Appendix B-3

Result of Concrete Neutralization Test

APPENDIX B-3 Result of Concrete Neutralization Test

B.3.1 Object of test

1) To understand the current status of the concrete of the facilities in the STP
2) To evaluate the durability and remaining life of the facilities
3) To clarify the necessity of the rehabilitation of the facilities

B.3.2 Facilities subject to the test

Table B.3.1 shows selected 9 facilities and the 10 points for the test. The facilities are the principle treatment unit process in the STP.

B.3.3 Method for the test and analysis

1) After the chipping the surface concrete, 1% phenolphthalein solution is splayed on the surface of the chipped concrete.
2) The depth from the surface to the boundary of the red discoloration is measured as layer of concrete neutralization
3) From the equation of time passed and neutralization depth shown below, co-efficient of neutralization (a) for each point of the facility is found by application of specific value of the depth (mm) and years after construction. With substituting the co-efficient (a) and concrete cover depth on the reinforcement in said equation, remaining durable life (t) is calculated.

$$
\mathrm{h}=\mathrm{a} \times \sqrt{ } \mathrm{t}
$$

h: neutralization depth
a: co-efficient
t : years after construction

B.3.4 Condition of examination

1) Concrete cover depth is assumed to be 40 mm from Snip
2) Years after construction is shown in the Table. A part of the facilities got the rehabilitation work in the past. (1998)

B.3.4 Result

1) Depth of neutralization is approximately 15 mm averagely. Max is 45 mm of digestion tank, while minimum is 6 mm of tanks in the outside.
2) Remaining life were calculated to be from $4 \sim 11$ years. The value of $128.44,503.75$ years shall be neglected as incorrect. It means only they have sound concrete cover. Also the value of 0 years shall be neglected because its structure is brick wall as confirmed at the site.
3) Concrete condition is generally not good revealing lack of material and construction quality control.

B.3.5 Plan of rehabilitation in this project

1) Needs

From the test and observation, rehabilitation of concrete surface is urgently requested to prolong their life.
2) Rehabilitation extent

The neutralization has not reached to the reinforcement yet. Therefore surface rehabilitation is considered to be effective for rehabilitation.
3) Procedure

After surface chipping or blasted by water jet until reinforcement, the surface shall be treated by epoxy solution as a primer. No shrinking mortar shall be used for new concrete cover by plastering. This work shall be conducted under moderate climate to keep the quality of the concrete.

	able B-		Concrete Neutralization Ex	ination					
	No.	Facility	Location of inspection point	Observation	Period of operation (years)	Concrete cover (mm)	$\begin{gathered} \hline \text { Depth of } \\ \text { neutralization } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	Coefficient	Remaining life
	1	Inlet Chamber	Inside the cover (observation only)	Dirt, rust, humidity.	36	40	-	-	-
	2	Inlet Pump Station	Internal wall of screen room	Chalking was confirmed on the surface broadly.	36	40	30	5	4
	3	-ditto	External superstructure wall	Brick inside the finish mortar	36	40	40	6.7	0
	4	Grit Chamber	External wall of channel	Calcification. Cracks.	36	40	30	5	4
	5	Primary Sedimentation	Outer wall of tank	Dirt. (1998, rehabilitation made)	4	40	6	3	128.44
	6	Aeration Tank	Wall of tank	Dirt. (1998, rehabilitation made)	4	40	15	7.5	11.11
$\underset{\substack{\infty \\ \hline \\ \hline}}{ }$	7	Secondary Sedimentation	Outer wall of tank	Dirt. (1998, rehabilitation made)	4	40	6	3	128.44
ω	8	$\begin{gathered} \text { Distribution } \\ \text { Chamber } \\ \hline \end{gathered}$	External wall of chamber	Dirt. (1998, rehabilitation made)	4	40	35	17.5	0.08
	9	Sludge Thickener	Outer wall of tank	Dirt. (1998, rehabilitation made)	4	40	6	3	128.44
	10	Digestion tank	External wall of tank	Dirt. (1998, rehabilitation made)	4	550	45	22.5	503.75
	Average						13.9		

Notes

1) In 1998, rehabilitation was made for the part of facilities.
2) Depth of concrete cover follows the statement of SNIP(40mm cover). No specification on the drawing is confirmed.
3) Depth of concrete is investigated on the site by phenolphthalein method.
4) Outer cover (Brick wall) of the digestion tank is 500 mm from the drawing. Inner structure is RC with thickness of 500 mm .
5) Wall of super structure of pumping station is brick made finished by 10 mm thick mortar surface.

1. Inlet chamber

The whole view

Figure B.3.1
2.Inlet pump station(1/2)

Observation

Figure B.3.2

8.Distribution tank(secondary sedimentation tank)

Figure B.3.9

9.Sludge Thickener

The whole view

Figure B.3.10

Appendix B-4

Result of Sludge Coagulation Experiment

APPENDIX B-4 Result of Sludge coagulation experiment

B.4.1 Object of experiment

1) To confirm the characteristics of the sludge generated in the STP
2) To confirm the possibility of polymer supply for the mechanical thickening and dewatering
3) To clarify the proper type of polymer for this STP
4) To evaluate the practical use of mechanical thickener and dewatering

B.4.2 Sludge subject to the test

1) Raw sludge from primary sedimentation tank

Concentration is approximately 5%, and black colored.
2) Waste sludge from secondary sedimentation tank

Concentration is approximately 0.2%, brown colored and it has good settling characteristics.
Note: Since digestion tank was not in operation because of mechanical breakdown, digested sludge was not possible to use in this experiment.

B.4.3 Material, method for the experiment

1) Coagulant

Two types of polymer were prepared for this experiment. They are J apanese and German product. German one is supplied to STP for sales sample from Almaty. Also Alum was prepared for preliminary confirmation of effectiveness of inorganic chemicals. Coagulant was dissolved in the tap water with the concentration of $2000 \mathrm{mg} / \mathrm{l}$ prior to the experiment.
2) Filter

Two types of filter media were prepared. One is ordinary filter for the belt press, and the other is mesh belt that is made of fine steel textile.
3) Apparatus

Specific steel cylinder for the experiment and necessary appurtenances were used. (see the photo)
4) Method

120 seconds filtration in the cylinder after 60 seconds mixing with the coagulant by magnetic stirrer was made. After this step, thickened condition was observed, and filtrate /residue on the filter was examined.
5) Run number

20 run were planned, and 15 run were conducted from the observation.

B.4.4 Result

The result is shown in Table B.4.1. And the photo of the experiment is shown in Figure B.4.1~B.4.19

1) Cation polymer is indispensable for thickening the sludge.
2) Around 0.4% concentration of coagulant is recommended from the result for both of raw sludge and waste sludge. 0.2% is not enough for the thickening process.
3) Both product in German and J apan is almost equivalent with regard to performance.
4) Ordinary filter for belt press dewatering is effective enough when gravity belt filter type is adopted.

B.4.6 Conclusion

1) Sludge characteristics

Raw sludge is partially digested and thickened because of long detention time that is brought by method of operation.

Waste sludge is dark-brown colored and has characteristic of easy-sedimentation.
2) Supply of coagulant

It was confirmed that German product supply is already established through Almaty in Kazakhstan. The product shows the equivalent good performance to J apan product for coagulation. There will be no problem for chemical supply.
3) Suitable coagulant

J udging from the experience of using Alum for the thickening prior to the polymer use, cation polymer is the most suitable for this purpose.
4) Suitability of mechanical thickener and dewatering

No problem is found in this regard.

Table B-4-1 Site Astana STP
Coagulant
Date 2002/12/20 Waste sludge concentration 0.20 (\%)
Stirring 1st $120 \mathrm{rpm} \quad 60 \mathrm{sec}$ concentration \qquad (\%)

Appendix B-5
Results of Water and Sludge Quality Analysis

APPENDIX B-5 Result of Water and Sludge Quality Analysis

Refer to APPENDIX C-2

