97 Q	5.63 w/1	45.00 Q	332.97
	Q	0.00	0.00	12.00 саплиты =	119.16	5.63 (KH/м2) ly	22.50	141.66
				L =	8	(M)	lx=4м l=	=2
кровля 1Fi+5.2	нагрузка		(нагр. плит	гы)	(нагр. пли 2		(нагр. риг	S
2B8	Со	0.00	Co 0.00	w 15.00	Co 148.95	w/1 5.63	Co 30.00	178.95
bxD 30x75	Mo	0.00	Мо	w	Мо	w/1	Mo	
	1710		0.00.1	24 DO 1	23X 32 I	5.63		283.32
8х8м		w	0.00 Q	24.00 w	238.32 Q	5.63 w/1	45.00 Q	
охом	Q		Q 0.00		Q 109.23 9.93	w/1 5.63 (KH/w2) ly	45.00 Q 22.50	
		w	Q 0.00 нагрузк	w 11.00	Q 109.23 9.93	w/1 5.63 (KH/m2) ly	45.00 Q 22.50	
подбалка :	1 этажа	w 0.00	Q 0.00 нагрузк	w 11.00 та плиты = L =	Q 109.23 9.93	w/1 5.63 (KH/w2) ly	45.00 Q 22.50	131.73
подбалка мониторині 3-4,А-В	1 этажа нагрузка	0.00	Q 0.00 нагрузк (нагр. плит	w 11.00 га плиты = L =	Q 109.23 9.93 8 нагр. плить	W/1 5.63 (KH/w2) ly (M) P W/1	45.00 Q 22.50 8 lx=3m l= (нагр. риги пол	131.73 =2.67 S
подбалка пониторин 3-4,А-В 1В1	1 этажа нагрузка Со	w 0.00	Q 0.00 нагрузк (нагр. плит Со 0.00 Мо	w 11.00 на плиты = L = Tы) (г	Q 109.23 9.93 8 нагр. плить Со 189.21 Мо	W/1 5.63 (KH/w2) ly (M) P W/1 5.63 W/1	45.00 Q 22.50 8 lx=3м l= (нагр. ригипол Со 30.00 Мо	131.73 =2.67 \$ 219.21
подбалка мониторин 3-4,А-В 1В1	1 этажа нагрузка Со Мо	w 0.00	Q 0.00 нагрузк (нагр. плит Со 0.00 Мо 0.00 Q	w 11.00 да плиты = L = Tы) (г w 17.00 w 26.00 w	Q 109.23 9.93 8 нагр. плить Со 189.21 Мо 289.38	W/1 5.63 (KH/w2) ly (M) P W/1 5.63 W/1 5.63 W/1	45.00 Q 22.50 8 lx=3м l= (нагр. ригонол Со 30.00 Мо 45.00 Q	131.73 =2.67 S 219.21 334.38
подбалка мониторин 3-4,А-В 1В1 bxD 30x75	1 этажа нагрузка Со	w 0.00	Q 0.00 нагрузк (нагр. плит Со 0.00 Мо 0.00 Q 0.00	w 11.00 да плиты = L = Tы) (1 w 17.00 w 26.00	Q 109.23 9.93 8 нагр. плить Со 189.21 Мо 289.38 Q 122.43	W/1 5.63 (KH/w2) ly (M) P W/1 5.63 W/1 5.63	45.00 Q 22.50 8 lx=3м l= (нагр. ригопол Со 30.00 Мо 45.00 Q 22.50	131.73 =2.67 S 219.21 334.38
подбалка лониторин 3-4,A-B 1B1 bxD 30x75 7x8м	1 этажа нагрузка Со Мо	w 0.00	Q 0.00 нагрузк (нагр. плит Со 0.00 Мо 0.00 Q 0.00 нагрузк	w 11.00 та плиты = L = Tы) (т w 17.00 w 26.00 w 11.00 a плиты = L=	Q 109.23 9.93 8 нагр. плить Со 189.21 Мо 289.38 Q 122.43 11.13	W/1 5.63 (KH/w2) ly (M) P W/1 5.63 W/1 5.63 W/1 5.63 (KH/w2) ly (M)	45.00 Q 22.50 8 lx=3M l= (Harp. phr) non Co 30.00 Mo 45.00 Q 22.50 ly=8M lx=3.5M	\$ 219.21 334.38 144.93
подбалка лониторин 3-4,A-В 1В1 bxD 30x75 7x8м	1 этажа нагрузка Со Мо Q	w 0.00 w 0.00 w 0.00	О 0.00 нагрузк (нагр. плит Со 0.00 Мо 0.00 Q 0.00 нагрузк (нагр. плит	w 11.00 ta плиты = L = Tы) (г	Q 109.23 9.93 8 нагр. плить Со 189.21 Мо 289.38 Q 122.43 11.13 8	W/1 5.63 (KH/m2) ly (M) P W/1 5.63 W/1 5.63 W/1 5.63 (KH/m2) ly (M)	45.00 Q 22.50 8 ix=3м l= (нагр. ригопол Со 30.00 Мо 45.00 Q 22.50 iy=8м ix=3.5м (нагр. ригопол	131.73 =2.67 S 219.21 334.38 144.93
подбалка лониторин 3-4,A-В 1В1 bxD 30x75 7x8м	1 этажа нагрузка Со Мо Q	w 0.00	О 0.00 нагрузк Со 0.00 Мо 0.00 Q 0.00 нагрузк Стагр. плит	w 11.00 a плиты = L = Tы) (гом 17.00 w 11.00 a плиты = L = Tы) (гом 17.00 w 1	Q 109.23 9.93 8 нагр. плить Со 189.21 Мо 289.38 Q 122.43 11.13 8 нагр. плить	W/1 5.63 (KH/w2) ly (M) P W/1 5.63 W/1 5.63 W/1 5.63 (KH/w2) ly (M) W/1 5.63	45.00 Q 22.50 8 ix=3м l= (нагр. ригопол Со 30.00 Мо 45.00 Q 22.50 iy=8м ix=3.5м (нагр. ригопол Со 30.00	131.73 =2.67 S 219.21 334.38 144.93 1=2.29
подбалка мониторин 3-4,A-В 1В1 bxD 30x75 7x8м Помещение	1 этажа нагрузка Со Мо Q нагрузка	w 0.00	О 0.00 нагрузк Со 0.00 Мо 0.00 Q 0.00 нагрузк Снагр. плит	w 11.00 та плиты = L = Tы) (го/w То/w То/w То/w То/w То/w То/w То/w Т	Q 109.23 9.93 8 нагр. плить Со 189.21 Мо 289.38 Q 122.43 11.13 8 нагр. плить	W/1 5.63 (KH/w2) ly (M) P W/1 5.63 W/1 5.63 W/1 5.63 (KH/w2) ly (M) W/1	45.00 Q 22.50 8 lx=3m l= (нагр. ригопол Со 30.00 Мо 45.00 Q 22.50 ly=8м lx=3.5м (нагр. ригопол Со Со Со Со Со Со Со Со Со Со Со Со Со	131.73 =2.67 S 219.21 334.38 144.93 I=2.29 S
подбалка мониторин 3-4,A-В 1В1 bxD 30x75 7x8м	1 этажа нагрузка Со Мо Q нагрузка	w 0.00 w 0.00 w 0.00	О 0.00 нагрузк Со 0.00 Мо 0.00 Чагрузк Со 0.00 нагрузк Со 0.00 Мо 0.00 Мо 0.00 Мо 0.00 Мо Мо 0.00 Мо	W 11.00 на плиты = L W 17.00 W 26.00 W 11.00 a плиты = L= Tы) Co/w 17.00 Mo/w	Q 109.23 9.93 8 нагр. плить Со 189.21 Мо 289.38 Q 122.43 11.13 8 нагр. плить	W/1 5.63 (KH/m2) ly (M) P W/1 5.63 W/1 5.63 W/1 5.63 (KH/m2) ly (M) W/1 5.63	45.00 Q 22.50 8 lx=3M l= (Harp. phr) non Co 30.00 Mo 45.00 Q 22.50 ly=8M lx=3.5M (Harp. phr) Co 30.00 Mo	131.73 =2.67 S 219.21 334.38 144.93

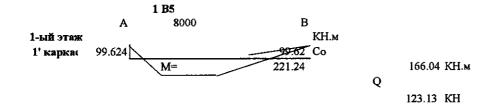
	_							
помещение	нагрузка		(нагр. пли	ты)	(нагр. пли ²		агр. ригел	S
с оборудованием	4	w	Co	w	Co	w/1	Co	
1B3	Co	0.00	0.00	13.00	144.69	5.63	30.00	174.69
1			Мо	w	Мо	w /1	Мо	
bxD 30x75	Mo	0.00	0.00	20.00	222.60	5.63	45.00	267.60
7х7м		W	Q 0.00	9.20	Q 102.40	w/1 5.63	Q	124.90
	l Q	0.00		<u> 9.20</u> ка плиты =		(КН/м2) ly	22.50	M 124.90
	,		F)	ly=		(M)	1x=3.5м	1=2.0
	нагрузка	\bigcap	(нагр. пли	ты)	(нагр. пли	P↓	(нагр. риг	S
помещение			Co	w	Co	w/1	+ P 2KH Co	
с оборудованием 1 ТО 4		0.00	0.00	0.00	0.00	w/1 27.63	36.95	36.95
1B4	Co	0.00	Mo	W 0.00	Mo	w/1	Mo	30.93
bxD 30x75	Mo	0.00	0.00	0.00	0.00	27.63	59.80	59.80
3.5	1-1410	w	Q	w	Q	w/1	Q	27.00
	Q	0.00	0.00	0.00	0.00	27.63	106.69	106.69
			нагрузі	ка плиты =	11.13	(КН/м2) іу	3.5	
	,			ly=		(M)	lx=3.5м	l=2.0
Балкон	нагрузка		(нагр. пли	ты)	(нагр. пли ²	P	(нагр. риго .+ стена	S
1-2,A-B		w	Co	w	Со	w/1	Co	
1B5	C _o	10.10	100.29	4.00	39.72	6.38	26.03	166.04
		w	Мо	w	Мо	w/1	Мо	
bxD 30x75	Мо	18.20	180.73	6.00	59.58	6.38	39.05	279.35
7х8м		w	Q	w	Q	w /1	Q	
	Q	6.80	67.52	3.00	29.79	6.38	25.81	123.13
			нагрузі	ка плиты = L=	9.93	(КН/м2) ly (м)	ы б lx=3.5м	м l=1.71
Э/щитовая	нагпузка		(нагр. пли		агр. плить	(M)	(Harp. pure	S
Э ЩПОЛОГ	lina, pyska		(11d1 p. 11111	i	, p	_	(F. F	
1этаж -300		w	Co	w	Со	w /1	Co	
1B6	Co	0.00	0.00	19.00	315.97	5.63	30.00	345.97
1B7			Мо	w	Мо	w/1	Mo	
bxD 40x75	Mo	0.00	0.00	30.00	498.90	5.63	45.00	543.90
8х8м	0	0.00	Q 0.00	W 12.00	Q 199.56	w/1 5.63	Q 22,50	222.06
		0.00		саплиты =		(KH/м2) ly		222.00
			1.7	ly=		(M)	lx=4м l=	=2.0
	нагрузка	\wedge	(нагр. пли	ты) /	(нагр. пли	$P_{igsplus}$	агр. ригел	S
Оборудование							P 40 KH	
1этаж -300 1 В8) I Co	0.00	Co 0.00	w 14.00	Co 232.82	w/1 5.63	Co 70.00	302.82
100	<u> </u>	0.00	Mo	W W	Mo	w/1	Mo	302.62
bxD 40x75	Мо	0.00	0.00	22.00	365.86	5.63	125.00	490.86
8х8м		w	Q	w	Q	w/1	Q	
	Q	0.00	0.00	10.00	166.30	5.63	42.50	208.80
				нагрузка п	16 (2		7	M
						(KH/м2) ly		- ^ ^
				ly=		(KH/MZ) IY- (M)		=2.0
			1В8 елин.	ly=		(M)		=2.0
			1В8 един.	ly=	8	, , ,	lx=4м l=	=2.0
			1В8 един.	ly=	8	(M) 181.69	lx=4м l=	=2.0
			1В8 един.	ly= шаг	384.87	(M) 181.69 0.6C(KH.M Q=208.8	lx=4м l=	=2.0
	.+0.72 обо	рудование		ly= mar	384.87 Mo-0.35C((M) 181.69 0.6C(KH.M Q=208.8 KH.M)=	lx=4m l=)=	
Э/щитовая		рудование	1В8 един. (нагр. плит	ly= mar	384.87	(M) 181.69 0.6C(KH.M Q=208.8 KH.M)=	lx=4м l=	=2.0 S
Э/щитовая	нагрузка	Δ	(нагр. пли	ly= шаг	384.87 Мо-0.35С((M) 181.69 0.6C(KH.M Q=208.8 KH.M)=	lx=4м l=)= (нагр. риг	
	нагрузка	рудование		ly= mar	384.87 Mo-0.35C((M) 181.69 0.6C(KH.M Q=208.8 KH.M)=	lx=4m l=)=	
Э/щитовая 1этаж -300 1В7м	нагрузка	w 0.00	(нагр. пли Со 0.00 Мо	ly= шаг w 19.00 w	384.87 Mo-0.35С((нагр. пли Со 388.93 Mo	(M) 181.69 0.6C(KH.M Q=208.8 KH.M)=	x=4м = 	S 418.93
Э/щитовая 1этаж -300 1В7м bxD 40x75	нагрузка	w 0.00 0.00	(нагр. пли Со 0.00 Мо 0.00	ly= шаг гы) 19.00 w 30.00	384.87 Mo-0.35С((нагр. пли Со 388.93 Mo 614.10	(M) 181.69 0.6C(KH.M Q=208.8 KH.M)= W/1 5.63 W/1 5.63	lx=4m l=)= (Harp. pure Co 30.00 Mo 45.00	S
Э/щитовая 1этаж -300 1В7м	нагрузка Со Мо	0.00 0.00 0.00	Со 0.00 Мо 0.00 Q	ly= шаг w 19.00 w 30.00 w	8 384.87 Мо-0.35С((нагр. пли Со 388.93 Мо 614.10 Q	(M) 181.69 0.6C(KH.M Q=208.8 KH.M)= W/1 5.63 W/1 5.63 W/1	lx=4м	S 418.93 659.10
Э/щитовая 1этаж -300 1В7м bxD 40x75	нагрузка Со	w 0.00 0.00	Со 0.00 Мо 0.00 Q 0.00	ly= шаг w 19.00 w 30.00 w 12.00	8 384.87 Мо-0.35С((нагр. пли Со 388.93 Мо 614.10 Q 245.64	(M) 181.69 0.6C(KH.M Q=208.8 KH.M)=	lx=4m l=)= (Harp. pure Co 30.00 Mo 45.00	S 418.93
Э/щитовая 1этаж -300 1В7м bxD 40x75	нагрузка Со Мо	0.00 0.00 0.00	Со 0.00 Мо 0.00 Q 0.00	ly= шаг w 19.00 w 30.00 w	8 384.87 Мо-0.35С((нагр. пли Со 388.93 Мо 614.10 Q 245.64 20.47	(M) 181.69 0.6C(KH.M Q=208.8 KH.M)= W/1 5.63 W/1 5.63 W/1 5.63 (KH/M2) ly	lx=4м l=)= (нагр. риго Со 30.00 Мо 45.00 Q 22.50	S 418.93 659.10


Подбалка, изгибающий момент

Кровля 4' каркас (использовать подбалки 2' каркаса для 4' каркаса) 2этаж+4м rB1 **г**В3 rB2 8000 8000 8000 7000)¹148.6 [△] M=70.29 rB1 **54**:9 154.9 △_{M=93.93} △M=131.62 KH.M 0.46 0.54 DF 1.00 0.50 0.50 0.50 0.50 1.00 -144.68 144.68 -144.68 144.68 -144.68 144.68 -111.05 FEM 111.05 0.00 |0.00 D1 144.68 0.00 0.00 -15.69 -17.94 -111.05 C1 0.00 D2 0.00 72.34 0.00 -7.85 0 -55.53 -8.97 0.00 -36.17 -36.17 3.92 3.93 25.91 29.62 8.97 Итого 0.00 180.85 -180.85 148.60 -148.60 154.90 -154.90 0.00



2-ой этаж (низкая кровля 1этаж + 5.2м) 4' каркас 2B6 2B7 2B7 2B8 8000 8000 8000 7000 △M=196.32 KH.M M=84.63 △M=100.51 △M=162.54 DF 1.00 0.50 0.50 0.50 0.50 0.46 0.54 1.00 FEM -218.67 218.67 -218.67 218.67 -218.67 218.67 -178.95 178.95 -18.27 -21.45 D1 218.57 0.00 0.00 0.00 0.00 -178.95 C1 0.00 109.29 0.00 0.00 -9.40 0 -89.475 -10.725 D2 0.00 -54.65 -54.64 4.70 4.70 41.16 48.32 10.725 итого 0.00 273.31 -273.31 223.37 -223.37 241.56 -241.56 0.00


Мо 332.37 КН.м

1ый э	ТЯЖ					
5' K	ркас	Э/щитова	Я			
		1B6		1B7		1B6
A	1	В	t	С	l	Г
	8000		8000	· · · · · · · · · · · · · · · · · · ·	8000	
		432.47	432.47	432.47	432_47	d
	M=327.67	KH.m 4	^ M=	111.43	M=327.67	
DF	1.00	0.50	0.50	0.50	0.50	1.00
FEM	-345.97	345.97	-345.97	345.97	-345.97	345.97
D1	345.97	0.00	0.00	0.00	0.00	-345.97
Cl	0.00	173.00	0.00	0.00	-173.00	0.00
D2	0.00	-86.50	-86.50	86.50	86.50	0.00
Итого	0.00	432.47	-432.47	432,47	-432.47	0.00

1-ый этаж 2' каркас 1B3 1B2 1B1 1B2 8000 **7**000 8000 8000 33 239 33 274.01 274.01 9.32 219.32 M=197.38 KH.м Δ [∆]M=147.94 М=87.72КН.м M=105.06 0.50 0.50 0.46 0.54 1.00 DF 1.00 0.50 0.50 FEN-219.21 219.21 -219.21 219.21 -219.21 219.21 -174.69 176.49 -20.48 -24.04 0 -88.25 40.6 47.65 D1 219.21 0.00 0.00 0.00 0.00 -176.49 C1 0.00 D2 0.00 0.22 0.00 -0.23 109.61 0.00 -0.11 -0.11 0.23 -54.81 |-54.80 239.33 -239.33 219.32 -219.32 0.00 итого 0.00 274.01 -274.01

помещение мониторинга

4. 2 Профиль подбалки

(между каркасами 2 и 3) 2' каркас подъемный блок 3т

365 ΜΠα 17 ΜΠα 1.2 ΜΠα Rs=Rsc= Rb= Rbt= D22 As 380 мм2

Ригель	rB3	rB1	2' Каркас		rB2	2' Каркас		rB4	
Позиция	внеш.кон	средн.	внутр.кон	С конец	средн.	D конец	А конец	средн.	В конец
D.L] М(тм) верх.	0	•	180.85	180.85		148.6	83.51		83.51
+] нижи.	İ	131.62			70.26			163.33	
L.L] Q(r)	97.94		120.55	101.97		97.94	92.94		92.94
] b х D (мм)	400	х	750	400	X	750	400	x	750
Размер] ho (мм)	700	700	700	700	700	700	700	700	700
$z = Rb.b.ho^{2}(x 10^{6})$		3332			3332			3332	
арм. (верх.)=М/г	0,0000		0.0543	0.0543		0.0446	0.0251		0.0251
арм. (нижн.)		0.0395			0.0211			0.0490	
$\alpha_{\rm r} = 0.395$	>	>	>	>	>	>	>	>	>
Bepx. Mus=Rsc.A's.(ho-a')=	270.5		270.5	270.5		270.5	270.5		270.5
Нижн. MuS=Rsc.A's.(ho-a')=	270.5			270.5			270.5	
Bepx. Mu=Rs.As(ho-0.5xho	278.5	> Mok	365.7	365.7	> Mok	365.7	278.5	> M ok	278.5
Нижи. Mu=Rs.As(ho-0.5xb	i	278.5			278.5			278.5	
верх.	0.407		0.543	0.543		0.543	0.407		0.407
Pt (%) нижн.		0.407			0.407			0.407	;
верх.	1140		1520	1520		1520	1140		1140
площ. (мм2) нижн.		1140			1140			1140	
Осн. верх.	3	3	4	4	3	4	3	3	3
стержни		D22			D22			D22	
нижн.	3		3	3			3		
Qbмин=yb3.Rbt.b.ho	201.6	(KH)	201.6	1	(KH)	201.6	1	(KH)	201.6
скоба	D10-150		D10-150	D10-150		D10-150	D10-150		D10-150
решение	ok		ok	ok		ok	ok		ok
··	Via Trotto tattati						·	<u> </u>	•

подъемный блок 3т

не применять rB5

	применять по	дбалжу 2' Кары	aca	2' Каркас					
Ригель	применять 2В6	rB5	4' Каркас/		2B1			2B2	
Позиция	А конец	средн.	В конец/	А конец	средн.	В конец	В конец	средн.	С конец
D.L] М(тм) верх.	0		192/82	0		2 60.01	260.01		234.14
+] нижи.		138.25	/		190.66			124.58	
LL] Q(t)	100.98		125.08	139.48		171.98	149.23		152.46
] b x D (мм)	400	X.	<i>1</i> /50	400	x	750	400	X	750
Размер] ho (мм)	700	700	/ 700	700	700	700	700	700	700
			/						
$z = Rb.b.ho^{2}(x 10^{6})$		3332,	/		3332			3332	
арм. (верх.)=М/г	0.0000	/	0.0579	0.0000		0.0780	0.0780		0.0703
арм. (нижн.)		0.041/5			0.0572			0.0374	
$\alpha_r = 0.395$	۸	>/	>	>	>	>	>	>	>
Bepx. Mus=Rsc.A's.(ho-a')=	270.5	/	270.5	270.5		270.5	270.5		270.5
Нижн. MuS=Rsc.A's.(ho-a')		2 70.5			270.5			270.5	
Bepx. Mu=Rs.As(ho-0.5xho)	278.5	7	365.7	278.5	> Mok	365.7	450.1	> Mok	450.1
Нижн. Mu=Rs.As(ho-0.5xh		/ 278.5			365.7			278.5	
верх.	0.407	/	0.543	0.407		0.543	0.679		0.679
Pt (%) нижн.	/	0.407		<u> </u>	0.543			0.407	
верх.	114/0		1520	1140		1520	1900		1900
площ. (мм2) нижн.		1140			1520			1140	
Маіп верх.	/ 3	3	4	3	3	4	5	3	5
Bars		D22			D22			D22	
нижи.	/ 3	3	3	3	4	3	3	3	3
Qbмин≃уb3.Rbt.b.ho=	/ 201.6		201.6	1	(KH)	201.6	201.6	(KH)	201.6
скоба	D/10-150		D10-150	D10-150		D10-150	D10-150		D10-150
решение	ók		ok	ok		ok	ok		ok

365 МПа 17 МПа Rs=Rsc= Rb=

Rbt=

1.2 MIIa 380 mm2 D22 As

Mus сделано слож. сталью

Ми сделано слож. бетоном

	2 каркас			,					
Ригель		2B3			2B4			2B5	
Позиция	С конец	средн.	D конец	конец	средн.	конец	конец	средн.	конец
D.L] М(ты) верх.	263.07		0	21.55		21.55	132.4		132,4
+] нижн.		186.77			39.24			255.14	
L.L] Q(1)	177.16		139.58	10.34		10.34	141.66		141.66
] b x D (мм)	400	х	750	400	х	750	400	х	750
Размер] ho (мм)	700	700	700	700	700	700	700	700	700
$z=Rb.b.ho^2(x 10^b)$		3332			3332			3332	
арм. (верх.)=М/z	0.0790		0.0000	0.0065		0.0065	0.0397		0.0397
арм. (нижн.)		0.0561			0.0118			0.0766	
$\alpha_r = 0.395$	>	>	>	>	>	> .	>	>	>
Bepx. Mus=Rsc.A's.(ho-a')=	270.5		270.5	270.5		270.5	270.5		270.5
Нижн. MuS=Rsc.A's.(ho-a')	=	270.5			270.5			270.5	
Bepx. Mu=Rs.As(ho-0.5xho)	450.1	> Mok	278.5	278.5	> Mok	278.5	278.5	> Mok	278.5
Нижн. Mu=Rs.As(ho-0.5xh		278.5			278.5			278.5	
верх.	0.679		0.407	0.407		0.407	0.407		0.407
Pt (%) нижн.		0.407			0.407			0.407	
верх.	1900		1140	1140		1140	1140		1140
площ. (мм2) нижн.		1140			1140		l	1140	
Осн. верх.	5	3	3	3	3	3	3	3	3
стержии		D22			D22			D22	
нижн.	3	3	3	3	. 3	3	3		3
Qbмин=yb3.Rbt.b.ho=	201.6	(KH)	201.6	201.6	(KH)	201.6		(KH)	201.6
скоба	D10-150		D10-150	D10-150		D10-150	D10-150		D10-150
решение	ok		ok	ok		ok	ok		ok

Профиль подбалки	2ой э	таж							
Ритель		2B6			2B7			2B8	
Позиция	1 конец	средн.	2 конец	2 конец	средн.	3 конец	3 конец	средн.	4 конец
D.L] М(тм) верх.	0		273.31	273.31		223.27	241.56		0
+] нижн.		196.32			84.63		j	162.54	
L.L] Q(1)	141.66		175.82	147.92		141.66	166.24		131.73
] b x D (мм)	400	Х	750	400	х	750	400		750
Размер] ho (мм)	700	700	700	700	700	700	700	700	700
z= Rb.b.ho ² (x 10°)		3332			3332			3332	
арм. (верх.)=М/г	0.0000		0.0820	0.0820		0.0670	0.0725		0,0000
арм. (нижн.)		0.0589			0.0254			0.0488	
$\alpha_r = 0.395$	>	>	>	>	>	>	>	>	>
Bepx. Mus≃Rsc.A's.(ho-a')=	270.5	•	270.5	270.5		270.5	270.5		270.5
Нижн. MuS=Rsc.A's.(ho-a')	, =	270.5			270.5			270.5	
Bepx. Mu=Rs.As(ho-0.5xho	278.5	> Mok	365.7	450.1	> M ok	450.1	450.1	> M ok	278.5
Нижн. Mu=Rs.As(ho-0.5xh		365.7			278.5			278.5	
верх.	0.407		0.543	0.679		0.679	0.679		0.407
Pt (%) нижн.		0.543			0.407			0.407	
верх.	1140	•	1520	1900		1900	1900		1140
площ. (мм2) нижн.		1520			1140			1140	
Осн. верх.	3	3	4	5	3	5	5	3	3
стержни		D22			D22			D22	
нижн.	3	4	3	3	3	3	3	3	3
Qbмин=yb3.Rbt.b.ho=	201.6	(KH)	201.6	2 01.6		201.6	201.6	` '	201.6
скоба	D10-150		D10-150	D10-150		D10-150	D10-150		D10-150
решение	ok		ok	ok		ok	ok		ok

1 этаж	5' каркас			5' каркас		_	5' каркас		
Ригель		1B6			1B7			1B6	
Позиция	А конец	средн.	В конец	В конец	средн.	С конец	С конец	средн.	D конец
D.L.] M(TM) Bepx.	0		432.47	34.34		34.34	432.47		0
+] нижн.	1	327.67			111.43			327.67	
L.L] Q (T)	222.06		276.12	222.06		222.06	176.12		222.06
] b х D (мм)	400	х	750	400	х	750	400	х	750
Размер] ho (мм)	700	700	700	700	700	700	700	700	700
$z = Rb.b.ho^{2} (x 10^{6})$		3332		3	3332			3332	
арм. (верх.)=M/z	0.0000		0.1298	0.0103		0.0103	0.1298		0.0000
арм. (нижн.)		0.0983			0.0334		<u> </u>	0.0983	
$\alpha_r = 0.395$	>	>	>	>	>	>	>	>	>
Bepx. Mus=Rsc.A's.(ho-a')	270.5		360.6	360.6		360.6	360.6		270.5
Нижн. MuS=Rsc.A's.(ho-a	· ')=	270.5			270.5			270.5	
Bepx. Mu=Rs.As(ho-0.5xho	278.5	> Mok	610.3	610.3	> M ok	610,3	610.3	> M ok	278.5
Нижн. Mu=Rs.As(ho-0.5xi	D	450.1			278.5			450.1	
верх.	0.407		0.950	0.950		0.950	0.950		0.407
Pt (%) нижн.		0.679			0.407			0.679	
верх.	1140		2660	2660		2660	2660		1140
площ. (мм2) нижн		1900			1140		•	1900	
Осп, верх.	3	3	7	7	3	7	7	3	3
стержни		D22			D22			D22	
нижк.	3	5	4	4	3	. 4	4	5	3
Qbмин=yb3.Rbt.b.ho=	201.6	(KH)	201.6	201.6	(KH)	201.6	201.6	(KH)	201.6
скоба	D10-150	D10-150	D10-100	D10-150	D10-150	D10-150	D10-100	D10-150	D10-150
решение	ok		ok	ok		ok	ok		ok
		pw=	0.00393				pw=	0.00393	

		3' каркас			2' каркас			2' каркас		
Ригель			1B4			1B1			1B2	
Позиция		С конец	средн.	D конец	А конец	средн.	В конец	В конец	средн.	С конец
D.L] М(тм) верх.		36.95		36.95	0		274.01	274.01		219.32
+] нижн.			59.8			197.38		ł	87.72	
L.L] Q(1)		106.69		106.69	144.93		179.18	151.77		144.93
] b x D (mn	4)	400	Х	750	400	X	750	400	x	750
Размер] ho (м	м)	700	700	700	700	700	700	700	700	700
z= Rb.b.ho² (x 10)°)		3332			3332			3332	
арм. (верх.)=М/г	:	0.0111		0.0111	0.0000		0.0822	0.0822		0.0658
арм. (нижн.)			0.0179			0.0592		İ	0.0263	
$\alpha_r = 0.3$	95	>	>	>	>	>	>	>	>	>
Bepx. Mus=Rsc.A's	:(ho-a')≂	360.6		270.5	270.5		270.5	270.5		270.5
Нижн. MuS=Rsc.A	's (ho-a')	=	180.3			270.5			270.5	
Bepx. Mu=Rs.As(ho	-0.5 xh o]	531.6	> Mok	365.7	278.5	> M ok	450.1	450.1	> M ok	450.1
Нижн. Mu=Rs.As(i	ho-0.5xh		365.7			365.7			278.5	
ве	px.	0.814		0.543	0.407		0.679	0.679		0.679
Pt (%) ни	DKH.		0.543			0.543			0.407	
1	верх.	2280		1520	1140		1900	1900		1900
площ. (мм2)	нижн.		1520			1520			1140	
Осн. верх.		6	2	4	3	3	5	5	3	5
стержни			D22			D22			D22	
нижн.		4	4	3	3		3	3		3
Qbмин=yb3.Rbt.l	b.ho=	201.6		201.6		(KH)	201.6	201.6	(KH)	201.6
скоба		D10-150		D10-150	D10-150			D10-150		D10-150
решение		ok		ok	ok		ok	ok		ok
		กพ≖	0.00349			nw=	0.00349			

1ый этаж 2' Каркас

	2' каркас			2 каркас			5' каркас, вд	ин, шаг	
Ригель	<u></u>	1B2		<u> </u>	1B3			1B8	
Позиция	С конец	средн.	D конец	D конец	средн.	Е конец	D конец	средн.	Е конец
D.L] M(ma) верх.	219.32		239.33	239.33		0	181.69	,	181.69
+ } нижн.		105.06			147.94			384.87	
L.L] Q(t)	144.93		144.93	150.09		124.9	208.8		208.8
] b x D (mm)	400	х	750	400	х	750	400	x	750
Размер] ho (мм)	700	700	700	700	700	700	700	700	700
$z=Rb.b.ho^{2}(x 10^{6})$		3332			3332			3332	
арм. (верх.)=М/г	0.0658		0.0718	0.0718		0.0000	0.0545		0.0545
арм. (нижн.)		0.0315			0.0444			0.1155	
$\alpha_{\rm r} = 0.395$	>	>	>	>	>	>	>	>	>
Bepx. Mus=Rsc.A's.(ho-a')=	270.5		270.5	270.5		270.5	270.5		270.5
Нижн. MuS=Rsc.A's.(ho-a'))=	270.5			270.5			270.5	
Bepx. Mu=Rs.As(ho-0.5xho	450.1	> Mok	450.1	450.1	> Mok	450.1	278.5	> Mok	278.5
Нижн. Mu=Rs.As(ho-0.5xh		278.5			278.5			450.1	
верх.	0.679	·	0.679	0.679		0.679	0.407		0.407
Pt (%) нижн.		0.407			0.407			0.679	
верх.	1900		1900	1900		1900	1140		1140
площ. (мм2) нижн.		1140			1140			1900	
Осн. верх.	5	3	5	5	3	5	3	3	3
стержни	1	D22			D22			D22	
нижн.	3	3	3	3			3		
Qbмин=yb3.Rbt.b.ho=	201.6	(KH)	201.6	201.6	(KH)	201.6		(KH)	201.6
скоба	D10-150		D10-150	D10-150		D10-150	D10-150		D10-150
решение	ok		ok	ok		ok	ok		ok

	2' каркас (пр	именять значе	кие 2В4)		един, шаг		оборудовани		
Ригель		1B4			1B5	1-2,A-B		1B7	
Позиция	В конец	средн.	С конец	конец	средн.	конец	С конец	средн.	D конец
D.L] M(1M) Bepx.	21.55		21.55	99.62		99.62	418.9		418.97
+] нижн.		39.24			221.24			240.27	
L.L] Q(t)	10.34		10.34	123.13		123.13	268.14		268.14
] b х D (мм)	400	x	750	400	x	750	400	x	750
Размер] ho (мм)	700	700	700	700	700	700	700	700	700
z= Rb.b.ho² (x 10°)		3332			3332			3332	
арм. (верх.)=М/z	0.0065		0.0065	0.0299		0.0299	0.1257		0.1257
арм. (нижн.)		0.0118			0.0664			0.0721	
$\alpha_1 = 0.395$	>		>	>	>	>	>	>	>
Bepx. Mus=Rsc.A's.(ho-a')=	270.5		270.5	270.5		270.5	360.6		360,6
Нижн. MuS=Rsc.A's.(ho-a'))=	270.5			270.5			270.5	
Bepx. Mu=Rs.As(ho-0.5xho)	278.5	> M ok	278.5	278.5	> Mok	278.5	610.3	> M ok	610.3
Нижн. Mu≃Rs.As(ho-0.5xh		278.5			278.5			278.5	
верх.	0.407		0.407	0.407		0.407	0.950		0.950
Pt (%) нижн.		0.407			0.407			0.407	
верх.	1140		1140	1140		1140	2660		2660
площ. (мм2) нижн.		1140			1140			1140	
Осн. верх.	3	3	3	3	3	3	7	3	7
стержни		D22			D22			D22	
нижн.	3	3	3	3	3	3	4	3	4
Qbмин=yb3.Rbt.b.ho=	201.6	(KH)	201.6	201.6	(KH)	201.6	201.6	(KH)	201.6
скоба	D10-150		D10-150	D10-150		D10-150	D10-150		D10-150
решение	ok		ok	ok		ok	ok		ok

	един. шаг		
Ригель		1B7	
Позиция	D конец	средн.	Е конец
D.L] M(TM) Bepx.	207.58		207.58
+] нижн.		422.81	
L.L] Q(1)	222.06		222.06
] b x D (мм)	400	X	750
Размер] ho (мм)	700	700	700
$z = Rb.b.ho^{2}(x 10^{6})$		3332	
арм. (верх.)=М/г	0.0623		0.0623
арм. (нижн.)	İ	0.1269	
$\alpha_r = 0.395$	>	>	>
Bepx. Mus=Rsc.A's.(ho-a')= 270.5		270.5
Нижн. MuS=Rsc.A's.(ho-	a')=	270.5	
Bepx. Mu=Rs.As(ho-0.5xh	o 278.5	> Mok	278.5
Нижн. Mu=Rs.As(ho-0.5)	кh	450.1	
верх.	0.407	•	0.407
Pt (%) нижн.		0.679	
верх.	1140		1140
площ. (мм2) ниж	н.	1900	
Осн. верх.	3	3	3
стержни		D22	
нижн.	3	5	3
Qbмин=yb3.Rbt.b.ho≂	201.6	(KH)	201.6
скоба	D10-150		D10-150
решение	ok		ok

5-2. Плита

	w=	6.54 КН/м2		
rS1	lx=	3.2 м	Толщина	150 мм
lx	ly=	7.6 м	ho=	115 мм
lv				

	a	wlx2	M	Rs=Rsc=	365 МПа
Mx1=	0.081	66.9696	5.42454	Rb=	17 МПа
Mx2=	0.054	66.9696	3.61636	Rbt=	1.2 M∏a
				D10 As	78 mm2
My1=	0.042	66.9696	2.81272	D12 As	113.1 мм2
My2=	0.028	66.9696	1.87515		
		wlx	Q		
Qx =	0.51	20.928	10.6733		
Qx = Qy =	0.46	20.928	9.62688		

Конечный момент

	Kotte tihan memeri								
ſ			1	стержені	(MM2)	(MM)		КН.м	
١			зазор	к-во s/m	Σas	X	ξ	Mu	
1	Mux1	D10 @	200	5	390	8.37	0.0728	15.774	> Mx1 ok
	Mux2	D10 @	200	5	390	8.37	0.0728	15.774	> Mx2 ok
ŀ		_							
٠	Muy1	D10 @	250	4	312	6.70	0.0583	12.715	> Myl ok
- 1	Muy2	D10 @	250	4	312	6.70	0.0583	12.715	> My2 ok

and the second s		
Qмин x Qbмин=yb3.Rbt.b.ho=	82.8 (KH) > Q	ok
Qмин y Qbмин=yb3.Rbt.b.ho=	82.8 (KH) > Q	ok

w= 6.54 КН/м2 lx= 3.7 м Толщин: 150 мм ly= 7.6 м ho= 115 мм

	a	wlx2	M
Mx1=		89.5326	
Mx2=	0.053	89.5326	4.74523
Myl=		89.5326	
My2=	0.028	89.5326	2.50691
		wlx	Q
Qx =	0.52	24.198	12.583
Qy =	0.46	24.198	11.1311

			стержен	(MM2)	(MM)		КН.м	
		зазор	к-во s/m	Σas	X	ξ	Mu	
Mux1	D10 @	150	6.667	520.03	11.17	0.0971	20.768	> Mx1 ok
Mux2	D10 @	200	5	390	8.37	0.0728	15.774	> Mx2 ok
Musv1	D10 @	250	4	312	6.70	0.0583	12 715	> Myl ok
Muy2	D10 @	250		312				> My2 ok

Qмин x Qbмин=yb3.Rbt.b.ho=	82.8 (KH)	> Q	ok
Омин у Ормин=уb3.Rbt.b.ho=	82.8 (KH)	> Q	ok

ттомещение с оборудованием	Помещение	¢	обор	рy	до	ва	ни	en	И
----------------------------	-----------	---	------	----	----	----	----	----	---

	w =	12.33 КН/м2		
2S1	lx=	3.7 м	Толщина	180 мм
lx	ly=	7.6 м	ho=	145 мм
ly				

•	a	wlx2	M
Mx1=	0.079	168.798	13.335
Mx2=	0.053	168.798	8.94628
My1= My2=		168.798	
My2=	0.028	168.798	4.72634
		wlx	Q
Qx =	0.52		23.7229
Oy =	0.46	45.621	20.9857

арматура D12-@179->@150 D12-@268-->@200 D10-@338-->@250 D10-@507-->@250

Конечный момент

Rolle Hilbit Montelli									
			стержни	(MM2)	(MM)		КН.м		
		зазор	к-во s/m	Σas	X	ıΣ	Mu		
Mux1	D12 @	150	6.667	754.038	16.19	0.1117	29.4228	> Mx1	ok
Mux2	D12 @	200	5	565.5	12.14	0.0837	22.4838	> Mx2	ok
Muyl	D10 @	250	4	312	6.70	0.0462	12.7148	> Myl	ok
Muy2	D10 @	250	4	312	6.70	0.0462	12.7148	> My2	ok

Омин x Ормин=уb3.Rbt.b.ho=	104.4 (KH)] > Q	ok
Qмин y Qbмин=yb3.Rbt.b.ho=	104.4 (KH)	ן > Q	ok

Офис

-	W=	8.94 КН/м2		
2S2	lx≕	3.2 м	Толщин:	150 мм
lx	ly=	7.6 м	ho=	115 мм
1.,	•			

	a	wlx2	M
Mx1=			7.41519
Mx2=	0.054	91.5456	4.94346
My1=			3.84492
My2=	0.028	91.5456	2.56328
-		wlx	Q
$Q_X =$	0.51		14.5901
Qy =	0.46	28.608	13.1597

ſ	·		зазор	стержни к-во s/m	. ,	(MM) X	٤	КН.м Ми		
	Mux1	D10 @	200	5	390	8.37	0.0728	15.7743	> Mx1	ok
	Mux2	D10 @	200	5	390	8.37	0.0728	15.7743	> Mx2	ok
	Muyl	D10 @	250	4	312	6.70	0.0583	12.7148	> My1	ok
L	Muy2	D10 @	250	4	312	6.70	0.0583	12.7148	> My2	ok

Qмин x Qbмин=yb3.Rbt.b.ho=	82.8 (KH)	> Q	ok
Qмин y Qbмин=yb3.Rbt.b.ho=	82.8 (KH)	> Q	ok

Склад

2S3	
	lv

w=	10.53 KH/m2		
lx=	4.7 м	Толщина	180 мм
ly≕	7.6 м	ho=	145 мм

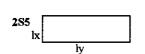
	2	wlx2	M
Mx1=			16.9804
Mx2=	0.049	232.608	11.3978
My1=	0.042	232 608	9.76952
My2=	0.028	232.608	6.51302
		wlx	Q
Qx =	0.52		25.7353
Qy =	0.46	49.491	22.7659

Конечный момент

ſ				стержни	(MM2)	(MM)		КН.м	,
١			зазор	к-во s/m	Σ as	X	ξ	Mu	
٠	Mux1	D12 @	15	6.66	753.246	16.17	0.1115	29.3943	>Mxl ok
ł	Mux2	D12 @	200	5	565.5	12.14	0.0837	22.4838	> Mx2 ok
1									
l	Muy1	D10 @	250	4	312	6.70	0.0462	12.7148	> Myl ok
ı		D10 @		4	312	6.70	0.0462	12.7148	> My2 ok

Qмин x Qbмин=yb3.Rbt.b.ho=	104.4 (KH)] > Q	ok
Омин v Оьмин=vb3.Rbt.b.ho=	104.4 (KH)	٦>٥	ok

284 lx

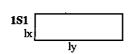

w=	12.33 KH/м	2
lx=	3.2 м	Толщин
lv=	5.3 M	ho=

Толщина	180	MM
ho=	145	мм

	a	wlx2	M
Mx1=	0.074	126.259	9.34318
Mx2=	0.049	126.259	6.1867
Myl=	0.042	126.259	
My2=	0.028	126.259	3.53526
		wlx	Q
Qx =	0.52	39.456	20.5171
Qy =	0.46	39.456	18.1498

_	1401	M THEFT IS	TOTALOTTE						
ſ				стержни	(MM2)	(MM)		КН.м	
ı			зазор	к-во s/m	Σas	X	ξ.	Mu	
•	Mux1	D12 @	200	5	565.5	12.14	0.0837	22.4838	> Mxl ok
١	Mux2	D10 @	200	5	390	8.37	0.0577	15.7743	> Mx2 ok
١]					
1	Muyl	D10 @	250	4	312	6.70	0.0462	12.7148	> Mylok
L	Muy2	D10 @	250	4	312	6.70	0.0462	12.7148	> My2 ok

Qмин x Qbмин=yb3.Rbt.b.ho=	104.4 (KH)] > Q	ok
Омин у Ормин≔уb3.Rbt.b.ho=	104.4 (KH)] > Q	ok



w=	12.33 KH/m2		
1x=	2.5 м	Толщина	180 мм
ly=	3.5 м	ho=	145 мм

	a	wlx2	M
Mxl =	0.066	77.0625	5.08613
Mx2=	0.045	77.0625	3.46781
Myl=		77.0625	
My2=	0.028	77.0625	2.15775
		wlx	Q
Qx =	0.51	30.825	15.7208
Qy =	0.46	30.825	14.1795

	Rone-man wowen								
ſ				стержни	(MM2)	(MM)		КН.м	
١			зазор	к-во s/m	Σ as	X	ξ	Mu	
ľ	Mux1	D10 @	200	5	390	8.37	0.0577	15.7743	> Mxl ok
1	Mux2	D10 @	200	5	390	8.37	0.0577	15.7743	> Mx2 ok
1		Ŭ							}
	Muy1	D10 @	250	4	312	6.70	0.0462	12.7148	> Mylok
		D10 @		4	312	6.70	0.0462	12.7148	> My2 ok

Qмин x Qbмин=yb3.Rbt.b.ho=	104.4 (KH)] > Q	ok
Qмин у Qbмин=yb3.Rbt.b.ho=	104.4 (KH)	> Q	ok

w=	16.63 КН/м2		
$l_{X}=$	3.7 M	Толщина	180 мм
ly=	7.6 м	ho=	145 мм

	а	wlx2	M
Mx1 =	0.079	227.665	17.9855
Mx2=	0.053	227.665	12.0662
Myl=		227.665	
My2=	0.028	227.665	6.37461
		wix	Q
Qx =	0.52	61.531	31.9961
Qy =	0.46	61.531	28.3043

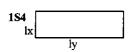
		стержни к-во s/m	`	(MM) X	٤	КН.м Mu	· '' -
D12 @ D12 @	200	15	1170 390				> Mx1 ok > Mx2 ok
D10 @ D10 @			312 312				> Myl ok > My2 ok

Qмин x Qbмин=yb3.Rbt.b.ho=	104.4 (KH)] > Q	ok
Qмин y Qbмин=yb3.Rbt.b.ho=	104.4 (KH)]>0	ok

	w=	12.33 KH/m2		
1S2	lx=	3.2 м	Толщин:	180 мм
lx	ly=	7.6 м	ho=	145 мм
ly				

	a	wlx2	M
Mx1=		126.259	10.227
Mx2=	0.054	126.259	6.818
Myl=	0.042	126.259	5.30289
My2=	0.028	126.259	3.53526
		wlx	Q
Qx = Qy =	0.51		20.1226
Qv =	0.46	39.456	18.1498

ſ				стержни	(MM2)	(MM)		КН.м	
-			зазор	к-во s/m	Σ as	х	ξ	Mu	
٠	Mux1	D12 @	200	5	565.5	12.14	0.0675	22.4838	> Mx1 ok
	Mux2	D10 @	200	5	390	8.37	0.0465	15.7743	> Mx2 ok
-	3.61	DIA O	250	ا ا	210	6.70	0.0270	10.7140	
		D10 @		1 1	312				> Mylok
- [Muy2	D10 @	250	4	312	6.70	0.0372	12.7148	> My2 ok


Омин x Ормин=уb3.Rbt.b.ho=	104.4 (KH)] > Q	ok
Омин у Ормин=уb3.Rbt.b.ho=	104.4 (KH)	7>Q	ok

	w=	12.33 KH/м2	2	
183	lx=	2.5 м	Толщина	180 мм
lx	ly=	3.5 M	ho=	145 мм
127	-			

	8	wlx2	M
Mx1=	0.066	77.0625	5.08613
Mx2=	0.045	77.0625	3.46781
My i=		77.0625	
My2=	0.028	77.0625	2.15775
		wix	Q
Qx =	0.51	30.825	15.7208
Ov =	0.46	30.825	14.1795

			стержни	(MM2)	(MM)		КН.м	
		зазор	к-во s/m	Σas	x	ξ	Mu	
Mux1	D10 @	200	5	390	8.37	0.0577	15.7743	> Mx1 ok
Mux2	D10 @	200	5	390	8.37	0.0577	15.7743	> Mx2 ok
	D10 @		4	312	6.70	0.0462	12.7148	> Mylok
Muy2	D10 @	250	4	312	6.70	0.0462	12.7148	> My2 ok

Qмин x Qbмин=yb3.Rbt.b.ho=	104.4 (KH)] > Q	ok
Qмин y Qbмин=yb3.Rbt.b.ho=	104.4 (KH)] > Q	ok

w=	16.63 КН/м2		
$l_{X}=$	5.2 м	Толщина	200 мм
ly=	7.6 м	ho=	165 мм

	a	wlx2	M
Mx1=	0.068	449.675	30.5779
Mx2=	0.046	449.675	20.6851
My1=		449.675	
My2=	0.028	449.675	12.5909
		wlx	Q
Qx =	0.51	86.476	44.1028
Qy =	0.46	86.476	39.779

			стержни	(MM2)	(MM)		КН.м		
		зазор	к-во s/m	Σas	х	ųς	Mu		
Mux1	D12 @	100	10	1131	24.28	0.1472	42.4615	> Mx1	ok
Mux2	D12 @	150	6.667	754.038	16.19	0.0981	29.4228	> Mx2	ok
Muyl	D12 @	100	6.667	754.038	16.19	0.0981	29.4228	> Myl	ok
Muy2	D12 @	150	6.667	754.038	16.19	0.0981	29.4228	> My2	ok

Qмин x Qьмин=уь3.Rbt.b.ho=	118.8 (KH)] > Q	ok
Qмин y Qbмин=yb3.Rbt.b.ho=	118.8 (KH)	> Q	ok

w=	16.63 KH/m2		
1x=	5.2 м	Толщина	200 мм
ly=	6.6 м	ho=	165 мм

	a	wlx2	М
Mx1=		449.675	
Mx2=	0.04	449.675	17.987
My1=		449.675	
My2=	0.028	449.675	12.5909
		wlx	Q
Qx =	0.51	86.476	44.1028
Qy =	0.46	86.476	39.779

_									
				стержни	(мм2)	(MM)		КН.м	
L			зазор	к-во s/m	Σas	х	ξ	Mu	
[]	Mux1	D12 @	100	10	1131	24.28	0.1472	42.4615	> Mx1 ok
]]	Mux2	D12 @	150	6.667	754.038	16.19	0.0981	29.4228	> Mx2 ok
]	Muyl	D12 @	100	6.667	754.038	16.19	0.0981	29.4228	> My1 ok
Ц	Muy2	D12 @	150	6.667	754.038	16.19	0.0981	29.4228	> My2 ok

Омин x Ормин=уb3.Rbt.b.ho=	118.8 (KH)	> Q	ok
Омин y Ормин=уb3.Rbt.b.ho=	118.8 (KH)	> Q	ok

	w=	16.63 КН/м2		
1S5a	l _X =	4 м	Толщин:	200 мм
lx	ly=	5.5 м	ho=	165 мм
lv				

	a	wlx2	M
Mxl=	0.064	266.08	17.0291
Mx2=	0.044	266.08	11.7075
Myl=	0.042	266.08	11.1754
My2=	0.028	266.08	7.45024
-		wlx	Q
Qx =	0.51	66.52	33.9252
Ov =	0.46	66.52	30 5992

	to illibiat M	CIRCIL							
			стержни	(MM2)	(MM)		КН.м		
		зазор	к-во s/m	Σas	X	ξ	Mu		
Mux1	D12 @	100	10	1131	24.28	0.1472	42.4615	> Mx1	ok
Mux2	D12 @	150	6.667	754.038	16.19	0.0981	29.4228	> Mx2	ok
Muy1	D12 @	150	6.667	754.038	16.19		29.4228	_	
Muy2	D12 @	200	5	565.5	12.14	0.0736	22.4838	> My2	ok

Qмин x Qbмин=yb3.Rbt.b.ho=	118.8 (KH)	> Q	ok
Qмин у Qьмин=уь3.Rbt.b.ho=	118.8 (KH)	> Q	ok

5. ФУНДАМЕНТ и ВНЕШНЯЯ СТЕНА СТЕНА ТЕХНИЧЕСКОГО ЭТАЖА

5. 1 Фундамент

		2558.78	2497.96	2497.96	2510.12	2510.12		251
	1		1268.6 тм	127	4.7	127	73.2	
	А		8м В	[8м С	<u> </u>	8м	I
DF	0	1	0.5	0.5	0.5	0.5		
FEM	-2558.78	2546.50	-2546.50	2546.50	-2546.5	2546.5		
D1	0.00	12.28	0.00	0.00	(0		
C1	0.00	0.00	6.14	0.00	(0		
D2	0.00	0.00	-3.07	-3.07	(0		
Boero M	-2558.78	2558.78	-2543.43	2543.43	-2546.5	2546.5		
		^	-					

См. изгибающий момент основания стены в Разделе 6.2, Внешняя стена тех. этажа. Стена F.E.M= Mb x Каркас (7м)

KAPKAC-	З Гый ша	Расч. нагрузки	(KH.M), (K	H)		20и шаг	
		А-конец	сред.	В-конец	В-конец	сред.	С-конец
16	0.55		697.73			701.09	
Колонны	нижн. 0.7	1919.09		1907.57	1907.57		1909.88
0	J 0.45		570.87			573.62	
Сред. лини	нижн 0.	639.70		635.86	635.86		636.63
	Bcero M	2558.78	1268.60	2543.43	2543.43	1274.70	2546.50
	Зий плаг						

	Jan mai			
		С-конец	сред.	D-конец
Vararra	верх. 0.55		700.26	
Колонны	нижи. 0.1	1909.88		1909.88
C	верх. 0.45		572.94	
Сред. лини	нижн. 0.2	636.63		636.63
	Всего М	2546.50	1273.20	2546.50

Мощность конечного изгтбающего момента пл (КН.м) (значение для ширины 3.5м) Конечные изгибающие моменты больше, чем расчетные моменты.

Таблица. Конечный изгибающий момент

		А-конец	сред.	В-конец	В-конец	сред.	С-конец
	Верх.		2175.45			2175.45	· · · · ·
Колонны	Нижн.	5145.57		5145.57	5145.57		5145.57
	Верх.		2175.45			2175.45	
Сред. лини	Нижн.	2175.45		2175.45	2175.45		2175.45
	Кол-во сте	ржней	17.5			17.5	
Колонны	наверху	35		35	35		35
			17.5			17.5	
Сред. лини	внизу	17.5		17.5	17.5		17.5

(MM2) D28 площ. 616 3500 491 D25 площ. В (мм) D22 площ. 380 ho=h-80мм 720 Кон.Момент=Rb x B(d-x/2) 365 Rb (H/mm2) 17 Rs (H/mm2)

А конец ΣАs=491*23.33 х=ΣАs x 365/(Rb x В полная высота Зоны

125 MIIa При ширине трещины < 0.2 мм, σ tw должно быть:

Изгибающий момент трещины представлен в таблице ниж

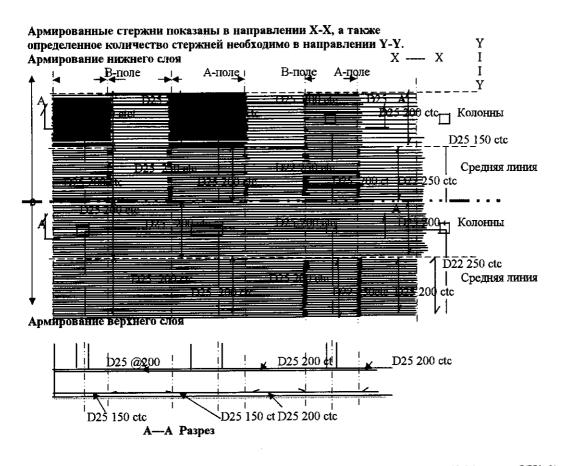
Таблица. Изгибающий момент трещины

	1	А-конец	сред.	В-конец	В-конец	сред.	С-конец
	Верх.		711.46			711.46	
Колонны	Нижн.	1785.17		1785.17	1785.17		1785.17
	верх.	·- ·	711.46			711.46	
Сред. лин	Нижн	711.46		711.46	711.46		711.46
	Кол-во сте		17.5			17.5	
Колонны	наверху	35		35	35		35
			17.5			17.5	
Сред. лин	внизу	17.5		17.5	17.5		17.5

D22 площ. 380 ho=h-80мм 720		
	025 площ.	3500
Rb (H/mm2) 17 Rs (H/mm2) 365		80мм 720
	Rb (H/mm2)	an2) 365
Rcr 125	Rcr	

 Σ As=491*23.33 A end х=ΣАs x 365/(Rb x В полная высота Зоны

Изгиб. момент трещины= 0.8Rcr.As.h0 КН.м


D28 площ 616

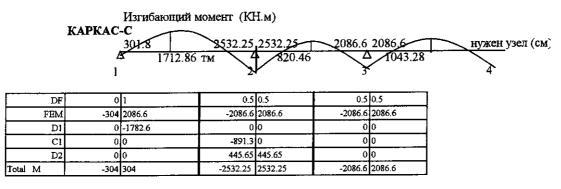
Армирование

Этот цвет показывает, что правило применен

	i	А-конец	средн.	В-конец	В-конец	средн.	С-конец
1	Верх.		D25 @200			D25 @200	
Колонны	Нижн.	D28 @100	D25 @200		D28@100		D28 @100
4-V-12-	Верх.		D25 @200			D25 @200	
Ср. линия	Нижн.	D25 @200	D25 @200	D25 @200	D25 @200	D25 @200	D25 @200

		С-конец	средн.	D-конец
	Верх.		D25 @200	
Колонны	Нижн.	D28 @100	D25 @200	D28@100
	Верх.		D25 @200	D22@ 200
Ср. линия	Нижн.	D25 @200	D22@ 200	D25 @ 200

Расчетное давление: 68.36 (К)


(KH/m2)

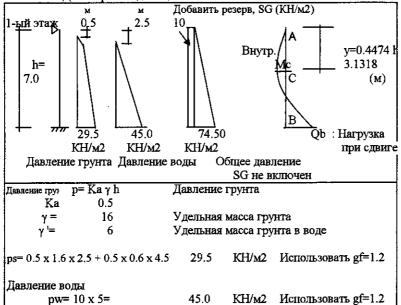
KAPKAC-C

для ширины 8м. Толщина плиты основания 80см

546.84 кн/м

KAPKAC-C w/1=				546.84	Шаг(м)=	7.00		
			(КН.м)	Ţ 	(KHLM)		(KH)	
	FEM	Co-	2232.95	Центр. Мс=	3349.42	Сдвиг Q=	1913.95	

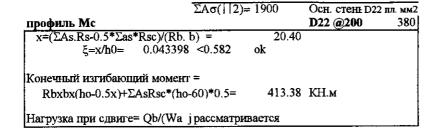
Применить такую же арматуру, как и в Каркасе 3.


Каркас-С обладает почти таким же значением (чуть меньше), что и Каркас-3.

5. 2 Внешняя стена технического этажа

ТОЛЩИНА 55см

Вносимые данные выделены желтым


ИЗГИБАЮЩИЙ МОМЕНТ И НАГРУЗКА ПРИ СДВИГЕ

Для единичной ширин	ы стены		
Mc=0 .06 W h =	131.42	KH.м Wo=77x7x1.2/.	312.9 KH
Mc by SG: 9xW1.h/12	41.34	KH.м W1=10 x 7=	84.0 KH
Итого Мс=	172.76	КН.м	
Mb= 2/15 W h =	292.04	KH.M Wo	312.9 KH
Mb By SG W1.h/8=	73.50	КН.м W1=10 x 7=	84.0 KH
Итого Мb=	365.54	КН.м/м	
Qb= 4/5 Wo=	250.32	КН	
Qb By SG 5/8 W1=	52.50	KH	
Итого Qb=	302.82	KH	

Профиль внешней стены

Профиль Mb

Толщина с	гены h	550.0	MM	ΣAs=	3273.333	Осн.	стень І	25 пл. мм2
	ho:	470.0	MM			D25	@ 150	491
	b :	1000.0	MM				_	
Арматура	Rs:	365.0	Н/м	м2				
Бетон	Rb:	17.0	Н/м	м2				
x=(ΣAs.Rs ξ=	-0.5*Σas*I =x/h0=			582	35.14 ok	MM		
	rreforance	й момент	=					

Стена резервуара воды на тех. этаже

ТОЛЩИНА стены

45см

ПАРАМЕТРЫ НАГРУЗКИ

INPUT DATA in yellow frame

ИЗГИБАЮЩИЙ МОМЕНТ И НАГРУЗКА ПРИ СДВИГЕ

Для единичной ширинг	і стены		· · · · · · · · · · · · · · · · · · ·
Ma= 1/15 W h:	107.80 КН.м		
Mc=0 .043 W h =	69.53 КН.м	W=55*1.2x7/2	231 KH
Mb= 1/10 W h =	161.70 КН.м		
Qb= 4/5 W=	184.8 KH		

TANK Wall Profile

Ю.

Mh profile

Mp brome							
Толщина стены	h	450.0	MM	ΣAs=	2533.333	Осн. стень D22	III.
	ho:	370.0	MM			D22 @150	380
Ед. ппирин	b:	1000.0	MM				
Арматура	Rs:	365.0	H/m	м2		pt = 0.685%	
	Rsc:	300.0	Н/м	м2		-	
Бетон	Rb:	17.0	H/m	м2			
x=(ΣAs.Rs-0.5 ξ=x/h		Rsc)/(Rb. 1 0.073503		582	27.19608 ok	ММ	
Конечный изг (Rbxbx(ho-0.				•0.5)/1(308.1	КН.м КН.м > 147=М	1

 Профиль Ма

 ΣΑσ(||2)= 1693.333 Осн.стены.D18 пл мм2

 D18 @150 254

 x=(ΣΑs.Rs-0.5*Σas*Rsc)/(Rb. b) = 18.17843

 ξ=x/h0= 0.049131 <0.582 ok pt = 0.46%</td>

 Конечный изгибающий момент=

 Rbxbx(ho-0.5x)+ΣAsRsc*(ho-60)*0.5= 111.5 КН.м

 Нагрузка при сдвиге= Qb/(Wa ј рассматривается

 TPOФИЛЬ МС

 ΣΑσ(||2)= 1270 Осн.стены D25 пп. мм2

 D18 @200
 254

 x=(ΣAs.Rs-0.5*Σas*Rsc)/(Rb. b) = 13.63382

 ξ=x/h0= 0.036848 <0.582 ok pt = 0.34%</td>

 Конечный изгибающий момент=

 Rbxbx(ho-0.5x)+ΣAsRsc*(ho-60)*0.5= 237.4 KH.м

 Нагрузка при сдвиге= Qb/(Wa ј рассматривается

ПАРАМЕТРЫ НАГРУЗКИ 2стороннее распределение ВНОСИМЫЕ ДАННЫЕ желтым цвет для ссылки Для един. ппирины стены 1ый этаж 1.5 Внутр y=0.548 h 3.836 h= 7.0 (M) Mb 55.0 55.00 Qb: нагрузка при сдвиге KH/m2КН/м2 общее давление давление воды 0.012горизонтал., центр. 0.008 КН.м 0.023 Md O≠10.33 0.039

ИЗГИБАЮЩИЙ МОМЕНТ И НАГРУЗКА ПРИ СДВИГЕ

Для един. ширины стены
Ма= 0.023 w h2 61.99 KH.м
Мс=0.012 w h2 32.34 KH.м W= 7.7 x 7/2 192.5 KH
Мb=0.043 w h2: 115.89 KH.м
Мd= 0.023 w h2 61.99 KH.м
Qb= 4/5 W= 154 KH

Профиль стены камеры 2 стор. распределение били ссылка

профиль Md 1270 Осн. стены D18 пл. 450.0 MM Σ As= h Толщина стены 370.0 мм D18 @200 254 ho: b: 1000.0 мм 365.0 Н/мм2 pt = 0.34%Rs: Арматура Rsc: 300.0 H/mm2 17.0 H/mm2 Бетон Rb: $x=(\Sigma As.Rs-0.5*\Sigma as*Rsc)/(Rb. b) =$ 13.63382 мм 0.036848 < 0.582 ξ=x/h0= Конечный изгибающий момент= КН.м $(Rbxbx(ho-0.5x)+\Sigma AsRsc*(ho-60)*0.5)/1($ 156.0 KH.m > 61.9 = Md

шкх изовой очистки PACTET ESPERAIOUJETO MOMESTA ("KR.») Козффицион увенувански -7.00 B KAPKAC 11.14 Монент костистного когия -1.04 -1.04 -0.83 -1.24 6.00 0.00 1.20 0.00 -1.80 -1.80 -1.44 -2.16 Расправления жений момент ! Yı Y2 Y3 ¥4 Y5 2 76 2.76 Распределятельный момент 2 DF 0.303 14.31 -2.84 -1.07 -10.40

Bept. M Bioon. 1 Roseil M 0.697 0.411 0.179 0.411 0.411 | 0.179 0.411 0.561 0.439 Воего по вертемальной меня 127.14 -127.14 0.00 127.14 D1 38.53 0.00 0.00 0.00 0.00 / 88.61 / 0.00 -71.32 -55.82 Ci 24.30 D2 -7.36 0.00 0.00 0.00 17.18 35.66 7.59 3.30 7.59 44J1 17.18 0.00 0.94 ---ncir. Percein -16.94 -55.47 25.25 10.90 -25.25 35.29 -55.29 Σ 55,47 146.19 6.20 -152.39 134.73 20.48 -155.21 **Y**7 1 20 2.76 2.76 DF | 0.405 | 0.180 | 0.414 0.293] 0.287 0.252 0.247 0.197 0.303 0.293 0.287 0.127 0.293
 0.193
 0.287
 0.127
 6.287

 269.76
 -269.76
 -269.76

 0.00
 0.00
 34.36
 69.76

 55.90
 0.00
 0.00
 0.00

 -16.38
 -16.02
 0.00
 -16.38

 309.28
 -16.02
 34.36
 -286.14
 FEM 0.493 0.190 0.414 FEM 269.76 D1 109.36 48.61 111.79 C1 31.60 19.26 0.00 D2 -20.62 -9.17 -21.08 269.76 240 2.34 1.88 2.88 0.00 -0.71 27.91 -77.91 26.65 26.07 20.86 32.06 298.81 27.70 -5.18 321.33 279.26 -154.01 -125.25 1.44 0.00 -0.79 -0.65 125.90 -125.90 269.76 -269.76 0.00 0.00 34.36 0.00 0.00 0.00 0.00 1.20 -0.35 -0.34 -0.15 -0.35 269.41 -0.34 34.21 -268.91 Σ 120.34 58.70 -179.05 0.245 0.196 0.117 0.345 365.56 365.36 0.00 0.00 0.00 0.00 0.00 0.00 4.61 0.00 1.22 2.01 1.14 0.66 2.01 367.57 3.47 0.66 364.76 | 0.326 | 0.183 | 0.193 | 0.296 | 365.56 | 398.10 | 0.241 | 0.00 | 22.30 | 1.17 | 0.00 | 0.766 | 4.35 | 4.52 | 6.95 | 355.47 | 16.56 | 4.78 | 367.23 | DF 0.300 0.173 0.527 | DF | 0.300 | 0.173 | 0.537 | | FEM | ... 0.291 0.182 0.236 0.291 0.381 | 0.239 365.56 0.00 0.00 | 358.10 | 3 -365.56 0.00 0.00 358.10 -220.17 -137.93 358.10 -358.10 0.00 0.00 0.00 0.00 / 0.00 0.00 0.00 / -110.08 41.91 26.26 / 41.91 96.39 0.00 0.00 0.00 -33.28 -18.92 -10.91 -33.28 428.67 -18.92 -10.91 -398.84 0.00 -31.12 19.13 11.99 / 41.91 26.26 / 400.01 26.26 -426.27 157.07 -157.07 3.32 3 72 1 32 DF 0.478 0.189 0.333 FEM -429.60 D1 205.22 81.31 143.07 0.320 0.160 0.200 0.320 619.38 -610.38 0.00 0.00 0.00 0.00 0.331 0.150 0.188 0.331 0.341 0.155 0.194 0.310 380.53 -610.38 0.163 0.735 0.102 | 0.131 | 0.139 | 0.188 | 0.51 | | 429.60 | 380.53 | | 16.24 | -7.36 | 9.23 | -16.24 | | 0.00 | 0.00 | 0.00 | 39.24 | | 12.96 | -5.89 | -7.38 | -12.98 | | 400.38 | -13.25 | 16.61 | -370.52 | 0.200 0.320 0.341 0.155 0.194 0.310 390.53 -610.38 78.47 35.59 44.60 7.1.18 -8.12 -25.69 -0.69 0.00 11.78 5.34 6.69 10.68 462.66 15.25 30.60 528.51 429.60 -429.60 0.00 0.00 0.00 0.00 71.53 0.00 0.00 8.12 610.38 -610.38 610.38 610.38 610.38 0.00 0.00 0.00 0.00 35.59 0.00 0.00 0.00 -11.38 -5.69 -7.13 -11.38 634.59 -5.69 -7.13 -621.76 -99.34 -448.81 -62.23 C1 -219.11 54.78 0.00 D2 78.50 31.10 54.71 Σ 64.61 167.19 -231.80 0.00 0.00 0.00 49.67 15.89 7.94 9.95 15.89 626.27 7.94 9.95 464.16 0.00 584.64 -68.97 -83.92 -379.17 -52.58 427.12 -243.34 -183.78 5.25 1.66 1.66 1.60 15.00 9 00 8.00
 DF
 0.36
 0.54

 FEM
 1201.1

 D1
 -438.22
 -762.91

 C1
 102.61
 0.00

 D2
 -37.44
 -45.18
 0.46 -1201.1 0.00 0.00 66.51 -1134.6
 0.46
 0.08
 0.46

 -1291.1
 1201.1

 0.00
 0.00
 0.00

 381.46
 0.00
 0.00

 174.85
 31.76
 174.85
 9.08 0.46 1201.1 9.00 0.00 0.45 / 0.09 0.45 -1792.9 / 1792.9 0.00 / 0.00 0.00 -123.79 / 0.00 0.00 B 1792.9 -1792.9 | 1792.9 -0.00 | 0.00 | 0.00 -0.00 | 0.00 | 311.81 -1792.9 623.62 / 1169.28 3.68 -141.43 0.00 / -224.40 12-5 12.08 66.51 8.4 1126.2 -141.25 -1934.1 56,08 / 11.64 56.08 -29.31 -141.25 78.05 146.35 373.0 373.0 31.8 1376.0 -1407.7 V 11.6 1849.0 -29.3 1963.5 -1021.2 1091.2 D KAPKAC Υı Y2 ¥3 ¥4 ¥5 ¥7 Y6 2.76 2.76 2.76 DF 0.30 FEM 0.39 -252.09 0.41 9.18 0.41 0.18 -252.09 0.56 0.44 252.09 -65,19 65.19 252.09 -76.76 -33.38 76.76 33.38 -141.42 -110.67 175.70 76.76 38.38 103,54 87.85 0.00 C1 31.60 / 38.38 0.00 44.80 19.48 78,38 -70.71 51.77 0.72 D2 2.05 Σ 110.05 4.72 51.84 22.54 -15.76 29.04 -28.64 -22.41 211.33 -55.92 119.33 148.38 52.86 -190,22 133.80 -133.80 3.32 0.33 0.26 0.41 0.55 0,45 279.26 279.26 92.18 73.74 113.34 -154.01 -125.25 18.04 -55.34 -77.01 37.73 30.18 46.39 147.94 48.59 -196.53 56.67 0.00 -31.25 -25.42 150.67 -150.67 DF 0.30 0.17 0.33 | FEM 363.56 | 363.56 | 199.36 63.21 192.79 | 199.37 0.00 | 192.72 192.73 192.75 | 192.73 192.53 192.75 | 192.13 192.75 | 192.75 0.33 0.19 0.19 0.30 365.56 358.10 0.35 0.20 0.11 0.35 365.56 -365.56 0.20 0.11 0.35 -365.56 0.38 0.24 0.00 0.38 0.61 0.39 0.38 0.24 | 363.36 | 365.36 | 3 365.56 | 0.50 | 358.10 358.10 6.00 0.00 0.00 0.00 -1.10 0.00 0.00 0.00 0.42 0.26 0.00 0.42 358.10 358.10 358.10 0.00 0.00 0.00 0.00 0.00 0.00 16.69 -1.23 -5.34 -3.04 -1.75 -5.34 0.00 0.00 -220.17 -137.93 0.00 0.00 0.00 0.00 0.00 -110.08 0.00 -59.61 36.65 22.96 / 41.91 25.26 / 41.91 360.22 -3.04 14.94 -372.12 357.42 0.26 0.00 -357.68 -426.27 174.58 -174.58 3.32 3.32 0.26 0.37 0.15 0.23 362.18 4610.38 0.348 91.06 36.08 37.38 0.00 488.21 0.69 0.00 17.62 25.28 10.02 15.99 443.28 48.11 45.40 536.81
 0.25
 0.36
 0.14
 0.25

 362.18
 -362.18

 0.00
 0.00
 0.00
 0.00

 0.00
 0.00
 0.00
 31.74

 -7.93
 -41.37
 -4.51
 -7.93

 334.25
 -11.37
 -4.51
 338.37
 0.24 | 0.38 | 0.15 | 0.24 0.25 0.36 0.14 0.29 0.24 0.38 0.15 0.24 0.31 0.49
 0.24
 0.38
 0.15
 0.24

 610.38
 -610.38
 -610.38

 0.00
 0.00
 0.00
 0.00

 0.00
 0.00
 -95.14
 -95.14

 22.61
 35.75
 14.17
 22.61

 637.99
 35.75
 14.17
 682.91
 362.18 - 362.18 0.00 0.00 0.00 0.00 0.00 60.01 0.00 0.00 0.00 -15.07 21.61 8.56 0.00 407.42 21.61 4.56 362.18 | 0.02 | 0.05 | 0.15 | 0.24 | 0.06 | 0.00 | 610.38 -190.28 -300.89 -119.21 0.00 355.20 -68.97 -89.23 -141.10 -55.90 Ε 32.41 154.43 -186.84 330.87 -86.79 -244.08 914 2 00 R M 0.22 0.45 0.70 0.22 0.39 0.25 0.38 0.60 .2301.1 1291.1 0.00 0.00 0.00 0.00 381.46 0.00 0.00 148.17 84.11 | 1201.1 | 1201.1 | 1201.1 | 0.00 | 0 FEM Di 1201.1 1782.9 -1792.9 1792.9 -17929 -1201.1 / 1782.9 -237.50 / -136.42 -207.88 9.00 0.00 -1792.9 -08.22 -762.91 0.00 0.00 0.00 0.00 1082.51 710.39 -150.45 86.51 0.00 -31.56 -54.95 -103.94 / 0.00 0.00 39.13 / 25.68 39.13 0.00 | 45.53 0.00 -18.59 | -10.68 -16.27 0.00 541.25 -133.72 -203.77 0.00 0.00 / -18.59 / -1457.2 / 201.77 90.84 / 59.61 1434.4 85.1 1372.3

-101.6 155F.R

25.7 1832.0

619.56

-619.56 V

-133.7 2130.4

383.3 383.3

В c Ε 1 12 3.32 0.423 0.153 155.59 DIF FROM / 0.606 -155.59 0.423 0.406 | 0.147 0.753 | 0.247 -155.59 0.00 116.87 155.59 -88.01 -28.86 0.00 0.00 47.13 0.00 1 1777 -7.86 -8.66 -20.08 21.65 7.10 6.00 3.85 -44.01 -16.63 -6.01 19.42 7.02 16.63 21.41 Σ 48.82 -48,88 186.09 -6.01 159.30 -2.51 -156,79 41.84 -41.84 7 14 3.32 0.406 0.330 0.264 155.59 --60.15 -51.36 -41.08 DF 0.231 59.79 0.00 30.66 36.71 29.86 -23.88 115.52 81.21 34.31 D2 L92 / Σ 61.22 -61.22 100 3.32 3.32 DF 0.325 0.156 0.519 8.305 0.191 0.199 0.305 297.97 -297.97 0.210 | 0.121 | 0.33 0.324 | 0.203 | 0.117 | 0.351 0.527 0.300 0.173 FEM 23.5 0.156 0.519
FEM 297.97
D1 96.84 46.56 154.57
C1 33.16 18.01 0.00
D2 -16.63 -7.99 -26.54

\$\tilde{\Sigma}\$ 113.37 56.37 -169.94 297.97 -297.97 297.97 -232.19 232.29 | 297,97 | 297,97 | 0.00 | 0.0 | 297.97 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -10.64 | 3.56 | 2.23 | 0.00 | 3.56 | 301.53 | 2.23 | 0.00 | 305.05 -21.29 -13.34 -7.69 -23.47 -122.50 -69.62 -40.17 2.00 -7.37 -2.84 -61.25 23.12 14.49 8.36 25.49 299.81 -5.21 -2.18 -291.42 2.08 -11.73 -16.59 -14.43 22.54 12.81 7.39 120.60 73.40 47.20 1 12 3.32 3.12 | 0.238 | 0.376 | 0.149 | 0.238 | | 379.37 | 276.63 | | 14.96 | 23.65 | 9.37 | 14.96 | | 52.53 | 0.90 | 0.00 | 0.00 | | 12.58 | 19.89 | -7.88 | -12.58 | | 364.96 | -43.44 | -17.25 | 304.17 | DF 0.493 0.195 0.312 0.279 0.442 0.149 5.218 0.232 0.367 0.145 0.256 -175.29 -14.73 -25.92 -339.57 FEM 276.63 -276.63 0.00 0.00 0.00 0.00 276.63 23.51 -37.18 175.29 -58,38 483.74 -33.18 0.00 69.38 -6.67 -29.19 -7.78 -12.30 -4.87 -8.58 245.34 19.90 -26.27 -238.97 -12.96 -219.10 -34.81 88.88 127.49 50.51 192.83 -175.35 -17.48 5.25 5.24 8.00 0.247 0.376 1792.9 0.365 | PEM | 1792.9 | Di | -710.41 -1082.4 | C1 | E3.70 | 0.00 | D2 | -33.16 | -50.53 | 1702.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 103.72 39.80 76.12 1792.9 1201.1 1201.1 0.00 -438.21 211.46 | 138.77 241.59 0.00 | 18.59 381.45 -762.89 438.21 120.79 -41.87 -11.83 0.00 208.22 136.65 208.22 142.93 93.80 163.30 -50.13 / 28.79 -659.9 659.9 124.B 2001.2 -1832.7 -26.1 1858.9 -1438.6 V 214.0 1224.6 508.5 -308.5 С D Ε 3.32 3.32 0.363 0.236 / 0.400 155.39 - -116.57 -14.00 -9.13 -15.46 0.00 0.00 -36.75 13.35 8.68 14.72 0.377 155.59 0.606 PEM Di -155.59 94.26 155.59 0.00 0.00 116.87 РАСЧЕТ ИЗГИБАЮЩЕГО МОМЕНТА (.К.Н.М) 61.33 -73.50 -43.37 0.00 0.00 4 KAPKAC ci / 12.25 47.13 0.00 -7.01 -7.73 -36.26 27.67 16.33 D2 -4.83 -15.14 -9.85 -15.14 6R.75 468.75 187.59 9.85 -177.74 154.91 -0.44 Ø.31 **-**Ø.31 2.16 2.16 2.16 3.32 3.32 3.32 0.289 0.235 0.188 0.285 286.07 286.07 0.00 0.00 0.00 0.00 18.83 0.00 0.00 0.00 5.44 4.42 3.54 5.44 289.47 4.42 3.54 391.51 DF 0.449 0.551 FEM -155.59 D1 69.78 85.81 C1 83.42 18.83 D2 .36.89 -45.36
 0.289
 0.235
 0.188
 0.289

 135.99
 -286.07

 37.67
 30.63
 24.51
 37.67

 42.90
 0.00
 30.66
 0.00

 0.280
 0.228
 0.182
 0.398

 286.07
 .286.07
 .286.07

 0.00
 0.00
 0.00
 0.00

 0.00
 -10.73
 -4.56
 -51.44

 21.92
 17.50
 14.00
 23.72
 PEU 0.00 -39.24 -21.69 26.17 19.31 15.45 D2 -36.89 Σ 96.31 -21.24 -17.27 -13.82 -21.24 214.92 13.36 41.35 -269.64 -96.31 307.59 6.77 9.44 -323.79 189.36 -110.59 -78.76 3.32 3.32 DF 0.257 0.333 0.410 0.291 0.182 0.236 0.291 0.291 0.182 0.236 0.291 PEM - 380.53 0.449

D1 97.72 126.84 135.97

C1 34.65 34.89 0.00

D2 -17.86 -23.18 -28.50

E 114.51 138.55 -235.66 | 380.53 | 0.382 | 0.256 | 0.551 | 380.53 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 77.99 | 0.00 | 11.332 | 0.00 | 0.27.12 | -16.99 | -22.06 | -27.12 | 431.39 | -16.99 | -4.74 | 407.65 | 287,06 287,06 -132,99 -75,58 -78,49 -14,55 -33,58 -45,33 -43,30 24,61 25,55 372.91 4.77 6.19 361.95 182.82 -84.55 -98.26 3.32 1.12 1 37 0.238 0.376 0.149 0.238 354.84 -354.84 0.00 0.00 0.00 0.00 DF 0.493 0.195 0.312
FEM 554.84
D1 174.92 69.30 110.62
C1 355.21 48.86 0.00
D2 151.02 59.83 95.50 0.279 0.442 354.84 0.333 0.478 0.189
 0.279
 0.442
 0.279

 354.84
 -354.84

 0.00
 0.00
 0.00
 354.84 354.84 354.94 9.00 0.00 0.00 0.00 55.31 0.00 0.00 0.00 -13.14 -20.79 8.23 -13.14 397.00 -20.79 8.23 367.98 -118.17 -169.51 -67,16 0.00 69.38 48.27 59.09 -0.47 0.75 -0.30 -0.52 354.37 68.64 -8.56 -414.45 0.00 219.10 37.79 -60.38 -86.61 34.32 176.29 -37.02 -139.26 Σ -29.27 177.99 -148.72 2.00 0.396 0.604 0.357 -1792.9 0.365 1792.9 0.00 0.00 0.00 0.00 / 1201.1 138.77 241.59 FEM 1792.9 Di -710.41 -1082.5 -1792.9 -1792.9 1792.9 -1201.1 0.00 0.00 0.00 105.73 0.00 408.21 0.00 211.46 0.00 762.89 120.79 / -541.26 / C1 / 87.46 0.00 0.00 381.45 -84.75 203.77 -34.65 -52.81 133.72 203.77 -26.12 -39.80 39.80 7 -136.29 -1717.8 89.44 -155.71 -22.89 / -13.15 340.3 657.6 657.6 133.7 1996.7 -26.1 1858.9 49.3 1668.5 -340.3

2-5

OTRCTKA BITA

5 KAPKAC

		3.32	В		3.32		c		3.32		D			3.66		E	
DF 0.45 FEM D1 69.78	0.55 -155.59 85.81	0,36 155.59 0.00	0.29	0.36 -155.39 0.00		155.59	.00	0.42 -155.59 0.00		0.41 155.59 -15.72	0.15 -5.68		0.45 -116.87 -17.32		0.75 116,87 -68,01	0.25	-/
C1 63.42 D2 -28.44 Σ 104.76	-104.76	42.90 -15.25 183.24	0.00 -12.40 -12.40	0.00 -15.25 -170.84		0.00 C	.00 / .20 /	-7.86 3.33 -160.12		0.00 20.08 159.95	5.47 7,26	\angle	-44.01 22.14 -156.07		-8.66 25.21 45.41	-24.82 8.27 -45.41	\angle
2.70 DF 0.26	0.33 0.41	3.32	2.70	0.24 0.29	3.32		.20 .21 0,12	0.33	3.32	0.32	1.20	0.12	0,36	3,66	0.53	1.20	0.17
FEM D1 97.72 C1 30.10	-380.53 126.84 155.97 34.89 0.00	380.53 0.00 77.99	0.00	-380.53 6.00 0.00		380.53	.00 0.00	-380.53 0.00		380.53 30.25	-18.95	-10.93	-287.06 -33.34		287.06 -151.39	-86.04	-49.64
D2 -16.69 Σ 111.13	-21.66 -26.64 140.07 -251.20	-22.67 435.84	-14.20 -14.20	18.44 -22.67 -18.44 -403.20		4.01 2 384.54				0.00 26.40 376.69	3.05 16.54 5.46	9.54 4.23	-75.69 29.10 366.99		-16.67 31.79 150.79	-29.17 18.06 -97.14	-14.43 10.42 -53.64
2.08	l		2.08				.08				2.08					2.08	
DF 0.49	0.20 0.32	3.32	0.38	015 074	3.32		_1	1 044	3.32	L 635 1			0.06	3.66	A 72		- 0.10
DF 0.49 FEM D1 151.96	0,20 0.31 -308.26 60.20 96.10	0.24 308.26 0.00	0.00	0.15 0.24 -308,26 0.00 0.00	332	0.24 6 308.26 9.98 1	.79 6.25	-350.27 9.98	3.32	9.23 350.27 -9.75	0.37 -15.41	0.15 -6.11	0.26 -308.26 -10.74	3.66	0.33 308.26 -102.66	0.48 -147.26	0.19 -58.34
FE26 D1 151.96 C1 -355.21 D2 151.02 Σ -52.23	-308.26	0.24 308.26		-308,26	332	0.24 308.26 9.98 1: 0.00	.79 6.25 .00 0.00 .83 0.73	350.27 9.98 -4.87	3.32	350.27	0.37	-6.11 -9.47 -1.97	-306.26	3.66	308.26	0.48	
FEM D1 151.96 C1 -355.21 D2 151.02 E -52.23 5.25	308.26 60.20 96.10 48.86 0.00 59.83 95.50 168.89 -116.66	0.24 308.26 0.00 48.05 -12.61 343.70	0.00 0.00 -19.93	308,26 0,00 0,00 0,00 4,99 -7,90 -12,61 -7,90 -315,87	8.00	0.24 (308.26 9.98 1: 0.00 (1.16 319.40 1:	.79 6.25 .00 0.00 .83 0.73 .42 6.98	359.27 9.98 -4.87 1.16 -344.00	3.32 8.00	350.27 -9.75 -4.99 -3.15 342.37	0.37 -15.41 69.38 -4.98	-6.11 -9.47 -1.97 -17.55	-308.26 -10.74 -51.33 -3.47 -373.81	3.65 9.14	308.26 -102.66 -5.37 -56.85 143.38	0.48 -147.26 219.10 -81.55	-38.34 -43.02 -32.31 -133.67
FE26 D1 151.96 C1 -355.21 D2 151.02 Σ -52.23	-308.26 60.20 96.10 48.86 0.00 59.80 95.50	0.24 308.26 0.00 48.05 -12.61 343.76	0.00 0.00 -19.93 -19.93 5.25	0.00 0.00 0.00 4.99 -7.90 -12.61		0.24 (308.26 9.58 1: 0.00 (1.16 319.40 1:	.79 6.25 .00 0.00 .83 0.73 .42 6.98	9.98 -4.87 1.16 -344.00 0.38 1792.9 0.00		350.27 -9.75 4.99 -3.15	0.37 -15.41 69.38 -4.98 48.99	-6.11 -9.47 -1.97	-308.26 -10.74 -51.33 -3.47		308.26 -102.66 -5.37 -56.85	0.48 -147.26 219.10 -81.55 -9.71	-58.34 -43.02 -32.31