Appendix A-7

Structural Calculations for Water Treatment Plant

CONTENTS

			Page
1.	GENERAL		A.7-2
2.	RECEIVING WELL	1	A.7-4
3.	SEDIMENTATION BASIN	234	A.7-10
4.	RAPID SAND FILTER	567	A.7-20
5.	WASHING DRAIN BASIN	8	A.7-27
6.	THICKNER TANK	9	A.7-35
7.	DISCHARGE POOL	100	A.7-4
8.	DISTRIBUTION CHAMBER	1	A.7-49
9.	SLUDGE DRYING BED	12	A.7-56
10.	ATTACHMENT		A.7-59

1. GENERAL

1. ОБЩЕЕ ОПИСАНИЕ

A.7-2

1. GENERAL

1.1 Reference Standards

BS 8110: Structural use of Concrete

BS 8007: Code of Practice for Design of Concrete Structures for Retaining Aqueous Liquids
BS CP3: Code of Basic Data for Design of Buildings: Chapter V: Part 2: Loading Uniform

Building By-laws, 1984

1.2 Design Materials

This calculation is based on the following design materials.

· Concrete BS 8110 Grade 30 or Equivalent :

BS 8007 Grade 30A or Equivalent :

fcu=30 N/mm² fcu=30 N/mm²

· Reinforcing Bar BS 4449 High Yield Deformed Bar Grade 365

or Equivalent: fy=365 N/mm²

(fy: high yield having a minimum characteristic strength)

1.3 Design Ground Level and Ground Water Level

Design Ground Water Level (GWL)

GWL =

1.4 Minimum Concrete Cover

Minimum concrete cover on the outer reinforcement shall be as follows.

- Cast against and permanently exposed to earth

75mm

- Exposed to earth, weather or water

50mm

- Not exposed to weather or contact with the ground:

slabs, walls, beams, girders, columns

40 mm

1.5 Crack width control

Crack width control shall satisfy the requirements of the BS 8007:1987.

1) Allowable crack width:

0.2 mm (Section3.2.2 of BS 8007)

2) Applicable Structure:

Pit and Basin

A. /-

1.6 Design Loadings

1) DEAD LOADS: (DL)

Unit Weight of Materials

Water Soil : 10 kN/m3

Plain concrete

: 18 kN/m³

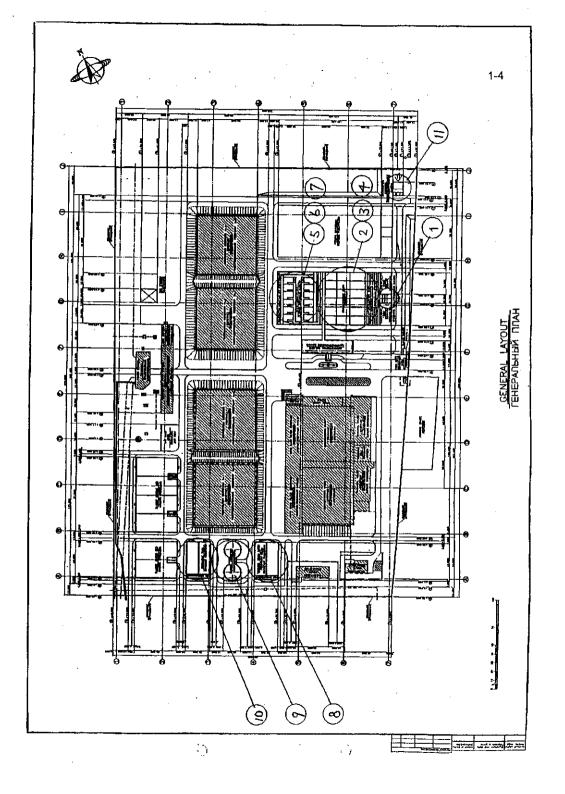
Reinforced concrete

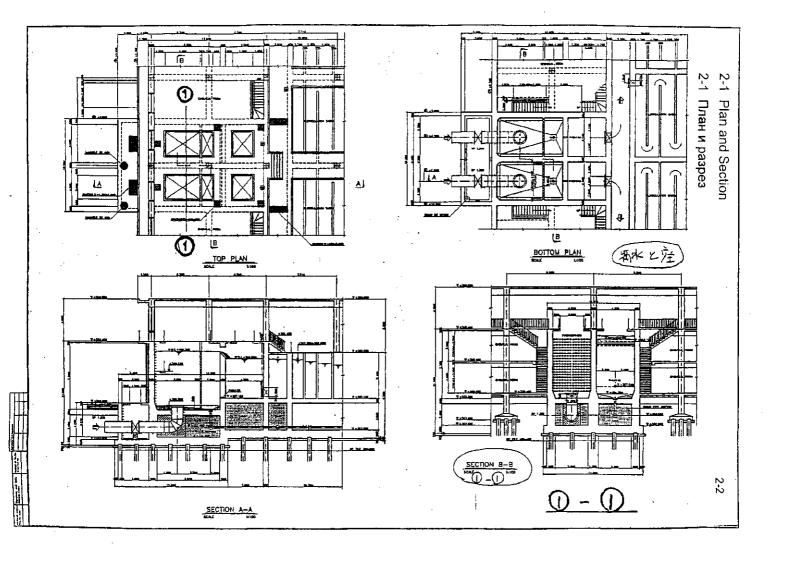
: 23 kN/m³ : 24 kN/m³

2) LIVE LOADS (Imposed Loads): (LL)

3) EARTH PRESSURE / WATER PRESSURE : (EP/WP)

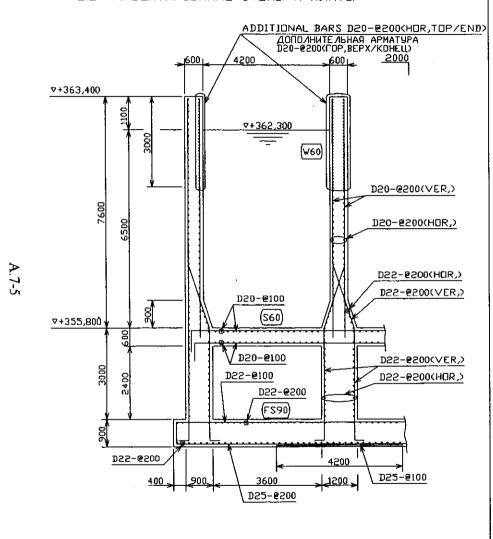
1.7 LOAD COMBINATIONS


1) Load combinations and Load factors for Pit/Basin based on BS 5950, BS 8110 and UBC are applied.


Pit & Basin

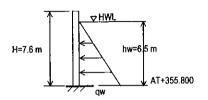
1.4 (DL) + 1.6 (LL) + 1.4 (EP)

1.4 (DL) + 1.6 (LL) + 1.4 (EP + WP)


Remarks: The stability of the structure shall be checked for non-factored load combinations.

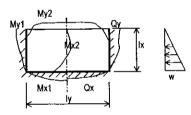
2. RECEIVING WELL
2. IPVIEMHAS KAMEPA

2.2 DESIGN OF WALL & SLAB (1) - (1) 2.2 OPOEKTUPOBAHUE CTEHЫ И ПЛИТЫ



 $\frac{1}{S=1/80}$

2.2.1 CALCULATION OF WALL (W60)


D-D

1) DESIGN LOAD (Water Pressure)

hw = 6.50 m yw = 10.0 KN/m3 yw · hw = 65.0 KN/m2/m

2) FACTORED STRESS (W60)

| x = 6.50 m | y = 7.20 m | \(\lambda \) = 1.11 | w=qw = 65.0 KN/m2/m | Factored Load | w=1.4 \cdot w = 91.00 KN/m2/m

 $w' \cdot 1x^2 = 3844.8$ $w' \cdot 1x = 591.5$

Mx1 = 0.040 x 3844.8 = 153.8 (KN · m/m)
Mx2 = 0.010 x 3844.8 = 38.4
My1 = 0.033 x 3844.8 = 126.9
My2 = 0.012 x 3844.8 = 46.1

Qx = 0.35 x 591.5 = 207.0 (KN/m)
Qy = 0.25 x 591.5 = 147.9

3) DESIGN OF SECTION

```
a) VERTICAL: BOT (AT+355.800)
```

```
Mu = 153.8 KN·m
Vu = 207.0 KN/m
```

b = 1000 mm fy = 365 N/mm2 D = 900 mm fcu = 30 N/mm2 d = 840 mm

[REQUIRED RE-BAR]

USE; D 22 @ 200 (As = 1900 mm2)

[CHECK OF SHEAR STRESS]

 $V = Vu /(b \cdot d)$ = 0.25 < 4.4 N/mm2 OK (100 · As)/(b · d) = 0.23 < 3.0 = 0.5 < 1.0 \rightarrow 1.0

b) HORIZONTAL: TOP/END

Mu = 126.9 KN·m Vu = 147.9 KN/m

b = 1000 mm fy = 365 N/mm2 D = 600 mm fcu = 30 N/mm2 d = 520 mm

[REQUIRED RE-BAR]

 $K = Mu / \{fcu \cdot b \cdot d^2\}$ $Z1 = d \cdot [0.5 + \sqrt{(0.25 - K/0.9)}]$ $Z = 0.95 \cdot d$ $Z = 0.95 \cdot d$ Z =

USE; D 22 @ 200 (As = 1900 mm2)

[CHECK OF SHEAR STRESS]

 $V = Vu /(b \cdot d)$ = 0.28 < 4.4 N/mm2 OK {100 · As)/(b · d) = 0.37 < 3.0 = 0.8 < 1.0 \rightarrow 1.0

 $Vc = 0.79 \cdot \{(100 \cdot As)/(b \cdot d)\}^{1/3} \cdot (400/d)^{1/4} \cdot (1/1.25) \cdot (fcu/25)^{1/3}$ = 0.48 N/mm2 > V = 0.28 N/mm2 OK 4) CHECK OF CRACKING W60 (VERTICAL:BOT.) **①**-①

2-6

a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6.2.3 OF BS8007)

SECTION b = 1000 mm SURFACE ZONE: d1 = 250 m D = 900 mm dv = 840 mm dh ≈ 820 mm

Min. p = 0.0035 (0.35 %)

As (ver.) = $p \cdot b \cdot d1 = 875$ mm2 As (her.) = $p \cdot b \cdot d1 = 875$ mm2

USE; VERTICAL D 22 @ 200 (As = 1900 mm2)
USE: HORIZONTAL D 22 @ 200 (As = 1900 mm2)

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3.2.2 OF BS8007)

Mu = 153.8 KN·m M = 109.9 KN·m b = 1000 mm Hor. Mu = KN•m M = 0.0 KN·m D = 900 mm dv = 840 mm dh = 820 mm fy = 130 N/mm2 30 N/mm2 fcu =

VERTICAL

USE; D 22 @ 200 (As = 1900 mm2)

HORIZONTAL

 $K = M / (fcu \cdot b \cdot dh^2) = 0$ $Z1 = dh \cdot [0.5 + \sqrt{(0.25 - K/0.9)}] = 0$ $Z2 = 0.95 \cdot dh = 0$ Z = 0 $As = M / fy \cdot Z = 0$ mm2

USE; D 22 @ 200 (As = 1900 mm2)

c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF BS8007)

1) CRACK SPACING

 $Smax(V) = (fcV/fb) \cdot (\phi/2p(V))$ = 969.74 mm $Smax(H) = (fcV/fb) \cdot (\phi/2p(H))$ = 969.7 mm

Where ; fct/fb = 0.67 $\rho(V) = As/b \cdot d1 = 0.0076$ $\rho(H) = As/b \cdot d1 = 0.0076$

2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT

 $Wmax(V) = Smax(V) \cdot (a/2) \cdot T1$ = 0.19 < 0.2 m $Wmax(H) = Smax(H) \cdot (a/2) \cdot T1$ = 0.19 < 0.2 m

Where; a: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE

α= 1E-05 T1= 40 from TABLE 4.2

```
W60 (HORIZONTAL:END )
```

a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6.2.3 OF BS8007)

```
SECTION b = 1000 mm
                       SURFACE ZONE:
                                       d1 = 250 mm
        D =
             600
                  mm
        dv =
            540
                 mm
        dh =
            520 mm
```

Min. $\rho = 0.0035 (0.35 \%)$

As (ver.) = $\rho \cdot b \cdot d1 = 875 \text{ mm}2$ As (her.) = $p \cdot b \cdot d1 = 875 \text{ mm}^2$

USE;	VERTICAL	D 20	@ 200	(As =	1570	mm2)
USE;	HORIZONTAL	D 20	@ 200	(As =	1570	mm2)

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3,2,2 OF BS8007)

```
Ver.
                   KN-m
                           M ≃ 0.0 KN•m
                                                   b = 1000
                                                               mm
       Mu = 126.9 KN·m M = 90.6 KN·m
                                                  D=
                                                        600
                                                               mm
                                                  dv≖
                                                        540
                                                              mm
                                                  đh =
                                                        520
                                                              mm
                                                        130 N/mm2
                                                         30 N/mm2
VERTICAL
        K = M / (fcu \cdot b \cdot dv^2)
       Z1 = dv - [0.5 + \sqrt{(0.25 - K/0.9)}]
                                                    D
       Z2 = 0.95 \cdot dv
                                                    0
        Z =
        As = M / f_V \cdot Z
                                                    0 mm2
```

D 20 @ 200 (As = 1570 mm2)

HORIZONTAL

 $K = M / (fcu \cdot b \cdot dh^2)$ 0.0112 $Z1 = dh \cdot [0.5 + \sqrt{(0.25 - K/0.9)}]$ 513 Z2 = 0.95 · dh 494 Z = 494 $As = M / fy \cdot Z$ 1410.8 mm2

USE; D 20 @ 200 (As = 1570 mm2)

c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF BS8007)

1) CRACK SPACING

 $Smax(V) = (fct/fb) \cdot (\phi/2\rho(V))$ 1063.5 mm $Smax(H) = (fct/fb) \cdot (\phi/2\rho(H))$ 1063.5 mm Where ; fct/fb = 0.67 $\rho(V) = As/b \cdot d1 =$ 0.0063

As/b · d1 = 0.0063 ρ(H) =

2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT

Wmax(V)= Smax(V) · (a/2) · T1 0.19 0.2 < Wmax(H)= Smax(H) · (a/2) · T1 0.19 < 0.2

Where; a: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE

a= 1E-05 T1= 35 from TABLE 4.2 2.2.2 CALCULATION OF SLAB (S60) (D-(T))(AT+355.800)

1) DESIGN LOAD & FACTORED STRESS

yw = 10.0 KN/m3vc = 24.0 KN/m4 w=vw + hw+vc + t = 79.4 KN/m2/mlx = 3.60 mlv = 6.90 mMy1 λ = 1.92 Mx2 w = 79.4 KN/m2/mMx1 $w'=1.4 \cdot w = 111.16 \text{ KN/m2/m}$ $w' \cdot 1x^2 = 1440.6$ $w' \cdot lx = 400.2$

SEE Fig.2 119.6 (KN · m/m) $0.083 \times 1440.6 =$ Mx2 0.040 x 1440.6 = 57.6 Mv1 = 0.057 x 1440.6 = 82.1 $0.010 \times 1440.6 =$ 14.4 = $0.52 \times 400.2 =$ 208.1 (KN/m) Qv = $0.46 \times 400.2 = 184.1$

hw = 6.50 m

t = 0.60 m

2) DESIGN OF SECTION

Mu = 119.6 KN·m Vu = 208.1 KN/m 365 N/mm2 1000 b = mm D≃ 600 mm 30 N/mm2 d ≃ 540 mm

[REQUIRED RE-BAR]

 $K = Mu/(fcu \cdot b \cdot d^2)$ = 0.014 < 0.156 $Z1 = d \cdot [0.5 + \sqrt{(0.25 - \text{K/0.9})}]$ 532 Z2 = 0.95 - d513 Z = 513 As 1 = Mu /0.95 · fy · Z 672 mm2 Asmin = 0.0013 · b · D = 780 mm2

> USE: D 20 @ 200 (As = 1570 mm2)

[CHECK OF SHEAR STRESS]

= 0.39 < 4.4 N/mm2 OK $V = Vu/(b \cdot d)$ (100 - As)/(b - d) = 0.29 < 3.0 400/d = 0.7 < 1.0 → 1.0 $Vc = 0.79 \cdot \{(100 \cdot As)/(b \cdot d)\}^{1/3} \cdot (400/d)^{1/4} \cdot (1/1.25) \cdot (fcu/25)^{1/3}$ = 0.45 N/mm2 > V = 0.39 N/mm2 OK

b = 1000

a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6.2.3 OF BS8007)

Mu = 119.6 KN·m M = 85.4 KN·m

SECTION b = 1000 mm SURFACE ZONE: d(T) = 250 mmD= 600 mm d(B) = 100 mm d = 540

 \bigcirc

Min. p = 0.0035 (0.35 %)

As $(top) = p \cdot b \cdot d(T) =$ As $(bot) = p \cdot b \cdot d(B) =$ 350 mm2

USE;	TOP	D 20	@ 200	(As =	1570	mm2)
USE	BOTTOM	D 20	@ 200	(As =	1570	mm2)

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3.2.2 OF BS8007)

Mu = 82.1 KN-m M = 58.6 KN·m 600 mm d = 540 mm fy = 130 N/mm2 30 N/mm2 fcu ≂ TOP $K = M / (fcu \cdot b \cdot d^2)$ 0.0098 $Z1 = d \cdot [0.5 + \sqrt{(0.25 - \text{K/0.9})}]$ 534 513 $Z2 = 0.95 \cdot d$

> 1280.6 USE: D 20 @ 200 (As = 1570 mm2)

513

mm2

BOTTOM

Z =

 $As = M / fy \cdot Z$

0.0067 $K = M / (fcu \cdot b \cdot d^2)$ $Z1 = d \cdot [0.5 + \sqrt{(0.25 - K/0.9)}]$ 536 $Z2 = 0.95 \cdot d$ 513 Z = 513 $As = M / fy \cdot Z$ 878.69 mm2

> D 20 @ 200 USE; (As = 1570 mm2)

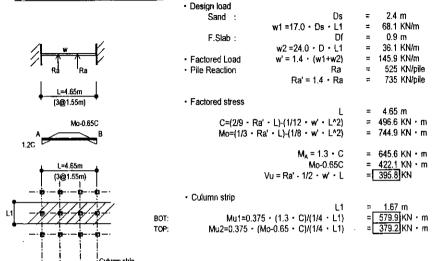
c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF BS8007)

1) CRACK SPACING

 $Smax(Y) = (fct/fb) \cdot (\phi/2\rho(T))$ 1063.5 $Smax(B) = (fct/fb) \cdot (\phi/2\rho(B))$ 426.8 mm

Where ; fct/fb = 0.67 $\rho(T) = As/b \cdot d(T) = 0.0063$ $p(B) = As/b \cdot d(B) = 0.0157$

2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT


 $Wmax(T) = Smax(T) \cdot (\alpha/2) \cdot T1$ 0.13 < 0.2 mm $Wmax(B) = Smax(B) \cdot (\alpha/2) \cdot T1$ 0.05 < 0.2 mm

Where: a: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE

a≈ 1E-05 T1= 25 from TABLE 4.2 2.2.3 CALCULATION OF FOOTING SLAB (FS90) (AT+352.800)

(1)-(1)

1) DESIGN LOAD & FACTORED STRESS


```
\bigcirc
                                                                         Revised all sheet
2) DESIGN OF SECTION
    a) HORIZONTAL : BOT/END
      Mu = 579.9 KN⋅m
      V_U = 395.8 \text{ KN/m}
              1000 mm
                                fv =
                                         365 N/mm2
      b =
                                          30 N/mm2
      D =
               900
                     mm
                                feu =
      d =
               840
                     mm
 REQUIRED RE-BAR 1
      K = Mu/(fcu \cdot b \cdot d^2)
                                                    = 0.027 < 0.156
      Z1 = d \cdot [0.5 + \sqrt{(0.25 - K/0.9)}]
                                                    = 814
      Z2 = 0.95 \cdot d
                                                        798
                                                         798
      Z =
                                                    = 2096 mm2
      As 1 = Mu / 0.95 \cdot fy \cdot Z
      Asmin = 0.0013 · b · D
                                                    ≈ 1170 mm2
                                          D 25 @ 100 (As = 4910 mm2)
  [ CHECK OF SHEAR STRESS ]
                                           = 0.47 < 4.4 N/mm2 OK
       V = Vu/(b \cdot d)
                                           = 0.58 < 3.0
       (100 · As)/(b · d)
                                           = 0.5 < 1.0 →
       400/d
       Vc = 0.79 \cdot {(100 \cdot As)/(b \cdot d)}^1/3 \cdot (400/d)^1/4 \cdot (1/1.25) \cdot (fcu/25)^1/3}
        = 0.56 N/mm2 > V ≈ 0.47 N/mm2 OK
    b) HORIZONTAL: TOP/CENT
       Mu = 379.2 KN·m
       Vu = 395.8 KN/m
       b =
               1000 mm
                                          365 N/mm2
       D =
               900
                     mm
                                 fcu =
                                          30 N/mm2
       d =
                820
                      mm
  [ REQUIRED RE-BAR ]
                                                     = 0.019 < 0.156
       K = Mu / (fcu \cdot b \cdot d^2)
                                                     = 803
       Z1 = d \cdot [0.5 + \sqrt{(0.25 - \text{K/0.9})}]
                                                     = 779
       Z2 = 0.95 \cdot d
       Z =
                                                          779
                                                     = 1404 mm2
       As 1 = Mu /0.95 - fy - Z
                                                     = 1170 mm2
       Asmin = 0.0013 · b · D
                                           D 22 @ 100 (As = 3800 mm2)
                                  USE
   [ CHECK OF SHEAR STRESS ]
                                            = 0.48 < 4.4 N/mm2 OK
       V = Vu /(b \cdot d)
                                            = 0.46 <
                                                          3.0
       (100 · As)/(b · d)
                                            = 0.5 < 1.0 →
       400/d
       V_G = 0.79 \cdot \{(100 \cdot As)/(b \cdot d)\}^1/3 \cdot (400/d)^1/4 \cdot (1/1.25) \cdot (fcu/25)^1/3
```

= 0.52 N/mm2 > V = 0.48 N/mm2 OK

```
3) CHECK OF CRACKING
FOOTING SLAB (FS90)
```

11-(11)

2-11

```
a) CHECK OF MINIMUM REINFORCEMENT ( BASED ON 2.6.2.3 OF BS8007 )
```

 SECTION
 b =
 1000
 mm
 SURFACE ZONE :
 d(T) =
 250
 mm

 D =
 900
 mm
 d(B) =
 100
 mm

 d =
 740
 mm
 d(B) =
 100
 mm

Min. $\rho = 0.0035 (0.35 \%)$

As $(top) = p \cdot b \cdot d(T) = 875$ mm2 As $(bot) = p \cdot b \cdot d(B) = 350$ mm2

USE:	TOP	D 22	@ 100	(As =	3800	mm2)
USE :	BOTTOM	D 25	@ 100	(As =	4910	mm2)

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3.2.2 OF BS8007.)

Top Bott.	Mu = 379.2 KN·m Mu = 579.9 KN·m			b = D = d = fy = fcu =	130 h	mm mm mm Vmm2 Vmm2	
TOP			_	0.0400			
	$K = M / (fou \cdot b \cdot d^2$		=	0.0128			
	$Z1 = d \cdot [0.5 + \sqrt{(0)}]$.25 — K/0.9)}	=	828			
	Z2 = 0.95 - d		=	798			
	Z =			798			
	As = M / fy - Z		=	2611.3	mm2		
	-	USE;	D 22 (100	(As =	3800 mm2)	_
вотто	м						
50115	 K = M / (fcu·b·d^2	2 }	=	0.0196			
	$Z1 = d \cdot (0.5 + \sqrt{0})$		=	821			
	Z2 = 0.95 · d	,,	=	798			
	Z =			798			
	As = M / fy · Z		=	3992.7	mm2		
		USE;	D 25 6	a) 100	(As =	4910 mm2)	Ĺ

c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF BS8007)

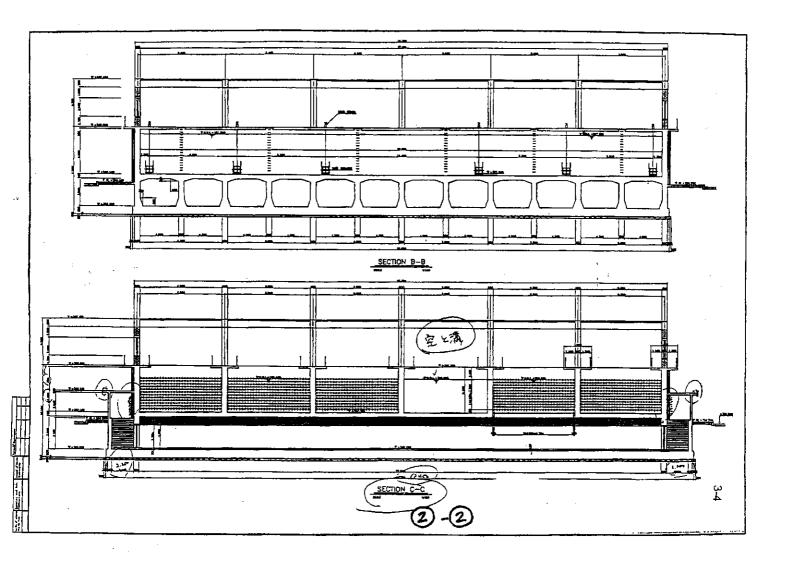
1) CRACK SPACING

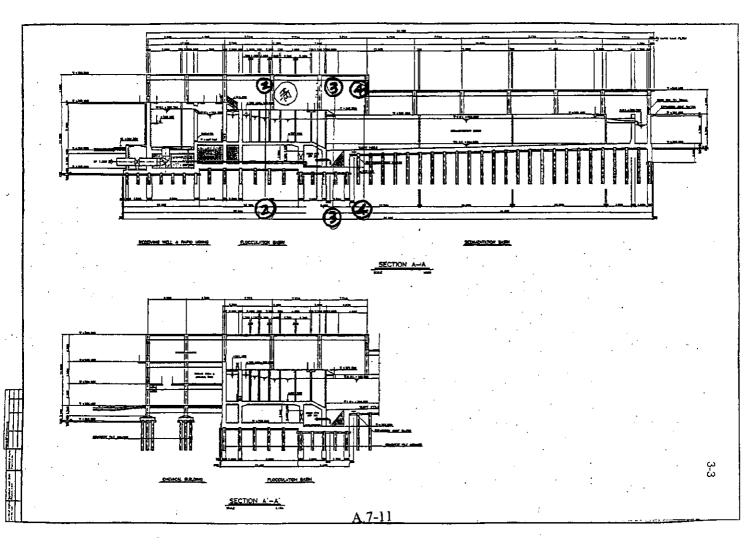
 $Smax(T) = (fct/fb) \cdot (\phi/2\rho(T))$ = 484.87 mm $Smax(B) = (fct/fb) \cdot (\phi/2\rho(B))$ = 170.6 mm Where : fct/fb = 0.67 $\rho(T) = As/b \cdot d(T) = 0.0152$

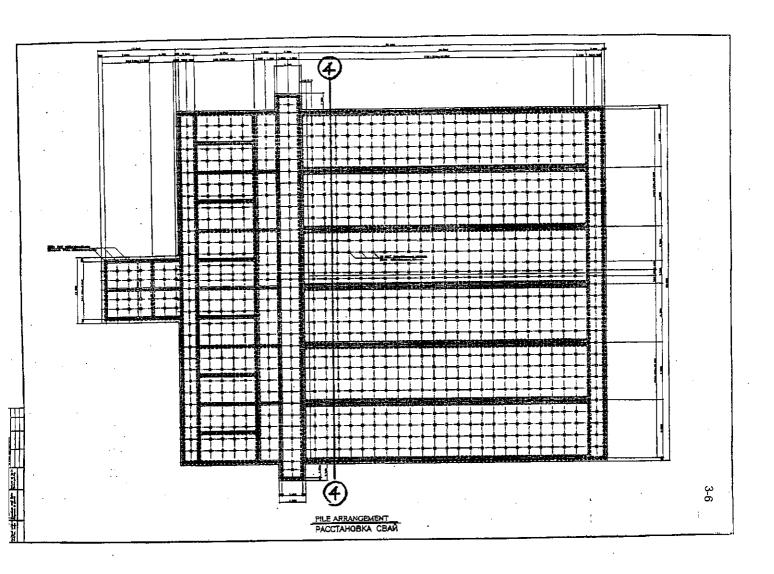
Where ; fct/fb = 0.67 $p(T) = As/b \cdot d(T) = 0.0152$ $p(B) = As/b \cdot d(B) = 0.0491$

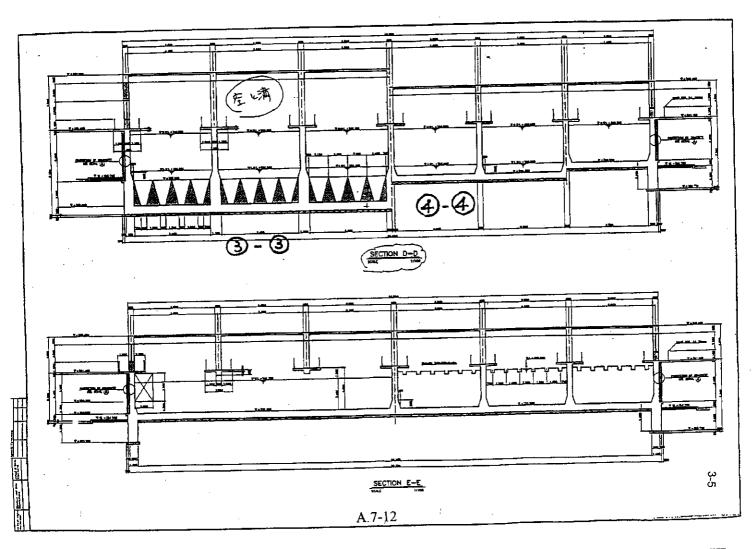
2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT

 $Wmax(T) = Smax(T) \cdot (\alpha/2) \cdot T1$ = 0.06 < 0.2 mm $Wmax(B) = Smax(B) \cdot (\alpha/2) \cdot T1$ = 0.02 < 0.2 mm

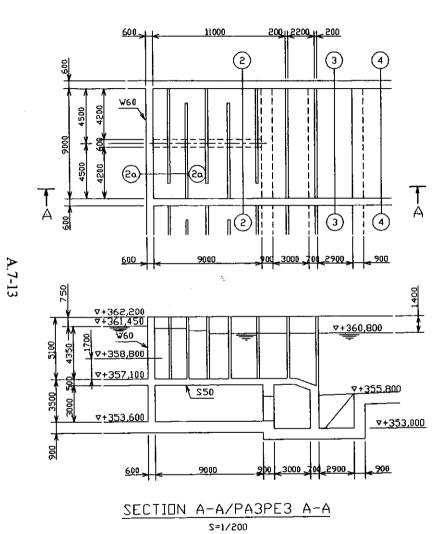

Where : a : COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE

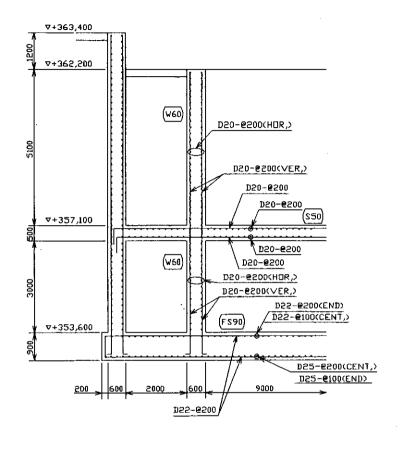

a= 1E-05 T1= 25 from TABLE 4.2


3-1


3. SEDIMENTATION BASIN
3. OTCTOMHUK

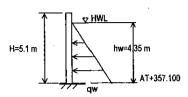
A.7-10





3.2 DESIGN OF WALL & SLAB ② - ② 3.2 OPOEKTUPOBAHUE CTEHЫ И ПЛИТЫ

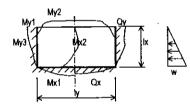
3 - 3 SAME AS 4 - 4 3 - 3 TAK XE KAK 4 - 4


CALCULATION OF (FS90) SAME AS (1)-(1) SECTION REFER TO PAGE 2-3
PACYET(FS90) TAK XE, KAK PA3PE3(1)-(1) CM. CTP. 2-3

S=1/80

3.2.1 CALCULATION OF WALL (W60) (AT+357.100)

2-2


1) DESIGN LOAD (Water Pressure)

hw = 4.35 m yw = 10.0 KN/m3

w = vw · hw = 43.5 KN/m2/m

2) FACTORED STRESS (W60)

lx = 4.35 m ty = 9.00 m λ = 2.07 w=qw = 43.5 KN/m2/m

Factored Load

w'=1.4 • w = 60.90 KN/m2/m

 $w' \cdot |x^2| = 1152.4$ $w' \cdot |x| = 264.9$

Mx1 = 0.088 x 1152.4 = 101.4 (KN · m/m) Mx2 = 0.010 x 1152.4 = 11.5 My1 = 0.068 x 1152.4 = 78.4 My2 = 0.027 x 1152.4 = 31.1 My3 = 0.068 x 1152.4 = 78.4 Qx = 0.47 x 264.9 = 124.5 (KN/m) Qy = 0.26 x 264.9 = 68.9

3) DESIGN OF SECTION

a) VERTICAL: BOT (AT+357.100)

Mu = 101.4 KN·m Vu = 124.5 KN/m

I REQUIRED RE-BAR 1

USE; D 20 @ 200 (As = 1570 mm2)

D 20 @ 200 (As = 1570 mm2)

[CHECK OF SHEAR STRESS]

 $V = Vu / (b \cdot d)$ = 0.23 < 4.4 N/mm2 OK (100 · As)/(b · d) = 0.29 < 3.0 400/d = 0.7 < 1.0 \rightarrow 1.0

 $V_C = 0.79 \cdot \{(100 \cdot As)/(b \cdot d)\}^1/3 \cdot (400/d)^1/4 \cdot (1/1.25) \cdot (fcu/25)^1/3$ = 0.45 N/mm2 > V = 0.23 N/mm2 OK

b) HORIZONTAL: TOP/END

Mu = 78.4 KN·m Vu = 68.9 KN/m

[REQUIRED RE-BAR]

[CHECK OF SHEAR STRESS]

Vc = 0.79 · {(100 · As)/(b · d)}^1/3 · (400/d)^1/4 · (1/1.25) · (fcu/25)^1/3 = 0.45 N/mm2 > V = 0.13 N/mm2 OK

a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6.2.3 OF BS8007)

SECTION b = 1000 mm SURFACE ZONE: d1 = 250 mm

D = 600 mm

dv = 540 mm

dh = 520 mm

Min. p = 0.0035 (0.35 %)

As (ver.) = p·b·d1 = 875 mm2 As (her.) = p·b·d1 = 875 mm2

USE; VERTICAL D 20 @ 200 (As = 1570 mm2)
USE: HORIZONTAL D 20 @ 200 (As = 1570 mm2)

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3.2.2 OF BS8007)

```
Mu = 101.4 KN·m M = 72.4 KN·m
                                                  b = 1000
                                                             mm
       Mu = 78.4 KN·m M = 56.0 KN·m
                                                  D =
                                                       600
                                                              mm
                                                        540
                                                 dv =
                                                              mm
                                                        520
                                                 dh =
                                                             mm
                                                        130 N/mm2
                                                  fy =
                                                        30 N/mm2
                                                 foir =
VERTICAL
        K = M / (fcu \cdot b \cdot dv^2)
                                               0.0083
                                                  535
       Z1 = dv \cdot [0.5 + \sqrt{(0.25 - K/0.9)}]
                                                  513
       Z2 = 0.95 \cdot dv
                                                  513
       Z =
                                               1085.6 mm2
       As = M / fv \cdot Z
```

USE; D 20 @ 200 (As = 1570 mm2)

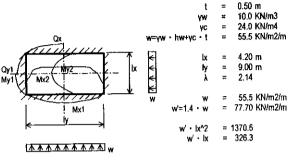
HORIZONTAL

 $K = M / (fcu \cdot b \cdot dh^2) = 0.0069$ $Z1 = dh \cdot [0.5 + \sqrt{(0.25 - K/0.9)}] = 516$ $Z2 = 0.95 \cdot dh = 494$ Z = 494 $As = M / fy \cdot Z = 872$ mm2

USE; D 20 @ 200 (As = 1570 mm2)

c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF 8S8007)

1) CRACK SPACING


2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT

 $Wmax(V) = Smax(V) - (a/2) \cdot T1$ = 0.19 < 0.2 mm $Wmax(H) = Smax(H) \cdot (a/2) \cdot T1$ = 0.19 < 0.2 mm

Where: q: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE

a= 1E-05 T1= 35 from TABLE 4.2 3.2.3 CALCULATION OF SLAB (S50) (2-2)

1) DESIGN LOAD & FACTORED STRESS

= 4.35 m

2) DESIGN OF SECTION

Mu = 113.8 KN·m Vu = 169.7 KN/m

b = 1000 mm fy = 365 N/mm2 D = 500 mm fcu = 30 N/mm2 d = 440 mm

[REQUIRED RE-BAR]

USE; D 20 @ 200 (As = 1570 mm2)

[CHECK OF SHEAR STRESS]

 $Vc = 0.79 \cdot \{(100 \cdot As)/(b \cdot d)\}^{1/3} \cdot (400/d)^{1/4} \cdot (1/1.25) \cdot (1cu/25)^{1/3}$ = 0.48 N/mm2 > V = 0.39 N/mm2 OK

a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6.2.3 OF BS8007)

Min. $\rho = 0.0035 (0.35 \%)$

As $(top) = p \cdot b \cdot d(T) = 875$ mm2 As $(bot) = p \cdot b \cdot d(B) = 350$ mm2

> <u>USE</u>; <u>TOP</u> <u>D 20</u> <u>@ 200</u> (As = 1570 mm2) <u>USE</u>; <u>BOTTOM</u> <u>D 20</u> <u>@ 200</u> (As = 1570 mm2)

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3.2.2 OF BS8007)

Top Mu = 113.8 KN·m M = 81.3 KN·m Mu = 78.1 KN-m M = 55.8 KN-m D = 500 mm d≈ 440 mm fy ≈ 130 N/mm2 30 N/mm2 fcu = TOP $K = M / (fcu \cdot b \cdot d^2)$ 0.014 $Z1 = d \cdot [0.5 + \sqrt{(0.25 - \text{K/0.9})}]$ 433 Z2 = 0.95 d418 2 = 418 $As = M / fv \cdot Z$ = 1496.1 mm2

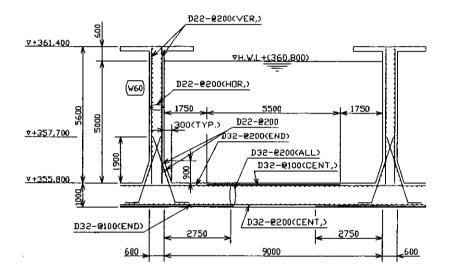
USE; D 20 @ 200 (As = 1570 mm2)

BOTTOM

c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF BS8007)

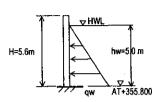
1) CRACK SPACING

 $Smax(T) = (fct/fb) \cdot (\phi/2p(T))$ = 1063.5 mm $Smax(B) = (fct/fb) \cdot (\phi/2p(B))$ = 426.8 mm


Where ; fct/fb = 0.67 $\rho(T) = As/b \cdot d(T) = 0.0063$ $\rho(B) = As/b \cdot d(B) = 0.0157$

2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT

Where; a: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE


α= 1E-05 T1≈ 25 from TABLE 4.2

3.3 DESIGN OF WALL & SLAB (4) - (4) 3.3 OPOEKTUPOBAHUE CTEHЫ И ПЛИТЫ

 $\frac{(4) - (4)}{S=1/100}$

1) DESIGN LOAD & FACTORED STRESS

Н≍ 5.6 m 5.00 m hw= 10.0 KN/m3

 Design load qw=yw-hw= 10.0 x 5.00 = 50.0 (KN/m2/m)

· Factored Load 50.0 = 70.00 (KN/m2/m) $w' = 1.4 \cdot qw = 1.4 \times x$

291.7 (KN·m/m) Mu = 1/6·w'·hw^2 = 175.0 (KN/m) Vu = 1/2 · w · hw

2) DESIGN OF SECTION

Mu = 291.7 KN·m Vu = 175.0 KN/m

365 N/mm2 1000 mm fy = 30 N/mm2 1200 mm D = fcu = d = 1140 mm

I REQUIRED RE-BAR 1

= 0.007 < 0.156 $K = Mu / (fcu \cdot b \cdot d^2)$ = 1130 $Z1 = d \cdot [0.5 + \sqrt{(0.25 - K/0.9)}]$ = 1083 Z2 = 0.95 · d 1083 Z = = 777 mm2 As 1 = Mu/0.95 fy - Z = 1560 mm2 Asmin = 0.0013 - b - D

> USE: D 22 @ 200 (As = 1900 mm2)

[CHECK OF SHEAR STRESS]

4.4 N/mm2 OK $V = Vu/(b \cdot d)$ = 0.15 < (100 - As)/(b - d) = 0.17 < 3.0 1.0 → 1.0 400/d = 0.4 <

 $Vc = 0.79 + {(100 - As)/(b + d)}^1/3 + (400/d)^1/4 + (1/1.25) + (1/1.25)^1/3}$ = 0.37 N/mm2 > V = 0.15 N/mm2

3) CHECK OF CRACKING W60 (VERTICAL:BOT.)

(4)-(4)

3-17

a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6.2.3 OF BS8007)

d1 = 250 mm SURFACE ZONE : b= 1000 mm D = 1200 mm dv = 1140mm dh = 1120mm

Min. p = 0.0035 (0.35 %)

As (ver.) = $\rho \cdot b \cdot d1 = 875$ mm2 As (her.) = p · b · d1 = 875 mm2

> @ 200 (As = 1900 mm2) VERTICAL D 22 (As = 1900 mm2) USE: HORIZONTAL D 22 @ 200

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3.2.2 OF BS8007)

Mu = 291.7 KN-m M = 208.4 KN-m D = 1200 Mu = 0.0 KN · m M = 0.0 KN · m mпŧ dv = 1140 mm dh = 1120 mm fv = 130 N/mm2 fcu = 30 N/mm2

VERTICAL

= 0.0053 $K = M / (fcu \cdot b \cdot dv^2)$ $Z1 = dv \cdot [0.5 + \sqrt{(0.25 - K/0.9)}]$ 1133 1083 $Z2 = 0.95 \cdot dv$ 1083 Z = = 1480.2 mm2 $As = M / fy \cdot Z$

> USE: D 22 @ 200 (As = 1900 mm2)

HORIZONTAL

0 $K = M / (fcu \cdot b \cdot dh^2)$ 0 $Z1 = dh \cdot [0.5 + \sqrt{(0.25 - K/0.9)}]$ O $Z2 = 0.95 \cdot dh$ Z = 0 mm2 $As = M / fy \cdot Z$

> D 22 @ 200 (As = 1900 mm2)USE:

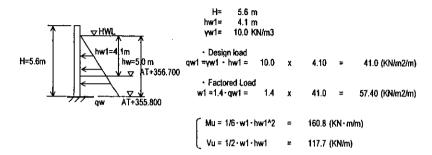
c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF BS8007)

1) CRACK SPACING

 $Smax(V) = (fct/fb) \cdot (\phi/2\rho(V))$ $Smax(H) = (fct/fb) \cdot (\phi/2\rho(H))$

Where : fct/fb = 0.67 $\rho(V)$ = As/b·d1 = 0.0076

 $\rho(H) = As/b \cdot d1 = 0.0076$


2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT

0.20 < 0.2 $Wmax(V) = Smax(V) \cdot (\alpha/2) \cdot T1$ 0.20 < 0.2 Wmax(H)= Smax(H) • (a/2) • T1

Where ; a : COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE

a= 1E-05 T1= 42 from TABLE 4.2 **(4)-(4)**

1) DESIGN LOAD & FACTORED STRESS

2) DESIGN OF SECTION

Mu = 160.8 KN·m Vu = 117.7 KN/m

b = 1000 365 N/mm2 mm fy = 600 mm 30 N/mm2 fcu ≃ 540

[REQUIRED RE-BAR]

K = Mu / (fcu · b · d^2) = 0.018 < 0.156 $Z1 = d \cdot (0.5 + \sqrt{(0.25 - K/0.9)})$ 529 Z2 = 0.95 · d 513 2 ⊭ 513 As 1 = Mu /0.95 fy - Z 904 mm2 Asmin = 0.0013 · b · D 780 mm2

> USE; D 22 @ 200 (As = 1900 mm2)

[CHECK OF SHEAR STRESS]

 $V = Vu/(b \cdot d)$ = 0.22 < 4.4 N/mm2 OK (100 · As)/(b · d) = 0.35 < 3.0 = 0.7 < 1.0 →

Vc = 0.79 · {(100 · As)/(b · d)}^1/3 · (400/d)^1/4 · (1/1.25) · (fou/25)^1/3 = 0.47 N/mm2 > V = 0.22 N/mm2

3) CHECK OF CRACKING W60 (VERTICAL:TOP)

(4)-(4)

3-19

```
a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2,6.2.3 OF BS8007)
```

SECTION b = 1000 mm SURFACE ZONE: d1 = 250 mm D = 600 mm dv = 540 mm dh = 520 mm

Min. $\rho = 0.0035 (0.35 \%)$

As (ver.) = $0 \cdot b \cdot d1 = 875 \text{ mm}^2$ As (her.) = $\rho \cdot b \cdot d1 = 875$ mm2

> VERTICAL USE; HORIZONTAL D 22

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3.2.2 OF BS8007)

Mu = 160.8 KN·m M = 114.9 KN·m b = 1000 Mu = 0.0 KN·m M = 0.0 KN·m D = 600 mm dν= 540 mm 520 mm fy = 130 N/mm2 fcu = 30 N/mm2

VERTICAL

 $K = M / (fcu \cdot b \cdot dv^2)$ = 0.0131 $Z1 = dv \cdot [0.5 + \sqrt{(0.25 - K/0.9)}]$ 532 $Z2 = 0.95 \cdot dv$ 513 513 Z = $As = M / ty \cdot Z$ 1722.9 mm2

> USE; D 22 മ 200 ${As = 1900 \text{ mm2}}$

HORIZONTAL

 $K = M / (fcu \cdot b \cdot dh^2)$ 0 $Z1 = dh \cdot [0.5 + \sqrt{(0.25 - K/0.9)}]$ 0 $Z2 = 0.95 \cdot dh$ 0 Z = As = M / fy · Z 0 mm2

USE; D 22 @ 200 (As = 1900 mm2)

c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF BS8007)

1) CRACK SPACING

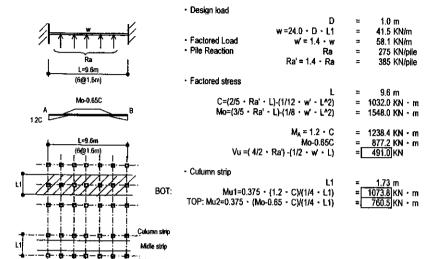
 $Smax(V) = (fct/fb) \cdot (\phi/2\rho(V))$ 969.74 mm $Smax(H) = (fct/fb) \cdot (\phi/2\rho(H))$ 969.7 mm

Where : fct/fb = 0.67 $\rho(V) = As/b \cdot d1 =$ 0.0076

 $\rho(H) = As/b \cdot d1 =$ 0.0076

2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT

 $V_{max}(V) = S_{max}(V) \cdot (g/2) \cdot T_1$ 0.17 < 0.2 Wmax(H)≈ Smax(H) · (α/2) · T1 0.17 < 0.2 mm


Where; a: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE

a= 1E-05 T1= 35 from TABLE 4.2

3.3.3 CALCULATION OF FOOTING SLAB (FS100) (AT+355.800)

4-4

1) DESIGN LOAD & FACTORED STRESS


```
2) DESIGN OF SECTION
```

a) HORIZONTAL: BOT/END

Mu = 1073.8 KN·m Vu = 491.0 KN/m

b = 1000 mm fy = 365 N/mm2 D = 1000 mm fcu = 30 N/mm2 d = 940 mm

FREQUIRED RE-BAR 1

 $K = Mu / (fcu \cdot b \cdot d^2)$ = 0.041 < 0.156 $Z1 = d \cdot [0.5 + \sqrt{(0.25 - K/0.9)}]$ = 896 $Z2 = 0.95 \cdot d$ Z = 893 Z = 893 $As 1 = Mu / 0.95 \cdot fy \cdot Z$ $Asmin = 0.0013 \cdot b \cdot D$ = 1300 mm2

<u>USE; D 32 @ 100 (As = 8040 mm2)</u>

[CHECK OF SHEAR STRESS]

V = Vu /(b ⋅ d) = 0.52 < 4.4 N/mm2 OK (100 ⋅ As)/(b ⋅ d) = 0.86 < 3.0 400/d = 0.4 < 1.0 → 1.0

Vc = 0.79 · {(100 · As)/(b · d)}^1/3 · (400/d)^1/4 · (1/1.25) · (fcu/25)^1/3 = 0.64 N/mm2 > V = 0.52 N/mm2 OK

b) HORIZONTAL: TOP/CENT

Mu = 760.5 KN·m Vu = KN/m

b = 1000 mm fy = 365 N/mm2 D = 600 mm fcu = 30 N/mm2 d = 520 mm

[REQUIRED RE-BAR]

K = Mu / (fcu · b · d^2) = 0.094 < 0.156 Z1 = d · [0.5 + √(0.25 − K/0.9)] = 459 Z2 = 0.95 · d = 494 Z = 459 As 1 = Mu /0.95 · fy · Z = 4783 mm2 Asmin = 0.0013 · b · D = 780 mm2

USE; D 32 @ 100 (As = 8040 mm2)

[CHECK OF SHEAR STRESS]

Vc = 0.79 · {(100 · As)/(b · d)}^1/3 · (400/d)^1/4 · (1/1.25) · (fcu/25)^1/3 = 0.78 N/mm2 > V = 0.00 N/mm2 OK

a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6.2.3 OF BS8007)

Min. $\rho = 0.0035 (0.35\%)$

As $(top) = \rho \cdot b \cdot d(T) = 875$ mm2 As $(bot) = \rho \cdot b \cdot d(B) = 350$ mm2

USE; TOP D 32 @ 100 (As = 8040 mm2)
USE; BOTTOM D 32 @ 100 (As = 8040 mm2)

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3.2.2 OF BS8007.)

Top Bott.	Mu = 760.6 KN • Mu = 1073.7 KN •		43.3 KN 66.9 KN		b= D= d= fy= fcu=		mm mm mm 1/mm2 1/mm2	
TOP						00 1	WILL WILL	
	K = M / (fcu+b+e			=	0.0257			
	Z1 = d • [0.5 + √	(0.25 — K/0.9)]	=	815			
	$Z2 = 0.95 \cdot d$			=	798			
	Z =				798			
	As = M / fy · Z			=	5237.1	mm2		
		USE	D 32	@	100	(As =	<u>8040</u>	<u>mm2)</u>
вотто	М							
	K = M / {fcu·b·	d^2)		=	0.0362			
	$Z1 = d \cdot 10.5 + \sqrt{}$		n	Ξ	805			
	Z2 = 0.95·d	,	"	=	798			
	7 =				798			
	As = M / fy - Z			=	7392.5	mm2		
		USE	D 32	(Q)	100	(As =	8040	mm2)

c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF BS8007)

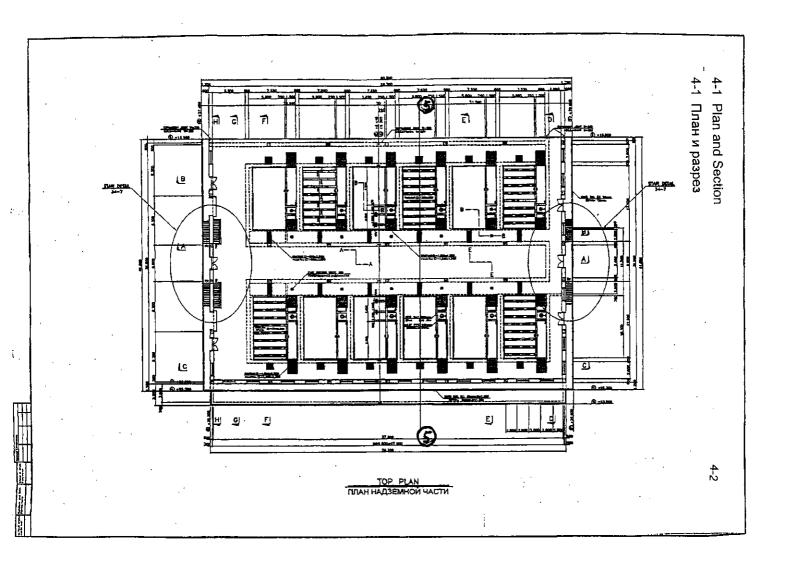
1) CRACK SPACING

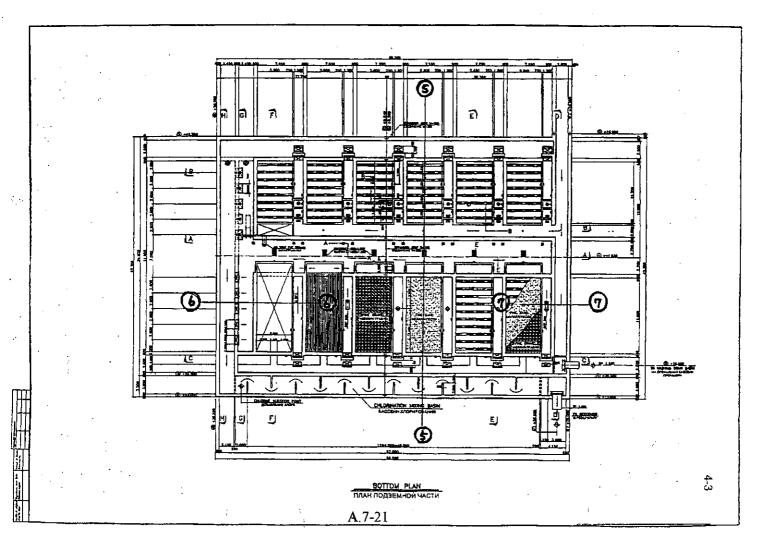
 $\rho(B) = As/b \cdot d(B) =$

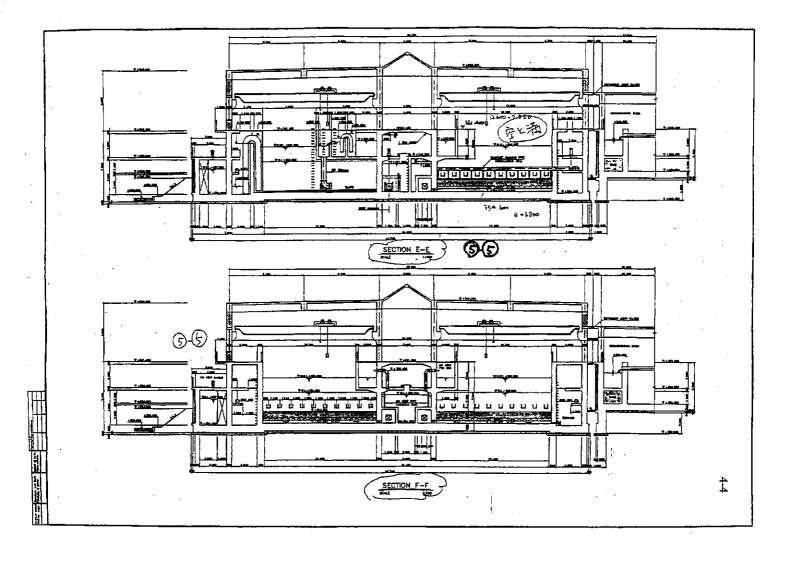
2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT

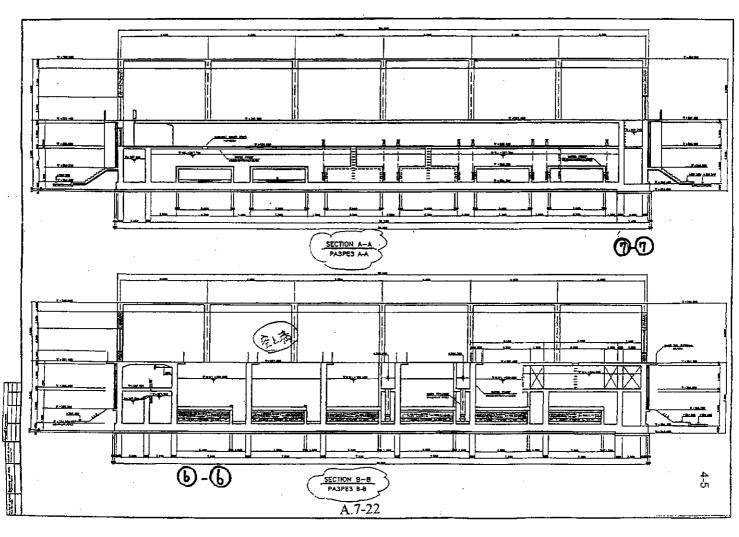
 $Wmax(T) = Smax(T) \cdot (\alpha/2) \cdot T1$ = 0.04 < 0.2 mm $Wmax(B) = Smax(B) \cdot (\alpha/2) \cdot T1$ = 0.02 < 0.2 mm

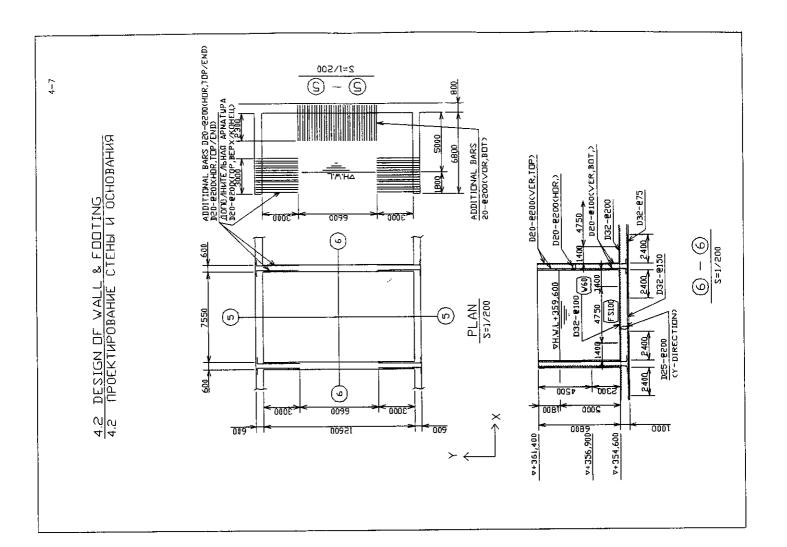
0.0804

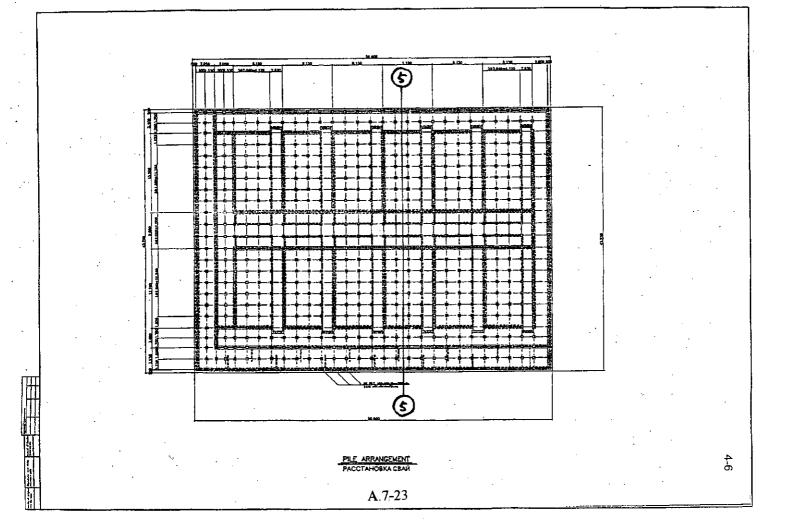

Where: a: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE

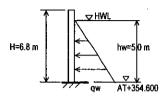

a= 1E-05 T1= 25 from TABLE 4.2


4. RAPID SAND FILTER

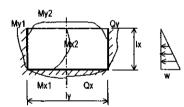

4. СКОРЫЙ ПЕСЧАНЫЙ ФИЛЬТР


Sections 6 and 7 are the same as Section 5 Разделы 6 и 7 являются такими же, как и Раздел 5





(5)-(5)


1) DESIGN LOAD (Water Pressure)

hw≃≃ 5.00 m 10.0 KN/m3

50.0 KN/m2/m

2) FACTORED STRESS (W60)

1x = 5.00 mly = 12.60 m Å = 2.52 w=qw = 50.0 KN/m2/m

Factored Load $w'=1.4 \cdot w = 70.00 \text{ KN/m2/m}$

> $w' \cdot bx^2 = 1750.0$ $w' \cdot lx = 350.0$

SEE Fla. $Mx1 = 0.105 \times 1750.0 = 183.8 (KN \cdot m/m)$ Mx2 = 0.013 x 1750.0 = 22.8 $My1 = 0.082 \times 1750.0 = 143.5$ $My2 = 0.026 \times 1750.0 = 45.5$

Qx = 0.50 x 350.0 = 175.0 (KN/m) $Qy = 0.28 \times 350.0 = 98.0$

3) DESIGN OF SECTION

VERTICAL: BOT (AT+354.600)

Mu = 183.8 KN·m

365 N/mm2 1000 mm fv = 30 N/mm2

= 0.021 < 0.156 $Z1 = d \cdot [0.5 + \sqrt{(0.25 - K/0.9)]}$ 527 = Z2 = 0.95 · d 513 513 Z = As 1 = Mu /0.95 · fy · Z = Asmin = 0.0013 · b · D

> 20 @ 100 (As = 3140 mm2) USE; D Bottom 20 @ 200 (As = 1570 mm2)

[CHECK OF SHEAR STRESS]

 $V = Vu/(b \cdot d)$ = 0.58 < 3.0 (100 - AsV(b - d) 0.74 < 1.0 → 1.0 400/d

 $Vc = 0.79 \cdot {(100 \cdot As)/(b \cdot d)}^1/3 \cdot (400/d)^1/4 \cdot (1/1.25) \cdot (fcu/25)^1/3}$

Mu = 143.5 KN·m Vu = 98 KN/m

1000 mm fy = 365 N/mm2 b = 600 mm fcu = 30 N/mm2 D = 520 mm d =

[REQUIRED RE-BAR]

 $K = Mu / (fcu \cdot b \cdot d^2)$ = 0.018 < 0.156 $Z1 = d \cdot [0.5 + \sqrt{(0.25 - \text{K/0.9})}]$ 510 Ξ 494 Z2 = 0.95 · d Z = Î 494 As 1 = Mu/0.95 · fy · Z 838 mm2 Asmin = 0.0013 · b · D 780 mm2

> 20 @ 100 (As = 3140 mm2) USE; D Top/End 20 @ 200 (As = 1570 mm2) Center.Bot/End

[CHECK OF SHEAR STRESS]

0.19 < 4.4 N/mm2 OK $V = Vu/(b \cdot d)$ (100 · As)/(b · d) 0.60 < 3.0 400/d 0.77 < 1.0 →

 $Vc = 0.79 \cdot \{(100 \cdot As)/(b \cdot d)\}^{1/3} \cdot (400/d)^{1/4} \cdot (1/1.25) \cdot (fcu/25)^{1/3}$ = 0.57 N/mm2 > V = 0.19 N/mm2 OK

A.7-24

Vu = 175 KN/m

D = 600 mm

[REQUIRED RE-BAR]

 $K = Mu / (fcu \cdot b \cdot d^2)$

540 mm

1033 mm2 780 mm2

Top

0.32 < 4.4 N/mm2 OK =

= 0.56 N/mm2 > V = 0.32 N/mm2 OK

HORIZONTAL: TOP/END

a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6.2.3 OF BS8007)

SECTION b = 1000 mm SURFACE ZONE; d1 = 250 mm
D = 600 mm
dv = 540 mm
dh = 520 mm

Min. p = 0.0035 (0.35 %)

As (ver.) = $\rho \cdot b \cdot d1 = 875$ mm2 As (her.) = $\rho \cdot b \cdot d1 = 875$ mm2

USE; VERTICAL D 20 @ 100 (As = 3140 mm2)
USE; HORIZONTAL D 20 @ 100 (As = 3140 mm2)

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3.2.2 OF BS8007)

Mu = 183.8 KN·m M = 131.3 KN·m b = 1000 Mu = 143.5 KN·m M = 102.5 KN·m D = 600 mm 540 mm dh = 520 mm 130 N/mm2 fy = fcu = 30 N/mm2 VERTICAL $K = M / (fcu \cdot b \cdot dv^2)$ 0.015 $Z1 = dv \cdot [0.5 + \sqrt{(0.25 - K/0.9)}]$ 531 Z2 = 0.95 dv513 2 = 513 1968.8 mm2 $As = M / fv \cdot Z$

USE; D 20 60 100 (As = 3140 mm2)

HORIZONTAL

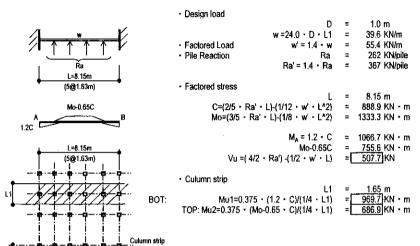
USE; D 20 @ 100 (As = 3140 mm2)

c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF BS8007)

1) CRACK SPACING

 $Smax(V) = (fct/fb) \cdot (\phi/2p(V))$ = 531.75 mm $Smax(H) = (fct/fb) \cdot (\phi/2p(H))$ = 531.7 mm

Where ; fct/fb = 0.67 $\rho(V)$ = As/b·d1 = 0.0126 $\rho(H)$ = As/b·d1 = 0.0126


2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT

Wmax(V)= Smax(V)-(α/2)-T1 = 0.09 < 0.2 mm
Wmax(H)= Smax(H)-(α/2)-T1 = 0.09 < 0.2 mm

Where; a: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE

a= 1E-05 T1= 35 from TABLE 4.2 4.2.3 CALCULATION OF SLAB (S80) (AT+354.600) (5)-(5)

1) DESIGN LOAD & FACTORED STRESS


```
2) DESIGN OF SECTION
   a) HORIZONTAL : BOT/END
      Mis =
              969.7 KN m
      Vu =
              507.7 KN/m
      b =
               1000
                      mm
                                 fy =
                                         365 N/mm2
      D =
               1000
                       mm
                                 fcu =
                                          30 N/mm2
      d =
                940
 [ REQUIRED RE-BAR ]
      K = Mu / (fcu · b · d^2)
                                                        = 0.037 < 0.156
      Z1 = d \cdot [0.5 + \sqrt{(0.25 - K/0.9)}]
                                                             900
      Z2 = 0.95 · d
                                                             893
                                                             893
      Ζ=
      As 1 = Mu /0.95 fv - Z
                                                        = 3132 mm2
                                                        = 1300 mm2
      Asmin = 0.0013 · b · D
                                                          75
                                                                  \{As = 10720 \text{ mm2}\}
                                           D 32
                                                           200
                                                                (Y-Direction)
                                            D 25
                                                    Q
  [ CHECK OF SHEAR STRESS ]
                                                              4.4 N/mm2 OK
      V = Vu/(b \cdot d)
                                            = 0.54 <
                                            = 1.14
      (100 · As)/(b · d)
                                                      <
                                                              3.0
                                            = 0.4
                                                      <
                                                              1.0
      400/d
      Vc = 0.79 · {( 100 · As )/( b · d )}^1/3 · ( 400/d )^1/4 · (1/1.25) · (fcu/25)^1/3
        = 0.70 N/mm2 >
                                  V = 0.59 N/mm2
    b) HORIZONTAL: TOP/CENT
       Mu =
                686.9 KN·m
                      KN/m
       Vu =
                                           365 N/mm2
       b =
                1000
                       mm
                                            30 N/mm2
       D =
                1000
                       mm
                                  fcu =
       đ =
                 920
                       mm
  [ REQUIRED RE-BAR ]
                                                         = 0.027 < 0.156
       K = Mu / (fcu - b \cdot d^2)
                                                             891
       Z1 = d \cdot [0.5 + \sqrt{(0.25 - \text{K/0.9})}]
       Z2 = 0.95 \cdot d
                                                              874
                                                              874
       Z =
                                                         = 2266 mm2
       As 1 = Mu/0.95 · fv · Z
                                                          = 1300 mm2
       Asmin = 0.0013 · b · D
                                                           100
                                                                   (As = 8040 \text{ mm}2)
                                             D 25
                                                           200 (Y-Direction)
   [ CHECK OF SHEAR STRESS ]
                                             = 0.00 <
                                                              4.4 N/mm2 OK
       V = Vu/(b \cdot d)
                                             = 0.87 <
                                                              3.0
       (100 · As)/(b · d)
       400/d
                                             = 0.4 <
                                                              1.0
```

 $V_C = 0.79 - \{(100 - As)/(b - d)\}^1/3 - (400/d)^1/4 - (1/1.25) - (1/25)^1/3$

= 0.64 N/mm2 > V = 0.00 N/mm2

(X-Direction)

3) CHECK OF CRACKING FOOTING SLAB (FS80)

(5)-(5)

4-13

a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6,2.3 OF BS8007)

d(T) = 250 mmb = 1000 mm SURFACE ZONE: SECTION d(B) = 100 mmD= 1000 mm 640 d = mm

Min. p = 0.0035 (0.35%)

As $(top) = p \cdot b \cdot d(T) = 875 \text{ mm}2$ As (bot) = $p \cdot b \cdot d(B) = 350 \text{ mm}2$

USE:	TOP	D 32	@	100	(As =	8040	mm2)
USE:	BOTTOM	D 32	@	75	(As =	10720	mm2)

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3.2.2 OF BS8007)

Top Bott.	Mu= Mu=		KN·m KN·m		KN•m KN•m		b = D = d =	1000 1000 640	mm mm
							_		mm
							fy =		√mm2
							fcu ≃	30 1	√mm2
TOP									
	K = N	/ / for	u-b-d^2)		=	:	0.04		
			+√(0.2	0.9)]	=	:	610		
	7.2 =	0.95 · d			=	:	608		
	7 =						608		
	As = N	Alfy.	Z		=	:	6207	mm2	

USE;	D 32	@	100	(As =	8040	mm2)

BOTTOM

0.056 $K = M / (fcu \cdot b \cdot d^2)$ $Z1 = d \cdot [0.5 + \sqrt{(0.25 - \text{K/0.9})}]$ 597 608 $Z2 = 0.95 \cdot d$ Z = 597 As = $M / fy \cdot Z$ 8924 mm2

> USE: D 32 @ 75 (As = 10720 mm2)

c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF BS8007)

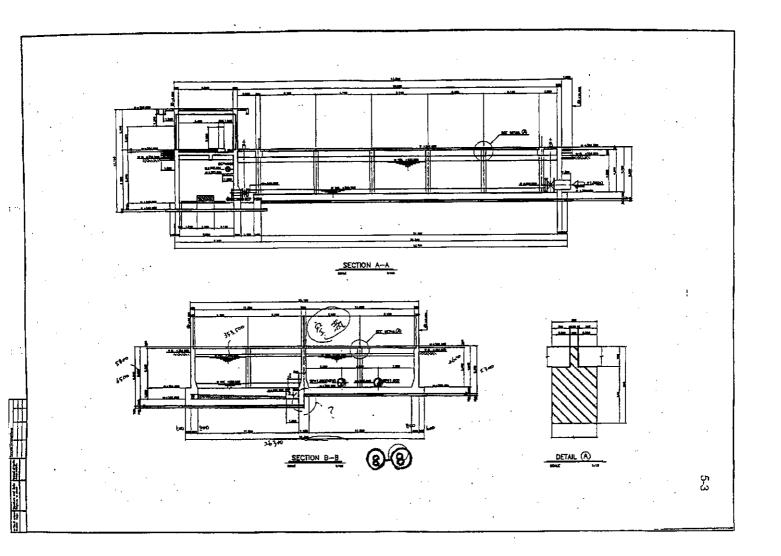
1) CRACK SPACING

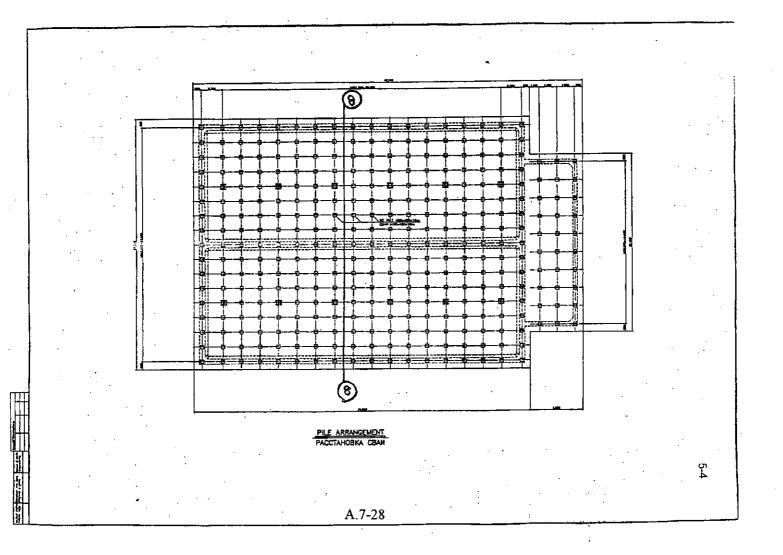
332.92 mm $Smax(T) = (fct/fb) \cdot (\varphi/2\rho(T))$ $Smax(B) = (fct/fb) \cdot (\phi/2o(B))$ 100.0 mm Where ; fct/fb = 0.67 $\rho(T) = As/b \cdot d(T) =$ 0.0322

 $\rho(B) = As/b \cdot d(B) =$ 0.1072

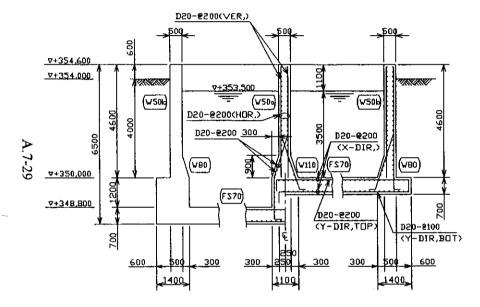
2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT

0.04 < 0.2 $Wmax(T)=Smax(T)\cdot(\alpha/2)\cdot T1$ mm 0.01 < 0.2 Wmax(B)= Smax(B) (a/2)-T1

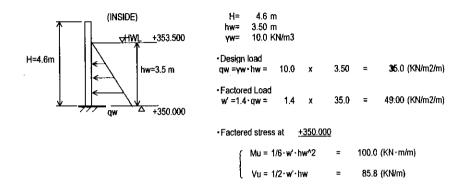

Where; a: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE


a= 1E-05 T1= 25 from TABLE 4.2

5. BACKWASH DRAINAGE BASIN


5. ПРОМЫВНОЙ ДРЕНАЖНЫЙ БАССЕЙН

A.7-27


5.2 DESIGN OF WALL & FOOTING 5.2 OPOEKTUPOBAHUE CTEHЫ И ОСНОВАНИЯ

<u>8 - 8</u>

5.2.1 CALCULATION OF WALL (W80) (AT+350,000)

1) DESIGN LOAD & FACTORED STRESS(Water Pressure)

2) DESIGN OF SECTION (INSIDE/VERTICAL BOT.)

Mu = 100.0 KN·m Vu = 85.8 KN/m b = 1000 mm fy = 800 mm fy = 800 mm

[REQUIRED RE-BAR]

USE; D 20 @ 200 (As = 1570 mm2)

[CHECK OF SHEAR STRESS]

 $V = Vu /(b \cdot d)$ = 0.12 < 4.4 N/mm2 OK (100 · As)/(b · d) = 0.21 < 3.0 400/d = 0.5 < 1.0 \rightarrow 1.1

Vc = 0.79-{(100-As }/(b·d)}^1/3-(400/d)^1/4-(1/1.25)-(fcu/25)^1/3 = 0.40 N/mm2 > V = 0.12 N/mm2 OK (AT+350.000)

a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6.2.3 OF BS8007)

SECTION b = 1000 SURFACE ZONE: mm 250 mm D = 800 mm dv = 740 mm dh = 720 mm

Min. p = 0.0035 (0.35 %)

As (ver.) = $\rho \cdot b \cdot d1 = 875$ mm2 As (her.) = $\rho \cdot b \cdot d1 = 875$ mm2

_USE;	VERTICAL	D 20	@ 200	(As =	1570	mm2)
USE;	HORIZONTAL	D 20	@ 200	(As =	1570	mm2)

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3.2.2 OF BS8007)

Ver. Mu = 100.0 KN·m M = 71.5 KN·m b = 1000 mm Hor. Mu = 0.0 KN·m M = 0.0 KN·m D= 800 mm dv = 740 mm dh = 720 mm fy = 130 N/mm2 fcu = 30 N/mm2

VERTICAL

 $K = M / (fcu-b-dv^2) = 0.0043$ $Z1 = dv \cdot [0.5 + \sqrt{(0.25-K/0.9)}] = 736$ $Z2 = 0.95 \cdot dv = 703$ Z = 703 $As = M / fy \cdot Z = 781.91 mm2$

USE; D 20 @ 200 (As = 1570 mm2)

HORIZONTAL

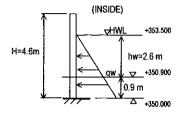
USE; D 20 @ 200 (As = 1570 mm2)

c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF 858007)

1) CRACK SPACING

 $Smax(V) = (fct/fb) \cdot (\phi/2\rho(V))$ = 1066.9 mm $Smax(H) = (fct/fb) \cdot (\phi/2\rho(H))$ = 1066.9 mm

Where ; fct/fb = 0.67 $\rho(V) = As/b \cdot d1 = 0.0063$ $\rho(H) = As/b \cdot d1 = 0.0063$


2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT

 $Wmax(V) = Smax(V) \cdot (\alpha/2) \cdot T1$ = 0.17 < 0.2 mm $Wmax(H) = Smax(H) \cdot (\alpha/2) \cdot T1$ = 0.17 < 0.2 mm

Where; a: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE

a= 1E-05 T1= 32 from TABLE 4.2 5.2.2 CALCULATION OF WALL (W50a) (AT+350,900) (8-8)

1) DESIGN LOAD & FACTORED STRESS(Water Pressure)

H= 4.60 m hw= 2.60 m vw= 10.0 KN/m3

Design load

qw = yw • hw = 10.0 x 2.60 = 26.0 (KN/m2/m)

•Factored Load w'=1.4 · qw = 1.4 x 26.0 = 36.40 (KN/m2/m)

Factered stress at +350,900

 $\begin{cases} Mu = 1/6 \cdot w' \cdot hw^2 & = 41.0 \text{ (KN} \cdot m/m) \\ Vu = 1/2 \cdot w' \cdot hw & = 47.3 \text{ (KN}/m) \end{cases}$

2) DESIGN OF SECTION (INSIDE/VERTICAL TOP)

Mu = 41.0 KN·m Vu = 47.3 KN/m

b = 1000 mm fy = 365 N/mm2 D = 500 mm fcu = 30 N/mm2 d = 440 mm

I REQUIRED RE-BAR 1

USE; D 20 @ 200 (As = 1570 mm2)

[CHECK OF SHEAR STRESS]

 $V = Vu /(b \cdot d)$ = 0.11 < 4.4 N/mm2 OK (100-As)/(b \cdot d) = 0.36 < 3.0 400/d = 0.9 < 1.0 \rightarrow 1.0

Vc = 0.79-{(100-As)/(b·d)}^1/3-{ 400/d }^1/4-(1/1.25)-(fcu/25)^1/3 = 0.48 N/mm2 > V = 0.11 N/mm2 OK (AT+350.900)

a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6.2.3 OF BS8007)

SECTION b≖ 1000 SURFACE ZONE: mm 250 mm D = 500 mm dv = 440 mm dh ≃ 420 mm

Min. $\rho = 0.0035 (0.35\%)$

As (ver.) = $\rho \cdot b \cdot d1 = 875$ mm2 As (her.) = $\rho \cdot b \cdot d1 = 875$ mm2

USE;	VERTICAL	D 20	@ 200	(As =	1570	mm2)
USE ;	HORIZONTAL	D 20	@ 200	(As =	1570	mm2)

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3.2.2 OF BS8007)

Ver.	Mu =	41.0	KN·m	M =	29.3	KN-m	b =	1000	mm
Hor.	Mu≂	0.0	KN-m	M =	0.0	KN∙m	D =	500	mm
							dv =	440	mm
							dh =	420	mm
							fy =	130 N	l/mm2
							fcu ≂	30 N	l/mm2

VERTICAL

USE:	D 20	@ 200	(As =	1570	mm2\

HORIZONTAL

```
 K = M / (fcv \cdot b \cdot dh^2) = 0 
 Z1 = dh \cdot [0.5 + \sqrt{(0.25 - K/0.9)}] = 0 
 Z2 = 0.95 \cdot dh = 0 
 Z = 0 
 As = M / fy \cdot Z = 0 
 mm2
```

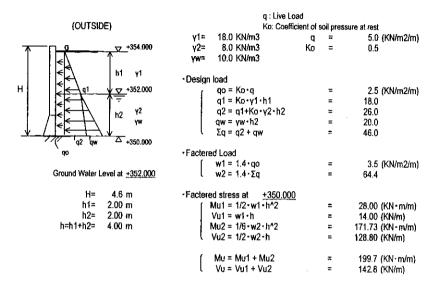
USE; D 20 @ 200 (As = 1570 mm2)

c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF BS8007)

1) CRACK SPACING

Smax(V) = $(fct/fb) \cdot (\phi/2\rho(V))$	=	1066.9	mm	
Smax(H) = $(fct/fb) \cdot (\phi/2\rho(H))$		1066.9	mm	
Where ; fct/fb = 0.67	ρ(V) = ρ(H) =	As/b·d1 = As/b·d1 =	0.0063 0.0063	

2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT


 $Wmax(V)= Smax(V)\cdot (a/2)\cdot T1$ = 0.17 < 0.2 mm $Wmax(H)= Smax(H)\cdot (a/2)\cdot T1$ = 0.17 < 0.2 mm

Where; a: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE

α= 1E-05 T1= 32 from TABLE 4.2

5.2.3 CALCULATION OF WALL (W80) (AT+350,000) (8-8)

1) DESIGN LOAD & FACTORED STRESS(Soil Pressure)

2) DESIGN OF SECTION (OUTSIDE/VERTICAL TOP)

Mu = 199,7 KN·m Vu = 142.8 KN/m

b = 1000 mm fy = 365 N/mm2 D = 800 mm fcu = 30 N/mm2 d = 740 mm

[REQUIRED RE-BAR]

$K = Mu / (fcu \cdot b \cdot d^2)$	=	0.012 < 0.18	56
$Z1 = d \cdot [0.5 + \sqrt{(0.25 - K/0.9))}$	=	730	
Z2 = 0.95 · d	=	703	
Z =		703	
As1 = Mu /0.95 · fy · Z	=	819 mm2	2
Asmin = 0.0013 · b · D	=	1040 mm2	2

USE; D 20 @ 200 (As = 1570 mm2)

[CHECK OF SHEAR STRESS]

$V = Vu/(b \cdot d)$	=	0.19	<	4.4 N/mm2	OK
(100 · As)/(b · d)	=	0.21	<	3.0	
400/d	=	0.5	<	1.0 →	1.0

Vc = 0.79-{(100-As)/(b-d)}^1/3-(400/d)^1/4-(1/1.25)-(fcu/25)^1/3 = 0.40 N/mm2 > V = 0.19 N/mm2 OK (AT+350.000)

a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6.2.3 OF BS8007)

SECTION 1000 SURFACE ZONE: 250 b = mm mm D = 800 mm dv = 740 mm dh = 720 mm

Min. $\rho = 0.0035 (0.35\%)$

As (ver.) = p·b·d1 = 875 mm2 As (her.) = p·b·d1 = 875 mm2

USE:	VERTICAL	D 20	@ 200	(As =	1570	mm2)
USE ;	HORIZONTAL.	Ď 20	@ 200	(As =	1570	mm2)

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3.2.2 OF BS8007.)

Ver.	Mu =	199 7	KN-m	M =	142.7	KN∙m	b =	1000	mm
Hor.	Mu =	0.0	KN-m	M =	0.0	KN-m	D =	800	mm
							dv =	740	mm
							dh =	720	mm
							fy =	130 N	/mm2
							fcu =	30 N	/mm2

VERTICAL

.7-32

 $K = M / \{fcu \cdot b \cdot dv^2\}$ = 0.0087 $Z1 = dv \cdot [0.5 + \sqrt{(0.25 - K/0.9)}]$ = 733 $Z2 = 0.95 \cdot dv$ = 703 Z = 703 $As = M / fy \cdot Z$ = 1561.1 mm2

USE	D 20	@ 200	(As =	1570	mm2)

HORIZONTAL

K = M / (fcu-b-dh^2) = 0 Z1 = dh - [0.5 + √(0.25 - K/0.9)] = 0 Z2 = 0.95 - dh = 0 Z = 0 As = M / fy - Z = 0 mm2

USE; D 20 @ 200 (As = 1570 mm2)

c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF BS8007)

1) CRACK SPACING

 $Smax(V) = (fct/fb) \cdot (\phi/2p(V))$ = 1066.9 mm $Smax(H) = (fct/fb) \cdot (\phi/2p(H))$ = 1066.9 mm

Where ; fct/fb = 0.67 $p(V) = As/b \cdot d1 = 0.0063$ $p(H) = As/b \cdot d1 = 0.0063$

2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT

Where: a: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE

a= 1E-05 T1= 32 from TABLE 4.2 5.2.4 CALCULATION OF WALL (W50b) (AT+350.900) **(8**)-**(8**)

1) DESIGN LOAD & FACTORED STRESS(Soil Pressure)

	q : Live	Load			
(OUTSIDE)	Ko: Coefficient of soil pressure at rest				
	y1= 18.0 KN/m3	q =	5.0 (KN/m2/m)		
⊐x. □ q	y2= 8.0 KN/m3	Ko =	0.5		
 	yw= 10.0 KN/m3				
h1 v1	• Design load				
H	go = Ko·q	=	2.5 (KN/m2/m)		
	q1 = Ko·y1-h1	=	18.0		
h2 YW	q2 = q1+Ko+y2-h2	=	22.4		
/ go q2 q) A A A A A A A A A	gw = vw·h2	=	11.0		
₩ / 1.l \ \₩	$\Sigma q = q2 + qw$	=	33.4		
→ +350.000					
	 Factered Load 				
	[w1 = 1.4-qo	=	3.5 (KN/m2/m)		
Ground Water Level at +352.000	$l w2 = 1.4 \cdot \Sigma q$	Ξ	46.8		
H= 4.6 m	•Factered stress at +350.9	900			
h1= 2.00 m	f Mu1 = 1/2-w1-h^2	_	16.82 (KN-m/m)		
h2= 1.10 m	Vu1 = w1 · h	=	10.85 (KN/m)		
h=h1+h2= 3.10 m	Mu2 = 1/6 · w2 · h^2	=	74.89 (KN+m/m)		
	Vu2 = 1/2·w2·h	=	72.48 (KN/m)		
	ſ Mu = Mu1 + Mu2	=	91.7 (KN·m/m)		
	Vu = Vu1 + Vu2	=	83.3 (KN/m)		

2) DESIGN OF SECTION (OUTSIDE/VERTICAL TOP)

Mu = 91.7 KN·m Vu = 83.3 KN/m

b = 1000 mm fy = 365 N/mm2 D = 500 mm fcu = 30 N/mm2 d = 440 mm

[REQUIRED RE-BAR]

 $K = Mu / (fcu \cdot b \cdot d^2)$ = 0.016 < 0.156 Z1 = d · [0.5 + √(0.25 − K/0.9)] = 432 Z2 = 0.95 · d = 418 Z = 418 Z = 418 As1 = Mu /0.95 · fy · Z = 633 mm² Asmin = 0.0013 · b · D = 650 mm²

USE; D 20 @ 200 (As = 1570 mm2)

[CHECK OF SHEAR STRESS]

 $V = Vu /(b \cdot d)$ = 0.19 < 4.4 N/mm2 OK (100-As)/(b \cdot d) = 0.36 < 3.0 400/d = 0.9 < 1.0 \rightarrow 1.1

Vc = 0.79 *{(100 * As)/(6 * d)}^1/3 *(400/d)^1/4 *(1/1.25) *(fcu/25)^1/3 = 0.48 N/mm2 > V = 0.19 N/mm2 OK

```
W50b (OUTSIDE/VERTICAL:TOP)
                                            (AT+350.900)
a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6.2.3 OF BS8007)
     SECTION
                  b =
                        1000
                                 mm
                                          SURFACE ZONE:
                                                                        250
                                                                                mm
                  D=
                         500
                                 mm
                         440
                  dv =
                                 mm
                  dh =
                         420
                                 mm
              Min. p = 0.0035 (0.35 \%)
            As (ver.) =
                           p · b · d1 =
                                        875 mm2
            As (her.) =
                           p • b • d1 =
                                        875
                                  VERTICAL
                                                  D 20
                                                           @ 200
                                                                       (As = 1570 \text{ mm}2)
                       USE, HORIZONTAL
                                                  D 20
                                                                       (As = 1570 mm2)
b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES
       ( BASED ON 3,2,2 OF BS8007 )
                 Mu = 91.7 KN·m
       Ver.
                                        M =
                                               65.5 KN m
                                                                       1000
                                                                                mm
       Hor.
                          0.0 KN · m
                 Mu =
                                        M =
                                                0.0 KN · m
                                                                        500
                                                                 D =
                                                                                mm
                                                                dv =
                                                                        440
                                                                                mm
                                                                dh =
                                                                        420
                                                                                mm
                                                                 fy =
                                                                         130 N/mm2
                                                                fcu =
                                                                         30 N/mm2
       VERTICAL
                  K = M / (fcu-b-dv^2)
                                                              0.0113
                 Z1 = dv \cdot [0.5 + \sqrt{(0.25 - K/0.9)}]
                                                                 434
                 Z2 = 0.95 \cdot dv
                                                                418
                 7 =
                                                                 418
                 As = M / fy \cdot Z
                                                              1205.5
                                                                       mm2
                                     USE;
                                                 D 20
                                                           @ 200
                                                                       (As = 1570 \text{ mm}2)
       HORIZONTAL
                 K = M / (fcu \cdot b \cdot dh^2)
                                                                  0
                 Z1 = dh \cdot [0.5 + \sqrt{(0.25 - K/0.9)}]
                                                                   n
                 Z_2 = 0.95 \cdot dh
                                                                   Ω
                 Z =
                 As = M / fy \cdot Z
                                                                       mm2
                                     USE :
                                                 D 20
                                                           @ 200
                                                                       (As = 1570 \text{ mm}2)
c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF BS8007)
 1) CRACK SPACING
            Smax(V) = (fct/fb) \cdot (\phi/2\rho(V))
                                                              1066.9
                                                        =
                                                                        mm
            Smax(H) = (fct/fb) \cdot (\phi/2\rho(H))
                                                              1066.9
               Where ; fct/fb = 0.67
                                      ρ(V) =
                                                 As/b \cdot d1 =
                                                              0.0063
                                      \rho(H) =
                                                 As/b \cdot d1 =
                                                              0.0063
```

2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT

Where; a: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE

32 from TABLE 4.2

0.17 <

0.17

0.2

mm

 $V_{\alpha(V)} = S_{\alpha(V)} \cdot (\alpha/2) \cdot T_1$

 $Wmax(H) = Smax(H) \cdot (\alpha/2) \cdot T1$

T1=

```
₩ +354.000
 H#4.6m
                            h=4.0 m
                        △ +350.000
                                          • Factered stress at +350.000
                                                from Moment of Inside of Wall (refer to para75.2.1)
                                                Mu_{\text{fIOP1}} = 100.0 (KN \cdot m/m)
             CWn trop)
                                                from Moment of Outside of Wall ( refer to para,7,2,3 )
                                                Mu_{(BOT)} = 199.7 (KN \cdot m/m)
              Mu neon
2) DESIGN OF SECTION
               BOT
              199.7 KN-m
                                 ( 100.0 KN·m)
       Mu =
       Vu =
                      KN/m
                1000
                                            365 N/mm2
       b ≃
                                  fy =
                700
       D =
                       mm
                                             30 N/mm2
                 640
                       mm
  [ REQUIRED RE-BAR ]
       K = Mu / (fcu \cdot b \cdot d^2)
                                                             = 0.016 < 0.156
       Z1 = d \cdot [0.5 + \sqrt{(0.25 - K/0.9)}]
                                                                628
       Z2 = 0.95 - d
                                                                 608
      Z =
                                                                 608
       As1 = Mu /0.95 · fy · Z
                                                                947 mm2
      Asmin = 0.0013 · b · D
                                                                 910 mm2
                                              D 20
                                            ( D 20
                                                              200
                                                                       As = 1570
  [ CHECK OF SHEAR STRESS ]
      V = Vu/(b \cdot d)
                                                  0.00
                                                                 4.4 N/mm2 OK
                                              =
                                                        <
      (100 · As)/(b · d)
                                                  0.49
                                                         <
                                                                 3.0
       400/d
                                                   0.6
                                                                  1.0 →
                                                                               1.0
       Vc = 0.79 - {(100 \cdot As)/(b \cdot d)}^1/3 - (400/d)^1/4 - {1/1.25} - (fcu/25)^1/3}
        = 0.53 N/mm2 > V = 0.00 N/mm2
```

8-8

5.2.6 CALCULATION OF FOOTING SLAB (FS70)

(AT+350,000)

1) FACTORED STRESS

a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6.2.3 OF BS8007)

250 SECTION 1000 SURFACE ZONE: d(T) = b= mm mm 100 Ď= 700 d(B) = mm mm d = 640 mm

Min. p = 0.0035 (0.35 %)

As (top) = ρ· b· d(T) = 875 mm2 As (bot) = $\rho \cdot b \cdot d(B) =$ 350 mm2

> (As = 1570 mm2)TOP D 20 @ 200 D 20 @ 100 (As = 3140 mm2)

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3,2.2 OF BS8007)

Top Mu = 100,0 KN m M = 71.5 KN+m 1000 700 Bott. Mu = 199.7 KN·m M = 142.7 KN·m D = mm d = 640 mm 130 N/mm2 fy = 30 N/mm2 fcu = TOP 0.0058 $K = M / (fcu \cdot b \cdot d^2)$ $Z1 = d \cdot [0.5 + \sqrt{(0.25 - K/0.9)}]$ 636 608 $Z2 = 0.95 \cdot d$ 608 Z = As = M / fy - Z 904.08 mm2 USE ; D 20 @ 200

(As = 1570 mm2)

BOTTOM

0.0116 $K = M / (fcu \cdot b \cdot d^2)$ $Z1 = d \cdot [0.5 + \sqrt{(0.25 - K/0.9)}]$ 632 608 $Z2 = 0.95 \cdot d$ Z = 608 1805 mm2 $As = M / fy \cdot Z$ USE; D 20 @ 100 (As = 3140 mm2)

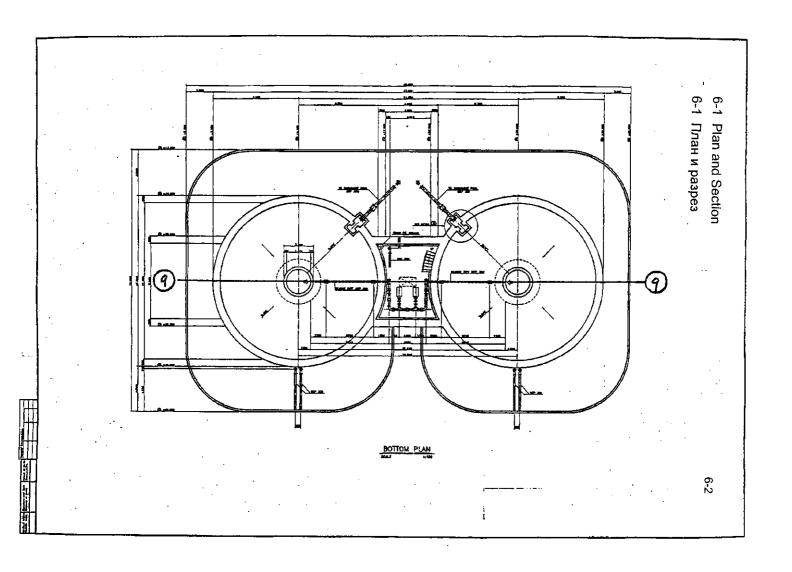
c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A.OF BS8007)

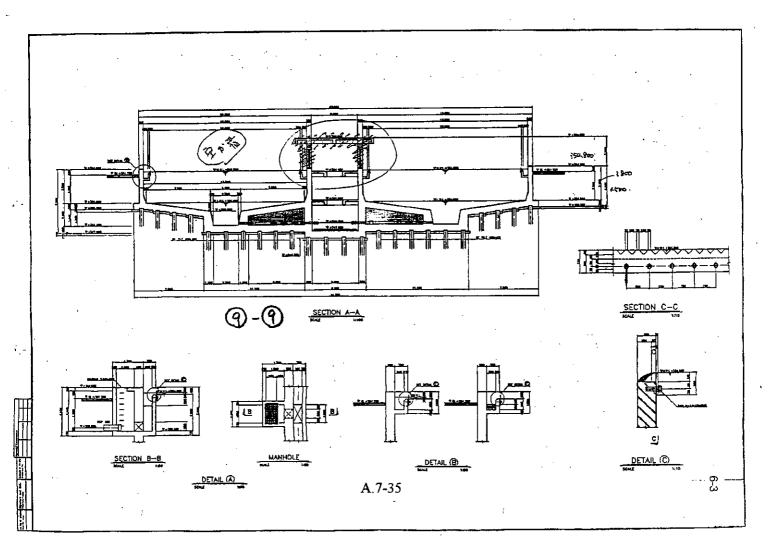
1) CRACK SPACING

 $Smax(T) = (fct/fb) \cdot (\phi/2\rho(T))$ 213.4 $Smax(B) = (fct/fb) \cdot (\phi/2\rho(B))$

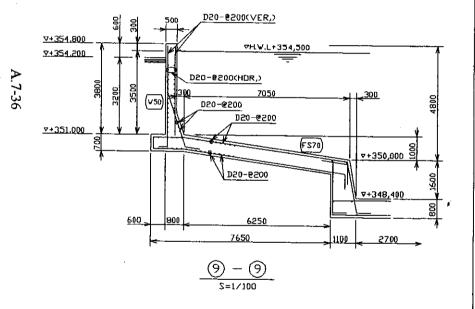
Where ; fct/fb = 0.67 $\rho(T) = As/b \cdot d(T) =$ 0.0063 $As/b \cdot d(B) =$ 0.0314 ρ(B) =

2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT

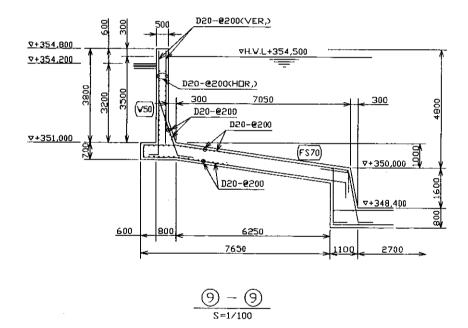

0.13 $Wmax(T) = Smax(T) \cdot (\alpha/2) \cdot T1$ mm 0.03 $Wmax(B) = Smax(B) \cdot (\alpha/2) \cdot T1$ mm


Where; a: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE

a= 1E-05 25 from TABLE 4.2

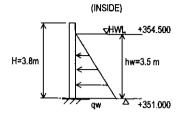

6. SLUDGE THICKENER

6. ИЛОУПЛОТНИТЕЛЬ



6.2 DESIGN OF WALL & FOOTING SLAB 6.2 OPOEKTUPOBAHUE CTEHЫ И ПЛИТЫ ОСНОВАНИЯ

6.2 DESIGN OF WALL & FOOTING SLAB 6.2 ПРОЕКТИРОВАНИЕ СТЕНЫ И ПЛИТЫ ОСНОВАНИЯ



MEA / INCODE A COTICAL DOT

3) CHECK OF CRACKING

6-7

1) DESIGN LOAD & FACTORED STRESS(Water Pressure)

H= 3.8 m hw= 3.50 m yw= 10.0 KN/m3

-Design load qw = yw · hw = 10.0 x 3.50 = 35.0 (KN/m2/m)

•Factored Load w'=1.4 · qw = 1.4 x 35.0

x 35.0 = 49.00 (KN/m2/m)

• Factered stress at +351.000

Mu = 1/6·w'·hw^2 = 100.0 (KN·m/m)

Vu = 1/2·w'-hw = 85.8 (KN/m)

2) DESIGN OF SECTION (INSIDE/VERTICAL BOT.)

Mu = 100.0 KN·m Vu = 85.8 KN/m

b = 1000 mm fy = 365 N/mm2 D = 500 mm fcu = 30 N/mm2 d = 440 mm

[REQUIRED RE-BAR]

.7-37

 $K = Mu / (fcu \cdot b \cdot d^2)$ = 0.017 < 0.156 $21 = d \cdot (0.5 + \sqrt{(0.25 - K/0.9)})$ = 431 $22 = 0.95 \cdot d$ = 418 Z = 418 $As1 = Mu /0.95 \cdot fy \cdot Z$ = 690 mm2 $Asmin = 0.0013 \cdot b \cdot D$ = 650 mm2

USE; D 20 @ 200 (As = 1570 mm2)

[CHECK OF SHEAR STRESS]

 $V = Vu /(b \cdot d)$ = 0.19 < 4.4 N/mm2 OK (100-As)/(b \cdot d) = 0.36 < 3.0 400/d = 0.9 < 1.0 \rightarrow 1.0

Vc = 0.79-{(100-As)/(b·d)}^1/3-{ 400/d }^1/4-(1/1.25)-(fcu/25)^1/3 = 0.48 N/mm2 > V = 0.19 N/mm2 OK

W50 (INSIDE/VERTICAL:BOT)

a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6.2.3 OF BS8007)

SECTION b = 1000 mm SURFACE ZONE: d1 = 250 mm

D = 500 mm

dv = 440 mm

dh = 420 mm

(9)-(9)

Min. p = 0.0035 (0.35 %)

As (ver.) = $p \cdot b \cdot d1 = 875$ mm2 As (her.) = $p \cdot b \cdot d1 = 875$ mm2

 USE;
 VERTICAL
 D 20
 @ 200
 (As = 1570 mm²)

 USE;
 HORIZONTAL
 D 20
 @ 200
 (As = 1570 mm²)

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3.2.2 OF BS8007)

Ver.	Mu =	100.0	KN-m	M =	71.5	KN-m	b =	1000	mm
Hor.	Mu =	0.0	KN-m	M =	0.0	KN-m	Ð =	500	mm
							dv =	440	mm
							dh =	420	mm
							fy =	130 N	l/mm2
							fcu =	30 N	l/mm2

VERTICAL

 $K = M / (fou-b·dv^{A}2) = 0.012$ $Z1 = dv \cdot [0.5 + \sqrt{(0.25 - K/0.9)}] = 434$ $Z2 = 0.95 \cdot dv = 418$ Z = 418 $As = M / fy \cdot Z = 1315$ mm2

USE; D 20 @ 200 (As = 1570 mm2)

HORIZONTAL

USE; D 20 @ 200 (As = 1570 mm2)

c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF BS8007)

1) CRACK SPACING

 $Smax(V) = (fcVfb) \cdot (\phi/2\rho(V))$ = 1066.9 mm $Smax(H) = (fcVfb) \cdot (\phi/2\rho(H))$ = 1066.9 mm

Where ; fct/fb = 0.67 $\rho(V)$ = As/b·d1 = 0.0063 $\rho(H)$ = As/b·d1 = 0.0063

2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT

 $Wmax(V) = Smax(V) \cdot (\alpha/2) \cdot T1$ = 0.17 < 0.2 mm $Wmax(H) = Smax(H) \cdot (\alpha/2) \cdot T1$ = 0.17 < 0.2 mm

Where ; a : COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE

α= 1E-05 T1= 32 from TABLE 4.2

6.2.2 CALCULATION OF WALL (W50) (AT+351,000)

1) DESIGN LOAD & FACTORED STRESS(Soil Pressure)

a : Live Load Ko: Coefficient of soil pressure at rest 5.0 (KN/m2/m) v1= 18.0 KN/m3 a = (OUTSIDE) v2= 8.0 KN/m3 Κo = 0.5 vw= 10.0 KN/m3 <u>▼</u>+354.200 Design load 2.5 (KN/m2/m) 00 = Ko•q v1 18.0 a1 = Ko•v1•h1 ₹+352.200 22.8 a2 = a1+Ko-v2-h2 = 12.0 γ2 $qw = yw \cdot h2$ ħ2 $\Sigma q = q2 + qw$ 34.8 W ZA +351.000 · Factered Load 3.5 (KN/m2/m) w1 = 1.4 · ao 48.7 $w2 = 1.4 \cdot \Sigma q$ Ground Water Level at +352,200 •Factered stress at +351.000 H= 3.8 m 17.92 (KN-m/m) h1= 2.00 m Mu1 = 1/2-w1-h^2 h2= 1.20 m $Vu1 = w1 \cdot h$ 11.20 (KN/m) $Mu2 = 1/6 \cdot w2 \cdot h^2$ 83.15 (KN - m/m) h=h1+h2= 3.20 m 77.95 (KN/m) Vu2 = 1/2·w2·h Mu = Mu1 + Mu2101.1 (KN·m/m) Vu = Vu1 + Vu2 89.2 (KN/m)

2) DESIGN OF SECTION (OUTSIDE/VERTICAL BOT.)

Mu = 101.1 KN·m 89.2 KN/m 365 N/mm2 b = 1000 mm fy = 30 N/mm2 D = 500 mm fαı = d = 440 mm

[REQUIRED RE-BAR]

A.7-38

= 0.017 < 0.156 $K = Mu/(fcu-b-d^2)$ 431 $Z1 = d \cdot [0.5 + \sqrt{(0.25 - K/0.9)]}$ 418 $Z2 = 0.95 \cdot d$ 418 Z = 697 mm2 As1 = Mu /0.95 fy 2 Asmin = 0.0013 · b · D 650 mm2

> USE: D 20 @ 100 (As = 3140 mm2)

I CHECK OF SHEAR STRESS I

= 0.20 < 4.4 N/mm2 OK $V = Vu/(b \cdot d)$ (100 · As)/(b · d) = 0.71 < 3.0 = 0.9 < 1.0 400/d

Vc = 0.79-{(100-As)/(b·d)}^1/3-(400/d)^1/4-(1/1.25)-(fcu/25)^1/3 = 0.60 N/mm2 > V = 0.20 N/mm2

3) CHECK OF CRACKING

(9)-(9)

W50 (OUTSIDE/VERTICAL:BOT)

a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6.2.3 OF BS8007)

250 SURFACE ZONE: d1 = mm SECTION b = 1000 mm D = 500 mm dv = 440 mm dh = 420 mm

Min. o = 0.0035 (0.35%)

p- b- d1 = 875 mm2 As (ver.) ≃ 875 As (her.) = n• b• d1 =

USE:	VERTICAL	D 20	@ 200	(As =	1570	mm2)
USE:	HORIZONTAL	D 20	@ 200	(As =	1570	mm2)

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3.2.2 OF BS8007)

1000 Mu = 101.1 KN·m M = 72.2 KN·m mm Ver. M = 0.0 KN · m D = 500 mm Hor. 0.0 KN·m dv = 440 mm dh = 420 mm fv = 130 N/mm2 fcu = 30 N/mm2

VERTICAL

0.0124 $K = M / (fcu \cdot b \cdot dv^{4}2)$ $Z1 = dv \cdot [0.5 + \sqrt{(0.25 - K/0.9)}]$ 434 418 $Z2 = 0.95 \cdot dv$ Z≖ 418 As = M / fy - Z1328.5 mm2

USE:	D 20	മ 200	(As =	1570	mm2)

HORIZONTAL

0 $K = M / (fcu \cdot b \cdot dh^2)$ $Z1 = dh \cdot [0.5 + \sqrt{(0.25 - K/0.9)]}$ 0 0 $Z2 = 0.95 \cdot dh$ Z = 0 $As = M / fv \cdot Z$ mm2

> USE; D 20 @ 200 $\{As = 1570 \text{ mm2}\}$

c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF BS8007)

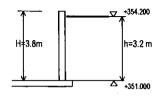
1) CRACK SPACING

1066.9 mm $Smax(V) = (fct/fb) \cdot (\phi/2\rho(V))$ 1066.9 mm $Smax(H) = (fct/fb) \cdot (\phi/2\rho(H))$ 0.0063 p(V) = As/b · d1 = Where; fct/fb = 0.670.0063 p(H) = As/b d1 =

2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT

0.17 < 0.2 mm $Wmax(V) = Smax(V) \cdot (\alpha/2) \cdot T1$ 0.17 Wmax(H)= Smax(H) (a/2) T1 mm

Where; a: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE


1E-05 T1≃ 32 from TABLE 4.2

3) CHECK OF CRACKING

(9)-(9)

6-11

1) FACTORED STRESS

•Factered stress at +351.000

Mu roes

from Moment of Inside of Wall (refer to para.5.2.1)

Mu (TOP) = 100.0 (KN·m/m)

from Moment of Outside of Wall (refer to para.5.2.2)

Mu (BOT) = 101.1 (KN·m/m)

2) DESIGN OF SECTION

.7-39

BOT TOP
Mu = 101.1 KN-m (100.0 KN-m)
Vu = KN/m

b = 1000 mm fy = 365 N/mm2 D = 700 mm fcu = 30 N/mm2 d = 640 mm

[REQUIRED RE-BAR]

USE; D 20 @ 200 (As = 1570 mm2) BOT (D 20 @ 200 As = 1570 mm2) TOP

[CHECK OF SHEAR STRESS]

 $V = Vu /(b \cdot d)$ = 0.00 < 4.4 N/mm2 OK (100 · As)/(b · d) = 0.25 < 3.0 400/d = 0.6 < 1.0 \rightarrow 1.0

Vc = 0.79·{(100·As)/(b·d)}^1/3·(400/d)^1/4·(1/1.25)·(fcu/25)^1/3 = 0.42 N/mm2 > V = 0.00 N/mm2 OK

FOOTING SLAB (FS70)

a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6.2.3 OF BS8007.)

SURFACE ZONE: d(T) =250 mm SECTION 1000 mm h= d(B) =100 mm D = 700 mm d = 640 mm

Min. $\rho = 0.0035 \quad (0.35\%)$

As $(lop) = p \cdot b \cdot d(T) = 875$ mm2 As $(bot) = p \cdot b \cdot d(B) = 350$ mm2

USE;	TOP	D 20	@ 200	(As =	1570	mm2
USE:	BOTTOM	D 20	@ 200	(As =	1570	mm2

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3.2.2 OF BS8007.)

Mu = 100.0 KN-m M = 71.5 KN·m 1000 mm Top Mu = 101.1 KN·m 700 M = 72.2 KN⋅m D= mm Bott. 640 d≖ mm fy = 130 N/mm2 30 N/mm2 fcu =

TOP

 $K = M / (fcu \cdot b \cdot d^2) = 0.0058$ $Z1 = d \cdot [0.5 + \sqrt{(0.25 - K/0.9)}] = 636$ $Z2 = 0.95 \cdot d = 608$ Z = 608 As = M / fy - Z = 904.08 mm2

USE; D 20 @ 200 (As = 1570 mm2)

воттом

 $K = M / (fcu-b-d^2) = 0.0059$ $Z1 = d \cdot [0.5 + \sqrt{(0.25 - K/0.9)}] = 636$ $Z2 = 0.95 \cdot d = 608$ Z = 608 Z = 608 Z = 913.36

USE; D 20 @ 200 (As = 1570 mm2)

mm2

c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF BS8007)

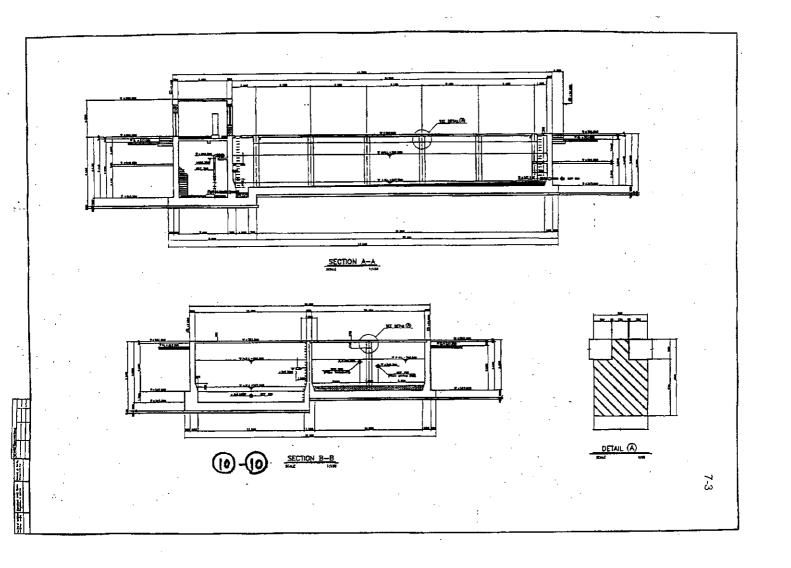
1) CRACK SPACING

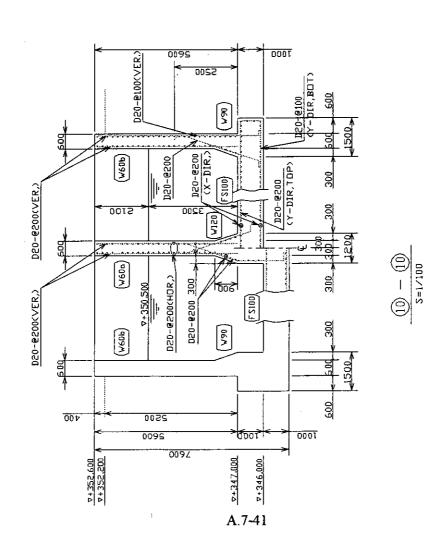
 $Smax(T) = (fct/fb) \cdot (\phi/2\rho(T))$ = 1066.9 mm $Smax(B) = (fct/fb) \cdot (\phi/2\rho(B))$ = 426.8 mm

Where ; fct/fb = 0.67 $\rho(T)$ = As/b·d(T) = 0.0063 $\rho(B)$ = As/b·d(B) = 0.0157

2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT

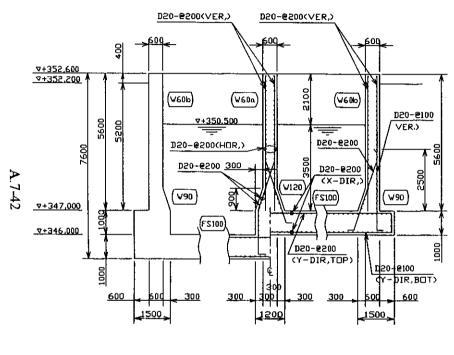
 $Wmax(T) = Smax(T) \cdot (\alpha/2) \cdot Tt$ = 0.13 < 0.2 mm $Wmax(B) = Smax(B) \cdot (\alpha/2) \cdot T1$ = 0.05 < 0.2 mm


Where: a: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE

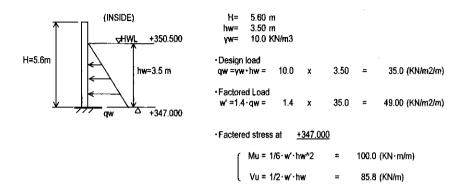

a= 1E-05 T1≠ 25 from TABLE 4.2

7. DISCHARGE POOL

7. НАКОПИТЕЛЬНЫЙ РЕЗЕРВУАР


A.7-40

7.2 DESIGN OF WALL & FOOTING 7.2 NPOEKTUPOBAHUE CTEHЫ И ОСНОВАНИЯ


7.2 DESIGN OF WALL & FOOTING 7.2 OPOEKTUPOBAHUE CTEHN U OCHOBAHUE

 $\frac{(0) - (0)}{5 = 1/100}$

7.2.1 CALCULATION OF WALL (W90) (AT+347.000)

1) DESIGN LOAD & FACTORED STRESS(Water Pressure)

2) DESIGN OF SECTION (INSIDE/VERTICAL BOT.)

Mu = 100.0 KN·m Vu = 85.8 KN/m b = 1000 mm fy = 365 N/mm2 D = 900 mm fcu = 30 N/mm2 d = 840 mm

I REQUIRED RE-BAR I

USE; D 20 @ 200 (As = 1570 mm2)

[CHECK OF SHEAR STRESS]

Vc = 0.79·{(100·As)/(b·d)}^1/3·(400/d)^1/4·(1/1.25)·(fcu/25)^1/3 = 0.38 N/mm2 > V = 0.10 N/mm2 OK

```
W90 (INSIDE/VERTICAL:BOT)
```

(AT+347.000)

a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6.2.3 OF BS8007)

SECTION b≖ 1000 SURFACE ZONE : mm 250 mm 900 D= mm dv = 840 mm 820 dh = mm

Min. $\rho = 0.0035 (0.35\%)$

As (ver.) = $p \cdot b \cdot d1 = 875$ mm2 As (her.) = $p \cdot b \cdot d1 = 875$ mm2

USE: VERTICAL D 20 @ 200 (As = 1570 mm2)
USE: HORIZONTAL D 20 @ 200 (As = 1570 mm2)

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3.2.2 OF BS8007)

Ver. Mu = 100.0 KN·m M = 71.4 KN · m 1000 h= mm Hor. 0.0 KN·m Mu = M = 0.0 KN · m D= 900 mm dv≃ 840 mm dh = 820 mm fv = 130 N/mm2 30 N/mm2 fcu =

VERTICAL

K = M / (fcu·b·dv^2) = 0.0034 21 = dv · [0.5 + √ (0.25 → K/0.9)] = 837 Z2 = 0.95·dv = 798 Z = 798 As = M / fy · Z = 688.26 mm2

USE; D 20 @ 200 (As = 1570 mm2)

HORIZONTAL

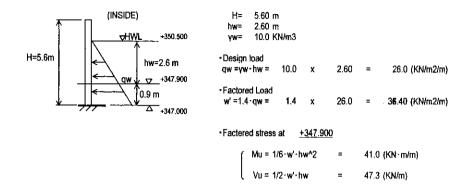
c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF BS8007)

1) CRACK SPACING

 $Smax(V) = (fct/fb) \cdot (\phi/2\rho(V))$ = 1066.9 mm $Smax(H) = (fct/fb) \cdot (\phi/2\rho(H))$ = 1066.9 mm

Where ; fct/fb = 0.67 $\rho(V) = As/b \cdot d1 = 0.0063$ $\rho(H) = As/b \cdot d1 = 0.0063$

2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT.


 $Wmax(V) = Smax(V) \cdot (\alpha/2) \cdot T1$ = 0.17 < 0.2 mm $Wmax(H) = Smax(H) \cdot (\alpha/2) \cdot T1$ = 0.17 < 0.2 mm

Where; a: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE

a= 1E-05 T1= 32 from TABLE 4.2

7.2.2 CALCULATION OF WALL (W60a) (AT+347.900)

1) DESIGN LOAD & FACTORED STRESS(Water Pressure)

2) DESIGN OF SECTION (INSIDE/VERTICAL TOP)

Mu = 41.0 KN·m Vu = 47.3 KN/m

b = 1000 mm fy = 365 N/mm2 D = 600 mm fcu = 30 N/mm2 d = 540 mm

[REQUIRED RE-BAR]

USE; D 20 @ 200 (As = 1570 mm2)

I CHECK OF SHEAR STRESS !

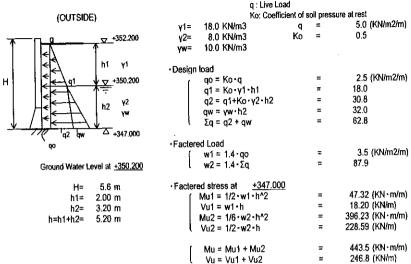
Vc = 0.79 ·{(100 · As)/(b·d }\^1/3 · (400/d)^1/4 · (1/1.25) · (fcu/25)^1/3 = 0.45 N/mm2 > V = 0.09 N/mm2 OK

0.0063 Where : fct/fb = 0.67 As/b · d1 = $\rho(H) =$ As/b·d1 = 0.0063

2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT

mm $Wmax(V) = Smax(V) \cdot (\alpha/2) \cdot T1$ $Wmax(H) = Smax(H) \cdot (\alpha/2) \cdot T1$ 0.17 < mm

Where: a: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE


1E-05 32 from TABLE 4.2 T1=

7.2.3 CALCULATION OF WALL (W90)

7-9

(AT+347.000)

1) DESIGN LOAD & FACTORED STRESS(Soil Pressure)

10-00

2) DESIGN OF SECTION (OUTIDE/VERTICAL BOT)

Mu = 443.5 KN·m

246.8 KN/m 365 N/mm2 fy = 1000 mm 30 N/mm2 D = 900 mm fcu = 840 d≖ mm

[REQUIRED RE-BAR] = 0.021 < 0.156 $K = Mu / (fcv \cdot b \cdot d^2)$ 820 = $Z1 = d \cdot [0.5 + \sqrt{(0.25 - \text{K/0.9})}]$ 798 $Z2 = 0.95 \cdot d$ 798 Z = 1603 mm2 As 1 = Mu /0.95 fy Z = 1170 mm2

USE D 20 🔞 100 (As = 3140)

[CHECK OF SHEAR STRESS]

Asmin = 0.0013 · b · D

4.4 N/mm2 OK = 0.29 < $V = Vu/(b \cdot d)$ = 0.37 < 3.0 (100 · As)/(b · d) 0.5 1.0 1.0 400/d

 $V_C = 0.79 - {(100 - As)/(b - d)}^1/3 - (400/d)^1/4 - (1/1.25) - (fcu/25)^1/3}$ = 0.48 N/mm2 > V = 0.29 N/mm2

```
W90 (OUTSIDE/VERTICAL:BOT)
```

(AT+347,000)

a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6.2.3 OF BS8007)

SECTION b≈ 1000 mm SURFACE ZONE: d1 = 250 D≃ 900 mm dv = 840 mm dh = 820 mm

Min. $\rho = 0.0035 (0.35 \%)$

As (ver.) = ρ· b· d1 = 875 mm2 As (her.) = o- b- d1 = 875 mm2

USE;	VERTICAL	D 20	@ 100	(As =	3140	mm2)
USE;	HORIZONTAL	D 20	@ 200	(As =	1570	mm2)

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3.2.2 OF BS8007)

Ver. Hor.	Mu = Mu =	KN·m KN·m	M = M =	KN•m KN•m	b = D = dv = dh = fy = fcu =	1000 900 840 820 130 N 30 N	mm mm mm mm2 /mm2
VERTICA	ΔΙ				IOU -	JU 11	31111112

 $K = M / (fcu \cdot b \cdot dv^2)$ 0.015 $Z1 = dv \cdot [0.5 + \sqrt{(0.25 - K/0.9))}$ 826 $Z2 = 0.95 \cdot dv$ 798 Z = 798 $As = M / fv \cdot Z$ 3053.8 mm2

USE;	D 20	@ 100	(As =	3140	mm2)

HORIZONTAL

 $K = M / (fcu \cdot b \cdot dh^2)$ 0 $Z1 = dh - [0.5 + \sqrt{(0.25 - K/0.9)}]$ 0 $Z2 = 0.95 \cdot dh$ 0 Z = n $As = M / fy \cdot Z$ 0 mm2

> USE ; D 20 @ 200 (As = 1570 mm2)

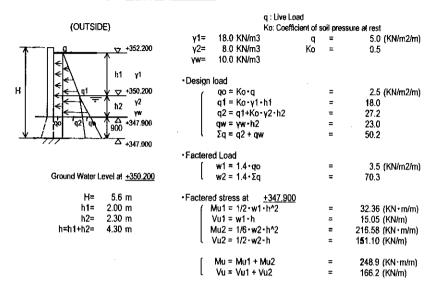
c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF BS8007)

1) CRACK SPACING

 $Smax(V) = (fct/fb) \cdot (\phi/2\rho(V))$ 533.4 mm $Smax(H) = (fct/fb) \cdot (\varphi/2\rho(H))$ 1066.9

Where : fct/fb = 0.67p(V) = As/b·d1 = 0.0126 $\rho(H) =$ As/b·d1 = 0.0063

2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT


 $Wmax(V) = Smax(V) \cdot (\alpha/2) \cdot T1$ 0.09 mm $Vmax(H) = Smax(H) \cdot (\sigma/2) \cdot T1$ 0.17 < mm

Where; a: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE

1E-05 T1= 32 from TABLE 4.2

7.2.4 CALCULATION OF WALL (W60b) (10-(10)(AT+347.900)

1) DESIGN LOAD & FACTORED STRESS(Soil Pressure)

2) DESIGN OF SECTION (OUTIDE/VERTICAL BOT)

Mu = 248.9 KN·m Vu = 166.2 KN/m

1000 fy = 365 N/mm2 h = mm 600 30 N/mm2 D = mm fcu ≖ d = 540 mm

FREQUIRED RE-BAR 1

 $K = Mu / (fcu \cdot b \cdot d^2)$ = 0.028 < 0.156 $Z1 = d \cdot [0.5 + \sqrt{(0.25 - \text{K/0.9})}]$ = 522 $Z2 = 0.95 \cdot d$ 513 Z = 513 As $1 = Mu/0.95 \cdot fy \cdot Z$ = 1399 mm2 Asmin = 0.0013 · b · D = 780 mm2

D 20 @ 100 (As = 3140

[CHECK OF SHEAR STRESS]

 $V = Vu/(b \cdot d)$ = 0.31 4.4 N/mm2 OK (100 - As)/(b · d) 0.58 3.0 400/d = 0.7 < 1.0 1.0

 $Vc = 0.79 \cdot \{(100 \cdot As)/(b \cdot d)\}^1/3 \cdot (400/d)^1/4 \cdot (1/1.25) \cdot (fcu/25)^1/3$ = 0.56 N/mm2 > V = 0.31 N/mm2

W60b (OUTSIDE/VERTICAL:BOT)

(AT+347.900)

a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6.2.3 OF BS8007)

SECTION 1000 SURFACE ZONE: d1 = 250h= mm mm D= 600 mm dv ≃ 540 mm dh = 520 mm

Min. $\rho = 0.0035 \quad (0.35\%)$

As (ver.) = $\rho \cdot b \cdot d1 = 875$ mm2 As (her.) = $\rho \cdot b \cdot d1 = 875$ mm2

USE;	VERTICAL	D 20	@ 100	(As =	3140	mm2)
USE;	HORIZONTAL	D 20	@ 200	(As =	1570	mm2)

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3.2.2 OF B\$8007)

mm mm	1000 600	b= D=	KN∙m KN∙m		M = M =	KN∙m KN∙m		Mu = Mu =	Ver. Hor.
шщ	540	dv =	19, 111	510	•••		0.0		1101
mr	520	dh =							
1/mm2	130	fy =							
V/mm2	30	fcu =							

VERTICAL

USE;	D 20	@ 100	(As =	3140	mm2)

HORIZONTAL

USE; D 20 @ 200 (As = 1570 mm2)

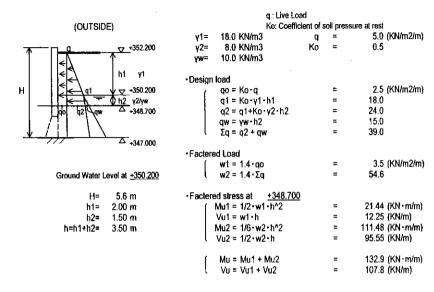
c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF BS8007)

1) CRACK SPACING

 $Smax(V) = (fct/fb) \cdot (\phi/2\rho(V))$ = 533.4 mn $Smax(H) = (fct/fb) \cdot (\phi/2\rho(H))$ = 1066.9 mn

Where; fct/fb = 0.67 $\rho(V) = As/b \cdot d1 = 0.0126$ $\rho(H) = As/b \cdot d1 = 0.0063$

2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT


 $Wmax(V) = Smax(V) \cdot (\alpha/2) \cdot T1$ = 0.09 < 0.2 mm $Wmax(H) = Smax(H) \cdot (\alpha/2) \cdot T1$ = 0.17 < 0.2 mm

Where; a: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE

a= 1E-05 T1= 32 from TABLE 4.2

7.2.5 CALCULATION OF WALL (W60b) (AT+348.700) (D-(10)

1) DESIGN LOAD & FACTORED STRESS(Soil Pressure)

2) DESIGN OF SECTION (INSIDE/VERTICAL TOP)

Mu = 132.9 KN·m Vu = 107.8 KN/m

b = 1000 mm fy = 365 N/mm2 D = 600 mm fcu = 30 N/mm2 d = 540 mm

[REQUIRED RE-BAR]

USE; D 20 60 200 (As = 1570 mm2)

[CHECK OF SHEAR STRESS]

 $V = Vu /(b \cdot d)$ = 0.20 < 4.4 N/mm2 OK (100 · As)/(b · d) = 0.29 < 3.0 400/d = 0.7 < 1.0 \rightarrow 1.0

Vc = 0.79 · {(100 · As)/(b·d)}^1/3 · (400/d)^1/4 · (1/1.25) · (fcu/25)^1/3 = 0.45 N/mm2 > V = 0.20 N/mm2 OK

```
W60b (OUTSIDE/VERTICAL:TOP)
```

(AT+348.700)

a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6.2.3 OF BS8007)

 SECTION
 b =
 1000 mm
 SURFACE ZONE :
 d1 =
 250 mm

 D =
 600 mm
 600 mm</td

Min. $\rho = 0.0035 (0.35\%)$

As (ver.) = $\rho \cdot b \cdot d1 = 875$ mm2 As (her.) = $\rho \cdot b \cdot d1 = 875$ mm2

USE; VERTICAL D 20 @ 200 (As = 1570 mm2)
USE; HORIZONTAL D 20 @ 200 (As = 1570 mm2)

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3.2.2 OF BS8007.)

1000 Ver. Mu = 132.9 KN·m M = 94.9 KN · m b≖ mm 0.0 KN · m M = 0.0 KN-m 600 Hor. D= mm dv = 540 mm 520 dh = mm fy≔ 130 N/mm2 30 N/mm2 fcu =

VERTICAL

USE; D 20 @ 200 (As = 1570 mm2)

HORIZONTAL

 $K = M / \{fcu \cdot b \cdot dh^2 2\}$ = 0 $Z1 = dh \cdot [0.5 + \sqrt{(0.25 - K/0.9)}]$ = 0 $Z2 = 0.95 \cdot dh$ = 0 $Z = 0.95 \cdot dh$ = 0 $As = M / fy \cdot Z$ = 0 mm2

USE; D 20 @ 200 (As = 1570 mm2)

c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF BS8007)

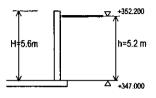
1) CRACK SPACING

 Smax(V) = (fcl/fb) (φ/2p(V))
 =
 1066.9 mm

 Smax(H) = (fcl/fb) (φ/2p(H))
 =
 1066.9 mm

Where; fct/fb = 0.67 $\rho(V)$ = As/b·d1 = 0.0063 $\rho(H)$ = As/b·d1 = 0.0063

2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT


 $Wmax(V) = Smax(V) + (\alpha/2) \cdot T1$ = 0.17 < 0.2 mm $Wmax(H) = Smax(H) + (\alpha/2) \cdot T1$ = 0.17 < 0.2 mm

Where; a: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE

α= 1E-05 T1= 32 from TABLE 4.2 7.2.6 CALCULATION OF FOOTING SLAB (FS70)
(AT+347.000)

10-10

1) FACTORED STRESS

CMu moer

•Factered stress at +347.000

from Moment of Inside of Wall (refer to para75.2.1)

Mu (TOP) = 100.0 (KN·m/m)

from Moment of Outside of Wall (refer to para.7.2.3)

 $Mu_{1800} = 443.5 (KN-m/m)$

2) DESIGN OF SECTION (BOTTOM BAR)

Ми гвоть

BOT 443.6 KN.m.

Mu = 443.5 KN·m (100.0 KN·m) Vu = KN/m

b = 1000 mm fy = 365 N/mm2 D = 1000 mm fcu = 30 N/mm2 d = 940 mm

[REQUIRED RE-BAR]

USE; D 20 @ 100 (As = 3140 mm2) BOT (D 20 @ 200 As = 1570 mm2) TOP

= 1300 mm2

[CHECK OF SHEAR STRESS]

Asmin = 0.0013 · b · D

V = Vu /(b·d) = 0.00 < 4.4 N/mm2 OK (100·As)/(b·d) = 0.33 < 3.0 400/d = 0.4 < 1.0 → 1.0

Vc = 0.79 · {(100 · As)/(b·d)}^1/3 · (400/d)^1/4 · (1/1.25) · (fcu/25)^1/3 = 0.47 N/mm2 > V = 0.00 N/mm2 OK

EQOTING SLAB (FS70)

a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6.2.3 OF BS8007)

SECTION b= 1000 mm SURFACE ZONE: d(T) =250 D = 1000 mm d(B) = 100 d = 940 mm

Min. $\rho = 0.0035 (0.35 \%)$

As $(top) = \rho \cdot b \cdot d(T) = 875$ mm2 As (bot) = $\rho \cdot b \cdot d(B) = 350$ mm2

USE;	TOP	D 20	@ 200	(As =	1570	mm2)
USE :	BOTTOM	D 20	@ 100	(As =	3140	mm2)

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3.2,2 OF BS8007)

Mu = 100.0 KN·m Top M = 71.4 KN-m 1000 mm Bott. Mu = 443.5 KN·m M = 316.8 KN-m D = 1000 mm d = 940 fy = 130 N/mm2 fcu = 30 N/mm2 TOP $K = M / (fcu \cdot b \cdot d^2)$ 0.0027 $Z1 = d \cdot (0.5 + \sqrt{(0.25 - \text{K/0.9})})$ 937 $Z2 = 0.95 \cdot d$ 893 Z = 893

> **=** 615.04 USE: D 20 @ 200 (As = 1570 mm2)

mm2

BOTTOM

 $K = M / (fcu \cdot b \cdot d^2)$ 0.012 $Z1 = d \cdot [0.5 + \sqrt{(0.25 - K/0.9)}]$ 927 $Z2 = 0.95 \cdot d$ 893 Z = 893 As $= M / fy \cdot Z$ = 2728.9 mm2 USE: D 20

(As = 3140 mm2) @ 100

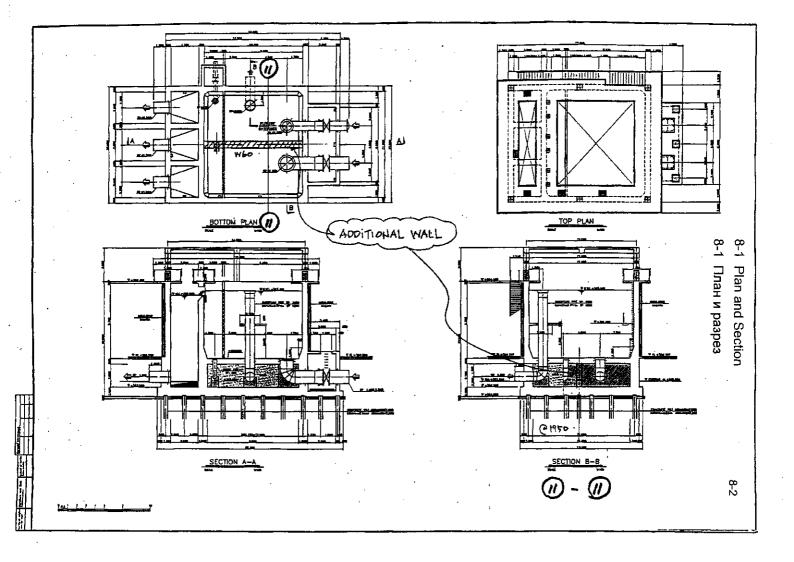
c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF BS8007)

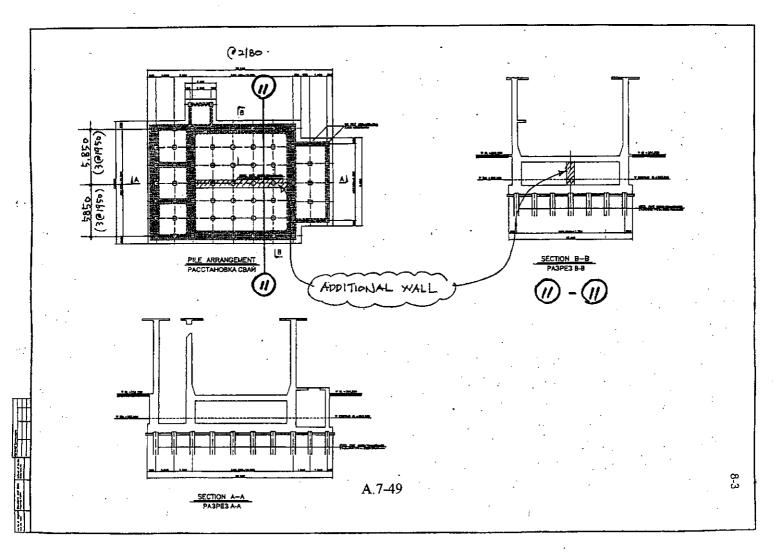
As = M / fv · Z

1) CRACK SPACING

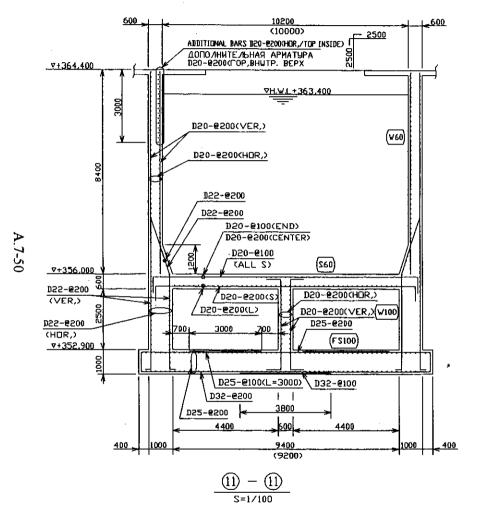
 $Smax(T) = \{fct/fb\} \cdot (\varphi/2\rho(T)\}$ 1066.9 $Smax(B) = (fct/fb) \cdot (\phi/2\rho(B))$ 213.4 Where : fct/fb = 0.67 $\rho(T) = As/b \cdot d(T) = 0.0063$ $p(B) = As/b \cdot d(B) = 0.0314$

2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT


Wmax(T)= Smax(T) · (a/2) · T1 0.13 mm Wmax(B)= Smax(B) · (a/2) · T1 0.03 0.2 mm

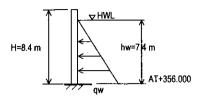

Where; a: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE

α= 1E-05 T1= 25 from TABLE 4.2


8. DISTRIBUTION CHAMBER

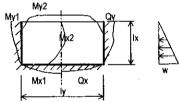
8. РАСПРЕДЕЛИТЕЛЬНАЯ КАМЕРА

8.2 DESIGN OF WALL & FOOTING 8.2 OPOEKTUPOBAHUE CTEHU U OCHOBAHUE


LEGEND

- S : SHORT DIRECTION L : LONG DIRECTION
- S : KOPOTKOE HATIPAB/JEHUE L : Д/ИННОЕ НАПРАВ/JEHUE

8.2.1 CALCULATION OF WALL (W100~60) (AT+356.000)


(II)-(II)

1) DESIGN LOAD (Water Pressure)

hw = 7.40 m yw = 10.0 KN/m3 qw = yw · hw = 74.0 KN/m2/m

2) FACTORED STRESS (W60)

| Ix = 7.40 m | y = 10.20 m | \(\lambda = 1.38 \) | w=qw = 74.0 KN/m2/m | Factored Load | w'=1.4 \cdot w = 103.60 KN/m2/m | w' \cdot k^2 = 5673.1 | w' \cdot k = 766.6

 $\begin{array}{rclcrcl} & \text{w'} \cdot \text{lx} &=& 766.6 \\ & & & & \\ & \text{Mx1} &=& 0.052 \text{ x} & 5673.1 &=& 295.0 \text{ (KN} \cdot \text{m/m)} \\ & \text{Mx2} &=& 0.012 \text{ x} & 5673.1 &=& 68.1 \\ & \text{My1} &=& 0.033 \text{ x} & 5673.1 &=& 187.2 \\ & \text{My2} &=& 0.018 \text{ x} & 5673.1 &=& 102.1 \\ & \text{Qx} &=& 0.39 \text{ x} & 766.6 &=& 299.0 \text{ (KN/m)} \\ & \text{Qy} &=& 0.12 \text{ x} & 766.6 &=& 92.0 \\ \end{array}$

2) DESIGN OF SECTION

```
a) VERTICAL : BOT (AT+355.800)
```

```
Mu = 295.0 KN·m
Vu = 299.0 KN/m
```

b = 1000 mm fy = 365 N/mm2

D = 1000 mm fcu = 30 N/mm2 d = 940 mm

[REQUIRED RE-BAR]

Asmin = 0.0013 • b • D = 1300 mm2

USE; D 22 @ 200 (As = 1900 mm2)

I CHECK OF SHEAR STRESS I

 $V = Vu /(b \cdot d)$ = 0.32 < 4.4 N/mm2 OK (100 · As)/(b · d) = 0.20 < 3.0 400/d = 0.4 < 1.0 \rightarrow 1.1

 $Vc = 0.79 \cdot \{(100 \cdot As)/(b \cdot d)\}^{1/3} \cdot (400/d)^{1/4} \cdot (1/1.25) \cdot (fcu/25)^{1/3}$ = 0.39 N/mm2 > V = 0.32 N/mm2 OK

b) HORIZONTAL: TOP/END

Miu = 187.2 KN·m Vu = 92.0 KN/m

b = 1000 mm fy = 365 N/mm2 D = 600 mm fcu = 30 N/mm2 d = 520 mm

[REQUIRED RE-BAR]

USE; D 20 @ 100 (As = 3140 mm2) (Hor./End)
D 20 @ 200 (Hor./Cent.)

[CHECK OF SHEAR STRESS]

 $V = Vu /(b \cdot d)$ = 0.18 < 4.4 N/mm2 OK (100 · As)/(b · d) = 0.60 < 3.0 400/d = 0.8 < 1.0 \rightarrow 1.

 $Vc = 0.79 \cdot \{(100 \cdot As)/(b \cdot d)\}^{1/3} \cdot (400/d)^{1/4} \cdot (1/1.25) \cdot \{(101/25)^{1/3}\}^{1/3} = 0.57 \quad N/mm2 > V = 0.18 \quad N/mm2 \quad OK$

4) CHECK OF CRACKING W100~60 (VERTICAL BOT.) ₩-₩

8-7

a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6.2.3 OF BS8007)

SECTION b = 1000 mm SURFACE ZONE : d1 = 250 mm dv = 940 mm dh = 920 mm

Min. ρ = 0.9035 (0.35 %)

As (ver.) = $\rho \cdot b \cdot d1 = 875$ mm2 As (her.) = $\rho \cdot b \cdot d1 = 875$ mm2

USE; VERTICAL D 22 @ 200 (As = 1900 mm2)
USE; HORIZONTAL D 22 @ 200 (As = 1900 mm2)

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3.2.2 OF BS8007)

Mu = 295.0 KN·m M = 210.7 KN·m b = 1000 KN·m M= Hor Mu = KN·m D = 1000 mm dv≃ 940 mm dh = 920 mm fy = 130 N/mm2 30 N/mm2 fcu =

VERTICAL

 $K = M / (fcu-b-dv^2) = 0.0079$ $Z1 = dv \cdot [0.5 + \sqrt{(0.25 - K/0.9)}] = 932$ Z2 = 0.95 - dv = 893 Z = 893 As = M / fy - Z = 1815 mm2

USE; D 22 @ 200 (As = 1900 mm2)

HORIZONTAL

 $K = M / (fcu \cdot b \cdot dh^2) = 0$ $Z1 = dh \cdot [0.5 + \sqrt{(0.25 - K/0.9)}] = 0$ $Z2 = 0.95 \cdot dh = 0$ $Z = 0.95 \cdot dh = 0$ Z = 0.9

USE; D 22 @ 200 (As = 1900 mm₂2)

c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF BS8007)

1) CRACK SPACING

 $Smax(V) = (fct/fb) \cdot (\phi/2\rho(V))$ = 969.74 mm $Smax(H) = (fct/fb) \cdot (\phi/2\rho(H))$ = 969.7 mm

Where ; fct/fb = 0.67 $\rho(V) = As/b \cdot d1 = 0.0076$ $\rho(H) = As/b \cdot d1 = 0.0076$

2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT

 $Wmax(V) = Smax(V) \cdot (\alpha/2) \cdot T1$ = 0.19 < 0.2 mm $Wmax(H) = Smax(H) \cdot (\alpha/2) \cdot T1$ = 0.19 < 0.2 mm

Where: a: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE.

a= 1E-05 T1= 40 from TABLE 4.2

a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6.2.3 OF BS8007)

```
        SECTION
        b =
        1000
        mm
        SURFACE ZONE :
        d1 =
        250
        mm

        D =
        600
        mm
        dv =
        540
        mm
        dv =
        540
        mm
        dv =
        520
        dv =<
```

Min. p = 0.0035 (0.35%)

As (ver.) = $\rho \cdot b \cdot d1 = 875$ mm2 As (her.) = $\rho \cdot b \cdot d1 = 875$ mm2

USE;	VERTICAL	D 20	@ 200	(As =	1570	mm2)
USE; F	IORIZONTAL	D 20	@ 100	(As =	3140	mm2)

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3.2.2 OF BS8007)

```
Ver. Mu = 68.1 \text{ KN} \cdot \text{m} M = 48.6 \text{ KN} \cdot \text{m} D = 600 \text{ mm} D = 600 \text{ mm}
```

 $K = M / (fcu-b-dv^2) = 0.0056$ $Z1 = dv \cdot [0.5 + \sqrt{(0.25 - K/0.9)}] = 537$ $Z2 = 0.95 \cdot dv = 513$ Z = 513 $As = M / fy \cdot Z = 728.74$ mm2

USE; D 20 @ 200 (As = 1570 mm2)

HORIZONTAL

_USE; D 20 @ 100 (As = 3140 mm2)

c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF B\$8007)

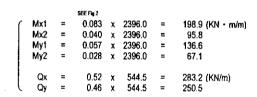
1) CRACK SPACING

 $\rho(H) =$

2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT.

As/b·d1 = 0.0126

 $Wmax(V)= Smax(V) \cdot (\alpha/2) \cdot T1$ = 0.19 < 0.2 mm $Wmax(H)= Smax(H) \cdot (\alpha/2) \cdot T1$ = 0.09 < 0.2 mm


Where; a: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE

α= 1E-05 T1= 35 from TABLE 4.2 8.2.2 CALCULATION OF SLAB (S60) (1)-(1) (AT+356.000)

1) DESIGN LOAD & FACTORED STRESS

 $\Lambda \Lambda \Lambda \Lambda \Lambda \Lambda \Lambda \Lambda \Lambda \Lambda$

t = 0.60 m yw = 10.0 KN/m3 yc = 24.0 KN/m3 yc = 24.0 KN/m4 w=yw · hw+yc · t = 88.4 KN/m2/m ly = 9.20 m λ = 2.09 w w = 88.4 KN/m2/m w'=1.4 · w = 123.76 KN/m2/m w' · lx = 544.5

hw = 7.40 m

```
3) DESIGN OF SECTION
                          (AT+356.000)
    a) X-DIRECTION
      Mu = 198.9 KN·m
                                 (95.8)
      Vu = 283.2 KN/m
      h =
               1000
                      mm
                                           365 N/mm2
      D =
               600
                      mm
                                 fou =
                                            30 N/mm2
      d =
                540
                      mm
  [ REQUIRED RE-BAR 1
      K = Mu / \{fcu \cdot b \cdot d^2\}
                                                       = 0.023 < 0.156
      Z1 = d \cdot [0.5 + \sqrt{(0.25 - K/0.9)}]
                                                            526
      Z2 = 0.95 \cdot d
                                                        = 513
      Z =
                                                            513
      As 1 = Mu /0.95 · fy · Z
                                                       = 1118 mm2
      Asmin = 0.0013 • b • D
                                                       = 780 mm2
                                                         100
                                                                  (As = 3140 \text{ mm}2)
                                                                                            (Top)
                                                          200
                                                                                           (Bottom)
  [ CHECK OF SHEAR STRESS ]
      V = Vu/(b \cdot d)
                                            = 0.52 < 4.4 N/mm2 OK
      (100 - As)/(b · d)
                                            = 0.58 < 3.0
      400/d
                                            = 0.7 <
                                                             1.0 →
      Vc = 0.79 \cdot ((100 \cdot As)/(b \cdot d))^{1/3} \cdot (400/d)^{1/4} \cdot (1/1.25) \cdot (fcu/25)^{1/3}
       = 0.56 N/mm2 > V = 0.52 N/mm2
    b) Y-DIRECTION
      Mu = 136.6 KN·m
                                 (67.1)
      Vu = 250.5 KN/m
      b =
              1000
                                 fv =
                                           365 N/mm2
                      mm
      D =
                600
                      mm
                                            30 N/mm2
                                 fcu =
      d =
                520
  [ REQUIRED RE-BAR ]
      K = Mu / (fcu \cdot b \cdot d^2)
                                                       = 0.017 < 0.156
      Z1 = d \cdot [0.5 + \sqrt{(0.25 - \text{K/0.9})}]
                                                        = 510
      Z2 = 0.95 - d
                                                            494
      Z =
                                                             494
      As 1 = Mu/0.95 \cdot fv \cdot Z
                                                            797 mm2
      Asmin = 0.0013 - b • D
                                                            780 mm2
                                            D 20
                                                        100
                                                                  (As = 3140 \text{ mm}2)
                                                                                          (Top/End)
                                            D 20
                                                     a
                                                          200
                                                                                           (Bot./All)
  [ CHECK OF SHEAR STRESS ]
      V = Vu /(b \cdot d)
                                            = 0.48 <
                                                             4.4 N/mm2 OK
      (100 · As)/(b · d)
                                            = 0.60 <
                                                             3.0
      400/d
                                            = 0.8 <
                                                             1.0 →
                                                                          1.0
      Vc = 0.79 \cdot {(100 \cdot As)/(b \cdot d)}^1/3 \cdot (400/d)^1/4 \cdot (1/1.25) \cdot (fcu/25)^1/3}
```

= 0.57 N/mm2 > V = 0.48 N/mm2

```
3) CHECK OF CRACKING SLAB (S60)
```

⊕-⊕

8-11

```
a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6.2.3 OF BS8007)
```

 SECTION
 b =
 1000
 mm
 SURFACE ZONE :
 d(T) =
 250
 mm

 D =
 600
 mm
 d(B) =
 100
 mm

 d =
 540
 mm
 d(B) =
 100
 mm

Min. $\rho = 0.0035 (0.35 \%)$

As $(top) = \rho \cdot b \cdot d(T) = 875$ mm2 As $(bot) = \rho \cdot b \cdot d(B) = 350$ mm2

USE; TOP D 20 @ 100 (As = 3140 mm2)
USE; BOTTOM D 20 @ 200 (As = 1570 mm2)

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3.2.2 OF BS8007.)

Mu = 198.9 KN·m M = 142.1 KN·m h = 1000 Ton mm Bott. Mu = 95.8 KN - m M = 68.4 KN - m D = 600 mm d = 540 mm fv = 130 N/mm2 30 N/mm2 fcu = TOP

 $K = M / \{fcu-b-d^{2}\}$ = 0.0162 $Z1 = d \cdot [0.5 + \sqrt{(0.25 - K/0.9)}]$ = 530 $Z2 = 0.95 \cdot d$ = 513

Z = 513As = M / fy · Z = 2130.8 mm2

USE; D 20 @ 100 (As = 3140 mm/2)

BOTTOM

USE; D 20 @ 200 (As = 1570 mm2)

c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF BS8007)

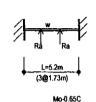
1) CRACK SPACING

 $Smax(T) = (fct/fb) \cdot (\phi/2p(T))$ = 531.75 mm $Smax(B) = (fct/fb) \cdot (\phi/2p(B))$ = 426.8 mm

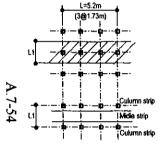
Where ; fct/fb = 0.67 $p(T) = As/b \cdot d(T) = 0.0126$ $p(B) = As/b \cdot d(B) = 0.0157$

2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT

 $Wmax(T) = Smax(T) \cdot (o/2) \cdot T1$ = 0.07 < 0.2 $Wmax(B) = Smax(B) \cdot (o/2) \cdot T1$ = 0.05 < 0.2


Where; a: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE

a= 1E-05 T1= 25 from TABLE 4.2


8.2.3 CALCULATION OF FOOTING SLAB (FS100) (AT+354.600)

⊕⊕

1) DESIGN LOAD & FACTORED STRESS

 Design load 2,5 m Ds = Sand : 72.3 KN/m w1 =17.0 • Ds • L1 = F.Slab: 1.0 m Df w = 24.0 · D · L1 = 40.8 KN/m Factored Load $w' = 1.4 \cdot (w1+w2)$ = 158.3 KN/m 750 KN/pile Pile Reaction Ra =

- Factored stress

L = 5.2 m C=(2/9 · Ra' · L)-(1/12 · w' · L^2) = 856.7 KN · m Mo=(1/3 · Ra' · L)-(1/8 · w' · L^2) = 1285.0 KN · m

> M_A = 1.3 · C = 1113.7 KN · m Mo-0.65C = 728.2 KN · m Vu = Ra' - 1/2 · w' · L = 638.5 KN

Ra' = 1.4 - Ra = 1050 KN/pile

· Culumn strip

BOT:

TOP:

L1 = 1.70 m Mu1=0.375 · (1.3 · C)/(1/4 · L1) = 982.7 KN · m Mu2=0.375 · (Mo-0.65 · C)/(1/4 · L1) = 642.5 KN · m

2) DESIGN OF SECTION

a) HORIZONTAL : BOT/END

 $Mu = 982.7 \text{ KN} \cdot \text{m}$ Vu = 638.5 KN/m

b = 1000 mm fy = 365 N/mm2 D = 1000 mm fcu = 30 N/mm2 d = 940 mm

[REQUIRED RE-BAR]

 $K = Mu / \{fcu \cdot b \cdot d^2\}$ = 0.037 < 0.156 $Z1 = d \cdot \{0.5 + \sqrt{(0.25 - K/0.9)}\}$ = 900 $Z2 = 0.95 \cdot d$ = 893 Z = 893 = 893 $As 1 = Mu / 0.95 \cdot fy \cdot Z$ = 3174 mm2 $Asmin = 0.0013 \cdot b \cdot D$ = 1300 mm2

USE: D 32 @ 100 (As = 8040 mm2)

[CHECK OF SHEAR STRESS]

 $V = Vu /(b \cdot d)$ = 0.68 < 4.4 N/mm2 OK $(100 \cdot As)/(b \cdot d)$ = 0.86 < 3.0 $= 0.4 < 1.0 \rightarrow 1.0$

 $Vc = 0.79 \cdot \{(100 \cdot As)/(b \cdot d)\}^1/3 \cdot (400/d)^1/4 \cdot (1/1.25) \cdot (fcu/25)^1/3$ = 0.64 N/mm2 < V = 0.68 N/mm2 NG

b) HORIZONTAL: TOP/CENT

Mu = 642.5 KN·m Vu = KN/m

b = 1000 mm fy = 365 N/mm2 D = 1000 mm fcu = 30 N/mm2 d = 920 mm

[REQUIRED RE-BAR]

USE; D 25 @ 100 (As = 4910 mm2)

[CHECK OF SHEAR STRESS]

 $V = Vu / (b \cdot d)$ = 0.00 < 4.4 N/mm2 OK (100 · As)/(b · d) = 0.53 < 3.0 400/d = 0.4 < 1.0 \rightarrow 1.1

 $Vc = 0.79 \cdot \{(100 \cdot As)/(b \cdot d)\}^{1/3} \cdot (400/d)^{1/4} \cdot (1/1.25) \cdot (fcu/25)^{1/3}$ = 0.54 N/mm2 > V = 0.00 N/mm2 OK

a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6.2,3 OF BS8007)

SECTION b = 1000 mm SURFACE ZONE: d(T) = 250 mm
D = 1000 mm d(B) = 100 mm

Min. $\rho = 0.0035 (0.35 \%)$

As $(top) = \rho \cdot b \cdot d(T) = 875 \text{ mm} 2$ As $(bot) = \rho \cdot b \cdot d(B) = 350 \text{ mm} 2$

USE	TOP	D 25	@ 100	(As =	4910	mm2)
USE :	BOTTOM	D 32	@ 100	(As =	8040	mm2)

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3.2.2 OF 8S8007)

Mu = 642.5 KN·m M = 458.9 KN·m $Mu = 982.7 \text{ KN} \cdot \text{m}$ $M = 701.9 \text{ KN} \cdot \text{m}$ mm d = 840 mm fy = 130 N/mm2 feu = 30 N/mm2 TOP $K = M / (fcu \cdot b \cdot d^2)$ 0.0217 $Z1 = d \cdot [0.5 + \sqrt{(0.25 - K/0.9)}]$ 819 $Z2 = 0.95 \cdot d$ 798 Z = 798 $As = M / fy \cdot Z$ 4423.6 mm2

USE; D 25 @ 100 (As = 4910 mm2)

BOTTOM

USE; D 32 @ 100 (As = 8040 mm2)

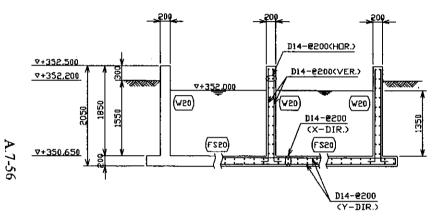
0.0804

c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF BS8007)

1) CRACK SPACING

2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT

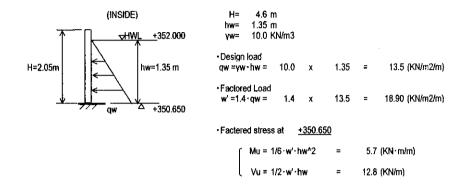
 $\rho(B) = As/b \cdot d(B) =$


 $Wmax(T) = Smax(T) \cdot (a/2) \cdot T1$ = 0.05 < 0.2 mm $Wmax(B) = Smax(B) \cdot (a/2) \cdot T1$ = 0.02 < 0.2 mm

Where ; a: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE

α= 1E-05 T1= 25 from TABLE 4.2

- 9. SLUDGE DRYING BED
- 9. ИЛОВАЯ ПЛОЩАДКА


9.1 DESIGN OF WALL & FOOTING 9.1 OPOEKTUPOBAHUE CTEHЫ И ОСНОВАНИЯ

(2) - (2) S=1×50

9.2.1 CALCULATION OF WALL (W20) (2-12) (AT+350.650)

1) DESIGN LOAD & FACTORED STRESS(Water Pressure)

2) DESIGN OF SECTION (INSIDE/VERTICAL BOT.)

Mu = 5.7 KN·m Vu = 12.8 KN/m b = 1000 mm fy = 365 N/mm2 D = 200 mm fcu = 30 N/mm2 d = 140 mm

[REQUIRED RE-BAR]

USE; D 14 @ 200 (As = 770 mm2)

[CHECK OF SHEAR STRESS]

 $V = Vu /(b \cdot d)$ = 0.09 < 4.4 N/mm2 OK (100 · As)/(b · d) = 0.55 < 3.0 400/d = 2.9 > 1.0 \rightarrow 2.5

Vc = 0.79-{(100·As)/(b·d)}^1/3·(400/d)^1/4·(1/1.25)·(fcu/25)^1/3 = 0.72 N/mm2 > V = 0.09 N/mm2 OK

W20 (INSIDE VERTICAL:BOT)

a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6.2.3 OF BS8007)

SECTION	b =	1000	mm	SURFACE ZONE:	d1 =	100	mm
	D =	200	mm				
	dv =	140	mm				
	db =	120	mm				

Min. $\rho = 0.0035 (0.35\%)$

o · b · d1 = 350 350 As (her.) = ρ• b• d1 = mm2

USE ;	VERTICAL	D 14	@ 200	(As =	770	mm2)
USE	HORIZONTAL	D 14	@ 200	(As ≃	770	mm2)

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3.2.2 OF BS8007)

Ver.	Mu =	5.7	KN•m	M =	4.1	KN-m	b =	1000	mm
Hor.	Mu =	0.0	KN∙m	M =	0.0	KN-m	D =	200	mm
							dv =	140	mm
							dh =	120	mm
							fy =	130 N	l/mm2
							fcu =	30 N	l/mm2
VERTIC	AL								
	1/ - 1/	1 / / 6				_	0.007		

 $K = M / (fcu-b-dv^2)$ 0.007 $Z1 = dv \cdot [0.5 + \sqrt{(0.25 - K/0.9)}]$ 139 $Z2 = 0.95 \cdot dv$ 133 Z = 133 $As = M / fy \cdot Z$ 237.13 mm2

USE:	D 14	മ 200	íAs =	770	mm2

HORIZONTAL

 $K = M / (fcu \cdot b \cdot dh^2)$ 0 $Z1 = dh \cdot [0.5 + \sqrt{(0.25 - K/0.9)}]$ 0 $Z2 = 0.95 \cdot dh$ 0 Z = 0 $As = M / fy \cdot Z$ mm2

D 14 @ 200 USE: (As = 770 mm2)

c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF BS8007)

1) CRACK SPACING

 $Smax(V) = (fct/fb) \cdot (\varphi/2\rho(V))$ 609.09 mm $Smax(H) = (fct/fb) \cdot (\varphi/2\rho(H))$ 609.1 mm

Where ; fct/fb = 0.67 $\rho(V) =$ As/b · d1 = 0.0077 $\rho(H) =$ $As/b \cdot d1 =$ 0.0077

2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT

 $V_{max}(V) = S_{max}(V) \cdot (\alpha/2) \cdot T1$ 0.07 mm Wmax(H)= Smax(H)-(a/2)-T1 0.07

Where: a: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE

1E-05 T1= 23 from TABLE 4.2

9.2.2 CALCULATION OF WALL (W20) (12)-(12)(AT+350.650)

1) DESIGN LOAD & FACTORED STRESS(Soil Pressure)

q: Live Load Ko: Coefficient of soil pressure at rest v1≈ 18.0 KN/m3 a = 5.0 (KN/m2/m) (OUTSIDE) v2= 8.0 KN/m3 Κo 0.5 vw= 10.0 KN/m3 ____+352,200 Design load ao = Ka•a 2.5 (KN/m2/m) a1 = Ko•v1•h1 14.0 h=h1 → +351.000 y2/yw h2 ♥ +350.200 Factered Load w1 = 1.4 · co 3.5 (KN/m2/m) Ground Water Level at +350,200 w2 = 1.4 · a1 19.5 H= 3.8 m Factered stress at +351.000 h1= 1.55 m Mu1 = 1/2 · w1 · h^2 4.20 (KN·m/m) h2= 0.80 m Vu1 = w1 - h 5.43 (KN/m) Mu2 = 1/6 · w2 · h^2 h=h1= 1.55 m 7.82 (KN·m/m) Vu2 = 1/2·w2·h 15.14 (KN/m) Mu = Mu1 + Mu212.0 (KN-m/m) Vu = Vu1 + Vu220.6 (KN/m)

2) DESIGN OF SECTION (OUTSIDE/VERTICAL BOT.)

Mu = 12.0 KN·m Vu = 20.6 KN/m

1000 b = 365 N/mm2 mm D = 500 30 N/mm2 mm fcu = d = 440 mm

[REQUIRED RE-BAR]

 $K = Mv / (fcu \cdot b \cdot d^2)$ = 0.002 < 0.156 $Z1 = d \cdot [0.5 + \sqrt{(0.25 - K/0.9)}]$ 439 $Z2 = 0.95 \cdot d$ 418 Z = 418 As 1 = $Mu/0.95 \cdot fy \cdot Z$ 83 mm2 Asmin = 0.0013 · b · D = 650 mm2

D 20 @ 100 (As = 3140 mm2)

[CHECK OF SHEAR STRESS]

 $V = Vu/(b \cdot d)$ = 0.05 < 4.4 N/mm2 OK (100-As)/(b-d) = 0.71 < 3.0 400/d = 0.9 < 1.0 → 1.0

Vc = 0.79-{(100-As)/(b-d)}^1/3-(400/d)^1/4-(1/1.25)-(fcu/25)^1/3 = 0.60 N/mm2 > V = 0.05 N/mm2

W20 (OUTSIDE VERTICAL:BOT)

a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6.2.3 OF BS8007)

 SECTION
 b =
 1000 mm
 SURFACE ZONE :
 d1 =
 100 mm

 D =
 200 mm

 dv =
 140 mm

 dh =
 120 mm

Min. $\rho = 0.0035 (0.35\%)$

As (ver.) = $\rho \cdot b \cdot d1 = 350 \text{ mm}^2$ As (her.) = $\rho \cdot b \cdot d1 = 350 \text{ mm}^2$

USE ;	VERTICAL	D 14	@ 200	(As =	770	mm2)
USE ;	HORIZONTAL	D 14	@ 200	(As =	770	mm2)

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3.2.2 OF BS8007)

Ver. Mıı≓ 12.0 KN·m M≃ 8.6 KN · m 1000 mm 0.0 KN m Hor. M = 0.0 KN · m D= 200 mm 140 dv = mm dh = 120 mm 130 N/mm2 fy = fcu = 30 N/mm2 VERTICAL

USE; D 14 @ 200 (As = 770 mm2)

HORIZONTAL

K = M / (fcu-b-dh/2) = 0 Z1 = dh · [0.5 + √(0.25 - K/0.9)] = 0 Z2 = 0.95 · dh = 0 Z = 0.95 · dh = 0 As = M / fy · Z = 0 mm2

USE; D 14 @ 200 (As = 770 mm2)

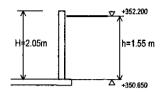
c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF BS8007)

1) CRACK SPACING

 $Smax(V) = (fct/fb) \cdot (\phi/2\rho(V))$ = 609.09 mm $Smax(H) = (fct/fb) \cdot (\phi/2\rho(H))$ = 609.1 mm Where; fct/fb = 0.67 $\rho(V)$ = As/b·d1 = 0.0077

 $p(H) = As/b \cdot d1 = 0.0077$

2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT


 $Wmax(V) = Smax(V) \cdot (a/2) \cdot T1$ = 0.07 < 0.2 mm $Wmax(H) = Smax(H) \cdot (a/2) \cdot T1$ = 0.07 < 0.2 mm

Where; a: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE

α= 1E-05 T1= 23 from TABLE 4.2

9.2.3 CALCULATION OF FOOTING SLAB (FS20) (7)-(7)

1) FACTORED STRESS

∠M⊓ itroPn

Mu neon

-Factered stress at +350.650

from Moment of Inside of Wall (refer to para.9.2.1)

Mu (non) = 5.7 (KN·m/m)

from Moment of Outside of Wall (refer to para.9.2.2)

Mu (non) = 12.0 (KN·m/m)

2) DESIGN OF SECTION (BOTTOM BAR)

Mu = 12.0 KN·m Vu = KN/m

b = 1000 mm fy = 365 N/mm2 D = 200 mm fcu = 30 N/mm2 d = 140 mm

(REQUIRED RE-BAR)

USE; D 14 @ 200 (As = 770 mm2)

[CHECK OF SHEAR STRESS]

Vc = 0.79-{(100-As)/(b-d)}^1/3-(400/d)^1/4-(1/1.25)-(fcu/25)^1/3 = 0.72 N/mm2 > V = 0.00 N/mm2 OK

FOOTING SLAB (FS20)

a) CHECK OF MINIMUM REINFORCEMENT (BASED ON 2.6.2.3 OF BS8007)

 SECTION
 b =
 1000 mm
 surface ZONE :
 d(T) =
 100 mr

 D =
 200 mm
 d(B) =
 100 mr

 d =
 140 mm

Min. $\rho = 0.0035 (0.35\%)$

As $(top) = p \cdot b \cdot d(T) = 350 \text{ mm2}$ As $(bot) = p \cdot b \cdot d(B) = 350 \text{ mm2}$

USE;	TOP	D 14	@ 200	(As =	770	mm2)
USE :	BOTTOM	D 14	@ 200	(As =	770	mm2)

b) CHECK OF STEEL STRESS IN DIRECT OR FLEXURAL TENSION FOR SERVICEBILITY LIMIT STATES (BASED ON 3.2.2 OF BS8007.)

Top Bott.	Mu = Mu =	12.0	KN·m KN·m	M = M =	0.0 8.6	KN-m KN-m	b = D = d = fy = fcu =		mm mm mm N/mm2 N/mm2
TOP									
			∙b•d^2)			=	0		
	Z1 = d	• [0.5	+ √(0.25	5-K/0.9)]		=	0		
	Z2 = 0	0.95 • d				=	0		
	Z =						0		
	As = N	l / fy ·	Z			=	0	mm2	

USE; D 14 @ 200 (As = 770 mm2)

BOTTOM

 $K = M / (fcu \cdot b \cdot d^2) = 0.0146$ $Z1 = d \cdot [0.5 + \sqrt{(0.25 - K/0.9)}] = 138$ $Z2 = 0.95 \cdot d = 133$ Z = 133 $As = M / fy \cdot Z = 497.4$ mm2

USE; D 14 @ 200 (As = 770 mm2)

c) CHECK OF CRACK WIDTH (BASE ON APPENDIX A OF BS8007)

1) CRACK SPACING

 $Smax(T) = (fct/fb) \cdot (\phi/2p(T))$ = 609.09 mm $Smax(B) = (fct/fb) \cdot (\phi/2p(B))$ = 609.1 mm

Where ; fct/fb = 0.67 $p(T) = As/b \cdot d(T) = 0.0077$ $p(B) = As/b \cdot d(B) = 0.0077$

2) CRACK WIDTHS ARISING FORM RESTRAINED SHRINKAGE AND HEAT OF HYDRATION MOVEMENT

 $Wmax(T)=Smax(T)\cdot(a/2)\cdot T1$ = 0.05 < 0.2 mm $Wmax(B)=Smax(B)\cdot(a/2)\cdot T1$ = 0.05 < 0.2 mm

Where; a: COEFFICIENT OF THERMAL EXPANSION OF MATURE CONCRETE

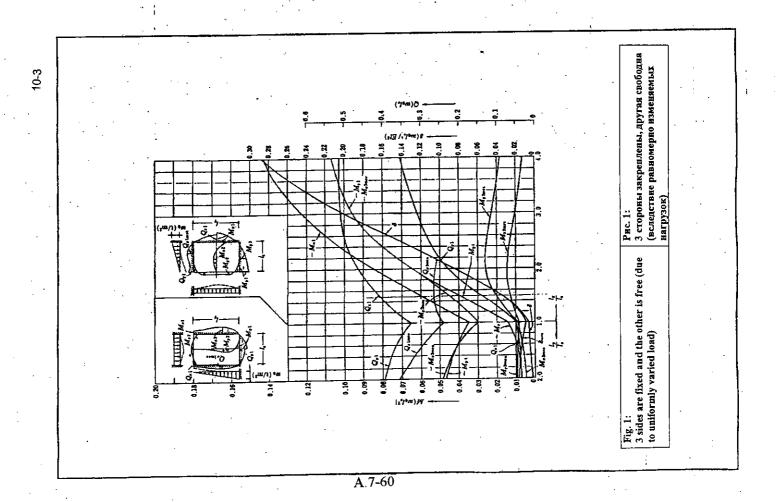
a= 1E-05 T1= 15 from TABLE 4.2

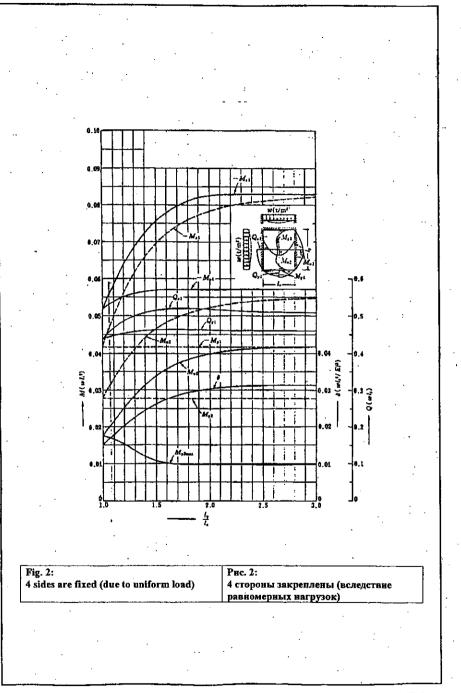
10. ATTACHMENT

10. ПРИЛОЖЕНИЕ

A.7-59

Calculation of Pile Foundation


Calculation Formula


Ultimate Bearing Capacity ou = 30 N Ap η +U Σ (li-fi) Allowable Bearing Capacity Bearing Pile Ordinary Ra = 1/3 Ru Friction Pile Ordinary Ra = 1/4 Ru

: sectional area of a pile (m2) : clogging coefficient (for steel pile) : perimeter length of pile (m) : pile length (m) : perimeter friction (tf/m) Ap 7 U li fi

Facilities	Pile Length	Bearing Strate	Embe dment			le Cros tional A		Grog. Coef.	i	nimet ength		Cohesive Soil	Thick ness	Cohesi on	C	w, Be specit f/pile	У	Structur e Area	Load			r of Piles		Applicatio		
	1	İ	i i	72.00	300	400	500		300	400	500	9911	<u></u>	C		Size (,					e Size (mr				
	m		m		m2	m2	m2		m	m	m		m	t/m2	300	400	500	m²	ton	1	300	400	500			
Distribution Chamber	3	3rd	2	11	0.09	0.16	0.25	1	1.2	1.6	2		2	0			l'			nmbr	412	218	138			
		sand	İ		l							② ③	0	Ó		17	27	190	3,700	-	0.46	0.87 0.93	1.38			
	17	541	3	9	0.09	0.15	0.25	1	4.0	1.6	2	① 5th	1 3						-	intrvl	232	148	1,17			
	} '	5th sandy-	3	1 8	0.09	U. 10	0.25	١ '	1.2	0.1	-	(2) srii	3	7.1		25	36	190	3,700	ambr	0.82	1.28	1.84			
	1	ctay	Ì		İ							3	0			2.5	30	190	3,700	intrvl	0.90	1.13	1.35			
l 1	11.5	6th	1 1	8	0.09	0.16	0.25	1	12	1.6	2	① 5th								nmbr	181	109	79	500		
	1	clay] `		0.00	0.10	4.2.5	·	1		-	② 6th	1	5.8		34	47	190	3,700		1.18	1.74	2.41	11.5m		
		,	i	!	İ							(3)	0			.				intrvl	1.08	1.32	1.55	90 piles		
Receiving Well	1.5	ist	-	4	0.09	0.16	0.25	1	1.2	1,6	2	① 1st	1.5	4.3	i	İ				nmbr	491	327	211	,		
·		sandy-	1									2	0	0	6	9	14	143	2,942	arne	0.29	0.44	0.68			
	Ĺ	sik	1									3	0	0						intrvl	0.53	0.66	0.82			
	6	5th	1	9	0.09	0.16	0.25	1	1.2	1.6	2	① 1st	3							nmbr	184	118	85			
		sandy-	1						1			2 5th	1			25	35	143	2,942		0.78	1.21	1.68			
		day	<u> </u>					<u> </u>			_	3	0							intrvi	0.88	1.10	1.29			
	12	6th	1	8	0.09	0.16	0.25	1	1.2	1.6	2		3	4.3		20		445	2 042	nmbr	109	76	56	500		
		clay	ļ						1			(2) 5th (3) 6th	4.5	7,1 5,8		39	53	143	2,942	intry	1.31	1.88	2.55 1.59	12m		
Nocculation and	2	4 4	١.	4	0.09	0.16	0.25	1	1.0	1.6	2		2							nmbri	6.088	4,261	2,841	56 piles		
Procession and Sedimentation Basin	'	1st sandy-	•	7	0.09	U. 10	0.25	<u>'</u>	1.2	1.0	- 2	① 1st ②	- 6	4.3		10	15	4 124	42.610		0.68	0.97	1.45			
		silt				ì		ł				3	0	ŏ				7,127	12,010	intry	0.82	0.98	1,20			
	В	5th	2.5	9	0.09	0.16	0.25	1	1.2	1.6	2	① 1st	2	4.3						- 1	- i -	nmbr	2.36B	1.522	1.066	400
	-12.5	sandy-		-								(2) 5th		7.1		28	40.	4.124	42,610		1.74	2.71	3.87	8-12.5m		
	/===	clav										(3)	0	0				,		intryl	1.31	1.64	1.96	1554 piles		
	12	6th	1	B	0.09	0.16	0.25	1	1.2	1.6	2	① 1st	2	4.3						nmbr	1,776	1,218	888			
	-16,5	clay										(2) 5th	4	7.1	24	35	48	4,124	42,610	area	2.32	3.39	4.64			
			ł		i							3 Bth	1	5.8] í					intryl	1.52	1.84	2.15			
Rapid Sand Filter	4	1st	2	4	0.09	0.16	0.25	1	1,2	1.6	2		2							nmbr	3,843	2,690	1,794			
	1	sandy-			i			Ì				3	0			10	15	2,564	26,900	_	0.67	0.95	1.43			
		silt											0							intrvi	0.81	0.97	1,19			
	9.5	5th	2	9	0.09	0.16	0.25	1	1.2	1.6	2		3							nmbr	1,495	961	673	400		
	-11	sandy-			l]			② 5th	2			28	40	2,564	26,900	-	1.72	2.67	3.81	9.5-11m		
	L	clay	L .	1								3	0							intrvl	1.30	1.63	1.95	1026 pile		
	12.5	l Ben	١,	8	0.09	0.16	0.25	1	1.2	1.6	2	① 1st	3			22	أمما	7 504	26 000	nmor	1,281 2.00	841 3.05	612 4,19			
	1	clay	İ									(2) 5th (3) 6th	2.5	7.1 5.8		32	44	2,004	26,900	-	1.41	1.74	2.04			
		<u> </u>	l				·			'		3 6th	1 1	5.0	<u>ı </u>					intrvi	1.411	1.74	2.04			

10-2

Chartxle/Fig.3