# APPENDIX B SEWERAGE FACILITIES

Appendix B-1

Design Calculations for Sewage Treatment Plant

# Appendix. B.1 CAPACITY CALCULATION OF SEWAGE TREATMENT PLANT

#### 1 BASIC CONDITIONS

#### 1.1 BASIC ITEMS

(1) Name : <u>Astana Sewage Treatment Plant</u>

(2) Land Area : Approximately 43 ha

(3) Ground Level :  $\pm 345.0 \sim \pm 351.3 \text{ m}$ 

(4) Inlet Pipe Invert Level: +338.2 m

(5) Inlet Pipe Diameter : <u>Dia 1400mm x 2</u>

(6) Land Use : Exiting STP

(7) Collection System : Separate Sewer System

(8) Treatment Method: [Sewage Treatment] Conventional Activated Sludge

[ Sludge Treatment ] Thickening + Digestion + Dehydration

(9) Effluent Discharge Point : Taldy Kol Reservoir

(10) Discharge Point Water Level: +346.8 m

(11) Design Target Year : 2010

# 1.2 Design Population

Design Population: Proposed Project: 490,000 (2010)

Ultimate: 800,000 (2030)

# 1.3 Sewage

# 1.3.1 Design Sewage Flow

|                  | ITEM                            | m <sup>3</sup> /day | m <sup>3</sup> /hr | m <sup>3</sup> /min | m <sup>3</sup> /sec |
|------------------|---------------------------------|---------------------|--------------------|---------------------|---------------------|
|                  | Daily Average Flow              | 114,000             | 4,750.0            | 79.17               | 1.319               |
| Proposed Project | $(Q_1)$                         | $(Q_{1-D})$         | $(Q_{1-H})$        | $(Q_{1-M})$         | $(Q_{1-S})$         |
| d Pr             | Design Daily Flow               | 136,000             | 5,666.7            | 94.44               | 1.574               |
| ose              | $(Q_2)$                         | $(Q_{2-D})$         | $(Q_{2-H})$        | $(Q_{2-M})$         | $(Q_{2-S})$         |
| Prop             | Design Maximum Flow             | 200,000             | 8,333.3            | 138.89              | 2.315               |
|                  | $(Q_3)$                         | $(Q_{3-D})$         | $(Q_{3-H})$        | $(Q_{3-M})$         | $(Q_{3-S})$         |
| Ultimate         | Daily Average Flow (Q'1)        | 181,000             | 7,541.7            | 125.69              | 2.095               |
|                  | Design Average Daily Flow (Q'2) | 217,000             | 9,041.7            | 150.69              | 2.512               |
|                  | Maximum Flow (Q' <sub>3</sub> ) | 319,000             | 13,291.7           | 221.53              | 3.692               |

#### [Sewage Flow Calculation]

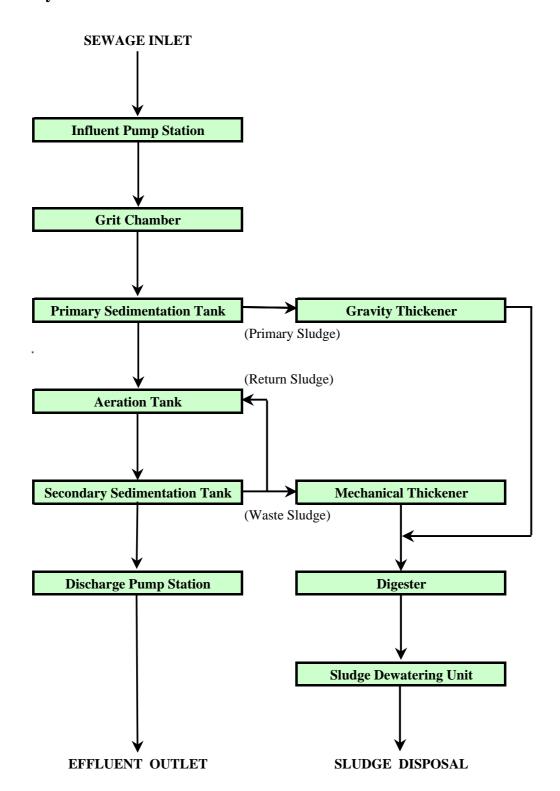
# (1) Proposed Project Flow

| $Q_{1-D} = Q_2 / 1.2^{*1} =$                  | 113,333 m <sup>3</sup> /day      | adopt | $114,000 \text{ m}^3/\text{day}$ |
|-----------------------------------------------|----------------------------------|-------|----------------------------------|
| Q <sub>2-D</sub> : Design Capacity for 2010 = | $136,000 \text{ m}^3/\text{day}$ | adopt | $136,000 \text{ m}^3/\text{day}$ |
| $Q_{3-D} = Q_2 \times 1.47^{*2} =$            | 199,920 m <sup>3</sup> /day      | adopt | 200,000 m <sup>3</sup> /day      |

<sup>\*1):</sup> Peak Factor for Drinking Water Supply System (F/S p4-4)

# (2) Ultimate Flow

| $Q'_{1-D} = Q_2 / 1.2^{*1} =$                   | $180,702 \text{ m}^3/\text{day}$ | adopt | 181,000 m <sup>3</sup> /day |
|-------------------------------------------------|----------------------------------|-------|-----------------------------|
| $Q'_{2-D}$ : Design Capacity for 2030 $^{*3}$ = | 216,842 m <sup>3</sup> /day      | adopt | 217,000 m <sup>3</sup> /day |
| $Q'_{3-D} = Q_2 \times 1.47^{*2} =$             | 318,758 m <sup>3</sup> /day      | adopt | 319,000 m <sup>3</sup> /day |


<sup>\*3):</sup> Projected Peak Day Wastewater Flow for 2030 (F/S p6-3)

# 1.3.2 Design Sewage Quality

|      | Influent | Primary 7 | Γreatment | Secondary | Treatment | T-4-1 D                |
|------|----------|-----------|-----------|-----------|-----------|------------------------|
| ITEM |          | Removal   | Effluent  | Removal   | Effluent  | Total Removal<br>Ratio |
|      | (mg/L)   | Ratio     | (mg/L)    | Ratio     | (mg/L)    |                        |
| BOD  | 170      | 30%       | 119       | 83.2%     | 20        | 88%                    |
| SS   | 210      | 40%       | 126       | 84.1%     | 20        | 90%                    |

<sup>\*2):</sup> SNiP 2.04.03-85, p4

# 1.4 System Flow Chart



# 1.5 Design Criteria

|       | ITEMS                                                        | UNIT                                | Design Criteria | Application |
|-------|--------------------------------------------------------------|-------------------------------------|-----------------|-------------|
| 1.5.1 | Influent Pump Station                                        |                                     |                 |             |
|       | calculated by Design Maximum F                               | low                                 |                 |             |
| (1)   | Effluent Velocity                                            | m/sec                               |                 | 1.5 to 3.0  |
| (2)   | Retention Time                                               | min                                 |                 | 5           |
| 1.5.2 | Grit Chamber                                                 |                                     |                 |             |
|       | calculated by Design Maximum                                 | 1                                   |                 |             |
| (1)   | Hydraulic Load                                               | m <sup>3</sup> /m <sup>2</sup> /day | -               | 2,640       |
| (2)   | Retention Time                                               | sec                                 | -               | 25          |
| 1.5.3 | Primary Sedimentation Tank calculated by Design Daily Flow   | 7                                   |                 |             |
| (1)   | Hydraulic Load                                               | $m^3/m^2/day$                       |                 | 30.0        |
| (2)   | Minimum Settling Time                                        | hour                                | 1.5             | 1.5         |
| (3)   | Water Depth                                                  | m                                   | 2.5 - 4.0       | 3.5         |
| (4)   | Liquid Temperature                                           | °C                                  |                 | 15          |
| (5)   | Weir Loading                                                 | m <sup>3</sup> /m/day               |                 | 250         |
| (6)   | Solids Recovery                                              | %                                   |                 | 40          |
| (7)   | Sludge Water Content                                         | %                                   |                 | 98.0        |
| 1.5.4 |                                                              |                                     |                 |             |
|       | calculated by Design Daily Flow                              | /<br>                               |                 |             |
| (1)   | BOD-SS Load                                                  | kg/kg/day                           | 0.1 - 0.25      | 0.1 - 0.25  |
| (2)   | MLSS Concentration                                           | mg/l                                | 1,500 - 2,000   | 2,000       |
| (3)   | Return Sludge Ratio                                          | %                                   |                 | 100         |
| (4)   | Water Depth                                                  | m                                   |                 | 4.0         |
| (5)   | Hydraulic Retention Time (HRT)                               | hour                                | 6.0 - 8.0       | 8.0         |
| 1.5.5 | Secondary Sedimentation Tank calculated by Design Daily Flow |                                     |                 |             |
| (1)   | Hydraulic Load                                               | $m^3/m^2/day$                       |                 | 25.0        |
| (2)   | Minimum Settling Time                                        | hour                                |                 | 2.0         |
| (3)   | Water Depth                                                  | m                                   |                 | 4.0         |
| (4)   | Sludge Quality                                               | mg/l                                |                 | 5,000       |
| (5)   | Influent Sewage Temperature                                  | degree                              |                 | 15          |
| (6)   | Weir Loading                                                 | m <sup>3</sup> /m/day               | 691 - 864       | 700         |
| (7)   | Sludge Water Content                                         | %                                   |                 | 99.5        |
| 1.5.6 | Discharge Pump Station calculated by Maximum Flow            |                                     |                 |             |
| (1)   | Effluent Velocity                                            | m/sec                               |                 | 1.5 to 3.0  |
| (2)   | Retention Time                                               | min                                 |                 | 5           |

|            | ITEMS                                           | UNIT               | Design Criteria | Application |
|------------|-------------------------------------------------|--------------------|-----------------|-------------|
| 1.5.7 Gra  | nvity Thickener                                 |                    |                 |             |
|            | calculated by Design Daily Flow                 |                    |                 |             |
| (1) Ret    | tention Time                                    | hr                 | 12 to 15        | 15          |
| (2) Wa     | iter Depth                                      | m                  |                 | 3.5         |
| (3) Sol    | ids Recovery                                    | %                  |                 | 90          |
| (4) Wa     | iter Content                                    | %                  |                 | 95.0        |
| 1.5.8 Slu  | dge Holding Tank                                |                    |                 |             |
|            | calculated by Design Daily Flow                 |                    |                 |             |
| (1) Ret    | tention Time                                    | hr                 |                 | 3           |
| 1.5.9 Me   | chanical Thickener                              |                    |                 |             |
|            | calculated by Design Daily Flow                 | _                  |                 |             |
| (1) Sol    | ids Loading (Screw Press Type)                  | m <sup>3</sup> /hr |                 | 75          |
| (2) Sol    | ids Recovery                                    | %                  |                 | 95          |
| (3) Wa     | ter Content                                     | %                  |                 | 95.0        |
| 1.5.10 Thi | ckened Sludge Holding Tank                      |                    |                 |             |
| (1) Ret    | tention Time                                    | hr                 |                 | 3           |
| 1.5.11 Dig |                                                 |                    |                 |             |
|            | calculated by Design Daily Flow                 |                    |                 |             |
| (1) Dig    | gestion Time                                    | day                |                 | 6           |
| (2) Dig    | gestion Ratio                                   | %                  |                 | 50          |
| (3) Org    | ganic Ratio                                     | %                  |                 | 80.0        |
| ` '        | ter Content                                     | %                  |                 | 97.0        |
| 1.5.12 Dig | gested Sludge Holding Tank                      |                    |                 |             |
|            | calculated by Design Daily Flow                 |                    |                 |             |
|            | tention Time                                    | hr                 |                 | 3           |
| 1.5.13 Slu | dge Dewatering Unit                             |                    |                 |             |
| (1) 0.1    | calculated by Design Daily Flow                 | 1 /1               |                 | 450         |
|            | ids Loading (Screw Press Type)                  | kg/hr              |                 | 450         |
| ` '        | ter Content                                     | %                  |                 | 80.0        |
|            | dge Recovery                                    | %                  |                 | 90          |
| 1.5.14 Wa  | ste Water Tank  calculated by Design Daily Flow |                    |                 |             |
| (1) Pot    | tention Time                                    | hr                 |                 | 1           |
| (1) Ret    |                                                 | 111                |                 | 1           |
| 1.5.15 110 | calculated by Design Daily Flow                 |                    |                 |             |
| (1) Ret    | tention Time                                    | day                |                 | 0.5         |
| . ,        | eated Water Tank                                |                    |                 |             |
|            | calculated by Utility Water Flow                |                    |                 |             |
| (1) Ret    | tention Time                                    | min                |                 | 1           |
| . ,        | lity Water Tank                                 |                    |                 |             |
|            | calculated by Utility Water Flow                |                    |                 |             |
| (1) Ret    | ention Time                                     | hr                 |                 | 2           |
| 1.5.18 Pot | able Water Tank                                 |                    |                 |             |
|            | calculated by Utility Water Flow                |                    |                 |             |
| (1) Ret    | ention Time                                     | hr                 |                 | 2           |

# 1.6 Material Balance Calculation

# 1.6.1 Design Condition

| Incoming Sewage Flow                                    | m <sup>3</sup> /d  | 136,000 |
|---------------------------------------------------------|--------------------|---------|
| Inlet SS                                                | mg/l               | 210     |
| Outlet SS                                               | mg/l               | 20      |
| Solids Removal Efficiency of Primary Sedimentation Tank | %                  | 40      |
| Solids Content of Primary Sludge                        | %                  | 2.0     |
| Solids Yield Coefficient (Gross)                        | %                  | 100.0   |
| Solids Content of Waste Sludge                          | %                  | 0.5     |
| Recovery Ratio of Gravity Thickener                     | %                  | 90.0    |
| Solids Content of Gravity Thickened Sludge              | %                  | 95.0    |
| Solids Recovery of Mechanical Thickener                 | %                  | 95.0    |
| Solids Content of Mechanically Thickened Sludge         | %                  | 5.0     |
| Sludge Digestion Ratio                                  | %                  | 50.0    |
| Feed Sludge Organic Content                             | %                  | 80.0    |
| Digestion Gas Generation per Organic Load               | m <sup>3</sup> /kg | 0.5     |
| Solids Recovery of Sludge Dewatering                    | %                  | 90.0    |
| Water Content of Sludge Cake                            | %                  | 80.0    |

#### **1.6.2 Result**

#### (1) Primary Sedimentation Tank

| Primary Sludge Solids Content         | %       | 2.0    |
|---------------------------------------|---------|--------|
| Primary Sludge Generation (dry solid) | kg/d    | 12,932 |
| Primary Sludge Volume                 | $m^3/d$ | 647    |

(2) Secondary Sedimentation Tank

| Secondary Sludge Concentration      | %       | 0.5    |
|-------------------------------------|---------|--------|
| Waste Sludge Generation (dry solid) | kg/d    | 16,612 |
| Waste Sludge Volume                 | $m^3/d$ | 3,322  |

(3) Gravity Thickener

| Thickened Sludge Generation (dry solid) | kg/d              | 11,638 |
|-----------------------------------------|-------------------|--------|
| Thickened Sludge Volume                 | $m^3/d$           | 233    |
| Supernatant SS                          | kg/d              | 1,293  |
| Supernatant Flow                        | m <sup>3</sup> /d | 414    |

(4) Mechanical Thickener

| Thickened Sludge Generation (dry solid) | kg/d              | 15,781 |
|-----------------------------------------|-------------------|--------|
| Thickened Sludge Quantity               | $m^3/d$           | 316    |
| Supernatant SS                          | kg/d              | 831    |
| Supernatant Flow                        | m <sup>3</sup> /d | 3,007  |

(5) THICKENED MIXED SLUDGE TANK

| Thickened Mixed Sludge Solids Content         | %       | 5.0    |
|-----------------------------------------------|---------|--------|
| Thickened Mixed Sludge Generation (dry solid) | kg/d    | 27,420 |
| Thickened Mixed Sludge Volume                 | $m^3/d$ | 548    |

(6) Digester

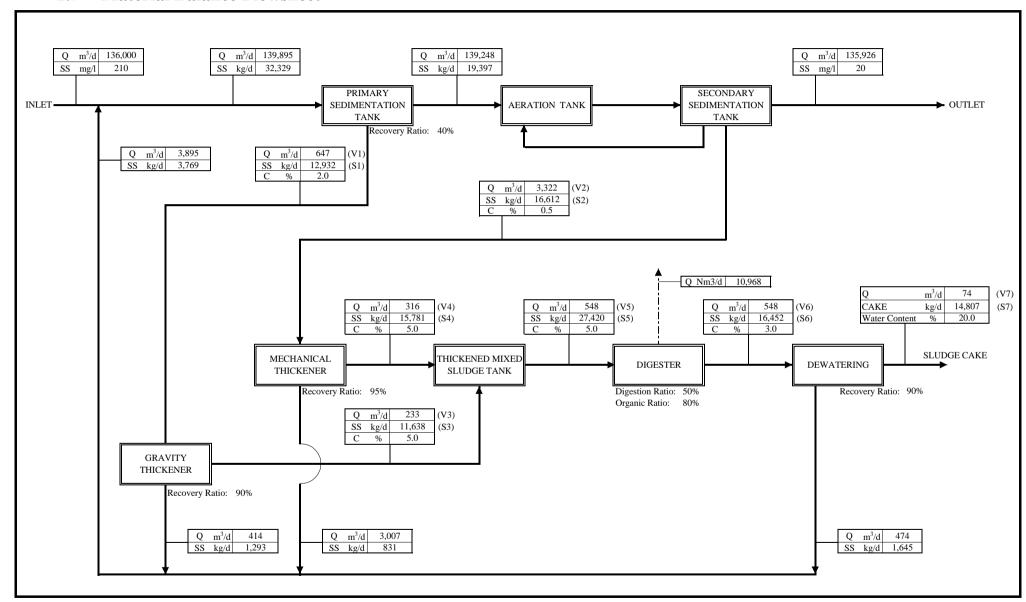
| Digested Sludge Solids Content         | %                 | 3.0    |
|----------------------------------------|-------------------|--------|
| Digested Sludge Generation (dry solid) | kg/d              | 16,452 |
| Digested Sludge Volume                 | m <sup>3</sup> /d | 548    |
| Digestion Gas Generation               | $m^3/d$           | 10,968 |

(7) Dewatering Unit

| Water Content of Cake              | %                 | 80.0   |
|------------------------------------|-------------------|--------|
| Sludge Cake Generation (dry solid) | kg/d              | 14,807 |
| Sludge Cake Volume                 | m <sup>3</sup> /d | 74     |
| Supernatant SS                     | kg/d              | 1,645  |
| Supernatant Flow                   | $m^3/d$           | 474    |

(8) Inlet Condition to Primary Sedimentation Tank

| Sewage Flow | $m^3/d$ | 139,895 |
|-------------|---------|---------|
| SS Loading  | kg/d    | 32,329  |


(9) Inlet Condition to Aeration Tank

| Sewage Flow | $m^3/d$ | 139,248 |
|-------------|---------|---------|
| SS Loading  | kg/d    | 19,397  |

(10) Return from Thickener & Dewatering Units

|             | <u> </u> |       |
|-------------|----------|-------|
| Return Flow | $m^3/d$  | 3,895 |
| SS Loading  | kg/d     | 3,769 |

#### 1.7 Material Balance Flowsheet



# 2. CAPACITY CALCULATION

# 2.1 Influent Pump Station

#### 2.1.1 Design Condition

(1) Design Flow

$$Q_{3-D} = 200,000 \text{ m}^3/\text{day}$$

$$Q_{3-M} = 138.9 \text{ m}^3/\text{min}$$

(2) Inlet Pipe Diameter Dia 1,400 mm x 2

# 2.1.2 Design Criteria

(1) Effluent Velocity v = 1.5 m/sec to 3.0 m/sec

(2) Retention Time  $T \geq 5 \text{ min}$ 

# 2.1.3 Capacity Calculation

| ITEM                | SYMBOL | DESIGN                                                                       |  |  |
|---------------------|--------|------------------------------------------------------------------------------|--|--|
| (1) Pump            |        | See mechanical equipment calculation                                         |  |  |
| (2) Effluent Pipe   |        |                                                                              |  |  |
| Pipe Number         | PN     | 3 pipes                                                                      |  |  |
| Diameter            |        | $146 \text{ x } \left\{ Q_{3-M} / \text{ PN x } (1/\text{v}) \right\}^{1/2}$ |  |  |
|                     |        | D = 811 mm to 574 mm                                                         |  |  |
|                     |        | adopt 800 mm                                                                 |  |  |
|                     |        |                                                                              |  |  |
| (3) Pump Pit        |        |                                                                              |  |  |
| Unit Number         | UN     | 1 units                                                                      |  |  |
| Required Pit Volume | V      | $Q_{3-M} \times T \geq 694 \text{ m}^3$                                      |  |  |
| Diameter            | D      | 24.0 m                                                                       |  |  |
| Depth               | Н      | 3.9 m                                                                        |  |  |
|                     |        | (Half of volume is used for pump pit.)                                       |  |  |
| <u>Check</u>        |        |                                                                              |  |  |
| Retention Time      | T'     | $(D^2 \times 3.14 / 4 \times H) / 2 / Q_{3-M} = 6.3 \text{ min}$             |  |  |
|                     |        | More than 5OK                                                                |  |  |

# 2.2 Grit Chamber

# 2.2.1 Design Condition

(1) Design Flow  $Q_{3-D} = 200,000 \text{ m}^3/\text{day}$ 

 $Q_{3-S} = 2.315 \text{ m}^3/\text{sec}$ 

2.2.2 Design Criteria

(1) Hydraulic Load  $HL \le 2,640 \,\mathrm{m}^3/\mathrm{m}^2/\mathrm{day}$ 

(2) Retention Time  $T \ge 25 \text{ sec}$ 

# 2.2.3 Capacity Calculation

| ITEM                  | SYMBOL | DESIGN                                                                           |
|-----------------------|--------|----------------------------------------------------------------------------------|
| Structure             |        |                                                                                  |
| Type                  |        | Vortex Circle Radiation-Flow Type                                                |
| Required Surface Area | A      | $Q_{3-D}/HL \geq 75.8 \text{ m}^2$                                               |
| Channel Number        | CN     | 2                                                                                |
| Diameter              | D      | $(A / CAN \times 4 / 3.14)^{1/2} = 6.95 \text{ m} \text{ adopt} $ 7.3 m          |
| Depth                 | Н      | $Q_{3-S} \times T / (D^2 \times 3.14 / 4) = 1.38 \text{ m} \text{ adopt} $ 1.8 m |
| <u>Check</u>          |        |                                                                                  |
| Hydraulic Load        | HL'    | $Q_{3-D}/(D^2 \times 3.14/4)/CN = 2,390 \text{ m}^3/\text{m}^2/\text{day}$       |
|                       |        | Less than 2,640OK                                                                |
| Retention Time        | T'     | (D2 x 3.14 / 4 x H) x CAN / $Q_{3-S}$ 33 sec                                     |
|                       |        | More than 25OK                                                                   |

#### **2.2.4** Result

Dimension

Diameter 7.3m x Depth 1.8m x 2 chambers

# 2.3 Primary Sedimentation Tank

# 2.3.1 Design Condition

(1) Design Flow  $Q_{2-D} = 136,000 \text{ m}^3/\text{day}$ 

# 2.3.2 Design Criteria

(1) Hydraulic Load  $HL \le 30 \text{ m}^3/\text{m}^2/\text{day}$ (2) Settling Time  $T \ge 1.5 \text{ hr}$ (3) Water Depth H = 3.5 m(4) Influent Sewage Temperature  $TT = 15 \text{ }^{\circ}\text{C}$ 

(5) Weir Loading  $WL \leq 250 \text{ m}^3/\text{m/day}$ 

# 2.3.3 Capacity Calculation

| ITEM                  | SYMBOL | DESIGN                                                    |
|-----------------------|--------|-----------------------------------------------------------|
| Structure             |        |                                                           |
| Туре                  | -      | Circular Radiation-Flow Type                              |
| Tank number           | TN     | 8 tanks                                                   |
| Required Surface Area | A      | $Q_{2-D}/HL \ge 4,533 \text{ m}^2$                        |
| Diameter              | D      | $(A / TN x 4 / 3.14)^{1/2} = 26.9 \text{ m adopt}$ 28.0 m |
| Water Depth           | Н      | 3.5 m                                                     |
| Weir Length           | L      | (D - 0.6 x 2 ) x 3.14 x TN                                |
|                       |        | = 673.2 m                                                 |
|                       |        | 28.0m<br>— — — — — — — — — — — — — — — — — — —            |

| ITEM           | SYMBOL | DES                                        | IGN            |                      |          |
|----------------|--------|--------------------------------------------|----------------|----------------------|----------|
| <u>Check</u>   |        |                                            |                |                      |          |
| Hydraulic Load | HL'    | $Q_{2-D}$ / ( $D^2$ x 3.14 / 4 ) / $TN$ =  |                | 27.6 m <sup>3</sup>  | 3/m²/day |
|                |        |                                            | Less than      | 30.0                 | OK       |
| Settling Time  | T'     | TN x $D^2$ x 3.14 / 4 x H x 24 / $Q_{2-1}$ | <sub>D</sub> = | 3.04 hr              |          |
|                |        |                                            | More than      | 1.5                  | OK       |
| Weir Loading   | WL'    | $Q_{2-D}/L =$                              |                | 202.0 m <sup>3</sup> | /m/day   |
|                |        |                                            | Less than      | 250                  | OK       |

# **2.3.4** Result

Dimension Diameter 28m x Depth 3.5m x 8 tanks

Weir Length for 1 tank: 84.2m

# 2.4 Aeration Tank

# 2.4.1 Design Condition

(1) Design Flow  $Q_{2-D} = 136,000 \text{ m}^3/\text{day}$ 

(2) Tank Inlet BOD Sc = 119 mg/L

# 2.4.2 Design Criteria

(1) BOD-SS Load BSL = 0.1 - 0.25 kg/kg/day

(2) MLSS Concentration Ca = 2,000 mg/l

(3) Return Sludge Ratio R = 100 %

(4) Water Depth H = 4.0 m

(5) Hydraulic Retention Time  $HRT \geq 8$  hours

# 2.4.3 Capacity Calculation

| ITEM                           | SYMBOL | DES                                               | IGN             |          |           |
|--------------------------------|--------|---------------------------------------------------|-----------------|----------|-----------|
| Structure                      |        |                                                   |                 |          |           |
| Treatment Method               | -      | Conventional Activated Sludge l                   | Process         |          |           |
| Tank Number                    | TN     | 2                                                 | 1 tanks         |          |           |
| Tank Inlet Soluble BOD Quality | Scs    | $Sc \times 0.67 = 80$                             | ) mg/L          |          |           |
| Return Sludge Concentration    | Cr     | 5,000                                             | ) mg/L          |          |           |
| Required Volume                | Vol    | $Q_{2-D} x HRT / 24 \ge 45,333$                   | $3 \text{ m}^3$ |          |           |
| Water Depth                    | Н      | 4.0                                               | m               |          |           |
| Width                          | W      | 32.0                                              | m               |          |           |
| Length                         | L      | 119.0                                             | ) m             |          |           |
| <u>Check</u>                   |        |                                                   |                 |          |           |
| Tank Volume                    | V'     | $W \times L \times H = 15,232$                    | $2 \text{ m}^3$ |          |           |
| Return Sludge Ratio            | R'     | Ca / (Cr - Ca) = 67                               | %               |          |           |
|                                |        |                                                   | less than       | 100      | OK        |
| Retention Time                 | HRT'   | $(V \times TN) / Q_{2-D} \times 24 \text{ hr} =$  | 10.75 hr        |          |           |
|                                |        |                                                   | more than       | 8        | OK        |
| BOD-SS loading                 | BSL'   | $(Q_{2-D} \times Sc) / (V \times TN \times Ca) =$ |                 | 0.13     | kg/kg/day |
|                                |        |                                                   | 0.1             | 1 - 0.25 | OK        |

#### **2.4.4** Result

Dimension

Width 32m x Length 119m x Depth 4m (15232m3) x 4 tanks

# 2.5 Secondary Sedimentation Tank

# 2.5.1 Design Condition

(1) Design Flow  $Q_{2-D} = 136,000 \text{ m}^3/\text{day}$ 

# 2.5.2 Design Criteria

(1) Hydraulic Load  $HL \le 25.0 \text{ m}^3/\text{m}^2/\text{day}$ (2) Settling Time  $T \ge 2.0 \text{ hr}$ (3) Water Depth H = 4.0 m(4) Influent Sewage Temperature  $TT = 15 \text{ }^{\circ}\text{C}$ 

(5) Weir Loading  $WL \leq 700 \text{ m}^3/\text{m/day}$ 

# 2.5.3 Capacity Calculation

| ITEM                  | SYMBOL | DESIGN                                                    |
|-----------------------|--------|-----------------------------------------------------------|
| Structure             |        |                                                           |
| Type                  | -      | Circular Radiation-Flow Type                              |
| Tank number           | TN     | 12 tanks                                                  |
| Required Surface Area | A      | $Q_{2-D}/HL \ge 5,440 \text{ m}^2$                        |
| Diameter              | D      | $(A / TN x 4 / 3.14)^{1/2} = 24.0 \text{ m adopt}$ 28.0 m |
| Water Depth           | Н      | 4.0 m                                                     |
| Weir Length           | L      | (D - 0.6 x 2 ) x 3.14 x TN                                |
|                       |        | = 1,009.8  m                                              |
|                       |        |                                                           |
|                       |        |                                                           |
|                       |        | 0.60m                                                     |
|                       |        |                                                           |
|                       |        |                                                           |
|                       |        |                                                           |
|                       |        |                                                           |
|                       |        |                                                           |
|                       |        |                                                           |
|                       |        |                                                           |
|                       |        |                                                           |

| ITEM           | SYMBOL | DESIGN                                                         |                       |                     |
|----------------|--------|----------------------------------------------------------------|-----------------------|---------------------|
| <u>Check</u>   |        |                                                                |                       |                     |
| Hydraulic Load | HL'    | $Q'_{2-D} / (D^2 \times 3.14 / 4) / TN =$                      | $18.4 \text{ m}^3/2$  | m <sup>2</sup> /day |
|                |        | Less th                                                        | an 25.0               | OK                  |
| Settling Time  | T'     | $TN \times D^2 \times 3.14 / 4 \times H \times 24 / Q_{2-D} =$ | 5.21 hr               |                     |
|                |        | More t                                                         | han 2.0               | OK                  |
| Weir Loading   | WL'    | $Q_{2-D}/L =$                                                  | $134.7 \text{ m}^3/2$ | m/day               |
|                |        | Less th                                                        | an 700                | OK                  |

# **2.5.4** Result

Dimension Diameter 28m x Depth 4m x 12 tanks

Weir Length for 1 tank: 84.2m

# 2.6 Discharge Pump Station

# 2.6.1 Design Condition

(1) Design Flow

$$Q_{3-D} = 200,000 \text{ m}^3/\text{day}$$

$$Q_{3-M} = 138.9 \text{ m}^3/\text{min}$$

(2) Inlet Pipe Diameter Dia 1,500 mm x 1

# 2.6.2 Design Criteria

(1) Effluent Velocity v = 1.5 m/sec to 3.0 m/sec

(2) Retention Time  $T \geq 5 \text{ min}$ 

# 2.6.3 Capacity Calculation

| ITEM                | SYMBOL | DESIGN                                                           |
|---------------------|--------|------------------------------------------------------------------|
| (1) Pump            |        | See mechanical equipment calculation                             |
| (2) Effluent Pipe   |        |                                                                  |
| Pipe Number         | PN     | 3 pipes                                                          |
| Diameter            |        | $146 \times \left\{ Q_{3-M} / PN \times (1/v) \right\}^{1/2}$    |
|                     |        | D = 811 mm to 574 mm                                             |
|                     |        | adopt 800 mm                                                     |
|                     |        |                                                                  |
| (3) Pump Pit        |        |                                                                  |
| Unit Number         | UN     | 1 unit                                                           |
| Required Pit Volume | V      | $Q_{3-M} \times T \geq 694 \text{ m}^3$                          |
| Diameter            | D      | 24.0 m                                                           |
| Depth               | Н      | 3.65 m                                                           |
|                     |        | (Half of volume is used for pump pit.)                           |
| <u>Check</u>        |        |                                                                  |
| Retention Time      | T'     | $(D^2 \times 3.14 / 4 \times H) / 2 / Q_{2-M} = 5.9 \text{ min}$ |
|                     |        | More than 5OK                                                    |

# 2.7 Sludge Thickener

# 2.7.1 Gravity Thickener

# 2.7.1.1 Design Condition

#### **Primary Sludge**

(1) Solid(2) Sludge

(3) Water Content

S1 = 12,932 kg/day  $V1 = 647 \text{ m}^3/\text{day}$  Swc = 98.0 %

(From Balance Sheet)

#### 2.7.1.2 Design Criteria

(1) Retention Time

 $T \geq 15 \text{ hours}$ 

(2) Water Depth

H = 3.5 m

(3) Sludge Recovery

Sr = 90 %

(4) Thickened Sludge Water Content

TSwc = 95.0 %

#### 2.7.1.3 Capacity Calculation

| ITEM                        | SYMBOL | DESIGN                                                                   |  |
|-----------------------------|--------|--------------------------------------------------------------------------|--|
| 1. Primary Sludge Thickener |        |                                                                          |  |
| Structure                   |        |                                                                          |  |
| Туре                        | -      | Circular Radiation-Flow Type                                             |  |
| Tank Number                 | TN     | 2 tanks                                                                  |  |
| Required Tank Volume        | Vol    | $V1 / 24 \times T / TN = 202 \text{ m}^2$                                |  |
| Diameter                    | D      | 20.0 m                                                                   |  |
| Depth                       | Н      | 3.5 m                                                                    |  |
| <u>Check</u>                |        |                                                                          |  |
| Retention Time              | T'     | $(D^2 \times 3.14 / 4 \times H \times TN) / (V1 / 24) = 81.6 \text{ hr}$ |  |
|                             |        | More than 15OK                                                           |  |

#### 2.7.1.4 Result

Dimension

Diameter 20m x Depth 3.5m (1099m3) x 2 tanks

#### 2.7.2 Sludge Holding Tank

#### 2.7.2.1 Design Condition

Waste Sludge

(1) Solid S2 = 16,612 kg/day = 16.612 t/day

(2) Sludge  $V2 = 3{,}322 \text{ m}^3/\text{day}$ 

(From Balance Sheet)

2.7.2.2 Design Criteria

(1) Retention Time  $T \geq 3 \text{ hr/day}$ 

#### 2.7.2.3 Capacity Calculation

| ITEM                      | SYMBOL | DESIGN                                             |  |
|---------------------------|--------|----------------------------------------------------|--|
| Waste Sludge Holding Tank |        |                                                    |  |
| Туре                      | -      | RC Rectangular Tank (A-Tank & B-Tank)              |  |
| Required Tank Volume      | Vol    | $V2 \times T / 24 \ge 415.3 \text{ m}^3$           |  |
| <a-tank></a-tank>         |        |                                                    |  |
| Unit Number               | UN1    | 1 unit                                             |  |
| Width                     | W1     | 6.7 m                                              |  |
| Length                    | L1     | 8.95 m                                             |  |
| Depth                     | H1     | 4.2 m                                              |  |
| <b-tank></b-tank>         |        |                                                    |  |
| Unit Number               | UN2    | 1 unit                                             |  |
| Width                     | W2     | 6.7 m                                              |  |
| Length                    | L2     | 9.1 m                                              |  |
| Depth                     | H2     | 4.2 m                                              |  |
| <u>Check</u>              |        |                                                    |  |
| Retention Time            | T'     | {(W1 x L1 x H1 x UN1) + (W2 x L2 x H2 x UN2)} / V2 |  |
|                           |        | = 3.7 hr                                           |  |
|                           |        | More than 3OK                                      |  |

#### 2.7.2.4 Result

Dimension A-Tank Width 6.7m x Length 8.95m x Depth 4.2m (252m3) x 1 unit

B-Tank Width 6.7m x Length 9.1m x Depth 4.2m (256m3) x 1 unit

#### 2.7.3 Mechanical Thickener

#### 2.7.3.1 Design Condition

#### Waste Sludge

(1) Solid S2 = 16,612 kg/day = 16.612 t/day

(2) Sludge  $V2 = 3{,}322 \text{ m}^3/\text{day}$ 

(3) Water Content Swc = 99.5 % (From Balance Sheet)

## 2.7.3.2 Design Criteria

(1) Solid Recovery Sr = 95%

(2) Thickened Sludge Water Content TSwc = 95.0 %

# 2.7.3.3 Capacity Calculation

| ITEM                    | SYMBOL | DESIGN                                                     |  |
|-------------------------|--------|------------------------------------------------------------|--|
| Mechanical Thickener    |        |                                                            |  |
| Туре                    | -      | Screw Press Thickener                                      |  |
| Solid Loading per Unit  | SL     | 75 m <sup>3</sup> /hr/unit                                 |  |
|                         |        | $(25\text{m}^3/\text{m}^2/\text{hr} \times 3 \text{ m}^2)$ |  |
| Operation Time          | T1     | 7 days/week                                                |  |
|                         | T2     | 24 hours/day                                               |  |
| Thickened Sludge Volume | Vol    | $V2 \times (7 / T1) / T2 \ge 138 \text{ m}^3/\text{hr}$    |  |
| Unit Number             | UN     | Vol / SL = 1.85 units                                      |  |
|                         |        | therefore 2 + 1 stand-by                                   |  |

#### 2.7.3.4 Result

Screw Press Thickener 75m³/hr x 3 units (including 1 stand-by)

#### 2.7.4 Thickened Sludge Holding Tank

#### 2.7.4.1 Design Condition

(1) Solid S3 + S4 = 11,638 + 15,781 = 27,420 kg/day

= 27.420 t/day

(2) Sludge  $V3 + V4 = 233 + 316 = 548 \text{ m}^3/\text{day}$ 

(From Balance Sheet)

#### 2.7.4.2 Design Criteria

(1) Retention Time  $T \geq 3 \text{ hr/day}$ 

#### 2.7.4.3 Capacity Calculation

| ITEM                          | SYMBOL | DESIGN                                                    |  |
|-------------------------------|--------|-----------------------------------------------------------|--|
| Thickened Sludge Holding Tank |        |                                                           |  |
| Structure                     |        |                                                           |  |
| Туре                          | -      | RC Rectangular Tank (A-Tank & B-Tank)                     |  |
| Required Tank Volume          | Vol    | $(V3 + V4) \times T / 24 \ge 68.5 \text{ m}^3$            |  |
| <a-tank></a-tank>             |        |                                                           |  |
| Unit Number                   | UN1    | 1 unit                                                    |  |
| Width                         | W1     | 3.5 m                                                     |  |
| Length                        | L1     | 5.85 m                                                    |  |
| Depth                         | H1     | 2.5 m                                                     |  |
| <b-tank></b-tank>             |        |                                                           |  |
| Unit Number                   | UN2    | 1 unit                                                    |  |
| Width                         | W2     | 3.5 m                                                     |  |
| Length                        | L2     | 7.6 m                                                     |  |
| Depth                         | Н2     | 2.5 m                                                     |  |
| <u>Check</u>                  |        |                                                           |  |
| Retention Time                | T'     | {(W1 x L1 x H1 x UN1) + (W2 x L2 x H2 x UN2)} / (V3 + V4) |  |
|                               |        | = 5.1 hr                                                  |  |
|                               |        | More than 3OK                                             |  |

#### 2.7.4.4 Result

Dimension A-Tank Width 3.5m x Length 5.85m x Depth 2.5m (51m3) x 1 unit

B-Tank Width 3.5m x Length 7.55m x Depth 2.5m (66m3) x 1 unit

# 2.8 Digester

# 2.8.1 Design Condition

# **Thickened Sludge**

(1) Solid S5 = 27,420 kg/day = 27.420 t/day

(2) Sludge  $V5 = 548 \text{ m}^3/\text{day}$ 

(3) Water Content Swc = 95.0 % (From Balance Sheet)

# 2.8.2 Design Criteria

(1) Digestion Time  $T1 \ge 6.0 \text{ days}$ 

(2) Digestion Ratio for Organic Matter Dr = 50 %

(3) Organic Ratio Or = 80 %

(4) Digested Sludge Water Content Swc = 97.0 %

#### 2.8.3 Capacity Calculation

| ITEM                       | SYMBOL | DESIGN                                                                |
|----------------------------|--------|-----------------------------------------------------------------------|
| Structure                  |        |                                                                       |
| Туре                       | -      | Anaerobic Unheated Digestion with gas agitation                       |
| Tank Number                | TN1    | 2 tanks                                                               |
| Depth                      | H1     | 8 m                                                                   |
| Required Volume            | Vol    | $V5 \times T1 = 3288 \text{ m}^2$                                     |
| Diameter                   | D1     | $\{V * 4 / (TN1 \times 3.14 \times H1) ^{1/2} $ 16.18 m               |
|                            |        | therefore 17.0 m                                                      |
| <u>Check</u>               |        |                                                                       |
| Digestion Time             | T1'    | $(D1^2 \times 3.14 / 4 \times H1 \times TN1) / V5 = 6.6 \text{ days}$ |
|                            |        | More than 6OK                                                         |
| (2) Digested Sludge Volume |        |                                                                       |
| Sludge Volume (Solid)      | S6     | S5 x (100 + 100 - Or) x Dr x $10^{-4}$ = 16.452 t/day                 |
| Sludge Volume (Sludge)     | V6     | $S4 \times \{100 / (100 - Swc)\} = 548 \text{ m}^3/\text{day}$        |
| Digestion Gas              | Gv     | S5 x Or x Gr = $10,968 \text{ m}^3/\text{day}$                        |
|                            |        | Digestion Gas Volume per Organics kg $Gr = 0.5 \text{ m}^3/\text{kg}$ |

| ITEM           | SYMBOL | DESIGN                                                              |
|----------------|--------|---------------------------------------------------------------------|
| (3) Gas Holder |        |                                                                     |
| Туре           | -      | Dry Seal Type                                                       |
| Tank Number    | TN2    | 2 tanks                                                             |
| Storage Time   | T2     | 2 - 4 hr/day                                                        |
| Depth          | Н2     | 6 m                                                                 |
| Diameter       | D2     | 13.0 m                                                              |
|                |        |                                                                     |
| <u>Check</u>   |        |                                                                     |
| Storage Time   | T2'    | $(D2^2 \times 3.14 / 4 \times H2 \times TN2) / GV = 3.5 \text{ hr}$ |
|                |        | Between 2-4OK                                                       |

#### **2.8.4** Result

# **2.8.4.1 Digester**

Dimension Diameter 17m x Depth 8m (1815m3) x 2 tanks

#### **2.8.4.2** Gas Holder

Dimension Diameter 13m x Depth 6m (796m3) x 2 tanks

# 2.9 Sludge Dewatering Unit

# 2.9.1 Digested Sludge Holding Tank

#### 2.9.1.1 Design Condition

**Digester Sludge** 

(1) Solid S6 = 16,452 kg/day = 16.452 t/day

(2) Sludge  $V6 = 548 \text{ m}^3/\text{day}$ 

(From Balance Sheet)

2.9.1.2 Design Criteria

(1) Retention Time T1 = 3 hr/day

#### 2.9.1.3 Capacity Calculation

| ITEM                 | SYMBOL | DESIGN                                                                  |
|----------------------|--------|-------------------------------------------------------------------------|
| Sludge Storage Tank  |        |                                                                         |
| Туре                 |        | RC Rectangular Tank                                                     |
| Operation Time       | T2     | 7 days/week                                                             |
| Unit Number          | UN1    | 2 unit                                                                  |
| Required Tank Volume | Vol    | $V6 \times (T1 / 24) \times (7 / T2) = 68.5 \text{ m}^3$                |
| Width                | W      | 7.7 m                                                                   |
| Length               | L      | 3.5 m                                                                   |
| Depth                | Н      | 2.5 m                                                                   |
| <u>Check</u>         |        |                                                                         |
| Retention Time       | T1'    | $(W \times H \times L \times UN) / (7 / T2 \times V6) = 5.9 \text{ hr}$ |
|                      |        | more than 3OK                                                           |

#### 2.9.1.4 Result

Dimension

Width 7.7m x Length 3.5m x Depth 2.5m (67m3) x 2 unit

# 2.9.2 Sludge Dewatering Units

# 2.9.2.1 Design Condition

**Digester Sludge** 

(1) Solid S6 = 16,452 kg/day = 16.452 t/day

(2) Sludge  $V6 = 548 \text{ m}^3/\text{day}$ 

(From Balance Sheet)

## 2.9.2.2 Design Criteria

(1) Sludge Recovery 90 %

(2) Dewatered Sludge Water Content 20.0 %

# 2.9.2.3 Capacity Calculation

| ITEM                     | SYMBOL | DESIGN                                 |  |
|--------------------------|--------|----------------------------------------|--|
| Sludge Dehydrator        |        |                                        |  |
| Туре                     |        | Screw Press Type                       |  |
| Solid Loading per Unit   | SL     | 450 kg/hr/unit                         |  |
| Operation Time           | T1     | 7 days/week                            |  |
|                          | T2     | 24 hours/day                           |  |
| Sludge Dewatering Volume | Vol    | S6 x $(7/T1)/T2 \ge 685 \text{ kg/hr}$ |  |
| Unit Number              | UN     | Vol / SL = 1.52 units                  |  |
|                          |        | therefore 2 + 1 stand-by               |  |

#### 2.9.2.4 Result

Screw Press Type 450 kg/hr x 3 units (including 1 stand-by)

#### 2.9.3 Waste Water Tank

# 2.9.3.1 Design Condition

| (1) Design Flow    | Supernatant from Mechanical Thic | Supernatant from Mechanical Thickener |                              |  |
|--------------------|----------------------------------|---------------------------------------|------------------------------|--|
|                    | Supernatant from Dewatering Unit |                                       | $474 \text{ m}^3/\text{day}$ |  |
|                    | Chemical Dissolved Water         |                                       | 200 m <sup>3</sup> /day      |  |
|                    | Total                            | $V_{total} =$                         | 3,681 m <sup>3</sup> /day    |  |
| (2) Operation Time | Mechanical Thickener (for V4)    | T2 =                                  | 7 days/week                  |  |
|                    |                                  | T3 =                                  | 24 hours/day                 |  |
|                    | Sludge Dewatering Units (for V6) | T4 =                                  | 7 days/week                  |  |
|                    |                                  | T5 =                                  | 24 hours/day                 |  |

# 2.9.3.2 Design Criteria

(1) Retention Time

T1 = 1 hr

#### 2.9.3.3 Capacity Calculation

| ITEM                 | SYMBOL | DESIGN                                                             |
|----------------------|--------|--------------------------------------------------------------------|
| Waste Water Tank     |        |                                                                    |
| Туре                 |        | RC Rectangular Tank                                                |
| Unit Number          | UN     | 1 unit                                                             |
| Sludge Volume        | V      | $3681 \text{ m}^3/\text{day}$                                      |
| Required Tank Volume | Vo1    | V-total x T7 / 24 = $153 \text{ m}^3$                              |
| Width                | W      | 7.7 m                                                              |
| Length               | L      | 8.0 m                                                              |
| Depth                | Н      | 2.5 m                                                              |
| <u>Check</u>         |        |                                                                    |
| Retention Time       | T'     | $(W \times L \times H \times UN) / V \times 24 = 1.004 \text{ hr}$ |
|                      |        | More than 1OK                                                      |

#### 2.9.3.4 Result

Dimension

Width 7.7m x Length 8m x Depth 2.5m (154m3) x 1 unit

# 2.9.4 Hopper House

#### 2.9.4.1 Design Condition

(1) Sludge Cake Volume V7 =

74 m<sup>3</sup>/day (From Balance Sheet)

# 2.9.4.2 Design Criteria

(1) Retention Time

T = 0.5 days

# 2.9.4.3 Capacity Calculation

| ITEM                 | SYMBOL | DESIGN                                                     |
|----------------------|--------|------------------------------------------------------------|
| Sludge Hopper        |        |                                                            |
| Туре                 |        | RC Rectangular Yard                                        |
| Unit Number          | UN     | 4 unit s + 2 stand-by                                      |
| Required Tank Volume | Vol    | $V7 \times T / UN$ 9.25 m <sup>3</sup>                     |
| Width                | W      | 3.0 m                                                      |
| Length               | L      | 3.0 m                                                      |
| Height               | Н      | 1.7 m                                                      |
| Hopper Volume        | V      | $W \times L \times H = 15.3 \text{ adopt } 15 \text{ m}^3$ |
| <u>Check</u>         |        |                                                            |
| Retention Time       | T'     | $V \times UN / V7 = 0.8$ days                              |
|                      |        | More than 0.5OK                                            |

#### 2.9.4.4 Result

Dimension

**Hopper Volume 15m3 x 6units (including 2 stand-by)** 

# 2.10 Utility Water

#### 2.10.1 Treated Water Tank

2.10.1.1 Design Condition

(1) Automatic Strainer Capacity

 $q = 6.2 \text{ m}^3/\text{min}$ 

(See Mechanical Equipment Calculation)

2.10.1.2 Design Criteria

(1) Retention Time

 $T \, \geq \,$ 

1 min

# 2.10.1.3 Capacity Calculation

| ITEM                 | SYMBOL | Ι                      | DESIGN             |
|----------------------|--------|------------------------|--------------------|
| Treated Water Tank   |        |                        |                    |
| Туре                 |        | RC Rectangular Tank    |                    |
| Unit Number          | UN     |                        | 1 unit             |
| Required Tank Volume | Vol    | $q \times T =$         | 6.2 m <sup>3</sup> |
| Width                | W      |                        | 3.6 m              |
| Length               | L      |                        | 1.1 m              |
| Depth                | Н      |                        | 1.8 m              |
| <u>Check</u>         |        |                        |                    |
| Retention Time       | T'     | (W x H x L x UN) / q = | 1.1 min            |
|                      |        |                        | More than 1OK      |

#### 2.10.1.4 Result

Dimension

Width 3.6m x Length 1.1m x Depth 1.8m (7m3) x 1 unit

#### 2.10.2 Utility Water Tank

#### 2.10.2.1 Design Condition

(1) Filtered Water Consumption Wash for Mechanical Thickener  $0.04 \times 3 \text{ units} = 0.12 \text{ m}^3/\text{min}$ 

Wash for Dewatering Unit  $0.11 \times 3 \text{ units} = 0.33 \text{ m}^3/\text{min}$ Total  $q = 0.450 \text{ m}^3/\text{min}$ 

2.10.2.2 Design Criteria

(1) Retention Time  $T \ge 2 \text{ hr}$ 

(2) Washing Time  $t \ge 8 \text{ times } x \text{ 1 hr/time}$ 

#### 2.10.2.3 Capacity Calculation

| ITEM                 | SYMBOL | DESIGN                                                                     |    |
|----------------------|--------|----------------------------------------------------------------------------|----|
| Filtered Water Tank  |        |                                                                            |    |
| Туре                 |        | RC Rectangular Tank                                                        |    |
| Unit Number          | UN     | 1 unit                                                                     |    |
| Required Tank Volume | Vol    | q x t x 60 x T / 24 = 18.0 m3                                              |    |
| Width                | W      | 4.7 m                                                                      |    |
| Length               | L      | 3.3 m                                                                      |    |
| Depth                | Н      | 4.2 m                                                                      |    |
| <u>Check</u>         |        |                                                                            |    |
| Retention Time       | T'     | $(W \times H \times L \times UN) / (q \times t \times 60) \times 24 = 7.2$ | hr |
|                      |        | More than 2                                                                | OK |

#### 2.10.2.4 Result

Dimension

Width 4.7m x Length 3.3m x Depth 4.2m (65m3) x 1 unit

#### 2.10.3 Potable Water Tank

#### 2.10.3.1 Design Condition

(1) Potable Water Consumption

 $q = 200 \text{ m}^3/\text{day}$ 

(See Mechanical Equipment Calculation)

# 2.10.3.2 Design Criteria

(1) Retention Time

 $T \geq$ 

2 hr

# 2.10.3.3 Capacity Calculation

| ITEM                 | SYMBOL | DESIGN                                                           |
|----------------------|--------|------------------------------------------------------------------|
| Utility Water Tank   |        |                                                                  |
| Туре                 |        | RC Rectangular Tank                                              |
| Unit Number          | UN     | 1 unit                                                           |
| Required Tank Volume | Vol    | $q \times T / 24 = 16.7 \text{ m}^3$                             |
| Width                | W      | 4.7 m                                                            |
| Length               | L      | 3.3 m                                                            |
| Depth                | Н      | 4.2 m                                                            |
| <u>Check</u>         |        |                                                                  |
| Retention Time       | T'     | $(W \times H \times L \times UN) / q \times 24 = 7.8 \text{ hr}$ |
|                      |        | More than 2OK                                                    |

#### 2.10.3.4 Result

Dimension

Width 4.7m x Length 3.3m x Depth 4.2m (65m3) x 1 unit